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ABSTRACT 

NADH:quinone oxidoreductase from Pseudomonas aeruginosa PAO1 (NQO, PA1024, EC 

1.6.5.9) is a recently reclassified flavin-dependent enzyme that catalyzes the two-electron 

reduction of a wide variety of quinones to hydroquinone using NADH as an electron donor. The 

two-electron reduction of quinone plays a detoxification role in P. aeruginosa by avoiding the 

formation of semiquinone radicals. The previously solved crystal structure of the NQO 

demonstrated that the substrate-binding site of NQO is formed by a small entrance consisting of a 

flexible βα loop 3 (residue 75-86). Q80 in loop 3 switches between an open conformation without 

NAD+ bound and a close conformation with NAD+ bound. In this study, Q80 was mutated to 

glycine, leucine, or glutamate through site-directed mutagenesis to investigate the role of Q80 in 

binding and catalysis in NQO. The results showed that Q80 residue participates in substrate NADH 

binding in the active site of NQO. 
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CHAPTER 1. 

1  INTRODUCTION 

1.1 NAD(P)H:quinone reductases  

Flavin-dependent quinone reductases (QRs) provide the strict two-electron reduction of the 

quinones to its hydroquinone. QRs prevent the generation of semiquinone, which is prone to react 

with molecular dioxygen leading to the generation of superoxide radicals.1 QRs are known to cause 

oxidative stress in prokaryotic and eukaryotic organisms. Hence, QRs have a protective role 

against quinone-related oxidative cell damage. Since handling oxidative stress is vital for both 

prokaryotic and eukaryotic organisms, flavin-dependent QRs have been identified in bacteria, 

fungi, plants, and mammals.1 These enzymes utilize a flavin cofactor, either FMN or FAD, to 

transfer a hydride from an electron donor, such as NAD(P)H, to a quinone substrate.2 The family 

of flavin-dependent quinone reductase shares a flavodoxin-like structure and reaction mechanisms 

pointing towards a common evolutionary origin.2  

Originally, QRs were classified as DT-diaphorases; the enzymes that utilize both NADH 

and NADPH as a source of reducing equivalents.2 The term diaphorases was usually used to 

describe enzymes (mostly flavoproteins) capable of transferring electrons from pyridine 

nucleotides to electron acceptors.2 The first DT-diaphorase reported by Ernster and Navazio is 

now known as mammalian NAD(P)H:quinone oxidoreductase (NQO1).3 However, the acronym 

"NQO" has been traditionally confined to QRs from mammalian sources.4 The mammalian QRs 

act as a molecular switch that control the lifespan of transcription factor p53 and, thus, contributes 

to the development of cell transformation and apoptosis.3 

Several QRs utilize NADH and NADPH as a electrons donors, such as NsfB from 

Escherichia coli and Lot6p from Saccharomyces cerevisiae,5, 6 whereas others prefer NADH 
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(AzoA from Enterococcus faecalis)7 or NADPH (YhdA from Bacillus subtilis).8 Conversely, 

mammalian N-ribosyl dihydro-nicotinamide (NRS):quinone oxidoreductase (NQO2) cannot use 

NADH and NADPH as sources of electrons. Instead, it employs N-ribosyl- and N-alkyl-dihydro-

nicotinamide as a reducing substrate.3 The preference for oxidizing substrates of QRs is far more 

complicated. The structure and size of the active sites of NQO1, NQO2, and Lot6p suggest these 

enzymes evolved to accept a wide range of ring-containing compounds. Naturally occurring 

quinones comprising vitamin K derivatives (menaquinone and phylloquinone), coenzyme Q 

(ubiquinone), and dopaquinone were also found to be substrates for mammalian QRs.2 

1.2 NAD(P)H:quinone oxidoreductase from Pseudomonas aeruginosa 

NAD(P)H:quinone oxidoreductases (NQOs) play a fundamental antioxidant role in 

detoxifying quinones from the intracellular ambiance in P. aeruginosa.9 The physiological 

significance of NQOs utilizing NAD(P)H as the reducing substrate is not well understood 

compared to the relevance of the quinone reduction.3 The importance of NQOs using NAD(P)H 

as the reducing substrate was investigated by analyzing the genome context of NQOs.10 The operon 

encoding for NQOs also contains a hypothetical acyl-CoA dehydrogenase, an enoyl-CoA 

hydratase, and a porin suggesting NQOs translated with these enzymes play a role in the β-

oxidation pathway in P. aeruginosa PA01.8  

1.2.1 PA1024 and PA0660 

Two genes, Pa1024 and Pa0660 in the GenBank, were originally annotated based on 

bioinformatics as hypothetical nitronate monooxygenase in P. aeruginosa PA01 (NMOs).11 NMOs 

have more than 5000 genes in the GenBank.11, 12 NMOs are a flavin-dependent enzymes that 

catalyze the oxidation of metabolic poison propionate-3-nitronate (P3N) and other nitronate 

analogs.13 The classification as an NMO was uncontested until the structural motifs characteristic 
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of class I NMOs were established.10 The comparison of structural motifs showed that PA1024 does 

not contain any conserved structural sequence characteristics of class I NMOs.10 Therefore, the 

PA0124 function was reevaluated through the mechanistic investigations, which revealed that 

enzyme does not exhibit NMO activity; instead uses NADH, but not NADPH and quinones as an 

oxidoreductase.10 In 2018, PA1024 was reclassified as an NADH:quinone oxidoreductase (NQO, 

EC 1.6.5.9), which may participate in maintaining the NAD+/NADH ratio for catabolism of fatty 

acid in P. aeruginosa PA01.10 Six conserved motifs in the primary sequence of PA1024 along with 

structural and biochemical data, define a new class of NADH:quinone oxidoreductases (Table 1.1) 

that includes more than 490 hypothetical proteins in the GenBank.10 

PA0660 was previously annotated as a hypothetical NMO based on bioinformatics.11 

However, no biochemical evidence was available at the transcript and protein level. PA0660 shares 

only 27% and 29% sequence identity and modest overall sequence similarities of 38% and 42% 

with PaNMO and PA1024, respectively.11 Additionally, PA0660 does not possess the consensus 

motifs of class I and class II NMOs or PA1024, suggesting the enzyme may have different catalytic 

activity. It was tentatively identified as a member of a new class of NADPH:quinone reductase 

enzymes.11 PA0660 has a non-covalently bound FMN in the active site. The enzyme is reduced 

with NADPH or NADH with marked preference for NADPH and oxidized with a wide range of 

quinones (Table 1.1).11 Six conserved motifs were identified in the protein sequence of PA0660, 

which are different from PaNMO and PA1024, and are conserved in more than 1000 proteins 

erroneously annotated as hypothetical NMOs in the GenBank database.11  

1.2.2 PA1225 

The P. aeruginosa PA01 complete genome has been sequenced, and more than 2000 genes 

of the 5570 open reading frames were annotated as a "hypothetical protein" in 2016.14, 15 One of 
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the hypothetical proteins in P. aeruginosa, PA1225, was annotated as NAD(P)H dehydrogenase 

with a flavodoxin like fold.16 PA1225 has ~20-30% sequence similarities with human NQO1 and 

NQO2.17 In 2018; biochemical evidence validated the annotation of the Pa1225 gene as encoding 

a NAD(P)H:quinone reductase. PA1225 is a FAD-dependent quinone:reductase which operates 

through ping-pong bi-bi steady-state kinetic mechanisms (Table 1.1).12 NADPH is the preferred 

reducing substrate, whereas NADH was also used with a 40-fold lower efficiency.12 Single and 

double-ring quinones are both suitable oxidizing substrates for the PA1225.12 

Table 1.1: NAD(P)H:quinone oxidoreductase from P. aeruginosa PA01 

Gene Cofactor Reducing agent Reaction Protein fold Reference 

PA1024 FMN NADH Ping-pong bi-bi TIM-barrel 10 

PA0660 FMN NADPH/NADH Ping-pong bi-bi TIM-barrel 11 

PA1225 FAD NADPH/NADH Ping-pong bi-bi Flavodoxin 12 

 

1.3 P. aeruginosa NADH:quinone oxidoreductase (NQO) 

The protein PA1024 from P. aeruginosa PAO1 was previously annotated in the GenBank and 

PDB databases as a nitronate monooxygenase;18 structural, biochemical, and bioinformatic studies 

have successively shown it to be a NADH:quinone oxidoreductase.19 The NQO from P. 

aeruginosa is an FMN-dependent enzyme that employs a ping-pong bi-bi mechanism in turnover 

by first reducing the flavin via a hydride transfer from NADH, then a hydride transfer from the 

flavin to the quinone (Scheme 1.1).1, 9, 19  
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Scheme 1.1: Reaction catalyzed by NQO from P. aeruginosa with NADH and quinone. 

