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Abstract 
 

 
 Cellular agriculture is an emerging technology aiming to replace existing methods for 
animal agriculture with tissue engineering and cell culture-based technologies. Cultured meat 
falls within this purview, using a biomimetic approach to recreate animal muscle tissue through 
tissue engineering. In the attempt to diminish the necessity of animal-derived materials within 
this process, plant-based scaffolds can be used as a substrate upon which stem cells are cultured. 
Due to the unfavorable environment of cellulose for mammalian cell-surface proteins, the 
approach was taken of coating cellulose nanofiber films with a fusion protein composed of a 
cellulose binding domain (CBD) protein and the cell-adhesion peptide motif RGD, upon which 
bovine satellite cells were then cultured. Using this protein as an intermediate upon which each 
component can bind, our results indicate statistically-significant enhancement of cell attachment 
within this system when using an FBS-containing media formulation. 
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Introduction 
 
 
Cultured Meat 
 
 As we look ahead to the next decade, substantial efforts must be made to address the 
rising challenges presented by our world’s climate and public health crises. Confronting these 
challenges force us to explore the myriad ways in which food systems are both part of the 
problem, while also holding the promise and possibility of being part of the solution. It is with 
this view that we consider the role of conventional meat production - and its effects on the 
environment, public health, and social relations - and how a transition to novel forms of meat 
production offered by cellular agriculture might mitigate or reverse these effects.  
 One area into which cellular agriculture can make inroads is on the front of 
environmental impact. Indeed, livestock contributions to the Earth’s volume of the three major 
greenhouse gases is staggering: it is responsible for 9% of carbon dioxide, 39% of methane, and 
65% of nitrous oxide emissions (FAO, 2006). Conventional agriculture also requires huge 
amounts of land, some of which is used for animal grazing and the vast majority of which is used 
for growing monocrop corn and soybeans for animals feed, often leading to deforestation and 
destruction of ecological landscapes (Hecht, 1993). Prospective lifecycle analyses, however, 
conclude that switching from conventional meat production to that of cultured meat might reduce  
land usage by 99%, water usage by 90%, and energy consumption by 40% (Tuomisto and de 
Mattos, 2011). More recent life cycle analyses, it should be noted, suggest that cultured meat 
production could require smaller quantities of agricultural inputs and land than livestock, but 
which could come at the expense of more intensive energy use (Mattick et al, 2015). 
 There are also serious concerns with conventional meat production from a public health 
perspective. Cardiovascular disease, diabetes, and colorectal cancer have long been associated 
with the consumption of red meat (Wolk, 2017). Meat production is also responsible for 
development and transmission of many foodborne illnesses, such as Salmonella, Campylobacter, 
and E. coli, vectors responsible for millions of medical illnesses a year in the United States 
(CDC, 2012). Across livestock operations around the world, there is the twin problem of 
widespread antibiotic administration to farm animals, while farms simultaneously create 
conditions that are fertile to harboring potentially pathogenic microbes (animal proximity, 
genetic homogeneity, and interaction with fecal matter) which, given the former, are more likely 
to develop antibiotic resistance (Mathew et al, 2007). The livestock industry also drives a great 
deal of human-animal interaction. In addition to the daily interaction that ranch and 
slaughterhouse workers have with farmed animals (and the outsized risk these people face for 
contracting avian and swine influenzas), increasing demand for meat production has led to the 
further encroachment onto lands previously-uninhabited by humans and the increased associated 
human interaction with potential pathogens in said environments (Greger, 2007; Slingenbergh, 
Gilbert, de Balogh, & Wint, 2004). Cellular agriculture, by contrast, offers flexibility in potential 
nutritional composition (Stout et al, 2020), and will reduce the need to interact regularly with 
farmed and wild animals alike.  
 Conventional meat production also necessitates the slaughter of animals. For many, this 
killing of sentient beings is immoral, and should be avoided as much as possible. While some 
animals raised for slaughter live relatively longer and more conformable lives, the vast majority 
of meat production on a global scale takes place on Concentrated Animal Feeding Operations, or 
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CAFO’s (Dickson-Hoyl & Reenberg, 2009). Animals living in these conditions often do not 
have adequate space for movement, defecation, or the capacity for socialization with members of 
their own family. The average age for slaughter of a cow raised for meat is somewhere in the 
range of 4 to 5 years, as opposed to the 20-year lifespans they usually have (De Vries & 
Marcondes, 2020). 
 Additionally, it is worth noting that conventional meat production is notoriously 
inefficient from an energetic point of view. For instance, cattle have a bioconversion rate of only 
15% (Egbert & Borders, 2006). From the point of view of maximizing caloric output for 
agricultural input, this is highly inefficient and ought to be optimized through alternative means. 
Finally, while it has become more common in recent years for food producers and distributors in 
western countries to cater towards vegan and vegetarian diets, as the global population increases 
- and standards of living in developing countries increase along with it – demand for meat is 
likely to substantially increase (Post, 2006). Indeed, this trend has been played out over the last 
two decades, with global meat consumption increasing by 58% between 1998 and 2018, a result 
of population increase, changing consumer preferences, and income growth (Whitnall and Pitts, 
2019). 
 It is thus imperative that alternatives to this system are explored. One such possibility for 
this can be found at the nexus of tissue engineering and food science: cellular agriculture. 
Cellular agriculture is an alternative agricultural process that uses cell culture to produce food 
and fiber that would otherwise be produced through conventional agricultural means (Rubio et 
al, 2019). Within this burgeoning field is the development of technologies necessary for creating 
cell-cultured, or “cultured” meat.  
 
