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Abstract

Arctic snowpack provides critical wintertime habitat for animals to facilitate 

thermoregulation and avoid predators. Wolverines (Gulo gulo) are iconic among such animals, relying 

on snow burrows for resting sites and reproductive dens. Most of the knowledge regarding this 

mesocarnivore's association with snow, however, has so far originated in more southerly latitudes. In 

this dissertation, I investigated Arctic wolverines' behaviors associated with snow, focusing on how 

specific snow properties influence resting, habitat selection, and avoiding predators. Motivated by 

the paucity of published descriptions of wolverine resting burrows and reproductive dens on tundra, 

I first described terrain features and architecture of such sites. I found that resting burrows typically 

consist of a single tunnel leading to a resting chamber, sometimes associated with non-snow 

structure such as stream cutbanks and river shelf ice. By contrast, reproductive dens typically consist 

of longer tunnels associated with snowdrift-forming terrain. Second, I used GPS collar data from 21 

adult wolverines, coupled with snowpack information at 10 meter pixel resolution, to evaluate 

wolverine habitat selection and movement response to snow depth, density, and melt status. I found 

that wolverines select deeper, denser snow, except when snow is melting, likely reflecting resting site 

use. Third, I developed a machine learning model to classify wolverine behaviors using tri-axial 

accelerometers based on direct observations of three captive wolverines, and applied this model to 

free-living wolverines in Arctic Alaska. I found that the model performs better when allowed to 

predict behaviors as “unknown,” and that it accurately predicts resting, food handling, running, and 

scanning surroundings. Finally, based in part on this classification model, I evaluated the extent to 

which wolverines' use of snow burrows and surface beds for resting sites is influenced by 

thermoregulatory needs versus predation avoidance. I found evidence in support of both demands 

driving resting behavior; wolverines trade thermoregulation off against predation avoidance by 

resting on the snow surface on warm, sunny days, but use snow burrows on cold, dark days to meet 

both demands simultaneously. Collectively, this dissertation demonstrates the importance of Arctic 

snowpack to wolverines, a topic of increasing importance as the snow season shortens with climate 

change, and serves as a model for investigating behavioral processes associated with snow among 

other species.
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Chapter 1: Introduction

During winter, snow blankets the globe's poleward regions, modifying the physical landscape 

upon which animals' lives unfold (Boelman et al. 2019). For these animals, seasonal snowfall 

introduces distinct challenges and opportunities that mediate ecological processes, for example by 

increasing energetic costs of movement and obtaining food, or by providing a thermally and 

structurally protective environment (Berteaux et al. 2017). In response, animals evolve behavioral 

strategies to exploit and contend with this seasonal transformation.

Snow is a complex and dynamic substrate, characterized by dozens of properties that vary at 

spatial scales spanning centimeters to kilometers, and temporal scales spanning seconds to centuries 
(Sturm and Holmgren 1994; Liston and Hiemstra 2011; Parr et al. 2020; Sturm and Liston 2021). 

Regionally, seasonal terrestrial snowpack can be grouped into five classes (prairie, montane forest, 

maritime, boreal forest, and tundra) according broad differences in depth, stratigraphy, and snow 

grain type (Sturm and Liston 2021). For example, snow in montane forests is generally deep (50-300 

cm) and surficially soft (i.e., susceptible to compression), whereas tundra snow is generally thin (20­

80 cm) and mechanically strong on the surface (i.e., resistant to compression). Within each class, 

local differences in topography, vegetation, and meteorology produce variation as well; tundra snow 

in topographically rugged areas that decelerate wind is generally deeper than tundra snow in less 

rugged (and therefore more wind-scoured) areas, for example (Parr et al. 2020).

These snowpack properties, coupled with taxa-specific behavioral and life-history requirements, 

influence how animals respond to snow. For instance, cricetid rodents in tundra regions select deep 

snow for its thermoregulatory advantage and protection from predators, exploiting a layer of low- 

density, easily navigable depth hoar that forms at the snowpack base (Reid et al. 2012; Bilodeau et al. 

2013; Poirier et al. 2019). By contrast, rodents in Australia's Snowy Mountains select against deep 

snow, since meteorological conditions there prevent development of a basal depth hoar layer 

(Sanecki et al. 2006a, b). In this way, change in one snow property (the presence or absence of depth 

hoar) results in opposite responses to another (snow depth). The rodents in both cases are faced 

with similar demands (thermoregulation and avoiding predators), but distinct snow properties result 

in divergent behavioral patterns. This exemplifies the need to study behavioral patterns associated 

with snow and how specific snow properties mediate those patterns.

In the Arctic, cricetid rodents are joined by a diverse suite of species using snowpack for 

structural habitat, including ermine (Mustela erminea; Bilodeau et al. 2013), arctic hare (Lepus arcticus;
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Gray 1993), arctic fox (Vulpes lagopus; Prestrud 1991), ringed seal (Phoca hispida; Smith and Stirling 

1975), polar bear (Ursus maritimus; Harington 1968), and wolverine (Gulo gulo; Magoun and Copeland 

1998). Some of these (ermine and cricetid rodents) spend most or all of the winter under snow, 

exploiting relative warmth and protection from predators (Pauli et al. 2013). By contract, ringed seals 

and polar bears use snowdrifts for reproductive dens and occasionally resting sites, whereas arctic 

fox and arctic hare use snow burrows for resting but not reproduction. Snow properties important 

to each of these species likely reflect the behaviors animals perform to enhance survival and fitness. 

For example, ringed seals require snowdrifts that are both suitably resistant to predators and near 

breathing holes, whereas lemmings require both deep snow and basal depth hoar for 

thermoregulation and avoiding predators (Smith and Stirling 1975; Furgal et al. 1996; Bilodeau et al. 

2013; Poirier et al. 2019). Of the behaviors driving snow use, resting in snow burrows has so far 

received little attention despite being reported across diverse taxa (Harington 1968; Kelly and 
Quakenbush 1990; Prestrud 1991; Gray 1993).

Wolverines are iconic among species that, like other mustelids, use snow for structural habitat 

(Copeland et al. 2010). These mesocarnivores inhabit montane and boreal forests as well as Arctic 

ecosystems, and female wolverines rear kits in dens between February and May (Magoun and 

Copeland 1998; Jokinen et al. 2019). In southerly montane environments, these dens are exclusively 

located in areas of deep, persistent snow, possibly underpinning the close association between the 

species' distribution and persistent spring snow in that region (Copeland et al. 2010; see also Inman 

et al. 2012). In boreal forests, where snowpack is thinner, denning wolverines typically exploit non­

snow structures such as upturned rootwads, slash piles, or abandoned beaver lodges (Dawson et al. 

2010; Jokinen et al. 2019). In Arctic tundra environments, wolverines excavate reproductive dens in 

wind-blown snowdrifts, although few such structures had been described prior to the work 

presented in this dissertation (but see Magoun 1985).

In addition to using snowdrifts for reproductive dens, wolverines in the Arctic also excavate 

resting burrows in snow. Few resting site descriptions from any environment are available for the 

species; I found only 38 published descriptions prior to this study, of which just 11 sites were snow 
burrows (Magoun 1985; Copeland 1996; Wright and Ernst 2004; Glass et al. 2021). The present 

study is motivated by this paucity of information, as well as numerous observations that I and 

collaborators made during preliminary fieldwork of snow burrows apparently excavated by 

wolverines for resting rather than reproduction.
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In this dissertation, I explore wolverine behavior associated with snow in a tundra environment, 

and investigate how specific snow properties influence such behavior. I begin by describing terrain 

features and architecture of wolverine reproductive dens and resting burrows in Arctic Alaska 

(Chapter 2). These descriptions provide context for subsequent chapters, in which I investigate 

behavioral dynamics associated with resting burrows. In chapter 3, I evaluate how snow depth, 

density, and melt status influence wolverine movement and habitat selection. In chapter 4, I develop 

a novel method for classifying wolverine behaviors using tri-axial accelerometers which I then use in 

chapter 5 to assess the relative importance of snow burrows for behavioral thermoregulation versus 

predation avoidance. I find that wolverines rely extensively on the subnivean space for resting, 

accounting for approximately half of all wintertime resting sites in this environment. Wolverines 

select deep, dense, non-melting snow, likely associated with these snow burrows, and burrow use is 

important both for avoiding predators and thermoregulation during the cold, dark Arctic winter. 

Collectively, these chapters expand our understanding of the relationship between wolverines and 

snow in the Arctic, a topic of immediate importance given the rapid pace of environmental change, 

including advancing snowmelt, in the region (Box et al. 2019).
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Chapter 2: Terrain features and architecture of wolverine (Gulo gulo) resting burrows and 

reproductive dens on Arctic tundra1

1 Glass, T. W., Breed, G. A., Laird, C. R., Magoun, A. J., Robards, M. D., Williams, C. T., & Kielland, K. In 
press. Terrain features and architecture of wolverine (Gulo gulo) resting burrows and reproductive dens on 
Arctic tundra. Arctic.

2.1 Abstract

Burrowing species rely on subterranean and subnivean sites to fulfill important life-history and 

behavioral processes, including predator avoidance, thermoregulation, resting, and reproduction. For 

these species, burrow architecture can affect the quality and success of such processes, since 

characteristics like tunnel width and chamber depth influence access by predators, thermal 

insulation, and energy spent digging. Wolverines (Gulo gulo) living in Arctic tundra environments dig 

burrows in snow during winter for resting sites and reproductive dens, but there are few published 

descriptions of such burrows. We visited 114 resting burrows and describe associated architectural 

characteristics and non-snow structure. Additionally, we describe characteristics of 15 reproductive 

den sites that we visited during winter and summer. Although many resting burrows were solely 

excavated in snow, most incorporated terrain structures including cliffs, talus, river shelf ice, 

thermokarst caves, and stream cutbanks. Burrows typically consisted of a single tunnel leading to a 

single chamber, though some burrows had multiple entrances and/or branching tunnels. Tunnels in 

resting burrows were shorter than those in reproductive dens, and resting chambers were typically 

located at the deepest part of the burrow. Reproductive dens were associated with snowdrift­

forming terrain features such as streambeds, cutbanks on lake edges, thermokarst caves, and 

boulders. Understanding such characteristics of Arctic wolverine resting and reproductive structures 

is critical for assessing anthropogenic impacts as snowpack undergoes climate-driven shifts.

2.2 Introduction

Burrows facilitate many behavioral and life-history processes for animals, including predator 

avoidance, thermoregulation, resting, and reproduction (e.g., Gray, 1993; Furgal et al., 1996; Milling 

et al., 2017). A burrow's suitability for each of these processes is determined in part by its 

architecture and site characteristics. For example, larger burrows and wider tunnels can be less 
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effective in deterring predators and require more energy for excavation and thermogenesis in cold 

climates, whereas deeper burrows and longer tunnels can permit access to more thermally or 

structurally advantageous terrain features and restrict access by predators (Vleck, 1979; Bilodeau et 

al., 2013). Terrain features, such as substrate underlying the burrow, can facilitate or hamper an 

animal's ability to accomplish these processes (e.g., by providing additional structure or precluding 

digging; Buskirk et al., 1989; Duchesne et al., 2011; Poirier et al., 2019). Therefore, how animals 

select and modify burrow characteristics provides insight into the relative influence of various 

demands that shape animals' lives.

Wolverines (Gulo gulo) are circumpolar mesocarnivores inhabiting Arctic and alpine tundra and 

boreal forests (Copeland et al., 2010). Female wolverines give birth in snow dens between February 

and mid-March (although they may excavate dens earlier), and occupy these and subsequent dens 

with kits until snowmelt (Magoun and Copeland, 1998; Inman et al., 2012). Across their global 

distribution, wolverines exploit a combination of snow and non-snow subnivean structure for 

reproductive dens (Magoun and Copeland, 1998; Dawson et al., 2010; May et al., 2012; Jokinen et 

al., 2019). The relative importance of snow versus non-snow structure varies geographically. In taiga, 
where snow is shallow, of intermediate density (30-120 cm, 0.26 g cm-3), and melts early (Sturm et 

al., 1995; Copeland et al., 2010), wolverine reproductive dens are typically reliant on structure under 

snow, including root wads of fallen trees, beaver lodges, slash piles from timber extraction, and 

boulder complexes (Dawson et al., 2010; Scrafford and Boyce, 2015; Jokinen et al., 2019). In alpine 

habitats, where snow is generally deeper and of similar density (70-250 cm, 0.27 g cm-3, Sturm et al., 

1995, 2010), wolverines still typically tunnel through the snowpack to access non-snow subnivean 

structure such as large boulders or woody debris (Magoun and Copeland, 1998). On Arctic tundra, 

where such structures are less available or absent, the relative importance of snow for reproductive 

den structure may be higher. We are aware of published descriptions of only eight wolverine 

reproductive dens on Arctic tundra, all located in deep snowdrifts generally associated with minor 

drainages and lake cutbanks (Serebryakov, 1983; Magoun, 1985; see also Lee and Niptanatiak, 1996).

To our knowledge, published descriptions of wolverine resting sites are limited to two sites in 

taiga, 26 sites in the alpine Rocky Mountains, and 10 sites on Arctic tundra (Magoun, 1985; 

Copeland, 1996; Wright and Ernst, 2004; Glass et al., 2021a). Both taiga sites consisted of beds on 

the snow surface at the base of large-diameter trees or stumps (Wright and Ernst, 2004), a type of 

taiga resting site that Scrafford and Boyce (2015) also mention. Alpine resting sites were also 

primarily surface beds, with only three occurring in snow burrows. On Arctic tundra, wolverines use 
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both surface beds and subnivean burrows for resting (Glass et al., 2021c). Approximately half of 

wolverine winter and springtime resting sites on tundra occur in snow burrows, which confer 

thermoregulatory advantages, and may reduce predation risk and drive selection for deeper, 

intermediate density snow (Glass et al., 2021b, 2021c). Magoun (1985) excavated and mapped 14 

subnivean burrows on tundra, eight of which were not known or suspected reproductive dens and 

therefore presumably used as resting sites (b, d, g, j, k, l, m, n; Magoun 1985, Appendix B). In 

addition, Glass et al., (2021a) documented two resting sites in thermokarst caves as part of the 

present study.

Here, we describe terrain features and architecture of wolverine resting burrows and 

reproductive dens in an Arctic tundra environment, motivated by the paucity of such descriptions in 

published literature. Because snow is an ephemeral resource and its availability during spring and 

autumn is declining rapidly with climate change (Callaghan et al., 2011; Box et al., 2019), we included 

in our descriptions the extent to which wolverines relied solely on snow versus incorporating 

subnivean structures into dens and resting burrows that could become increasingly important in 

future climates.

2.3 Materials and Methods

2.3.1 Study Area

We conducted this study in the vicinity of Toolik Field Station (68.63° N, 149.60° W) and Umiat 

(69.37° N, 152.13° W), Alaska. The study area transitions from the Brooks Range foothills in the 

south to the low-elevation Arctic coastal plain in the north, with elevations ranging from 60 to 1,000 

meters above sea level. The region is underlain by permafrost, and trees are absent, but shrubs can 

grow to >2 m in areas, particularly along river corridors (Huryn and Hobbie, 2012).

All water bodies in the study area freeze during winter, at least on the surface, with the exception 

of a few geothermal spring sites (Huryn and Hobbie, 2012). Water levels beneath the ice drop as 

winter progresses (Prowse, 2001). In small- to mid-size rivers during late winter and spring, shelf ice 

can form above a waterless cavity, with access often created through cracks that form in the ice as 

the water level drops and ice shifts.

The snowpack in the study area consists of two functional types: “veneer,” and “snowdrift” 

(Benson and Sturm, 1993). The thinner, lower-density veneer snow, typically <50 cm deep, 

comprises approximately 95% of the areal extent of the tundra, whereas snowdrifts, which can be 
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several meters deep, account for the remaining 5% (Benson and Sturm, 1993; Sturm et al., 2001). 

Wind scours snow from exposed areas and deposits it in areas where terrain features and vegetation 

decelerate the wind, resulting in high-density, tightly bonded snowdrifts (Colbeck, 1982). These 

snowdrifts sometimes result in naturally formed cavities (e.g., roll cavities inside cornices). 

Metamorphism, driven by a temperature gradient between the snow surface and the ground surface, 

causes the base of the snowpack to transform into low-density, unconsolidated depth hoar, while the 

upper layer of the snowpack remains hard and tightly bonded (Colbeck, 1982).

2.3.2 Locating and documenting wolverine resting sites and reproductive dens

To locate resting sites, we captured and affixed Global Positioning System (GPS) collars to 21 

adult wolverines (11 female, 10 male) near Umiat (6 April-26 April 2016) and Toolik Field Station (3 

March-28 April 2017 and 25 February-18 April 2018) using portable baited wooden box traps 

(modified from Lofroth et al., 2008). We fitted wolverines with Followit Tellus Ultra Light (Followit 

Sweden AB, Lindesberg, Sweden) or Lotek LiteTrack 250 Iridium GPS collars (Lotek Wireless, 

Newmarket, Canada) with a 40-minute fix schedule. Collars transmitted animals' locations via the 

Iridium satellite network approximately twice per day. All animal capture and handling procedures 

were approved by University of Alaska Fairbanks Institutional animal Care and Use Committee 

protocol 847738 and Alaska Department of Fish and Game scientific permits 16-093, 17-085, and 

18-085.

To identify wolverine GPS clusters, we visually investigated recent GPS collar data for any two 

consecutive locations < ~20 m apart. We opportunistically visited these clusters in the field during 

the same periods as collaring efforts. Visiting GPS clusters revealed both surface bed and snow 

burrow resting sites, but here we only describe resting sites occurring in burrows. We defined a 

burrow as an excavation in the snow or a naturally occurring cavity with interior dimensions 

sufficiently large to accommodate a wolverine (approximately 40 cm by 40 cm). Upon locating a 

subnivean burrow in the field, we used an aluminum avalanche probe to take nine snow depth 

measurements on a 2 m by 2 m grid, behind the burrow entrance and oriented in the direction of 

entry into the burrow, such that we sampled the area most likely used by the wolverine. We averaged 

these snow depths to obtain a representative snow depth for the burrow. We excavated a subset of 

the burrows opportunistically when time permitted, and have no reason to believe that excavated 

burrows are not a representative sample. At excavated snow burrows, we mapped architecture, 

measured the total tunnel length, dimensions of chambers, maximum burrow depth, depth to the 

10



floor of any chambers, and snow depth at the burrow's deepest location (not all measurements were 

recorded for every burrow). Additionally, we noted presence/absence of food items (inside and 

outside the burrow) and non-snow structure such as boulders, river ice, or stream cutbanks 

associated with the burrow. In some cases, we could confirm presence or absence of non-snow 

structure without excavation.

We located reproductive dens, which we define as burrows where kits-of-the-year were present, 

both by investigating GPS clusters of suspected reproductive wolverines and conducting aerial 

surveys from fixed-wing aircraft in late April 2016 and 2017. Aerial surveys consisted of two aircraft, 

each containing a pilot and observer, flying at low altitude searching for wolverine tracks in snow. 

Both pilots and observers had experience snow-tracking wildlife on tundra from aircraft. Upon 

encountering tracks, the aerial crew followed those tracks until infeasible, it was judged that the 

tracks were unlikely to lead to a potential reproductive den, or a potential reproductive den was 

located. We identified potential reproductive dens according to abundance of wolverine activity in 

the area without other obvious reasons for that activity such as a carcass, and the qualitative 

appearance of the entrance to the den, which we expected to be well-used (Heeres, 2021). To access 

potential reproductive dens on the ground, we landed planes on the tundra (>400 m away), or 

approached by snowmachine (>100 m away, sometimes closer if exact den location was unknown), 

and finished approach by snowshoe. To avoid disturbing reproductive wolverines, we maintained 

quiet voices while near potentially occupied reproductive dens and remained in the vicinity less than 

15 minutes. We deployed a motion-activated camera approximately 5-10 m from the den entrance 

and verified reproductive dens by presence of wolverine kits in photos. At two sites, we verified 

reproductive dens without photos of kits; at one of these, we verified the den based on extensive use 

by a female wolverine that had been lactating during her capture that season, and at the other we 

found deceased kits at the site after snowmelt.

We excavated one reproductive den, a site where we confirmed abandonment by the mother and 

kits prior to excavation. We visited reproductive den sites during summer by helicopter to retrieve 

cameras and document subnivean terrain structures within the area used by wolverines. To estimate 

minimum tunnel length, we measured the maximum distance between wolverine sign, including 

latrines, prey remains, remnant tunnels, and beds. We note that this metric of tunnel length is 

inherently biased low since it does not account for any tunnels extending beyond wolverine sign that 

persisted into summer.
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2.4 Results

2.4.1 Resting burrows

We visited 114 wolverine resting burrows formed partially or completely in snow (Fig. 2.1). We 

fully excavated 28 and partially excavated 6 burrows to document subnivean terrain features 

incorporated into burrows (Table 2.1), map architecture (Fig. 2.2A-E, Table 2.2, Appendix A), 

measure internal dimensions (Table 2.3), and document food remnants (Table 2.4).