 

              The enzyme can accomplish the two-electron reduction by receiving two electrons from 

NADH to form the reduced flavin and then transferring those two electrons to the quinone 

(Scheme 1.1). The two-electron transfer between the NQO and the quinone may reduce quinone 

toxicity resulting from a single electron transfer of the NQO to the quinone.20 A single electron 

transfer onto a quinone creates a free radical that can promote highly reactive oxygen species 

(ROS), leading to tissue degradation and cell death (Figure 1.1). NQO may play an essential role 

in the cellular detoxification of P. aeruginosa by avoiding the generation of harmful quinone 

species that lead to cytotoxicity.9, 20 Genome context analysis suggests that NQO may also 

maintain an appropriate [NADH]/[NAD+] ratio for the catabolism of fatty acids in P. aeruginosa.1, 

21 
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Figure 1.1: One and two-electron reductions of quinones. A two-electron reduction of oxidized 

quinone achieves hydroquinone formation. One-electron reduction of quinones creates the 

semiquinone radical. Modified from reference [1]. 

              NQO from P. aeruginosa shares little overall sequence similarity with flavin-dependent 

NAD(P)H:quinone oxidoreductases, such as eukaryotic NAD(P)H:quinone oxidoreductase 1 

(NQO1), eukaryotic NQO2, lot6p from S. cerevisiae,6 or the tryptophan repressor binding protein 

from E. coli (WrbA).22 Most NAD(P)H:quinone reductases (NQOs) have a TIM-barrel fold, 

typically a flavodoxin-like fold, including the well-characterized NQO1 and NQO2.1 The enzyme 

NQO from P. aeruginosa has a strict specificity for NADH with virtually no reactivity with 

NADPH. The best quinone substrates for NQO are benzoquinone and naphthoquinone.19  
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1.4 Substrates of NQO  

1.4.1 Quinones-Oxidizing substrates 

         Quinones are six-membered cyclic, unsaturated compounds that contain two carbonyl 

groups, resulting in a fully conjugated cyclic dione.23 The carbonyl groups can be adjacent or 

separated by a vinylene group.23, 24 Quinones are abundant organic compounds in the environment 

and prokaryotic and eukaryotic cells.3 The simplest single ring form of quinone is 1,4-

benzoquinone, whereas the double ring form is 5-hydroxy-1,4-naphthoquinone (Figure 1.2) will 

be studied in this thesis. 

 

Figure 1. 2: Structure of 1,4-benzoquinone, and 5-hydroxy-1,4-napthoquinone. The single 

ring form of quinone is 1,4-benzoquinone, and the double ring form is 5-hydroxy-1,4-

naphthoquinone. 

               Quinones are pervasive and participate in various reactions, most notably in the electron 

transport chain in the form of Coenzyme Q0.25, 26 The substrate 1,4-benzoquinone is used as a 

chemical intermediate, a polymerization inhibitor, an oxidizing agent, and a chemical reagent in 

the dye, textile, tanning, and cosmetic industries.26 Exposure to high levels of benzoquinone via 

inhalation and skin absorption in humans results in eye irritation and dermatitis.26, 27 In animal 

studies, oral exposure to benzoquinone has high acute toxicity.28 Naturally, benzoquinone is used 

by the bombardier beetle along with hydrogen peroxide as a chemical spray to deter predators.27 
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The substrate 5-hydroxy-1,4-naphthoquinone is a secondary metabolite in plants with allelopathic 

properties naturally produced by the black walnut (Juglans nigra). It is toxic to other plants and 

insect herbivores, and bacteria; Pseudomonas putida, a soil bacterium found in black walnut roots, 

metabolizes juglone and uses it as a carbon source for energy production.29-33 Due to its cytotoxic 

properties, 5-hydroxy-1,4-naphthoquinone has been investigated as an anti-cancer agent.33, 34  

1.4.2  NADH-Reducing substrates 

             Nicotinamide adenine dinucleotide (NAD+) is a coenzyme central to the metabolism of 

living organisms. The coenzyme NAD+ consists of two nucleotides, an adenine nucleobase and 

nicotinamide joined through their phosphate groups (Figure 1.2). It exists in both an oxidized 

NAD+ and reduced NADH form (Figure 1.2). The enzyme NQO uses NADH as a reducing 

substrate and will be studied in this thesis. 

                The NADH and NAD+ play critical roles in energy metabolism, cell death, 

mitochondrial functions, immune function, and various cellular function, including regulation of 

calcium homeostasis and gene expression.35 NAD+ and NADH might affect the aging processes 

and oxidative damage-mediated diseases due to their effect on cellular antioxidation capacity.35, 36 

A variety of enzymes with varying functions uses NADH as a substrate or a cofactor. Significant 

classes include oxidoreductase such as NAD(P)H:quinone oxidoreductases (NQOs), 

azoreductases such as glutathione reductases, 37 and dehydrogenases such as lactate dehydrogenase 

and glutamate dehydrogenase.38, 39 
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Figure 1.3: Structure of NADH. It consists of two nucleotides, an adenine nucleobase and 

nicotinamide joined through their phosphate groups. 

 

1.5 Three-dimensional structure of NQO 

The three-dimensional structure of NQO in a complex with NAD+ was determined previously by 

X-ray crystallography at 2.2 Å resolution (Figure 1.4).40  The oxidized form of substrate NAD+ 

binds in a folded conformation at the interface of the TIM-Barrel domain (M1-P211 and E299-V328) 

and extended domain (I212-Asp298) of the enzyme (Figure 1.4).40  
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Figure 1. 4: The overall structure of NQO with NAD+ (PDB: 6E2A). The NQO structure is 

shown in a cartoon representation. The NAD+ and cofactor FMN are shown as sticks and colored 

cyan and yellow, respectively. The TIM-barrel domain's residue interacts with the extended 

domain's residue, creating an NAD+ binding pocket. 

            A comparison of NAD+ bound NQO with the ligand-free structure revealed a 

conformational change of a mobile loop (Loop 3, residues 75-86), part of the NAD+-binding 

pocket. The residues P78, P82, and P84 provide internal rigidity to loop 3, whereas Q80 serves as 

an active site latch that secures the NAD+ within the binding pocket. The adenine moiety of NAD+ 

appears to π–π stack with Y261. A steric constraint occurs between the adenosine ribose of NAD+, 

P78, and Q80, which controls the strict specificity of NQO for NADH.40  
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Figure 1.5: The binding mode of NAD+ to NQO. The NAD+ carbons are in cyan sticks, and FMN 

carbon is in yellow. The dashed line indicates the distance between the C4 atom of the nicotinamide 

and the N5 atom of the FMN. The solid line defines the angle between the N5 and N10 atom of the 

FMN and the C4 atom of the nicotinamide. Taken from reference [26] with author permission. 