 
How to get there: Tissue Engineering  
 
 The field of cultured meat seeks to recreate the processes by which meat is usually made. 
Instead of producing edible muscle and fat tissue in animal bodies, cultured meat aims to 
produce the same tissues and products ex vivo. To produce these biomimetic products, it is 
important to understand the composition of muscle and fat tissue, and the processes by which 
they usually develop. 
 Mammals, such as cows and pigs, contain three distinct kinds of muscle tissue: skeletal 
muscle, smooth muscle, and cardiac muscle. Skeletal muscle tissue is both what mammals use to 
move as well as what we usually consume when eating mammalian meat. It is comprised 
predominantly of three main components: muscle cells, intramuscular fat, and extracellular 
matrix proteins, the organization of which determines the tissue’s characteristic features. 
(Dickson-Hoyle & Reenberg, 2009). 
 Muscle tissue is made up of bundles of muscle fibers. Muscle fibers are long, 
multinucleated muscle cells there are in turn comprised of bundles of myofibrils. Myofibrils 
contain contractile units known as sarcomeres, which use the proteins myosin, actin, troponin, 
and tropomyosin as a means to create the power stroke of contraction (Dickson-Hoyle & 
Reenberg, 2009). The other main component in muscle tissue is the extracellular matrix (ECM) 
that attaches to, stabilizes, encloses, and separates muscle fibers (Marieb 2007). The ECM is a 
complex meshwork consisting of collagens, glycoproteins, proteoglycans, and elastin (Takala 
and Virtanen, 2000; Halper and Kjaer, 2014), providing three-dimensional structure and support 
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to the tissue, as well as stimulating integrin-dependent cell signaling pathways that enable 
integral cellular functions (Takala and Virtanen, 2000; Halper and Kjaer, 2014). 
 To mimic the structure of muscle tissue for cultured meat, the generative capacity of stem 
cells can be leveraged to recreate these hierarchical structures. Stem cells are extremely versatile, 
making them natural building blocks from which to build in-vitro tissue. This is because stem 
cells perform two crucial biological functions: they can divide with ease and high frequency, and 
they are able to differentiate into many distinct cell types. While there are several different 
varieties of stem cells, the two most general groups are embryonic stem cells and somatic stem 
cells.  
 Embryonic stem cells are present during development in utero. After the creation of a 
zygote and the development of a blastula, embryonic stem cells aggregate into clusters known as 
germ layers. There are three germ layers - the endoderm, mesoderm, and ectoderm - each 
composed of embryonic stem cells that have differentiated substantially enough to exit the stage 
of pluripotency (the ability to differentiate into any cell type in the body), and into multipotency 
(the ability to differentiate into a narrower subset of cell types). Each germ layer accounts for the 
development of different organ systems and tissue types that will eventually make up the body of 
a mammal. It is the mesoderm from which skeletal muscle tissue is created. 
 Satellite cells, by contrast, are the somatic stem cells which are responsible for 
regenerating skeletal muscle tissue. Satellite cells are triggered into asymmetrical division 
following tissue damage, upon which they will divide into both differentiated muscle cells as 
well as greater numbers of satellite cells. Asymmetrical division enables the body to immediately 
address the injury using the former cell type, while taking advantage of the latter’s high 
replicative ability to retain future regenerative capacity. 

The process of differentiation is triggered by a combination of different biochemical and 
biophysical signals in and around the cellular environment. These signals activate the expression 
of genes necessary for differentiation into and functionality as their new cell type. During 
embryonic development, for example, molecular families that induce the creation of different 
germ layers that determine cell fate include fibroblast growth factors (FGFs), the Wnt family, the 
superfamily of transforming growth factors—β(TGFβ), and bone morphogenic proteins (BMP) 
(Zakrzewsk et al, 2019). The Mesoderm-derived structures that appear as a result then generate 
the body’s first muscle fibers. Subsequent waves additional fibers are generated along these 
template fibers (Bentzinger et al, 2012). 
 Prior to injury, satellite cells reside in the basal lamina of muscle fibers and are 
characterized in their quiescent state by the expression of the Pax7 gene, an important factor for 
self-renewal in this cell type and the primary marker of satellite cell identity (Olguin et al, 2004). 
The microenvironment surrounding satellite cells which has the right mix factors (e.g., 
extracellular proteins, signaling molecules, etc.) to maintain their quiescent state is called the 
“satellite cell niche” (Bentzinger et al, 2012). 
 Once there is an injury to muscle tissue, however, damaged fibers release growth factors 
such as TNF-alpha, HGF, and FGF, which activate satellite cell signaling pathways necessary for 
entry into the cell cycle (Almeida et al, 2016). Following the proliferation phase that this 
triggers, a subgroup of these satellite cells will start down their path towards their eventual fate 
as muscle cells. Using extracellular matrix protein scaffolding as a template for regeneration of 
muscle tissue, environmental signals induce a transition away from Notch signaling, which 
expands the progenitor pool of adult skeletal muscle upon injury, and toward canonical Wnt3a 
signaling necessary for efficient myoblast differentiation and muscle regeneration (Brack et al. 
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2008). This leads to the differentiation of myoblasts and their fusion into myotubes, which in 
turn fuse with each other or to a previous fiber to repair the damaged muscle tissue (Almeida et 
al, 2016). As satellite cell make their journey down the path toward their fate as mature muscle 
cells, different genes are expressed at varied levels. For example, fusion competent cells express 
Myod, while early differentiated cells express Myogenin. Satellite cells which have entered the 
last stages of differentiation into skeletal muscle will express Myosin Heavy Chain, a structure 
integral to contraction (Brack et al, 2008).  
 
