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Abstract

We present and analyze a model for how opinions might spread throughout
a network of people sharing information. Our model is called the smoothed
bounded-confidence model and is inspired by the bounded-confidence
model of opinion dynamics proposed by Hegselmann and Krause. In the
Hegselmann–Krause model, agents move towards the average opinion of
their neighbors. However, an agent only factors a neighbor into the average
if their opinions are sufficiently similar. In our model, we replace this binary
threshold with a logarithmic weighting function that rewards neighbors
with similar opinions and minimizes the effect of dissimilar ones. This
weighting function can be tuned with parameters 𝛾 and 𝛿 and recovers the
Hegselmann–Krause model as 𝛾 approaches infinity.

We analyze the effect of 𝛾 and 𝛿 on some of the stationary states of the
smoothed bounded-confidence model on the complete graph. In particular,
we analyze the stationary states with consensus and those with two distinct
opinions.
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Chapter 1

Introducing Some Classical
Models of Opinion Dynamics

1.1 Towards a Mathematical Model of Opinions

We are all in a constant state of forming new opinions and adapting old
ones in response to new pieces of information. Our opinions about local
restaurants, political platforms, and favorite movies all live in our mind with
some degree of flux. Sometimes these opinions change in direct response
to a new experience (maybe one of the restaurants you frequent has just
changed their menu and it is not to your liking). However, our opinions can
also change by simply learning the current opinions of other people. The
restaurant’s menu may not change at all, but if you start to interact with a
number of people who have a negative opinion of the restaurant’s food, that
can affect your opinion as well. It is this latter phenomenon that we will be
investigating.

In this thesis, we analyze a model of opinion dynamics based on the
notion that our opinions tend to move towards the opinions of others that
we share information with. In particular, we will be analyzing the smoothed
bounded-confidence model, which has been recently proposed by Brooks
and Chodrow (2022). It is inspired by some of the foundational models of
opinion dynamics, most notably the models of Taylor (1968) and Hegselmann
and Krause (2002). In particular, the smoothed bounded-confidence model
is a tunable model which recovers either the Taylor or Hegselmann–Krause
model for particular parameter choices.

Like both the Taylor and Hegselmann–Krause models, the smoothed
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bounded-confidence model is defined on a network of people. That is, we
consider how opinions propagate on a particular graph structure. In this
thesis, we will be focused on characterizing the behavior of the smoothed
bounded-confidence model on complete graphs. We hope that an under-
standing of the dynamics on this graph with simple structure can inform an
understanding of the dynamics on more complicated graphs. (Homs-Dones
et al. (2021) has shown that there exist relationships between dynamics on a
network and those dynamics on its subgraphs.)

1.2 Introduction to Nonlinear Systems

There are many ways that one could choose to mathematically represent
opinions. Some modelers choose to assign agents to opinion categories and
have them update which opinion category they belong to (see, for instance,
Yildiz et al. (2013) where each agent has one of two possible opinions).

In the smoothed bounded-confidence model, as in the Taylor and
Hegselmann–Krause models, we instead use an interval of the real numbers
to represent the opinions of our agents. That is, each agent 𝑋𝑖 in the graph
has an opinion 𝑥𝑖 ∈ ℝ. (To keep consistent throughout this thesis, we will
be using the opinion interval 𝑥𝑖 ∈ [−1, 1].) Then, the opinion of 𝑋𝑖 changes
continuously in time as a nonlinear function of the opinions of its neighbors.

Because the opinion profile x evolves according to a nonlinear function,
we will be leveraging theory from the study of nonlinear systems to study
its behavior. We introduce some key ideas from nonlinear systems here,
but for a more complete description of this theory see Alligood et al. (1996),
Guckenheimer and Holmes (2013), Strogatz (1994), or other textbooks on
the subject).

Definition 1.2.1. Stationary States (Alligood et al. (1996)). A constant solution
of the autonomous differential equation ¤x = f(x) is called a stationary state
of the equation. A stationary state necessarily satisfies f(x) = 0.

Stationary states go by other names as well (such as equilibria and fixed
points) but we will call them stationary states throughout this thesis for
consistency. In our model, stationary states are distributions of opinions
across our network such that none of the opinions are changing with time.

Definition 1.2.2. Asymptotic Stability (Alligood et al. (1996)). A stationary
state x∗ is asymptotically stable if it is both stable (every initial point x0
chosen very close to x∗ has the property that the solution f(𝑡 , x0) stays close
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to x∗ for 𝑡 ≥ 0) and attracting (the trajectories of nearby initial conditions
converge to it). We say that x∗ is unstable if it is not stable.

Characterizing the stability of the stationary states of our system is
important for understanding the dynamics. Knowing which stationary
states are actually being approached by solution trajectories can help us
understand the behavior of the solution trajectories in general. The following
theorem will help us determine the stability of our stationary states.
Theorem 1.1. (Alligood et al. (1996)). Let x∗ be a stationary state of ¤x = f(x). If the
real part of each eigenvalue of Jf(x∗) is strictly negative, then x∗ is asymptotically
stable. If the real part of at least one eigenvalue is strictly positive, then x∗ is
unstable.

Here, Jf(x∗) refers to the Jacobian of f at x∗. The Jacobian of f at x∗ is
a matrix of partial derivatives of f evaluated at x∗ and is the best linear
approximation of f at x∗ (see: Alligood et al. (1996)).

With this nonlinear systems vocabulary under our belt, we move on to
defining our model.

1.3 The Smoothed Bounded-Confidence Model

Before introducing the Taylor and Hegselmann–Krause models, we define
the smoothed bounded-confidence model. Having this definition in mind
will be useful to us as we motivate the special cases of the Taylor and
Hegselmann–Krause models that the smoothed bounded-confidence model
can recover.

We consider a graph defined by a vertex set of agents 𝒩 = {𝑋1 . . . , 𝑋𝑁 }
and edges ℰ ⊂ 𝒩 ×𝒩 . (In summation bounds, we often refer to an agent 𝑋𝑖

simply as 𝑖 for visual clarity.) The agents are partitioned into two subsets:
the persuadable nodes 𝒫 whose opinions can update with time and the
zealots 𝒵 whose opinions are fixed. Each agent 𝑋𝑖 has an opinion 𝑥𝑖 which
is governed by the dynamics

𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥) ≜

{∑
𝑗∈𝒩 𝑤(𝑥𝑖 ,𝑥 𝑗)(𝑥 𝑗−𝑥𝑖)∑

𝑗∈𝒩 𝑤(𝑥𝑖 ,𝑥 𝑗) 𝑖 ∈ 𝒫
0 𝑖 ∈ 𝒵

(1.1)

where 𝑤(𝑥𝑖 , 𝑥 𝑗) is the weighting function

𝑤(𝑥𝑖 , 𝑥 𝑗) =
{ 1

1+𝑒−𝛾(𝑥𝑖−𝑥𝑗 )
2−𝛾𝛿 (𝑖 , 𝑗) ∈ ℰ

0 otherwise
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Figure 1.1 The 𝑥 𝑗 contribution to the weighted average that governs the
dynamics of 𝑥𝑖 for 𝛿 = 0.25 (note that the step occurs at

√
𝛿 = 0.5)

and 𝛾, 𝛿 ≥ 0 are model parameters.
In this model, the agents move towards the weighted average of their

neighbors’ opinions, where the weighting is dictated by 𝑤(𝑥𝑖 , 𝑥 𝑗). To get a
sense of how this weighted average operates for various values of the model
parameter 𝛾, see Figure 1.1.

1.4 Taylor’s Model of Continuous Averaging

In this section, we describe in further detail the model proposed in Taylor
(1968). Taylor introduced this model as an extension of the model proposed
in Abelson (1967), in an attempt to explain how a lack of consensus could
emerge from an averaging-based model of opinion dynamics. In Abelson’s
original model, the system always converged to consensus (that is, to a point
where all of the agents had the same opinion value). He suggested the
development of a variation on his model that would include agents with
fixed opinions to drive faction formation. Taylor accepted this challenge and
proposed his model soon afterwards.
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Taylor called these agents with fixed opinions “constant sources.” To
keep with current convention in the literature (seen as early as Mobilia
(2003)), we will refer to them as “zealots.” We will refer to the other agents
as “persuadable nodes.” From a modelling perspective, the interpretation of
zealots is incredibly flexible. In Brooks and Porter (2020) zealots are used to
represent media outlets whose content is consumed by agents in the network
but whose platforms are not changed by the state of the network. The
zealots could also represent actual people in the network who are just too
stubborn to change their minds on the opinion at hand. They could represent
the opinions of people who matter to the persuadable nodes but are not
present for the exchange of information that is occurring in the network.
The point here is that zealots can have meaningful and reasonable real-
world interpretations—they are not just an artificial constraint introduced in
pursuit of non-consensus stationary states.

In Taylor’s model, we begin with a network of agents. To keep notational
conventions consistent throughout this thesis we will denote the set of graph
vertices 𝒩 and the set of graph edges ℰ. Each agent 𝑋𝑖 ∈ 𝒩 has an opinion
𝑥𝑖 ∈ [−1, 1]. In Taylor’s model, the edges are weighted and directed. Each
directed edge (𝑖 , 𝑗) has associated with it a weight 𝑎𝑖 𝑗 ≥ 0 that represents the
rate at which agent 𝑗 influences agent 𝑖. The dynamics of x are defined as

𝑑𝑥𝑖

𝑑𝑡
=

𝑛∑
𝑗=1

𝑎𝑖 𝑗(𝑥 𝑗 − 𝑥𝑖).

Taylor observes that if we define

𝑎𝑖𝑖 = −
𝑛∑

(𝑗≠𝑖)=1

𝑎𝑖 𝑗 ,

then we can define a matrix 𝐴 = (𝑎𝑖 𝑗), and the dynamics can be rewritten as

𝑑x
𝑑𝑡

= 𝐴x.

In Taylor’s model, each agent’s opinion is always moving towards the
weighted average of its neighbors’ current opinions.

1.4.1 A Special Case of the Taylor Model

The smoothed bounded-confidence model can recover a particular case of
the Taylor model. In particular, we will define here the case of the Taylor
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model that can be recovered by the smoothed bounded-confidence model
on the complete graph. First, we partition our agents 𝒩 into two subsets:
the zealots 𝒵 and the persuadable nodes 𝒫. Now, we define

𝑎𝑖 𝑗 =


(−|𝒩 − 1|) 𝑖 = 𝑗 , 𝑖 ∈ 𝒫
1 𝑖 ≠ 𝑗 , 𝑖 ∈ 𝒫
0 𝑖 ∈ 𝒵

This formulation of the model corresponds to a complete graph, where
every persuadable node is being influenced equally by every other node on
the graph (including the zealots).

Lemma 1.1. Let 𝐴 = (𝑎𝑖 𝑗) be defined with components

𝑎𝑖 𝑗 =


(−|𝒩 − 1|) 𝑖 = 𝑗 , 𝑖 ∈ 𝒫
1 𝑖 ≠ 𝑗 , 𝑖 ∈ 𝒫
0 𝑖 ∈ 𝒵

for a graph with at least one zealot. Then, the only stationary state of the Taylor
model is

𝑥𝑖 =

{
𝑧𝑚+···+𝑧𝑛

|𝒵| 𝑋𝑖 ∈ 𝒫
𝑧𝑖 𝑋𝑖 ∈ 𝒵

where 𝑧𝑚 , . . . , 𝑧𝑛 are the opinions of the zealots.

Proof. Let 𝐴𝒫 and x𝒫 be the restrictions of 𝐴 and x to the persuadable
dimensions. The zealots have fixed opinions 𝑧𝑚 . . . 𝑧𝑛 and are stationary for
any value of the persuadable nodes. So, the dynamics of the whole system
are really just the dynamics of the persuadable nodes, which we can rewrite
as

𝑑x𝒫
𝑑𝑡

= 𝐴𝒫x𝒫 + (𝑧𝑚 + · · · + 𝑧𝑛)1.

Thus, a persuadable opinion profile x𝒫 is stationary when

𝐴𝒫x𝒫 = −(𝑧𝑚 + · · · + 𝑧𝑛)1. (1.2)

It is clear from the definition of 𝐴𝒫 that it is a rank |𝒫| matrix. This means
that Equation 1.2 has a unique solution. This solution must then be the only
stationary state of the system.
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We now simply check that

x𝒫 =
(𝑧𝑚 + · · · + 𝑧𝑛)

|𝒵| 1

is a stationary state of the system by taking 𝐴𝒫x𝒫 and finding that

𝐴𝒫x𝒫 = −(𝑧𝑚 + · · · + 𝑧𝑛)1

as desired. □

This result is important because it means that the equally-weighted
Taylor model on a complete graph still converges to consensus amongst the
persuadable nodes, even with the presence of zealots.

1.5 The Hegselmann–Krause Model of Conditional
Receptivity

In this section, we introduce the Hegselmann–Krause model of opinion
dynamics in further detail. This model was first proposed in Hegselmann and
Krause (2002) and has been extensively studied ever since. Hegselmann and
Krause call their model a “bounded confidence” model. This is in reference
to their introduction of an opinion difference threshold (the confidence bound)
that each agent uses to filter the inclusion of other agents’ opinions into
their own opinion update. That is, each agent 𝑋𝑖 has a confidence bound 𝜖𝑖
and the dynamics of its opinion 𝑥𝑖 only depends on another opinion 𝑥 𝑗 if
|𝑥 𝑗 − 𝑥𝑖 | ≤ 𝜖𝑖 .

