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ABSTRACT 

In this thesis, I defend the explanatory force of algorithmic information processing 

models in cognitive neuroscience. I describe the algorithmic approach to cognitive explanation, 

its relation to Shea’s theory of cognitive representation, and challenges stemming from neuronal 

population analysis and dimensionality reduction. I then consider competing interpretations of 

some neuroscientific data that have been central to the debate. I argue in favor of a sequenced 

computational explanation of the phenomenon, contra Burnston. Finally, I argue that insights 

from theoretical neuroscience allow us to understand why dimensionality reduction does not 

militate against localizing distinct contents to distinct components of functioning brain systems. 
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1 INTRODUCTION  

One strategy for investigating hypotheses about cognitive function proceeds through the 

comparison of brain activity measures with algorithmic, or discretely-sequenced, computational 

models. Shea (2018) has recently proposed a theory of cognitive representation that draws upon 

this explanatory strategy. According to Shea, we can justifiably assign distinct contents to 

distinct parts of the brain by determining the unique roles those parts play within algorithmic 

processes for accomplishing behavioral tasks. 

However, some philosophers of mind and brain argue against this approach to cognitive 

explanation (Anderson, 2014; Burnston, 2021). For instance, Burnston (2021) argues that certain 

analytic techniques in systems neuroscience, such as dimensionality reduction, suggest that 

neural systems function to represent complex combinations of information about experimental 

parameters, and that this undermines algorithmic models of brain function. The central issue of 

contention is whether algorithmic information processing models can accurately describe the 

functional properties of brain systems. Burnston answers in the negative, proposing that we 

reject Shea’s approach, which he calls algorithmic homuncularism (AH), in favor of an 

alternative view called algorithmic coherence (AC), according to which brain processes may 

correlate with algorithmic transformations of content even if distinct contents cannot be assigned 

to distinct brain areas. 

In this thesis, I defend the explanatory force of algorithmic information processing 

models in cognitive neuroscience. In §2, I describe the approach. In §3, I turn to a discussion of 

the challenges raised by neuronal population analysis, dimensionality reduction, and Burnston’s 

critique of AH. In §4, I respond to these challenges. I first give attention to some data which 

have been central to the debate (Aoi et al., 2020; Mante et al., 2013). After considering 
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competing interpretations of the data, I argue that our interpretation of the system is not 

constrained in the way that Burnston suggests. I then consider the debate in light of 

developments in theoretical neuroscience that focus on the dimensionality and decodability of 

neural representations. I argue that the hypotheses advanced by researchers on these empirical 

fronts allow us to understand why Burnston’s critique of AH is problematic. 

2 ALGORITHMIC EXPLANATION IN COGNITIVE NEUROSCIENCE 

In this section, I describe the practice of developing algorithmic models of cognitive 

function, and I articulate the explanatory and interpretive leverage that successful models can 

provide. One way to investigate hypotheses about cognitive function is to compare brain activity 

measures with algorithmic, or discretely-sequenced, computational models (Love, 2015; Mack et 

al., 2013). According to some computational and cognitive neuroscientists, interactions between 

brain areas transform information in a manner necessary for accomplishing behavioral tasks, 

thereby giving rise to more complex cognitive capacities (Di Carlo et al., 2012; Marr, 2010). For 

example, activity in some brain area may correspond to the presentation of a stimulus, while 

activity in another area may carry information about a decision signal, and activity in another 

may carry directive information about movement. A key aim of the approach is to localize 

exploitable information to distinct brain regions in order to illuminate the causal structure of 

thought. An algorithmic information processing model can explain a cognitive phenomenon 

when there is a plausible mapping between elements of the model and parts of the brain (Kaplan 

& Craver, 2011; Shea, 2018). 

However, Burnston (2021) has recently offered a critique of this approach, which he calls 

algorithmic homuncularism (AH). He writes: 

On this kind of view, distinct physical parts of a system serve as vehicles 

for distinct contents, and the causal interactions between those vehicles 
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implement the content transformations called for by an 

algorithm…  However, I will argue that there are strong reasons to 

question AH. In particular, certain forms of complexity in neural 

population responses prevent assigning different contents to spatially and 

temporally distinct parts of the system. (Burnston, 2021 pp. 1617-1618) 

 

Burnston targets Shea’s (2018) theory of cognitive representation, as Shea’s theory builds on the 

central tenets of AH.1 Here, my primary aim is not to defend Shea’s theory of cognitive 

representation against alternative theories.2 Instead, the primary contribution of this thesis is to 

address a cluster of challenges, which I take Burnston (2021) to have made explicit, to the 

explanatory scope of the computational approach that underpins Shea’s theory. Burnston argues 

against Shea’s (2018) version of the vehicle realism thesis, according to which a representational 

description explains when it captures the particular way that a system accomplishes a task 

function.  

I will note three things at the outset that any party to the debate would be remiss not to 

acknowledge. First, the explanatoriness of any type of cognitive model is a substantively 

empirical matter: whether a model is explanatory will be constrained both by the structure and 

content of the model in question and by facts about neural architecture. Second, such models can 

fail for a variety of reasons: sometimes models should be rejected entirely, but in other cases 

they may simply need to be refined (Bechtel & Richardson, 2010). Third, and as a corollary of 

the first point, it is currently an open empirical question whether, or to what extent, brain 

processes can be decomposed in a way that satisfies reductive desiderata (Shea, 2013).  