              The crystal structure of NQO has shown that the C4 atom of the nicotinamide is 3.6 Å 

away from the N5 atom of FMN, with a donor/acceptor angle of 110.60 for the atoms involved in 

the hydride transfer reaction (Figure 1.5). The proximity and donor/acceptor are thought to 

represent a binding mode relevant to facile hydride transfer from the nicotinamide of NAD+ to the 

N5 atom of FMN. However, the nicotinamide ring of the NAD+ does not appear to directly π–π 

stack with the pyrazine ring of FMN.40 One FMN molecule was found to be non-covalently bound 

to the active site pocket of NQO. Structural analysis of NQO suggests the cofactor forms a 

hydrogen bonds between phosphate moiety and the protein backbone amide atom of A150, G180, 

G201, and T202 to remain bound within the protein.18 
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Figure 1.6: Active site topology of NQO (PDB: 2GJL). The active site of NQO depicts the 

position of the FMN cofactor and key active site residues. FMN carbon atoms are yellow, and the 

carbon atoms of protein are lime green. Oxygen and nitrogen atoms are red and blue, respectively. 

 

The active site frameworks of NQO showed H152 present above the flavin and S288 near the 

C7/C8 methyl’s of the flavin. K124 is located near the N1 of NQO, and M23 is positioned behind 

the re-face of flavin. Additionally, T75 is below the flavin and hydrophilic residues near the flavin's 

N1-C2(O) locus (Figure 1.6). The active site residues of NQO differed from the active site 

residues of mammalian NQO1 and NQO2. NQO from P. aeruginosa displays several differences 

with respect to mammalian NQOs. NQO from P. aeruginosa contains FMN, whereas mammalian 

NQOs use FAD. NQO prefers NADH, whereas NQO1 can utilize NADH and NADPH with 

similar efficacy. NQO1 and NQO2 use azo dyes as a substrate, whereas NQO cannot reduce azo 

dyes.  
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1.6 Active site gate 

The catalytic efficiency of an enzyme depends on the active site of the enzyme. The amino acid 

residues and their atoms in the active site are fine-tuned to bind ligands efficiently and stabilize 

the reaction intermediates.41 A gate consists of individual residues, loops, secondary structural 

elements, or domains switching between open and closed conformations. Gates control the passage 

of substrates, products, ions, and solvent molecules in and out of the active site of an enzyme.42 

The substrate-binding site of NQO is formed by a small entrance consisting of a flexible βα loop 

3 (residue 75-86). Loop 3 adopts two conformations depending on whether the substrate is present 

or not in the active site (Figure 1.7).40  

 

Figure 1.7: The active site topology of NQO shows the open and close conformation of the 

active site gate. The Q80 residue represents purple, Y261 in rose gold, and FMN in yellow color. 

The distance between Q80 residue in the open and closed conformation is 11.2 Å. 
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           A significant movement of loop 3 is observed. In the ligand-free conformation, Q80 points 

away from the active site in ligand-free conformation (Figure 1.7). In the ligand bound 

conformation, in contrast, the side chain of Q80 moves toward the substrate-binding site and 

establishes a hydrogen bond interaction with Y261 in the ligand-bound conformation. In the loop 

3 region, Q80 adopts two conformations shown in Figure 1.6. Q80 acts as a hypothetical "door" 

that seals the active site entrance of NQO by forming a hydrogen bond with Y261 upon NAD+ 

binding (Figure 1.8). Therefore, the door keeps the NAD+ secure in the active site while the O1 

and O2 atom of the adenine phosphate moiety of NAD+ forms a hydrogen bond interaction with 

the backbone amides of Q80 (3.4 Å) in loop 3 (Figure 1.8). 

 

Figure 1.8: NQO-NAD+ complex (PDB: 6e2a). The gate of NQO becomes closed upon NAD+ 

binding. The residue Q80 in loop 3 interacts with Y261, creating a gate that secures NAD+ in the 

active site of NQO. The Q80 residue is purple, Y261 is rose gold, NAD+ is cyan and FMN is 

yellow. 
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           Three proline residues in loop 3 provide structural rigidity to the loop and allow for the 

proper gate conformation to be sampled.43 The proline 78 (P78) on loop 3 among all three prolines 

is conserved. 40  The structural rigidity of conserved P78 modulates the gate conformation of NQO 

(Figure 1.9). The 2'-hydroxyl of the adenine ribose of NAD+ establishes a hydrogen bond with the 

backbone C=O of P78 (3.1Å). 40  In a previous study, the mutation of P78 with glycine decreased 

the rate of the dissociation constant for substrate binding (Kd).43 Therefore, P78 is important for 

substrate NADH binding in the active site of NQO. 

 

 

Figure 1. 9: Conserved P78 provides structural rigidity of NQO upon NAD+ bound. The 

P78 residue in loop 3 is orange, NAD+ is cyan, and FMN is yellow.  

                A similar flexible loop, located at the entrance of the substrate-binding site, was reported 

in D-amino acid oxidase (DAAO) as an "active site lid" that may control the substrate binding and 

product release.44 The Glucose-Methanol-Choline structural family, including choline oxidase, 

glucose oxidase, cholesterol oxidase, pyranose 2-oxidase, and cellobiose dehydrogenase 
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flavoprotein domain, displays the same "loop and lid" feature.44, 45 Therefore, the shape and feature 

of the active site gate in NQO may play a significant role in substrate binding and product release. 

1.7 Specific goals 

This thesis investigates the effect of a gating residue in βα loop 3 for substrate binding and flavin 

reduction in NQO using site-directed mutagenesis, protein expression, and purification, UV-

visible absorption spectroscopy, steady-state kinetics, and reductive-half reaction. The Q80 in loop 

3 is hypothesized to act as a gating residue, allowing the gate of NQO to adopt conformational 

changes necessary to facilitate substrate binding. The Q80 of NQO might interact with Y261 

residue, which seals the active site gate and secures NADH in the active site upon NADH binding. 

Therefore, we hypothesize the gating Q80 is required to maintain proper gate conformations that 

modulate the rate of substrate association in NQO. The results of these studies are presented in the 

second chapter, along with the mechanistic interpretation of the role played by Q80 in substrate 

NADH binding and enzymatic catalysis. 
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CHAPTER 2 

2 MUTATION OF A DISTAL GATING RESIDUE MODULATES SUBSTRATE 

AFFINITY IN NADH:QUINONE OXIDOREDUCTASE  

2.1 Abstract 

Enzymes require flexible regions to adopt multiple conformations during catalysis. The flexible 

regions of enzymes, include gates that modulates the passage of molecules in and out of the active 

site of the enzyme. The enzyme PA1024 from Pseudomonas aeruginosa PA01 is a recently 

discovered flavin-dependent NADH:quinone oxidoreductase (NQO, EC 1.6.5.9). Glutamine 80 

(Q80) in loop 3 (residues 75-86) of NQO is ~15 Å away from the flavin and creates a gate that 

seals the active site through a hydrogen bond with tyrosine 261 (Y261) upon NADH binding. In 

this study, Q80 was mutated to glycine, leucine, or glutamate to investigate the significance of 

Q80 in NADH binding in the active site of NQO. The UV-visible absorption spectrum revealed 

that the mutation of Q80 minimally affects the spectral properties of the enzyme. The anaerobic 

reductive half-reaction of the NQO-mutants yielded a >60-fold increase in the Kd value for NADH 

compared to the WT enzyme. However, the kred values for NADH were similar across all enzymes 

(~25 s-1). The NQO-Q80G enzyme acquired no reactivity for the possible substrate NADPH. 