The original formulation of the Hegselmann–Krause model was defined
as a map in discrete time. That is, the dynamics are defined as

𝑥𝑖(𝑡 + 1) = |𝐼(𝑖 , 𝑥(𝑡))|−1
∑

𝑗∈𝐼(𝑖 ,x(𝑡))
𝑥 𝑗(𝑡)

where 𝐼(𝑖 , x) =
{
1 ≤ 𝑗 ≤ 𝑛 | 𝑑(𝑥𝑖 , 𝑥 𝑗) ≤ 𝜖𝑖

}
and 𝑑(𝑥𝑖 , 𝑥 𝑗) is a metric on the

opinion space. In Hegselmann and Krause (2002) they use 𝑑(𝑥𝑖 , 𝑥 𝑗) = |𝑥𝑖−𝑥 𝑗 |.
A continuous-time analog of the Hegselmann–Krause model is proposed

in Blondel et al. (2010). There, the dynamics are essentially defined as

𝑑𝑥𝑖

𝑑𝑡
=

∑
𝑗∈𝐼(𝑖 ,x)

(𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡)).
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The move to continuous time requires additional results about existence and
uniqueness of solutions (provided in Blondel et al. (2010)) and analysis of
dynamics of functions rather than dynamics of mappings.

Neither the original Hegselmann–Krause model nor the Blondel et al.
extension are defined on a graph structure. Rather, they are posed for a
collection of 𝑛 agents who exchange information with each other if they are
sufficiently close in opinion space. That being said, the Hegselmann–Krause
model has been studied on graph networks before (see Fortunato (2005), for
instance) and it is a natural extension of the model.

In the Hegselmann–Krause model (and its continuous-time analog), it is
a well-known feature that the stationary states consist of “clusters” of agents
with the same opinion that are each spaced further than 𝜖 apart from the
others. In this thesis, we will refer to these clusters as “factions” and will
analyze the conditions under which distinct factions form on the complete
graph.

1.5.1 A Special Case of the Hegselmann–Krause Model

The smoothed bounded-confidence model is defined so that it can both
recover the behavior of direct averaging models (like the Taylor model) and
of bounded-confidence models. In this section, we will describe the exact
version of the Hegselmann–Krause model that can be recovered by the
smoothed bounded-confidence model on the complete graph.

The continuous Hegselmann–Krause model on the complete graph with
a squared distance threshold 𝛿 would look like

𝑑𝑥𝑖

𝑑𝑡
=

∑
𝑗∈𝐼(𝑖 ,x)

(𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡))

where 𝐼(𝑖 , x) =
{
1 ≤ 𝑗 ≤ 𝑛 | 𝑑(𝑥𝑖 , 𝑥 𝑗) ≤ 𝜖𝑖

}
for 𝑑(𝑥𝑖 , 𝑥 𝑗) = (𝑥𝑖 − 𝑥 𝑗)2.

We observe that we could equivalently replace the sum condition with
an indicator function

𝟙(𝑥𝑖 , 𝑥 𝑗) =
{

1 (𝑥𝑖 − 𝑥 𝑗)2 ≤ 𝛿

0 (𝑥𝑖 − 𝑥 𝑗)2 > 𝛿,

and let
𝑑𝑥𝑖

𝑑𝑡
=

𝑛∑
𝑗=1

𝟙(𝑥𝑖 , 𝑥 𝑗) · (𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡)).
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The sign of the dynamics is preserved after renormalizing, which means
we can renormalize this expression to

𝑑𝑥𝑖

𝑑𝑡
=

∑𝑛
𝑗=1 𝟙(𝑥𝑖 , 𝑥 𝑗) · (𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡))∑𝑛

𝑗=1 𝟙(𝑥𝑖 , 𝑥 𝑗)
.

Now, we note that in the limit as 𝛾 → ∞, the smoothed bounded-
confidence model is

𝑑𝑥𝑖

𝑑𝑡
=

∑𝑛
𝑗=1 𝑤(𝑥𝑖 , 𝑥 𝑗) · (𝑥 𝑗(𝑡) − 𝑥𝑖(𝑡))∑𝑛

𝑗=1 𝑤(𝑥𝑖 , 𝑥 𝑗)

where the weighting function is converging pointwise to

𝑤(𝑥𝑖 , 𝑥 𝑗) =


1 (𝑥𝑖 − 𝑥 𝑗)2 < 𝛿

1/2 (𝑥𝑖 − 𝑥 𝑗)2 = 𝛿

0 (𝑥𝑖 − 𝑥 𝑗)2 > 𝛿.

Thus, in the limit as 𝛾 → ∞, the smoothed bounded-confidence model
is very nearly the same as the continuous Hegselmann–Krause model on
squared distance. The fact that 𝑤(𝑥𝑖 , 𝑥 𝑗) = 1/2 when 𝑥𝑖 and 𝑥 𝑗 are exactly

√
𝛿

apart in opinion space is an unfortunate artifact of the pointwise convergence
of the model, but we will address it more carefully when we analyze the
𝛾 → ∞ case in later chapters.





Chapter 2

The Smoothed
Bounded-Confidence Model

In this chapter, we introduce general results about the smoothed bounded-
confidence model. This involves reproducing some results from Brooks and
Chodrow (2022). These results and terminology apply to graph structures
other than the complete graph, but we will apply them to the complete
graph for our analysis in Chapters 3 and 4.

2.1 The Smoothed Bounded-Confidence Model on a
Network Without Zealots

As we discussed in Section 1.4, the Abelson model of opinion dynamics on a
connected graph always converges to consensus and this is what prompted
the introduction of zealot nodes in the Taylor model. In this section, we
briefly show that the smoothed bounded-confidence model also converges
to consensus on a connected graph when there are no zealots (for any finite
choice of 𝛾).

Lemma 2.1. Let 𝐺 = {𝒩 , ℰ} be a finite connected graph with no zealots. Then,
all stationary states of the smoothed bounded-confidence model with finite 𝛾 on 𝐺

have consensus.

Proof. We prove this by contradiction. Assume that there exists a stationary
state x∗ which contains at least two distinct opinions.

Let 𝑋𝑗 be an agent in 𝒩 (not necessarily unique) such that 𝑥 𝑗 is the
maximum opinion attained on 𝐺.
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Recall the dynamics of the smoothed bounded-confidence model pro-
vided in Equation 1.1. We consider the dynamics of 𝑥 𝑗 . Denoting the set of
𝑋𝑗’s neighbors as 𝒩𝑋𝑗

, we observe that

𝑑𝑥 𝑗

𝑑𝑡
= 𝐶 𝑗

∑
𝑖∈𝒩𝑋𝑗

(𝑥𝑖 − 𝑥 𝑗)
1 + 𝑒−𝛾(𝑥𝑖−𝑥 𝑗)

2−𝛾𝛿

(where the denominator of the dynamics has been absorbed into a positive
constant 𝐶 𝑗).

Now, since 𝑥 𝑗 is the maximum opinion value attained on 𝐺, (𝑥𝑖 − 𝑥 𝑗) is
non-positive. Since the denominator of the summand is strictly positive,
the entire summand is always non-positive. Since x∗ is a stationary state
by assumption, it must be that every summand is equal to 0. That is, every
𝑖 ∈ 𝒩𝑥 𝑗 must have 𝑥𝑖 = 𝑥 𝑗 . More colloquially, if 𝑋𝑗 is an agent whose opinion
attains the maximum opinion value in a stationary state, then all of the
neighbors of 𝑋𝑗 must also attain the maximum.

Now, recall that our graph 𝐺 is connected and contains two distinct
opinions. Let 𝑋𝑖 ≠ 𝑋𝑗 ∈ 𝒩 such that 𝑥𝑖 is the minimum opinion at-
tained on 𝐺. Since the graph is connected, there exists a path from 𝑋𝑖

to 𝑋𝑗 . That is, there is a set of agents {𝐴1 , 𝐴2 , . . . , 𝐴𝑛} ∈ 𝒩 such that
{(𝑋𝑖 , 𝐴1), (𝐴1 , 𝐴2), . . . , (𝐴𝑛 , 𝑋𝑗)} ⊂ ℰ.

We just showed, however, that in a stationary state of the dynamics all
neighbors of a node that attains the maximum must also attain the maximum.
This propagates down the path from 𝑋𝑗 to 𝑋𝑖 and implies that 𝑋𝑖 attains the
maximum opinion value as well. This contradicts the definition of 𝑋𝑖 and
therefore implies that there cannot exist a stationary state with at least two
opinions on a graph with no zealots. □

We can show similarly that in a graph with exactly one zealot 𝑍1 with
opinion 𝑧1, the only stationary state is x = 𝑧11.

Lemma 2.2. Let𝐺 = {𝒩 , ℰ} be a finite connected graph with exactly one zealot 𝑍1,
with opinion 𝑧1. Then, the only stationary state of the smoothed bounded-confidence
model with finite 𝛾 on 𝐺 is x∗ = 𝑧11.

Proof. First, let 𝐺1 , 𝐺2 , . . . , 𝐺𝑚 be the connected components of 𝐺 − 𝑍1. We
will prove that in x∗ each connected component contains only the opinion 𝑧1.

Consider an arbitrary 𝐺𝑘 . If 𝐺𝑘 contains only one vertex then it’s clear
that that vertex must have opinion 𝑧1 to be stationary. So, let us assume that
𝐺𝑘 contains more than one vertex.
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As in Lemma 2.1, we let 𝑋𝑗 be an agent which obtains the maximum
opinion value attained on 𝐺𝑘 . As in that proof, we note that the dynamics of
𝑥 𝑗 are

𝑑𝑥 𝑗

𝑑𝑡
= 𝐶 𝑗

∑
𝑖∈𝒩𝑋𝑗

(𝑥𝑖 − 𝑥 𝑗)
1 + 𝑒−𝛾(𝑥𝑖−𝑥 𝑗)

2−𝛾𝛿

where 𝒩𝑋𝑗
is the set of neighbors of 𝑋𝑗 (in the uncut graph 𝐺) and the

denominator of the dynamics has been absorbed into a positive constant 𝐶 𝑗 .
Now, we observe that for 𝑥 𝑗 to be stationary (as is necessary for x∗ to be a
stationary state) requires that either

1. All of the neighbors of 𝑋𝑗 have opinion 𝑥 𝑗 , or

2. 𝑋𝑗 is connected to 𝑍1 and 𝑧1 > 𝑥 𝑗 .

Since 𝐺 is connected, there exists a path from 𝑋𝑗 to 𝑍1. If condition 2 is
never met on that path, then 𝑍1 must have opinion 𝑥 𝑗 . Otherwise, 𝑧1 must
be strictly greater than 𝑥 𝑗 . Either way, we conclude that 𝑧1 ≥ 𝑥 𝑗 .

We repeat a similar analysis with an agent 𝑋𝑖 that attains the minimum
opinion value on 𝐺𝑘 , and find that for 𝑋𝑖 to be stationary requires either that

1. All of the neighbors of 𝑋𝑖 have opinion 𝑥𝑖 , or

2. 𝑋𝑖 is connected to 𝑍1 and 𝑧1 < 𝑥𝑖 ,

which similarly implies that 𝑧1 ≤ 𝑥𝑖 .
We know that 𝑥𝑖 ≤ 𝑥 𝑗 , so the only way that we can have both 𝑧1 ≥ 𝑥 𝑗 and

𝑧1 ≤ 𝑥𝑖 is if 𝑥𝑖 = 𝑥 𝑗 = 𝑧1. Thus, the minimum and maximum opinion values
attained on 𝐺𝑘 are both 𝑧1, which is what we wanted to show. □

Throughout Chapters 3 and 4, we will be analyzing the smoothed
bounded-confidence model on a complete graph with two zealots because (as
we have just shown) any fewer than two zealots leads to rather straightforward
dynamics.

2.2 The Smoothed Bounded-Confidence Jacobian

In this section, we reproduce analysis from Brooks and Chodrow (2022) of
the Jacobian of the smoothed bounded-confidence model. In particular, we
will describe a matrix M𝒫 that is similar to the restriction of the Jacobian to
the persuadable subsystem. Since similar matrices have the same eigenvalue
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spectra, we can perform stability analysis with Theorem 1.1 by evaluating
the eigenvalues of M𝒫 instead of the Jacobian.

We begin by putting the Jacobian in block structure based on the per-
suadable and zealot nodes. We let

J =
[

J𝒫 J𝒫𝒵
J𝒵𝒫 J𝒵

]
where the upper block rows correspond to functions 𝑓𝑖(x) with 𝑖 ∈ 𝒫 and the
lower rows correspond to functions 𝑓𝑖(x) with 𝑖 ∈ 𝒵. Similarly, the columns
in the left blocks correspond to partial derivatives with respect to x𝑗 where
𝑗 ∈ 𝒫 and the columns in the right blocks correspond to 𝑗 ∈ 𝒵.

Since the zealot nodes do not change their opinions, we observe that the
lower two blocks vanish and we are left with

J =
[
J𝒫 J𝒫𝒵
0 0

]
.

As long as we have at least one zealot, then we have some zero rows in our
matrix. At first it seems that this might be a problem for our eigenvalue
analysis because each zero row corresponds to a standard basis vector with
eigenvalue 0 (and recall that Theorem 1.1 only guarantees asymptotic stability
for a system when all of its eigenvalues are strictly negative).