 
1 I use the term ‘cognitive’ to delineate phenomena relevant to the study of mentality, rather than in a narrower sense 

meant to distinguish it from other elements within an ontology of mind. Moreover, I draw upon Coelho Mollo’s 

(2021) use of the term ‘cognitive representation’ to refer to the sub-personal representations often studied in 

cognitive neuroscience, distinguishing them from personal-level states such as propositional attitudes. Shea states 

that he does not necessarily expect his theory to cover the latter (Shea, 2018). 
2 See Millikan (1984) and Neander (2017) for two prominent alternative teleosemantic theories. 
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Recapitulating Shea’s (2018) theory of cognitive representation falls outside the scope of 

this thesis, but in order to adequately address Burnston’s challenge, it will be necessary to 

articulate some of the key features of Shea’s account. First, I will provide some initial remarks 

about terminology. For the purposes of this discussion, the term vehicle will be used to refer to a 

concrete, physical part of a system that carries representational content. Parts of the brain can be 

vehicles, where ‘parts’ refers broadly to everything from parts of neurons such as dendritic 

spines, to neurons themselves, to functional assemblies of neurons, and entire brain regions. The 

term content will be used to refer to what a vehicle represents. For example, if brain area MT 

represents information about motion direction in some experimental context, then MT is a 

vehicle of content of motion direction information (Burnston, 2016). 

Additionally, I will use the term algorithm to refer to a series of well-defined steps for 

achieving some input-output mapping, and the term computation to refer to an input-output 

mapping (Marr, 2010).3 For example, recognizing a specific person may depend upon 

sequentially calculating basic visual features, such as edges and orientations, and then higher-

level configurational properties, such as facial characteristics, and so on. Often times, more than 

one algorithm will be suited to a given computation. On Shea’s view, identifying the actual 

algorithm that the brain uses to accomplish a task allows us to determine which contents to 

assign to which brain regions (Shea, 2018). For instance, multiple algorithms might be suitable 

for computing the distance between oneself and some object. The idea is that, among the 

possible algorithms, there is a fact of the matter about which one is playing out within the brain.  

 
3 At least according to some, algorithmic computation is a form of digital computation, in that it involves 

manipulating strings of digits (Piccinini & Scarantino, 2011). However, here I assume that not all algorithmic 

processes are digital. Instead, I take algorithms to be step-wise processes consisting of discrete transitions between 

internal states, which is compatible both with Shea’s view and with the view that neural computation may be a non-

digital, or sui generis form of computation (Piccinini & Bahar, 2013; Piccinini, 2020). On my view, the brain may 

implement algorithms even if its processes do not involve digital computations. 
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According to Shea, vehicles carry content in virtue of bearing exploitable relations to the 

world (Shea, 2018). An exploitable relation is, straightforwardly, a kind of relation that an 

organism or system can take advantage of when performing a task. Shea describes two types of 

exploitable relations: correlation and structural correspondence. Correlations can be exploited 

when they are informative of the probability of world conditions. For example, the firing of a 

group of neurons in my brain may indicate a greater probability that the driver in front of me has 

applied the brakes. Internal processes are sensitive to this information, allowing me to quickly 

deduce that I should apply my brakes. Shea’s discussion of structural correspondence is 

complex. Leaving out some detail, Shea considers a structural correspondence to be a 

homomorphism, or mapping, between relations on vehicles and relations on what those vehicles 

represent. For example, Shea cites the well-known study of ‘place cell’ firing in rat hippocampus 

as evidence that structural correspondence can obtain in the brain. Place cells are groups of 

hippocampal cells that fire when animals travel to certain spatial locations (Grieves et al., 2020). 

Neuroscientists hypothesize that rats can exploit the map-like relations between sequences of 

place cell firing and spatial routes to determine how to run mazes more efficiently (Shea, 2018). 

Shea’s (2018) theory also utilizes the notion of a task function. A task function is a 

system output 1) that can occur for some range of inputs and in a variety of contexts, and 2) that 

the system has been stabilized to produce. To understand the first criterion, it will be helpful to 

consider the following example. If part of the brain functions to produce information about 

object class (animate or inanimate, for instance), it should be able to do so regardless of whether 

a person is browsing in a museum or hiking in the forest. Moreover, it should be tolerant to some 

variation in input properties, such as shape and size. For example, it should be able to classify 

both cats and humans as animate, even though there are some obvious differences. The second 
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criterion pertains to the notion that systems tend to produce certain outputs because doing so in 

led to positive consequences in the past. For instance, natural selection facilitated the 

development of internal sensory functions, such as tactile, auditory, and visual functions, because 

organisms that could not appropriately detect variation in the environment did not survive. 

However, other learning mechanisms, such as classical conditioning or learning with feedback, 

can also stabilize function in the relevant sense, and may do so within shorter periods of time. 