 

 
 
Figure 1: Progression of myogenic stem cells into mature muscle fibers, along with expression of key myogenic genes. (a) Satellite cells are 
activated and start to proliferate, thereby generating myogenic progenitor cells. Upon differentiation, myogenic progenitor cells differentiate into 
myocytes, which fuse to form myotubes and mature to become myofibers, the contractile unit of skeletal muscle. (b) Expression of key genes 
regulating myogenic cell fate. Figure taken from Schmidt et al, 2019. 
 
 In the attempt to harness the biological machinery needed for tissue development, tissue 
engineers recreate these processes by using the same major components: stem cells, extracellular 
scaffolding, and signaling molecules to direct cell fates (Ikada, 2006). Specific choices for these 
components will depend on the organ of interest; regrowing brain matter for a mouse will call for 
different materials, cell types, and media additives than those used for growing a set of 
capillaries in a caterpillar. Choice of cell types can vary based on organism, degree of genetic 
manipulation, and role in development. For this last consideration, tissue engineers often choose 
between somatic stem cells (such as satellite cells) and embryonic cells with greater 
pluripotency. Since the early 2000’s, there have also been the use of induced pluripotent stem 
cells, or iPSC’s, which utilize somatic cells (such as fibroblasts) that have been reprogrammed 
back into states of greater pluripotency (Yamanaka & Takahashi, 2006). For scaffolding, ECM 
proteins like collagen are often are used, and cast into molds for preferred geometry or formed 
into microcarriers (Post, 2012). Media types vary across cell type and tissue specifics, but are 
broadly comprised of the necessary sugars, fats, nutrients, vitamins, amino acids, and growth 
factors needed to induce proliferative and differentiated phases in the cell populations.  

For tissue engineers trying to culture bovine skeletal muscle tissue, the cell type of choice 
for many is the bovine satellite cell (BSC), owing to its ability to differentiate easily (Post, 
2012). The choice in scaffolding materials range, with cellulose, alginate, and mycelium having 
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been explored (Seah et al, 2022). To promote satellite cell proliferation, DMEM media 
supplemented with fetal bovine serum (FBS) is often used, though serum-free alternatives are 
also in development (Stout et al, 2021). In serum-containing systems, reduction of serum protein 
concentration in media is a tactic used to trigger differentiation. Another strategy often used in 
conjunction with this is culturing satellite cells to the point of confluency, so that cell-to-cell 
interaction will induce differentiation (Stout et al, 2020). The stress and strain generated from 
cell attachment to anchored scaffolding structures has also been shown to induce differentiation, 
thus designating mechanical stimulation as an important factor in muscle tissue development 
(Post, 2012).  

As we look to the future, large-scale bioreactors will be needed for large-scale production 
of cultured meat (Datar et al, 2009). Recent advancements have been made in the use of 
bioprinting technologies (Kang et al, 2021) and perfusion-based bioreactors (Specht et al, 2018) 
as ways to vascularize and construct more complex three-dimensional cultured tissues, though 
this is an area where more research is needed.  

 

 
 

Figure 2: Generalized workflow shown for production of cultured meat, showing biopsy from animal, proliferation of cells in culture, attachment 
to scaffold, differentiation into muscle tissue, and harvesting for consumption. Illustration by Nick Counter for New Harvest // CC BY-NC-
SA  4.0. 
 
 
Project Overview 
 

A substantial barrier to scaling up cultured meat production is the difficulty presented by 
the use of animal-free scaffolds. While extracellular matrix (ECM) proteins such as collagen and 
fibrin contain optimal proteins for cell adhesion, such materials are either animal-derived or 
costly to produce recombinantly (Wang et al, 2017). For this reason, scaffold materials sourced 
from cellulose-based agricultural waste present a great opportunity to both upcycle otherwise-
unusable waste within the food system while offering a low-cost, animal-free material. However, 
cellulose-based scaffolds are bio-inert, and therefore offer a sub-optimal substrate for cell 
attachment, proliferation, and differentiation (Mayer, 2003). 