However, upon further reflection we observe that these eigenvectors with
eigenvalue 0 correspond to perturbations of the zealot nodes. We are only
concerned with whether a stationary state is stable to perturbations of its
persuadable nodes, so we can ignore these eigenvalues in our stability analysis.
Really, the stability of our system under perturbations of the persuadable
nodes is determined entirely by the eigenvalue spectrum of J𝒫 .

Now, we begin to evaluate what this matrix looks like for the smoothed
bounded-confidence model. It will be convenient for us to first define a
couple of new objects. We use W(x) to represent a weight matrix, defined as
𝑤𝑖 𝑗(x) = 𝑤(𝑥𝑖 , 𝑥 𝑗). We also define a vector s as

𝑠𝑖 =
∑
𝑗∈𝒩

𝑤𝑖 𝑗 (2.1)

for all 𝑖 ∈ 𝒩 . (This vector is equivalently defined in Brooks and Chodrow
(2022) as s = W1). Note that we can now redefine our update operator for a
persuadable node 𝑖 as

𝑓𝑖(x) =
1
𝑠𝑖

∑
𝑗∈𝒩

𝑤𝑖 𝑗(𝑥 𝑗 − 𝑥𝑖).
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Now, we begin computing the necessary derivatives for J𝒫 . The (𝑖 , 𝑗) entry
of J𝒫 is 𝜕 𝑓𝑖(𝑥)/𝜕𝑥 𝑗 where 𝑖 , 𝑗 ∈ 𝒫. We assume first that 𝑖 and 𝑗 are distinct
and not adjacent. Then, they do not directly affect each other’s opinions and
so that entry of J𝒫 is zero.

To compute the other components of J𝒫 , we begin by assuming that 𝑖
and 𝑗 are adjacent (and distinct). As we take the partial derivatives of 𝑓𝑖
we consider the definition of 𝑓𝑖 from the equation above. (Note that 𝑠𝑖 is a
function of 𝑥 𝑗 , so we use the product rule.) We find

𝜕 𝑓𝑖(x∗)
𝜕𝑥 𝑗

=

(
𝜕

𝜕𝑥 𝑗

1
𝑠𝑖

) ∑
𝑘∈𝒩

𝑤𝑖𝑘(𝑥𝑘 − 𝑥𝑖) +
1
𝑠𝑖

(
𝜕

𝜕𝑥 𝑗

∑
𝑘∈𝒩

𝑤𝑖𝑘(𝑥𝑘 − 𝑥𝑖)
)
.

We observe that the summation on the left is actually equivalent to 𝑠𝑖 𝑓𝑖(x).
Since we are computing J𝒫 at a stationary state, this must vanish. We turn
then to the term on the right. This partial derivative is only non-zero when
𝑘 = 𝑗, so we can replace the summation with that particular summand.
Altogether, we have reduced our equation to

𝜕 𝑓𝑖(x∗)
𝜕𝑥 𝑗

=
1
𝑠𝑖

(
𝜕

𝜕𝑥 𝑗

[
𝑤𝑖 𝑗(𝑥 𝑗 − 𝑥𝑖)

] )
=

1
𝑠𝑖

(
𝜕𝑤𝑖 𝑗

𝜕𝑥 𝑗
(𝑥 𝑗 − 𝑥𝑖) + 𝑤𝑖 𝑗

)
.

At this point, we plug in the explicit weight function. We find that

𝜕𝑤𝑖 𝑗

𝜕𝑥 𝑗
=

𝜕

𝜕𝑥 𝑗

(
1

1 + 𝑒−𝛾(𝑥𝑖−𝑥 𝑗)
2−𝛾𝛿

)
= −

(
1

1 + 𝑒−𝛾(𝑥𝑖−𝑥 𝑗)
2−𝛾𝛿

) (
𝑒−𝛾(𝑥𝑖−𝑥 𝑗)

2−𝛾𝛿

1 + 𝑒−𝛾(𝑥𝑖−𝑥 𝑗)
2−𝛾𝛿

)
(2𝛾(𝑥 𝑗 − 𝑥𝑖))

= −2𝛾𝑤𝑖 𝑗(1 − 𝑤𝑖 𝑗)(𝑥 𝑗 − 𝑥𝑖).

Now, our expression for the 𝑖 , 𝑗 entry of J𝒫 (given 𝑖 and 𝑗 are adjacent) is

𝜕 𝑓𝑖(x∗)
𝜕𝑥 𝑗

=
𝑤𝑖 𝑗

𝑠𝑖
(1 − 2𝛾(1 − 𝑤𝑖 𝑗)(𝑥 𝑗 − 𝑥𝑖)2) (2.2)

Finally, we compute J𝒫 when 𝑖 = 𝑗. We observe that 𝜕𝑤𝑖𝑘/𝜕𝑥𝑖 =

−𝜕𝑤𝑖𝑘/𝜕𝑥𝑘 . Then, one can show via algebraic manipulation that

𝜕 𝑓𝑖(x)
𝜕𝑥𝑖

= −
∑
𝑗≠𝑖∈𝒩

𝜕 𝑓𝑖(x)
𝜕𝑥 𝑗

. (2.3)
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With this in mind, we define some new matrices which we can sum to obtain
the Jacobian. In particular, we define a matrix S as

𝑆𝑖 𝑗 =

{
𝑠𝑖 𝑖 = 𝑗

0 otherwise

where s is defined as in Equation 2.1.
We also define a matrix Q with entries 𝑄𝑖 𝑗 = 𝑤𝑖 𝑗(1 − 𝑤𝑖 𝑗)(𝑥𝑖 − 𝑥 𝑗)2.
Finally, we define a diagonal matrix R as

𝑅𝑖 𝑗 =

{
(Q1)𝑖 𝑖 = 𝑗

0 otherwise

where Q1 is the vector obtained from multiplying the matrix Q by the all
ones vector.

For each of these matrices (and the weight matrix W) we notate the
restriction of the matrix to its persuadable entries as S𝒫 ,Q𝒫 ,R𝒫 , and W𝒫 ,
respectively.

These matrices are defined such that the restriction of the Jacobian matrix
to the persuadable nodes can be written as

J𝒫 = S−1[(W𝒫 − S𝒫) − 2𝛾(Q𝒫 − R𝒫)].

By checking the on-diagonal and off-diagonal entries of this matrix, we can
verify that it matches the Jacobian expressions we found in Equations 2.2
and 2.3. We now define M𝒫 = [(W𝒫 − S𝒫) − 2𝛾(Q𝒫 − R𝒫)], so that

J𝒫 = S−1M𝒫 .

Now, since S−1 is a diagonal matrix with positive entries, it has a square
root S−1/2. Then, since S−1/2 and M𝒫 are both symmetric matrices, they
commute with each other. Altogether, this means we have

J𝒫 = S−1/2M𝒫S−1/2.

Thus, J𝒫 is similar to M𝒫 . Since similar matrices have the same eigenvalue
spectra, we can look at the eigenvalues of M𝒫 to determine the stability of a
stationary state. We will use this M𝒫 matrix to determine stability on the
complete graph in Theorem 3.1.
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2.3 Balanced Exposure and the Harmonic Solution

In Brooks and Chodrow (2022), a special class of graphs are defined that
have a property they call “balanced exposure”. We say that a graph meets
the balanced exposure condition if it has exactly two zealots, and each
persuadable node is either connected to neither zealot or both of them. This
will be useful to us when we analyze the complete graph with two zealots
in Chapter 3 because that graph meets the balanced exposure condition.
As they do in their paper, we assume that the two zealots in a balanced
exposure graph are located at the extremes of the opinion spectrum (that is,
at 1 and −1).

The following result involves the existence of a stationary state in a
balanced exposure graph and a characterization of its stability.

Theorem 2.1 (Brooks and Chodrow). Let {𝒩 , ℰ} be a graph with balanced
exposure. For any 𝛾, x∗ = 0 is a stationary state of F. This state is linearly stable if
and only if

2𝛾𝑒𝛾(1−𝛿)

1 + 𝑒𝛾(1−𝛿)
< 1.

This theorem proves that x∗ = 0 is always a stationary state of a balanced
exposure graph and provides a condition for when that state is stable. In
Sections 3.3 and 3.4, we will be analyzing the stability of stationary states
for a special case of balanced exposure (the complete graph). There, we
will take advantage of the structure of the complete graph and extend this
theorem in such a way that we characterize the existence and stability of a
whole class of stationary states that includes x∗ = 0 and extends beyond it.





Chapter 3

Consensus on the Complete
Graph

In this chapter, we explore the conditions under which consensus forms
on a complete graph with two zealots and when this consensus is stable to
perturbations of the persuadable agents’ opinions.

3.1 Why the Complete Graph?

The complete graph is a network structure that merits individual study.
It is a natural network to investigate the smoothed bounded-confidence
model on for many reasons. From an abstract mathematical perspective, its
highly structured nature lends itself nicely to the eigenvalue analysis we will
perform to characterize the stability of its stationary opinion distributions.
Through an opinion dynamics lens, the complete graph represents a group
of agents who are all sharing information with each other, which is a natural
scheme for the sharing of information in a group of people. We could use a
complete graph to represent the dynamics of a group of friends talking, of
participants in a debate, or of a discussion on an online forum.

Recall from 2.1 that the smoothed bounded-confidence model of opinion
dynamics can only converge to consensus on any connected graph unless the
system includes at least two zealots. To that end, we incorporate two zealots
into our complete graph, one at each extreme of the opinion spectrum. We
will name the zealots 𝑍1 and 𝑍2, with 𝑍1 fixed at opinion −1 and 𝑍2 at 1.

As we will see later on in this chapter, the size of the complete graph does
not affect the stationarity and stability of consensus opinion states. It has
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some effect on convergence time, but we will not be analyzing convergence
time here. This is why we will often discuss our system in this chapter
without specifying the size of the complete graph.

3.2 Why Study Consensus?

As we try to understand the patterns of opinions that form in real networks
of people, an important (and natural) question arises: will consensus form?
In our daily lives, in a variety of settings and scales, groups of people come
to agreement and groups of people split into factions. We investigate the
conditions under which consensus and fragmentation occur not only because
it is interesting to study but because we are often in environments where
we are either actively pursuing consensus (e.g., a group presentation) or
actively pursuing faction formation (e.g., seeking a diversity of intellectual
positions in a philosophical debate), and this provides insights into how
the desired behavior might be cultivated. We now look to our model to
understand these conditions for consensus and fragmentation.

Definition 3.2.1. Consensus. We say that an opinion profile x is at consensus
if all persuadable nodes in the network have the same opinion (that is, 𝑥𝑖 = 𝑥 𝑗
for all 𝑋𝑖 , 𝑋𝑗 ∈ 𝒫).

The zealots are excluded from our definition of consensus because
otherwise consensus would be impossible achieve. This calls attention to
the seemingly paradoxical fact that we are beginning our analysis of this
system with opinion profiles at consensus, despite introducing zealots to
prevent the persuadable agents from always converging to consensus. The
difference now is that when agents manage to reach consensus it is despite
the zealots’ competing influences, which makes the analysis of consensus
dynamics with zealots far more interesting.

3.3 Stationary Consensus in the Complete Graph

Now, we characterize the stationarity of opinion profiles with consensus.
Recall that at any given time, the opinion 𝑥𝑖 of a persuadable agent 𝑖 is

subject to the dynamics

𝑑𝑥𝑖

𝑑𝑡
=

∑
𝑗∈𝒩 𝑤(𝑥𝑖 , 𝑥 𝑗)(𝑥 𝑗 − 𝑥𝑖)∑

𝑗∈𝒩 𝑤(𝑥𝑖 , 𝑥 𝑗)
,
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where 𝑤(𝑥𝑖 , 𝑥 𝑗) is the weighting function

𝑤(𝑥𝑖 , 𝑥 𝑗) =
1

1 + 𝑒−𝛾(𝑥𝑖−𝑥 𝑗)
2−𝛾𝛿

.

(Note that while the general definition of the weighting function from
Equation 1.1 is conditionally defined depending on whether 𝑖 and 𝑗 are
adjacent, all nodes are adjacent in the complete graph so we condense the
conditional definition here.)

Consider a consensus opinion distribution x∗ with 𝑥∗
𝑖
= 𝑘 for all 𝑖 ∈ 𝒫.

For such a solution to be stationary requires that

0 =

∑
𝑗∈𝒩 𝑤(𝑘, 𝑥 𝑗)(𝑥 𝑗 − 𝑘)∑

𝑗∈𝒩 𝑤(𝑘, 𝑥 𝑗)
.

Since all of the persuadable nodes have opinion 𝑘, the only non-zero terms in
the numerator summation come from the zealots. After considering this and
multiplying through by the denominator we end up with our final condition
for a stationary consensus at 𝑘:

0 = 𝑤(𝑘, 1)(1 − 𝑘) + 𝑤(𝑘,−1)(−1 − 𝑘). (3.1)

This stationary condition is essentially just checking whether the influence
that 𝑍1 has over the consensus opinion (given by 𝑤(𝑘, 1)(1 − 𝑘)) is canceled
out by the influence that 𝑍2 has over the consensus opinion (given by
𝑤(𝑘,−1)(−1 − 𝑘).

As we discussed in Section 2.3, a consensus opinion at x = 0 is always
stationary under balanced exposure (every agent is connected to both zealots
or neither of them). Since the complete graph certainly has balanced
exposure, we should expect a stationary consensus distribution at x = 0.
This is verified by observing that when 𝑘 = 0, we have 𝑤(𝑘, 1) = 𝑤(𝑘,−1)
regardless of the values of 𝛾 and 𝛿, and thus the stationary condition is
always met.