Shea acknowledges the fact that the two exploitable relations he discusses – correlation 

and structural correspondence – are both ubiquitous within the brain (Shea, 2018). For example, 

firing within an area of cortex can spuriously correlate with firing in other brain areas, and with 

very many external conditions. This gives rise to a substantive question about how we are 

supposed to determine which correlations are privileged with respect to content ascriptions. Shea 

introduces the notion of unmediated explanatory (UE) information to deal with this problem.4 

Shea defines UE information as follows: 

The UE information carried by a set of components Ri in a system S with 

task functions Fj is the exploitable correlational information carried by the 

Ri which plays an unmediated role in explaining, through the Ri 

implementing an algorithm, S’s performance of task functions Fj. (Shea, 

2018 p. 84) 

 

Most simply, UE information picks out the content that best captures a component’s functional 

contribution to an algorithmic process that explains a given behavioral capacity. As discussed, 

one of the problems that this move addresses is the problem of how to determine, among co-

extensive correlations, which content to ascribe to a brain region. The central idea is that a 

particular correlation may be more explanatory of a component’s functional contribution to a 

 
4 Shea also introduces the idea of an unmediated explanatory structural correspondence, but the distinction between 

UE information and UE structural correspondence will not bear upon this discussion. Therefore, I will refer to UE 

information as a placeholder for both. 
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cognitive process than other correlations. For example, within some experimental context, firing 

within a brain area (say, FFA) might correlate with the following conditions: an object is 

present, an animal is present, and a face is present. In order to determine which of these 

correlations best explains component functioning, we need some way of testing for the region’s 

specific contribution to task performance (Shea, 2018). To draw an example from cognitive 

neuropsychology, a patient with an injury to the area might be capable of recognizing objects and 

animals, but incapable of recognizing faces. Careful investigation might shift the balance of 

evidence in favor of the hypothesis that the region contributes to successful task performance 

because it transforms inputs so as to make face-specific information available to the cognitive 

system (Davies, 2010). In that case, face-specific information would be the UE information 

carried by the area. Accordingly, if damage to the region did not inhibit task performance, that 

would be a good reason to believe that it did not carry UE information about the task. 

The keystone of Shea’s view is the linking of UE information with representational 

content: Shea claims that if a component carries UE information about world condition C, then 

that component represents C (Shea, 2018). This move allows Shea’s theory of representation to 

appeal to certain influential research strategies prevalent within the mechanistic explanatory 

framework – namely, decomposition and localization. Decomposition and localization 

respectively involve analyzing the functioning of an entire system into subfunctions and mapping 

subfunctions to distinct system components (Bechtel & Richardson, 2010). Bringing this strategy 

to bear upon the study of behavioral capacities can render algorithmic models of information 

processing that can then be tested against measures of brain activity (Love, 2015). Shea outlines 

the approach as follows: 

The first step is to find which computations the subjects could be 

performing: algorithms that are capable of producing the observed pattern 
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of behaviour… The second step is to go into the brain to see which 

potential algorithm is most consistent with neural activity… When areas 

show up as potentially representing quantities called for by the algorithm, 

we check that it is plausible, in terms of neural architecture, that they are 

computing those quantities in the right sequence (Shea 2018, p. 85)  

 

The strategy thus proceeds by decomposing a cognitive function into subfunctions, determining 

the kind of UE information that would be necessary for carrying out those subfunctions, and then 

looking for evidence of where that information is present within the brain. Representations are 

then identified as components of the brain’s information processing mechanisms (Bechtel, 2014). 

Researchers have pursued this type of strategy while adopting increasingly sophisticated 

analytical methods. As a case in point, the following passage from Roskies (2021) captures the 

manner in which a multivariate model-based fMRI technique called representational similarity 

analysis (RSA) (Kriegeskorte et al., 2008) can be used to develop and guide hypotheses about 

algorithmic transformations of content within the brain: 

If RSA reveals a stimulus or task feature that at one stage of processing 

contributes to differences in the similarity space, but at a next stage that 

feature appears as an invariant, we can make inferences about the 

underlying computations and/or intervening representations. For example, 

in early visual cortex face stimuli do not cluster together in RDMs, but in 

higher levels of the visual pathway, such as IT, they form a distinct 

similarity cluster. In a later stage, similarity measures for individual faces 

do not differ even when the face stimuli are presented in different 

orientations (Guntupalli et al. 2017), suggesting that identity is computed 

between these stages of the visual hierarchy. By allowing us to probe 

which kinds of stimuli or behaviors result in invariances in the similarity 

matrix, and to look for the emergence of such invariants, we can infer 

where and when in the processing hierarchy certain higher-order 

properties are computed/extracted from the signal. (Roskies, 2021 p. 5929) 

 

This support is tentative, and the RSA method makes assumptions, some of which move beyond 

the assumptions of more traditional neuroimaging analyses (Gessell et al., 2021; Roskies, 2021; 

Weiskopf, 2021). On my view, hypotheses about cognitive functioning and representation will 
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ultimately need to be underwritten by interventions.5 However, the foregoing practices compel 

further investigation of the prospect of localizing representations in the brain. Where possible, 

success will translate into an increase in the interpretability of brain dynamics (Kriegeskorte & 

Diedrichsen, 2019; Shea, 2013). 