 While a great deal of effort has gone into the development of chemically modified 
cellulose-based scaffolds for improved cell adhesion (Courtenay, 2017), such methods have their 
limitations due to the frequent addition of animal-derived or costly recombinant proteins. 
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Instead, one promising option is the use of a fusion protein comprised of the integrin-binding 
motif Arg-Gly-Asp (RGD) and a cellulose binding domain (CBD) to coat cellulose surfaces in 
order to increase the adhesion of bovine satellite cells (BSC) to cellulose. This fusion protein 
would act as an intermediate between the cells and the scaffold, with the RGD binding to 
integrins on the cell membrane and the CBD binding to the cellulose scaffold. If this approach 
proves effective, such information could lay crucial groundwork for the future possibility of 
engineering bovine satellite cells to produce this fusion protein themselves, cutting costs and 
possibly serving as an economically feasible path to scaling up cultured meat production. 
 Indeed, an essential component of tissue engineering is the presence of a material for 
cells to attach to. These materials, often referred to as scaffolds or extracellular matrices (ECM), 
provide structural support to encourage multicellular organization, as well as stimulating 
adhesion-mediated mechanical signals that cells require to undergo necessary biological 
processes (Khalili & Ahmad, 2015). In the context of biomedical engineering, scaffolds are 
usually comprised of synthetic or natural polymers (Obrien, 2011). Scaffolds for cultured meat 
production, however, have the added design constraints of edibility, texture, and animal-free 
sourcing. While a great deal of mammalian tissue utilizes collagen as an effective ECM (Du 
Lullo et al, 2002) its sourcing is both ethically and financially problematic, given the necessity of 
either animal slaughter or expensive recombinant production (Wang et al, 2017). 
 Thus, it might be promising to look across biological kingdoms and consider the building 
blocks of a vast array of plant life: cellulose. Nanocellulose has been shown to be a promising 
biomaterial for medical applications of tissue engineering including blood vessels, bone, liver, 
cartilage and adipose tissue (Bacakova et al, 2019). Other studies have explored the concept of 
cellulose in the form of decellularized plants (e.g., spinach, apples) for in-vitro muscle cell 
culture (Campuzano & Pelling, 2019. Gershlak et al, 2017. Modulevsky et al, 2014). Despite the 
many advantages of cellulose as a scaffold and biomaterial, one disadvantage to using cellulose 
is its unfavorable environment for cell attachment and adhesion - a crucial point given that robust 
cell attachment is important for inducing strong cellular differentiation into mature muscle and 
adipose tissues present in meat (Mayer, 2003). For this reason, one promising strategy could be 
the introduction of a fusion CBD-RGD protein to act as an intermediate structure, mediating the 
attachment between a cellulose-based scaffold and integrins on bovine satellite cells (BSC).  
 
 

 
Figure 3: Fusion proteins containing cellulose binding domains and RGD binding motifs (CBD-RGD), added exogenously in media, 
to enable BSC attachment onto cellulose substrates. CBD-RGD proteins bind to cellulose on one end with its CBD domain and to cells 
on the other end with its RGD domain. 



 9 

 Cellulolytic enzymes found in numerous organisms are comprised of a catalytic domain 
and a cellulose binding domain (CBD). While many CBD’s exist, that of the fungus 
Trichoderma koningii has been previously incorporated into CBD-RGD fusion proteins (Chen et 
al, 2002), and was therefore used in this project. RGD peptide motifs are a key target for cellular 
integrins, and are involved in cell adhesion to many different extracellular matrix proteins 
(Ruoslahti, 1996). These proteins have extensive precedent in tissue engineering for a range of 
applications (Want et al, 2013. Jeschke et al, 2002), and therefore make a promising counterpart 
for CBD-RGD fusion protein. 
 Such CBD-RGD fusion proteins have previously been used for a number of tissue 
systems, including in the attempted promotion of chrondogenis in adipose stem cells (Chang et 
al, 2009), and investigations into improved clinical osteogenesis (Visser et al, 2013). Hsu et al 
investigated its effects on promoting cellular adhesion to biomedical polyurethane in a variety of 
cell types, reporting that the effect on cellular adhesion correlated with the amount of CBD-RGD 
physically adsorbed on the material surface (Hsu et al, 2004). Their findings demonstrated that a 
small amount of protein (20 μl of 0.1 mg/ml protein coating on a 15 mm slide) displayed a 
maximal effect in promoting cellular adhesion. In this work, I investigated the impact that this 
fusion protein could have on bovine satellite cells (BSCs) and studied its impact on cell 
attachment, growth, and differentiation on cellulose-based scaffolds.  
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Materials and Methods 
 
 
CNF Films - Construction 
 
 Two-dimensional biofilms were constructed from soluble cellulose nanofiber (CNF). 3% 
CNF solution (Cellulose Lab, 6 Beechwood Cres, E3B 2S8 Fredericton, New Brunswick, 
Canada) was diluted with deionized water (DIW) to a final concentration of 1% CNF solution. 
1% CNF solution was then cast into 100mm culture dishes and spread for complete covering. 
CNF-containing culture dishes were left to dry in a chemical fume hood. Depending on the 
environmental conditions, drying times varied from 24 hours to 48 hours. Dried films (Figure 4) 
were then cut into 10mm-diameter circle-shaped samples using biopsy punches. CNF samples 
were then sterilized in the autoclave at 121º C for with a 15-minute dry heating cycle and 15-
minute drying cycle.  
 
 

 
 

Figure 4: Cellulose Nanofiber (CNF) film after casting, drying, and removal from culture dish. 

 
CBD-RGD Fusion Protein - Peptide Reconstitution 
 

The amino acid sequence used for the CBD-RGD fusion protein is as follows: 
PTQHWGQCGGIGYSGPTVCASGTTCQVLNPYYSQCLPTTPTGRGDSAS. Synthesis, 
purification, and quality control analysis of the fusion protein was performed by Alan Scientific, 
with HPLC-grade purity of 96.48%. Protein was provided in powdered form, and was 
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reconstituted in acetonitrile and deionized water (1 mg peptide dissolved into 0.33 mL ACN, 
with 0.67 mL H20 subsequently added). Protein stock solution was then made (0.4 mg/ml) (in 
200 mM Tris–HCl (pH = 7.4), 100 mM NaCl, 20 mM CaCl2), sterilized with a syringe filter and 
stored in 1 mL aliquots in a freezer at −20º C. Protein stock solution was warmed to room 
temperature before use.  
 