Now, we describe the non-zero opinion values at which consensus is
stationary. At any opinion value, there are two competing factors that
balance the influence of the zealots. On the one hand, if an agent’s opinion
value is close to a zealot’s, it means that the weighting function between
that agent and that zealot is relatively high. On the other hand, it means
that the difference in opinion is low, which weakens the strength of the pull
that comes from the (𝑥𝑖 − 𝑥 𝑗) term. Similarly, being far from a zealot will
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Figure 3.1 The 𝑥 𝑗 contribution to the weighted average that governs the
dynamics of 𝑥𝑖 for 𝛿 = 0.25 (note that the contribution of 𝑥 𝑗 is the greatest near
|𝑥 𝑗 − 𝑥𝑖 | =

√
𝛿 = 0.5 )

lower the effect of the weighting function, but will increase the effect of the
(𝑥𝑖 − 𝑥 𝑗) term. The change in this (𝑥𝑖 − 𝑥 𝑗) term is linear in 𝑘, but the change
in the weighting function is not, which creates a pull strength profile that is
strongest at mid-range distances (near where (𝑥𝑖 − 𝑥 𝑗)2 =

√
𝛿) and weaker at

short or long distance, as pictured in Figure 3.1. This non-monotonic profile
means that the pulls of the two zealots can cancel each other out at multiple
values of 𝑘.

To see how this non-monotonic influence profile can create multiple
stationary states, we will look at an example. Figure 3.2 illustrates the
dynamics of consensus when 𝛾 = 2 and 𝛿 = 2 by plotting the numerator
of Equation 2.2. For this parameter combination, we see that there are five
opinion values at which consensus is stationary (the five values of 𝑘 for
which 𝑑𝑥𝑖/𝑑𝑡 = 0). This version of the figure conveys where the stationary
states are, but it doesn’t give a clear picture of how the locations of the
stationary states materialize from the zealots’ competing influences. To gain
that insight, we look to Figure 3.3, which decomposes the numerator of the
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Figure 3.2 Finding opinions with stationary consensus for 𝛾 = 2 and 𝛿 = 2.
The vertical axis plots the stationarity condition from 3.1.

dynamics term into the contribution from each zealot. Then, the stationary
states are the values of 𝑘 where the influences of the two zealots are equal.
We can see how the nonlinearity of the zealots’ influences are what allows
for multiple function intersections, and thus multiple stationary consensus
points.

3.4 Stability of Consensus in the Complete Graph

Now that equation (3.1) provides an expression for where the stationary
consensus values are, we will start to characterize their stability. In Figure
3.2, we can tell which of the stationary states are stable against perturbations
in 𝑘 by looking at the sign of

𝑑

𝑑𝑘

[
𝑑𝑥𝑖

𝑑𝑡

]
.

For instance, consider the stationary state at 𝑘 = 0. The 𝑘−derivative of
𝑑𝑥𝑖/𝑑𝑡 there is negative, which means that a small perturbation of 𝑘 towards
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Figure 3.3 Decomposing the stationarity condition from Equation 3.1 into the
𝑍1 and 𝑍2 contributions. The function intersections correspond to stationary
consensus profiles. Here, 𝛾 = 2 and 𝛿 = 2.

−1 would result in a consensus opinion that would increase. Similarly, a
small perturbation towards 1 would result in a consensus opinion that wants
to decrease. This means that the stationary state at 𝑘 = 0 is stable for this
combination of 𝛾 and 𝛿. Figure 3.3, which decomposes the dynamics into
the influence of each zealot, provides us another way to understand this
stability. We notice that for values of 𝑘 slightly less than 0, the influence from
the zealot at 1 is greater than the influence from the zealot at -1. Similarly,
when 𝑘 is slightly greater than 0, the influence from the zealot at -1 is greater.
Together, this means that small perturbations in 𝑘 will be corrected by the
imbalances in the zealot influence.

Analyzing the 𝑘-derivative of 𝑑𝑥𝑖/𝑑𝑡 at stationary states provides a
good intuition for the stability analysis that we will now perform, but is not
sufficient to prove whether a stationary state is stable against all perturbations.
When we make a plot like the one in Figure 3.2, we are completely reducing
our problem to a single dimension: the consensus opinion 𝑘. Therefore,
we can only say that these stationary states are stable or unstable against
perturbations that preserve the consensus. After any other perturbation,
our one-dimensional simplification of the dynamics is no longer valid. We
would like to be able to say whether stationary consensus opinions are stable
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when subjected to perturbations that disrupt their consensus.
To do so, we extend Theorem 2.1 to cover all stationary consensus states

on the complete graph.

Theorem 3.1. Let {𝒩 , ℰ} be a complete graph with zealots at 1 and −1. If the
consensus distribution x = 𝑘1 is stationary, then it is stable if and only if

−(𝑣1 + 𝑣−1) + 𝛾[𝑣1(1 − 𝑣1)(1 − 𝑘)2 + 𝑣−1(1 − 𝑣−1)(1 + 𝑘)2] < 0,

where
𝑣1 =

1
1 + 𝑒𝛾((1−𝑘)2−𝛿)

and
𝑣−1 =

1
1 + 𝑒𝛾((−1−𝑘)2−𝛿)

.

Before we prove this theorem, note that when 𝑘 = 0, this condition
reduces to −𝑣 + 𝛾(2𝑣(1 − 𝑣) < 0, where

𝑣 =
1

1 + 𝑒𝛾(1−𝛿)
.

Since 𝑣 is strictly positive, we divide through by it and the condition turns
into −1 + 2𝛾(1 − 𝑣) < 0, which is the condition that was proven to govern
stability at 𝑘 = 0 in Theorem 2.1. Now that we’ve assured ourselves that
the original theorem on the complete graph can be recovered from this new
theorem, we will prove the new theorem.

Proof. Recall the definition of

M𝒫 = (W𝒫 − S𝒫) − 2𝛾(Q𝒫 − R𝒫)

from Section 2.2. As mentioned there, since M𝒫 is similar to J𝒫 , we can
characterize the stability of our system with the spectrum of M𝒫 .

Let 𝑢 = 1
1+𝑒−𝛾𝛿 . On the complete graph with 𝑛 persuadable nodes, we

have

W𝒫 = 𝑢𝐽𝑛

S𝒫 = 𝑢(𝑛𝐼𝑛) + (𝑣1 + 𝑣−1)𝐼𝑛
Q𝒫 = 0
R𝒫 = (𝑣1(1 − 𝑣1)(1 − 𝑘)2 + 𝑣−1(1 − 𝑣−1)(−1 − 𝑘)2) · 𝐼𝑛 ,
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where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix and 𝐽𝑛 is the 𝑛 × 𝑛 ones matrix. Then,
we have

M𝒫 = 𝑢(𝐽𝑛−𝑛𝐼𝑛)+(−(𝑣1+𝑣−1)+𝛾(𝑣1(1−𝑣1)(1−𝑘)2+𝑣−1(1−𝑣−1)(−1−𝑘)2))𝐼𝑛 .

Since 𝑛𝐼𝑛 − 𝐽𝑛 is the graph Laplacian of the complete graph, we know that
𝑢(𝐽𝑛 − 𝑛𝐼𝑛) is negative semi-definite. Then, if

−(𝑣1 + 𝑣−1) + 𝛾(𝑣1(1 − 𝑣1)(1 − 𝑘)2 + 𝑣−1(1 − 𝑣−1)(−1 − 𝑘)2)) ≤ 0

the second term is negative semi-definite and thus so is M𝒫 . In this case,
the stationary consensus is stable.

Now, we assume that

−(𝑣1 + 𝑣−1) + 𝛾(𝑣1(1 − 𝑣1)(1 − 𝑘)2 + 𝑣−1(1 − 𝑣−1)(−1 − 𝑘)2)) > 0.

Since (𝐽𝑛 − 𝑛𝐼𝑛)1 = 0, we observe that

M𝒫1 = −(𝑣1 + 𝑣−1) + 𝛾(𝑣1(1 − 𝑣1)(1 − 𝑘)2 + 𝑣−1(1 − 𝑣−1)(−1 − 𝑘)2))1.

Thus, 1 is an eigenvector of M𝒫 with a positive eigenvalue and the stationary
consensus is unstable. □

3.5 A Brief Introduction to Bifurcations

One of the important objectives in studying a nonlinear system is to classify
how its dynamics depend on its parameters. Our system depends on the
parameters 𝛾 and 𝛿, and we observe that both our stationarity condition (see
Equation 3.1) and our stability condition (see Theorem 3.1) depend on both
parameters.

To analyze more meaningfully how our system’s dynamics depends
on its parameters, we look to bifurcation theory. A brief introduction to
bifurcation theory should begin with a definition of what a bifurcation is,
but that’s easier said than done. There are many texts on nonlinear systems
which go into depth on bifurcation theory, including but not limited to
Alligood et al. (1996), Guckenheimer and Holmes (2013), and Strogatz (1994).
They all give similarly loose definitions of what a bifurcation is, which I
paraphrase here.

Definition 3.5.1. Bifurcation point. As a parameter of a nonlinear system is
varied, there are critical values of the parameter at which the structure of
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Figure 3.4 Sketches of the four canonical one-dimensional bifurcations in a
parameter 𝛼: (a) saddle-node, (b) transcritical, (c) supercritical pitchfork, (d)
subcritical pitchfork. The blue lines denote stable solutions and the red lines
unstable ones.

stationary states in the system qualitatively change (e.g., stationary states
appear, disappear, or change stability). One such critical value of the
parameter is called a bifurcation value, and the point 𝑥∗ at which a stationary
state is appearing, disappearing, or changing stability is called the bifurcation
point.

Guckenheimer and Holmes (2013) describes why a more formal defini-
tion of a bifurcation is difficult. Essentially, it becomes quite complicated
to formally define what one means for the flows of the system to have
“qualitatively changed.” They note that even once a more formal definition is
established, it can obscure our understanding of the systems we are actually
interested in analyzing.

With that being said, it is well-known that there are four canonical
types of bifurcations in a one-dimensional system (displayed in Figure 3.4).
There are saddle-node bifurcations, where a pair of stationary states (one
stable and one unstable) appear from thin air past a critical value of the
parameter. There are transcritical bifurcations, where a pair of stationary
states exchange stabilities at a critical parameter value. There are supercritical
pitchfork bifurcations, where a stable stationary state becomes unstable and
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becomes surrounded by a new pair of stable stationary states. Finally, there
are subcritical pitchfork bifurcations, which are the same as supercritical
pitchforks but with the stabilities reversed.

The diagrams in Figure 3.4 are known as “bifurcation diagrams” and
are a helpful way to visualize these critical parameter values. While there
are several ways one can present them (see Strogatz (1994) for a few), the
structure of this figure is a common convention. In this convention, the
system variable is plotted on the vertical axis against the parameter value
on the horizontal axis. At every parameter value, we mark the stable and
unstable stationary states of the system.

What results is a picture of how the stationary states depend on the
parameter value. In these one-dimensional bifurcation diagrams, it’s clear
to see where the flows of the system lead and how the different canonical
bifurcations are qualitatively changing the structure of the system’s stationary
states. As we analyze consensus in the complete graph, we will see saddle-
node bifurcations and both varieties of pitchfork bifurcation.

3.6 Understanding Stability with Bifurcation Diagrams

Now that we are equipped with a stationarity condition and a stability
condition (Equation 3.1 and Theorem 3.1), we can make bifurcation diagrams
for consensus in the complete graph to understand how 𝛾 and 𝛿 qualitatively
affect the system.

Since we have two system parameters, we will be fixing one of them at
a time and letting the other vary. For instance, let’s fix 𝛿 = 2 while letting
𝛾 vary (as is depicted in Figure 3.5). As is the convention, we place 𝛾 on
the horizontal axis to emphasize that it is the variable being varied. On the
vertical axis, then, we plot the 𝑘 values of our stationary states.

With such a diagram, we start to get a better idea of how the stationary
states relate to each other. We observe some qualitative trends for when 𝛿 = 2
in Figure 3.5. We see that at small values of 𝛾, the only stationary consensus
happens when 𝑘 = 0, and this consensus remains stable for all 𝛾. At about
𝛾 = 1.75, new stationary states appear in a pair of saddle-node bifurcations.
Two of them are stable and quickly approach the zealot opinions. The
other two are unstable and slowly make their way back towards the center.
One important thing to note about this bifurcation diagram is that the
outermost solution is always stable. This means that every opinion vector
must converge—there’s no way for it to explode to infinity. This is not true
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Figure 3.5 Bifurcation diagram in 𝛾 with fixed 𝛿 = 2. Consensus at zero is
always stable, and at 𝛾∗ ≈ 1.75 a pair of saddle-node bifurcations introduce
four more stationary consensus states.

for all nonlinear systems, but we expect it to be true for these smoothed
bounded-confidence diagrams because the smoothed bounded-confidence
model always converges (Brooks and Chodrow (2022) proves this using a
standard fixed point theorem).

Figure 3.5 has provided us a better idea of how the stationary states
behave as a function of 𝛾 at a particular value of 𝛿 (that is, at 𝛿 = 2). We
can develop a picture of how our system evolves in the 𝛿 dimension of
the parameter space if we start to vary 𝛿 and look at how the bifurcation
diagrams themselves change. For instance, in Figure 3.6, we can see what
the bifurcation diagram in 𝛾 looks like for 𝛿 values of 1.6 and 1.5. As 𝛿 gets
smaller, parts of the unstable “inner” solutions move towards 0 until they
eventually meet the solution there, introducing a pair of subcritical pitchfork
bifurcations and creating a region of 𝛾 for which a 0 consensus is unstable.