 

  

 
5 See Woodward (2003) for an account of interventions of the relevant sort. 
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3 POPULATION ANALYSIS AND DIMENSIONALITY REDUCTION 

In this section, I focus on a cluster of objections that critics have raised to the idea of 

localizing cognitive function in this manner. Some critics have expressed doubts about the 

usefulness of decomposition and localization for explaining cognitive processes (Silberstein & 

Chemero, 2013). Along similar lines, other critics have noted that entire brain networks can carry 

information about multiple experimental parameters, or conditions, and they contend that this 

suggests that the representations of those parameters are not localizable to distinct parts of active 

cortical systems (Anderson, 2014; Burnston, 2021). Burnston (2021) has recently raised an 

argument to this effect that draws upon machine learning tools often used to reduce the 

dimensionality, or to provide useful mathematical summaries of, the variance in complex 

neuroscientific data. Burnston argues that these techniques militate against localizing distinct 

informational contents to distinct parts of the brain. Moreover, he suggests that we should all but 

abandon the aspiration of explaining cognitive processes algorithmically – an aspiration that has 

been a long-standing goal of cognitive science (Weiskopf, 2021). 

To illustrate the concerns that Burnston voices, it will be helpful to describe the 

groundwork of a certain type approach to neuroscientific data analysis that has been increasingly 

discussed within the philosophical literature – the ‘Hopfieldian’ approach, or population doctrine 

(Barack & Krakauer, 2021; Ebitz & Hayden, 2021). The population doctrine maintains an 

explanatory focus on patterns of activity distributed across entire neural populations, rather than 

on the distinct activities of individual population constituents, such as subpopulations of neurons. 

For example, Willett et al. (2020) pursued this approach when investigating how information 

about limb movement is reflected within the ‘hand knob’ region of premotor cortex. They 

discovered that movements of multiple parts of the body could be decoded, in the sense of being 
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reliably readout by a pattern classifier, from distributed patterns of population activity. The 

researchers took this result to undermine the formerly prominent motor homunculus model of 

movement processing that assigned responsibility for controlling distinct parts of the body to 

distinct parts of motor cortex. Thus, by focusing upon distributed patterns of activation in the 

target system, the researchers claim to have made headway in explaining how the motor system 

functions to track and produce movement.  

Willett et al.’s (2020) study is exemplary of the population doctrine. The approach is 

characteristically distinguished by 1) a focus on distributed patterns of system activity and 2) the 

development of tools and models that purport to capture the global dynamics of the system. 

Researchers have adopted the approach in the study of motor functioning (Vyas et al., 2020), 

perceptual decision-making (Mante et al., 2013), and in the synthetic neurophysiology of 

recurrent networks (Fanthomme & Monasson, 2021). 

Philosophers such as Burnston (2021) and Anderson (2014) argue that this population-

focused approach to cognitive explanation militates against the localization of representations in 

brain systems. For instance, Burnston claims that population-focused researchers often deploy 

dimensionality reduction techniques, which provide useful mathematical summaries of how 

population activity varies with task conditions, and that these techniques undermine algorithmic 

explanation because they suggest that neural systems function to represent information in a 

distributed, rather than localized, manner. In particular, Burnston argues that these methods 

undermine Shea’s (2018) approach to cognitive representation because they call into question 

two key theses that underwrite his view – injective mapping and causal isomorphism (Burnston, 

2021). Burnston claims that injective mapping requires distinct contents to be mapped onto 

spatially and functionally distinct vehicles, as opposed to being mapped to shared, 
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multifunctional vehicles. He also claims that causal isomorphism requires there to be well-

defined, discrete causal transitions between vehicles that mirror those posited within an 

algorithm.  

However, Burnston argues that the techniques that systems-focused researchers use to 

reduce the dimensionality of complex data render algorithmic explanations of neural functioning 

untenable (2021). To clarify the nature of Burnston’s challenge, more must be said about 

dimensionality reduction. Dimensionality reduction tools such as principal components analysis 

(PCA) and linear discriminant analysis (LDA) are often deployed in order to find dimensions of 

variation that best capture the structure of clouds of data points.6 In neuroscientific applications, 

these dimensions are most often viewed as weighted patterns of neural activation which, when 

combined, yield back the unprocessed data. As a simple illustration, consider Figure 1, from 

Cunningham & Yu (2014). 

 

Figure 1 (from Cunningham & Yu, 2014) 

 

On the left, time series data recorded from individual neurons trace out different activity 

trajectories. At center, the activity of the three neurons is transposed into a three-dimensional 

state space where the population trajectory can be modeled as a lower (two) dimensional 

 
6 For a canonical review, see Cunningham & Yu, 2014. The details distinguishing PCA from LDA and other forms 

of dimensionality reduction are not relevant for the purposes of this discussion. 
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trajectory.7 On the right, it is shown that this lower dimensional trajectory can be decomposed 

into two separate weighted basis, or constituent, activation functions that capture much of the 

variance in the population trajectory. Because these weighted basis functions are linearly 

superposed to re-obtain population trajectories, they are often conceived as ‘latent variables’ 

inherent in the activity of populations. For this reason, Burnston argues that dimensionality 

reduction techniques can be useful for simplifying the complex behaviors of neural systems 

which resist an obvious functional decomposition, or which exhibit mixed-selectivity, in the 

sense of being activated by multiple distinct experimental task parameters (Burnston, 2021). 

The upshot, according to Burnston (2021), is that these techniques do not support 

dividing neural systems into distinct vehicles that represent distinct contents, and they thus 

undermine the possibility of achieving an injective mapping between the steps of algorithms and 

the components of brain systems. Additionally, Burnston argues that these techniques undermine 

causal isomorphism, as causal isomorphism requires contents to be transformed into other 

contents during subsequent processing stages. He argues that, if there is overlap between the 

vehicles that carry the represented contents, then their interactions do not amount to the 

transformations between contents called for by an algorithm, and causal isomorphism does not 

obtain. 

