
Claremont Colleges Claremont Colleges

Scholarship @ Claremont Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2022

Games for One, Games for Two: Computationally Complex Fun for Games for One, Games for Two: Computationally Complex Fun for

Polynomial-Hierarchical Families Polynomial-Hierarchical Families

Kye Shi

Follow this and additional works at: https://scholarship.claremont.edu/hmc_theses

 Part of the Discrete Mathematics and Combinatorics Commons, and the Theory and Algorithms

Commons

Recommended Citation Recommended Citation
Shi, Kye, "Games for One, Games for Two: Computationally Complex Fun for Polynomial-Hierarchical
Families" (2022). HMC Senior Theses. 259.
https://scholarship.claremont.edu/hmc_theses/259

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in HMC Senior Theses by an authorized administrator
of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
https://scholarship.claremont.edu/hmc_theses?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/hmc_theses/259?utm_source=scholarship.claremont.edu%2Fhmc_theses%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

Games for one, games for two!
computationally complex fun for polynomial-hierarchical families

Kye Shi

Nicholas Pippenger, Advisor

Arthur T. Benjamin, Reader

Department of Mathematics

May 2022

Copyright ©2022 Kye Shi.

The author grants Harvey Mudd College and the Claremont Colleges Library the nonexclusive
right to make this work available for noncommercial, educational purposes, provided that this
copyright statement appears on the reproduced materials and notice is given that the copying is
by permission of the author. To disseminate otherwise or to republish requires written permission
from the author.

page ii

Abstract

In the first half of this thesis, we explore the polynomial-time hierarchy, emphasizing an intuitive
perspective that associates decision problems in the polynomial hierarchy to combinatorial games
with fixed numbers of turns. Specifically, problems inP are thought of as 0-turn games,NP as 1-turn
“puzzle” games, and in general Σ𝑘P as 𝑘-turn games, in which decision problems answer the binary
question, “can the starting player guarantee a win?” We introduce the formalisms of the polynomial
hierarchy through this perspective, alongside definitions of 𝑘-turn Circuit Satisfiability games,
whoseΣ𝑘P-completeness is assumed from prior work (we briefly justify this assumption on intuitive
grounds, but no proof is given).

In the second half, we introduce and explore the properties of a novel family of games called the
𝑘-turn Graph 3-Colorability games. By embedding boolean circuits in proper graph 3-colorings,
we construct reductions from 𝑘-turn Circuit Satisfiability games to 𝑘-turn 3-Colorability games,
thereby showing that 𝑘-turn 3-Colorability is Σ𝑘P-complete.

Finally, we conclude by discussing possible future generalizations of this work, vis-à-vis extending
arbitrary NP-complete puzzles to interesting Σ𝑘P-complete games.

page iii

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Overview . 1
1.2 Prior work and inspirations . 2

2 Basic concepts in complexity theory 3
2.1 Decision problems . 3
2.2 Complexities and classes . 4
2.3 Hard problems and reductions . 5

2.3.1 Complements of decision problems . 7

3 A primer on boolean logic 11
3.1 Algebraic properties of ¬, ∧, ∨ . 12

3.1.1 DeMorgan’s identities . 12
3.2 Boolean circuits . 13

4 Boolean circuit puzzles and games 17
4.1 The Circuit Value problem, and P . 17
4.2 The Circuit Satisfiability puzzle, and NP . 18

4.2.1 Circuit Satisfiability is NP-complete . 20
4.3 Two-player circuit games, and the polynomial hierarchy 20

5 Graph 3-coloring games 25
5.1 Preliminaries: graphs and proper colorings . 25
5.2 The 0-turn game . 26
5.3 The 𝑘-turn games . 27
5.4 𝑘-turn 3-Colorability is in Σ𝑘P, right? . 29
5.5 𝑘-turn 3-Colorability is Σ𝑘P-complete . 33

5.5.1 Using 3-colorings to emulate circuits . 33
5.5.2 Translating Circuit Satisfiability games to 3-Colorability games 44

5.6 Can we avoid pre-coloring vertices? . 48

6 Conclusion 51

Bibliography 53

page iv

Acknowledgments

First and foremost, I wish to thank my thesis advisor, Professor Nicholas Pippenger, for generously
signing on to advise me despite being retired, for being tremendously patient with me despite
how frequently I showed up to our weekly meetings empty-handed, and of course for his helpful
guidance throughout this project. While we’re at it, let me also thank all the other wonderful
professors who have mentored me through the years—Professor Stephan Garcia, Professor Dagan
Karp, Professor Lucas Bang, Professor Weiqing Gu—you helped make me the mathematician and
the person I am now.

I am also grateful to my friends at MathILy—sarah-marie, Tom, Hannah, Brian, Corrine, Max,
Josh—you’re the reason I fell in love with math in the first place, and working with you continually
inspires me to approach math with unrelenting levity.

And finally, dearest thanks to my close friends outside of math: Sophia Cheng, for supporting me
in every way and for being a fabulous dance partner; Forest Kobayashi, for befriending me ; Cole
Kurashige, for his sagely life advice; Kaveh Pezeshki, my OneWheel buddy for life; and last but not
least, my mom, for funding my exorbitant college education (and also, of course, for taking care of
me my entire life). Cheers!

page v

http://mathily.org

page vi

Chapter 1

Introduction

A quick note before we start: an up-to-date version of this document, along with its full LATEX
source code, is published on the GitHub repository https://github.com/kwshi/hmc-ph-thesis.
I encourage the interested reader to engage with this project (suggesting revisions, requesting
clarifications, pointing out errors or typos, etc.) by submitting issue reports on the GitHub
repository or directly contacting me at kwshi@hmc.edu.

The basic question of computational complexity—“how hard is this problem for a computer to
solve?”—is central to nearly every topic in computer science. And yet the formalisms of complexity
theory often seem, in my own experience, intimidatingly abstract, phrased in terms of intangible
models of computation such as non-deterministic Turing machines and oracles.

The remedy, I believe, lies in studying complexity theory through the lens of puzzles and games.
Not only do they provide a concrete grounding for the abstractions, they also offer a particularly
insightful, accessible, and most importantly fun approach to understanding complexity theory. In
fact, many of the most popularly known and appreciated results in complexity theory are those
about so-called “NP-complete puzzles”, such as Sudoku, and “PSPACE-complete games”, such as
Checkers and Go.

This thesis emphasizes that approach in its exploration of a particularly foundational, yet often
overlooked, ladder of complexity classes known as the polynomial hierarchy. NP is the class of
(one-player) “puzzles”, and PSPACE is the class of (two-player) “games” of polynomial length; the
polynomial hierarchy, then, lies in the middle, encompassing games of fixed length. Through this
lens, the (in)famous P-vs-NP question is but the first in a ladder of questions that are, arguably,
just as crucial and impactful.

1.1 Overview

This document is structured as follows. First, chapters 2 and 3 establish preliminary background
concepts and conventions adopted throughout this thesis. Next, chapter 4 lays the central theoret-
ical groundwork, defining the polynomial hierarchy through a fundamental family of problems
known as the Circuit Satisfiability games. Next, chapter 5 explores a novel family of games

page 1

https://github.com/kwshi/hmc-ph-thesis
https://github.com/kwshi/hmc-ph-thesis/issues
https://github.com/kwshi/hmc-ph-thesis/issues
mailto:kwshi@hmc.edu

CHAPTER 1
Introduction

SECTION 1.2
Prior work and inspirations

generalized from the Graph 3-Colorability puzzle and establishes hardness bounds on each of
those games. Finally, chapter 6 concludes by discussing the future directions of this work and its
broader implications.

1.2 Prior work and inspirations

Much of the background exposition on complexity theory referenced in this thesis is reproduced
from Christos Papadimitriou’s textbook, Papadimitriou (1993) (though many of the foundational
ideas were originally introduced/proven elsewhere, e.g. Cook (1971), Levin (1973), and Stock-
meyer (1976)), reframed through the puzzles-and-games perspective and supplemented with a few
comments on intuition.