Steady-state kinetics with NQO-mutants and NQO-WT at varying concentrations of NADH and 

1,4-benzoquinone established a ≤5.3-fold decrease in the kcat/KNADH value. Moreover, there was 

no significant difference in the kcat/KBQ (~1×106 M-1s-1) and kcat  (~24 s-1) values in NQO-mutants 

and NQO-WT. These results are consistent with a decreased binding affinity for NADH with 

minimal effect on the rate of hydride transfer from NADH to flavin upon Q80 mutation. 
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2.2 Introduction 

Enzymes are very efficient catalysts for the functioning of living organisms and require 

some degree of flexibility for catalytic activity.1 The flexibility enables them to alternate between 

active and inactive conformational states during a catalytic cycle. Flexible protein regions are 

dynamic enzyme portions that participate in a conformational switch.2-4 Gates are examples of 

flexible regions in enzymes.1, 3 A gate consists of individual residues, loops, secondary structural 

elements, or domains switching between open and closed conformations.5 Gates control the 

passage of substrates, products, ions, and solvent molecules in and out of the protein.1, 6-8 The 

various interactions of gating residues can control the size and properties of ligands that pass 

through the gate. Interestingly, the high variability of gating residues can restrict specific substrates 

or result in selectivity for other substrates.9 Thus, gating residues play a vital mechanistic role in 

controlling substrate access and product release by forming a path between the active site pocket 

and the bulk solvent.6-8, 10, 11 

The high rate of evolution of the gating residues and their specific location within the 

protein structure makes them attractive protein engineering targets.1, 5, 12-15. For successful protein 

engineering, mutation of gating residues must not be detrimental to protein function.9-13 Three 

observations about gating residues support the idea of their attractiveness for protein engineering.1, 

12, 16-18 Firstly, the mutation of a gating residue is not detrimental to protein function, as gating 

residues are often spatially separated from the active site. Secondly, the gating residues control the 

opening and closing of the access pathway; thus, mutations can affect ligand exchange resulting 

in altered enzyme activity and substrate selectivity. Finally, modification of gating residues can 

modulate the solvent accessibility to the active site, affecting substrate binding and product 

release.19 Additionally, site-directed mutagenesis of bulky gating residues to smaller residues 



                                                                                                                           25 

 

sometimes provides previously hindered bulky substrates access to the active site cavity.9-13 In a 

previous study, the D285I and D285Q mutations in toluene-4-monooxygenase from Pseudomonas 

mendocina improved its ability to oxidize the large and bulky substrates 2-phenyl ethanol or 

methyl p-tolyl sulfide by 8 and 11-fold, respectively, and the D285S mutation improved the rate 

of styrene oxidation by 1.7-fold.15 

 

Scheme 2.1: Reaction mechanism of NQO with 1,4-benzoquinone as a substrate. 

 

The enzyme PA1024 from P. aeruginosa PA01 is a recently discovered FMN-dependent 

NADH:quinone oxidoreductase (NQO).20 NQO utilizes a ping-pong bi-bi mechanism in its 

catalytic turnover by first reducing the bound flavin via a hydride transfer from NADH, followed 

by a hydride transfer from the flavin to the quinone (Scheme 2.1).20-26 The enzyme has a marked 

preference for NADH over NADPH, unlike the eukaryotic homolog NQO1 that can use NADPH 

as a substrate.21, 27 Genome context analysis suggests that NQO serves a dual function in the cell 

by detoxifying quinones and maintaining an [NAD+]/[NADH] ratio favorable for fatty acid 

catabolism in P. aeruginosa.20-22, 26, 28 NQO consists of a TIM-barrel domain and an extended 

domain, where a hinge region connects the two domains to form the active site pocket.29 TIM-
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barrel domains are usually composed of 8 parallel β-strands at the center of the fold and 8 α-helices 

with βα and αβ loops connecting the secondary structures.30, 31 Extended domains, on the other 

hand, are formed by combining secondary structures that directly interact with the central chain 

atoms.32, 33 The βα loops of the TIM-barrel domain are located at the C-terminal ends of the β-

strands, pointing towards the enzyme active site, which is crucial for the activity of TIM-barrel-

containing enzymes.31, 34 

 

Figure 2. 1: Gating the active site in NQO-WT (PDB: 6E2A and 2GJL). (A) Formation and 

breaking of gating interactions between Q80 with Y261 in open and closed conformations; (B) 

Gating of NQO active site by Q80 and Y261 upon NAD+ binding; (C) Distance of Q80 from the 

active site flavin in both open and closed conformations; (D) Active site topology of NQO showing 

gating residue Q80 in open and closed conformations. The PDB files were analyzed using the 

USCF Chimera visualizing software.56 
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Previously solved crystal structures of NQO reveal that the βα loop 3 (residues 75-86) of 

the TIM-barrel domain of NQO is displaced by 5.5 Å towards the active site in the presence of 

NAD+.29 Loop 3 is therefore proposed to act as a gate that stabilizes the enzyme-substrate complex 

by forming hydrogen bond interactions with the extended domain of NQO.29 Q80 of loop 3 shows 

spatial variability in the ligand-bound and ligand-free conformations as it moves 11.2 Å inward to 

form a hydrogen bond (2.9 Å) with the side chain of  Y261 (Figure 2.1A), creating a gate that 

seals the active site upon NAD+ binding (Figure 2.1B).5, 29, 35 Given the distal position of the αC 

atom of Q80 from the N5 atom of the FMN (15.4 Å; Figure 2.1C), we propose that mutation of 

Q80 will not have a detrimental effect on NQO catalysis. However, as  Q80 controls the opening 

and closing of the active site gate (Figure 2.1D), it may play a role in the substrate NADH binding 

in NQO.  

The present study investigated the importance of Q80 in substrate binding in the active site 

of NQO by mutating Q80 to glycine, leucine, or glutamate. We have used site-directed 

mutagenesis, rapid kinetics, steady-state kinetics, and UV-visible absorption spectroscopy of 

Q80G, Q80L, and Q80E enzymes to understand the mechanistic role played by gating residue Q80 

in substrate binding and catalysis.  
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2.3 Materials and methods 

2.3.1  Materials: 

The enzymes DpnI, calf intestinal alkaline phosphatase, and T4 DNA ligase were purchased from 

New England Biolabs (Ipswich, MA); DNA polymerase (Pfu) was from Stratagene (La Jolla, CA), 

and oligonucleotides were from Sigma Genosys (The Woodlands, TX). P. aeruginosa PAO1 

genomic DNA was a gift from Dr. Jim Spain, Georgia Institute of Technology, Atlanta, GA. E.coli 

strain Rosetta(DE3)pLysS and the pET20b(+) expression vector were from Novagen (Madison, 

WI). DH5α E. coli strain was purchased from Life Technologies, Inc.; the QIAprep spin miniprep 

kit, QIAquick PCR purification kit, and QIAquick, gel extraction kit, were from Qiagen (Valencia, 

CA). HiTrap chelating HP 5-ml affinity column was from GE Healthcare, and isopropyl 1-thio-D-

galactopyranoside (IPTG) was from Promega (Madison, WI). All quinones were purchased from 

Sigma-Aldrich (St. Louis, MO). NADH and NADPH disodium salts were purchased from VWR 

(Radnor, PA). All other reagents were of the highest purity commercially available.  