Burnston (2021) locates a particular difficulty for AH in the fact that dimensions of 

variation are often drawn from the activity of the entire system targeted by an analysis, rather 

than from the activities of subpopulations. By drawing our attention to this, he intends to 

demonstrate that these analyses privilege global functional properties, and therefore tell against 

Shea’s view. Consider the following claims: 

 
7 A state space is, most simply, a grid-like theoretical space meant to capture all of the possible states that a system 

might be in. 
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…representations are realized as trajectories in the state space of a whole 

population, rather than as isolated to distinct parts of that population. 

Hence, injective mapping is false. (Burnston, 2021 p. 1620) 

 

What is important about this, for current purposes, is that any measure of 

representation of a particular variable is taken to be constituted by the 

whole population, rather than by distinct parts within that population. If 

so, then the system cannot be divided in the way AH recommends. 

(Burnston, 2021 p. 1624-1625) 

 

This claim exemplifies a distinctive critique of computational and algorithmic explanation in 

cognitive neuroscience based on dimensionality reduction. On this critique, representations 

aren’t localizable components of a functioning cognitive system, but are instead constitutive 

patterns or modes of activation of the system, and the graded nature of pattern evolution can 

prevent us from ascribing distinct contents to distinct stages of activity.8 Consider Willett et al.’s 

(2020) analysis of the dynamics within the ‘hand knob’ region in light of this critique. The 

researchers concluded that, rather than being confined to functionally distinct subpopulations, 

information about movement related to various parts of the body was reflected within principal 

components drawn from the entire area. Furthermore, they found that information about multiple 

limb movements was reflected within the activity of the system at once – an idea that the 

researchers refer to as “compositional coding” (Willett et al., 2020 p. 396). With respect to this 

case, it seems Burnston would argue that limb movement representations are entangled in the 

activity of the whole population. 

Burnston (2021) cites several studies to support his view. In one, Hunt et al. (2015) 

performed an experiment in which macaque monkeys were trained to choose between pictures 

that were associated with distinct magnitudes of reward. The researchers performed PCA on 

local field potential time series data gathered from several prefrontal cortex (PFC) subareas. The 

 
8 Despite the novelty of the machine learning techniques cited by Burnston, a version of the critique was anticipated 

by connectionist thinkers, such as Smolensky (1988) and van Gelder (1992). 
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PCA revealed that the second principal component was correlated with the speed of activity 

ramp-up and had higher weights on high value trials (Burnston, 2021; Hunt et al., 2015). Hunt et 

al. took these results to suggest that the calculation of chosen value was an emergent property of 

population dynamics, and Burnston claims that this suggests that a representation of choice 

cannot be injectively mapped to a subpopulation or a temporal stage of system activity. 

However, Burnston’s (2021) critique draws much of its force from a study conducted by 

Mante et al. (2013). Mante et al. attempted to analyze the dynamics within the macaque PFC 

during a perceptual decision-making task. In the task, macaques were trained to respond 

selectively to a dot field stimulus based on a context cue. The field varied both in terms of 

predominant color (red or green) and in terms of the predominant direction of motion (left or 

right). The researchers presented the monkeys with a context cue that indicated whether they 

should select for predominant direction of motion or predominant color. The animals were 

trained to respond by saccading either to the left or to the right. Stimulus aspects were mixed in a 

way that was difficult to interpret at the level of individual neuron activations, but PCA revealed 

that motion, color, context, and choice information were all distinguishable at levels of activation 

in the population (Mante et al., 2013). Burnston argues that this suggests that the functional 

properties of the system aren’t explainable via Shea’s framework, because the principal 

components corresponding to each task parameter were all weighted positively for the entire 

population over the duration of the task (Burnston, 2021). 

Notably, Shea attempts to apply his account to the Mante et al. (2013) study by modeling 

the context as an input, various combinations of predominant color and predominant motion 

direction as a second input, and a processing step which converts these two inputs into an action 

cue (Shea, 2018). However, Burnston argues that Shea’s model is incompatible with Mante et 



16 

 

al.’s (2013) analysis because the PCA results suggest that any representation of an action choice 

is present throughout the neurons in the population at each stage of activity (Burnston, 2021). 

Moreover, he argues that this representation is superimposed upon representations of motion, 

color, and context, suggesting that the entire population acts as a vehicle for all of those contents 

as it moves throughout a globally-defined state space. Ultimately, Burnston claims that his 

analysis deflates an algorithmic or computational explanation of the system’s behavior, entailing 

a kind of arbitrariness that refutes Shea’s version of vehicle realism. 

Burnston (2021) proceeds to offer an alternative view of processing he calls algorithmic 

coherence (AC), according to which brain processes can be correlated with algorithmic 

transformations of content without being divisible into spatially and temporally discrete 

representations. For example, where Shea (2018) would speak of the causal processes occurring 

between functionally distinct subpopulations in terms of implementing the transformations of 

content called for by an algorithm, Burnston (2021) would say that many neural systems only 

appear to implement algorithms, but the distinct contents that are supposed to be mapped to the 

discretely-sequenced steps of an algorithm may be present during each stage of neural activity.  