CBD-RGD Fusion Protein - Film Coating 
 
 To prepare protein coating, thawed protein stock solution was diluted in Tris-HCl buffer 
to 0.04 mg/mL. For all experiments, cellulose nanofiber samples were placed into wells of a low-
attachment 24-well plate. For each CNF sample, protein coating was achieved by dispensing 500 
µL of 0.04 mg/mL solution into each sample-containing well, and left to adsorb for 1 hour. After 
one hour, remaining solution was aspirated from sample-containing wells, and samples were 
washed with 500 µL PBS to remove any non-adherent fusion protein. 
 
General Culture 
 
Cell Sourcing 
 
 Bovine satellite cells (BSC) were isolated from a biopsy sample of a Simmental calf from 
Tufts Veterinary School [Grafton, MA]. Isolated cells were kept in vials containing one million 
cells each, frozen in fetal-bovine serum supplemented with 10% DMSO and stored in liquid 
nitrogen. DMSO-containing frozen cell suspensions were thawed and dispensed into fetal bovine 
serum (FBS)-containing growth media (DMEM, 20% FBS, 1 ng/mL FGF-2, and 1% antibiotic) 
to neutralize the cytotoxic effects of DMSO. Cell suspension was then placed in a centrifuge and 
spun down for 5 minutes at 300 RCF at room temperature, with DMSO and media-containing 
supernatant subsequently aspirated off. Cell pellet was then resuspended in FBS-containing 
growth medium and 500,000 cells were seeded into each laminin-coated T-175 cell culture flask 
used (0.25 ug/cm2 laminin of iMatrix 511-silk) and cultured in incubators at 37º C.  
 Routine cell passaging was performed as follows: Flasks were aspirated, washed with 
PBS, and aspirated again to remove media. 3 mL of trypsin was then added to each flask, 
followed by incubation for 5 minutes at 37º Celsius. Trypsinized cells were then removed from 
flasks and added into conical tubes containing 7 mL of FBS-containing media to neutralize the 
cytotoxic effects of trypsin. Cell suspension was then centrifuged at 300 RCF for 5 minutes to 
separate the cell pellet from the media supernatant, after which the remaining trypsin-containing 
media was aspirated. The cell pellet was then resuspended in 10 mL of FBS-containing media. 
Cells were counted using NucleoCounter® NC-200™ (Chemometec). After cells were counted, 
500,000 cells were seeded into each new laminin-coated T-175 cell culture flask and cultured in 
incubators at 37º C.  
 
Cell Seeding onto CNF Films and Subsequent Culture 
 
 To seed CNF films, BSCs were passaged as above and seeded at a density of 20,000 
cells/cm2 for proliferation experiments or 100,000 cells/cm2 for differentiation experiments. This 
was done in a 24-well low-attachment plate, with 3 replicates of each treatment: Without fusion 
protein in FBS media and with fusion protein in FBS media, and without fusion protein in 
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serum-free media and with fusion protein in serum-free media. B8 media was used as the serum-
free option during seeding, and was changed to Beefy-9 media during the next subsequent 
feeding. B8 media contents was as follows: 1 L DMEM, 200 mg L-ascorbic acid 2-phosphate, 20 
mg Insulin, 20 mg Transferrin, 20 µg Sodium selenite, 40 µg FGF2, 100 ng NRG1, and 100 ng 
TGFb3. Beefy-9 media used contained the same contents, with 800 µg recombinant Albumin 
added. FBS media as described previously was used for the serum-containing option. Media was 
replaced every two days for the duration of culture. 
 
Cell Attachment Experiments 
 
Live-Dead Stain 
 
 To qualitatively determine whether coating CNF scaffolds with CBD-RGD fusion protein 
had an effect on bovine satellite cell attachment, a live-dead stain and subsequent microscopy 
imaging was performed. The LIVE/DEAD® Viability/Cytotoxicity Kit (ThermoFischer 
Scientific) discriminates live from dead cells by simultaneously staining with green-fluorescent 
calcein-AM to indicate intracellular esterase activity and red-fluorescent ethidium homodimer-1 
to indicate loss of plasma membrane integrity. The Live-Dead stain was as follows: The light in 
the biosafety cabinet was turned off due to the assay’s photosensitivity, after which media was 
aspirated from each well. Each sample was then washed with PBS to remove any residual 
unbound cells, and aspirated out. Live-Dead stain and the appropriate media type was then added 
to each sample at a 1:1 ratio. The well plate was then covered with tinfoil to avoid light 
exposure, and left to sit at room temperature for 30 minutes. After 30 minutes, tinfoil was 
removed and samples were extracted to image on the Keyence microscope. Measurements were 
taken on days 1 and 4 after seeding, with assays done on separate plates designated for each 
respective day. 
 