Most burrows descended to within 5-10 cm of the subnivean ground surface, but wolverines 

rarely cleared snow from the ground surface, and instead made beds on snow. We did not document 

more than one chamber per burrow. Chambers were typically located at the end of a tunnel, at or 

near the deepest part of the burrow.

Most food remnants were small (e.g., a single bone fragment or tuft of hair), although in one 

case the remains of a whole caribou (Rangifer tarandus), which had been buried in snow, were in a 

burrow chamber. In another case, a collared wolverine dug a burrow adjacent to a mostly intact 

unburied caribou. Caribou hair along the length of this burrow's tunnel and in the chamber 

suggested that the wolverine carried caribou remains inside the burrow for consumption, and GPS 

collar data indicated that the animal remained within 300 m of the site for 50 hours.

Although many burrows were excavated solely in snow (Fig. 2.1A), use of terrain features 

including talus (Fig. 2.1B) and stream cutbanks (Fig. 2.1C.) for burrow structure was also common 

(Table 2.1). Resting burrows associated with cliffs and boulders occurred exclusively on tops of hills 

in the southerly portion of the study area, where such features are more abundant (Fig. 2.1B). These 

burrows generally exploited naturally formed cavities or depth hoar in snowdrifts underneath 

overhanging cliffs (Fig. 2.3), on the leeward side of cliffs, or underneath boulders. Wind speeds are 

high on these ridges, so snow is shallow or absent except in cracks between boulders or in deep 

drifts on the lee side of cliffs. Therefore, burrows associated with boulders typically descended 

through 30 cm or less of snow into spaces between or beneath boulders (Fig. 2.1B).

Resting burrows associated with river shelf ice descended through 30-200 cm of snow to cracks 

in shelf ice formed as ice settled. At three shelf-ice burrows, tracks of river otter (Lontra canadensis) 

were also present and in one case entered and exited the burrow used by the wolverine.
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2.4.2 Reproductive dens

We located 15 reproductive dens: eight by aerial survey, six by investigating GPS clusters of 

collared wolverines, and one by opportunistically observing a wolverine at its entrance while passing 

on snowmachine. Three reproductive female wolverines moved their kits between multiple dens 

included in our count, such that these 15 dens belonged to 10 reproductive female wolverines. Of 

the three wolverines that used multiple dens, one used four dens along a stream and headwater lake 

(distance between dens: 500-12,000 m), and the other two used two dens each (distance between 
dens: 330 m and 6000 m).

Entrances to reproductive dens were clean in appearance, with no scat or food items. We did 

not find any evidence of large prey remains such as caribou or moose (Alces alces) near any 

reproductive dens. At two dens, we found a recently-used bed on the snow surface approximately 30 

m from the den entrance. At three den sites, we found additional burrows within 350 m of the main 

entrance, with well-used trails connecting the burrows. We did not excavate these dens to determine 

subnivean connectivity. At one site, we placed motion-activated cameras at two such entrances, 

located 330 m apart, and documented the female moving kits between the two dens on 22 April 

2016. At this location, we included both dens in our total den count. The four dens located along 12 

km of a stream and its headwater lake were used by a collared female wolverine with kits. She moved 

her kits between the dens over the course of five days in late April 2017, spending 63, 2, and 15 

hours at the latter three dens (including time spent on an apparent foraging trip away from the den). 

The first den was used for at least six days (beginning on her capture date, which was our first 

knowledge of this den).

At three dens, each used by a different wolverine, we observed a wolverine emerge from or enter 

the den while we were placing cameras. In all three instances, the female removed her kits from the 

den within a day and did not return (one of these was the 330 m movement described above). In a 

separate instance, the first photograph from the camera (13 hours after placement) was of the female 

wolverine emerging from the den, suggesting that she was inside the den at the time of camera 

placement. She and three kits continued to use the den until snow deteriorated 22 days later.

We documented terrain features associated with 10 reproductive dens during summer visits 

(Table 2.1, Fig. 2.4). At five, underlying terrain was sufficiently rugged to decelerate wind and create 

snowdrifts but lacked terrain features that could have enclosed any of the den structure. Four of 

these five dens were in snowdrifts formed by small streambeds (Fig. 2.4A), and the fifth was on a 
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low-angle tussock hill. The remaining five dens showed evidence, including bone fragments and 

latrines, that wolverines had used terrain features to complement snow for den structure. At one, a 

25 cm deep overhang of a partially buried boulder formed the roof of a tunnel used by a wolverine 

(Fig. 2.4B). At two dens, along a lake cutbank (Fig. 2.4C) and a stream cutbank, wolverines 

incorporated small (<2 m long) tunnels and caves formed in eroding soil. At a den associated with a 

thermokarst cave, a wolverine used both the cave (at least 15 m2) and snowdrifts formed in an 

erosional trench network; a detailed description is given by Glass et al. (2021a).

We excavated a single reproductive den on 23 April 2016, located in a snowdrift formed on a 

steep stream bank (Fig. 2.2F). The entrance was in shallow (50-60 cm) veneer snow on top of the 

bank, 195 cm from the edge. In vertical profile, the tunnel formed a “Z” shape, descending downhill 

175 cm along the stream bank through shrubs. The tunnel did not branch and contained a single 

chamber with no latrine.

2.5 Discussion

This study expands the published accounts of wolverine resting burrows and reproductive dens 

on Arctic tundra, and documents the use of snowdrifts, talus, cliffs, and river shelf ice for these sites. 

Most resting burrows incorporated terrain features that complemented snow for structure, although 

burrows using only snow were more common than any single terrain feature class (Table 2.1). 

Reproductive dens generally relied less on non-snow subnivean structure, although sometimes 

included limited use of subnivean earthen caves. Low-angle gullies of intermittent streams and 

associated snowdrifts were the most common terrain features for reproductive dens, a finding 

consistent with Magoun and Copeland (1998), although reproductive dens were also located in 

snowdrifts formed by cutbanks on lake edges and on open tundra in areas with less pronounced 

snowdrift-forming terrain.

Burrow architecture documented in this study likely reflects a trade-off between reducing energy 

spent during excavation and improving insulation and security from predators such as wolves. 

Although we observed considerable variation in tunnel length and chamber size, wolverines 

consistently used deeper snow than generally available in the veneer layer (Benson and Sturm, 1993). 

The fact that tunnels at resting burrows were generally shorter than the minimum tunnel length at 

reproductive dens suggests that female wolverines invest more energy in creating a secure 

environment for themselves and their particularly vulnerable kits.
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Tunnel length could also be influenced by food location in snowpack, if burrows are used to 

access buried or cached food. We found strong evidence that food access was the primary burrow 

function at one burrow, since the tunnel terminated at the remains of a whole caribou that could not 

have been brought into the burrow. Otherwise, the small size and high transportability of food 

remnants precluded evaluation of whether the wolverine dug burrows to access food or it was 

carried into the burrow by the wolverine for consumption. We found no food remains at 15 

burrows (Table 2.4), suggesting that resting is often the primary burrow function, although we may 

have missed feeding events that could be identified through other forensic methods (e.g., 

environmental DNA analysis of snow taken from burrows to detect prey species).

Despite our cautious protocol for den visits, directly observing a wolverine while deploying a 

camera at the den site may have prompted the female to abandon the den with her kits in three 

instances. Abandonment following such direct interaction with humans is consistent with previous 

observations (Copeland, 1996; Jokinen et al., 2019). However, observations here and elsewhere that 

wolverines sometimes continue to occupy dens following some level of disturbance (Magoun, 1985), 

and that wolverines move between dens apparently unprompted by human disturbance (Copeland, 

1996; Jokinen et al., 2019; Heeres, 2021), suggest nuance in the fitness consequences of, and 

resilience to, human activity at den sites. Better understanding the causes and consequences of den 

abandonment is important for designing ethical research protocols and mitigating impacts of 

industrial development to this species, as is the case for denning polar bears (Ursus maritimus) in the 

same region (Wilson and Durner, 2020).

2.6 Conclusions

Describing types of terrain features that animals exploit and modify for resting and reproductive 

sites is critical, both for parsing the mechanistic drivers underlying habitat selection and to 

understand how animals respond to environmental change. We have highlighted the use of deep, 

extensive snowdrifts by wolverines in Arctic tundra habitats, as well as the use of several types of 

subnivean structure not previously known to be used by wolverines, including earthen caves and 

river shelf ice. Working to understand fitness implications of these resting/reproductive structures 

will be crucial as their availability shifts with climate change and encroachment of development 

activities.
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2.9 Figures

Figure 2.1: Example photographs of wolverine resting burrows in snow only (A), talus (B), and 

among tall shrubs (C).
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Figure 2.2: Example architecture of wolverine 

resting burrows (A through E) and a 

reproductive den (F). Each panel shows the 

view from the top looking down (grey 

background), and the view from the side 

(white background). Panel F shows two side­

views, perpendicular to one another. 

Distances are shown in centimeters. 

Diagrams of all excavated burrows are in 

Appendix A.
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Figure 2.3: Wolverine resting burrow, created under an overhanging cliff.
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Figure 2.4: Examples of snowdrift-forming 

structures associated with wolverine 

reproductive dens; intermittent stream (A), 

1 m tall partially buried boulder (B), and 

cutbank on lake edge (C).
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2.10 Tables

Table 2.1: Subnivean terrain features used by wolverines in resting burrows and reproductive dens. 

Some “snow only” burrows and dens were in snowdrifts formed by terrain features (e.g., stream 

beds), but did not exploit these features as part of their structure. These figures underrepresent snow 

only burrows, since verifying that a burrow solely exploited snow required excavating the burrow in 

its entirety, or being able to see the burrow's full interior from the surface, whereas verifying non­

snow structure was often possible without excavation.

Terrain feature
Resting 

burrows

Reproductive

dens

Snow only 29 5

River ice 15 0

Cliff 14 0

Stream cutbank 11 1

Lake cutbank 0 2

Talus 7 0

Thermokarst cave 2 1

Boulder 0 1

Unknown 36 5
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Table 2.2: Branching structure of wolverine resting burrows. Both burrows at each of the four 

auxiliary burrow sites were counted elsewhere, resulting in 114 total burrows elsewhere but only 110 

here.

25

Count

Single entrance, single tunnel 22

Single entrance, multiple tunnels, auxiliary burrow <20 meters away 4

Single entrance, multiple tunnels, no auxiliary burrow 1

Multiple entrances, tunnels converge 1

Unknown (did not excavate) 82



Table 2.3: Dimensions of wolverine resting burrows and reproductive dens.

Median Range N

Resting burrows

Tunnel length (cm) 160 0-1600 34

Chamber area (m2) 0.5 0.2-1.4 15

Chamber depth (cm) 90 50-210 18

Snow depth at deepest tunnel's deepest location (cm) 115 60-330 23

Reproductive dens

Minimum tunnel length (cm) 1000 200-2000 9
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Table 2.4: Food remnants on the snow surface surrounding resting burrow entrances (“outside”) 

and in burrow tunnels or chambers (“inside”).

Food outside

Yes No

Yes 2 9

Food
No 3 15

inside
Unknown 6 79
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Chapter 3: Spatiotemporally variable snow properties drive habitat use of an Arctic mesopredator2

2 Glass, T. W., Breed, G. A., Liston, G. E., Reinking, A. K., Robards, M. D., & Kielland, K. (2021). 
Spatiotemporally variable snow properties drive habitat use of an Arctic mesopredator. Oecologia, 195, 887— 
899. https://doi.org/10.1007/s00442-021-04890-2

3.1 Abstract

Climate change is rapidly altering the composition and availability of snow, with implications for 

snow-affected ecological processes, including reproduction, predation, habitat selection, and 

migration. How snowpack changes influence these ecological processes is mediated by physical 

snowpack properties, such as depth, density, hardness, and strength, each of which is in turn 

affected by climate change. Despite this, it remains difficult to obtain meaningful snow information 

relevant to the ecological processes of interest, precluding a mechanistic understanding of these 

effects. This problem is acute for species that rely on particular attributes of the subnivean space, for 

example depth, thermal resistance, and structural stability, for key life-history processes like 

reproduction, thermoregulation, and predation avoidance. We used a spatially explicit snow 

evolution model to investigate how habitat selection of a species that uses the subnivean space, the 

wolverine, is related to snow depth, snow density, and snow melt on Arctic tundra. We modeled 

these snow properties at a 10 meter spatial and a daily temporal resolution for three years, and used 

integrated step selection analyses of GPS collar data from 21 wolverines to determine how these 

snow properties influenced habitat selection and movement. We found that wolverines selected 

deeper, denser snow, but only when it was not undergoing melt, bolstering the evidence that these 

snow properties are important to species that use the Arctic snowpack for subnivean resting sites 

and dens. We discuss the implications of these findings in the context of climate change impacts on 

subnivean species.

3.2 Introduction

Climate change is rapidly altering the quality and availability of snow at Earth's high latitudes 

(Callaghan et al. 2011). Increasing air temperatures are driving reductions in snow accumulation and 

contractions in the snow-covered period, and the snow that does accumulate is generally wetter and 

denser. Since snow directly alters physical landscape features such as the energy landscape (e.g.,
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Crete and Lariviere 2003) and availability of resources (e.g., Aars and Ims 2002), these changes are 

dramatically rearranging the drivers of wildlife movement, habitat selection, and life-history events.

However, the way that snow influences such ecological processes varies with spatiotemporally 

dynamic snowpack properties, so understanding wildlife response to the changing snowpack relies 

on a mechanistic understanding of the link between these properties and ecology (Berteaux et al. 

2017). For example, snow depth and surface hardness influence the energetic costs associated with 

locomotion in a variety of terrestrial taxa (Crete and Lariviere 2003), with cascading effects on spatial 

distribution, habitat selection, survival, and overall population processes (Mahoney et al. 2018; 

Reinking et al. 2018). Similarly, hardness at the base of the snowpack can influence population 

cycling and survival among small mammals and ungulates, often resulting from freeze-thaw or rain- 

on-snow events that prevent animals from accessing forage (Aars and Ims 2002).

For species that rely on the subnivean space for reproductive dens, thermoregulation, or to 

avoid predators, the influence of spatiotemporal snow dynamics on ecological processes can be 

particularly acute. Rain-on-snow and mid-winter melt events, which reduce the thermoregulatory 

and structural integrity of snow, can have profound effects on animals using subnivean birth lairs or 

dens, such as polar bears (Ursus maritimus), ringed seals (Phoca hispada), and wolverines (Gulo gulo), 

sometimes resulting in den collapse and mortality (Clarkson and Irish 1991; Stirling and Smith 2004). 

Changes in snow density can influence the availability of suitable burrowing habitat, since density is 

negatively related to thermal insulation but positively related to structural stability (Colbeck 1982); 

therefore, animals might be expected to seek intermediate snow densities. Similarly, deeper snow 

confers more thermal insulation and protection from supranivean predators, but requires more 

energy to access, so changes to snow depth can alter the capacity of animals to effectively 

thermoregulate or avoid predators. Neglecting to account for such snow properties in ecological 

studies risks mischaracterizing a crucial component of ecosystem dynamics.

Despite this, incorporating snow data into studies of wildlife ecology remains a nascent field, in 

part due to the considerable logistical difficulty in collecting accurate snow-related data at 

biologically-relevant resolutions across temporal and spatial scales of interest (Magoun et al. 2017; 

Boelman et al. 2019). Further difficulty arises from the inherent complexity of the snowpack, which 

can change rapidly at fine resolutions in response to weather conditions, terrain, and vegetation 

(Colbeck 1982; Sturm et al. 1995). Animals may respond to a wide range of such dynamic snowpack 

characteristics, including depth, density, hardness, structural integrity, and phenology (Berteaux et al.
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2017), and identifying and measuring the characteristics that are relevant to the biological process of 

interest for a particular species can present a considerable challenge.

Spatially explicit snow evolution models promise to reduce some of the logistical hurdles of 

accurately building snow properties into ecological models (Boelman et al. 2019). Snow evolution 

models are numerical models that estimate snow characteristics based on meteorological, 

topographic, and land-cover inputs. These models have typically been developed to address 

hydrological questions and for avalanche forecasting, though their broad applicability to other 

disciplines, including wildlife biology, is increasingly possible (Liston et al. 2016; Mahoney et al. 

2018; Reinking et al. 2018). For example, SnowModel (Liston et al. 2020) can be flexibly applied to 

diverse landscapes and snow regimes such as tundra, coastal regions, forested areas, and sea ice. 

Further, it produces daily (or sub-daily) outputs of snow characteristics including depth, density, 

snow water equivalent (SWE), runoff volume, solid- and liquid-precipitation, and sublimation. The 

model is capable of assimilating field observations of SWE (Liston and Hiemstra 2008) to correct 

errors in precipitation datasets; precipitation can be difficult to measure accurately and is frequently 

inaccurate in meteorological reanalysis products used for model forcing (e.g., Liston and Hiemstra 

2008, Liston et al. 2020). The spatial resolution of the SnowModel outputs can range from 1 meter 

to 10 kilometers, depending on the application of interest, and is defined by the resolution of the 

underlying digital elevation model (DEM) and land-cover raster. SnowModel's flexibility and diverse 

outputs make it broadly applicable to studies of wildlife ecology, and it has been applied to diverse 

systems and ecological processes including polar bear denning in the Arctic (Liston et al. 2016), Dall 

sheep (Ovis dalli) habitat selection in alpine Alaska (Mahoney et al. 2018), and pronghorn (antilocapra 

americana) mortality risk in sagebrush steppe (Reinking et al. 2018).

Here, we demonstrate the value of including spatiotemporally variable snow properties (and not 

simply presence or absence) in ecological models of species that rely on the subnivean space. 

Further, we provide a mechanistic context for understanding the impacts of climate change on such 

species by assessing habitat selection and movement of wolverines in response to physically based 

snow property representations. Specifically, we investigated whether habitat selection and movement 

among wolverines not associated with reproductive dens (hereafter non-denning wolverines) are 

altered by relatively fine-scale (<30 meters) spatiotemporally variable tundra snowpack 

characteristics. We focused on non-denning wolverines to evaluate snow's importance to the species 

apart from its well-documented role in reproductive denning (Magoun and Copeland 1998). We 

evaluated (1) the utility of including high-resolution snow property data in models of wolverine 
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habitat selection, and (2) whether wolverine habitat selection and movement in relation to snow 

indicate the excavation of subnivean cavities. Observations from published works (Magoun 1985) 

and our own fieldwork indicate that non-denning wolverines on Arctic tundra dig resting cavities in 

deep snowdrifts during winter and spring. Building on this, we predicted that high-resolution snow 

property data would substantially improve the ability of a statistical model to evaluate wolverine 

habitat selection and movement, and that wolverines would select areas of deeper, intermediate­

density snow, when the snow is not melting. We further predicted that these snow attributes would 

reduce wolverine movement rate, reflecting the importance of these attributes for resting sites. We 

based these predictions on the assumptions that deep snow provides more structural protection, 

higher-quality food caching habitat, and more abundant subnivean prey (Duchesne et al. 2011), and 

that denser snow offers better structural integrity for snow caves and tunnels. Further, we assumed 

that these snow properties would be reduced during melt, since meltwater reduces the thermal 

resistance and structural stability of the snowpack (Colbeck 1982).

3.3 Methods

3.3.1 Study Area

We collected data in the vicinity of Umiat (69.37° N, 152.13° W) and Toolik Field Station 68.63° 

N, 149.6° W), Alaska (Figure 3.1). This region encompasses the transition from the Brooks Range in 

the south, through the foothills region, north to the Arctic coastal plain. The study area is treeless, 

although shrubs can grow to >2 meters tall along riparian corridors (Figure 3.2; Huryn and Hobbie 

2012). The Brooks Range is characterized by steep, rugged terrain with elevations ranging from 700 

to 2,700 m. The foothills region is characterized by low rolling hills with elevations ranging from 60 

to 1,000 m. The coastal plain is mostly flat, but broken by stream cuts, permafrost-related terrain 

features such as polygons and pingos, and eroded lake edges (Huryn and Hobbie 2012).