In fact, the three bifurcation diagrams that we’ve seen (see Figures 3.5
and 3.6) are part of a two-dimensional surface that describes the stationary
consensus states as a function of both 𝛿 and 𝛾. These bifurcation diagrams
are slices of this surface at particular values of 𝛿. Figure 3.7 shows a numerical
approximation of what this surface looks like and shows how these three
bifurcation diagrams fit into that surface. Figure 3.8 shows an overhead
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Figure 3.6 A 𝛾 bifurcation diagram with 𝛿 = 1.6 (left) and one with 𝛿 = 1.4
(right). At some critical value of 𝛿 between 1.4 and 1.6, the structure of the
bifurcation diagram undergoes qualitative changes.

view of the bifurcation surface, marking how many stationary states exist in
each region of the parameter space. On every boundary of this region plot,
we find a bifurcation of our system. For instance, consider the boundary
separating the region with one stationary state and the region with five
stationary states. Crossing that boundary in parameter space corresponds
to the location of a pair of saddle-node bifurcations. Crossing the 1 and 3
boundary corresponds to a supercritical pitchfork and crossing the 3 and 5
boundary corresponds to a subcritical pitchfork.

3.7 Conclusions about Consensus

Now that we’ve used bifurcation diagrams to visualize the stationarity points
of our system and their stability, it’s time to tie these results back to our
model formulation.

From a modeling perspective, the stable stationary states are of more
interest to us because they are what simulations of such a model could
actually converge to. In terms of stable stationary consensus, we observe
from Figure 3.7 that they are overwhelmingly located at either 𝑘 = 0 or very
near 𝑘 = ±1. There do appear to be some stable stationary consensus points
with other values of 𝑘 but another look at the bifurcation diagrams in 𝛾
confirms that these points exist for a very narrow region of 𝛾 and seem to be
more a product of the stable stationary states emerging from a saddle-node
bifurcation than a real structural phenomenon.

The three regions in Figure 3.8 then correspond to the following three
conditions:
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Figure 3.7 The bifurcation diagram for our system over both 𝛾 and 𝛿. The
surfaces were produced with a mesh size of 1/20 in both 𝛾 and 𝛿. The black lines
mark the locations of the three one-dimensional bifurcation diagrams from
Figures 3.5 and 3.6.

Figure 3.8 This bifurcation region plot gives an overhead view of the number
of stationary states in (𝛾, 𝛿) space to help visualize the shape of the surface. The
boundaries on the interior of this figure correspond to bifurcations of the system
(either pairs of saddle-node bifurcations, subcritical pitchforks, or supercritical
pitchforks).
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1. The only stable consensus opinion is 0.

2. The only stable consensus opinions are ≈ ±1.

3. Consensus opinions of 0 and ≈ ±1 are all stable.

In the Abelson model, the only stationary solution is the harmonic solution
𝑘 = 0. Thus, it makes sense that we see a single stationary state for small
values of 𝛾 no matter what the size of 𝛿 is.

The behavior of the Hegselmann–Krause model is slightly more compli-
cated.

• When
√
𝛿 > 2, we recover the Abelson model and expect to see a lone

stationary state at 𝑘 = 0.

• When 1 <
√
𝛿 < 2, we expect 𝑘 = 0 to remain stable because even after

a small perturbation off of 0, all of the persuadable nodes would still
be receptive to both zealots. In this parameter range, though, there are
stationary states at the zealots which remain stable after a perturbation
off the zealot because the other zealot remains out of range.

• When
√
𝛿 < 1, we have the interesting phenomenon that the zealots are

no longer in the receptivity range of 0. That is, if we have a consensus
at 0 and then perturb the persuadable agents, we do not converge back
to a stationary consensus at 0 (unless the perturbation happens to be
in the direction of ⟨−1,−1, 1, 1⟩ or something similar). This means that
the 0 consensus would be unstable. The stationary consensus points
near the zealots, though, would still be stable.

That is, as 𝛾 approaches infinity in our bifurcation surface, we would expect
to see that the interval

√
𝛿 > 2 lies in the region with one stationary state,

the interval 1 <
√
𝛿 < 2 lies in the region with five stationary states, and the

interval 0 <
√
𝛿 < 1 lies in the region with three stationary states. Indeed,

this is supported by Figure 3.8.
Having verified that we recover the expected stationary states for small

𝛾 and large 𝛾, it’s time to interpret what’s happening at mid-range values of
𝛾 using Figure 3.8.

• For 0 <
√
𝛿 < 1, nothing much interesting happens at mid-range values

of 𝛾. As discussed before, very small 𝛾 leads to a stable consensus at
0. Then, beyond some threshold value of 𝛾, the 0 consensus loses its
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stability. This threshold value of 𝛾 doesn’t seem to depend on
√
𝛿 very

strongly.

• On 1 <
√
𝛿 < 2, there’s an interesting feature. While

√
𝛿 is still near 1

and 𝛾 is low, the 0 consensus remains unstable despite being within√
𝛿 of both zealots.

Also on this interval of
√
𝛿, the region corresponding to the lone stable

stationary consensus at 0 goes from covering the entire interval to a
narrow range near

√
𝛿 = 2. The transition is slow enough that there are

values of 𝛿 (consider 𝛿 ≈ 3.5, for instance) where the zealot stationary
states do not exist for relatively high values of gamma despite the fact
that the two zealots are not within

√
𝛿 of each other.

We have found that the behavior of the smoothed bounded-confidence
Model mirrors the behavior of the Abelson model at small 𝛾 and that of the
Hegselmann–Krause model for large 𝛾, as expected. In the intermediary, the
transition between the behaviors is slow enough that there are substantial
parts of parameter space where the structure of stationary states defies the
intuitive analysis of agents being pulled together when their opinions are
closer than

√
𝛿.





Chapter 4

Dynamics of Two Factions

In the previous chapter, we looked at opinion profiles in consensus and
described their stationarity and stability. In this chapter, we relax the
consensus condition to analyze the dynamics of two opinion factions on the
complete graph.

When dealing with consensus, we were free to omit the size of our
complete graph because of the symmetry involved. In our investigation of
faction dynamics, we will have to be a bit more careful. Now that we will
have persuadable nodes at different opinion values exerting influence on
each other, the size of our persuadable pool matters quite a lot. Consider
the following–when there are only two persuadable agents, the strength
with which one pulls on the other is roughly comparable to the pulls of the
zealots. When there are a thousand persuadable agents divided into two
opinion factions of five hundred agents each, the pulls of the zealots on any
given agent would become essentially negligible relative to the pull of the
hundreds of persuadable agents in the other opinion cohort.

4.1 Opinion Factions Under Hegselmann–Krause

Before we dive in to the dynamics of the Smoothed-Bounded Confidence
model with two opinion factions, we will look at the Hegselmann–Krause
model over squared distance. That is, we let the weighting function be

𝑤(𝑥𝑖 , 𝑥 𝑗) =
{

1 (𝑥𝑖 − 𝑥 𝑗)2 ≤ 𝛿

0 otherwise.
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We are studying the dynamics under this weighting function because it
is remarkably similar to the limit of the smoothed bounded-confidence
weighting function in the limit as 𝛾 → ∞. In the limit as 𝛾 → ∞, the
smoothed bounded-confidence weight function becomes a heaviside function

𝑤(𝑥𝑖 , 𝑥 𝑗) =


1 (𝑥𝑖 − 𝑥 𝑗)2 < 𝛿

1/2 (𝑥𝑖 − 𝑥 𝑗)2 = 𝛿

0 otherwise.

We are studying the Hegselmann–Krause version of the system rather than
the 𝛾 → ∞ version of the system because the inclusion of a “half-weight” at
(𝑥𝑖 − 𝑥 𝑗)2 = 𝛿 complicates the analysis and has a negligible impact on the
dynamics of the system. For a further discussion of this, see Section 4.3.

The following terminology will be useful to us as we analyze the squared
distance Hegselmann–Krause system.

Definition 4.1.1. Receptivity. For adjacent agents 𝑋𝑖 and 𝑋𝑗 with opinions 𝑥𝑖
and 𝑥 𝑗 we say that 𝑋𝑖 and 𝑋𝑗 are receptive to each other if (𝑥𝑖 − 𝑥 𝑗)2 ≤ 𝛿. We
represent receptivity as 𝑋𝑖 ∼ 𝑋𝑗 .

Definition 4.1.2. Receptivity Set of an opinion profile. For an opinion profile x
on a network with agents {𝑋1 , . . . , 𝑋𝑛}, we define the receptivity set 𝑅 of x
as

𝑅(x) = {(𝑋𝑖 , 𝑋𝑗) | 𝑋𝑖 ∼ 𝑋𝑗}.

These receptivity sets will be useful to us because they partition the space
of opinion profiles and it is easy to define the dynamics of the Hegselmann–
Krause system for an opinion profile given its receptivity set.

4.1.1 Receptivity Sets of Two Factions

It will help us to define some faction-related terminology that is specific to
the complete graph.

We will continue our convention from Chapter 3 of referring to the zealot
with opinion −1 as 𝑍1 and the zealot with opinion 1 as 𝑍2. We will refer to
the two persuadable opinions present in our graph as 𝑥1 and 𝑥2. Without
loss of generality, we will assume that 𝑥1 < 𝑥2. We let 𝛼 be the number of
persuadable nodes with opinion 𝑥1 and 𝛽 be the number of persuadable
nodes with opinion 𝑥2.

Although there are many persuadable nodes with opinion 𝑥1, the struc-
ture of the complete graph means that they are either all receptive to another



Opinion Factions Under Hegselmann–Krause 37

given node or none of them are. So, we let 𝑃1 be a representative agent from
the 𝑥1 faction and 𝑃2 be a representative agent from the 𝑥2 faction. Then, we
will use the notation 𝑃1 ∼ 𝑃2 to mean that all nodes from the 𝑥1 faction and
all nodes from the 𝑥2 faction are receptive to each other. (This extends to the
zealots, too. We use 𝑃1 ∼ 𝑍1 to mean that all of the 𝑥1 agents are receptive to
𝑍1.)

This also allows us to use a condensed version of the receptivity set.
Rather than list out every pair of receptive nodes, we can use 𝑃1 and 𝑃2 as
representatives of the factions. That is, our receptivity sets will be subsets of

{(𝑍1 ∼ 𝑃1), (𝑍1 ∼ 𝑃2), (𝑍1 ∼ 𝑍2), (𝑃1 ∼ 𝑃2), (𝑃2 ∼ 𝑍1), (𝑃2 ∼ 𝑍2)}. (4.1)

Theorem 4.1. Let 𝑥1 ≤ 𝑥2 on the complete graph with corresponding (not neces-
sarily distinct) factions 𝑃1 and 𝑃2. Then, all opinion profiles belong to one of the
following nine receptivity sets (defined up to sign-flip symmetry).

𝑅1 = {∅}
𝑅2 = {(𝑍1 , 𝑃1)} or

= {(𝑃2 , 𝑍2)}
𝑅3 = {(𝑍1 , 𝑃1), (𝑃2 , 𝑍2)}
𝑅4 = {(𝑍1 , 𝑃1), (𝑃1 , 𝑃2), (𝑃2 , 𝑍2)}
𝑅5 = {(𝑍1 , 𝑃1), (𝑍1 , 𝑃2), (𝑃1 , 𝑃2), (𝑃2 , 𝑍2)} or

= {(𝑍1 , 𝑃2), (𝑃1 , 𝑃2), (𝑃1 , 𝑍2), (𝑃2 , 𝑍2)}
𝑅6 = {(𝑃1 , 𝑃2)}
𝑅7 = {(𝑍1 , 𝑃1), (𝑍1 , 𝑃2), (𝑃1 , 𝑃2)} or

= {(𝑃1 , 𝑃2), (𝑃1 , 𝑍2), (𝑃2 , 𝑍2)}
𝑅8 = {(𝑍1 , 𝑃1), (𝑍1 , 𝑃2), (𝑃1 , 𝑃2), (𝑃1 , 𝑍2), (𝑃2 , 𝑍2)}
𝑅9 = {(𝑍1 , 𝑃1), (𝑍1 , 𝑃2), (𝑍1 , 𝑍2), (𝑃1 , 𝑃2), (𝑃1 , 𝑍2), (𝑃2 , 𝑍2)}
𝑅10 = {(𝑍1 , 𝑃1), (𝑃1 , 𝑃2)} or

= {(𝑃1 , 𝑃2), (𝑃2 , 𝑍2)}

Of these receptivity sets, the stationary states with distinct opinion factions all
belong to 𝑅1 , 𝑅2 , 𝑅3 , 𝑅4 , or 𝑅5 and stationary states with consensus all belong to
𝑅6 , 𝑅7 , 𝑅8 , or 𝑅9. No stationary states belong to 𝑅10.

Proof. There are 26 = 64 candidate subsets of the set described in Equation
4.1. However, many of these are impossible for an opinion profile to achieve.



38 Dynamics of Two Factions

For instance, consider the set element (𝑍1 , 𝑍2). Because the distance between
the opinions of 𝑍1 and 𝑍2 is always greater than the distance between any
other two agents, this element can only appear in the receptivity set if every
other pair of agents appears as well. With this type of consideration in
mind, we will systematically demonstrate that all stationary states with two
factions on the complete graph belong to one of these nine receptivity sets
and (along the way) demonstrate that each one corresponds uniquely to
stationary states with either consensus or factions.