Presto Blue Assay 
 
 To quantitatively determine whether coating CNF scaffolds with CBD-RGD fusion 
protein had an effect on bovine satellite cell attachment, a Presto Blue assay was performed. 
When added to cells, the PrestoBlue® reagent (ThermoFischer Scientific) is modified by the 
reducing environment of the viable cell and turns red in color, becoming highly fluorescent. This 
color change is then detected using fluorescence or absorbance measurements. Assay was done 
on low-attachment plates with a n = 3 for each treatment group: without protein in FBS media 
and with protein in FBS media, and without protein in serum-free media and with protein in 
serum-free media. Due to the assay’s photosensitivity, lights in the room and biosafety cabinet 
were turned off. Media was aspirated from each sample-containing well, and each sample was 
then washed with PBS to remove any residual unbound cells, and aspirated out. A 9:1 mixture of 
the respective media type to Presto Blue solution was then added to each well, in addition to 
wells without samples to control for differences among fluorescence levels between media types 
(n = 3 for controls of each media type). The plate was then covered with tinfoil to protect against 
light exposure, and left to incubate for 1 hour at 37º C. After 1 hour, solution from each sample 
was transitioned into wells in a 96-well plate, with two technical replicates done for each 
biological replicate. The 96-well plate was then placed in a microplate reader to detect 
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fluorescence levels for each sample, with excitation at 560 nm and emission at 590 nm. 
Measurement were taken, using the same 24-well plates, on days 1 and 4 after seeding.  
 
Cell Proliferation Experiments 
 
 To assess whether the CBD-RGD protein had any effect on the proliferative capacities of 
BSC’s cultured on CNF films, a growth curve was conducted. To achieve this, the Presto Blue 
assay was performed on days 1, 4, 7, and 10 after seeding, using the same protocols as described 
for the cell attachment experiments.   
 
Cell Differentiation Experiments 
 
 To assess whether the CBD-RGD protein had any effect on the ability of BSC’s to 
differentiate into muscle fibers, cells were cultured in their varying treatment groups and 
immunofluorescent staining was performed on said cultures. Because of limited success of 
cultures growth within serum-free media conditions, differentiation experiments were limited to 
serum-containing cultures, using protein-coated CNF films and non-coated CNF films for 
culture. Samples were each seeded with 100,000 cells/cm2, and media was changed every two 
days until day 7 after seeding, at which point one final media change was performed. Culture 
conditions were otherwise identical to those described above. Cultures on different plates were 
incubated for 7 and 14 days, respectively, following this final media change to simulate 
starvation conditions known to induce differentiation. Upon the completion of each of these time 
periods, immunofluorescent staining was performed to determine morphological markers 
characteristic of muscle formation. Staining was performed as follows: cells were fixed with 4% 
paraformaldehyde (ThermoFisher #AAJ61899AK) for 30 minutes, washed in PBS, 
permeabilized for 15 minutes using 0.5% Triton X (Sigma #T8787) in PBS, blocked for 45 min 
using 5% goat serum (ThermoFisher #16210064) in PBS with 0.05% sodium azide (Sigma 
#S2002), and washed with PBS containing 0.1% Tween-20 (Sigma #P1379). Primary MHC 
antibodies (Developmental studies hybridoma bank #MF-20, Iowa City, IA, USA) were diluted 
to 4 μg/mL in blocking solution containing 1:100 Phalloidin 594 (ThermoFisher #A12381) and 
added to differentiated cells. Primary antibodies were incubated overnight at 4º C. The following 
day, cells were washed with PBS + Tween-20, incubated with secondary antibodies for MHC 
(ThermoFisher #A-11001, 1:1000) for 1 hour at room temperature, washed with PBS + tween-
20, and mounted with Fluoroshield mounting medium with DAPI (Abcam #ab104139, 
Cambridge, UK) before imaging.  
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Results 
 
Cell Attachment Experiments  
 
FBS System 
 

Cell attachment experiments were first performed on cultures containing FBS media. 
Microscopy images reveal increased cell adhesion on day 1 after seeding. This trend continued 
through day 4 (Figure 5 – A). Results indicate that the CBD-RGD protein improves initial cell 
adhesion, and that the favorable cell-material interaction which is facilitated by the fusion protein 
has long-term efficacy throughout culture. A Presto Blue assay was also performed to indirectly 
measure cell numbers through fluorescence measurements of metabolized resazurin (Figure 5 – 
B). To detect if there were a significant difference in cell attachment between the two sample 
groups cultured using FBS-containing media, a standard t-test was performed on this data. Assay 
was performed on three biological replicates (n = 3) for each treatment group, each biological 
group having two technical replicates. Results show a significant increase in cell adhesion on day 
1 (p < 0.001) for cells seeded onto fusion-protein coated films, which supports the conclusions 
from the Live-Dead stains. After 4 days of culture, cell attachment to the protein-coated films 
was likewise increased compared with uncoated films (p < 0.0001). Taken together, these results 
demonstrate clear evidence supporting the hypothesis that in a system using FBS-containing 
media, coating cellulose nanofiber films with a CBD-RGD fusion protein enhances bovine 
satellite cell attachment to the substrate.  
 