Snowpack in the study area is typically categorized as either “veneer,” a relatively thin layer, or 

“snowdrift,” a deeper, wind-deposited layer (Benson and Sturm 1993). Snowdrifts are associated 

with topographic features that decelerate wind, such as incised stream channels, cut-banks along lake 

edges, ridgelines, vegetation, and degrading permafrost features. As the snow-transporting winds 

slow, snow grains accumulate on the snow surface. During wind transport, snow grains deteriorate 

into small particles that become densely packed and highly bonded upon deposition (Colbeck 1982). 

Additionally, veneer snow undergoes metamorphism driven by the temperature gradient and 
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associated vapor pressure gradient between the ground surface and the air, whereby water vapor is 

transported from the bottom toward the top of the snowpack, resulting in a large-grained, low- 

density snow crystals called depth hoar (Colbeck 1982). The combination of these two processes 

leads to a largely binary snowpack with a dense wind slab overlying softer, low density snow. This 

process happens to a lesser extent in snow drifts, where deeper snow results in a less pronounced 

temperature gradient and the higher density wind-transported snow is less permeable to vapor flow 

through the snowdrift. As such, wind-drifted snow is typically of higher density (roughly 250-550 kg 

m-3), while veneer snow is typically lower density (150-250 kg m-3, Benson and Sturm 1993). Up to 

50% of snow deposited on tundra is blown by wind into snowdrifts, up to several meters deep, that 

cover approximately 5% of the surface area of the landscape (Benson and Sturm 1993; Sturm et al. 

2001). The remaining 95% of the landscape is covered by veneer snow, typically less than 50 cm 

deep. The period of continuous snow cover typically initiates in September or October. Snowmelt 

begins in late April or early May (although this date is advancing with climate change), and proceeds 

rapidly as day length and air temperature increases (Hinzman et al. 2005; Callaghan et al. 2011). The 

tundra is mostly snow-free by late May or early June (Macander et al. 2015).

3.3.2 Study Species

Wolverines occur across the study area, although their occupancy is non-uniform and correlates 

with rugged terrain and the presence of well-drained soils (Poley et al. 2018). Generally, wolverines 

are considered a snow-associated species, and on the Arctic tundra, which comprises a considerable 

portion of the wolverine's global distribution, the relative importance of snow as a structural habitat 

component may be higher than in other ecosystems. Non-snow structures that are associated with 

reproductive dens and resting sites elsewhere, such as trees, boulders, and beaver lodges (May et al. 

2012; Jokinen et al. 2019), are sparse or absent on tundra, and although studies of wolverine habitat 

associations on tundra are limited (but see Magoun 1985; Poley et al. 2018), all reproductive dens 

documented on the tundra have been in deep, drifted snow (Magoun and Copeland 1998), and non- 

reproductive wolverines have been documented excavating cavities in snow to avoid predators, 

behaviorally thermoregulate, and cache food (Magoun 1985, Glass et al. unpublished manuscript). With 

few exceptions (e.g., Magoun and Copeland 1998, Pozzanghera et al. 2016, Magoun et al. 2017), only 

snow presence/absence data at >500m pixel resolution has been used to inform the relationship 

between wolverines and snow, although the ways in which this and other species (e.g., ringed seals,
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Stirling and Smith 2004) are affected by snow is almost certainly mediated by more complicated 

dynamically evolving snow properties at much finer spatial resolutions (Magoun et al. 2017).

3.3.3 Wolverine Capture and Collaring

We captured wolverines near Umiat (06-Apr-2016 — 26-Apr-2016) and Toolik Field Station (03- 

Mar-2017 — 28-Apr-2017 and 25-Feb-2018 — 18-Apr-2018), Alaska using portable baited wooden 

box traps (modified from Lofroth et al. 2008). We moved traps opportunistically to maximize 

trapping yield, resulting in minimum convex polygons surrounding our trapping areas of 715 km2 

and 3,100 km2 at Umiat and Toolik, respectively. We fitted wolverines with 250-300g Followit Tellus 

Ultra Light (Figure 3.2; Followit Sweden AB, Lindesberg, Sweden) or Lotek LiteTrack 250 Iridium 

GPS collars (Lotek Wireless, Newmarket, Canada) with a 40-minute fix schedule. All animal capture 

and handling procedures were approved by University of Alaska Fairbanks Institutional animal Care 

and Use Committee protocol 847738 and Alaska Department of Fish and Game scientific permits 

16-093, 17-085, and 18-085.

We limited analyses to GPS data collected during the snow-covered period (i.e., when the 

majority of the landscape was snow covered, subjectively defined as ending May 10; collars were 

deployed mid-winter, so we did not define a fall starting date). Because we were interested in non­

denning habitat selection, we excluded 538 (3% of total) steps of denning females and their mates 

within 1 km of their den site. Steps with intervals longer than 43 minutes also were excluded from 

analysis.

3.3.4 Environmental Covariates

We estimated snow depth at 10 meter spatial resolution using SnowModel, a numerical model 

that incorporates topography, land-cover, meteorological data, and ground measurements of SWE 

to recreate snowpack spatial distribution and temporal evolution. For a detailed description of 

SnowModel, see Liston et al. (2020), Appendices A-H. We simulated snow depth, SWE, and SWE 

melt at a daily time step, enabling us to link snow characteristics with wolverine relocations both 

temporally and spatially (Figure 3.3). We used an Interferometric Synthetic Aperture Radar (IfSAR) 

5 meter DEM, resampled to 10 meter resolution, for topography data. We used National 

Aeronautical and Space Administration (NASA) Modern Era Retrospective-analysis for Research 

and Applications Version 2 (MERRA-2) for meteorological data, and we used the model MicroMet 

(Liston and Elder 2006) to downscale these data to the 10 meter resolution required for the
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SnowModel simulations. We corrected MERRA-2 precipitation values using 21 ground 

measurements of SWE (Arp 2018; Pedersen et al. 2019; Stuefer et al. 2019), by assimilating them 

into SnowModel using the model SnowAssim (Liston and Hiemstra 2008).

SnowModel has a variety of user-defined parameters that enable flexible application to different 

environments; we qualitatively compared SnowModel outputs to high resolution structure-from- 

motion (SfM) maps of snow depth (Matthew Sturm, unpublished data) at focal sites within our study 

area to fine-tune these parameters. The structure-from-motion technique uses aerial 

photogrammetry to create three-dimensional maps of the snow surface elevation, from which the 

terrain elevation is subtracted to obtain snow depth. To accommodate the relatively high spatial 

resolution of our simulations and our interest in snowdrifts that occur on a scale of 10s of meters 

(Figure 3.3), we adjusted the MicroMet wind parameters (Liston and Elder 2006) until the 

SnowModel simulated snowdrifts visually matched those observed in the SfM data. Since vegetation 

height data at the resolution of our simulations (10 meters) were unavailable, and rescaling coarser 

land-cover data introduced clear artifacts to snow depth predictions, we used a uniform vegetation 

height of 5 cm for the entire domain. This decision reflects the dominance of tussock-tundra in our 

study area, though precludes the effect of shrubs on capturing snow. Additionally, to better match 

SfM snow depth maps, we uniformly increased the MERRA-2 wind speeds by a factor of 1.5 
(Mahoney et al. 2018).

We calculated snow density as SWE divided by snow depth for a given pixel. We calculated the 

daily fraction (0-1) of seasonal snow melt as
SSMTk - SSMTk-1 

SSMTend

Where SSMTk is the season's total amount of SWE (cm) that has melted for a given pixel on 

date k, and SSMTend is the season's total SWE that melts for a given pixel by the end of the season. 

We then converted this into a binary indicator variable representing whether or not any snow had 

melted during the preceding 24 hours.

In addition to snow covariates, we investigated terrain ruggedness, distance to streams/rivers, 

and distance to lake edges (Table 3.1, Figure 3.1), because these are commonly related to wolverine 

habitat selection elsewhere (Poley et al. 2018; Scrafford et al. 2018), or because we expected them to 

be influential based on our field observations. We decided against including distance to roads as a 

covariate, since the Dalton Highway is the only road in the study area (Figure 3.1), and most collared 

wolverines never directly encountered it. Although we are unaware of other studies that have 
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investigated the response of wolverines to lake edges, we included this as a covariate since many lake 

edges on the North Slope are characterized by steep, eroded cut banks and tall shrubs, making them 

attractive for ptarmigan, snowshoe hares, and other potential prey species (Ehrich et al. 2012). We 

used the National Hydrology Dataset for lake data, and converted the lake polygons into polylines to 

assess habitat selection in relation to lake edges (i.e., to permit non-zero values for locations 

occurring within the original polygons on frozen lakes). We derived terrain ruggedness as the square 

root of the summed squared deviations in elevation between each cell and every neighboring cell 

(Riley et al. 1999), based on an IfSAR 5 meter resolution DEM and included it in our models as a 

continuous variable. We derived stream and river data from the IfSAR 5 meter resolution DEM 
using ESRI's Flow Accumulation tool in the Spatial analyst ToolPak (ESRI ArcMap 10.3.1). This 

tool allows users to define flowlines according to the number of pixels that have accumulated 

upstream. In this way, we set accumulation values for streams and rivers as greater than 300 pixels to 

best capture our perception of what constituted a “stream” on the landscape. We used the ESRI's 

Erase tool to exclude flowlines that overlapped lakes, and we clipped the resultant layer to include 

data only within the coastline. We calculated distances from wolverine GPS locations to streams and 

rivers using ESRI's Near tool.

We assessed all predictor covariates for collinearity and found the highest degree of correlation 

to be 0.58, so we removed no covariates. We also standardized all continuous predictor variables 

(subtracted the mean and divided by the standard deviation).

3.3.5 Habitat and Movement Modeling

3.3.5.1 Step Selection analysis

To assess how wolverine space use responds to spatially and temporally variable environmental 

conditions, we used integrated step selection analyses (iSSA; Avgar et al. 2016). iSSA describes 

animal movement as a series of discrete “steps” which represent movement between two locations 

in space. We matched each realized step (time t) with five available steps, each originating at the 

previous location (time t-1) but having a step length and turn angle drawn from gamma and Von 

Mises distributions, respectively, which were parameterized empirically from the observed data of 

that animal. Matched sets of one realized and five available steps form a stratum. For each step, we 

extracted environmental covariates at the start and end of the step to test hypotheses regarding 

movement and habitat selection, respectively. We fit step selection functions (SSF) for each 
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wolverine individually using the R package survival (Therneau et al. 2020). We included the natural 

logarithm of step length (lnSL) as a covariate in all models to explicitly account for the resource­

independent movement kernel, thereby reducing bias in the estimation of our habitat-related 

parameters (Forester et al. 2009; Avgar et al. 2016).

3.3.5.2 Modeling Approach

We employed a two-step model evaluation process. In the first step, we built a “base” model 

describing wolverine habitat selection in the absence of snow by evaluating all possible combinations 

of non-snow covariates (distance to stream/river, distance to lake edge, and terrain ruggedness). 

Because we expected non-linear responses to all covariates, we log-transformed the distance terms 

and included terrain ruggedness as a quadratic term. As such, there were three separate terms 

included in our candidate base models, generating seven possible models: ln(distance to 

stream/river), ln(distance to lake edge), and [terrain ruggedness + terrain ruggedness2]. To evaluate 

population-level model performance, we calculated Akaike weights (Burnham and anderson 2002) 

for each set of candidate models for each wolverine, and then calculated the mean Akaike weight 

across individuals using a non-parametric bootstrap, weighted by sample size (Scrafford et al. 2018). 

We designated the model with the highest population-level Akaike weight our “base” model.

In the second phase of our modelling process, we evaluated the effect of including snow-related 

covariates, and investigated our hypothesis that wolverines' selection for snow properties is 

consistent with the excavation of subnivean cavities for resting sites, food caches, and/or subnivean 

hunting sites. To do so, we built a candidate model set including all three possible combinations of 

the covariates “Snow depth + Snow depth2 + lnSL:Snow depth + lnSL:Snow depth2” and “Snow 

density + Snow density2 + lnSL:Snow density + lnSL:Snow density2,” where snow covariates 

interacting with lnSL were extracted at the step's start to evaluate their influence on wolverine 

movement (Avgar et al. 2016). We added these covariates to those of the base model, and fit these 

candidate models separately to strata that contained at least one step during which snow had 

undergone melt (“melt” models) and strata that did not contain any steps with melting snow (“no 

melt” models). We then used the same bootstrapped mean Akaike weight procedure described 

above to evaluate model performance. We calculated average population-level coefficient estimates 

and 95% confidence intervals using a non-parametric bootstrap of individual estimates, weighted by 

their inverse variance (Scrafford et al. 2018).
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Where b1 and b2 are the tentative individual-level shape and scale parameters, respectively, βlnSL is 

the population-level coefficient for lnSL, and βι...n are the population-level coefficients for the 

interaction between lnSL and snow covariates. To evaluate the influence of specific covariates, we 

held all other snow covariates constant at their median values, and varied the covariate of interest 

across its range. We then calculated a population-level mean using a non-parametric bootstrap, 

weighted by sample size (Scrafford et al. 2018).

Finally, we evaluated both the base model and the top performing “no melt” model for their 

ability to predict habitat use patterns among out-of-sample data by adapting the k-fold cross 

validation approach described in Boyce et al. (2002), using individual animals as “folds.” Specifically, 

for each model we iteratively withheld the data of one individual, fit the model to the data of the 

remaining individuals, and used the fitted model to generate linear predictors for the withheld data. 

We exponentiated these linear predictors and partitioned them into ten bins of equal sizes, then 

divided the number of realized steps by available steps in each bin. This provided a frequency for 

each bin (analogous to the “area adjusted frequency”; Boyce et al. 2002), which we expected to 

increase for higher bins, since the proportion of realized to available steps should be greater for 

higher values of linear predictors. We then averaged frequencies across iterations and calculated the 

Spearman's Rank correlation coefficient for bin versus frequency. Validating the model in this way 

assesses how well it can be generalized to the population as a whole.
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To visualize our results, we calculated the linear predictors based on the population-level 

coefficient estimates from the best performing “no melt” model and fit generalized additive models 

(GAMs) of exponentiated linear predictors against predictor covariates of interest, then plotted the 

result (termed a "relative probability of use plot," Avgar et al. 2017). We used the fitted values from 

these GAM functions to evaluate relative probability of use at specific values of covariates (Avgar et 

al. 2017). We selected the number of knots in our GAMs using Generalized Cross Validation 

(Craven and Wahba 1978). In addition, we used the habitat weighting function generated by our SSF 

to calculate the relative probability of use for habitat pixels in the vicinity of Toolik Field Station, 

creating a spatial visualization of our results.

We calculated the mean movement rate for each wolverine using the equation (Ladle et al. 2019)



3.4. Results

We captured and GPS-collared 21 adult wolverines (11 female, 10 male), obtaining 16,167 steps, 

of which 15,493 (across all 21 individuals) were included in the “no melt” models and 674 (across 11 

individuals; 6M 5F) were included in the “melt” models.

3.4.1 Base Model

Akaike weight rankings for candidate base models and coefficient estimates for the top 

performing base model are found in Tables B.1 and B.2, respectively. We found support for 

including streams and rivers, lake edges, and terrain ruggedness in our base model (Table B.1). 

Wolverines generally selected more rugged areas closer to streams, rivers, and lakes (Table B.2). 

Distance to lake edge only improved model performance marginally over the next best model 

(Akaike weight evidence ratio = 1.04, Table B.1), and as such had minimal effect compared with 

other predictors on the relative probability that a wolverine selected a resource unit (Table B.2). 

Wolverines were twice as likely to use a resource unit 10 meters from a stream or river than one 400 

meters away, and were nearly four times more likely to use a resource unit with a terrain ruggedness 

index of 150 (characteristic of the mountain slopes in the southern portion of the study area and the 

higher-relief foothills) than one of 20 (typical of valley bottoms and the rolling tundra, Figure 3.5).

3.4.2 Influence of Snow on Habitat Selection and Movement

For non-melting snow, adding any snow covariate improved model performance above the base 

model, and the model including both snow density and snow depth performed best among all 

candidate models (bootstrapped mean Akaike weight = 0.4, Table 3.2). In general, wolverines 

selected deeper and denser snow (Figure 3.4, Table 3.3). Specifically, wolverines were twice as likely 

to use a resource unit characterized by snow that was 250 cm deep than a unit with snow 20 cm 

deep, and were similarly twice as likely to use a resource unit with snow of density 450 kg m-3 than 

250 kg m-3 (Figure 3.4). Wolverine movement rate was negatively influenced by snow depth but 

positively influenced by snow density across the range of densities available to wolverines, although 

confidence bands generated from bootstrapped means of individual coefficient estimates suggest 

uncertainty in these trends (Figure 3.4). For melting snow, adding any snow covariate to the base 

model substantially reduced performance (Table 3.2).
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Both the base model and the top performing “no melt” model had high cross-validation scores 

(0.95 and 0.93 Spearman's Rank correlation coefficient, respectively).

3.5 Discussion

This study demonstrates the importance of including spatiotemporally variable snow properties 

in ecological models of species that rely on the subnivean space, and provides a mechanistic context 

for understanding nuanced, but important impacts of climate change on these species (Mahoney et 

al. 2018; Boelman et al. 2019). Our findings are broadly consistent with our predictions; specifically, 

we found that (1) including snow properties in habitat selection models for snow-associated species 

would improve model performance, and (2) that wolverines select deeper, denser snow, but only 

when that snow is not undergoing melt. Our results are ambiguous regarding the importance of 

denser snow for subnivean cavities, suggesting that selection for denser snow may instead (or also) 

be driven by reduced energetic costs associated with movement. These results have important 

implications for wolverines and other subnivean species in the context of a rapidly changing Arctic 

snowpack.

3.5.1 Snow as a Component of Habitat

The subnivean zone is important to diverse taxa for its thermoregulatory and structural benefits 

(Pauli et al. 2013). Species such as polar bears, ringed seals, marten (Martes americana), ermines 

(Mustela erminea), and cricetid rodents occupy this zone for part or all of the winter. As such, studying 

the ways in which variable snow properties influence the quality of this habitat is an important 

component of understanding a species' broader ecology. Our finding that snow depth is important 

to wolverines using the subnivean zone is consistent with results from other taxa. Ringed seals, polar 

bears, and Arctic hares all select deep, structurally stable snow for dens associated with resting and 
reproduction (Gray 1993; Furgal et al. 1996; Liston et al. 2016).

Snow density may also be important to subnivean species. Since denser snow caused by wind 

drifting is characterized by higher structural integrity and mechanical resistance to digging, but lower 

thermal resistance (Colbeck 1982), we expected wolverines to select an intermediate level of snow 

density for subnivean dens, as has been qualitatively reported for other species (Harington 1968). 

However, our results do not support the existence of an upper limit to selection for denser snow 

within the range of densities available to wolverines (Figure 3.4), suggesting that any decrease in 

thermal resistance conferred by denser snow has negligible consequences for wolverines.

40



Moreover, although our results indicate a clear preference for denser snow among wolverines, 

(Figure 3.4), the mechanism underlying this selection is unclear. The slight positive influence of 

snow density on wolverine movement (Figure 3.4) suggests that this selection may be driven by 

reduced energy expenditure associated with traveling over dense snow (Crete and Lariviere 2003) 

rather than the use of dense snow for subnivean structures. This trend is somewhat unexpected, 

since dense snow is generally found to be important for over-snow travel among taxa with higher 

footloads (body mass/foot surface area; Whiteman and Buskirk 2013), but less so for wolverines 

which have a lower footload (Pozzanghera et al. 2016). However, the wide 95% confidence band 

for this relationship suggests that both processes (i.e., subnivean structures and movement) may 

contribute to wolverines' selection for denser snow.

3.5.2 Wolverines and Snow

Although there is considerable evidence supporting the importance of snow as an attribute of 

wolverine habitat (Magoun and Copeland 1998; Aubry et al. 2007; Pozzanghera et al. 2016; 

Heinemeyer et al. 2019), the exact nature of this relationship is unresolved and varies geographically. 

The global distribution of wolverine reproductive dens and telemetry locations overlaps broad-scale 

(>500m resolution) spring snow persistence (Copeland et al. 2010), although it has been argued that 

this relationship may arise from uneven sampling effort (Aronsson and Persson 2017), and may not 

capture snow properties at a spatial scale relevant to the species (Magoun et al. 2017). Additionally, 

reproductive dens and individuals are increasingly being found in areas without substantial spring 

snowpack (Webb et al. 2016; Aronsson and Persson 2017; Jokinen et al. 2019). Regardless, the high 

proportion of reproductive dens that have been located in deep snow suggests an important, if not 

obligatory, use of this substrate by the species (Webb et al. 2016). In addition to the use of deep, 

persistent snow for reproductive dens, snow may play an important role in food preservation for 

wolverines, enabling the species to thrive in relatively low-productivity, unpredictable environments 
(Inman et al. 2012).