2.3.2 Site-directed mutagenesis and protein purification: 

The genes of NQO mutants Q80G, Q80L, and Q80E were prepared using a pET20b(+) 

plasmid harboring the wild-type gene PA1024 as a template and mutagenic primers containing 

corresponding site mutations.36 The mutant genes were sent to Psomagen, Inc. for sequencing after 

mutagenesis. Plasmids were purified using the QIAquick spin Miniprep kit.37 The constructs 

containing correct mutations were transformed into chemically competent E. coli strain Rosetta 

(DE3)pLysS by heat shock for protein expression.38 The expression and purification of NQO 

mutant enzymes Q80G, Q80L, and Q80E, followed the protocol used for the wild-type enzyme as 
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previously described.20 SDS-PAGE was used to determine the purity of the enzymes (data not 

shown).39 

2.3.3 UV-visible absorption spectroscopy and extinction coefficient determination: 

An Agilent Technologies diode-array spectrophotometer model HP 8453 PC (Santa Clara, 

CA), thermostated with a water bath, was used to record the UV-visible absorbance in 10 mM 

Tris-Cl, 200 mM NaCl, 10% glycerol, pH 8.0, at 25 oC. The extinction coefficients of the purified 

NQO wild-type and mutant enzymes were determined via heat denaturation by extracting the FMN 

cofactor from the enzymes.40 The enzymes were passed through a PD-10 desalting column before 

heat denaturation at 100 oC for 20, 30, or 40 minutes.41 Denatured protein was removed by 

centrifugation at 20,000×g. The concentration of the released FMN was determined 

spectroscopically by using 450 of 12,200 M-1cm-1 for free FMN.20 The total protein concentration 

was determined using the Bradford method with bovine serum albumin as standard.42 

2.3.4 Reductive half-reaction: 

The anaerobic reduction of the enzyme-bound FMN with NADH in 20 mM KPi, 200 mM 

NaCl, and pH 7.0 was followed with an SF-61DX2 Hi-Tech KinetAssyst high-performance 

stopped-flow spectrophotometer (Bradford-on-Avon, UK), thermostated with a water bath at 25 

oC. Anaerobiosis of the instrument and all buffers, substrates, and enzyme solutions was performed 

according to standard procedure.20 NADH concentration was determined spectrophotometrically 

at 340 nm with an extinction coefficient at 6,220 M
-1

cm
-1

.20 After mixing, the enzyme 

concentration was ~6 M and NADH ranged from 60 to 500 M to maintain pseudo-first-order 

conditions.  
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2.3.5 Apparent steady-state kinetics: 

The turnover of NQO-Q80 mutant and NQO-WT enzymes with varying quinones 

(toluquinone, juglone, and CoQo) and fixed 100 µM NADH was monitored in 20 mM Kpi, 200 

mM NaCl, pH 7.0, at 25 °C. The stock solutions of quinones were prepared in 100 % ethanol. The 

final ethanol concentration in all reaction mixtures was kept at 1% to minimize any possible effects 

of this solvent on enzymatic activity. The reaction rates were measured by following the NADH 

consumption at 340 nm, using 340 of 6,220 M-1cm-1.20 

2.3.6 Steady-state kinetics: 

The steady-state kinetic mechanism of NQO-WT and NQO-mutants were determined at 

varying concentrations of NADH and 1,4-benzoquinone. The concentration range for NADH was 

10-250 µM with mutant enzymes Q80G and Q80E and 5-200 µM with both NQO-WT and Q80L 

enzymes. The concentration of 1,4-benzoquinone was 10-200 µM with NQO-WT, 5-100 µM with 

Q80E and Q80L, and 10-250 µM with Q80G. The assays followed the initial reaction rates for 

each enzyme in 20 mM Kpi, 200 mM NaCl, pH 7.0, 25 oC. 

2.3.7 Oxygen reactivity: 

NADH oxidase activity was monitored on an Oxy-32 oxygen-monitoring system at 

atmospheric oxygen in 20 mM Kpi, 200 mM NaCl, pH 7.0, at 25 °C, following the initial rate of 

oxygen consumption, with a final NADH concentration of 400 M.  

2.3.8 Data analysis: 

The apparent steady-state kinetic parameters at varying concentrations of NADH and fixed 

concentrations of quinones were determined by fitting the initial reaction rates to the Michaelis-

Menten equation (eq 1). The steady-state kinetic parameters for the enzymatic assay were obtained 

by fitting the experimental points to the Michaelis-Menten equation using KaleidaGraph software 
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(Synergy Software, Reading, PA). The double reciprocal plot was constructed using 

KaleidaGraph, and global analysis was carried out using EnzFitter software (Biosoft, Cambridge, 

UK). The best fit of the initial reaction rate (vo/e) was obtained with eq 2, which describes a ping-

pong bi-bi steady-state kinetic mechanism. 

vo/e = 
𝑘𝑐𝑎𝑡 [A] 

𝐾𝑚+ [A]  
     (eq 1) 

vo/e = 
𝑘𝑐𝑎𝑡 𝐴𝐵

𝐾𝑎B+ 𝐾𝑏A+ AB 
   (eq 2) 

In the above equation, vo is the initial velocity, e represents the enzyme concentration, Ka 

and Kb are Michaelis constants for NADH (A) and 1,4-benzoquinone (B), and kcat is the turnover 

rate at saturating concentration of both substrates.          

Stopped-flow traces obtained with the KinetAsyst 3 (TgK-Scientific, Bradford on-Avon, 

UK) software were fit to eq 3, which describes a double-exponential process.  

A = B1
-k

obs1
t + B2

-k
obs2

t + C  (eq 3) 

In this equation, A is the absorbance at 460 nm at time t; B1 and B2 are the amplitudes of the 

decrease in absorbance; kobs1 and kobs2 are the observed rate constants for the change in absorbance. 

C is an offset value accounting for the non-zero absorbance of the enzyme-bound reduced flavin 

at infinite time.  

The concentration dependence for the observed rate constants of flavin reduction was analyzed 

with eq 4 where S represents the concentration of NADH, kred is the rate of flavin reduction at 

saturating concentration of NADH, and Kd is the dissociation constant for NADH binding.  
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Kobs = 
𝑘red 𝑆

𝐾d+ 𝑆
    (eq 4) 
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2.4 Results 

2.4.1 Purification and spectral properties: 

The NQO-Q80G, Q80L, and Q80E enzymes were purified to high levels following the 

same protocol previously used for the wild-type enzyme.20 The presence of 200 mM NaCl in a 

storage buffer composed of 10 mM Tris-Cl, pH 8.0, and 10% glycerol was necessary for the in 

vitro stability of purified NQO enzymes.20 

 

Figure 2.2: UV-visible absorption spectra of NQO-WT (solid red curve) and NQO-mutant 

Q80G (solid black curve). The UV-visible absorption spectra were recorded in 10 mM Tris-Cl, 

200 mM NaCl, 10% v/v glycerol, at pH 8.0 and 25 oC. 

 

The spectroscopic properties of the mutant enzymes were analyzed using UV-visible 

absorption spectroscopy to evaluate whether the mutation had an effect on the active site 

microenvironment in NQO. The UV-visible absorption spectrum of the purified mutant enzymes 

Q80G (Figure 2.2), Q80L (data not shown), and Q80E (data not shown) showed maximal 

absorbance at 370 nm and 460 nm, which is consistent with the presence of an FMN cofactor. All 

variant enzymes showed minimal difference in the absorption wavelength at 460 nm and 370 nm 
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compared to the wild-type enzyme (Table 2.1).40 The FMN to protein stoichiometry was ~0.4 for 

all mutants, similar to the stoichiometry determined for the wild-type enzyme (Table 2.1). 

Table 2.1: UV-visible absorption maxima and FMN/protein 

stoichiometry of wild type and mutated NQO 

 

Enzymes 

 

apeaks, nm 

b, mM-1cm-1  

FMN/Protein 
370 460 

WT 370, 460 10.6 12.2 0.40 

Q80G 370, 460 10.0 11.2 0.35 

Q80L 370, 460 10.2 11.4 0.33 

Q80E 370, 460 10.5 12.5 0.41 
aSpectra were recorded in 10 mM Tris-Cl, 200 mM NaCl, 10% v/v 

glycerol, pH 8, 25 oC.  bMolar extinction coefficient. Standard errors 

were ≤10%. 