The main family of games explored in this thesis, fixed-turn 3-Colorability games (chapter 5),
is a generalization of (one-turn) 3-Colorability, a well-known NP-complete puzzle originally
proven NP-complete by Karp (1972). Others have studied (multi-turn) game generalizations of
3-Colorability, but all versions that I’ve encountered are PSPACE-complete, in which the number
of turns played during the game scales proportionally with the size of the graph (Bodlaender 1991;
Kyle Burke and Hearn 2019; Beaulieu, K. Burke, and Duchêne 2013; Costa et al. 2019; Schaefer 1978).
As far as I’m aware, the variations I explore here—with fixed numbers of turns regardless of the
size of the graph—is unexplored, and the main theorem about its Σ𝑘P-completeness (theorem 5.10)
is novel. The basic idea underlying my proof is the composition of two well-known results:

• Karp (1972)’s classic proof of the NP-hardness of the 3-Colorability puzzle, via a reduction
from 3CNF-Satisfiability;

• Tseitin (1970)’s transformation from boolean circuits to equivalent 3CNF-clauses.

Without further ado, let’s begin.

page 2

Chapter 2

Basic concepts in complexity theory

The fundamental question driving the study of computational complexity theory is, “how difficult
are certain problems for computers to solve?” In order to answer this question precisely, we must
start by figuring out what exactly it asks. That is, formally, what do we mean by difficulty? For
that matter, what constitutes a problem? What counts as a computer?

Conventionally, computers are formalized as Turing machines, with difficulty being measured by
the number of Turingmachine execution steps. For the purposes of this thesis, we avoid delving into
the formalism of Turing machines. Instead, we assume an informal notion of computers given by
any algorithm or procedure straightforwardly implementable in modern, high-level programming
languages such as C/C++, Python, Java, etc. Detailed treatment of the relevant formalisms may be
found in Papadimitriou (1993, Chapter 2). In particular, there are theorems (Papadimitriou 1993,
Theorem 2.5) showing that modern CPU/RAM-based computer architectures are, for our purposes,
equivalent to Turing machines, thereby justifying the informal approach we take here.

In the following sections, we discuss what exactly constitutes a problem, how we describe the
complexity (i.e., difficulty) of problems, and how we categorize them into complexity classes.

2.1 Decision problems

The simplest flavor of computational problem is a decision problem, or a yes/no question: given an
input 𝑋, does 𝑋 satisfy certain conditions? Here are some examples of decision problems:

• Given an integer 𝐾, is 𝐾 even?
• Given a string of letters 𝑆, is 𝑆 a palindrome?
• A silly decision problem, but nevertheless a valid one: given any input 𝑋, always return “yes”.

In order for a yes/no question to qualify as a decision problem, it must be stated in terms of an
arbitrary input. For instance, consider the following question:

• Is 314159 a prime number?

This is a yes/no question, but it takes no inputs (the value 314159 is not an input; it is merely part

page 3

CHAPTER 2
Basic concepts in complexity theory

SECTION 2.2
Complexities and classes

of the question statement). In this sense, it is computationally uninteresting: in order to solve this
question, an algorithm only needs to return the fixed answer “yes”. In contrast, what we’re really
interested in is the general problem of primality testing:

• Given an arbitrary positive integer 𝐾, is 𝐾 prime?

We formalize the definition of decision problems below.

Definition 2.1 ▶ (decision) problem

A decision problem is a function 𝛱∶ {0, 1}∗ → {yes, no}. Equivalently, a decision problem
is the set 𝛱 ⊆ {0, 1}∗ comprising exactly the inputs, a.k.a. instances, that result in “yes”
answers.

That is, for any input 𝑋 ∈ {0, 1}∗, we say 𝑋 ∈ 𝛱 (in the set sense) if 𝛱(𝑋) = yes (in the
function sense), and 𝑋 ∉ 𝛱 to mean 𝛱(𝑋) = no. The two formalisms are equivalent.

Aside Formally, inputs to decision problems are always encoded as binary strings. Essen-
tially, this requirement follows from the fact that all modern computers encode data in
binary anyway. Furthermore, it allows us to rigorously discuss notions such as input size.
This is an important formal detail, but for the most part, we avoid dealing with any binary
encoding/decoding technicalities. We mention this detail here only to clarify the role of
{0, 1}∗ in the definition above.

A more general notion of problems considers arbitrary (binary-encoded) functions {0, 1}∗ → {0, 1}∗;
such a problem is termed a function problem. However, we will focusmainly on decision problems
for two reasons. First, decision problems are easier to work with than function problems. Second,
function problems can be encoded in terms of decision problems (e.g., mapping each output bit to
its own decision problem). Essentially, the decision problem formalism is conceptually simpler but
remains versatile enough to capture the important core ideas of complexity theory. As such, the
vast majority of the problems examined in this thesis are decision problems. For convenience we
will simply say “problems” to mean decision problems, unless otherwise specified.

2.2 Complexities and classes

When we ask how difficult a problem is, we are essentially asking, how much time (or other
resources, such as memory) does a computer need to solve that problem? Of course, the answer
depends on the input: some inputs are easy to solve, and others are harder. Certainly, we expect
the difficulty to scale with input size: the larger the input, the more work it generally takes an
algorithm to process it. Thus, the complexity of a problem is given as a function of the input size.
Specifically, we ask, if an algorithm is given an input string (recall, encoded in binary) of length 𝑛,
how much time in the worst case is required, as a function of 𝑛?

However, exact function bounds are unnecessarily sensitive to pedantic technicalities, e.g., slight
variations in implementations of the same algorithm, or specific details in the formal models of
“computer”. Instead, loosely speaking, we are mostly interested in how these costs asymptotically
scale as the input size gets large. Thus, we categorize problems with “similar” complexities into

page 4

SECTION 2.3
Hard problems and reductions

CHAPTER 2
Basic concepts in complexity theory

complexity classes.

So then, what counts as similar? As a starting approximation, we assert that polynomials are
small : any algorithm whose running time is bounded by some polynomial function is considered
relatively “fast”; problems with polynomial-time solutions are considered relatively “easy”. We
formalize this idea in the definition of the complexity class P below.

Definition 2.2 ▶ Polynomial-time problems, P

Let 𝐴 be an algorithm computing some (decision) problem (i.e., it takes a binary string as
input and returns “yes” or “no”). We say 𝐴 runs in polynomial time if there exists some
polynomial 𝑝 such that, on any input 𝑋 ∈ {0, 1}∗, the algorithm 𝐴 always terminates in
≤ 𝑝(|𝑋 |) steps.

The complexity class P is the set of (decision) problems correctly solvable in polynomial time.

Aside For contrast, an algorithm is super-polynomial if its running time isn’t bounded
by any polynomial. Examples of super-polynomial functions include 𝑛log 𝑛, 2𝑛, etc.

To be clear, taking polynomials to mean “easy” is a very crude rule-of-thumb: there are impor-
tant practical subdivisions within P that this categorization plainly ignores (e.g., linear-time vs.
quadratic-time); there are also a few notable examples of super-polynomial-time algorithms that
are, by this rule, slow, but quite efficient in practice (e.g., the simplex algorithm for linear program-
ming). Nevertheless, this delineation remains an extremely useful (and arguably elegant) starting
point for the classification of problems.

2.3 Hard problems and reductions

Above, we establish that a problem is considered easy if it has a polynomial-time solution. Hard
problems, then, are those without polynomial-time solutions… right? Sure. But how do we go
about showing that a problem is actually hard? And how hard, exactly?

For an easy problem, proving existence of a polynomial-time algorithm is straightforward—simply
construct one. On the other hand, for a problem that appears to be hard, we would have to prove
non-existence of a polynomial-time algorithm—that it is impossible to find a polynomial-time
algorithm. In general, this is incredibly difficult to show; this difficulty is largely why the infamous
P-vs-NP question remains unsolved.

Instead, we take a different approach to understanding hard problems: comparing them to each
other. To illustrate, consider the following two problems:

Latin Square Given a square grid of dimensions 𝑛 × 𝑛 (for some 𝑛), with some of its cells filled in
with a number in {1, … , 𝑛}, is it possible to complete the remaining cells so that each row and
each column contains each number exactly once?

page 5

CHAPTER 2
Basic concepts in complexity theory

SECTION 2.3
Hard problems and reductions

2

1

2

1

3 2 1

3 2

1 3 2

1

3 1 2

2 3

3 1

Figure 2.1. A 3 × 3 Latin Square instance and its two possible completions.

Graph Colorability Given a positive integer 𝑘, and a graph with 𝑛 > 𝑘 vertices, some of which
are assigned a number (a.k.a. “color”) in {1, … , 𝑘}, is it possible to assign numbers to the
remaining cells so that no neighboring vertices receive the same assignment?

Is one of these problems “easier” than the other? In a sense, yes: the Latin Square problem is just
a special case of the Graph Coloring problem, where the vertices are arranged into a square grid,
and all vertices in the same row or column neighbor each other.