Additionally, snow may play a role in wolverine food acquisition. Cricetid rodents are an 

important component of wolverine diet on tundra during the snow-covered spring (Dorendorf et al. 

2018). Cricetids are generally associated with deep snow on tundra; winter nest density and activity 

are higher in areas with deeper snow (Duchesne et al. 2011), and snow fence experiments have 

found that cricetids select areas with experimentally increased snow depth, subsequently returning to 

pretreatment levels upon fence removal (Reid et al. 2012). Little data are available regarding 
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wolverine hunting of cricetids, but studies of Arctic fox (Vulpes lagopus) suggest that supranivean 

predators may not be impeded by deep snow, employing a digging technique instead of pouncing to 

capture subnivean cricetids in deeper snow (Bilodeau et al. 2013). Our field observations suggest 

that in some cases wolverines travel short distances along the subnivean ground surface through the 

soft depth hoar layer, possibly implying a use of this space besides resting and food caching. 

Therefore, in addition to its importance for resting sites and food caching, deep snow may afford 

wolverines greater subnivean hunting opportunity.

Despite the ample evidence that snow is important to wolverines, this study is the first of which 

we are aware to systematically address the way in which within home-range habitat selection by 

wolverines is driven by the spatially and temporally variable snowpack. As such, we have identified 

several relevant issues that could aid our understanding of the relationship between wolverines and 

snow.

First, we show that snow is important to non-denning wolverines in the Arctic. Much of the 

existing literature regarding wolverines and snow focusses on its importance for thermoregulation, 

predation avoidance, and food caching among neonates and mothers (Magoun and Copeland 1998; 

Copeland et al. 2010; Inman et al. 2012). These mechanisms linking wolverines to snow are 

undoubtedly important. However, by focusing on non-denning wolverines in our analysis, we have 

shown that snow characteristics are important to wolverines for reasons other than solely creating 

reproductive dens, a result that finds support in other snow-denning species, including polar bears 

and ringed seals (Harington 1968; Kelly and Quakenbush 1990). This has important implications 

when considering the impact of climate change on such snow-associated species, since the way in 

which the changing snowpack affects these species depends on the mechanism linking them to 

snow. Our findings suggest that snowpack changes may impact fitness across demographics, not 

only among reproductive females and neonates. However, for wolverines this relationship likely 

varies across the species' geographic range, since ecosystems with more ample non-snow resting 

habitat (e.g., downed trees and large boulders), different wolverine diet compositions, and different 

snow regimes, are likely characterized by a different mechanistic link between wolverines and snow. 

Wolverines in areas with taiga snow, for example, which is characterized by extremely low densities 

and depths (Sturm et al. 1995), likely excavate fewer subnivean cavities than wolverines on tundra 

(Jokinen et al. 2019). Explicitly accounting for the well-described and highly variable snow regimes 

(Sturm et al. 1995) that occur across wolverines' global range should be a part of any conversation 

regarding the relationship between the species and snow.
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Second, we found three specific snow characteristics to be important to wolverines: depth, 

density, and melt. Due to logistical limitations associated with collecting snow data (Boelman et al. 

2019), most previous studies investigating wolverines and snow rely on snow metrics derived from 

satellite imagery, and are restricted to >500m pixel resolution (Aubry et al. 2007; Heinemeyer et al. 

2019). Additionally, such studies typically incorporate snow as a temporally summarized statistic, 

such as number of years with snow within a given date range (e.g., Copeland et al. 2010). In contrast, 

by explicitly accounting for the complex nature of the snowpack, and incorporating multiple 

snowpack properties, our study provides insight regarding the specific mechanism linking the 

substrate and the species, specifically wolverine's use of snow for excavating subnivean cavities, and 

possibly the use of denser snow for reducing energy expenditure associated with over-snow travel. 

Additionally, studying specific snow properties enables a more informed understanding of how 

climate-induced changes to the Arctic snowpack may be affecting this species.

3.5.3 Climate Change Implications

Ongoing climate change is rapidly altering the Arctic snowpack. In northern Alaska, historical 

climate analyses and projections indicate that more snow is falling now during winter, but that the 

duration of the snow-covered season is contracting in both spring and fall (Callaghan et al. 2011). 

Indeed, the duration of the snow covered season has decreased by three days per decade since 1951, 

with accelerating loss in the most recent decades (Callaghan et al. 2011). With these changes in mind, 

the results of this study are best interpreted not as a “baseline,” but rather as a snapshot in time, 

documenting wolverines' relationship with snow in the midst of accelerating directional change.

Increased snow depth in the Arctic could positively influence species using subnivean cavities 

for resting sites and hunting during winter. For this to occur, the snow would need to be of 

sufficient density to maintain cavities and tunnels, and/or increased snow depth would need to 

positively influence cricetid populations. However, we suspect that the most direct snow-mediated 

impact of climate change on these species results from earlier spring melt and increased frequency of 

midwinter melt events, since these changes require animals to seek alternate structural protection 

and reduce food caching opportunities. Our finding that wolverines in the Arctic are sensitive to the 

melt status of the snow suggests that the date of snow disappearance, as is reflected in the remotely 

sensed presence/absence data commonly used for assessing snow-associated species' response to 

snow, may be less biologically important than melt initiation date.
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3.5.4 Wolverine Habitat Selection in Relation to Non-Snow Environmental Features

Our findings indicate that the environmental features driving wolverine habitat selection on 

tundra are similar to those elsewhere. Wolverines have previously been found to select streams 

during winter in alpine habitats (Aubry et al. 2007). We extend this finding to Arctic tundra, likely 

due to the use of frozen streams and rivers as travel corridors and/or habitat for prey species such 

as snowshoe hare and ptarmigan. Previous studies have also found that wolverines prefer more 

rugged terrain in montane regions (Krebs et al. 2007), as well as in tundra regions at the occupancy 

level of selection (Poley et al. 2018). Our study extends this finding to habitat selection operating at 

the within home-range level on tundra. Care should be taken in making direct comparisons between 

studies, however, since the spatial resolution at which a study defines terrain ruggedness alters what 

is considered “rugged.” In our study, at 5 meter resolution, rugged terrain includes, for example, an 

incised stream 10 meters in width; such a feature would not be captured by a terrain ruggedness 

index defined at a 50 meter resolution.

3.6 Conclusions

Here we highlight the importance of explicitly accounting for snowpack spatial and temporal 

variability, rather than simply the presence or absence of snow, in studies of subnivean species 

(Boelman et al. 2019). Climate change is rapidly altering the duration and quality of the snow- 

covered period, and the way in which these changes influence ecological processes is mediated by 

the specific snow properties that are important to a given process. We demonstrate that for 

wolverines, which rely on the subnivean space, the depth, density, and melt status of snow are 

important drivers of habitat selection and movement. Further, we demonstrate that such snow 

properties, which vary over fine spatial and temporal scales, can be incorporated into ecological 

models using a physically based snowpack evolution model. Continuing to parse the mechanistic 

relationship between animals and snow using tools such as these will be a crucial component of 

understanding the response of high-latitude and high-elevation species to climate change.
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3.9 Figures

Figure 3.1: Study area in Arctic Alaska (a). The blue polygon in (a) indicates the minimum convex 

polygon containing all wolverine relocations used in the analysis, the broken black line shows the 

Dalton Highway, and the black box indicates the extent of panels (b), (c), and (d) within the study 

area, providing detailed views of lake edges (b), streams/rivers (c), and terrain ruggedness (d; darker 

colors indicate more rugged terrain).
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Figure 3.2: Rolling tundra near Umiat, characteristic of the North Slope foothills (a), and a collared 

wolverine traveling along a river corridor (b; photograph courtesy of Peter Mather).
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Figure 3.3: Example SnowModel output for 18-Apr-2017 illustrating the fine spatial scale over which 

snow depth varies within the study area, overlaid with wolverine movement data (open circles and 

lines) during spring 2017. Circles are opaque, so overlapping circles (indicating multiple GPS 

locations) appear brighter. Pixels are 10 m x 10 m.
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Figure 3.4: Conditional, relative probability of use (a,b) and mean movement rate (c,d) in response to 

non-melting snow depth (a,c) and snow density (b,d). Relative probability of use is calculated by 

exponentiating the linear predictors of the step selection function, and can be interpreted by 

comparing values against one another. For example, a relative probability of use value of 0.2 for 

snow of depth 250 cm is 2.2 times higher than a relative probability of use value of 0.09 for snow of 

depth 20 cm. Therefore, wolverines are 2.2 times more likely to select snow of depth 250 cm than 

snow of depth 20 cm.
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Figure 3.5: Regional (a) and detailed (b) relative probability of use map for wolverines, as well as 

SnowModel-produced snow depth (c) in the vicinity of Toolik Field Station, Alaska. In (a) and (b), 

red indicates higher relative probability of use, generally associated with streams and deep, dense 

snow, and blue indicates lower relative probability of use. Model output based on SnowModel 

predictions for 18-April-2017. In (c), darker shades represent deeper snow. The broken black line in 

(a) shows the Dalton Highway.
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3.10 Tables

Table 3.1: Summary statistics for environmental covariates used in step selection analysis for non­

melting snow. Upper and lower bounds are the 2.5th and 97.5th quantiles, respectively.

Available Used

Mean Median Lower Upper Mean Median Lower Upper
Snow Depth (cm) 52.6 30.6 4.3 238.0 57.4 32.6 4.1 265.0

Snow Density
(kg/m3)

277.0 278.0 146.0 445.0 283.0 285.0 144.0 449.0

Distance to
Stream/River (m)

220.0 147.0 4.0 807.0 189.0 90.9 2.3 811.0

Distance to Lake 
Edge (m)

2049.0 1411.0 26.3 7268.0 2046.0 1410.0 19.7 7273.0

Terrain
Ruggedness Index
(unitless)

50.5 32.7 2.1 164.0 54.0 35.3 2.4 165.0
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Table 3.2: Akaike weights for candidate “melt” and “no melt” models, as well as the base model. 

Akaike weights were calculated for each individual and a population-level weight was calculated 

using a non-parametric bootstrap, weighted by sample size, resulting in weights that do not sum to 
1.

Model Akaike Weight

Density+Depth 0.40

N
o 

M
elt Depth 0.24

Density 0.21

Base 0.14

Base 0.39

M
elt

Density 0.25

Depth 0.25

Density+Depth 0.10
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Table 3.3: Coefficient estimates for the top performing model fit to wolverine GPS data associated 

with non-melting snow. All predictor covariates except log-transformed variables were standardized. 

Estimates and 95% upper and lower confidence bounds were generated by calculating a non­

parametric bootstrapped mean of individual coefficient estimates, weighted by inverse variance.

Coefficient Estimate Lower Upper
lnSL 0.027 0.012 0.044

Terrain Ruggedness 0.835 0.687 1.020

Terrain Ruggedness2 -0.148 -0.228 -0.091

ln(distance to lake edge) -0.076 -0.131 -0.025

ln(distance to stream/river) -0.375 -0.422 -0.334

Snow density -0.011 -0.099 0.070

Snow density2 0.018 -0.035 0.073

Snow depth 0.128 -0.050 0.319

Snow depth2 -0.010 -0.025 0.000

lnSL : Snow density 0.016 -0.002 0.043

lnSL : Snow density2 -0.003 -0.011 0.009

lnSL : Snow depth -0.017 -0.060 0.015

lnSL: Snow depth2 0.001 -0.002 0.005
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Chapter 4: Accounting for unknown behaviors of free-living animals in accelerometer-based 

classification models: Demonstration on a wide-ranging mesopredator3

3 Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T., & Kielland, K. (2020). Accounting for 
unknown behaviors of free-living animals in accelerometer-based classification models: Demonstration 
on a wide-ranging mesopredator. Ecological Informatics, 60(101152). 
https://doi.org/10.1016/j.ecoinf.2020.101152

4.1 Abstract

Describing the behaviors of free-living animals is broadly useful for ecological and physiological 

research, but obtaining accurate records for difficult-to-observe species presents a considerable 

challenge. Tri-axial accelerometers are increasingly used for this purpose by exploiting behavioral 

observations from accelerometer-carrying animals to predict behaviors of unobserved conspecifics. 

We developed a modeling approach to predict behaviors of wolverines from collar-mounted 

accelerometers using Support Vector Machines. By applying a temporal smoothing function and 

setting a lower threshold for a-posteriori prediction probabilities, we improve the predictive 

performance of our model and simultaneously create a framework for explicitly accounting for 

behaviors unknown to the model, a problem that remains largely unaddressed in similar studies. We 

demonstrate that such an approach can achieve a model-averaged accuracy of 98.3%, with high 

predictive performance for the behaviors resting, running, scanning, tearing at food, and transferring 

items with the mouth, a behavior typically associated with caching food among captive wolverines. 

To illustrate the utility of this approach, we apply this model to a sample of seven free-living 

wolverines in Arctic Alaska.

4.2 Introduction

Describing the behaviors of free-living animals can provide important insights regarding a wide 

range of ecological processes. Taken alone, analysis of such behavioral records can be used to 

investigate temporal patterns in activity, including association among behaviors, yielding insights 

regarding circadian rhythms in the daily partitioning of behaviors or inter-individual differences in 

such temporal patterns (Garthe et al., 2003; Yoda and Ropert-coudert, 2007). When coupled with 

environmental and physiological information, behavioral analyses can address how such extrinsic 

and intrinsic factors influence behavioral decisions made by animals, including tradeoffs such as 
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allocating time between foraging and antipredator behavior (Hamel and Cote, 2008; Studd et al., 
2019; Switalski, 2003).

However, since documenting behavior has traditionally relied on direct observation, it is often a 

difficult or impossible task to assemble comprehensive records for remotely tracked free-living 

animals that have not been directly observed. Species that occupy areas that are remote or logistically 

difficult for human observers to access, such as under water, under snow, or in trees, present 

obvious challenges, as do species that range widely, travel quickly, or for which human observation 

alters behavior.

The rise of accelerometer-derived behavioral records promises to reduce these obstacles 

(Shepard et al., 2008). This process, whereby free-living animals are tagged with tri-axial 

accelerometers and the resulting data are used to predict the behaviors of the wearer, has been 

applied to a variety of marine (Battaile et al., 2015; Viviant et al., 2010; Whitney et al., 2010), and 

increasingly, terrestrial species (Hammond et al., 2016; McClune et al., 2014; Pagano et al., 2017; 

Wang et al., 2015). Resulting behavioral records have been used to investigate behaviors important 

to life history and fitness, including predation and mating events, and foraging strategies.

Using accelerometer data to classify behavior typically begins by building a predictive 

classification model based on observer-labeled accelerometer data. The labeled data are collected 

either by directly observing conspecific or surrogate species while wearing accelerometers (Campbell 

et al., 2013), or with the use of additional biologgers, such as video cameras, affixed to free-living 

individuals (Nakamura et al., 2015; Pagano et al., 2017; Watanabe and Takahashi, 2012). A 

classification model, such as a statistical learning classifier (Tatler et al., 2018) or decision tree 

analysis (Studd et al., 2019) can then be applied to the labeled data to train and evaluate candidate 

models, after which the final model can be applied to free-living individuals where no direct 

observations or ancillary data for determining behaviors are available.

Here, we developed and evaluated the first predictive model that can be used to classify 

behaviors of free-living wolverines (Gulo gulo) using collar-mounted tri-axial accelerometers, based 

on visual observations of captive wolverines wearing similar collar-mounted accelerometers. Further, 

we used labeled accelerometer data from these captive conspecifics to create a framework by which 

behaviors not exhibited by the captive wolverines, and therefore unknown to the model, would be 

classified as “unknown,” rather than incorrectly classified to the best fitting known acceleration 

pattern. By developing such a model, we hoped to broaden the field of possible questions that can 

be addressed regarding the interactions of the environment, physiology, and ecology of wolverines, 
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and provide a framework that other researchers can employ for other species to address similar 

questions while explicitly addressing the problem of incorrect attribution for behaviors unknown to 

the model. Finally, to demonstrate the utility of our modeling approach, we applied several candidate 

models to a small sample of free-living wolverines and assessed temporal trends of resting, running, 

vigilance behavior, and behaviors associated with handling food.

4.3 Methods

A schematic outlining the workflow is included in Figure 4.1.

4.3.1 Data Collection

4.3.1.1 Captive Wolverines

We collected accelerometer data and behavioral observations from three captive adult 

wolverines (two females and one male) at Nordens Ark, Hunnebostrand, Sweden, between March 4 

and March 14, 2019. Wolverines were anaesthetized using a combination of ketamine, midazolam, 

and medetomidine. Collars were mounted with tri-axial accelerometers (AXY-3, 10g, Technosmart 
Europe Srl., Colle Verde, Italy), GPS units (GIPSY 5, 100g, Technosmart Europe Srl., Colle Verde, 

Italy), light/temperature loggers (Intigeo-C330, 3.3g, Migrate Technology Ltd., Cambridge, United 

Kingdom) and timer-activated release mechanisms (TRD-L, 30g, Lotek Wireless Inc., Newmarket, 

Canada), and weighed less than 3% of the animal's body mass. Accelerometers recorded at a 

frequency of 10 Hz. Collars were set to automatically release after approximately 10 days.

We conducted behavioral observations of these captive collared wolverines for 4-8 hours per 

day from a platform and paths adjacent to their enclosures. We assembled an ethogram during the 

course of observations, creating new behavioral classes to accommodate behaviors as they were 

observed. We defined behaviors according to distinct motions and/or postures, which we expected 

to register differently in the accelerometer data (Appendix C). We opportunistically recorded 

behaviors exhibited by wolverines, along with associated timestamps from a watch that was 

synchronized with the accelerometers. Upon retrieving the accelerometers, we recorded the time 

each device was turned off, for use later in assessing temporal drift.

All animal handling and observation was consistent with Nordens Ark's own permitting and 

University of Alaska Fairbanks Institutional animal Care and Use Committee (UAF IACUC) 
protocol #1373175.

61



4.3.1.2 Free-Living Wolverines

We collected accelerometer data from seven free-living adult wolverines (three females and four 
males) in the vicinity of Toolik Field Station, Alaska (68° 38' N, 149° 36' W) during spring and 

summer 2018. Captures took place between February 25 and April 18, and accelerometer data were 

collected between February 25 and July 27. Wolverines were captured using baited lumber box traps 

(modified from Lofroth et al., 2008), and anaesthetized using Telazol™ (175 mg, Golden et al., 

2002). We used Lotek Iridium Litetrack 250 collars (~250g, Lotek Wireless, Newmarket, Canada), to 

which we attached tri-axial accelerometers (AXY-3, 10g, Technosmart Europe Srl., Colle Verde, 

Italy), using a combination of epoxy and steel cable ties. Accelerometers recorded at a frequency of 

10 Hz. Collars weighed less than 3% of the animal's body mass, and were equipped with both 

mechanical release mechanisms and rot-away strips to ensure release from the animal. All capture 

and handling of free-living wolverines was conducted under UAF IACUC protocol #847738, and 

Alaska Department of Fish and Game scientific permit 18-085.

We opportunistically collected a single instance of labeled accelerometer data from a free-living 

collared wolverine. To do so, we followed fresh tracks in the snow at a site used <24 hours prior by 

the collared wolverine. We followed the tracks for approximately 1 km, during which time the 

individual maintained an unfaltering 3x3 lope characteristic of a running wolverine. Upon retrieving 

the accelerometer, we examined the data associated with this time period and extracted the portions 

having high-amplitude periodic motion, which we labeled as running. We included these data in our 

labeled full training dataset.