Throughout this proof, we will make reference to an opinion profile x
and its dynamics F(x). While technically these vectors are of length 𝛼 + 𝛽,
we are currently only interested in evaluating the stationary states of the
dynamics, so we can safely reduce them to the two dimensions[

𝑥′1
𝑥′2

]
= F

(
𝑥1
𝑥2

)
where 𝑥1 and 𝑥2 represent the opinions of the factions 𝑃1 and 𝑃2.

1. Neither Faction Receptive to a Zealot. First, we consider an opinion
profile where neither faction is receptive to either zealot. Since the zealots
must also not be receptive to each other, this must describe either 𝑅1 = {∅}
or 𝑅6 = {(𝑃1 , 𝑃2)}.

Any opinion profile with receptivity set 𝑅1 has F(x) = 0 and is therefore
a stationary state. Since 𝑃1 / 𝑃2, it follows that 𝑥1 ≠ 𝑥2 and 𝑅1 corresponds
to stationary states with distinct factions.

Consider now a stationary opinion profile x∗ with receptivity set 𝑅6. The
dynamics of the persuadable subsystem are

F(x∗) =
[
𝛽(𝑥2 − 𝑥1)
𝛼(𝑥1 − 𝑥2)

]
which is equal to 0 if and only if 𝑥1 = 𝑥2. Thus, 𝑅6 corresponds to stationary
states at consensus.

2. Exactly One Faction Receptive to a Zealot. Let’s first assume that
𝑃1 is the faction that is receptive to a zealot. If either persuadable faction
were receptive to the “opposite” faction, then both factions would have to be
receptive to at least one zealot which falls outside of our current scope. So,
we will assume that (𝑍1 ∼ 𝑃1).

To maintain that 𝑃2 is receptive to neither zealot requires that (𝑍1 /
𝑃2), (𝑍1 / 𝑍2), (𝑃1 / 𝑍2), and (𝑃2 / 𝑍2). Then, the only remaining recep-
tivity sets are 𝑅10 = {(𝑍1 , 𝑃1), (𝑃1 , 𝑃2)} and 𝑅2 = {(𝑍1 , 𝑃1)}. While 𝑅10 is a
valid receptivity set, it is never achieved by a stationary state.
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Figure 4.1 Visualizations of the five receptivity sets which could be present
in a stationary state with fragmentation. The examples from cases 𝑅1, 𝑅2, and
𝑅3 are precisely stationary states. We will calculate later in this chapter what
stationary states with 𝑅4 or 𝑅5 precisely look like—the diagrams here are simply
to give a qualitative representation. In all five diagrams, 𝑃1 is colored green, 𝑃2
is colored blue, and intervals of width 2

√
𝛿 are marked in red and centered on

each agent. If an agent lies within another agent’s interval, the two are receptive
to each other.



40 Dynamics of Two Factions

For proof of this, consider the dynamics of F(x) for an opinion profile x
with 𝑅(x) = 𝑅10. We would have

F(x) =
[
(−1 − 𝑥1) + 𝛽(𝑥2 − 𝑥1)

𝛼(𝑥1 − 𝑥2)

]
.

For this to be stationary would require that 𝑥1 = 𝑥2 = −1. However, since
𝑅10 demands that (𝑍1 / 𝑃2) this is impossible.

That leaves us to consider 𝑅2 = {(𝑍1 , 𝑃1)}. For an opinion profile x with
𝑅(x) = 𝑅2, the dynamics of the persuadable subsystem are

F(x) =
[
(−1 − 𝑥1)

0

]
.

which is stationary for any 𝑥2 that satisfies the opinion profile so long as
𝑥1 = −1. Since 𝑅2 requires that 𝑃1 / 𝑃2, it follows that 𝑥1 ≠ 𝑥2 and thus a
stationary opinion profile with 𝑅2 has distinct factions.

At the beginning of this section, we assumed that 𝑃1 was the only faction
receptive to its neighboring zealot. We can repeat the same analysis with
𝑃2, arriving at receptivity sets {(𝑃1 , 𝑃2), (𝑃2 , 𝑍2)} and {(𝑃2 , 𝑍2)}. We classify
these receptivity sets under𝑅10 and𝑅2, respectively, because they correspond
to the same opinion profiles with the signs of both faction opinions flipped.

3. Both Factions Receptive to Exactly One Zealot (the same one). Let
x be an opinion profile where the two factions are receptive to the same
zealot. This implies that they are also receptive to each other and not the
other zealot. Then, 𝑅(x) can only be 𝑅7 = {(𝑍1 , 𝑃1), (𝑍1 , 𝑃2), (𝑃1 , 𝑃2)}.

For an 𝑅7 opinion profile to be at stationarity requires that

F(x) =
[
(−1 − 𝑥1) + 𝛽(𝑥2 − 𝑥1)
(−1 − 𝑥2) + 𝛼(𝑥1 − 𝑥2)

]
= 0.

This is satisfied only by 𝑥1 = 𝑥2 = −1. (Similarly, for the other receptivity set
in 𝑅7 the only stationary state is 𝑥1 = 𝑥2 = 1.) This is a stationary state with
consensus.

4. Both Factions Receptive to Exactly One Zealot (different ones). Now,
we let x be an opinion profile where each faction is receptive to different
zealots. With the restriction that each faction is receptive to only one zealot,
the receptivity set of this profile can only be 𝑅3 = {(𝑍1 , 𝑃1), (𝑃2 , 𝑍2)} or
𝑅4 = {(𝑍1 , 𝑃1), (𝑃1 , 𝑃2), (𝑃2 , 𝑍2)}.

If 𝑅(x) = 𝑅3, then the dynamics of the persuadable subsystem are

F(x) =
[
(−1 − 𝑥1)
(1 − 𝑥2)

]
.
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This is stationary only when 𝑥1 = −1 and 𝑥2 = 1 (which makes this a
stationary state with distinct factions).

If 𝑅(x) = 𝑅4, then the dynamics of the persuadable subsystem are

F(x) =
[
(−1 − 𝑥1) + 𝛽(𝑥2 − 𝑥1)
(1 − 𝑥2) + 𝛼(𝑥1 − 𝑥2)

]
.

This stationarity condition requires a bit more algebra but turns out to be

x∗ = 1
1 + 𝛼 + 𝛽

[
𝛽 − 𝛼 − 1
𝛽 − 𝛼 + 1

]
,

which corresponds to distinct factions for any allowable choice of 𝛼 and 𝛽.
5. Exactly One Faction Receptive to Both Zealots. Let x be an opinion

profile where exactly one faction is receptive to both zealots. Without loss
of generality, let 𝑃1 be this faction. Note that 𝑃2 must be receptive to 𝑍2
because the distance between 𝑃1 and 𝑍2 is at least as great as the distance
between 𝑃2 and 𝑍2. Altogether, the only receptivity set that can represent x
is 𝑅5 = {(𝑍1 , 𝑃2), (𝑃1 , 𝑃2), (𝑃1 , 𝑍2), (𝑃2 , 𝑍2)}.

The dynamics of the persuadable subsystem here are

F(x) =
[
(−1 − 𝑥1) + 𝛽(𝑥2 − 𝑥1) + (1 − 𝑥1)

(1 − 𝑥2) + 𝛼(𝑥1 − 𝑥2)

]
.

For this to be stationary requires that

x∗ = 1
2𝛽 + 𝛼 + 2

[
−𝛼

−(2 + 𝛼)

]
,

which means x∗ has two distinct factions for any choice of 𝛼 and 𝛽.
If we let 𝑃2 be the faction receptive to both zealots, the same analysis

applies for a sign-flipped version of x∗.
6. Both Factions Receptive to Both Zealots. Let x be an opinion profile

where both factions are receptive to both zealots. It’s given, then, that 𝑅(x)
must have the four (𝑍𝑖 ∼ 𝑃𝑗) receptivity elements. Since (𝑍1 ∼ 𝑃2) and
(𝑃1 ∼ 𝑍2), we must have (𝑃1 ∼ 𝑃2). Then, 𝑅(x) must be either 𝑅8 or 𝑅9.
Either way, the dynamics of the persuadable subsystem are

F(x) =
[
(−1 − 𝑥1) + 𝛽(𝑥2 − 𝑥1) + (1 − 𝑥1)
(−1 − 𝑥2) + 𝛼(𝑥1 − 𝑥2) + (1 − 𝑥2)

]
.

Then, the only stationary state x∗ with 𝑅(x∗) = 𝑅8 or 𝑅(x∗) = 𝑅9 is 𝑥1 = 𝑥2 = 0.
This is a stationary state with consensus.

□
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To visualize what the regions associated with these receptivity sets
actually look like on the phase plane for various values of

√
𝛿, look to Figure

4.2. Something important to notice is that not every receptivity set is present
for any given value of

√
𝛿. This means that although every region besides 𝑅10

is capable of having a stationary state inside of it, that point is only actually
stationary for values of

√
𝛿 where it falls in the correct region. In the next

subsection, we characterize when this occurs.

4.1.2 Stationary States of Two Factions

We will go through all of the receptivity sets and briefly describe for which
values of

√
𝛿 their stationary states exist. During this section, we will relax

the condition that 𝑥1 ≤ 𝑥2 to reflect the full reality of the phase plane. All
the analysis we’ve done so far applies for 𝑥2 < 𝑥1 but with flipped faction
labels.

Existence of Stationary States for 𝑅(x) ≠ 𝑅4 , 𝑅5

We will come back to 𝑅4 and 𝑅5 because their conditions are more compli-
cated.

First, consider 𝑅1 = {∅}. As we showed in section 1 of the proof of
Theorem 4.1, the entire 𝑅1 region consists of stationary states whenever it
exists. This region exists whenever

√
𝛿 is small enough that all four of our

agents can avoid being receptive to each other (i.e., when
√
𝛿 < 2/3).

Now, 𝑅2 = {(𝑍1 , 𝑃1)} or {(𝑃2 , 𝑍2)}. We found in section 2 of Theorem 4.1
that any opinion profile with 𝑅2 is stationary so long as 𝑥1 = −1 or 𝑥2 = 1,
respectively. Now that we allow 𝑥2 < 𝑥1, there are two more symmetric
sets of stationary states (one where 𝑥1 = 1 and one where 𝑥2 = −1). These
four symmetric sets of stationary states exist so long as

√
𝛿 < 1. Otherwise,

there’s no way for one of the factions to avoid being receptive to both zealots.
For 𝑅3 = {(𝑍1 , 𝑃1), (𝑃2 , 𝑍2)} we found in section 4 of Theorem 4.1 that

the only possible stationary state is (𝑥1 , 𝑥2) = (−1, 1). On the full phase plane
there also exists (𝑥1 , 𝑥2) = (1,−1). Both of these stationary states exist for all√
𝛿 < 2.

The 𝑅6 region is present for all
√
𝛿 < 1 and always contains the origin

𝑥1 = 𝑥2 = 0, which is its corresponding stationary state.
The 𝑅7 region is present for all

√
𝛿 < 2 and always contains the points

(−1,−1) and (1, 1), which are its stationary states.
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Figure 4.2 Visualizing the receptivity sets as regions in phase space (with the
relaxation that 𝑥1 may be larger than 𝑥2).
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The 𝑅8 region replaces the 𝑅6 region for 1 ≤
√
𝛿 < 2 and always contains

the origin 𝑥1 = 𝑥2 = 0, which is its corresponding stationary state.
The 𝑅9 region replaces the 𝑅8 region for

√
𝛿 ≥ 2 and always contains the

origin, which is its corresponding stationary state.

Existence of Stationary States for 𝑅4 and 𝑅5

The existence of 𝑅4 and 𝑅5 stationary states is more complicated because
the location of the stationary states depends on both 𝛼 and 𝛽.

In section 4 of Theorem 4.1 we found that one of the four 𝑅4 stationary
states is at the coordinates

x∗ = 1
1 + 𝛼 + 𝛽

[
𝛽 − 𝛼 − 1
𝛽 − 𝛼 + 1

]
.

For this point in phase space to actually fall into an 𝑅4 region requires that
𝑥1 < −|1 −

√
𝛿 | and 𝑥2 > |1 −

√
𝛿 | and 𝑥2 − 𝑥1 <

√
𝛿. We will further analyze

this case in the 𝛼 = 𝛽 case in Section 4.2.
In section 5 of Theorem 4.1 we also established that one of the four

stationary states in an 𝑅5 region has coordinates

x∗ = 1
2𝛽 + 𝛼 + 2

[
−𝛼

−(2 + 𝛼)

]
.

This point in phase space will actually be in a region corresponding to 𝑅5 if
𝑃2 is receptive to both zealots but 𝑃1 is not receptive to 𝑍2.

The condition that 𝑃1 is not receptive to 𝑍2 is given by
√
𝛿 < 1 + 2 + 𝛼

2𝛽 + 𝛼 + 2 .

The condition that 𝑃2 is receptive to 𝑍1 is given by
√
𝛿 ≥ 1 + 𝛼

2𝛽 + 𝛼 + 2 .