Burnston (2021) considers several objections to his arguments, the predominant one 

being that expanding our analyses to include other brain regions might reveal that algorithmic 

models capture brain functioning at larger scales, such as those typically studied by fMRI 

researchers. For example, perhaps if the Mante et al. (2013) analysis had sampled data from 

other brain regions, such as the visual cortices, the idea is that we would be able to conceive of 

the causal transitions between all of the sampled brain regions in terms of implementing the 

transformations called for by an algorithm. However, Burnston (2021) argues first that this 

would lessen the explanatory import of AH because it would render activity within brain regions 
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opaque, and second that we have good evidence that even inter-regional brain networks reflect 

complex combinations of information in a way that precludes algorithmic explanation. He 

concludes by proposing an alternative conception of vehicle realism, according to which neural 

systems can have distinct vehicles representing distinct conditions just in case those conditions 

have distinct effects on system dynamics, and the dynamics fulfill a task function. 
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4 A DEFENSE OF ALGORITHMIC HOMUNCULARISM 

In this section, I defend the prospects of algorithmic explanation in cognitive 

neuroscience in light of Burnston’s critique. First, I consider a follow-up study of the Mante et 

al. (2013) data (Aoi et al. 2020), arguing that our interpretation of the system is not constrained 

in the way that Burnston (2021) suggests. I then turn to a discussion of research in theoretical 

neuroscience that focuses on the functional dimensionality and decodability of neural activity. I 

argue that the hypotheses advanced by these researchers allow us to understand why Burnston’s 

critique of AH is problematic. 

Recall that Burnston suggests that the primary issue of debate is related to the locality vs. 

globality of system functioning (Burnston, 2021). He argues that the prefrontal system targeted 

by Mante et al. (2013) epitomizes a non-decomposable system, in the sense that there is no way 

to divide the system into spatially and functionally distinct components or into temporally 

distinct processing stages. He therefore takes its process to be opaque to algorithmic analysis 

(Burnston, 2021). 

However, I will argue that a follow-up study on this data gives us reason to doubt 

Burnston’s interpretation of this system. Aoi et al. (2020) refined our understanding of this 

system’s properties by performing a type of dimensionality reduction that allowed them to 

analyze fluctuations in how components captured variance over the course of the task. In 

agreement with Mante et al. (2013), the researchers found that each neuron carried information 

about every task variable due to the population’s “broad tuning characteristics” (Aoi et al., 2020 

p. 1410). However, these techniques also revealed that selectivity for task parameters changed 

for many neurons during the experiment. And, most critically, the researchers discovered that the 

activity of the population fell into discrete dynamical regimes, first mapping linearly onto an 
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“early” principal component for each variable, then entering a rotational phase in which it began 

mapping onto “middle” and “late” principal components that were intended to capture changes in 

selectivity – cf. Figure 2 (2020 p. 1415). 

 

Figure 2 (from Aoi et al., 2020) 

 

Note, from Figure 2, how task-related activity first mapped onto the initially explanatory 

dimension of variation for each parameter, and then began rotating onto the other (middle and 

late) dimensions. According to Burnston (2021), any representation of choice is the by-product 

of an ongoing competition between patterns of activation and, as such, he argues that the 

representation of choice is superimposed on representations of motion and color over the 

duration of the task. He argues:  
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What the temporal division requires is that there be a time at which one 

content is tokened, but the second content not tokened, and then a specific 

process that brings about that second content. But in the Mante et al. case, 

the task axes are constant features of the population response—every 

location in the PC space describes some place along the task axes. So, 

there is no temporal stage at which one content is tokened and the others 

aren’t. Nor are there clear phases of transition between some represented 

contents and others. (Burnston, 2021 p. 1632) 

 

However, Aoi et al.’s (2020) results open up the hypothesis space in a way that casts doubt on 

this functional interpretation. Specifically, consider the manner in which the researchers compare 

the transition from the linear to rotational dynamical epochs with the timing of near-peak choice 

discriminability: 

The temporal separation of the early/linear and rotational subspaces 

suggests that these are subspaces within which distinct computations are 

evolving or have independent sets of downstream targets… the present 

analysis indicates the possibility that the early epochs are concomitant 

with the temporal window that decision-making is performed. For 

example, the timing of transition between early and middle epochs is 

consistent with the timing of accurate decoding of the animals’ decisions 

from single pseudo-trials… This evidence suggests that the transition from 

linear to rotational dynamics is a correlate of decision commitment. (Aoi 

et al., 2020 p. 1418) 

 

In this passage, Aoi et al. advance a clear hypothesis about dividing system activity into distinct 

psychofunctional stages. Moreover, that hypothesis is guided by considerations about 

downstream decodability. Decodability does not entail representation, but there is some 

consensus that downstream neural structures need to implement a decoding process at least as 

complex as that of a linear classifier to exploit information transmitted from upstream structures, 

so considerations about decodability are often taken to constrain hypotheses about the 

representational properties of neural activity (Kriegeskorte & Diedrichsen, 2019). What is 

perhaps most notable about the later analysis is the fact that the researchers advance a sequence-

focused perspective despite the presence of an informational mixture detected at the level of the 



21 

 

PCA over the duration of the task. This suggests that the researchers believe that the consistently 

positive component weightings are compatible with the occurrence of a behaviorally relevant 

functional transition. 