4.3.2 Data Processing

Prior to processing data collected from captive wolverines, we first corrected for temporal drift 

in accelerometers by comparing the “power off” time recorded by the accelerometer with that 

displayed by the watch (which were synchronized at accelerometer deployment). Drift rates ranged 

between 0.3 and 1.5 seconds per day, depending on accelerometer, during the 10 days deployed. To 

account for this, we assumed a constant rate of drift and applied an accelerometer-specific linear 

correction to the timestamps associated with observations. In addition, we subtracted one second 

from the end of every behavioral observation to account for recorder error, reflecting the difference 

between the actual end of the activity and the moment the observer looked at their watch.
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Since the accelerometers we deployed on free-living wolverines were not oriented in the same 

direction with respect to the animal's body, and we suspected that collars rotated around the 

animal's neck during deployment, we were unable to confidently delineate the surge, sway, and heave 

axes traditionally used in tri-axial accelerometer analysis for all individuals. To mitigate this problem, 

we converted the tri-axial measurements taken by the accelerometers into a vertical and horizontal 

component based on (Mizell, 2003). This required first estimating the magnitude of gravity along 

each axis, g = ( gx, gy, gz ), by applying a running mean over a 2 second window to the raw 

accelerometer data (the result is referred to as the static acceleration). We then subtracted this from 

the raw acceleration to estimate dynamic acceleration d = ( ax - gx, ay - gy, az - gz ) where ( ax, ay, az ) is the 

vector representing the raw acceleration data for any given time. We then computed the projection v 

of d on the vertical axis g using vector dot products, as

This computation yields the vector v = ( vx, vy, vz ), which represents the vertical component of 

dynamic acceleration along each axis of the accelerometer. The horizontal component can then be 

calculated for each axis using the Pythagorean theorem, wherein

resulting in a horizontal value for each axis, representing the directionless magnitude of acceleration 

in the horizontal plane. We summed vx, vy, and vz to find the total acceleraton in the vertical direction 

which we term “vertical acceleration” (analogous to the heave axis), and we summed hx, hy, and hz as 

a representation of the total acceleration in the horizontal plane, which we term “horizontal 

acceleration” (analogous to the sum of the absolute values of the sway and surge axes). In addition, 

we calculated the overall dynamic body acceleration (ODBA, Gleiss et al., 2011) by summing the 

absolute dynamic acceleration values across the all three axes, and the vectorial dynamic body 

acceleration (veDBA, Gleiss et al., 2011) as

4.3.3 Summary Statistic Calculation

To generate predictor variables for behavioral classification, we partitioned the vertical and 

horizontal acceleration data, ODBA, and veDBA into 10 second segments, each segment termed an 

“observation,” and calculated summary statistics for each (complete list in Table 4.1, distributions of 
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summary statistics in Appendix C). We calculated dominant power spectrum (DPS) and frequency at 

DPS using a Fast Fourier Transform (Brigham and Morrow, 1967). We discarded any observations 

less than 10 seconds in duration, only retained behavioral classes with at least 20 observations, and 

termed the resulting dataset the “full training” dataset. We excluded 13 observations for which the 

horizontal or vertical acceleration was zero for the duration of the observation, since kurtosis and 

skewness could not be calculated. We assumed, and verified, that all such observations belonged to 

the behavioral class Rest, and employed this assumption in making predictions for the data of free- 

living wolverines (see Application to free-living wolverines). This resulted in nine behavioral classes 

ultimately included in our analysis (Table 4.2). All observations belonging to classes with fewer than 

20 observations were termed the “withheld” dataset and were used later in evaluating performance 

(see Modeling).

4.3.4 Modeling

We used the machine learning technique support vector machines (SVM) to classify behaviors 

from accelerometer data, implemented in R package e1071 (Meyer et al., 2018; “R Core Team,” 

2018). Our choice of SVM reflects this method's high predictive performance in behavior­

recognition tasks (Campbell et al., 2013; Grünewälder et al., 2012; Tatler et al., 2018), and our desire 

to employ a probabilistic modeling framework, since probabilities associated with predictions are 

integral to our evaluation of unknown behaviors. SVM assign data to user-defined classes by 

constructing a hyperplane between binary classes. The number of observations allowed to violate the 

hyperplane is controlled by a user-defined cost parameter, and a margin surrounding the hyperplane 

is maximized. The hyperplane is chosen as that which allows the largest separation between classes, 

i.e., the widest margin surrounding the hyperplane. Hyperplanes are defined by the observations that 

either fall within the separating margin, or that violate the separating hyperplane, and these 

observations are termed “support vectors.” Hyperplanes can take nonlinear forms by applying a 

kernel function to the inner product of the support vectors (Aizerman et al., 1964). We chose to use 

a radial kernel for maximal flexibility in hyperplane definition. To generalize this binary classifier to a 

multiclass response, we used a “one-versus-one” approach, in which observations are classified for 

every possible pair of classes and the class most commonly selected is the predicted value. A- 

posteriori class probabilities can be computed by fitting a logistic distribution to the decision values 

of all binary classifiers and extracting class probabilities using quadratic optimization. In addition to 

the cost parameter, support vector machines with a radial kernel can be tuned using a gamma 
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where wik is the weight of class i for the kth iteration of cross validation, Nk is the total number of 

observations in the full training data for the kth iteration of cross validation, and nik is the number of 

observations in class i for the kth iteration of cross validation.

We were interested in building a modeling framework that explicitly incorporated unknown 

behaviors (i.e., behaviors within the ethogram of a free-living wolverine that we did not observe 

among those in captivity), such that these unknown behaviors would be identified as Unknown by 

the model. To do this, we set a threshold level for a-posteriori class probabilities associated with 

predicted behaviors, below which predictions were assigned to the category Unknown. To evaluate 

how well the model correctly classified such unknown behaviors, we fit a model to the full training 

dataset and made predictions for all observations in the “withheld” dataset, using these as proxies 

for behaviors that we didn't observe among wolverines in captivity. Since these withheld 

observations (observations that belonged to behavioral classes observed at low frequency among 

captive wolverines) were all known to belong to behaviors other than those in the full training 

dataset, the “perfect” model would categorize them all as Unknown, and this result is approached as 

the threshold probability value increases to one. However, increasing the threshold probability 

comes at the cost of incorrectly categorizing some known observations as Unknown, so we selected 

the optimum threshold probability as that which maximized both the proportion of withheld 

observations that were correctly classified as Unknown and the model's accuracy in classifying 

known observations correctly, referenced to the entire dataset (termed “full accuracy”, see Model 

evaluation). We evaluated threshold probabilities ranging from 0 to 0.95 by increments of 0.05, and 

bootstrapped the procedure 300 times, resampling the full training dataset with replacement, to 

generate confidence intervals.
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parameter, which weights support vectors in the definition of the hyperplane. We used 5-fold cross 

validation on the full training dataset and calculated accuracy (see Model evaluation) as an indication of 

model performance across all combinations of gamma = (0.001, 0.01, 0.1, 1, 2, 4) and cost = (0.1, 1, 
10, 100, 250, 500, 750, 1000, 10,000), selecting the parameters that yielded the best performing 

model for all further analyses (parameters chosen per recommendations in Hsu, Chang and Lin, 

2010). A more detailed, accessible description of SVMs can be found in (James et al., 2017).

Since our behavioral classes were unbalanced, we included class weights in the SVMs, calculated 

as



We were also interested in examining the effect of applying a smoothing function to predicted 

behavioral classes (Cao et al., 2012; Chimienti et al., 2016; Grünewälder et al., 2012). We therefore 

made predictions for the 10 second observations immediately following and preceding the 

observation of interest, and the predicted behavior of the observation of interest became the class 

that occurred most commonly within this 30 second window. If the three predicted classes within 

the window were all different, the observation of interest retained its original class. We performed 

this in tandem with applying threshold probabilities, such that predictions were subject to 

reclassification as Unknown according to the threshold probability before being subject to the 

smoothing function.

We defined the “base model” as that which was subject to neither a smoothing function nor a 

threshold probability, the “base + smoothing” model as that which was subject to a smoothing 

function but no threshold probability, and the “threshold model” as either the smoothing model or 

the non-smoothing model that had the highest accuracy at the optimal threshold probability.

4.3.5 Model Evaluation

To evaluate the performance of our model, we relied on metrics derived from tallies of True 

Positives (T+), True Negatives (T-), False Positives (F+), and False Negatives (F-). These groups are 

tallied for each behavioral class in a single model independently. Specifically, for a given behavior, 

observations whose predicted class and true class both match the given behavior are considered T+, 

observations whose predicted class and true class neither match the given behavior are T-, 

observations whose predicted class matches the given behavior but whose true class does not are 

F+, and observations whose true class matches the given behavior but whose predicted class does 

not are F-. These terms are straightforwardly depicted using a confusion matrix (Figure 4.2). We 

used 300 bootstrapped samples, with a new random 70/30 draw of training/testing data drawn from 

the full training dataset, stratified by behavior, for each iteration, to generate tallies of T+, T-, F+, 

and F-, and to calculate associated confidence intervals. The training/testing split mentioned here, 

used only during this bootstrapping process, should not be confused with the full training dataset 

defined above. The bootstrap method allows explicit estimation of confidence intervals for 

performance metrics, unlike the more traditional k-fold cross validation (Champagne et al., 2014).

Once these values are calculated for each behavior, a variety of metrics can be derived to 

evaluate the performance of the model. We chose to calculate accuracy, precision, and recall 

(sometimes called sensitivity), as these are relatively common among accelerometer-based behavioral 
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To assess overall model performance, each metric can be either micro-averaged, whereby the 

values for T+, T-, F+, and F- are summed across behaviors and the overall metric is calculated on 

the summed values, or macro-averaged, whereby the metric is calculated for each behavior 

independently and subsequently averaged (Sokolova and Lapalme, 2009). Since micro-averaging 

favors larger groups in an unbalanced model, we macro-averaged accuracy to reduce such bias. Since 

precision and recall can be undefined for a given behavior, we did not average these values and 

instead evaluated them at the level of individual behaviors only.

We were also interested in evaluating the relative importance of each variable in the predictive 

performance of the model. To do this, we iteratively left one variable at a time out of the model and 

calculated the decrease in accuracy from the full model. We found that model predictive accuracy 

was reduced by <0.1% regardless of the variable dropped, suggesting high redundancy across 

variables.

4.3.6 Application to Free-Living Wolverines

To illustrate the efficacy of this model, we made predictions of the behaviors exhibited by the 

seven free-living wolverines. To do this, we processed the data of free-living wolverines and 

extracted summary statistics as described above, and used all three candidate models, fit to the full
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classifiers and enable comparison across studies. Accuracy is defined as the proportion of the 

observations that are classified correctly, calculated as:

When calculating accuracy for the purpose of selecting a threshold probability (see Modeling), we 

replaced the denominator with the total number of observations (i.e., including those which fell 

below the threshold probability and were classified as Unknown), thereby providing a metric that 

assessed the cost of increasing the threshold probability, and termed the result “full accuracy.”

Precision is defined as the proportion of predicted observations for a given behavior that 

actually belong to that behavior, calculated as:

Recall is defined as the proportion of true observations for a given behavior that were predicted 

to belong to that behavior, calculated as:



training dataset (see Summary statistic calculation), to make predictions for the free-living observations. 

Since kurtosis and skewness for observations with horizontal or vertical acceleration values of zero 

could not be calculated, we did not use the models to make predictions for such observations, 

instead assigning them to Rest, a classification that was supported by the data of the captive 

wolverines (see Summary statistic calculation). We chose to retain only predictions associated with 

behaviors whose lower confidence level of precision was greater than 0.6 for all three models, since 

low precision values indicate a low probability that the prediction is correct. For each model's 

predictions, we calculated the proportion of each hour of the day each animal spent engaged in each 

behavior, averaged across a season. We defined the seasons spring and summer as between February 

25-May 10 and May 11-July 27 respectively, roughly corresponding to the many ecological and 

physiographic changes that take place in the Arctic around May 10, including rapid snow ripening 

and melt (Macander et al., 2015), disappearance of river and lake ice (Arp et al., 2013), caribou and 

bird migration (Tape and Gustine, 2014), and grizzly bear and ground squirrel emergence (Buck and 

Barnes, 1999; McLoughlin et al., 2002). Since the purpose of this study was to develop a modeling 

framework for making such predictions, and not to make inference on the behaviors of free-living 

wolverines per se, we chose to simply visualize these predictions by plotting the mean proportions of 

time spent in each behavior by hour of day, averaged across individuals.

Since the purpose of this study was to develop and evaluate a modeling framework for making 

behavioral predictions of free-living animals, we also used the predictions made for free-living 

wolverines to compare broad-scale differences of predictions made by the three models.

4.4 Results

4.4.1 Model Development and Evaluation

Model tuning yielded optimum values of gamma = 0.01 and cost = 10. The base model had an 
overall predictive accuracy of 94.6% (95% CI: 93.2-95.8%) and correctly classified 326 (95% CI: 

288-360) of the 433 observations in the 30% portion of the full training dataset used for testing 

(75.4%, 95% CI: 66.5-83.1%). Performance for individual behaviors ranged from a precision of 0 to 

0.98, and recall ranged from 0 to 0.97 (Table 4.3). The “base + smoothing” model had an overall 
accuracy of 95.8% (95% CI: 94.4-96.8%), and correctly classified 349 (95% CI: 311-379) of the 433 

observations in the testing dataset (80.6%, 95% CI: 71.8-87.5%). The optimum threshold probability 

for the non-smoothed model was 0.65, and for the smoothed model was 0.625 (Figure 4.3). At the 

optimum threshold probability of each, the smoothed model and non-smoothed model correctly 
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classified 55.4% (95% CI: 41.7-70.9%) and 51.2% (95% CI: 40.5-64.3%) of observations in the 

withheld dataset as Unknown, respectively. The full accuracy at the optimum threshold probability 

for the smoothed model was 57.5% (95% CI: 52.3-62.4%), which was higher than that of the non­

smoothed model (53.4%, 95% CI: 49.0-57.7%). Therefore, the “threshold” model was selected as 

the smoothed model with a threshold probability of 0.625. The “threshold” model incorrectly 

classified 179 (95% CI: 157-202) observations as unknown, and had an overall accuracy of 98.3% 
(95% CI: 96.6-99.5%), correctly predicting 92.2% (95% CI: 88.5-95.4%) of the remaining 

observations (Figure 4.4).

4.4.2 Application to Free-Living Wolverines

At a gross level, the “base” and “base+smoothing” models yielded similar predictions for free- 

living wolverines, while the “threshold” model classified 32.4% of observations as Unknown (Figure 

4.5). Of the observations classified as Unknown by the “threshold” model, the “base” model 
classified 13.8% as Run, 4.3% as Scan, 8.5% as Rest, 12.0% as Transfer, and 50.8% as Tear, while 

the “base+smoothing” model classified 13.4% as Run, 3.7% as Scan, 8.3% as Rest, 10.4% as 

Transfer, and 55.4% as Tear. The remaining observations that were classified as Unknown by the 

“threshold” model were predicted by the other two models to belong to behavioral classes with low 

precision values. All three models predicted Rest as the most commonly occurring behavior at 
47.3%, 48.1%, and 45.4% of all observations for the “base,” “base+smoothing,” and “threshold” 

models respectively. All three models revealed that the seven wolverines generally spent more time 

resting between approximately 14:00 and 00:00 local time during summer, and had peak resting 

times around 17:00 and 02:00 during spring (Figure 4.5).

4.5 Discussion

Classifying behaviors from accelerometer data is an increasingly popular technique for 

addressing questions relating to the ecology and physiology of free-living animals. Considerable 

progress has been made in the field, particularly in evaluating the performance of different 

classification models (Nathan et al., 2012; Tatler et al., 2018) and the integration of multiple data 

sources, such as GPS and acoustic recorders, with acceleration to predict behavior (Shamoun- 

Baranes et al., 2012; Studd et al., 2019). Despite many such studies relying on predictive models built 

from direct observation of captive conspecifics, to our knowledge only one has explicitly addressed 
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the problem of behaviors exhibited by free-living animals but not their captive counterparts (Rast et 

al., 2019), and that did so without a formal evaluation of efficacy.

Therefore, the purpose of this study was to create and evaluate a modeling framework that 

maximized predictive performance of behaviors from accelerometer data while simultaneously 

minimizing the incorrect classification of behaviors that are unknown to the model. Our results 

indicate that this process can yield a high-performing model, with macro-averaged accuracy of over 

98%, using a modeling framework that is conceptually straightforward and computationally efficient. 

Moreover, the explicit allowance for behaviors unknown to the model improves its generalizability 

to accelerometer data gathered on free-living animals, since it is likely that the range of behaviors 

exhibited by captive animals is different from those of wild animals.

Additionally, our results indicate that predictive performance can be improved by applying a 

temporal smoothing function to predictions (Table 4.3, Figure 4.4), exploiting the apparently high 

degree of temporal correlation among behaviors exhibited by captive wolverines over a 30 second 

period. Previous studies have employed similar approaches (Cao et al., 2012; Chimienti et al., 2016; 

Grünewalder et al., 2012), although formal evaluation of the effect on model performance has been 

limited. A notable exception is (Cao et al., 2012), who evaluated the effect of applying such a 

smoothing function across a range of window lengths, and allowing such windows to vary by 

behavioral class. It is important to note that increasing the window length for both the smoothing 

function and the initial computation of summary statistics will reduce predictive performance for 

behaviors that typically occur at intervals shorter than the chosen window.

The practice of applying a threshold probability to behavioral predictions from accelerometer 

data has been employed before (Bellsola, 2019; Bidder et al., 2014; Rast et al., 2019; Ware et al., 

2015), including as an explicit means of reducing the incorrect classification of unknown behaviors 

(Rast et al., 2019). However, as noted above, previous studies have not formally evaluated the 

efficacy of this approach. By including observations from behaviors unknown to the model in our 

approach, we have developed a method of achieving such explicit evaluation. Our model selection 

process settled on 0.6 as the optimum threshold probability for maximizing model performance, but 

this value will undoubtedly vary by species, training dataset, and classification model used. 

Importantly, the model selection process developed here, whereby we evaluate the predictive 

performance of the model simultaneously for behaviors both known and unknown to the model 

across a range of threshold probabilities, can be used with any probabilistic classification model (or 

any classification model for which a-priori class probabilities can be calculated), not just SVM.
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While the process of explicitly accounting for unknown behaviors improves the precision of the 

classifier, it does not yield a complete activity budget for a free-living animal and therefore excludes 

or introduces uncertainty into some biological questions, including those addressing temporal niche 

partitioning or rhythms of specific behaviors. We argue that this trade-off is necessary, since 

investigating such questions using a classifier that fails to account for such unknown behaviors 

would be based on the likely incorrect assumption that all behaviors are known to the model.

Although our “threshold” model had a macro-averaged accuracy of 98.3%, this metric risks 

overstating the performance of the model. Since model performance can be somewhat subjectively 

determined by whichever metric is most important for a given study, it is important to inspect the 

behavior-specific precision and recall values as well. A high precision value indicates that most of the 

observations classified as a given behavior actually belong to that behavior, and a high recall value 

indicates that most of the observations that belonged to a given behavior were actually classified as 

that behavior. Since our interest was in making predictions for out-of-sample observations of free- 

living wolverines, model performance is best reflected by precision (Bidder et al., 2014). Our 

“threshold” model had very poor precision and recall for certain behaviors, but quite high values for 

others. Specifically, it failed to classify any observations, or classified only two observations, into 

four of the nine categories (Eat, Gnaw, Groom, and Walk), instead incorrectly classifying many of 

these observations as either Unknown or Tear. As a result, the model had lower precision for Tear, 

and low recall for Eat, Gnaw, Groom, and Walk. Each of these behaviors are medium activity 

(Table 4.2), with little to no periodicity, so this result is unsurprising. The behaviors most frequently 

misclassified as Tear were all associated with food handling, so for out-of-sample predictions this 

category could be considered a catch-all “food-handling” class. The relatively high precision values 

for Rest, Scan, Run, and Transfer suggest that the most reliable biological inference will be made 

about these behaviors.

In applying the model to data from free-living wolverines, we aimed to demonstrate its utility 

and provide a proof-of-concept that could be used by other researchers to evaluate the applicability 

of the model to their specific questions. The behavioral predictions we obtained show considerable 

variation by hour-of-day and season. Previous research of circadian rhythms in wolverines at high 

latitudes found a drop in activity around midday during spring and summer (Thiel et al., 2019), 

consistent with the generally higher frequency of resting that we observed during that period among 

the animals in our study, although the seven animals in our study also exhibited more resting around 

02:00 during spring (Figure 4.5). These results cannot be generalized without a larger sample.
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Behavioral classification from accelerometer data is a promising area of active research, with the 

potential to greatly improve our understanding of the behavior of free-living animals. Coupled with 

other biologged data, such as location, body temperature, and heart-rate, accelerometry can shed 

light on the wide range of ecological and physiological processes governing behavioral decisions 

(Wilmers et al., 2015), including species' response to climate change (Chmura et al., 2018). However, 

developing accurate predictive models to extract behavior from accelerometer data remains 

challenging, and each model will be characterized by relative strengths and weaknesses. Formal 

evaluation of such characteristics, through consistently defined metrics such as accuracy, precision, 

and recall, is crucial to the advance of the field and comparison of different modeling approaches. 