2

1

Figure 2.2. The Latin Square from figure 2.1, represented as a graph.

More precisely, this argument describes a way to convert any Latin Square instance (a partially-
filled 𝑛 × 𝑛 grid) into a Graph Coloring instance (a partially-colored graph with 𝑛2 vertices) with
the same yes/no answer. Formally, we call this conversion a reduction:

Definition 2.3 ▶ reductions

Let 𝛱1 and 𝛱2 be decision problems. A reduction from 𝛱1 to 𝛱2 is an algorithm 𝑅∶ {0, 1}∗ →
{0, 1}∗ such that, for each 𝑋 ∈ {0, 1}∗, 𝑋 ∈ 𝛱1 if and only if 𝑅(𝑋) ∈ 𝛱2.

In other words, 𝑅 converts problem-inputs (a.k.a. instances) of 𝛱1 to problems-inputs of 𝛱2
such that the yes/no answers on the original and converted inputs exactly match.

Revisiting the above example, the existence of a reduction fromLatin Square toGraph Colorability
captures the idea that Latin Square is easier than Graph Colorability in the following sense. Sup-
pose that we already know how to solve Graph Colorability. Then, we automatically also know
how to solve Latin Square: given an arbitrary Latin Square input, apply the reduction to convert
it into a Graph Colorability input, feed that input into the known Graph Coloring solver, then
directly return its answer.

However, in order to authentically capture the idea of easiness, we must also account for computa-
tion time. Namely, we stipulate that the reduction itself must be efficient—formally, that it runs in

page 6

SECTION 2.3
Hard problems and reductions

CHAPTER 2
Basic concepts in complexity theory

polynomial time.

Definition 2.4 ▶ polynomial-time reducibility

Let 𝛱1 and 𝛱2 be decision problems. We say 𝛱1 is polynomial-time-reducible to 𝛱2, which
we denote as

𝛱1 ≤ 𝛱2,

if there exists a reduction from 𝛱1 to 𝛱2 that runs in polynomial time. (The ≤ notation evokes
the intuition that 𝛱1 is easier than, or at most as hard as, 𝛱2.)

We say 𝛱1 and 𝛱2 are equivalent, denoted

𝛱1 ≡ 𝛱2,

if 𝛱1 ≤ 𝛱2 and 𝛱2 ≤ 𝛱1.

Finally, we introduce some terminology to describe comparisons against entire classes of problems:

Definition 2.5 ▶ hardness and completeness

Let 𝛱 be a decision problem, and let 𝑪 be a class of decision problems.

We say 𝛱 is hard for 𝑪, or 𝑪-hard, if every problem in 𝑪 is polynomial-time-reducible to 𝛱.

We say 𝛱 is complete for 𝑪, or 𝑪-complete, if 𝛱 is 𝑪-hard and 𝛱 ∈ 𝑪.

Aside Following the intuition that reducibility (≤) orders/compares problems by difficulty,
𝑪-hard problems are just those that are (non-strictly) harder than all problems in 𝑪, and
𝑪-complete problems are just the maximal/hardest problems within 𝑪.

Complete problems are especially useful, first and foremost, because they are tangible. They
have accessible, interesting, and often real-world-applicable examples that help us understand
complexity classes in concrete, intuitive terms, rather than pure abstractions. At the same time,
complete problems are also very general. As tight difficulty upper bounds of a complexity class,
they are perfect characterizations of these classes; determining the exact difficulty of a complete
problem automatically essentially determines the difficulty of the entire complexity class.

2.3.1 Complements of decision problems

Every decision problem 𝛱 has a complement 𝛱 c, whose yes/no question is opposite that of 𝛱. For
instance, if 𝛱 returns “yes” if a given integer 𝑛 (encoded in binary) is prime, then 𝛱 c returns “yes”
if 𝑛 is composite.

Definition 2.6 ▶ complement problems

Let 𝛱 ⊆ {0, 1}∗ be a decision problem. The complement of 𝛱, denoted 𝛱 c, is same as the set
complement of 𝛱:

𝛱 c = {𝑋 ∈ {0, 1}∗ | 𝑋 ∉ 𝛱}.

page 7

CHAPTER 2
Basic concepts in complexity theory

SECTION 2.3
Hard problems and reductions

The yes/no answer to 𝛱 c is always opposite that of 𝛱. That is, for any 𝑋 ∈ {0, 1}∗,

𝛱 c(𝑥) = {
yes 𝛱(𝑥) = no

no 𝛱(𝑥) = yes.

Aside In practice, what we call “complement” problems aren’t exactly set complements;
rather, they are complements within a space of strings following a particular format.

For instance, in the two examples given earlier—Latin Square andGraph Colorability—the
input strings encode more complicated data structures, such as tuples, arrays, and graphs.
In these cases, the literal set complement would therefore also include all invalidly-
formatted strings in addition to validly-formatted-but-condition-failing strings, even
though in practice we use complement to refer only to the validly-formatted instances.

Thankfully, this difference is inconsequential: assuming that string formattings/encodings
can be checked and parsed in polynomial time, as is almost always the case, then it is
easy to distinguish, in the complement problem, between invalid and valid-but-failing
strings; thus the true set complement (which includes invalid strings) is equivalent to the
practical set complement (which excludes invalid strings). Therefore, we can conflate the
two modes of complement without repercussion.

It is worthmentioning that, under our definition of reduction, in general𝛱 and𝛱 c aren’t necessarily
reducible to each other. This is perhaps counter to what one might expect, because aren’t 𝛱 and
𝛱 c just two faces of the same problem? Not entirely.

To understandwhy not, consider again the example from earlier,𝛱 = Primes and𝛱 c = Composites.
Suppose some integer 𝑛 is given, and you are asked to prove that either 𝑛 ∈ 𝛱 (𝑛 is prime) or 𝑛 ∈ 𝛱 c

(𝑛 is composite). Which proof would be more straightforward?

• If 𝑛 is composite, the proof is straightforward: simply provide an example of a divisor 1 < 𝑚 < 𝑛,
and demonstrate that indeed 𝑚 divides 𝑛.

• If 𝑛 is prime, on the other hand, the proof appears less straightforward: there is way to provide
no one example to demonstrate the proof; every possible divisor up to 𝑛 must be checked to
ensure that none of them divide 𝑛.

Basically, while 𝛱 and 𝛱 c do represent two sides of the same problem, the difficulty of prov-
ing/demonstrating membership in the two sets may be different. Our definition of reduction,
therefore, distinguishes between the difficulty of proving “yes”-ness and the difficulty of proving
“no”-ness. (There are other more generous definitions of reducibility out there, under which 𝛱 and
𝛱 c do reduce to each other, but that’s besides the point: our definition makes a finer, more careful
distinction and is also simpler to work with.)

For a complexity class of problems 𝑪, the “dual” class formed by taking the complement of each
problem in 𝑪 is denoted co-𝑪.

page 8

SECTION 2.3
Hard problems and reductions

CHAPTER 2
Basic concepts in complexity theory

Definition 2.7 ▶ co- of a complexity class

Let 𝑪 be a complexity class. The complexity class co-𝑪 comprises the complement of each
problem in 𝑪:

co-𝑪 = {𝛱 c | 𝛱 ∈ 𝑪}.

Note that co-𝑪 is not the same thing as the set complement of 𝑪 (the complements are of elements
in 𝑪, not 𝑪 itself).

In general, complementation preserves reducibility, in the following sense:

Theorem 2.1

Let 𝛱1 and 𝛱2 be decision problems. 𝛱1 ≤ 𝛱2 under some (polynomial-time) reduction
𝑅∶ {0, 1}∗ → {0, 1}∗ if and only if 𝛱 c

1 ≤ 𝛱 c
2 under the same reduction 𝑅.

Proof. Suppose 𝛱1 ≤ 𝛱2 under the (polynomial-time) reduction 𝑅. Then for all 𝑋 ∈ {0, 1}∗,

𝑋 ∈ 𝛱1 ⟺ 𝑅(𝑋) ∈ 𝛱2.

Equivalently, 𝑋 ∉ 𝛱1 ⟺ 𝑅(𝑋) ∉ 𝛱2, which is to say,

𝑋 ∈ 𝛱 c
1 ⟺ 𝑅(𝑋) ∈ 𝛱 c

2 .

Thus 𝑅 is also a reduction from 𝛱 c
1 to 𝛱 c

2 . Thus 𝛱1 ≤ 𝛱2 under 𝑅 implies 𝛱 c
1 ≤ 𝛱 c

2 under 𝑅.