Day 1 – Presto Blue Day 1 – None   Day 1 – Protein 

   
Day 4 – Presto Blue Day 4 – None   Day 4 – Protein 

 
  

 

Figure 6: Cell attachment experiments performed on FBS-containing cultures. Data from presto blue assays performed on days 1 and 
4 after seeding (A). Microscopy images taken following Live-Dead stain for viable cells are shown on days 1 and 4 after seeding (B). 
Fluorescent dots represent live cells. “None” indicates treatment without fusion protein, while “protein” indicates treatment with 
fusion protein. 
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Serum-Free System 
 

Cell attachment experiments were also performed on cultures containing serum-free 
media. Microscopy images reveal no clear differences between treatments one day after seeding, 
nor at 4 days after seeding (Figure 6 – A). To detect if there were a significant difference in cell 
attachment between the two sample groups cultured using serum-free media, a standard t-test 
was performed on data from the fluorescence levels of metabolized resazurin obtained using the 
Presto Blue assay (Figure 6 - B). This was performed on three biological replicates (n = 3) for 
each treatment group, each biological group having two technical replicates when performing the 
assay. Results show no significant difference between treatments groups one day after seeding (p 
= 0.627894). While no significant difference was seen between uncoated and coated samples on 
day 4 (p = 0.055), there was a strong trend towards improved outcomes with the coating. Taken 
together, these results show that for a system using serum-free media (B8 and Beefy-9), coating 
cellulose nanofiber films with a CBD-RGD fusion protein has little to no effect on bovine 
satellite cell attachment to the substrate immediately after seeding, though it is possible that cell 
attachment might be improved over time. 
 
 

Day 1 – Presto Blue Day 1 – None   Day 1 – Protein 

   
Day 4 – Presto Blue Day 4 – None   Day 4 – Protein 

   
 

Figure 6: Cell attachment experiments performed on serum-free cultures. Data from presto blue assays performed on days 1 and 4 
after seeding (A). Microscopy images taken following Live-Dead stain for viable cells are shown on days 1 and 4 after seeding (B). 
Fluorescent dots represent live cells. “None” indicates treatment without fusion protein, while “protein” indicates treatment with 
fusion protein. 
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Cell Proliferation Experiments 
 
FBS System 
 
 To assess the CBD-RGD fusion protein’s effect on cell proliferation within an FBS 
media-based system, the Presto Blue assay was performed on days 1, 4, 7, and 10 after seeding 
for cells growing on a protein-coated CNF film and cells growing on a non-treated CNF film, 
respectively. This was performed on three biological replicates (n = 3) for each treatment group, 
each biological group having two technical replicates when performing the assay. Cells grown on 
protein-coated CNF films consistently outperformed those grown on CNF without the fusion 
protein (Figure 7), with a statistically significant difference between the treatment groups on day 
1 (p = 0.003109), day 4 (p = 0.000956), day 7 (p < .0001), and day 10 (p = 0.001254).  
 While there was significant difference in relative cell number between the two treatments 
on each day after seeding, this does not tell the whole story. Indeed, fusion protein-treated cells 
exhibited higher initial attachment and greater proliferation over the first 4 days than their non-
protein-treated counterparts, but their cell numbers began to decline thereafter, indicating cell 
death. This might have been owed into cell detachment from the surface, as samples were 
washed to remove non-adherent cells at the outset of every Presto Blue assay. This could point to 
the possibility of CBD-RGD protein inactivity over time, resulting in protein detachment from 
the substrate and subsequent cell detachment as a result. That being said, non-protein-treated 
cells also exhibited statistically significant cell death by day 10, though at a different rate from 
the protein-treated group. 
 
 

 
 

Figure 7: All data points were normalized to Day 1 fluorescence levels for cultures without protein. “None” signifies cultures without 
fusion protein, and “Protein” indicates cultures with fusion protein. 
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Serum-Free System 
 

To assess the CBD-RGD fusion protein’s effect on cell proliferation within a serum-free 
media-based system, the Presto Blue assay was performed on days 1, 4, 7, and 10 after seeding 
for cells growing on a protein-coated CNF film and cells growing on a non-treated CNF film, 
respectively (Figure 8). This was performed on three biological replicates (n = 3) for each 
treatment group, each biological group having two technical replicates when performing the 
assay. Cells grown on protein-coated CNF films showed no statistically significant difference 
from those grown on CNF without the fusion protein, a trend held for each day on which a 
measurement was made. The t-test comparing these two groups demonstrated two-tailed p-values 
and for each day as followed. Day 1: p = 0.906059, Day 4: p = 0.837885, Day 7: p = 0.476314, 
Day 10: p = 0.206779. 

In each treatment, both groups exhibited perceived but statistically insignificant growth, 
as well as perceived but statistically insignificant cell death. They appeared to do so at very 
similar rates, pointing to the conclusion that the CBD-RGD fusion protein did not have any 
effect on cell growth within this system.  
 
 

 
 

Figure 8: All data points were normalized to Day 1 fluorescence levels for cultures without protein. “None” signifies cultures without 
fusion protein, and “Protein” indicates cultures with fusion protein. 
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Muscle Formation Experiments 
 
 Given serum-free BSC cultures’ low attachment levels, slow growth rate, and relative 
inability to achieve confluency within this system, while also taking into account the importance 
of confluency for inducing differentiation, experiments to elucidate the cells’ ability to 
differentiate into muscle tissue were limited to cell culture systems containing FBS-based media. 
Microscopy images taken after immunofluorescent staining for myosin heavy chain (green), 
actin (red), and cell nuclei (blue) reveal no clear differences between cultures using the CBD-
RGD fusion protein and cultures without it. Cultures in each treatment group failed to reach 
confluency and exhibited minimal differentiation. Microscope images for cultures without fusion 
protein on day 7 did reveal some multinucleated cells, though their sphere-like shapes indicate 
possible coiling of the fibers from detachment from the substrate on one end of the fiber. Day 7 
images of cultures with the fusion protein also show limited differentiation (Figure 9), with 
sporadic formation of multinucleated, striated cells. Day 14 images of cultures without protein 
again show limited cell numbers and limited differentiation, with again the possible sporadic 
formation of coiled muscle fiber. Day 14 images (Figure 10) of cultures using fusion protein also 
show limited cell numbers and associated differentiation, with sporadic formation of possible 
multinucleated muscle fibers with greater degrees of actin and myosin heavy chain-striation. 
Such results should be viewed with a degree of skepticism, and indicate a need for further 
research on the matter. Like in the growth curve, it is possible that initially-applied fusion protein 
coats might have become unbound, necessitating the need for reapplication of fusion protein 
solution over the course of long-term culture.  
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Day 7  
 