Here, we have presented a novel high-performance modeling approach for classifying accelerometer 

data into discrete behaviors, which can be readily exploited by other researchers with accelerometer 

data from wolverines, or adapted to other species.
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4.11 Figures

Figure 4.1: Methodological workflow of the 

study. A combination of accelerometer data from 

captive and free-living wolverines was used to 

train, evaluate, and validate the use of Support 

Vector Machines (SVM) for behavior 

classification. The “full training” dataset refers to 

all accelerometer data for which we observed the 

animal's behavior, and which belongs to a 

behavior with >20 observations. This dataset 

was randomly split into two (70% and 30% for 

training and testing, respectively) to evaluate the 

performance of the model, and this process was 

iterated 300 times to generate confidence 

intervals. The smoothing function reclassifies 

SVM predictions for each observation based on 

the nearest temporal neighbors, and the 

threshold probabilities reclassify observations as 

Unknown if the probability associated with the 

SVM prediction falls below the designated 

threshold.
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Figure 4.2: Example confusion matrix for behavioral classes A-F depicting the calculation of True 

Positive (T+), True Negative (T-), False Positive (F+), and False Negative (F-) values. Each metric is 

tallied for each class independently; the figure depicts these values for behavioral class F. This figure 

does not represent actual data, and is included only to demonstrate how performance metrics are 

calculated.
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Figure 4.3: Full accuracy (red) and proportion of withheld observations classified correctly as 

unknown (blue) across threshold probabilities, without (A) and with (B) a smoothing function. The 

optimum threshold probability was selected as that which maximized both values (0.625 using the 

smoothing function, 0.65 without the smoothing function). Confidence bands are 95% quantiles, 

calculated pointwise using 300 bootstrap iterations.
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Figure 4.4: Confusion matrices for the base model, base+smoothing model, and threshold model. 

Values are the median number of observations classified in each category across 300 bootstrap 

iterations. For the threshold model, the percent classified as correct in the confusion matrix differs 

from the median value reported in the results since the number of observations classified as 

Unknown varied across bootstrap iterations.
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Figure 4.5: Mean proportion of time per hour in each of five predicted behavioral classes for seven 

wolverines in Arctic Alaska during spring (top) and summer (bottom). Proportions are shown for 

the base model (A), base+smoothing model (B), and threshold model (C). Mean proportions were 

first averaged within individual across days, and then across individuals.
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4.12 Tables

Table 4.1: Summary statistics calculated for each 10 second partition of accelerometer behavior, used 

as predictor variables in support vector machine classification models.

Summary statistic Label/Predictor Description

Mean meanH, meanV, 
meanODBA, meanQ

Mean of the horizontal acceleration, vertical 
acceleration, ODBA, and veDBA

Max maxH, maxV, 
maxODBA, maxQ

Maximum of the horizontal acceleration, 
vertical acceleration, ODBA, and veDBA

Standard deviation
sdH, sdV, sdODBA, 
sdQ

Standard deviation of the horizontal 
acceleration, vertical acceleration, ODBA, and 
veDBA

Kurtosis kurtH, kurtV, 
kurtODBA, kurtQ

Kurtosis of the horizontal acceleration, vertical 
acceleration, ODBA, and veDBA

Skewness skewH, skewV, 
skewODBA, skewQ

Skewness of the horizontal acceleration, vertical 
acceleration, ODBA, and veDBA

Dominant power spectrum dpsH, dpsV Maximum power spectral density of the 
horizontal and vertical acceleration

Frequency at the dominant 
power spectrum freqH, freqV

Frequency at the maximum power spectral 
density of the horizontal and vertical 
acceleration
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Table 4.2: Description, number of 10 second observations, and number of individuals represented in 

the full training dataset used in classification model. Observations from all three captive wolverines 

were included for all behaviors, to which we added observations of the behavior “Run” from a 

single free-living wolverine.

Intensity Behavior Description N
observations

N Ind (m,f)

Low Rest Motionless except breathing. Excludes 
motion during rest, e.g., rolling over.

299 3 (1,2)

Scan Survey surroundings by moving head 
while torso and legs remain stationary.

128 3 (1,2)

Medium Walk Slow, sometimes meandering, directional 
movement.

63 3 (1,2)

Groom Lick and lightly chew on feet, stomach, 
and groin.

141 3 (1,2)

Eat Chew item in mouth with head raised. 66 3 (1,2)

Gnaw Chew on bone, piece of wood, or frozen 
food by holding it in front (and 
sometimes hind) paws, usually using one 
side of the mouth only.

40 3 (1,2)

Transfer Pick up items such as sticks and leaves 
from the ground and move them with a 
rapid sway of the head to the side. In 
captivity this behavior was always 
associated with covering food items.

121 3 (1,2)

Tear Remove pieces of meat from carcass by 
pulling with teeth, can include short 
bursts of gnawing and eating.

443 3 (1,2)

High Run Rapid directional movement. 158 4 (1,3)
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Table 4.3: Accuracy, precision, and recall for all behaviors for the base, base+smoothing, and 

threshold models. Bootstrapped 95% confidence intervals are shown in parentheses.

Base model Base + Smoothing Threshold model

Behavior Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Tear 0.83 0.67 0.90 0.86 0.70 0.96 0.95 0.89 0.99

(0.80,0.86) (0.63,0.71) (0.84,0.95) (0.83,0.88) (0.66,0.74) (0.91,0.99) (0.92,0.98) (0.81,0.95) (0.96,1.00)

Groom 0.93 0.63 0.60 0.96 0.79 0.74 0.99 0.75 0.58

(0.91,0.94) (0.52,0.76) (0.45,0.74) (0.94,0.97) (0.66,0.90) (0.58,0.86) (0.97,1.00) (0.00,1.00) (0.00,1.00)

Transfer 0.96 0.76 0.69 0.98 0.90 0.86 0.99 0.94 0.90

(0.94,0.97) (0.63,0.89) (0.54,0.83) (0.97,0.99) (0.80,1.00) (0.75,0.97) (0.97,1.00) (0.80,1.00) (0.70,1.00)

Scan 0.95 0.78 0.65 0.97 0.88 0.71 0.98 0.94 0.70

(0.94,0.97) (0.67,0.91) (0.50,0.76) (0.95,0.98) (0.75,1.00) (0.55,0.83) (0.95,0.99) (0.80,1.00) (0.47,0.90)

Rest 0.96 0.86 0.97 0.97 0.88 0.99 0.98 0.93 1.00

(0.94,0.98) (0.79,0.91) (0.91,1.00) (0.96,0.99) (0.83,0.93) (0.94,1.00) (0.96,0.99) (0.88,0.99) (0.99,1.00)

Eat 0.95 0 0 0.95 1.00 0 0.98 - 0

(0.95,0.95) (0.00,1.00) (0.00,0.05) (0.95,0.96) (0.00,1.00) (0.00,0.05) (0.96,0.99) (0.00,0.00)

Walk 0.97 0.90 0.47 0.97 0.90 0.42 1.00 1.00 0

(0.96,0.98) (0.63,1.00) (0.21,0.68) (0.96,0.98) (0.61,1.00) (0.08,0.68) (0.99,1.00) (0.00,1.00) (0.00,1.00)

Run 0.99 0.98 0.92 0.99 0.98 0.89 1.00 1.00 0.98

(0.98,1.00) (0.91,1.00) (0.84,0.98) (0.97,1.00) (0.93,1.00) (0.79,0.96) (0.99,1.00) (0.97,1.00) (0.92,1.00)

Gnaw 0.97 0 0 0.97 0 0 0.99 - 0

(0.97,0.97) (0.00,0.00) (0.00,0.00) (0.97,0.97) (0.00,0.00) (0.00,0.00) (0.98,1.00) (0.00,0.00)

85



86



Chapter 5: Trade-off between predation risk and behavioural thermoregulation drives resting 

behaviour in a cold-adapted mesocarnivore4

4 Glass, T. W., Breed, G. A., Robards, M. D., Williams, C. T., & Kielland, K. (2021). Trade-off between 
predation risk and behavioural thermoregulation drives resting behaviour in a cold-adapted 
mesocarnivore. Animal Behaviour, 175, 163—174. https://doi.org/10.1016/j.anbehav.2021.02.017

5.1 Abstract

Behavioural trade-offs arise when animals must decide to engage in one behaviour at the 

expense of another, potentially to the animal's detriment. Here, we investigate the existence of such 

a trade-off by exploring the relative influence of two important behavioural processes, 

thermoregulation and predation avoidance, on resting behaviour in a cold-adapted mesocarnivore, 

the wolverine (Gulo gulo). Using animal-borne biologgers, we evaluate the hypothesis that wolverine 

resting behaviour in both subnivean cavities and on surface snow beds is influenced by a 

combination of ambient weather conditions and predation risk. Specifically, we posit that although 

resting on the snow surface is more thermally advantageous in certain weather conditions, it is 

traded off against heightened predation risk. In support of the importance of thermoregulation, we 

find that wolverines rest almost exclusively in subnivean cavities at very low temperatures and low 

levels of solar radiation, and rest almost exclusively on the snow surface at higher temperatures and 

higher levels of solar radiation. In support of the importance of predation avoidance, we find that 

wolverines select more topographically concealed sites and are more vigilant while resting on the 

snow surface. We also find that wolverines are more vigilant at topographically exposed resting sites 

than at concealed sites. Together, these lines of evidence suggest that wolverines trade security from 

predators for thermal advantage at warmer ambient temperatures and higher solar radiation levels 

during winter, but that this trade-off is not necessary at lower temperatures when wolverines 

preferentially use subnivean cavities to simultaneously meet both demands. Parsing such 

contextually dependent trade-offs is important to understanding species' habitat selection, energy 

management, and survival.

5.2 Introduction

Animals must partition their time among behaviours to meet the demands associated with 

growth, reproduction, and survival. In many cases, certain behaviours interfere with others, forcing 
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animals to make decisions that facilitate the response to one demand at the expense of others (Lima 

& Dill, 1990; Sih, 1980). Understanding such trade-offs underlying animal behaviour provides 

insight regarding the relative influence of conflicting demands in shaping the activities of free-living 

animals and offers a mechanistic foundation for the emergent processes that result, including habitat 

selection and energy partitioning. Since certain demands (e.g., avoiding predation) can preclude or 

reduce access to resources such as food, heat, or reproductive habitats, these trade-offs can 

ultimately impact fitness via differential reproduction, growth, or indirect mortality (Lima, 2009; 
McPeek, Grace, & Richardson, 2001; Verdolin, 2006).

Thermoregulation is one such demand, the costs of which can be particularly severe for species 

inhabiting climatically extreme environments. For endotherms, the ambient air temperatures in 

deserts and polar tundra can be well outside an animal's thermoneutral zone (TNZ), defined as ‘the 

range of ambient temperatures at which temperature regulation is achieved only by control of 

sensible heat loss, i.e., without regulatory changes in metabolic heat production or evaporative heat 
loss' (Blix, 2016; IUPS Thermal Commission, 2001, p. 273). This severe difference between TNZ 

and ambient conditions can induce hyper- or hypothermia, dehydration, frostbite, and myriad other 

sublethal, and in some cases lethal, effects (du Plessis, Martin, Hockey, Cunningham, & Ridley, 2012; 

Liknes, Swanson, Liknes, & Swanson, 1996). To cope with these demands, animals have evolved 

numerous physiological, morphological, and behavioural adaptations, including metabolic 

suppression, insulation, countercurrent heat exchange, and selective brain cooling (Blix, 2016; Fuller, 

Hetem, Maloney, & Mitchell, 2013). Among these, behavioural thermoregulation, for example 

huddling, posturing, or basking, offers animals considerable flexibility in reducing the energetic 

demands of maintaining normothermia (Terrien, Perret, & Aujard, 2011). However, these 

behaviours can be costly as they divert energy and time from engaging in other behaviours and life­

history demands, including foraging (Mason, Brivio, Stephens, Apollonio, & Grignolio, 2017), 

reproduction (Klug & Barclay, 2013) and predation avoidance (Milling, Rachlow, Johnson, Forbey, 
& Shipley, 2017).

One of the primary means by which animals behaviourally thermoregulate is the selection of 

microhabitats with operative temperatures (the temperature experienced by the animal, 

incorporating conductive, convective, and radiative heat transfer, as well as the morphology and 

absorptivity of the animal; Bakken et al., 1985) nearer the animal's TNZ than the macroclimate. 

However, since shuttling between microhabitats to thermoregulate necessitates that the animal 

occupy a specific habitat, the net fitness benefit depends on the extent to which that habitat 
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supports other important processes as well. For example, alpine ibex (Capra ibex) thermoregulate by 

moving to higher altitudes, but this reduces their access to high-quality forage (Mason et al., 2017). 

Conversely, pygmy rabbits (Brachylagus idahoensis) select shady, concealed locations during summer, 

simultaneously reducing the physiological demands of thermoregulation and predation risk (Milling 

et al., 2017). The former example demonstrates potential for poor overlap between 

thermoregulatory habitats and those habitats needed and used for other critical behaviours (i.e., 

energy intake), resulting in a trade-off; the latter example shows a coupling of thermoregulation with 

antipredator behaviour, precluding a trade-off. Since the specific microhabitat offering 

thermoregulatory advantage changes seasonally and with ambient weather conditions (e.g., a burrow 

provides thermal refuge on hot summer days whereas a sunny slope is superior on cold spring days), 

the extent to which thermoregulatory microhabitats support or conflict with competing demands 

can also reflect this shift.

Avoiding predation is a crucial behavioural demand that can conflict with behavioural 

thermoregulation (Kusler, Elbroch, Quigley, & Grigione, 2017). Antipredator behaviour enables 

prey species to mediate predation risk, and generally the risk of direct mortality is expected to 

decrease as prey species exhibit more antipredator behaviour. However, this reduction comes at the 

cost of increased trait-mediated or ‘risk' effects, including reduced reproductive output, survival, and 

growth (Creel & Christianson, 2008). In some cases, these risk effects can have greater population 

level impacts than direct predation mortality (Creel & Christianson, 2008). Therefore, antipredator 

behaviour can be an important indicator of the indirect influence of predation pressure on prey 

species. Selection for smaller viewsheds (the area from which a given location can be viewed and 

thus exposed to visual detection by predators; Aben et al., 2018), heightened vigilance behaviour, 

and the use of subnivean cavities are examples of antipredator behaviour; each of these behaviours 

likely varies in the extent to which it reduces predation risk versus increases indirect risk effects.

Generally, prey species are expected to exploit habitats that minimize predation risk while 

maximizing competing demands (Lima & Bednekoff, 1999), but in many cases no habitat can meet 

all demands simultaneously, and animals must trade predation avoidance for other activities. Since 

structural protection and visual concealment are strongly associated with reduced predation risk 

(Mabille & Berteaux, 2014), the degree to which microhabitats can provide both concealment and 

thermal advantage determines the extent to which prey species must trade antipredator behaviour 

for thermoregulation (Marchand et al., 2017; Milling et al., 2017).

89



Here, we examined a potential trade-off between behavioural thermoregulation and predation 

avoidance associated with specific microhabitats in a cold-adapted mesocarnivore, the wolverine 

(Gulo gulo), which is vulnerable to predation by larger carnivores such as grey wolves (Canis lupus; 

Krebs, Lofroth, Copeland, Banci, & Cooley, 2004). Specifically, we investigated the extent to which 

the use of subnivean cavities versus surface beds for resting sites is driven by thermoregulatory 

demands versus intraguild predation avoidance. Since our study area is treeless, supranivean 

concealment is mostly afforded by topographic features, such as stream cutbanks and cliffs, whereas 

subnivean resting sites offer considerable visual and olfactory concealment, in addition to structural 

protection and insulation. We exploited these differences to test the hypotheses that wolverines 

select sites that confer both thermoregulatory benefits and predation avoidance, but that subnivean 

resting sites are more effective in reducing predation risk than surface bed sites. We assumed that 

increased vigilance behaviour, in which wolverines scanned their surroundings, corresponded to 

increases in real or perceived predation risk, with potentially larger impacts of risk effects (e.g., 

energy and time diverted from other behaviours), and refer to these effects as ‘predation risk' for 

simplicity.

5.3 Methods

5.3.1 Conceptual Approach

We developed three predictions to evaluate our hypotheses regarding wolverine resting site 

selection, and tested each with a specific statistical model (see Data analysis). For Prediction 1, we 

expected that wolverines would rest in subnivean cavities when air temperature and solar radiation 

were lower and rest on the snow surface when air temperature and solar radiation were higher. 

Support for this prediction would be consistent with our hypothesis that the thermoregulatory 

benefits of subnivean cavities and surface beds, which vary depending on environmental conditions, 

influence which resting site type wolverines choose. For Prediction 2, we expected that wolverines 

would select more topographically concealed sites to reduce predation risk and that this selection 

would be particularly strong at surface beds. Support for this prediction would by consistent with 

our hypothesis that predation risk influences which resting site type wolverines use. For Prediction 

3, we expected that wolverines would be more vigilant at surface beds than subnivean sites, with the 

degree of vigilance proportionate to topographic concealment. Support for this prediction would be 

consistent with our hypothesis that subnivean resting sites are more effective at reducing predation 
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risk than surface beds, even when wolverines use topographic concealment to mitigate predation 

risk at surface beds.

5.3.2 Study Area

We conducted this study in a roughly 20,000 km2 region surrounding Toolik Field Station, 
Alaska, U.S.A. (68.63°N, 149.60°W; Fig. 5.1) between late February and mid-May of 2017 and 2018. 

The study area is treeless, although tall shrubs occur along river corridors. The rugged Brooks Range 

(elevation: 700—2,700 m) dominates the southern portion, transitioning to foothills (elevation: 60— 

1,000 m) in the north. The Brooks Range is characterized by tall peaks, steep scree slopes, and river 

valleys, while the terrain of the foothills region is gentler, with topographic variability primarily 

arising from erosional features such as incised streams, cutbanks at lake edges, and permafrost 

thawing, as well as cliffs associated with larger foothills.

The snowpack in the study area is dominated by two functional types: ‘veneer' and ‘snowdrift' 

(Benson & Sturm, 1993), created by wind-driven redistribution of snow (Colbeck, 1982). Wind 

transports snow across the landscape, scouring it from open, gentle tundra and depositing it in 

topographic depressions and around taller vegetation, forming high-density snowdrifts. These drifts, 

up to several metres deep, comprise approximately 5% of the surface area of the tundra, while the 

thin veneer layer (generally <50 cm) accounts for the remaining 95% (Sturm, Liston, Benson, & 

Holmgren, 2001). Snow acts as an insulator, so mean wintertime temperatures at the ground are 

around 8 °C higher than air temperatures in our study area, although this difference lessens as spring 

progresses and air temperatures increase (Taras, Sturm, & Liston, 2002). For animals, solar radiation 

during late spring likely results in higher operative temperatures on the surface of the snow than 

under the snow. Snowmelt initiates in late April or early May and proceeds rapidly as air 

temperatures warm (Liston & Hiemstra, 2011).

Climate in the study area is strongly seasonal. Mean daily solar radiation is negligible between 

mid-November and January (~5 W/m2), but begins increasing in February until peaking at summer 

solstice (~350 W/m2; Cherry et al., 2014). Between 2009 and 2020, mean monthly air temperatures 
at Toolik Field Station for February, March, April, and May were -19.6 °C, -18.7 °C, -12.0 °C, and -1 

°C, respectively (Toolik Field Station, 2020). Temperatures are generally less variable as spring 

progresses; mean monthly standard deviation in air temperature for the same period was 9.3 °C, 7.7 

°C, 7.4 °C, and 6.4 °C (Toolik Field Station, 2020). The temporal and spatial design of our study 

exploits natural gradients in weather and concealment opportunities across the seasonal landscape.
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On tundra, wolverines excavate and occupy subnivean cavities for resting, reproduction, and to 

cache food (Magoun, 1985; Magoun & Copeland, 1998). Wolverines select deep, dense snow during 

spring, suggesting that the hardness conferred by high-density snow is important for structural 

protection, whereas the thermal insulation conferred by depth may be important for 

thermoregulation (Glass et al., 2021). Across their global range, wolverines are killed by wolves, 

mountain lions (Puma concolor), bears (Ursus americanus and Ursus arctos horribilis), conspecifics, and 

humans (Inman, Inman, Mccue, & Packila, 2007; Krebs et al., 2004; T.W. Glass, personal 

observations); of these, wolves, conspecifics, and humans occur within our study area during winter 

and spring. Over the course of our study, wolves killed one tagged wolverine and were observed 

investigating wolverine-occupied snow cavities on several occasions (Fig. 5.2). Wolves are known to 

use vision, scent, and snow tracking to locate prey; of these, vision and scent are likely of similar 

importance (Gable & Gable, 2019; Peterson, 1977), and vision may be more important in sparsely 

vegetated areas such as tundra (Conover, 2007). Humans harvested at least two of 24 tagged 

wolverines in this study area (this figure includes captures from field seasons not included in this 

study). Wolverines can be legally trapped or shot between 1 November and 15 April (Alaska 

Department of Fish and Game, 2019).