 

2.4.2 Steady-state kinetics: 

The steady-state kinetic parameters of the NQO-Q80G, Q80L, and Q80E enzymes were 

determined and compared to those of NQO-WT to investigate how the mutation of the gating 

residue Q80 affects the rate of substrate capture and turnover of NQO. The steady-state kinetic 

parameters were determined by the rate of NADH consumption at varying concentrations of both 

NADH and 1,4-benzoquinone (BQ) at pH 7.0 and 25 oC. The best fits for the kinetic parameters 

of the NQO-mutant and wild-type enzymes were obtained using an equation describing a ping-

pong bi-bi steady-state mechanism (eq 2). The data suggest that the Q80 mutations did not alter 

the mechanism (ping-pong bi-bi) NQO utilizes in its catalytic turnover (Figure 2.3). With all 

variant enzymes, the kcat values differed from the wild-type NQO by <1.5-fold (Table 2). The 

kcat/KNADH value decreased 5-fold for the Q80G enzyme and only <2.5-fold for both Q80L and 

Q80E enzymes compared to the wild-type NQO. However, the kcat/KBQ for Q80G, Q80L, and 

Q80E enzymes were similar to the NQO wild type enzyme (Table 2.2). 
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Figure 2.3: Steady-state kinetics of NQO-Q80G with NADH and 1,4-benzoquinone as 

substrates. (A) Michaelis-Menten plot; (B) Lineweaver- Burk plot. The initial rate of reaction was 

measured at varying NADH (10 µM to 250 µM) and 1,4-benzoquinone (BQ) (5 µM to 100 µM) 

concentrations in 20 mM Kpi, 200 mM NaCl, pH 7.0, 25 oC. Green = 5 µM BQ, Purple = 10 µM 

BQ, Red = 25 µM BQ, Blue = 50 µM BQ, and Black = 100 µM BQ. Data were fitted to eq 2. 

 

Table 2.2: aSteady-state kinetic parameters of NQO-WT, NQO-Q80G, NQO-Q80L, 

and NQO-Q80E with NADH and 1,4-benzoquinone as substrates 

Enzyme kcat, s-1 kcat/KNADH, M-1s-1 kcat/KBQ, M-1s-1 KNADH, µM KBQ, µM 

WT  27 400,000   930,000   70 30 

Q80G 27   75,000     1,400,000  360 20 

Q80L 23 120,000   800,000  180 30 

Q80E 20 200,000     1,400,000  120 15 

aEnzymatic activity was measured by varying concentrations of both NADH and 1,4-

Benzoquinone in 20 mM KPi, 200 mM NaCl, pH 7.0, 25oC. Steady-state kinetic parameters 

were measured following NADH reduction using the extinction coefficient for NADH at 

340 = 6,220 M-1cm-1. Standard errors were ≤17%.  
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2.4.3 Reductive half-reaction: 

The reductive-half reaction of the NQO-Q80G, Q80L, and Q80E enzymes was investigated 

at pH 7.0 and 25 oC by monitoring the decrease in absorbance at 460 nm as a measure of the rate 

of flavin reduction using a stopped-flow spectrophotometer. The mutant enzymes were fully 

reduced with NADH in a biphasic pattern (Figure 2.4A). The fast phase accounted for more than 

95% of the total absorbance change at 460 nm and was attributed to flavin reduction. The slow 

phase, accounting for less than 5% of the complete change of absorbance at 460 nm, was attributed 

to the damaged enzyme and had a kobs value of ~1 s-1 independent of substrate concentration. The 

data obtained from flavin reduction were analyzed with eq 3, revealing that the mutant enzyme 

NQO-Q80G was thoroughly saturated with NADH at 200 µM. For the Q80E and Q80L enzymes, 

NADH was saturating at 100 µM. A plot of the kobs values as a function of NADH concentration 

yielded a concentration-dependent hyperbolic curve (Figure 2.4B), which determined the limiting 

rate constant for flavin reduction kred for NQO-Q80 enzymes (Table 2.3). The dissociation 

constant for substrate binding (Kd) values were estimated for Q80G, Q80E, and Q80L enzymes 

(Table 2.3).  

Table 2.3: aReductive half-reaction of NQO-WT, NQO-Q80G, 

NQO-Q80L, and NQO-Q80E with NADH 

Enzyme kred (s-1) Kd (M) 

WT 25 < 3 

Q80G 26 183 

Q80L 27  80 

Q80E 21  87 

aThe kinetic parameters were determined with (60-500 µM) 

NADH in 20 mM KPi, 200 mM NaCl, pH 7.0 at 25 oC.  Standard 

errors were ≤ 30%. 
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Figure 2.4: Anaerobic reduction of NQO-Q80 mutants and WT with NADH. (A) Stopped-

flow traces of NQO-Q80G at 460 nm with varying concentrations of NADH (60-500 µM) fit eq 

3. Note the log time scale. For clarity, one of the ten experimental points is shown (vertical lines). 

The instrumental dead time is 2.2 ms. (B) Concentration dependence of the observed rate constant 

(kobs) for flavin reduction of Q80G (black), Q80E (maroon), and Q8OL (blue) with NADH. (C) 

Concentration dependence of the kobs value for flavin reduction of NQO-WT with NADH. The 

solid curve was generated by fitting the data to eq 4. Activity assays were performed in 20 mM 

KPi, and 200 mM NaCl at pH 7.0 and 25 oC. 

 

An accurate Kd value was not determined for the wild type enzyme as it was not possible 

to lower the NADH concentration below 60 µM to maintain pseudo-first-order conditions. 

However, the observation that the NQO-WT was thoroughly saturated with 60 µM NADH (Figure 

2.4C) suggests a Kd value might be around 3 µM. Assuming there is ~5 to 10% inherent error in 
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the estimated kobs value at 60 µM NADH, a Kd value of  3 to 5 µM can be calculated using equation 

4. The Kd value for the Q80G enzyme increases by >60-fold, and those of Q80L and Q80E enzymes 

increase by >30-fold (Table 2.3) compared to wild-type NQO. When the enzymes were 

anaerobically mixed with 500 µM NADPH, the enzyme-bound flavin was slowly reduced (~10% 

over 10 min) with Q80G (Figure 2.5), Q80L, Q80E, and wild-type NQO (data not shown), 

consistent with NQO enzymes were not reactive with NADPH. 

 

 

Figure 2.5: Reduction of NQO-Q80G with NADH (A) and NADPH (B). The time-resolved 

absorption spectra were observed at 8 µM Q80G mixed with 60 µM NADH and 500 µM NADPH 

at pH 7 and 25 oC. Blue lines represent the spectra of oxidized flavin bound to Q80G. The red line 

of each plot corresponds to the spectrum of flavin hydroquinone recorded after 1.5 ms with NADH 

(A) and 10 mins with NADPH (B). The arrows represent the degree of flavin reduction, ~90 % in 

A and ~10 % in B. 

2.4.4 Enzyme activity with oxidizing substrates: 

The NQO from P. aeruginosa was previously established to be active with quinones.19 To 

evaluate whether the Q80 in loop 3 of NQO has a role in substrate quinone binding, the enzymatic 

turnover of NQO-Q80 enzymes was determined with different quinones. The activity of NQO-

Q80 enzymes was measured with the methods of initial rates using either toluquinone, 2,3-
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dimethoxy 5-methyl 1,4-benzoquinone (CoQo), or 5-hydroxy 1,4-naphthoquinone (juglone), as 

substrate with fixed 100 µM NADH concentration at pH 7.0 and 25 oC. The kcat/Km values 

determined at a sub-saturating concentration of NADH reflect the true kcat/Km values since NQO 

follows ping-pong bi-bi steady-state kinetics,57, which is characterized by unchanging kcat/Km 

values despite the concentration of the fixed substrate. As shown in Table 2.4, the NQO-Q80 

mutants have a negligible impact on the kinetic parameter kcat/Km compared to the wild-type NQO. 