The converse is true by the same proof, since 𝛱 = (𝛱 c)c.

A corollary of this result is that hardness and completeness (definition 2.5) are also preserved
under complementation.

Corollary 2.2

Let 𝛱 be a decision problem, and 𝑪 a complexity class. 𝛱 is 𝑪-hard if and only if 𝛱 c is
co-𝑪-hard. Also, 𝛱 is 𝑪-complete if and only if 𝛱 c is co-𝑪-complete.

Proof. Suppose 𝛱 is 𝑪-hard; we wish to show that 𝛱 c is co-𝑪-hard. Let 𝛹 be an arbitrary
problem in co-𝑪. Then 𝛹 c ∈ 𝑪, by definition of co-, and therefore 𝛹 c ≤ 𝛱 because 𝛱 is 𝑪-hard.
Then, by theorem 2.1, 𝛹 ≤ 𝛱 c. Thus every problem in 𝛹 reduces to 𝛱 c, so 𝛱 c is co-𝑪-hard.

Next, if𝛱 is 𝑪-complete, then𝛱 is 𝑪-hard and 𝛱 ∈ 𝑪. By the above argument, 𝛱 c is co-𝑪-hard,
and by definition of co-, 𝛱 c ∈ co-𝑪. Thus 𝛱 c is co-𝑪-complete.

The converses of both statements hold by the same proof, since 𝛱 = (𝛱 c)c.

We noted earlier that decision problems in general aren’t guaranteed to have same complexity as
their complements, so 𝑪 and co-𝑪 aren’t necessarily the same complexity class.

page 9

CHAPTER 2
Basic concepts in complexity theory

SECTION 2.3
Hard problems and reductions

However, it is true that P = co-P. In fact, this property holds for any complexity class defined by
deterministic algorithm running times, essentially because inverting a (deterministic) algorithm’s
responses solves the complement problem without changing the algorithm’s running time. We
state and prove this result more precisely below. (For contrast, complexity classes not defined
by deterministic running times, and therefore not subject to this result, are introduced later in
chapter 4.)

Theorem 2.3

Let 𝛱 be a decision problem solvable by a deterministic algorithm in time 𝑇 (𝑛), where 𝑇 is a
function of the input size 𝑛. Then 𝛱 c is also solvable in time 𝑇 (𝑛).

Proof. Let 𝐴 be an algorithm that solves 𝛱 within 𝑇 (𝑛) steps. Obtain a new algorithm 𝐴′ by
inverting all responses in 𝐴. That is, run exactly as 𝐴 does, but return “yes” everywhere 𝐴
returns “no”, and vice versa.

By construction, 𝐴′ solves the complement problem 𝛱 c. Also, because 𝐴′ changes nothing
about the execution of 𝐴 except the final return values, it runs in the exact same amount of
time as 𝐴.

Just to be explicit, we prove below the aforementioned result that P = co-P.

Corollary 2.4

P = co-P.

Proof. If 𝛱 ∈ P, then by theorem 2.3, 𝛱 c ∈ P as well, which by definition of co- means 𝛱 ∈
co-P. Conversely, if 𝛱 ∈ co-P, then 𝛱 c ∈ P, and again by theorem 2.3, (𝛱 c)c = 𝛱 ∈ P.

page 10

Chapter 3

A primer on boolean logic

Mathematical logic is founded on true-or-false statements—statements such as:

• property 𝐴 is true when condition 𝐵 is false,
• property 𝑋 is true when both condition 𝑌 and condition 𝑍 are true,

and so on. Boolean logic refers to the algebra of how truthiness and falsiness combine and transform
under various logical operations.

It is no surprise, given the foundational role of booleans in mathematical logic, that they also
underpin all computational logic. For instance, all modern computer architectures deal with data
encoded in binary 0s (false) and 1s (true). Furthermore, it follows that everything we conceive
of as “computer” can be represented as boolean circuits—because, essentially, they literally are
boolean circuits.

In this short chapter, we outline some basic definitions and facts about boolean-logical operations
and circuits, along with some notational conventions used throughout the rest of this thesis.

Definition 3.1 ▶ basic boolean operations: NOT, AND, OR

NOT takes one input and outputs its opposite value. In boolean-algebraic expressions, we
denote NOT with the symbol ¬.

¬∶ {True, False} → {True, False} ¬𝑥 = {
True 𝑥 = False

False 𝑥 = True
.

The NOT operation is also commonly known as negation.

AND takes two inputs and outputs True if and only if both of its inputs are True. We denote
AND with the symbol ∧.

∧∶ {True, False}2 → {True, False} 𝑥 ∧ 𝑦 = {
True 𝑥 = 𝑦 = True

False otherwise
.

page 11

CHAPTER 3
A primer on boolean logic

SECTION 3.1
Algebraic properties of ¬, ∧, ∨

For convenience, we sometimes omit the ∧ and simply denote AND by concatenating the
operands, as in 𝑥𝑦 instead of 𝑥 ∧ 𝑦. (This notation looks like multiplication because it is:
if we represent boolean values with {1, 0} instead of {True, False}, then 𝑥 ∧ 𝑦 = 𝑥 ⋅ 𝑦.)

AND is also known as the conjunction operation.

OR takes two inputs and outputs True if at least one of its inputs are True. We denote OR

with the symbol ∨.

∨∶ {True, False}2 → {True, False} 𝑥 ∨ 𝑦 = {
False 𝑥 = 𝑦 = False

True otherwise
.

OR is also known as the disjunction operation.

Notationally, ∧ takes higher precedence than ∨. For instance, we interpret 𝑥 ∨ 𝑦 ∧ 𝑧 = 𝑥 ∨ 𝑦𝑧 =
𝑥 ∨ (𝑦 ∧ 𝑧), and so on.

Aside I personally find the ∧ and ∨ symbols for AND and OR quite easy to mix up with
each other. Here’s a mnemonic that helps me remember which is which:

• ∧ looks like the A in AND, so ∧ means AND…
• ∨ is the other one.

3.1 Algebraic properties of ¬, ∧, ∨

What algebraic behaviors do ¬, ∧, and ∨ exhibit?

Commutativity & associativity It follows straightforwardly from their definitions that they
are both commutative and associative. In general, for any 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ {True, False},

𝑛
⋀
𝑖=1

𝑥𝑖 = 𝑥1 ∧ ⋯ ∧ 𝑥𝑛 = True if and only if every one of 𝑥1, … , 𝑥𝑛 is True,

𝑛
⋁
𝑖=1

𝑥𝑖 = 𝑥1 ∨ ⋯ ∨ 𝑥𝑛 = True if and only if at least one of 𝑥1, … , 𝑥𝑛 is True.

Distributivity Another interesting, sometimes useful, property of ∧ and ∨ is that they distribute
over each other. For all 𝑥, 𝑦 , 𝑧 ∈ {True, False},

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧), 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧).

3.1.1 DeMorgan’s identities

Consider the statement, “𝑥, 𝑦 are both False”. There are two equivalent ways to express this
statement algebraically:

• 𝑥 is False, and 𝑦 is False: ¬𝑥 ∧ ¬𝑦.
• Neither of 𝑥, 𝑦 is True: ¬(𝑥 ∨ 𝑦).

page 12

SECTION 3.2
Boolean circuits

CHAPTER 3
A primer on boolean logic

The equivalence of these two expressions gives rise to an identity: for all 𝑥, 𝑦 ∈ {True, False},

¬𝑥 ∧ ¬𝑦 = ¬(𝑥 ∨ 𝑦).

Similarly, the statement “at least one of 𝑥, 𝑦 is False” can be expressed in two ways,

• 𝑥 is False, or 𝑦 is False: ¬𝑥 ∨ ¬𝑦.
• 𝑥, 𝑦 are not both simultaneously True: ¬(𝑥 ∧ 𝑦).

This equivalence gives rise to a dual identity,

¬𝑥 ∨ ¬𝑦 = ¬(𝑥 ∧ 𝑦).

A particularly useful consequence of these DeMorgan identities is that having all three logical
operations is redundant. We didn’t need to define all three as the basic building-block operations;
having only NOT/OR or NOT/AND suffices, since the third operation can simply be constructed in
terms of the other two:

𝑥 ∧ 𝑦 = ¬(¬𝑥 ∨ ¬𝑦), 𝑥 ∨ 𝑦 = ¬(¬𝑥 ∧ ¬𝑦).