5.3.3 Data Collection and Processing

We captured 19 individual wolverines during 3 March — 28 April 2017 and 25 February — 18 

April 2018 using portable baited wooden box traps (modified from Lofroth et al., 2008). We 

monitored traps using satellite transmitters, which sent immediate e-mail notification upon being 

triggered, and we checked traps manually every 3 days to ensure proper functioning. Upon capture, 

we anaesthetized animals using 175 mg of Telazol (Golden et al., 2002) administered via syringe pole 

and monitored heart rate, respiratory rate and body temperature at 5 min intervals continuously 

during anaesthesia (Arnemo & Evans, 2017). We fitted wolverines with GPS collars (~250 g, 

Followit Tellus Ultra Light, Followit Sweden AB, Lindesberg, Sweden or Lotek LiteTrack 250 

Iridium GPS, Lotek Wireless, Newmarket, Canada), to which we attached tri-axial accelerometers 

(AXY-3, 10 g, Technosmart Europe Srl., Colle Verde, Italy) and light/temperature (LT) loggers 

(Intigeo-C330, 3.3 g, Migrate Technology Ltd, Cambridge, U.K.). Cumulatively, collars weighed on 

average 2% (range 2—3%) of the animal's body weight. We monitored animals until they had fully 

recovered from anaesthesia. To ensure that the collars released from the animal after approximately 

20 weeks, we used timer- or user-activated mechanisms as well as canvas rot-away strips. GPS 
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collars recorded the animal's position every 40 min, accelerometers recorded data at 1 Hz during 

2017 and at 10 Hz during 2018, and LT loggers recorded ambient light levels every minute and 

ambient temperature every 5 min. All animal capture and handling was approved by University of 

Alaska Fairbanks Institutional animal Care and Use Committee protocol 847738 and Alaska 

Department of Fish and Game scientific permits 17-085 and 18-085. We recovered 11 collars that 

retained both the LT logger and the accelerometer; analyses are restricted to these individuals. Since 

snowmelt prevents the use of subnivean cavities and increases nontopographic concealment from 

shrubs, we restricted all analyses to collar data collected before 10 May, and, by virtue of collar 

deployment timing, after 25 February.

We used accelerometer data to identify resting periods and LT loggers to determine whether 

they occurred in snow cavities or surface beds (Fig. 5.3). Here, we provide a summary of this 

approach, with full details and validation metrics in Appendix D. The predictive model used k- 

means clustering (Likas, Vlassis, & Verbeek, 2003) to identify resting periods and exploited the low 

light levels and relatively high temperatures in snow cavities to predict whether each resting period 

occurred in a snow cavity or surface bed. We trained and validated the model by visiting resting sites 

in the field to ground truth the use of snow cavities and surface beds. In total, this approach 

identified and classified 3,240 resting periods across 11 animals.

5.3.4 Data analysis

5.3.4.1 Prediction 1: Effect of Weather on Selection for Snow Cavities versus Surface Beds

To test our prediction that wolverine use of snow cavities versus surface beds is influenced by 

weather, consistent with behavioural thermoregulation, we extracted air temperature and solar 

radiation data during resting periods from a meteorological tower centrally located within our study 

area (Toolik Field Station, 2020). The data are available at 5 min intervals; we interpolated between 

observations using a cubic spline to obtain 1 min frequency. Since the k-means classifier used to 

identify resting periods (Appendix D) yielded many predictions separated by short periods, thereby 

introducing nonindependence of associated weather variables, we grouped resting periods that 

occurred within 10 min of one another and belonged to the same individual and response variable 

(surface bed versus snow cavity) and calculated the median radiation and air temperature values for 

each of these grouped resting periods. We then fitted a mixed logistic regression (generalized linear 

mixed model with binomial error distribution) with cavity/surface bed as the response and the 
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interaction between air temperature and radiation, as well as the main effects for each, as the 

predictors, reflecting the interactive effects of these variables on operative temperature (Chappell, 

1980), particularly for dark-coated animals like the wolverine. To ensure that any observed response 

was not driven by snowmelt, we compared the parameter estimates of a model that excluded resting 

periods that occurred above 0 °C (N = 101), with those of the full data set, proceeding with the full 

data set if the estimates were similar. We included individual as a random intercept. We standardized 

the predictors before fitting the model and evaluated all predictor variables for multicollinearity. The 

data used for this analysis included 1,207 resting periods across 11 individual wolverines. We 

conducted analyses in R v.3.6.3 using the package lme4 (Bates, Machler, Bolker, & Walker, 2015; R 
Core Team, 2018).

5.3.4.2 Prediction 2: Effect of Viewshed on Snow Cavity and Surface Bed Site Selection

To test our prediction that wolverines select well-concealed locations for resting sites and that 

this selection is stronger at surface beds, we performed a case-control resource selection function 

(RSF, Manly et al., 2002), with the interaction between resting site type (surface bed/snow cavity) 

and viewshed size, as well as the main effect of resting site type, as predictors (Aben et al., 2018). To 

do this, we first extracted the location of each resting period using GPS data from collars, excluding 

resting periods for which a GPS fix did not occur during the resting period. If multiple GPS fixes 

were taken during a resting period, we calculated the resting coordinates as the medians of the 

projected x and y coordinates. We then generated two ‘available' control sites for each resting period 

by randomly drawing two distances from a uniform (50, 300) metre distribution and two bearings 

from a uniform circular distribution (Thurfjell, Ciuti, & Boyce, 2014). We calculated viewshed for 

each resting site and available site within a 50 m radius of the site (Fig. 5.4). The viewshed is the area 

surrounding the resting site from which the site can be seen (Aben et al., 2018), so large values 

indicate high visual exposure to the surroundings (e.g., the bottom of a valley or a concave hillslope) 

while small values indicate low visual exposure to the surroundings (e.g., the bottom of an incised 

creek bed or the base of a cliff). We performed this using a 5 m resolution digital elevation model 

(DEM; Carswell, 2013) in the Environmental Systems Research Institute's (ESRI) Viewshed tool 

(Arcmap 10.3.1, ESRI, Redlands, CA, U.S.A.), thereby capturing the fine-scale topographic features 

capable of concealing a wolverine. For each resting site, this tool evaluates all pixels of the DEM 

within 50 m and determines whether each is obstructed from view by an intervening pixel; if not, it 

is considered part of the viewshed. Although vegetation is sufficiently tall in some places in the study 
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area to obscure wolverines, particularly along major rivers, we lacked the high-resolution vegetation 

height data necessary to incorporate such information and instead focused solely on topographic 

concealment. We chose a 50 m radius to reflect the low visual acuity of canids, wolverines' primary 

predator, which typically must be three to four times closer to an object to distinguish its features 

than an average human (Miller & Murphy, 1995). Before fitting the model, we evaluated viewshed at 

resting sites for spatial autocorrelation using a variogram in R package geoR. We identified 20 m as 

the minimum acceptable distance between resting sites to ensure independence among observations, 

and therefore iteratively removed the resting site nearest the most other resting sites, stratified by 

individual and resting site type, until no resting sites were closer than 20 m apart. We fitted the RSF 

as a Poisson regression, stratified by resting site, with strata-specific fixed intercepts in R package 

glmmTMB. This modelling framework provides a computationally efficient option for including 

random effects in a conditional RSF (Muff, Signer, & Fieberg, 2020), and we therefore included 

individual as a random slope. We expected that wolverines would select microhabitats with smaller 

viewsheds, and therefore higher concealment, and that this selection would be stronger when resting 

on the snow surface. The data used for this analysis included 388 snow cavities and 504 surface beds 

across 11 individual wolverines.

5.3.4.3 Prediction 3: Effect of Snow Cavity Use and Viewshed on Vigilance Behaviour

To test our prediction that snow cavities and topographic concealment reduce predation risk for 

resting wolverines, we first extracted the duration of vigilance behaviour immediately following and 

preceding each resting period. We determined vigilance behaviour associated with resting periods by 

applying the behavioural classification model developed by Glass, Breed, Robards, Williams, and 

Kielland (2020) to the 5 min period immediately preceding and following each resting cluster. This 

model uses a supervised learning classifier to generate behavioural predictions from 10 Hz 

accelerometer data across 10 s windows, based on direct behavioural observations of captive 

collared wolverines. Since this method only classifies behaviours that are exhibited continuously for 

at least 10 s, grouping behaviours that occur at shorter time intervals as ‘unknown', estimates for 

total time exhibiting any given behaviour are biased low. Nevertheless, the model performs quite 

well at predicting 10 s bouts of vigilance behaviour (94% precision, termed ‘scanning' in Glass et al., 

2020, p. 4), defined as ‘surveying [the] surroundings by moving [the] head while torso and legs 

remain stationary'. Therefore, we applied this model to the seven wolverines from whom 10 Hz 

accelerometer data were collected and calculated the number of 10 s periods spent vigilant in the 5 
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min preceding and following each resting period (hereafter ‘vigilance'). If resting periods were 

separated by less than 10 min, we randomly removed one of the pair to avoid double-counting 

vigilance behaviour.

We then evaluated whether vigilance was influenced by viewshed size and whether this influence 

differed between surface beds and snow cavities, using a zero-inflated negative binomial (ZINB) 

regression with the interaction between viewshed and resting site type (surface bed or snow cavity), 

and the main effect of resting site type, as predictors, performed in R package countreg (Zeileis & 

Kleiber, 2016). A ZINB regression assumes that the response of each observation arises from one 

of two processes, determined by a Bernoulli trial (Lambert, 1992). The first process results solely in 

zeros, which are termed ‘structural zeros', while the second process results in an integer count value 

drawn from a negative binomial distribution, which can include zeros (termed ‘sampling zeros'). 

Covariates can be supplied to the zero-inflation (i.e., Bernoulli) and count (i.e., negative binomial) 

models separately. For our purposes, we interpreted structural zeros as products of the behavioural 

prediction process, possibly resulting from an animal exhibiting vigilance behaviour for periods 

shorter than 10 s, or from an animal exhibiting vigilance behaviour from a different posture than 

was included in the training data set. We did not expect structural zeros to vary systematically across 

our data set; therefore, we included viewshed and resting site type as covariates in the count model 

and did not supply any covariates to the zero-inflation model. We used a rootogram (Kleiber & 

Zeileis, 2016) and Q-Q plot of the quantile residuals to assess goodness of fit and check for 

overdispersion. We standardized viewshed before fitting the model. The data used in this analysis 

consisted of 245 snow cavity and 384 surface bed resting periods distributed among seven 

individuals. We expected that wolverines would spend more time vigilant at surface beds than at 

snow cavities and that viewshed size would positively influence vigilance behaviour. We performed 
all analyses in R v.3.6.3 (R Core Team, 2018).

5.4 Results

We identified 3,240 resting periods from 11 individual wolverines. Wolverines occupied snow 

cavities for 51% of these (N = 1,657) and used surface beds for the remaining 49% (N = 1,583). 

Mean resting period duration was 81 min in surface beds and 85 min in snow cavities. Wolverines 

rested an average of 8.5 times per day.
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5.4.1 Effect of Weather on Selection for Snow Cavities versus Surface Beds

We found that the probability of resting on the snow surface was positively influenced by both 

air temperature (z = 6.34, P < 0.001) and solar radiation (z = 7.77, P < 0.001). Solar radiation 

interacted significantly with air temperature (z = -3.03, P < 0.003), such that high solar radiation at 

low air temperatures increased the probability of resting on the surface, whereas variation in 

radiation had little effect at high air temperatures (Fig. 5.5). The influence of air temperature was 

particularly strong; model predictions showed that wolverines rested almost exclusively on the snow 

surface at ≥ 5 °C regardless of solar radiation, and conversely rested almost exclusively in subnivean 

cavities at -40 °C with no incoming solar radiation (Fig. 5.5). Fitting the model with and without 

resting periods above 0 °C yielded nearly identical parameter estimates, indicating no evidence that 

snowmelt drives the weather-related selection for subnivean versus surface sites across temperatures. 

Air temperature and solar radiation were only weakly correlated (Pearson's product-moment 

correlation coefficient = 0.35 [95% confidence interval: 0.30—0.40], N = 1,207), reflecting the 

seasonal decoupling of the two variables during winter when most of our data were collected.

5.4.2 Effect of Viewshed on Snow Cavity and Surface Bed Site Selection

Wolverines selected smaller viewsheds when resting in both surface beds (z = -6.06, P < 0.001) 

and snow cavities (z = -6.96, P < 0.001; Fig. 5.6). Specifically, wolverines were approximately two 

times more likely to select a surface resting site with a 1,500 m2 viewshed than one with a 6,000 m2 

viewshed (Fig. 5.6). Contrary to our prediction, there was not a significant difference between 

viewshed size selection at surface beds versus snow cavities (z = -1.68, P = 0.09); viewshed was 

similarly important in driving resting site selection regardless of resting site type.

5.4.3 Effect of Snow Cavity Use and Viewshed on Vigilance Behaviour

Wolverines were more vigilant at surface beds than at snow cavities (z = 3.09, P = 0.002; Fig. 

5.7) and more vigilant as viewshed size increased when resting at snow cavities (z = 2.91, P < 0.004; 

Fig. 5.7). Viewshed size did not significantly influence vigilance at surface beds (z = 1.52, P = 0.12); 

wolverines showed similarly high levels of vigilance at surface beds across viewshed size (Fig. 5.7). 

At small viewsheds, wolverines were more vigilant at surface beds than at snow cavities, but at large 

viewsheds wolverines were highly vigilant at both (Fig. 5.7). On average, wolverines spent four more 

seconds (i.e., 0.4 more 10 s periods) vigilant at surface beds than at snow cavities during the 10 min 
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window surrounding the resting period and spent two more seconds (0.2 more 10 s periods) vigilant 

for every 1000 m2 increase in viewshed size at snow cavities. We reiterate that the method for 

classifying vigilance behaviour only detects bouts that last at least 10 s in duration, so total amount 

of time spent vigilant, and the above effect sizes, are likely underestimates.

5.5 Discussion

We found support for our hypotheses that resting behaviour in wolverines during winter and 

spring is influenced by the need to meet thermoregulatory requirements and reduce predation risk, 

but that microhabitats vary in how well they support each. Using animal-borne biologgers, we found 

evidence that wolverines sacrifice the perceived security of snow cavities when surface beds confer 

higher thermoregulatory advantage. Wolverines used snow cavities almost exclusively at lower air 

temperatures and when there was less solar radiation and used surface beds almost exclusively at 

higher air temperatures and when there was more solar radiation. Additionally, wolverines were 

more vigilant at surface beds, suggesting greater real or perceived predation risk, despite mitigating 

this by selecting surface bed sites with smaller viewsheds. Wolverines resting on the surface in small 

viewsheds still showed elevated levels of vigilance, suggesting that resting in subnivean cavities was 

most effective in reducing the energy and time required to monitor the surroundings for predators.

Several aspects of this study must be highlighted when considering the extent to which the 

behavioural dynamics we evaluated constitute a trade-off. First, we have defined a behavioural trade­

off as any situation requiring that animals choose between conflicting behaviours, under the 

assumption that sacrificing either behaviour will negatively impact the individual. However, the 

possible costs of occupying less thermally favourable microhabitats or engaging in vigilance 

behaviour (and thereby diverting time from other activities such as eating, grooming, sleeping) are 

unclear in this system. We did not measure the possible negative consequences of sacrificing these 

behaviours directly, and it is possible both that the antipredator behaviour we observed was solely 

compensatory (i.e., it successfully reduced predation risk with no or minimal accompanying negative 

impacts), and that the physiological costs of thermoregulation in suboptimal habitat are negligible. 

These potential negative impacts would need to be measured directly to determine the magnitude 

and biological importance of a trade-off. Second, the effects of viewshed size and resting site type 

on vigilance behaviour were sufficiently small to make their biological significance uncertain. 

Although we believe that these effect sizes are likely underestimates (since accelerometers only 

detected vigilance behaviour exhibited in continuous 10 s bouts), the impact of these variables on 
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vigilance behaviour (as well as other possible risk effects, including physiological responses) ought to 

be investigated using more robust methodologies to confirm this finding. If future work confirms 

this small effect, the limited influence of viewshed and resting site type on vigilance behaviour and 

site selection suggests that thermoregulatory demands may outweigh predation risk in influencing 

resting behaviour.

These caveats notwithstanding, we think that the lines of evidence presented here support our 

hypothesis that wolverines trade reduced predation risk off against thermal energy conservation, but 

the extent of this trade-off varies by ambient weather conditions. These findings contribute to our 

understanding of the importance of behavioural thermoregulation as an adaptation to cold 

environments, the risk effects of intraguild predation among mesocarnivores, and how these two 

processes can give rise to a trade-off between competing behavioural demands.

5.5.1 Behavioural Thermoregulation in Cold-Adapted Species

Our finding that Arctic wolverine behaviour during winter reflects thermoregulation to minimize 

heat loss is somewhat novel in the context of mid- to large-size Arctic mammals. Polar species have 

evolved remarkable physiological and morphological strategies to cope with severe cold during 

winter, including torpor, countercurrent peripheral heat exchange, and highly insulative fur and 

plumage, and these adaptations are well documented (reviewed in Blix, 2016). By comparison, the 

behavioural strategies used by such species have received little attention, particularly among larger 

mammals for whom a lower surface area-to-volume ratio reduces heat loss. Although many large 

Arctic terrestrial mammals use burrows or dens for reproduction (Chesemore, 1969; Harington, 

1968; Klaczek, Johnson, & Cluff, 2015; Magoun & Copeland, 1998), and many species have been 

documented using subnivean dens during winter apart from reproduction (Gray, 1993; Jonkel, 

Kolenosky, Robertson, & Russell, 1972; Prestrud, 1991), the importance of these structures for their 

role in thermoregulation remains largely unaddressed. Our findings suggest that such subnivean sites 

are likely an important source of thermal protection for these species, particularly at very low air 

temperatures. Indeed, although large mammals that are active through the Arctic winter may have 

lower critical temperatures of -40 °C or below (Scholander, Hock, Walters, & Johnson, 1950), our 

findings point to thermal preference well above this threshold for wolverines, at least while resting 

(Terrien et al., 2011). This is supported by the finding that warm microclimates promote sleep 

quality, since peripheral vasodilation and consequent warming coupled with core cooling are integral 

to mammalian sleep induction (Harding, Franks, & Wisden, 2020). Here, we provide evidence 
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indicating that despite considerable physiological and morphological adaptations to cold, wolverines 

still modify their behaviour to minimize heat loss while at rest. Since sun basking and the use of 

subnivean cavities, behaviours that occur across the range of air temperatures included in this study, 

both provide thermal advantages in accordance with the operative temperature of the given resting 

site, our findings suggest that wolverines behaviourally thermoregulate across a range of winter and 

springtime temperatures, not only during extreme cold.

5.5.2 Risk Effects of Intraguild Predation

The support for our hypothesis that perceived predation risk from wolves influences resting 

behaviour in a mesopredator, the wolverine, fits well in the theoretical and empirical literature of 

intraguild predation. Intraguild predation risk influences bed site selection among cougars 

persecuted by wolves (Kusler et al., 2017), shifts habitat selection among intermediate predators 

temporally and spatially in favour of higher concealment (Michel, Jimenez-Franco, Naef-Daenzer, & 

Grüebler, 2016; Mukherjee, Zelcer, & Kotler, 2009), and modifies vigilance and foraging behaviour 

(Wikenros, Stahlberg, & Sand, 2014). These behavioural modifications constitute risk effects induced 

by intraguild predation, a field of study that remains nascent despite receiving more attention among 

traditional predator-prey relationships (Creel & Christianson, 2008). Theoretical work suggests that 

the use of spatial refugia and increased vigilance by mesopredators are important mechanisms by 

which intraguild population dynamics can attain stability (Heithaus, 2001; Rosenheim, 2004). To our 

knowledge, no other study has investigated vigilance behaviour among mesopredators at resting 

sites, a type of question that for many wide-ranging or cryptic species is only possible with 

advancing biologging technology.

Since wolverines compete with wolves for prey and also scavenge the remains of wolf-killed 

ungulates (Magoun et al., 2018; Van Dijk et al., 2008), the intraguild dynamics in this particular 

system balance direct competition with facilitation. Wolverines must behave in such a way that 

permits them to maximize food acquisition from wolves, while minimizing predation risk. Indeed, 

wolverines have been found to broadly associate with wolf presence (Koskela et al., 2013) but 

reduce foraging time at carcasses used intensively by wolves (Nordli & Rogstad, 2016). The fact that 

the predation of our study animal by wolves took place at a wolf-killed caribou carcass provides 

further anecdotal support for this point. Although wolves also detect prey by scent and snow 

tracking (Peterson, 1977), mechanisms that we do not account for in our study, our findings suggest 

that visual detection plays a non-negligible role in this system and affects the behaviour of 
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wolverines accordingly. Vigilance behaviour and the selection of small viewsheds or subnivean 

cavities for resting are therefore likely important to wolverines' ability to coexist with wolves.