Table 2.4: Apparent steady-state kinetics of NQO-WT, Q80G, 

Q80L, and Q80E enzymes with varying quinones and fixed NADH 

concentration 

Enzyme Quinone    kcat/km, M-1s-1 

WT 

Q80G 

Q80L 

Q80E 

Toluquinone 

 

290,000 

300,000 

210,000 

350,000 

WT 

Q80G 

Q80L 

Q80E 

CoQo 

 

300,000 

280,000 

250,000 

400,000 

WT 

Q80G 

Q80L 

Q80E 

Juglone 

 

720,000 

540,000 

820,000 

790,000 
aThe kinetic parameters were determined with 100 µM NADH in 20 mM 

KPi, 200 mM NaCl, pH 7.0 at 25 oC. The kinetic parameter kcat was 

between 15-25 s-1, and Km was between 10-100 M. Standard errors 

were ≤ 25%. 

 

2.4.5 NADH oxidase activity: 

The activity of the NQO mutants with molecular oxygen as an electron acceptor was 

investigated with 20-400 M NADH using Clark-type oxygen electrode. There was no significant 

oxygen consumption with the NQO mutant and NQO-WT enzymes. The average oxygen 

consumption rate for the NQO-mutants was <1 s-1, which is lower than the oxidase activity 

O

CH3

O

O

OCH3

OCH3H3C

O

O

OOH



                                                                                                                           40 

 

observed for the WT enzyme with NADH (~3 s-1) under the same conditions. However, after 

adding 1 mM PMS (artificial electron acceptor) to regenerate the oxidized enzyme in the reaction 

mixture, there was a rapid oxygen depletion, which indicates that the enzymes were active (data 

not shown).46  

2.5 Discussion 

A comparison of the previously solved crystal structures of ligand-bound and ligand-free 

NQO indicates that a conformational change occurs at loop 3 (residues 75-86).29 Q80 in loop 3 

switches between an open conformation without NAD+ bound and a close conformation with 

NAD+ bound.29 Q80 acts as a gate that interacts with Y261 to secure NAD+ within the binding 

pocket of NQO.29 In addition, the backbone amide of Q80 (3.4 Å) forms a hydrogen bond with the 

O1 and O2 atoms of the adenine phosphate of NAD+.29 In the present study, substituting Q80 with 

glycine, leucine, or glutamate through site-directed mutagenesis revealed that Q80 is important for 

NADH binding. The rapid and steady-state kinetics presented here demonstrate that the binding 

affinity of NQO for NADH was significantly decreased in the Q80 mutant enzymes compared to 

NQO-WT; however, the mutations did not affect the rate of hydride transfer. Furthermore, NQO 

did not acquire a new activity for NADPH when the bulky Q80 sidechain was entirely removed. 

These conclusions are supported by the evidence provided below. 

Glutamine 80 is important for NADH binding in NQO. Evidence to support this conclusion 

comes from the reductive half-reaction of the NQO mutants and NQO-WT with NADH at pH 7.0 

and 25 oC. The wild type enzyme has a dissociation constant for substrate binding (Kd) of ≤ 3 µM 

(Table 2.3). The Kd value increases ~60-fold in the Q80G enzyme and ~30-fold in both the Q80L 

and Q80E enzymes (Table 2.3). The crystal structure of NQO with bound NAD+ reveals that Q80 

forms a hydrogen-bond with Y261, which seals the active site gate to secure NADH (Figure 1 
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B).29  The mutation of Q80 to glycine creates a more open active site entrance as glycine has no 

side chain, which decreases the affinity of NQO for NADH. On the other hand, leucine and 

glutamate have a similar side chain size as glutamine, making the binding affinity of Q80L and 

Q80E enzymes for NADH better than the Q80G enzyme. Furthermore, leucine is nonpolar and has 

no propensities for a hydrogen-bond interaction with Y261. The open conformation of the NQO-

WT crystal structure reveals a possible hydrogen-bond interaction between Q80 and proline 78 (3 

Å). Since glutamate has a charge, there might be a possibility of a tighter binding of E80 with P78 

and less interaction with Y261. Therefore, the closed conformation of both Q80L and Q80E 

enzymes will be less favored, resulting in a lower binding affinity of Q80L and Q80E enzymes for 

NADH than the wild-type enzyme. 

Q80 does not participate in the hydride transfer reaction from NADH to the NQO enzyme-

bound flavin. Evidence to support this conclusion comes from the reductive half-reaction of NQO 

mutants and the NQO-WT enzyme with NADH as a substrate. The hydride transfer rate was 

similar in NQO enzymes regardless of the residue at position 80. Since the αC of Q80 is 15.4 Å 

away from the N5 atom of the FMN cofactor; 29  therefore, the alteration of distal gating Q80 residue 

in loop 3 would have little to no effect on NQO catalysis. Gating residues and loops are attractive 

targets for protein engineering since they are the natural site for mutations during protein 

evolution.1,5, 12-15 Moreover, modulation of the gating residue is not detrimental to protein function 

since the residue is often spatially separated from the active site of the enzyme.16-18 Therefore, the 

data in our study agreed with the expectations for gating residues as promising targets for protein 

engineering, since the mutation of gating Q80 residue mediates the rate of NADH binding without 

affecting the rate of hydride transfer from NADH to the enzyme bound flavin. Interestingly, a 

study on dihydrofolate reductase from E. coli reported that mutation of glycine 121(G121), which 
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is 19 Å away from the catalytic center, did not only decrease the binding of the NADPH substrate 

(~40-fold) but also decreased the rate of hydride transfer by ~200- fold.47 The change of G121 

would alter this residue's dynamic feature, which causes the conformational changes of mutant 

enzymes preceding hydride transfer.44 However, the analysis of the previous study suggests that 

the replacement of Q80 with G, L, or E would not probably alter the dynamic feature of this residue 

proceeding for hydride transfer; it instead alters the access of NADH in the active site of the 

enzyme. 

          Q80 has no role in the specificity constant of NQO for substrate quinones. Evidence to 

support this conclusion comes from the apparent steady-state and steady-state kinetics of NQO-

WT and mutants with NADH and quinones (1,4-benzoquinone, juglone, CoQo, and toluquinone) 

(Tables 2.2 & 2.4). The kcat/Km value measures the rate of capture of the substrate into an enzyme-

substrate complex that proceeds to catalysis and is therefore used to report the specificity constant 

of the enzyme for a substrate.45-50 The quinones had similar kcat/Km values across NQO mutants 

and NQO-WT, suggesting that Q80 mutation had a negligible impact on the capture of the substrate 

quinones. The trend is different from the substrate NADH, where the kcat/Km values change (2-5-

fold) across the mutations. However, the degree of change in kcat/Km values with NADH was not 

similar to kred/Kd (~30-60-fold change) in NQO enzymes. Since the NQO-WT enzyme undergoes 

an internal isomerization from the ES complex to form an ES*,52 the additional step in the enzyme 

catalytic pathway might impact the kcat/Km values of NQO for NADH. However, NADH is a 

bulkier substrate than quinones, whose ribose, pyrophosphate, and adenine moieties interact with 

residues adjacent to the gate region of NQO. Given these structural differences, the quinones 

would have easier access and mobility to and from the active site of NQO. Therefore, there might 
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be no changes in the mobility and catalysis of the quinones with the Q80G, Q80L, and Q80E 

enzymes as the active site gate remain broad enough for a quinone capture. 