This means that x∗ exists when

1 + 𝛼
2𝛽 + 𝛼 + 2 ≤

√
𝛿 < 1 + 2 + 𝛼

2𝛽 + 𝛼 + 2 . (4.2)

Thus, the interval of
√
𝛿 values for which this stationary state actually exists

has a width of
2

2𝛽 + 𝛼 + 2 .
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As 𝛽 and 𝛼 increase, this very quickly approaches zero.
This makes sense, because when 𝛽 and 𝛼 get large, the zealots become

more and more negligible. The more negligible the pull of the zealots, the
closer together the opinions of the factions must be to remain stationary.
This requires a more and more precise value of

√
𝛿 to keep 𝑃2 receptive to

both zealots without letting 𝑃1 become receptive to 𝑍2.

4.2 Equally-Sized Factions in Hegselmann–Krause

In this section, we consider the dynamics of equally-sized factions (i.e., we
let 𝛽 = 𝛼). This produces some simpler analysis and clearer visualizations
while still allowing us to learn about how the system behavior changes as the
factions grow large. In particular, this makes much simpler the description
of the stationary states from regions 𝑅4 and 𝑅5.

4.2.1 Equal Faction Stationary States with 𝑅4 Receptivity

For unbalanced factions, we found that a stationary state x∗ with 𝑅(x∗) = 𝑅4
would have coordinates

x∗ = 1
1 + 𝛼 + 𝛽

[
𝛽 − 𝛼 − 1
𝛽 − 𝛼 + 1

]
.

Now, we can simplify this to

x∗ = 1
1 + 2𝛼

[
−1
1

]
.

Importantly, this means that the 𝑅4 stationary states for equally-sized factions
are sign-flip symmetric (that is, 𝑥1 = −𝑥2). For such a stationary state, the
conditions for falling within the 𝑅4 region become

−1
1 + 2𝛼 < −|1 −

√
𝛿 |

and
2

1 + 2𝛼 <
√
𝛿.

By noting that 𝛼 ≥ 1 and considering the cases
√
𝛿 < 1,

√
𝛿 = 1, and

√
𝛿 > 1

separately we are able to get rid of the absolute value and further simplify
the conditions to

2
1 + 2𝛼 <

√
𝛿 <

2 + 2𝛼
1 + 2𝛼 . (4.3)
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This is analogous to the interval condition we were able to establish for 𝑅5
in Equation 4.2, which means we can now more easily compare the two.

Note that
√
𝛿 = 1 satisfies the 𝑅4 stationary state condition for any 𝛼.

This is because the stationary state is approaching (0, 0) as 𝛼 → ∞, but 𝑥1 is
always negative and 𝑥2 is always positive. That means that no matter how
close to 0 the opinions get, it will never be close enough that 𝑃1 becomes
receptive to 𝑍2 (or 𝑃2 to 𝑍1) when

√
𝛿 = 1.

4.2.2 Equal Faction Stationary States with 𝑅5 Receptivity

For unbalanced factions, we found that a stationary state x∗ with 𝑅(x∗) = 𝑅5
would have coordinates

x∗ = 1
2𝛽 + 𝛼 + 2

[
−𝛼

−(2 + 𝛼)

]
.

Now, we can simplify this to

x∗ = 1
3𝛼 + 2

[
−𝛼

−(2 + 𝛼)

]
.

We already established an interval of
√
𝛿 for which the 𝑅5 stationary

state exists in Subsection 4.1.2 (see Equation 4.2). We let 𝛽 = 𝛼 and the
√
𝛿

interval becomes
4𝛼 + 2
3𝛼 + 2 ≤

√
𝛿 <

4𝛼 + 4
3𝛼 + 2 . (4.4)

Note that now that our factions are equally-sized,
√
𝛿 = 4/3 statisfies the

𝑅5 condition for any selection of 𝛼. This is because this 𝑅5 stationary state
approaches (−1/3,−1/3) as 𝛼 → ∞. Since 𝑥1 never exceeds −1/3 and 𝑥2
never falls below −1/3, the 𝑅5 stationary state coordinates do fall in 𝑅5 for
any 𝛼 when

√
𝛿 = 4/3.

4.2.3 Visualizing Existence of Stationary States

Now that Equations 4.3 and 4.4 give us clear
√
𝛿 intervals in terms of 𝛼 where

𝑅4 and 𝑅5 stationary states exist, we visualize how these intervals evolve
with 𝛼 using Figure 4.3.

We observe that the
√
𝛿 intervals do briefly overlap for 𝛼 = 1, but not for

any larger value of 𝛼. This is because (as we noted in the previous section)
the two families of stationary states are approaching different consensus
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Figure 4.3 The
√
𝛿 intervals for which 𝑅4 and 𝑅5 stationary states exist (as a

function of 𝛼).

points as 𝛼 → ∞. So, even though both of their intervals are shrinking, the
𝑅4 interval is shrinking towards 1 and the 𝑅5 interval is shrinking towards
4/3.

To visualize what it looks like for a phase plane to have both 𝑅4 and 𝑅5
stationary states, we look to Figure 4.4. There, we can see how selecting a√
𝛿 value between 6/5 and 4/3 results in the 𝑥1 and 𝑥2 nullclines intersecting

in both the 𝑅4 and 𝑅5 regions. Note that they also intersect in the 𝑅3, 𝑅7,
and 𝑅8 regions, which are the other stationary states we expect to find based
on the

√
𝛿 conditions we found at the beginning of Subsection 4.1.2.

4.2.4 Conclusions about Factions in Hegselmann–Krause

We have completely characterized the possible stationary states with two
factions for the Hegselmann-Krause model. After removing those with
consensus (that is, the ones where the faction opinions are not actually
distinct), there are only five types of stationary states (associated with
receptivity sets 𝑅1 , . . . , 𝑅5).

Of these five types of stationary states, the first three are simple to
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Figure 4.4 Nullclines for the 𝛼 = 𝛽 = 1 system with
√
𝛿 = 1.25. The figure on

the right overlays the nullclines on the receptivity sets of the phase plane.

understand and do not depend on 𝛼 or 𝛽 (which means that they behave the
same for balanced or unbalanced factions).

In an 𝑅1 stationary state, the factions and zealots are simply all too far
from each other to have any influence. The 𝑅1 region has the unique property
that any point inside of it is a stationary state.

In an 𝑅2 stationary state, one of the factions is at a zealot opinion and
the other is too far from anything to be influenced. A given 𝑅2 region does
contain an infinite set of stationary states, but they only take up a sliver of
the whole region.

In an 𝑅3 stationary state, both factions are at opposite zealots.
The 𝑅4 and 𝑅5 stationary states are a bit more complicated because they

exist in the middle of the opinion space and their location is a function of
𝛼 (and 𝛽, in the unbalanced case). We were able to specify their location
and in the 𝛼 = 𝛽 case we characterized the

√
𝛿 intervals for which each of

them exists. We found that these intervals become small very quickly as 𝛼
increases, which means that these stationary states are rather fragile except
at small 𝛼. That being said, for 𝛼 = 1 the

√
𝛿 intervals are substantial and

they even overlap, leading to a narrow
√
𝛿 range where both 𝑅4 and 𝑅5

stationary states exist (see Figures 4.3 and 4.4).
Without zealots, the Hegselmann-Krause model on the complete graph

can only converge to something akin to 𝑅1, where every opinion faction is
simply too far from the others to have any influence. While the 𝑅4 and 𝑅5
stationary states don’t exist for as wide of a 𝛿 range as the other stationary
states, they are proof that the introduction of zealots allows for a type of
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faction formation where the factions are still being influenced by multiple
other opinions, which is qualitatively different from the factions that form
in the Hegselmann–Krause model without zealots.

4.3 How is Hegselmann–Krause different from 𝛾 → ∞
smoothed bounded-confidence?

Before returning to the smoothed bounded-confidence model, we will
carefully account for how the Hegselmann–Krause model that we have
analyzed in Sections 4.1 and 4.2 is different from the limit of the smoothed
bounded-confidence model as 𝛾 → ∞.

As we already noted in Section 4.1, the only difference in dynamics is at
points in the phase plane where (𝑥𝑖 − 𝑥 𝑗)2 =

√
𝛿 (where 𝑥𝑖 and 𝑥 𝑗 are either

faction opinions or zealot opinions). For all other points in the phase plane,
the dynamics are exactly the same under the two models. Thus, the only
points that need special consideration beyond what we’ve done already are
those who lie on the lines 𝑥1 = ±(1 −

√
𝛿), 𝑥2 = ±(1 −

√
𝛿), and the two lines

defined by
√
𝛿 = |𝑥1 − 𝑥2 |. These are the boundaries that separate the 𝑅𝑖

regions, as can be seen in Figure 4.2.
We find that at some particular values of

√
𝛿, there are stationary states in

the 𝛾 → ∞ smoothed bounded-confidence model that do not appear in the
Hegselmann-Krause model. However, these stationary states are unstable
and structurally fragile (only appearing at one precise value of 𝛿)

Theorem 4.2. When
√
𝛿 = 16/13, there are four stationary states in the 𝛾 → ∞

smoothed bounded-confidence model that do not appear in the HK model. When√
𝛿 = 7/4, there are four. When

√
𝛿 = 4/3, there are two. For any other

√
𝛿 > 1,

the stationary states of the two models are identical.

Proof. The dynamics of the two models is certainly the same on the interior of
any 𝑅𝑖 region, which means we must only check the points on the boundaries.
We begin by considering the boundary at 𝑥2 = −1+

√
𝛿 (though our analysis

will apply to the other three boundaries by symmetry).
According to the smoothed bounded-confidence model with 𝛾 → ∞, the

dynamics of 𝑥2 on the line 𝑥2 = −1 +
√
𝛿 are

𝑥′2 = 𝑥1 + 3 − 5
2
√
𝛿.
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Figure 4.5 The 𝑥1 nullclines for various values of
√
𝛿.

For a point to be stationary requires that 𝑥′2 = 0, so we find that a stationary
state on the 𝑥2 = −1 +

√
𝛿 boundary would require

𝑥1 =
5
2
√
𝛿 − 3.

Thus, the line

x =

[
−1
−3

]
+
√
𝛿

[
1

5/2

]
(4.5)

(given
√
𝛿 > 1) describes the location of the point on the −1 +

√
𝛿 boundary

where 𝑥′2 = 0, as a function of
√
𝛿.

Now, we need to find where on this line 𝑥′1 = 0. To do so, we first check
whether it intersects any of the 𝑥1 nullclines. The 𝑥1 nullclines do change
with

√
𝛿, but they always consist of vertical line segments at 𝑥1 = ±1, lines

of slope 2 passing through (−1,−1) and (1, 1) wherever 𝑃1 is receptive to
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Figure 4.6 The line of nullpoints on the 𝑥2 = −1+
√
𝛿 boundary (parametrized

in
√
𝛿). The blue lines represent all points that are part of an 𝑥1 nullcline for

some value of
√
𝛿 > 1.

only one zealot, and a line of slope 3 passing through (0, 0) wherever 𝑃1 is
receptive to both zealots (see: Figure 4.5).

For the moment, we sketch all the possible points that are part of an
𝑥1 nullcline for some

√
𝛿 > 1 and check to see if they cross the line from

Equation 4.5 (see Figure 4.6). We find that there are indeed two intersections,
one at (1/13, 3/13) and one at (3/4, 1/2). Now, for these to actually be
stationary states requires that the 𝑥1 nullcline involved in the intersection
actually exists at those coordinates, for the proper

√
𝛿 value.

We confirm that when
√
𝛿 = 16/13, 𝑃1 is receptive to both zealots at

(1/13, 3/13). Similarly, when
√
𝛿 = 7/4, 𝑃1 is receptive only to 𝑍1 at (3/4, 1/2).

Thus, (1/13, 3/13) is a stationary state for
√
𝛿 = 16/13 and (3/4, 1/2) is a

stationary state for
√
𝛿 = 7/4.

The same analysis applies on the boundaries 𝑥2 = 1 −
√
𝛿 and 𝑥1 =

±(−1 +
√
𝛿). This leads to three other stationary states at

√
𝛿 = 16/13

(those being (3/13, 1/13), (−1/13,−3/13), and (−3/13,−1/13)) and three
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Figure 4.7 The 𝑥1 nullclines of the 𝛾 → ∞ smoothed bounded-confidence
model for a particular value of

√
𝛿. The 𝑥1 nullclines of the 𝛾 → ∞ smoothed

bounded-confidence model (pictured in blue) never intersect the line 𝑥2 =

𝑥1 +
√
𝛿 (pictured in red).

other stationary states at
√
𝛿 = 7/4 (those being (1/2, 3/4), (−3/4,−1/2), and

(−1/2,−3/4)).
A stationary state could also appear if an 𝑥1 nullpoint intersects with

an 𝑥2 nullpoint. By the symmetry of the system, we can tell that this will
happen when the line from Equation 4.5 intersects with its inverse

x =

[
−3
−1

]
+
√
𝛿

[
5/2
1

]
.

This occurs at (1/3, 1/3), when
√
𝛿 = 4/3. Therefore, when

√
𝛿 = 4/3

there is a stationary state at (1/3, 1/3) where both the 𝑥1 and 𝑥2 coordinates
fall on an 𝑅𝑖 boundary. Note that since this point falls on the line 𝑥1 = 𝑥2, it
has only one symmetric partner, at (−1/3,−1/3).

Now all that remains is to consider stationary states that lie on the
boundaries at |𝑥2 − 𝑥1 | =

√
𝛿. Consider first the boundary at 𝑥2 = 𝑥1 +

√
𝛿.

We observe from Figure 4.7 that when
√
𝛿 > 1, this boundary never intersects
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any of the 𝑥1 nullclines. (In Figure 4.7, it looks like 𝑥1 might be stationary at
(𝑥1 , 𝑥2) = (−1,−1+

√
𝛿), but that 𝑥1 nullcline disappears before the boundary.)