We make use of this convenience later in chapter chapter 5, when we try to embed boolean logic
within other “boolean-like” systems such as graph 3-colorings.

3.2 Boolean circuits

Boolean expressions such as ¬𝑥 ∧ 𝑦 are one way to specify computations on boolean variables.
Circuits generalize expressions by essentially chaining together a pipeline of expressions, allowing
intermediate results at each stage to be saved and reused. To illustrate, consider the following
example expression:

𝜙(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2) = (𝑥1 ∨ 𝑥2)(𝑦1 ∨ 𝑦2) ∨ (𝑦1 ∨ 𝑦2)(𝑧1 ∨ 𝑧2) ∨ (𝑧1 ∨ 𝑧2)(𝑥1 ∨ 𝑥2).

Notice that each (□1 ∨ □2) term appears twice in the expression, making the expression inefficient
to evaluate (each repeated term would be unnecessarily recomputed), not to mention cumbersome
to specify. A more elegant way to specify this computation is to store and reuse intermediate
terms in the expression:

𝑋 = 𝑥1 ∨ 𝑥2,
𝑌 = 𝑦1 ∨ 𝑦2,
𝑍 = 𝑧1 ∨ 𝑧2,
𝜙 = 𝑋𝑌 ∨ 𝑌𝑍 ∨ 𝑍𝑋 .

This chain of assignments may be visualized as a sort of data-processing “pipeline”, with interme-
diate inputs and outputs at each stage:

page 13

CHAPTER 3
A primer on boolean logic

SECTION 3.2
Boolean circuits

∨ ∧

∨ ∧ ∨

∨ ∧

𝑥1
𝑥2

𝑋 = 𝑥1 ∨ 𝑥2

𝑦1
𝑦2

𝑌 = 𝑦1 ∨ 𝑦2

𝑧1
𝑧2

𝑍 = 𝑧1 ∨ 𝑧2

𝑋𝑌

𝑌𝑍

𝑍𝑋

𝜙 = 𝑋𝑌 ∨ 𝑌𝑍 ∨ 𝑍𝑋

Figure 3.1. A “pipeline” of boolean operations; almost a boolean circuit, excepting
that the last OR-gate takes three inputs.

This is essentially a boolean circuit. More precisely, in a boolean circuit, each variable (e.g., 𝑥2 or 𝑌)
is represented as a wire carrying a boolean value, and each “stage” of computation, called a logic
gate, computes an individual boolean operation.

For simplicity’s sake, we also require that each AND/OR gate operates on exactly two inputs. Thus
the last OR operation 𝑋𝑌 ∨ 𝑌𝑍 ∨ 𝑍𝑋 should actually be associatively grouped as (𝑋𝑌 ∨ 𝑌𝑍) ∨ 𝑍𝑋.
The corrected circuit is shown below:

∨ ∧

∨ ∧ ∨

∨ ∧

∨

𝑥1
𝑥2

𝑋 = 𝑥1 ∨ 𝑥2

𝑦1
𝑦2

𝑌 = 𝑦1 ∨ 𝑦2

𝑧1
𝑧2

𝑍 = 𝑧1 ∨ 𝑧2

𝑋𝑌

𝑌𝑍

𝑍𝑋

𝑋𝑌 ∨ 𝑌𝑍

𝜙 = (𝑋𝑌 ∨ 𝑌𝑍) ∨ 𝑍𝑋

Figure 3.2. A boolean circuit.

Below, we state a precise definition of boolean circuits and introduce some relevant terminology.

Definition 3.2 ▶ boolean circuits

A boolean circuit 𝐶 consists of:

• A set of (circuit-level) input wires.

• A sequence of logic gates. Each logic gate computes a logical operation on one or two
previously-computed wires and produces its output on a new wire. More precisely, each
logic gate defines a new (intermediate) output wire 𝑤, related to previously-defined
wires by one of the following:

– NOT gate: 𝑤 = ¬𝑤1, where 𝑤1 is an input wire or an the output wire of another logic
gate specified earlier in the sequence.

– AND gate: 𝑤 = 𝑤1 ∧ 𝑤2, where 𝑤1, 𝑤2 are earlier-defined wires.
– OR gate: 𝑤 = 𝑤1 ∨ 𝑤2, where 𝑤1, 𝑤2 are earlier-defined wires.

page 14

SECTION 3.2
Boolean circuits

CHAPTER 3
A primer on boolean logic

Finally, exactly one of the output wires is labeled the circuit-level output wire of 𝐶, repre-
senting the overall/final output of the circuit.

Assume the circuit-level input wires are ordered as 𝑤1, 𝑤2, … , 𝑤𝑛. Then the circuit 𝐶 defines
a boolean function 𝜙𝐶∶ {True, False}𝑛 → {True, False} as follows. Given (𝑥1, 𝑥2, … , 𝑥𝑛) ∈
{True, False}𝑛, assign 𝑥𝑗 to 𝑤𝑗 for each 𝑗 = 1, … , 𝑛. Then, for each logic gate, in order of
specification, evaluate the gate’s boolean operation on its inputs to compute its output value,
assigning that value to its output wire. Finally, after all gates have been evaluated, the boolean
value of the circuit-level output wire is the final output, 𝜙(𝑥1, … , 𝑥𝑛).

To assist discourse, we say a wire 𝑤 (directly) depends on another wire 𝑤 ′, or that 𝑤 ′ is a
(direct) dependency of 𝑤, if there exists some logic gate with 𝑤 ′ as one of its inputs and 𝑤
as its output.

Aside We require that logic gates be specified sequentially, operating only on previous
gate-outputs, to ensure that there are no cyclic dependencies, which give rise to ill-defined
computations such as 𝑥 = ¬𝑥 (contradictory) or 𝑥 = ¬𝑦, 𝑦 = ¬𝑥 (not contradictory, but
ill-defined because the output of a computation must be unique/deterministic), etc.

page 15

CHAPTER 3
A primer on boolean logic

SECTION 3.2
Boolean circuits

page 16

Chapter 4

Boolean circuit puzzles and games

In this chapter, we begin to explore landscape of puzzle-and-game complexity classes—specifically,
the polynomial hierarchy—through a series of games played on boolean circuits.

4.1 The Circuit Value problem, and P

To set the stage, we start with a relatively “easy” problem, known as the Circuit Value problem,
or CircVal for short:

Decision problem 4.1 ▶ Circuit Value / CircVal

Given: a boolean circuit with all inputs specified
Return whether: the circuit outputs True

It is well-known that CircVal ∈ P (i.e., it is actually “easy”). We give one version of a proof below.

Theorem 4.1 ▶ CircVal ∈ P

CircVal is solvable in polynomial time.

Proof. We give a straightforward polynomial-time algorithm for Circuit Value. By our
definition (definition 3.2), a boolean circuit is specified by listing out its logic gates in an
order sorted by (acyclic) dependencies, so that each logic gate operates only on outputs of
previous gates, or the circuit-level input wires. Thus, to evaluate any circuit, we simply iterate
through and evaluate each gate, in the order that they are specified.

page 17

CHAPTER 4
Boolean circuit puzzles and games

SECTION 4.2
The Circuit Satisfiability puzzle, and NP

Algorithm 4.1 ▶ a polynomial-time CircVal solver

given: 𝐶, a boolean circuit with all inputs fully specified
▷ Call a wire finished if it has been assigned a boolean value. Initially, all the input
wires are finished, since their values were given, and all output wires are unfinished. ◁

for each logic gate 𝑔 in 𝐶 do
if 𝑔 is a NOT gate with input 𝑤 and output 𝑤 ′ then

assign the value ¬𝑤 to 𝑤 ′, thereby marking 𝑤 ′ as finished
else if 𝑔 is an AND gate with inputs 𝑤1, 𝑤2 and output 𝑤 then

assign 𝑤1 ∧ 𝑤2 to 𝑤, marking 𝑤 as finished
else if 𝑔 is an OR gate with inputs 𝑤1, 𝑤2 and output 𝑤 then

assign 𝑤1 ∨ 𝑤2 to 𝑤, marking 𝑤 as finished
end if

end for
return the boolean value assigned to the circuit-level output wire of 𝐶

The number of iterations done by the algorithm is the number of logic gates in 𝐶, which by
definition is bounded by the size of 𝐶. Each iteration performs only a constant-time amount
of work, plus some (insubstantial) polynomial-time bookkeeping factor—e.g., keeping track
of how many gates have been visited, marking wires with their values, etc. Thus the overall
running time of the algorithm is polynomial.