The rate of NADH dissociation from the ES complex is faster than the chemical step of 

catalysis in NQO-Q80G, Q80L, and Q80E enzymes. Evidence to support this conclusion comes 

from the reductive half-reaction and steady-state kinetics of NQO mutants and NQO-WT with 

NADH, which measure the Kd and Km values, respectively. The Kd is the ratio of the reverse and 

forward rate constants for substrate binding58,59 and is different from the Km in that Km includes the 

chemical step of catalysis (k3).58,60 The Km and Kd are equal when the k3 is much slower than the 

rate of substrate dissociation (k2) from the ES complex.58 In NQO-WT, the Kd(NADH) value is 25-

fold lower than the Km(NADH) value. Since Q80 keeps NADH tightly bound in the binding pocket 

of NQO, the rate of hydride transfer from NADH to the NQO-bound flavin might be faster than 

the rate of substrate NADH dissociation from ES complex or the rate of product NAD+ released 

from EP complex. On the other hand, the NQO-Q80G, Q80L, and Q80E enzymes have similar 

Km(NADH)  and  Kd(NADH) values (overall 1-2.5-fold difference), suggesting that the rate of chemical 

step in the NQO mutants might be much slower than NADH dissociation. The Q80G enzyme 

prevents all potential interactions by increasing the space around the active site gate, which most 

likely causes a rapid rate of NADH dissociation. The replacement of Q80 with nonpolar leucine 

has no key interaction for substrate NADH binding, which might enhance NADH dissociation. 

The negative charge E80 in NQO-Q80E might have an electrostatic repulsion with two phosphate 

groups of NADH, which would also increase NADH dissociation. 

Flavin reduction is fully rate-limiting in the NQO mutants and wild type enzyme. Evidence 

to support this conclusion comes from the reductive half-reaction with NADH and the steady-state 

kinetics with NADH and 1,4-benzoquinone for NQO mutants and NQO-WT. The kcat and kred 
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values were 5% similar for NQO-WT and Q80G and Q80E enzymes and 17% similar for Q80L 

enzyme (Table 2.2 & 2.3). The kcat of a reaction is determined by the turnover rate of the enzyme 

at saturating concentration of substrates; it may or may not include the chemical step and is often 

limited by the actual release of a product.54, 55, 60 Since the kcat and kred values were similar, kred is 

the limiting step of catalysis in NQO and fully rate-limiting for catalytic turnover. Therefore, the 

product release is fast in all NQO enzymes, regardless of the residue at position 80. Given the 

crystal structures of the ligand-bound and free forms of NQO29 (Figure 2.1), the Q80-Y261 

hydrogen bond dissociates after NADH oxidation and loop 3 to swing outward (5.5Å) in the open 

conformation for product release. With this loop motion and open active site gate, the residue at 

position 80 should not impact the rate of product release. Since the rate of product release will be 

fast for both the NQO mutant and NQO-WT, the kcat will be dictated by the kred of the reaction.  

            The NQO-Q80G, Q80L, and Q80E enzymes did not acquire the ability to use NADPH as 

a reducing substrate. Evidence to support this conclusion comes from the reductive half-reaction 

of NQO-Q80 mutants with NADPH at pH 7.0 at 25 oC (Figure 2.5). The NQO mutants showed a 

higher preference for NADH over NADPH. The flavin reduction of NQO-Q80G, Q80L, and Q80E 

enzymes was 90% over 1.5 milliseconds with 500 µM NADH (Figure 2.5A). In contrast, the 

enzyme bound flavin was not significantly reduced (10% over 10 min) with the equivalent 

concentration of NADPH in NQO mutant enzymes (Figure 2.5B). Therefore, Q80 of NQO has no 

role in obtaining the reactivity for NADPH. In a previous study, the homology modeling and 

docking analysis of the bifunctional alcohol/aldehyde dehydrogenase from Clostridium 

thermocellum with NADPH suggested that the extra phosphate of NADPH would encounter 

electrostatic repulsion and steric hindrance with D494. 36 Therefore, the mutation of D494 with 

glycine increased the specificity of NADPH in C. thermocellum bifunctional alcohol/aldehyde 
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dehydrogenase.36 From the analysis of the previous study, it was expected that the replacement of 

Q80 with glycine would decrease the steric clashes with NADPH and increase the reactivity of 

NQO for NADPH. However, the data from our study suggests otherwise. The decrease in the 

specificity of NQO for NADPH in all the variant enzymes suggests that Q80 has no significant 

impact on the reactivity of NQO with NADPH.  

In summary, the results presented in this study demonstrate that the glutamine 80 in loop 

3 plays a vital role in controlling NADH binding in NQO without impacting the hydride transfer 

from NADH to flavin. The replacement of bulky Q80 residue of NQO with glycine results in a 

more open active site gate that lowers the binding affinity of NQO-Q80G for NADH. On the other 

hand, mutation of Q80 to a residue of a similar sidechain length (~4 Å), either nonpolar or charged, 

such as leucine (L) or glutamate (E), respectively, also lowers the binding affinity of Q80L and 

Q80E enzymes for NADH. However, the Q80 mutant enzymes did not impact the rate of substrate 

quinones capture. Regardless of the residue at position 80 of NQO, the rate-limiting step of the 

enzymes was unchanged, with no observed increase in NADPH reactivity. The data presented in 

our study agreed with the expectations for gating residues as promising targets for protein 

engineering. Since the mutation of gating Q80 residue mediates the rate of NADH affinity without 

affecting the hydride transfer rate. 
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CHAPTER 3 

CONCLUSIONS 

NQO is a flavin-dependent enzyme that catalyzes the two-electron reduction of quinones to 

hydroquinone.1 The enzyme has a strict preference for NADH as a reducing substrate instead of 

NADPH.3 The NADH specificity could have a significant implication in the physiological function 

of the enzyme, as NADH and NADPH often play very distinct roles within metabolic pathways.2,3 

Previously, the mechanistic and structural properties of NQO were elucidated. This thesis 

investigates the mechanistic importance of non-catalytic residue in the active site gate of NQO by 

employing site-directed mutagenesis, UV-visible absorption spectroscopy, rapid reaction kinetics, 

and steady-state kinetics. The thesis presented the importance of non-catalytic residue in 

modulating the structural, biophysical, and kinetic properties of NQO. 

       The crystal structure of NQO showed that Q80 in loop 3 has two distinct conformations in the 

ligand-free and NAD+-complex structures, revealing a conformational gating mechanism of Q80 

to secure the NAD+ within the binding pocket.4 In this thesis, the replacement of Q80 with glycine, 

leucine, or glutamate through site-directed mutagenesis to study the significance of gate on the 

ability of NQO to form the enzyme-substrate complex. Comparing steady-state kinetic parameters 

between mutant and wild type enzymes demonstrated the replacement of Q80 with glycine creates 

a more open active site gate and decreases the binding affinity of NQO for NADH. On the other 

hand, mutation of Q80 to a residue of similar length, either nonpolar or charged, such as leucine 

or glutamate, respectively, demonstrates that a bulky residue better secures NADH in the active 

site. Therefore, the rates of dissociation constant for NADH binding in the Q80L and Q80E 

enzymes were reduced compared to the Q80G enzyme and increased compared to the wild type 

enzyme. The steady-state and rapid reaction kinetics study showed that there is no significant 
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change in flavin reduction and NQO enzymatic turnover, regardless of residue at position 80 of 

NQO. The results presented in this study demonstrate that the gating residue Q80 plays a vital role 

in controlling NADH binding affinity of NQO without impacting the hydride transfer from NADH 

to flavin. 
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