Since this boundary never intersects a nullcline, its only hope for con-
taining a stationary state is if an 𝑥1 and 𝑥2 nullpoint that are both on the
boundary intersect.

We find that on the boundary 𝑥2 = 𝑥1 +
√
𝛿, the condition 𝑥′2 = 0 implies

that 𝑥1 = 1−(3/2)
√
𝛿 and the condition 𝑥′1 = 0 implies that 𝑥2 = −1+(3/2)

√
𝛿.

The only
√
𝛿 for which these coordinates lie on the given boundary is

√
𝛿 = 1,

which falls outside of our current scope.
We have found that for

√
𝛿 > 1 there are only ten stationary states in

the 𝛾 → ∞ limit of the smoothed bounded-confidence model that do not
appear in the Hegselmann-Krause model. They appear in two sets of four
symmetric states and one set of two states, and each of the sets are only
present for one particular value of

√
𝛿. □

A similar analysis could be performed for
√
𝛿 = 1 and

√
𝛿 < 1. The lesson

here, though, is that the additional stationary states that are generated by
the inclusion of the 1/2 weight at a distance of

√
𝛿 are not significant because

there are only a handful of them and they are very structurally unstable
(each only present for an exact value of

√
𝛿).

4.4 Dynamics of Two Factions for Large 𝛾

Now that we have described the behavior of the smoothed bounded-
confidence model in the 𝛾 → ∞ limit, we will connect it back to the
finite 𝛾 model.

Throughout this section, we will refer to the dynamics of the smoothed
bounded-confidence model for a particular selection of 𝛾 as F𝛾. We refer to
the 𝛾 → ∞ limit of the dynamics as F∞. (When we compare F𝛾 and F∞ it is
implied that both systems have otherwise identical parameters.)

4.4.1 The F𝛾 Phase Plane for Large 𝛾

In this section, we compare the stationary states of F𝛾 for large 𝛾 with the
stationary states of F∞. We find that the phase planes look remarkably
similar, though the F𝛾 phase planes have some additional unstable stationary
states not present in the F∞ planes.
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Figure 4.8 The 𝑥1 and 𝑥2 nullclines of the system for 𝛾 = 300,
√
𝛿 = 1.25,

𝛼 = 𝛽 = 1. The top row shows the 𝑥1 (left) and 𝑥2 (right) nullclines separately.
The bottom row shows the nullclines simultaneously with stable stationary
states marked in blue (on the left) and unstable stationary states marked in red
(on the right).

We begin by comparing F300 and F∞ with
√
𝛿 = 1.25, 𝛼 = 1, and 𝛽 = 1.

Recall that we have already plotted the nullclines of the F∞ case in Figure
4.4. After plotting the 𝑥1 and 𝑥2 nullclines of F300 in Figure 4.8, we find that
the 𝑥1 and 𝑥2 nullclines of F300 look very similar to those of the F∞ case. For
instance, the stable stationary states present for F∞ are all present for F300
(comparing the lower left component of Figure 4.8 with Figure 4.4). The
substantial difference is that the discontinuities present in the F∞ nullclines
in Figure 4.4 have been patched up in the F300 phase planes.

The discontinuities are not present in the F300 case because the dynamics
F𝛾 remain continuous for any finite 𝛾 (even though they are converging
pointwise to the discontinuous expression of F∞.) The continuity of the
dynamics means that the nullclines must form boundaries between regions
of the phase plane where opinions are decreasing and regions of the phase
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Figure 4.9 The (𝑥1 , 𝑥2) slope field of the smoothed bounded-confidence
model for 𝛼 = 𝛽 = 1, 𝛾 = 300,

√
𝛿 = 1.25. The stable stationary states are

marked in blue.

plane where opinions are increasing (by the Intermediate Value Theorem).
In the F∞ model this is not the case. In fact, the boundaries between the 𝑅𝑖

regions in the F∞ case are separating positive and negative dynamics for 𝑥1
or 𝑥2 without the dynamics ever passing through 0.

These additional components in the nullclines may not seem substantial,
but they can actually introduce a lot of additional stationary states. In
Figure 4.8, we see that for this particular parameter combination there are
18 additional stationary states in the F300 case that are not present in the F∞
case, all of which are unstable. Further, we note that all of these additional
stationary states occur near the 𝑅𝑖 boundaries of the F∞ case.

This example helps motivate the following theorem describing the
relationship between the stationary states of F𝛾 and F∞ at large 𝛾. The
following theorem is paraphrased from results from Brooks and Chodrow
(2022) and requires definition of some new notation.
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Let 𝒳(𝛾) be the set of stationary states of F𝛾 and let

𝒳𝑎 =

{
x :

��|𝑥𝑖 − 𝑥 𝑗 | −
√
𝛿
�� ≥ 𝑎 ∀(𝑖 , 𝑗) ∈ ℰ

}
.

That is, 𝒳𝑎 is the set of all opinion vectors such that no two adjacent agents
have opinions that are “nearly exactly

√
𝛿 apart” (where “nearly” means

closer than 𝑎).
Finally, let 𝒳𝑎(𝛾) be 𝒳(𝛾) ∪ 𝒳𝑎 .

Theorem 4.3. Brooks and Chodrow (2022) Let {𝒳𝑎(𝛾1),𝒳𝑎(𝛾2), . . . ,𝒳𝑎(𝛾𝑛), . . . }
be an infinite sequence such that 𝛾1 < 𝛾2 < · · · < 𝛾𝑛 . Then, all limit points of this
sequence belong to 𝒳𝑎(∞).

Colloquially, this means that if we just ignore the stationary states of F𝛾

that occur very near the 𝑅𝑖 boundaries in F∞, then all F𝛾 stationary states
belong to some sequence of stationary states that is approaching a stationary
state of F∞ as 𝛾 grows large.

Note that this applies to the smoothed bounded-confidence model on
any graph (not just the complete graph) and applies to any stationary state
(not just consensus or dual factions). That being said, our investigation in
Figures 4.4 and 4.8 certainly supports this theorem.

4.4.2 A Stronger Relationship Between F𝛾 and F∞?

On the one hand, our comparison of Figures 4.4 and 4.8 does support the
claim of Theorem 4.3. However, it also hints at a potentially stronger version
of the theorem.

Note that the theorem makes no claim about the reverse inclusion. That
is, is every point in 𝒳𝑎(∞) realizable as the limit of a sequence of points built
from a sequence {𝒳𝑎(𝛾1),𝒳𝑎(𝛾2), . . . ,𝒳𝑎(𝛾𝑛), . . . }?

First, it appears that none of the F∞ stationary states lie on the 𝑅𝑖 regions
(and from 4.3 we know this to be true for nearly all selections of

√
𝛿). This

means that (for almost any
√
𝛿) we have 𝒳𝑎(∞) = 𝒳(∞).

Then, we note that all eleven of the stationary states that appear in Figure
4.4 are being approximated by stable stationary states in Figure 4.8. That
is, it does seem that every F∞ stationary state is being approximated by
sequences of F𝛾 stationary states as 𝛾 increases. Taking these observations
together gives the intuition for the following conjecture.

Conjecture 4.1. Let x∗ be a stationary state of F∞ such that
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1. Every persuadable agent is receptive to a zealot

2. No two adjacent agents have opinions that differ by exactly
√
𝛿.

Then, x∗ is the limit point of a sequence {x1 , x2 . . . } such that x𝑖 ∈ 𝒳(𝛾𝑖) for a
sequence of 𝛾 such that 𝛾1 < 𝛾2 < · · · < 𝛾𝑛 .

Proof. (Sketch). Condition 2 of the conjecture ensures us that there exists a
neighborhood 𝑁(x∗) such that every point in 𝑁(x∗) has the same receptivity
set as x∗. Note that the “nullclines” of the F∞ system are discontinuous
collections of hyperplanes. Since every point in𝑁(x∗)has the same receptivity
set, the nullcline hyperplanes have no discontinuities in 𝑁(x∗).

The fact that every agent in x∗ is receptive to at least one other agent is
enough to demonstrate that all of these hyperplanes have dimension 𝑚 − 1,
where 𝑚 is the number of agents in the system.

We think that the condition that every persuadable agent is receptive to a
zealot is sufficient to prove that these 𝑚 hyperplanes are linearly independent.
However, we are not sure that this is sufficient (and, if so, it may not be
necessary). Another potential (less stringent) condition is that every agent
is “connected” to a zealot through a receptivity “chain.” (That is, if the
receptivity set of x∗ defined the edges of a graph, every connected component
of that graph would have a zealot in it.)

Now, we can prove that, in 𝑁(x∗), the nullclines of F𝛾 are manifolds that
are converging absolutely to the 𝑚 linearly independent 𝑚 − 1-dimensional
hyperplanes as 𝛾 → ∞.

It remains to show that the intersection of manifolds approaches the
intersection of hyperplanes that they are converging to absolutely. This
would complete the proof.

□

This result would be stronger than Theorem 4.3 because it doesn’t require
us to ignore the behavior of F𝛾 on the 𝑅𝑖 boundaries. (And, if true, it better
captures the fact that 𝒳(∞) is a subset of the limit points of 𝒳(𝛾), and not
the other way around.)





Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have analyzed the smoothed bounded-confidence model
of opinion dynamics introduced in Brooks and Chodrow (2022) as applied
to the complete graph.

In Chapter 1, we showed how the smoothed bounded-confidence model
can be tuned to recover the definition of two classical opinion models: Taylor’s
model and a Hegselmann-Krause inspired model (originally presented in
Taylor (1968) and Hegselmann and Krause (2002), respectively).

In Chapter 2, we presented some general properties of the model, includ-
ing both original proofs of some results and reproductions from Brooks and
Chodrow (2022) of others. Among these results, we proved that at least two
zealots must be incorporated into the smoothed bounded-confidence model
to obtain stationary states other than consensus.

In Chapter 3, we narrowed our focus to the complete graph with two
zealots. There, we created a bifurcation surface which let us visualize the
stationary consensus values throughout our (𝛾, 𝛿) parameter space. We saw
that consensus on the smoothed bounded-confidence model recovers the
Taylor and Hegselmann–Krause behaviors for small and large 𝛾, respectively,
and that mid-range values of 𝛾 are a transition zone with behavior not quite
like that of either of the classical models.

In Chapter 4, we began to analyze two-dimensional stationary states
by considering opinion vectors that consisted of two opinion factions. We
began by analyzing the 𝛾 → ∞ version of the smoothed bounded-confidence
model, completely characterizing its stationary states with two factions. Then,
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using a mixture of numerical results and analytical proof, we established
similarities and differences between the stationary states of the finite 𝛾 model
and those of the 𝛾 → ∞ model.

5.2 Future Work

In this section, we detail some possible directions for future work related to
this project.

5.2.1 Investigating Small and Medium 𝛾 on Two Factions

In Section 4.4 we establish a relationship between the behavior of our model
for large 𝛾 and the Hegselmann–Krause model. However, we do not consider
in much detail what happens with two factions at small or medium values
of 𝛾. In particular, does the model reproduce Taylor-like behavior at low 𝛾?
Are there mid-range values of 𝛾 for which the model behavior is different
than that of Taylor’s model or the Hegselmann–Krause model (as we saw in
the consensus case)?

5.2.2 A Stricter Relationship Between SBC Stationary States and
HK Stationary States.

In Section 4.4 we provided the sketch of a proof that nearly all Hegselmann–
Krause stationary states are approached by limit sets of finite 𝛾 stationary
states as 𝛾 approaches ∞.

Fleshing out the proof of this conjecture would be valuable both in
clarifying whether the theorem statement is true and in providing further
insight into the kinds of Hegselmann–Krause stationary states that it applies
to. Right now we have conjectures about which stationary states the theorem
applies to but it is not clear that these conditions are necessary, let alone
sufficient.

5.2.3 Exploring Higher Dimensions (More Factions!)

In this thesis, we explored the behavior of stationary states with consensus
(which mostly reduced to a one-dimensional system) and those with two
opinion factions (which mostly reduced to a two-dimensional system). In
these low dimensions, we were able to gain valuable insights to the system
through bifurcation diagrams and phase planes.
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It would make sense to extend the exploration of the smoothed bounded-
confidence model on the complete graph to higher dimensional space (i.e.,
what do stationary states look like when we allow more than two opinion
factions to form?) It would be difficult to do the analysis in higher dimensions,
but it would be a valuable insight into the dynamics of the system.

5.2.4 Exploring Other Graph Structures

In this thesis, we concentrated on the dynamics of the complete graph. These
dynamics were highly non-trivial and we only characterized the behavior of
stationary states with up to two opinions in them. Although there is still
more work to be done on understanding the smoothed bounded-confidence
model on the complete graph, it would also be valuable to work on applying
the lessons that we have learned on the complete graph to other graph
structures.

This could take many different forms. Perhaps it could involve looking
at other graphs that have a relatively high degree of structure to them and
comparing the conditions for consensus and faction formation. It could also
mean investigating the behavior of networks that consist of a few complete
graphs that are sparsely connected and comparing and contrasting their
behavior with that of the isolated complete graph. Or, maybe one could
take a more simulation-oriented angle and see how consensus and faction
formation patterns differ on a graph with less structure to it. These are
merely a couple of ideas for how the lessons that we have learned about the
smoothed bounded-confidence model could be exported from the complete
graph to other types of graph structures.
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