 

4x magnitude - None 20x magnitude - None 
 

 
 

 

4x magnitude - Protein 20x magnitude - Protein 
 

 
 

 

 

Figure 9: Immunofluorescent staining to elucidate cell fate on the differentiation path to muscle fiber formation within a FBS media-
containing system. Microscopy images taken on day 7 after inducing differentiation. Green = Myosin Heavy chain, Red = actin, Blue 
= nuclei. “None” indicates treatment without fusion protein, and “Protein” indicates treatment with fusion protein. 
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Day 14 
 
 

4x magnitude - None 20x magnitude - None 
 

 
 

 

4x magnitude - Protein 20x magnitude - Protein 
 

 
 

 

 

Figure 10: Immunofluorescent staining to elucidate cell fate on the differentiation path to muscle fiber formation within a FBS media-
containing system. Microscopy images taken on day 14 after inducing differentiation. Green = Myosin Heavy chain, Red = actin, Blue 
= nuclei. “None” indicates treatment without fusion protein, and “Protein” indicates treatment with fusion protein. 
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Discussion 
 

With the goal of removing animal-derived materials from cultured meat production 
systems, we sought to tackle two problems simultaneously: creating greater biocompatibility 
between plant-based scaffolds and mammalian cell types, and reducing the reliance on fetal 
bovine serum within media formulations. With regard to accomplishing the former, we attempted 
to harness the CBD-RGD fusion protein’s dual compatibility in binding to both cellulose and 
mammalian cell surface integrins to enhance bovine satellite’s attachment to cellulose nanofiber 
scaffolds. Due to cellulose’s natural abundance, edibility, and capacity for being upcycled from 
agricultural waste, progress on this front would help enable tissue engineering of cultured meat’s 
transition away from the use of animal-derived or expensive recombinantly-produced collagen as 
a scaffold.  
 On this front progress was made, though with still a number of questions yet unresolved. 
Indeed, cell attachment experiments with FBS media-containing cultures demonstrated a 
statistically-significant enhancement of BSC attachment to CNF scaffolds when the CBD-RGD 
fusion protein was applied. Growth over a relatively short period in FBS-containing systems was 
likewise enhanced, though cell populations declined over time in both protein-coated and non-
coated cultures. This latter phenomenon points to the possibility of the fusion protein’s decreased 
activity over time, perhaps through unbinding or degradation. Future research would be well-
served to determine the protein’s binding dynamics over time to both cellulose and cells as a way 
determine the limiting factors within the system and to analyze whether the reapplication of 
protein over the course of culture might be necessary. Such research may also improve 
proliferation and differentiation of BSC’s into muscle fibers, an objective that must be 
accomplished if such a system is seriously considered for use in cultured meat production.  
 Interestingly, the enhancement of cell attachment seen in FBS-containing cultures was 
not replicated in their serum-free counterparts. This was surprising, and was in many ways 
counter-intuitive. This is because FBS contains a number of proteins that also enhance cell 
attachment to the extracellular matrix (Johnson, 2013). This fact led us to the hypothesis that 
FBS-containing media might mask any possible effect that the fusion protein might have on 
promoting cell attachment, and that a possible enhancing effect might be more pronounced in a 
serum-free system devoid of FBS proteins. The oppositive, of course, was observed, begging a 
number of questions. It might be possible that there is a component of FBS that enhances the 
CBD-RGD protein’s binding capacity, such as an enzyme changing the fusion protein’s 
conformation to accomplish this. It is also possible that there is some synergistic effect created 
by the presence of FBS proteins and the fusion protein, where one enhances the effect of the 
other. Such questions ought to guide future research into the matter, particularly as development 
serum-free media alternatives continues.  
 If this method of improving the biocompatibility of mammalian cell types cultured onto 
plant-based scaffolds is further validated and optimized, one can envision a future in which a 
number of different paths that R&D might take. One such direction could be investigating 
whether the CBD-RGD fusion protein might have a similar effect when other cell types relevant 
to cellular agriculture, such as avian, porcine, or fish cell types. Another obvious direction would 
be to determine whether these effects translate from two-dimensional culture (using CNF films) 
to three-dimensional culture, a step integral to the creation of any large-scale muscle and fat 
tissue. Finally, genetic engineering of cells to endogenously express and secrete the fusion 
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protein might present a possible way of integrating the protein into the system without incurring 
additional supply chain costs that would come from sourcing from recombinant production.  

In conclusion, this study aimed to explore the effect of a CBD-RGD fusion protein in 
enhancing bovine satellite cell attachment to cellulose-based scaffolds. While results show a 
promising starting point, it is clear that further research is needed. If successful, this research 
direction could enable the use of plant-based scaffolds, and help with the realization of the 
potential offered by cultured meat technologies. 
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