5.5.3 Trade-off Between Behavioural Thermoregulation and Predation Avoidance

Trade-offs between microhabitat-based behavioural thermoregulation and competing 

behavioural demands arise when no habitat is able to maximize both simultaneously (Milling et al., 

2017). Since the specific microhabitat meeting thermal requirements changes according to ambient 

conditions, and since the extent to which different microhabitats support competing behavioural 

demands also varies, the presence and magnitude of trade-offs are highly contextual. Here, we have 

described one pathway by which a trade-off can arise. Specifically, in a species that rests in both 

concealed cavities and exposed surface beds during winter and spring, the thermoregulatory 

advantage conferred by sunny, warm surface beds must be traded off against increased predation 

risk. To minimize the magnitude of this trade-off, we found evidence that wolverines seek 

topographic concealment, but this concealment appears insufficient to achieve the same low level of 

predation risk conferred by snow cavities, as evidenced by elevated vigilance at surface beds. 

Conversely, our findings suggest that the coupling of concealment and thermal protection in 

subnivean cavities at lower ambient temperatures and when there is less solar radiation removes the 

need for such a trade-off. In this way, we have found evidence that snow cavities better meet both 

the thermoregulatory and predation avoidance needs of wolverines in this environment.

Thermoregulatory demands and predation avoidance are important predictors of resting site 

selection among both pygmy rabbits and mountain lions (Kusler et al., 2017; Milling et al., 2017). 

However, in both cases, these animals are capable of simultaneously maximizing predation 

avoidance and thermal advantage across seasons, likely due to the availability of vegetation for 

concealment. More vegetated landscapes may similarly afford wolverines a reduced trade-off in more 

southerly portions of their range. However, in regions across the species' range where above-snow 

operative temperatures drop to 5—10 degrees below zero, we would still expect wolverines to seek 

insulative structures for resting (Fig. 5.5).

This trade-off between behavioural thermoregulation and antipredator behaviour has 

implications for other species that rest in both protected cavities and surface beds in landscapes 

lacking tall vegetation. Species including Arctic hare (Lepus arcticus), Arctic fox (Vulpes lagopus), and 

ringed seal (Phoca hispida) rest both on the snow surface and in subnivean cavities during winter
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(Gray, 1993; Kelly & Quakenbush, 1990; Prestrud, 1991); for such species the decision to rest on the 

snow surface is likely also weighed against increased predation risk.

5.6 Conclusions

This study explores the seasonally variable trade-offs demanded by behavioural 

thermoregulation and provides an example of one such trade-off in which animals choose to 

increase predation risk in order to minimize heat loss. Using information provided by animal-borne 

biologgers, we illustrate the behavioural responses to these demands and the ways in which 

wolverines seek to reduce this trade-off. We highlight that this study was conducted exclusively 

using biologgers to infer fine-scale behaviours, exemplifying the increasingly complex types of 

behavioural questions that can be addressed among cryptic and wide-ranging animals using this 

technology (Chmura, Glass, & Williams, 2018). Documenting these behavioural and energetic trade­

offs, particularly among species for whom direct observation has limited such studies in the past, is 

an important component of understanding species habitat selection, energy management, and 

survival.
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5.9 Figures

Figure 5.1: Study area (yellow oval) in northern Alaska. Points indicate centroids of resting locations

for each wolverine, and the grey line shows the Dalton Highway.
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Figure 5.2: A wolverine visits the entrance to a snow cavity, followed by a wolf the next day. Wolves 

visited wolverine snow cavities on several occasions.
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Figure 5.3: Example 80 h period showing data from collar-mounted biologgers used to identify 

resting periods and classify them as occurring in a surface bed or snow cavity. In (a) and (b), 

horizontal black lines depict the maximum log(light) value and median temperature difference value 

for each resting period, respectively; these values were used to predict whether the resting period 

occurred in a snow cavity or surface bed (see Appendix D). Only light values measured during 

daytime were used. In (c), the grey line shows the vectorial dynamic body acceleration (veDBA) and
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Figure 5.3 continued:

blue shows the 5 min running mean of veDBA used to identify resting periods (Appendix D). 

Resting periods, shown in shaded boxes, depict those used in the weather analysis, and therefore 

have been clustered temporally to address autocorrelation.
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Figure 5.4: Example viewsheds for (a) relatively open and (b) relatively concealed wolverine resting 

locations. The camera icon indicates the resting site location, which is also the location from which 

the respective photographs were taken (photograph field of view indicated by broken black lines). 

For each site, the viewshed (grey shaded pixels on map) was calculated as the total area within 50 m 

(yellow circle) of the resting site that was not obscured by intervening topography. For example, the 

rocky slope in (b) obscured the terrain beyond the slope, so these pixels were excluded from the 

viewshed (brown shaded pixels).
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Figure 5.5. Marginal effects of air temperature and solar radiation on the probability that a wolverine 

rests on the snow surface versus a subnivean cavity. Solar radiation values of 0 and 751 W/m2 were

the minimum and maximum measured during resting periods.
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Figure 5.6: Relative probability of use for resting sites predicted by the viewshed within 50 m, 

compared to randomly selected ‘available' resting sites in the nearby area. Relative probability of use 

can be interpreted by comparing values with one another. For example, a relative probability of 

0.0008 at a surface bed with a viewshed of approximately 1500 m2 is two times higher than a relative 

probability of 0.0004 for a viewshed of 6000 m2; therefore, a wolverine is approximately two times 

more likely to select the former.
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Figure 5.7: Number of 10 s intervals spent vigilant during the 5 min preceding and following resting 

periods, by resting site type and viewshed size. Bands represent 95% bootstrapped confidence

intervals.
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Chapter 6: Conclusion

In this dissertation, I investigated wolverines' (Gulo gulo) use of snow for structural habitat in the 

Arctic, focusing on behavioral processes facilitated by snow and snow properties important to 

wolverines. Specifically, I (1) described terrain features and architecture of snow burrows used for 

resting sites and reproductive dens, (2) evaluated the influence of snow depth, density, and melt 

timing on wolverine habitat selection and movement, (3) developed a novel modeling approach 

capable of classifying wolverine behaviors from accelerometer data, and (4) used this modeling 

approach to investigate the importance of snow burrows for behavioral thermoregulation and 

avoiding predators.

This dissertation demonstrates the value of combining different scientific disciplines (animal 

behavior and snow science) to understand the complexities of wintertime animal ecology (Boelman 

et al. 2019). I found that Arctic wolverine behavior is influenced by dynamically-changing snow 

depth, density, and melt status at 10-m resolution. I worked directly with snow scientists to identify 

these properties, leveraging interdisciplinary expertise to link ecological and physical processes and 

design a robust workflow for incorporating snow information into my analyses. Such direct 

collaboration between ecologists and snow scientists will be critical for continuing to advance our 

understanding of snow ecology, since snow is a complex and continually changing substrate and 

dozens of snow properties (e.g., compressive strength, tensile strength, density of basal layer, 

thermal resistance) may influence a given species or behavior (Reinking et al. In press). Snow is often 

represented using just a few properties (e.g., depth and disappearance date) in wildlife research, 

typically due to logistical limitations. This dissertation demonstrates a methodology for expanding 

the candidate set of snow properties used in ecological analyses, and the complex type of inference 

that can result. Just as wildlife research incorporates complex aspects of other habitat features (e.g., 

vertical versus horizontal cover, microclimate, latitude-adjusted elevation), the field must continue to 

incorporate snowpack complexity as well, particularly as modeling and remote sensing tools 

increasingly permit this approach.

The importance of understanding relationships between animals and snow will continue to grow 

as climate-induced snowpack changes accelerate. Globally, snow depth, extent, and seasonal 

duration have declined in recent decades, a trend that is particularly pronounced at high latitudes and 

altitudes (Callaghan et al. 2011; IPCC 2019). Animals relying on snow for habitat are forced to 

contend with these changes, and predicting population-level impacts relies on accurately 
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understanding behaviors associated with snow (Berteaux et al. 2017). By describing and investigating 

how Arctic wolverines use snow not solely for reproductive dens but also for resting sites, this 

dissertation identifies additional behavioral processes susceptible to climate change impacts.

It remains unknown whether wolverines in this environment will exploit novel forms of 

structural habitat as snow availability decreases, although observations of wolverines using 

permafrost ice caves for reproductive dens and resting sites suggest some degree of flexibility (Glass 

et al. 2021). Snow loss will likely coincide with increases in air temperature, and thus reduce the 

importance of burrows for thermoregulation. Nonetheless, avoiding predators will probably remain 

important in this environment, so snowpack loss could expose wolverines to increased predation 

risk. Disentangling population-level consequences of snowpack loss via these distinct behavioral 

mechanisms is a priority for effective conservation and management of Arctic wolverines.

The findings that Arctic wolverines use snow burrows for resting sites and that these burrows 

facilitate both thermoregulation and avoiding predators fit well among observations of other Arctic 

animals. Arctic hares (Lepus arcticιιs'), arctic fox (Vulpes lagopus), ringed seals (Phoca hispida), and polar 

bears (Ursus maritimus) have been documented excavating snow burrows for resting, and there is 

evidence for most of these species that this a behavioral response to the requirements of 

thermoregulation and/or avoiding predators (Harington 1968; Kelly and Quakenbush 1990; 

Prestrud 1991; Gray 1993). However, relatively little attention has been devoted to use of snow for 

resting sites compared with reproductive denning. This omission has important conservation 

implications, since climate-related loss of snowpack used for resting sites could compound any 

population-level effects of losing reproductive den sites. Effective conservation and management of 

these species will benefit from additional research regarding the full range of behaviors supported by 

snow, and the possible impacts of snowpack loss that may result.

Wolverines' relationship with snow has received considerable attention in the Contiguous U.S. 

during recent decades, prompting the species to be considered for listing under the Endangered 

Species Act due to concerns over climate change-induced snowpack loss (U.S. Fish and Wildlife 

Service 2020). Although the U.S. Fish and Wildlife Service recently withdrew its proposed rule, 

ongoing litigation suggests that policy is not resolved (Bishop and Mellgren 2020). This study does 

not address the heart of the listing debate, since Arctic tundra differs in important ways from the 

montane environment inhabited by the wolverines considered for listing. Nonetheless, several 

findings from this dissertation are relevant for evaluating wolverines' vulnerability to climate change 

in more southerly regions. First, this study identifies a previously unrecognized mechanism linking 
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wolverines to snow: resting in snow burrows. To my knowledge, no study has yet investigated this 

behavior among wolverines in the Contiguous U.S. or the possible climate change implications for 

this facet of the species' ecology (but see Copeland 1996). Addressing this knowledge gap would aid 

wildlife managers in evaluating the cumulative climate change impacts to the species in this region 

(i.e., beyond impacts to reproductive dens). Second, this study highlights the importance of 

considering diverse high-resolution snow properties when evaluating the role of snow in animal 

ecology. Most investigations of montane wolverines' relationship with snow focus on limited 

properties (i.e., snow disappearance date and sometimes depth) at relatively coarse (>250 m) spatial 

resolutions, and these studies have yielded divergent projections of habitat loss resulting from 

climate change, confounding management decisions (McKelvey et al. 2011; Barsugli et al. 2020). 

This dissertation demonstrates the importance of considering the full suite of snow properties to 

identify those with ecological relevance, and incorporating such properties at resolutions that are 

appropriate for the behavioral process of interest. Although logistical limitations have generally 

complicated incorporating such snow information in the past, emerging technologies such as those 

used here make such an approach increasingly viable.

To investigate the relationship between wolverines and snow in the Arctic, I relied on detailed 

behavioral information of free-living wolverines, which I generated in part using models trained on 

observations of captive wolverines. Behavior of wide-ranging animals is challenging to study since 

direct observations are typically infeasible. To evaluate wolverine behavior associated with snow, I 

therefore used animal-borne biologgers. Each biologger provided distinct behavioral information; 

GPS collars yielded movement metrics and habitat associations, light/temperature loggers described 

when wolverines occupied snow burrows, and tri-axial accelerometers classified a suite of behaviors 

including vigilance, resting, running, and food handling. Collectively, these tools allowed me to 

determine both that snow is important to Arctic wolverines (i.e., certain snow properties are 

selected), and why snow is important (i.e., for behavioral thermoregulation and avoiding predators). 

Using a suite of tools in this way facilitates complex inference regarding behavioral processes and 

improves our ability to understand and predict the consequences of habitat change (Chmura et al. 

2018).

Technology for studying ecological dynamics is advancing at a remarkable pace, enhancing our 

ability to describe and predict complex, often interdisciplinary, ecosystem processes. Snow science 

and behavioral ecology are two such processes, and evaluating either is perennially complicated by 

logistical hurdles. In this dissertation, I aimed to demonstrate the inference possible in coupled 
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snow-wildlife systems by leveraging emerging technology (e.g., biologgers) and computational 

environments (e.g., numerical snow simulation modeling). Such technologies are continually 

improving and highly applicable to other study systems as well. I hope that this work may serve as a 

template for improving our understanding of snow ecology across taxa.
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Appendices

Appendix A: Chapter 2 Supplemental Figures

Diagrams of excavated burrows: Below are diagrams of excavated resting burrows and reproductive 
dens, excluding thermokarst caves which are described by Glass et al. (2021a). Each burrow is 
depicted both from a top-down perspective (grey background) and a side-view perspective (white 
background). The single reproductive den excavation, marked with ***, has two side-views, rotated 
90 degrees from one another. Dashed lines at tunnel ends indicate incomplete excavation. Caribou 
antlers indicate a complete or nearly complete caribou carcass. All distances are in centimeters.
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Appendix B: Chapter 3 Supplemental Tables

Table B.1: Akaike weights for candidate base models. Akaike weights were calculated for each 
wolverine separately and a population-level weight was calculated using a non-parametric bootstrap, 
weighted by sample size.

Environmental Covariates in Model

Terrain
Ruggeness

Distance to
Streams/Rivers

Distance to
Lake Edge

Akaike
Weight

X X X 0.50
X X 0.48

X 0.01
X 0

X X 0
X 0

X X 0
NULL MODEL 0
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Table B.2: Population-level coefficient estimates for the base model. Terrain ruggedness was 
standardized prior to fitting the model. Estimates and 95% confidence bounds were generated by 
calculating a non-parametric bootstrapped mean of individual estimates, weighted by inverse 
variance.

Coefficient Estimate Lower Upper
ln(distance to lake edge) -0.076 -0.125 -0.020

ln(distance to stream/river) -0.373 -0.425 -0.326

lnSL 0.023 0.010 0.044

Terrain Ruggedness 0.841 0.693 1.030

Terrain Ruggedness2 -0.139 -0.217 -0.091
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Appendix C: Chapter 4 Supplemental Figures

Distribution of predictor variables by behavior: The following pages contain histograms showing the 
distributions of all predictor variables by behavior, based on the full training dataset used in the 
classification model. These distributions demonstrate the quantitative differences in acceleration 
among behavioral classes.
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Appendix D: Chapter 5 Supplemental Information

Resting Period Identification and Classification as Snow Cavity or Surface Bed

To identify resting periods using accelerometer data, we first subsampled 10 Hz accelerometer 

data to 1 Hz to standardize the sampling frequency across individuals. We then calculated the 

vectorial dynamic body acceleration (veDBA, Wilson et al., 2020), as a measure of total animal 

movement, and applied a 5 min running mean to this value. This running mean smoothed the data, 

thereby excluding short periods of inactivity from being categorized as ‘resting'. We classified the 

running mean using k-means clustering with three centres and labelled the cluster with the smallest 

mean ‘resting' (Likas et al., 2003). We then grouped all consecutive resting observations and termed 

each group a resting period.

To determine whether resting periods occurred in snow cavities or surface beds, we built a 

predictive model based on field visits to resting sites and data from collar-borne light/temperature 

(LT) loggers. To visit resting sites in the field, we identified GPS clusters by inspecting recent GPS 

data (transmitted ~twice daily via the Iridium network) for two or more consecutive locations 

located within ~20 m of each other. During cluster visits, we recorded the presence of snow cavities 

and surface beds. We only included snow cavities deep enough to obscure the animal from direct 

sunlight in our predictive model. We identified surface beds as hardened, icy depressions in the 

snow containing wolverine fur encased in the ice, indicating that the wolverine had occupied the site 

for long enough to partially melt the snow underneath. We discarded GPS clusters lacking either a 

surface bed or snow cavity, as well as those containing both, from our predictive model, resulting in 

73 total visited clusters.

To build the snow cavity/surface bed predictive model, we exploited the low light levels and 

relatively high temperatures inside snow cavities. Specifically, we extracted the maximum log- 

transformed light level (l.max) and the median temperature recorded by the LT logger, as well as the 

median air temperature recorded by a meteorological tower within our study area during each resting 

period. We calculated t.diff for each resting period as the difference between median ambient air 

temperature and the median LT-recorded temperature, thereby reflecting the extent to which the 

animal was buffered from ambient temperatures. The variables l.max and t.diff were available in 

different combinations for each resting cluster. To this end, we excluded light levels recorded 

between sunset and sunrise, since these would not differ between cavities and surface beds.
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Additionally, the meteorological tower had missing temperature observations during our study 

period, thereby precluding the calculation of t.diff for some resting periods, and some resting 

periods were too short for a concurrent light level and/or temperature level measurement from the 

LT logger. Therefore, we built three separate models, each applied to a different subset of resting 

periods depending on the available data, to predict snow cavity use. Specifically, resting periods 

occurring during daylight hours for which air temperature data were available were subject to a 

model including both l.max and t.diff as predictors (model 1), resting periods occurring during 

daylight hours but missing air temperature data were subject to a model using only l.max as a 

predictor (model 2), and resting periods occurring at night were subject to a model using only t.diff 

as a predictor (model 3). Resting periods lacking both predictors were excluded.

We identified 443 resting periods using accelerometer data that occurred during the 73 visited 

GPS clusters; these observations constituted our full training data set. Of these, 218 were included in 

model 1, 237 in model 2 and 320 in model 3. We used logistic regression, with cavity/surface bed as 

the response, and evaluated model performance using a bootstrapped cross-validation approach for 

each of the three models separately (Champagne et al., 2014). To do this, we randomly split the data 

set for each model along a 70/30 training/testing split, fitted the model to the training portion, and 

calculated the accuracy of predictions for the testing portion. We then iterated this process 500 times 

to obtain confidence intervals associated with classification accuracy for each model. We made 

predictions for unvisited resting periods using models fitted to the full training data set associated 

with each model.

Among the training data set, both the variables l.max and t.diff predicted snow cavity use well, 

with l.max almost perfectly distinguishing surface beds from snow cavities (Fig. A1a). All three 

models performed well in predicting the use of snow cavities versus surface beds. Model 1, using 

both l.max and t.diff as predictors, had a median accuracy of 96.9% (95% confidence interval: 93.8— 

100%). Model 2, using only l.max as a predictor, had a median accuracy of 97.2% (95% C.I.: 94.4.8— 

100%). Model 3, using only t.diff as a predictor, had a median accuracy of 81.2% (95% C.I.: 74.0— 

87.5%).
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Figure D.1: (a) Maximum log(light) values (l.max) and (b) the difference between median collar 

temperature and median ambient air temperature (t.diff) during resting periods in snow cavities and 

surface beds.
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Institutional Animal Care and Use Committee
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April 12, 2016

To:

From:

Re:

Knut Kielland. PhD
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University Of Alaska Fairbanks IACUC

[847738-5] Arctic Wolverine Ecology

The IACUC reviewed and approved the Response/Follow-Up referenced above by Administrative Review.
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Approval Date:
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April 12, 2016

April 12, 2016

February 29, 2016

February 28, 2017

This action is included on the April 14,2016 IACUC Agenda.
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• Acquire and maintain all necessary permits and permissions prior to beginning work on this protocol. 
Failure to obtain or maintain valid permits is considered a violation of an IACUC protocol and could 
result in revocation Of IACUC approval.

• Ensure the protocol is up-to-date and submit modifications to the IACUC when necessary (see form 
006 "Significant changes requiring IACUC review" in the IRBNet Forms and Templates)

■ Inform research personnel that only activities described in the approved IACUC protocol can be 
performed. Ensure personnel have been appropriately trained to perform their duties.

• Be aware of status of other packages in IRBNet; this approval only applies to this package and 
the documents it contains; it does not imply approval for other revisions or renewals you may have 
submitted to the IACUC previously

• Ensure animal research personnel are aware of the reporting procedures on the following page
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