At this point in this discussion, it must be re-emphasized that the functional significance 

of the dynamical transition in question should be investigated with methods that can reveal its 

ground truth relation to behavior. However, the subsequent analysis provides tentative support 

for something more like Shea’s (2018) proposal. That is, while the system first appears to behave 

as an evolving structure with several dimensions of variation, it subsequently transitions into 

some type of representation that can be exploited in order to carry out the task. More 

conservatively, Aoi et al.’s (2020) results should make us skeptical of the idea that this system’s 

representational properties remain static over the duration of the task, calling into question 

Burnston’s claim that temporal division would be arbitrary for this system. 

An objection should be addressed. It might be objected that even if a processing 

transition occurs, we still do not get a genuine homuncular analysis, which requires mapping 

distinct subfunctions to spatially distinct parts of the system. Burnston (2021) takes this line. For 

instance, he briefly considers the idea that content transitions might be trackable through the 

temporal dynamics of neural populations, but he argues that this is insufficient to ground AH, 

writing that “AH implies both spatial and temporal divisions between distinct stages of 

processing” (Burnston, 2021 p. 1627, his emphasis). However, I consider this objection to be 

something of a red herring: if a behaviorally relevant functional transition occurs, then that 

undermines Burnston’s claim that the representational properties of this system remain static 

over the course of the task, regardless of whether those properties can be mapped to spatially 

distinct parts of the system. The current argument is thus meant to undermine Burnston’s claim 
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that the PCA results suggest that a functional division of this system would necessarily be 

arbitrary, which would deflate computational explanation and refute Shea’s version of vehicle 

realism. 

Alternatively, Burnston might accept the idea that some type of functional transition 

occurs, but object that the causal isomorphism requirement, which maintains that distinct stages 

of activity must reflect distinct contents, is not met for this system because the PCA results 

indicate that the population is selective for every task parameter throughout the duration of the 

task. While this objection requires careful handling, it can be addressed. The notion of UE 

information can be operationalized to curtail this objection. If we accept Shea’s framework, then 

the fact that a system is selective for each task parameter over the course of a task does not entail 

that the system represents information about all of those parameters, in the sense of carrying UE 

information about them, during every stage of activity. That is because UE information must be 

both in an explicit format, in the sense of being available for use to the cognitive system (Di 

Carlo et al., 2012; Diedrichsen & Kriegeskorte, 2017; Shea, 2007), and explanatory of the 

component’s functional contribution to the cognitive process in question. The sense of 

explicitness that I draw upon here refers to the notion of directness of extraction from the system 

(Clark, 1992). Consider the fact that all of the information needed to visually distinguish between 

categories of objects is present at the retina (Di Carlo et al., 2012; Diedrichsen & Kriegeskorte, 

2017). Despite this, category information is not formatted at the retina in a way that facilitates 

explicit transmission of that content – operations that make category information explicit are 

performed downstream within the visual system. With regard to the Aoi et al. (2020) study, my 

contention is that, during the earliest stages of activity, decision information is at best implicit in 
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the system, but it becomes explicitly tokened as a system output at the time identified by the 

researchers. 

To clarify and to elaborate on why Burnston’s critique is problematic, I will turn to 

developments in theoretical neuroscience that focus on the dimensionality and decodability of 

neural activity. Researchers are beginning to realize that understanding the functional 

dimensionality of a brain region is key to understanding how activity within that region can be 

exploited by an organism when performing a task (Ahlheim & Love, 2018; Badre et al., 2021; 

Fusi et al., 2016). Lower functional dimensionality is thought to be helpful for generalizing to 

new samples of the same type, while higher dimensionality allows for flexible context-sensitive 

distinctions between different sets of information – cf. Figure 3 (Fusi et al., 2016). Panels (a) and 

(b) depict the firing rates of the three neurons (f1-f3) and their responses under four different 

experimental task conditions. Note that low dimensionality in (a) leads to the inability of a linear 

classifier to draw a hyperplane through the four conditions and discriminate between them. 

Alternatively, higher dimensionality in (b) allows a hyperplane to be drawn between any of the 

four task conditions. Panels (c) and (d) depict activity vectors in two distinct conditions (f1 and 

f2). These panels show that higher dimensionality can impede generalization efficiency. 
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Figure 3 (from Fusi et al., 2016) 

 

For example, consider a set of neurons purely selective for the object category pyramid. 

The firing of these neurons could encode object category in a way that prevents variation in 

orientation, color, and so on from affecting the output. This type of invariance computation 

therefore allows for the same classification response regardless of nuisance variation (Fusi et al., 

2016), and it is thought to be important for the ability of any intelligent agent to break the ‘curse 

of dimensionality’, according to which there are simply too many possible combinations of 

world-involving features to store them all in memory (Poldrack, 2021).  

However, it is also thought that many brain regions exhibit a nonlinear form of mixed 

selectivity useful for generating large numbers of context-dependent responses (Fusi et al., 2016; 

Rigotti et al., 2013). Several of the prefrontal cortical areas mentioned previously in this 

discussion are among such brain regions. These areas are thought to project information into a 
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high dimensional space which allows for a downstream readout to implement any number of 

distinctions between task parameters or combinations thereof. This capacity is thought to be 

especially important for the execution of higher cognitive functions. For example, Rigotti et al. 