To kickstart the puzzles-and-games perspective, we think of Circuit Value—and actually, every
problem in P—as a game with 0 turns: the player does nothing, and an (efficient) algorithm
automatically decides whether the player wins or loses.

This seems like a silly (arguably boring) idea. But, as we see in the next few sections, this approach
allows us to generalize Circuit Value into very powerful puzzles and games.

4.2 The Circuit Satisfiability puzzle, and NP

By puzzle, we really mean 1-turn games: games in which a player makes a sequence of “moves” on
a given “game board”, and an (efficient) algorithm then determines whether the player’s moves
constitute a win. Formulated as decision problems, the computational puzzle is the yes/no question:

Does the player have a winning strategy?

For example, consider a puzzle-ification of CircVal, where the circuit’s inputs are no longer
specified but rather chosen by the player (this is the “move” made by the player). Recall that the
player wins if the circuit’s output is True. Thus, when we allow the player to choose inputs, a
winning strategy means a combination of inputs causing the circuit to output True. The decision
problem asking whether such a winning move exists is called Circuit Satisfiability, or CircSat
for short:

page 18

SECTION 4.2
The Circuit Satisfiability puzzle, and NP

CHAPTER 4
Boolean circuit puzzles and games

Decision problem 4.2 ▶ Circuit Satisfiability / CircSat

Given a circuit 𝐶, determine whether there exists some assignment to its inputs causing its
output to be set to True. Such an assignment is called a satisfying assignment of 𝐶.

Briefly: how (computationally) difficult is CircSat? As it turns out, nobody knows for sure, but it
seems quite difficult. Loosely speaking, all known algorithms for solving CircSat amount to brute
force with optimizations that enhance performance on “practical”, real-world inputs but do not
save them from performing poorly in the worst case. Tentatively, then, most computer scientists
suspect that CircSat ∉ P—i.e., there is no polynomial-time solution for CircSat (Gasarch 2002).

Anyway, back to puzzles. CircSat is one example of how a 0-turn game such as CircVal may be
generalized into a 1-turn game—a puzzle. How can we do this in general, for arbitrary games?

In the example of CircSat, we do this by making the player supplement the input to the the 0-turn
analog, CircVal. This approach is readily generalized. Given some input 𝑋 (the “game board”),
construct a 1-turn game in which the player specifies a supplementary input 𝑌; victory is decided
by whether the pair of inputs (𝑋 , 𝑌) meets the 0-turn winning condition, which should be an
efficiently-computable condition—a problem in P. As before, the decision problem asks whether
the player can win: does there exist 𝑌 such that (𝑋 , 𝑌) meets the winning condition?

The complexity class of all 1-turn game problems constructed in this manner is called NP. Before
we give the formal definition of NP, we need to introduce one more technical detail. In the
discussion above, call 𝛱 the 0-turn winning condition problem. We said above that 𝛱 should be
computable in polynomial-time. More precisely, we want it to be computable in polynomial-time
with respect to the size of the game board 𝑋. However, the input string to the 𝛱 isn’t just 𝑋 but
the pair (𝑋 , 𝑌), so simply requiring 𝛱 ∈ P is insufficient: polynomial with respect to the size of
(𝑋 , 𝑌) does not imply polynomial with respect to the size of 𝑋 (𝑌 could be arbitrarily long). To fix
this disparity, we additionally require that the player’s input scales controlledly with the game
board: the size of 𝑌 must be polynomially-bounded by the size of 𝑋.

We are now ready to give the full definition of NP (the class of all 1-turn games).

Definition 4.1 ▶ NP

NP is the class of decision problems 𝛱 such that
there exists a 𝛱 ′ ∈ P (the 0-turn winning condition) and a polynomial 𝑝 such that

for each input 𝑋 ∈ {0, 1}∗ (the game board)
𝑋 ∈ 𝛱 (the player can guarantee a win) if and only if

there exists 𝑌 ∈ {0, 1}∗ (the player’s move) such that |𝑌 | ≤ 𝑝(|𝑋 |), and
(𝑋 , 𝑌) ∈ 𝛱 ′ (the move meets the winning condition).

Notice the inductive relationship between P and NP. Each problem 𝛱 ∈ NP is constructed by
adding one turn to some other problem 𝛱 ′ ∈ P.

Unsurprisingly, CircSat is in NP (after all, we used it as the example problem to motivate the
general definition of NP). To demonstrate this inclusion formally, we show how the definition of
CircSat fits the definition of NP.

page 19

CHAPTER 4
Boolean circuit puzzles and games

SECTION 4.3
Two-player circuit games, and the polynomial hierarchy

Theorem 4.2

CircSat ∈ NP.

Proof. Let 𝛱 ′ = CircVal. Specifically, think of 𝛱 ′ as a set of pairs (𝐶, 𝑋) where 𝐶 specifies
the boolean circuit, and 𝑋 specifies a input assignment to 𝐶 so that 𝐶(𝑋) = True. The length
of 𝑋 always matches the number of input variables in 𝐶, which by definition is polynomially
bounded by the size of 𝐶.

CircSat comprises exactly the set of circuits 𝐶 (the game board) for which there exists an 𝑋
(the player’s move) such that (𝐶, 𝑋) ∈ 𝛱 ′ = CircVal. Thus CircSat fits the definition of an
NP problem.

4.2.1 Circuit Satisfiability is NP-complete

Whatmakes CircSat especially interesting, compared to all the other puzzles inNP, is that CircSat
is NP-complete. In other words, CircSat is the hardest of the NP puzzles: any other NP problem
reduces to CircSat. This result is known as the Cook–Levin theorem:

Theorem 4.3 ▶ Cook–Levin

CircSat is NP-complete (Cook 1971; Levin 1973).

A full proof of the Cook–Levin theorem would require delving into formal technicalities about
Turing Machines, which is beyond the scope of this thesis. Instead, we give here some informal
intuition about the basic idea underlying the proof and why the Cook–Levin result makes sense.

As mentioned in chapter 3, any computer can be expressed in terms of boolean circuits; in fact,
modern computers literally are implemented using boolean circuits. Therefore, the execution of
any algorithm 𝐴 is just a sequence of circuit computations, one for each time-step of the algorithm.
Thus every 1-turn game is really just a special case of the Circuit Satisfiability problem.

4.3 Two-player circuit games, and the polynomial hierarchy

Recall, in the 1-turn game CircSat, a single player assigns inputs to a given circuit, with the goal
of getting the circuit to output True. Now, we introduce a second player, an antagonist, working
towards the opposite goal. The two players take turns assigning inputs in the circuit; when all
inputs have been assigned, the circuit’s final output dictates the winner (True ⟹ first player wins,
False ⟹ second player wins). Now, framing this as a decision problem, we ask the yes/no
question,

Does the first player have a winning strategy?

To start with a concrete example, consider the version of this game with 2 turns. A circuit 𝐶 is
given; its (unassigned) inputs are partitioned into two groups, 𝐼1 and 𝐼2. Two turns proceed: the
first player assigns values to all inputs in 𝐼1, then the second player assigns values to all inputs

page 20

SECTION 4.3
Two-player circuit games, and the polynomial hierarchy

CHAPTER 4
Boolean circuit puzzles and games

in 𝐼2. Finally, if the circuit outputs True, the first player wins; otherwise, the second player wins.
Now, we ask, does the first player have a winning strategy?

To be more precise, by winning strategy, we mean a move the first player can make in order to
guarantee a win, no matter what the second player plays in response. In other words, if the first
player plays a winning move, then there does not exist a counter-winning move by the second
player. Thus, in this example, what we are actually asking is, does there exist 𝑋1 such that there
does not exist 𝑋2 setting 𝐶(𝑋1, 𝑋2) = False? We call this decision problem CircSat2.

Decision problem 4.3 ▶ Circuit Satisfiability with 2 turns / CircSat2

Given: a boolean circuit 𝐶, with inputs partitioned into two groups 𝐼1, 𝐼2

Determine whether: there exists some 𝑋1 ∈ {True, False}|𝐼1| such that
there does not exist any 𝑋2 ∈ {True, False}|𝐼2| such that

𝐶(𝐼1 ≔ 𝑋1, 𝐼2 ≔ 𝑋2) = False

Earlier, we observed that CircSat could be thought of as an add-one-turn extension of CircVal.
Similarly, we can formulate CircSat2 as such an extension of CircSat.