(2013) argue that neurons that exhibit non-linear mixed selectivity for multiple task parameters 

often exhibit correspondingly higher functional dimensionality in a way that allows for flexible 

and adaptive context-sensitive behaviors, and that collapses of dimensionality are associated with 

behavioral errors on task trials. These researchers also note, however, that populations of neurons 

that exhibit certain forms of mixed selectivity do not exhibit high dimensional responses. In 

particular, populations that exhibit purely linear mixed selectivity are not thought to exhibit high 

dimensional representational capacities. This correspondingly constrains hypotheses about the 

potential roles that they can play within the broader cognitive architecture (Fusi et al., 2016). 

The fact that these kinds of considerations are taken to constrain hypotheses about 

representation leads to a novel argument against Burnston’s critique of AH. According to the 

theoretical neuroscientists, decodability does constrain whether UE information can be ascribed 

to various stages of activity, and this impugns the idea that ascriptions of content can be made 

without regard to the format in which information is present and available for use. I hypothesize 

that the process occurring within the system studied by Mante et al. (2013) and Aoi et al. (2020) 

is one in which the system accumulates and binds evidence into an explicit format so as to 

facilitate a readout of the appropriate decision in each context. Thinking of system activity in 

these terms requires qualitatively distinguishing stages of activity. Namely, it requires 

distinguishing between activity epochs in which the information in the system is not present in a 

format that facilitates the correct readout, and epochs in which the information is present in such 

a format. This is incompatible with the proposal that Burnston advances, according to which the 
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decision representation is a state space trajectory which can be read off of the PCA even during 

the earliest stages of activity. 

Considerations about functional dimensionality and decodability also cast doubt on 

Burnston’s contention that large-scale brain networks will turn out to be cognitively non-

decomposable. Recall from §3 that, while considering whether AH might obtain over larger 

scales within the brain, such as those studied by fMRI researchers, Burnston argues that the best 

explanations of these processes may also align with a pattern competition model (2021). He 

writes:  

…it may be that different areas of the brain implement competitions 

within distinct reference frames—so the competition mediated by the OFC 

is in a value-frame, whereas dlPFC competitions might take place within a 

spatio-temporal reference frame. Put differently, it might be that if we go 

up a level we may get more of the same, now with brain networks 

representing complex combinations of information in a way that evolves 

dynamically towards a choice (Cisek and Thura 2018; cf. Anderson 2014; 

Burnston, forthcoming; Stanley et al. 2019). If so, then AH will not 

describe between-area processing either. (Burnston, 2021 p. 1634) 

 

Following this, Burnston argues that even if representations can be approximated to distinct brain 

regions, transitions between contents may not be clear (Burnston, 2021). However, my response 

to this argument is twofold. First, I contend that even if brain networks come to reflect 

combinations of information about task parameters, that does not entail that the brain regions 

involved are all playing the same functional roles, in the sense of transforming information in the 

same way, or that the processes are most appropriately described as global pattern competitions. 

To see why, consider how hypotheses about dimensionality and decodability are taken to 

constrain the kinds of contents we can ascribe to regional activity. If these theoretical tools 

provide reliable insight into how the information within a region can be used, then there is no 

plausible sense in which representations are state space trajectories of brain networks in the way 
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that Burnston seems to suggest either. Dimensionality reduction may suggest that information 

about a particular task parameter is present within several brain regions, but if those regions are 

not all functioning to make that information explicitly available to the cognitive system, then it is 

implausible to think that we should ascribe the content to all of those areas. In some instances, 

shared or mutual information may be functional, while in others it may be non-functional or 

epiphenomenal. Moreover, distinct brain areas may perform unique computations even when a 

large amount of information is shared between them (Shehzad & McCarthy, 2018). 

With respect to the idea that transitions between contents may not be clear even if we 

expand our analyses to brain networks, my response is that this an empirical matter. On my view, 

the type of considerations that I have discussed above should be coupled with causal 

interventions in order to determine how we should ascribe contents to brain areas. If a particular 

algorithmic model fails to accurately describe neural processing, we should not hasten to reject 

algorithmic modeling simpliciter – in some cases it may be that we haven’t identified the correct 

candidate algorithm (Piccinini & Craver, 2011). Furthermore, algorithmic models can remain 

neutral with respect to how the causal transitions between contents occur, as long as vehicles 

corresponding to distinct contents in the model can be identified (Shea, 2018). 

Finally, an important upshot of the discussion is that we should reject the presumption 

that we will be able to fully understand the structure of cognitive processing without considering 

how components are situated within the broader neural architecture. Notably, many of 

Burnston’s arguments against AH depend upon restricting the aperture of analysis in this way. 

For instance, with regard to the Hunt et al. (2015) study, Burnston argues that “chosen value is 

not an outcome of a sequence of processing stages that begin with other distinct populations and 

end in the choice” (Burnston, 2021 p. 1627). However, it is plain that as soon as we expand the 
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analytical lens to include the activities of other brain areas, including sensory regions, Burnston’s 

assertion here seems much less plausible – the inputs coming into the system must be coming 

from somewhere. 
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5 CONCLUSION 

I have argued that algorithmic homuncularism remains a viable explanatory strategy in 

cognitive neuroscience. When brain activity reflects combinations of information about 

experimental task parameters, that may provide useful constraints on the development of 

algorithmic information processing models. However, Burnston’s critique does not militate 

against the prospect of localizing cognitive representations in functioning brain systems. 
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