To help do so, let’s first formalize what it means for a player to take a single turn. When the player
makes an assignment to some inputs, we say the player augments the circuit, creating a new circuit
in which those inputs are fixed to the (constant) assigned values.

Definition 4.2 ▶ augmented circuit

Let 𝐶 be a circuit, and let 𝐼 refer to a subset of the inputs of 𝐶.

Let 𝑋 ∈ {True, False}|𝐼 | be a boolean assignment to the inputs in 𝐼. We call the new circuit 𝐶′
produced by fixing inputs 𝐼 to values 𝑋 an augmented circuit 𝐶′ = 𝐶[𝐼 ≔ 𝑋].

To simplify notation, if 𝐼 comprises all inputs of 𝐶, then we simply denote 𝐶[𝐼 ≔ 𝑋] = 𝐶[𝑋].

Now, in the two-turn game CircSat2, we start with a circuit 𝐶, whose inputs are partitioned
into 𝐼1 ⊔ 𝐼2. On the first turn, the first player makes an assignment 𝑋1 ∈ {True, False}|𝐼1| to the
inputs 𝐼1. After that assignment, the remaining circuit is the augmented circuit 𝐶′ = 𝐶[𝐼1 ≔ 𝑋1],
whose inputs are just 𝐼2. The first player’s initial move is a winning move if and only if 𝐶′ is now
unfalsifiable—or, in other words, its negation ¬𝐶′ is unsatisfiable.

CircSat2 = {
circuit 𝐶 with inputs 𝐼1 ⊔ 𝐼2 |
∃𝑋1 ∈ {True, False}|𝐼1|.¬𝐶[𝐼1 ≔ 𝑋1] ∉ CircSat

}.

Continuing this process gives a general construction for 𝑘-turn circuit games, in which the two
players take turns assigning values to groups of inputs. Start with a boolean circuit 𝐶, with inputs
partitioned into 𝑘 groups, 𝐼1, 𝐼2, … , 𝐼𝑘. On the 𝑖-th turn, the (𝑖 mod 2)-th player assigns values to
the inputs in 𝐼𝑖; the initial player wins if the final circuit outputs True.

We formulate this game inductively as follows.

page 21

CHAPTER 4
Boolean circuit puzzles and games

SECTION 4.3
Two-player circuit games, and the polynomial hierarchy

• In the base-case game with 𝑘 = 0 turns, all inputs have been assigned values. The winning
condition is determined by whether the circuit’s output is True. This is the CircVal problem.

• For 𝑘 ≥ 1, the game starts with a circuit 𝐶 with inputs partitioned as 𝐼1 ⊔ 𝐼2 ⊔ ⋯ ⊔ 𝐼𝑘.

On the first turn, the first player assigns values 𝑋 ∈ {True, False}|𝐼1| to the inputs 𝐼1, resulting
in the augmented circuit 𝐶[𝐼1 ≔ 𝑋] with (unassigned) inputs now partitioned into 𝑘 − 1
remaining groups, 𝐼2 ⊔ ⋯ ⊔ 𝐼𝑘.

Now, a (𝑘 − 1)-turn game is played, starting with the opposite player, on the negated circuit
𝐶′ = ¬𝐶[𝐼1 ≔ 𝑋1]. The negation ensures that the opposite player wins (satisfying 𝐶′ ≡ ¬𝐶)
exactly by falsifying 𝐶. Thus the original first player wins if and only if 𝐶′ is un-winnable for
the second player.

Decision problem 4.4 ▶ Circuit Satisfiability with 𝑘 turns / CircSat𝑘

For 𝑘 = 0, define CircSat0 = CircVal. For 𝑘 ≥ 1, define CircSat𝑘 as follows:

Given: a circuit with inputs partitioned into 𝑘 groups, (𝐶, (𝐼1, … , 𝐼𝑘))
Determine whether: there exists an 𝑋 ∈ {True, False}|𝐼1| such that

(¬𝐶[𝐼1 ≔ 𝑋], (𝐼2, … , 𝐼𝑘)) ∉ CircSat𝑘−1

Aside Also, observe that CircSat1 = CircSat.

Finally, we can generalize this construction to arbitrary games beyond those played on circuits.
Consider an arbitrary game of 𝑘 turns, played on some game board 𝑋 ∈ {0, 1}∗. Two players take
turns making moves 𝑌1, 𝑌2, … , 𝑌𝑘 ∈ {0, 1}∗. At the end, an efficient algorithm determines who wins.
Stating this inductively:

• 0-turn games (winning conditions) are problems in P.

• 𝑘-turn games start with a game board 𝑋 ∈ {0, 1}∗. The first player makes a move 𝑌 ∈ {0, 1}∗,
and then wins if and only if the “augmented” (𝑘 − 1)-turn game, (𝑋 , 𝑌), is a losing game for
the opposite player.

For each 𝑘, the complexity class of all such decision problems is called Σ𝑘P. There are also the
complements of problems in Σ𝑘P, which, instead of asking whether the first player has a winning
strategy, asks whether the first player is doomed to lose; the class of these decision problems is
called Π𝑘P = co-Σ𝑘P.

Together, Σ𝑘Ps and Π𝑘Ps constitute the polynomial hierarchy.

Definition 4.3 ▶ polynomial hierarchy

Σ0P = Π0P = P = co-P (corollary 2.4) is the class of (efficient) 0-turn game deciders.

Σ1P = NP is the class of 1-turn game “possible to win” problems (given a 1-turn board, return
“yes” if the player has a winning move). Π1P = co-NP is the class of 1-turn game, “impossible
to win” problems (given a 1-turn board, return “yes” if the player has no winning move).

In general, for any 𝑘, Σ𝑘P is the class of 𝑘-turn “possible to win” problems, and Π𝑘P = co-Σ𝑘P

page 22

SECTION 4.3
Two-player circuit games, and the polynomial hierarchy

CHAPTER 4
Boolean circuit puzzles and games

the class of 𝑘-turn “impossible to win” problems.

Formally: let 𝛱 be any decision problem; we say 𝛱 is in Σ𝑘P if
there exists a 𝛱 ′ ∈ Π𝑘−1P and a polynomial 𝑝 such that

for each (game board) 𝑋 ∈ {0, 1}∗
𝑋 ∈ 𝛱 (is a winning game for the first player) if and only if

there exists an (initial move) 𝑌 ∈ {0, 1}∗ such that |𝑌 | ≤ 𝑝(|𝑋 |), and
(𝑋 , 𝑌) ∈ 𝛱 ′ (the remaining game guarantees loss for the responding player).

Notably, the circuit games CircSat𝑘 are Σ𝑘P-complete for each 𝑘.

Theorem 4.4

For each 𝑘 = 1, 2, …, CircSat𝑘 is Σ𝑘P-complete (Wrathall 1976).

Again, a full proof of this result is beyond the scope of this thesis. Essentially, this theorem holds
for the same reason as the Cook–Levin theorem (theorem 4.3): all algorithms can be encoded as
circuits, so all problems are just special-cases of circuit problems. For our purposes, we take this
theorem to be given.

In the next chapter, we will use this theorem as the central starting point for exploring and
“benchmarking” the complexities of other puzzles and games.

page 23

CHAPTER 4
Boolean circuit puzzles and games

SECTION 4.3
Two-player circuit games, and the polynomial hierarchy

page 24

Chapter 5

Graph 3-coloring games

In the last chapter, we set the polynomial-hierarchy stage, focusing on circuit games CircSat𝑘
as canonical examples of Σ𝑘P-complete problems. In this chapter, we expand that landscape by
exploring another collection Σ𝑘P-complete games, played via colorings on graph vertices.

It is only due to time constraints on this thesis that we stop at one game: I hope to convey, through
the examples presented in this chapter, the sense that there are many, many Σ𝑘P-complete games
out there, all of which intuitively stem from classic, well-known NP-complete puzzles.

5.1 Preliminaries: graphs and proper colorings

First, we introduce some preliminary definitions about graphs and colorings. A graph is a network
of vertices connected by edges. Formally:

Definition 5.1 ▶ (undirected) graphs

A graph 𝛤 is a pair (V(𝛤),E(𝛤)) consisting of:

• A finite set of vertices V(𝛤).
• A finite set of edges E(𝛤) ⊆ {𝑢 ↔ 𝑣 | 𝑢, 𝑣 ∈ V(𝛤)}. Visually, an edge is illustrated as a
connection between a pair of vertices.

For our purposes, edges have no directionality. That is, when specifying an edge, the ordering
of vertices doesn’t matter: 𝑢 ↔ 𝑣 is the same edge as 𝑣 ↔ 𝑢.

We say that two vertices 𝑢, 𝑣 ∈ V(𝛤) are adjacent, or that they neighbor each other, if
(𝑢, 𝑣) ∈ E(𝛤).

page 25

CHAPTER 5
Graph 3-coloring games

SECTION 5.2
The 0-turn game

Figure 5.1. A giraph.

The graph coloring games we explore in this thesis are about assigning colors to vertices on
a graph. We call such an assignment a vertex coloring. Specifically, for sake of simplicity, we
restrict our attention to colorings that involve only three colors. The main rule constraining these
color assignments is that neighboring vertices must always be colored distinctly—we call this the
properness condition. These terms are defined precisely below.

Definition 5.2 ▶ vertex 3-colorings, properness

Let 𝛤 be a graph. A vertex 3-coloring of 𝛤 is a map 𝜅∶ V(𝛤) → {0, 1, 2}, which assigns to
each vertex one of three colors. In this thesis, we generally just say “coloring” to refer to
“vertex 3-colorings”, except when specified otherwise.

A vertex coloring 𝜅 is a proper coloring if, for every edge (𝑢, 𝑣) ∈ E(𝛤), 𝜅(𝑢) ≠ 𝜅(𝑣)—i.e., no
neighboring vertices share the same color. To simplify discourse, we also call a particular
edge/neighboring-pair (𝑢, 𝑣) ∈ E(𝛤) is proper if 𝜅(𝑢) ≠ 𝜅(𝑣). Thus a proper coloring is one
where all edges are proper; an improper coloring contains at least one improper edge.

Having established the basic terminology, we now introduce the graph (3-)coloring games.

5.2 The 0-turn game

The goal of graph coloring games is to assign colors to all vertices so that the resulting coloring
is proper. To this end, the 0-turn winning-condition problem is that of checking properness of
colorings, called the 3-Coloring Properness problem, or 3ColProp for short:

Decision problem 5.1 ▶ 3-Coloring Properness / 3ColProp

Given: a 3-colored graph (𝛤 , 𝜅) (specified by listing out each vertex with its color)
Determine whether: 𝜅 is a proper coloring

In order for 3ColProp to be usable as a basis for polynomial-hierarchy games, we must first ensure

page 26

SECTION 5.3
The 𝑘-turn games

CHAPTER 5
Graph 3-coloring games

that it itself is in P. Indeed, it is:

Theorem 5.1 ▶ 3ColProp ∈ P

3ColProp is solvable in polynomial time.

Proof. We describe below a straightforward polynomial-time algorithm computing 3ColProp.
Simply iterate through and verify properness on each edge:

Algorithm 5.1 ▶ a polynomial-time 3ColProp solver

given: a graph 𝛤 and a coloring 𝜅∶ V(𝛤) → {0, 1, 2}
for each (𝑢, 𝑣) ∈ E(𝛤) do

if 𝜅(𝑢) = 𝜅(𝑣) then
▷ (𝑢, 𝑣) is improper! ◁
return no

end if
end for
▷ all edges have been checked, no improper ones were found; the coloring is proper ◁
return yes

The number of edges is, by definition, bounded by the size of the graph, so the number of
“for each” iterations is polynomial. Within each iteration, the 𝜅(𝑢) = 𝜅(𝑣) check runs within
polynomial time, so the overall algorithm runs in polynomial time as well.

5.3 The 𝑘-turn games

A graph coloring game is played on an initially uncolored graph 𝛤. In a 𝑘-turn game, the graph’s
vertices are partitioned into 𝑘 groups, 𝑉1, 𝑉2, … , 𝑉𝑘, and players alternate turns assigning colors to
the vertices in each group. If, on any turn, a player introduces an improper edge in the (partial)
coloring, the other player wins. If, after all turns, no improper edges have been introduced—that is,
the resulting coloring is proper—then the last player wins.

To help formalize this game, we define exactly what we mean by partial coloring.

Definition 5.3 ▶ partial (vertex 3-)colorings

Let 𝛤 be a graph. A partial (vertex 3-)coloring is a map 𝜅∶ V(𝛤) → {0, 1, 2,None}, which
optionally assigns a color to each vertex in 𝛤 (None means no color is assigned). Where
necessary, we refer to fully-completed colorings as total colorings to differentiate them from
partial colorings.

A partial coloring 𝜅 is proper if, among the vertices it does assign a color, there are no improper
edges. That is, for all (𝑢, 𝑣) ∈ E(𝛤), if both 𝜅(𝑢) and 𝜅(𝑣) are not None, then 𝜅(𝑢) ≠ 𝜅(𝑣).

At the start of the game, no vertices are colored yet—the partial coloring assigns None to every

page 27

CHAPTER 5
Graph 3-coloring games

SECTION 5.3
The 𝑘-turn games

vertex. When a player makes a move, they augment the partial coloring with new assignments:

Definition 5.4 ▶ augmented coloring

Let 𝛤 be a graph, and 𝜅 be a partial coloring on 𝛤.

Let 𝑈 ⊆ V(𝛤) be a subset of the vertices such that, for each 𝑢 ∈ 𝑈, 𝜅(𝑢) = None (all vertices
in 𝑈 are uncolored), and let 𝛿∶ 𝑈 → {0, 1, 2} be an assignment of colors to every vertex in
𝑈. Then the augmented coloring 𝜅[𝛿]∶ V(𝛤) → {0, 1, 2,None} is another partial coloring
formed by the combining the two color assignments:

𝜅[𝛿](𝑣) = {
𝛿(𝑣) 𝑣 ∈ 𝑈
𝜅(𝑣) 𝑣 ∉ 𝑈

.

For any partial coloring 𝜅′, we say 𝜅′ is an extension of 𝜅 if there exists some 𝛿∶ 𝑈 → {0, 1, 2}
such that 𝜅′ = 𝜅[𝛿].

Now, we are ready to give the full inductive formulation of 𝑘-turn graph coloring games.

• The 0-turn winning condition is 3ColProp: given a totally-colored graph, decide whether the
coloring is proper.

• 𝑘-turn games begin on a partially-colored graph (𝛤 , 𝜅), where the partial coloring 𝜅 comprises
color assignments made in previous turns. (We discuss in section 5.6 restrictions of these
games to entirely uncolored graphs.)

If 𝜅 is improper to begin with, then we posit that the first player automatically wins, since that
means that the opposite player must have made an improper move on their previous turn.
Otherwise, the first player colors 𝑈1 with a coloring 𝛿, and wins if and only if the remaining
(𝑘 − 1)-turn game (𝛤 , 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) is now un-winnable by the opposite player.

Decision problem 5.2 ▶ 3-Colorability with 𝑘 turns / 3Col𝑘

For 𝑘 = 0, define 3Col0 = 3ColPropc. For 𝑘 ≥ 1, define 3Col𝑘 as follows:

Given: a partially-colored graph and a partitioning of its uncolored vertices,
(𝛤 , 𝜅, (𝑈1, 𝑈2, … , 𝑈𝑘))

Determine whether: 𝜅 is improper, or there exists some 𝛿∶ 𝑈1 → {0, 1, 2} such that
(𝛤 , 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) ∈ (3Col𝑘−1)

c

Pay particular attention to the fact that 3Col0 is defined as the complement of 3ColProp—that is,
return “yes” if the graph coloring is improper. This might seem a little weird, but using 3ColPropc

rather than 3ColProp as the “base case” game turns out to be the more natural definition: it
matches the 𝑘 ≥ 1 definition better (specifically, the first half of the winning condition, “𝜅 is
improper”) overall makes generalizations on 3Col𝑘 cleaner to state and prove.

page 28

SECTION 5.4
𝑘-turn 3-Colorability is in Σ𝑘P, right?

CHAPTER 5
Graph 3-coloring games

5.4 𝑘-turn 3-Colorability is in Σ𝑘P, right?

Having defined 3Col𝑘 as a 𝑘-turn game problem, we naturally expect that 3Col𝑘 ∈ Σ𝑘P (the class
of all (“reasonable”) 𝑘-turn game problems). Indeed, we claim it is, but it isn’t immediately obvious
how. Specifically, membership in 3Col𝑘 is conditioned on an extra “𝜅 is improper or” clause that
isn’t present in the definition of Σ𝑘P problems (definition 4.3):

3Col𝑘 = { (𝛤 , 𝜅, …) | 𝜅 is improper, or ∃ 𝛿. (𝛤 , 𝜅[𝛿], …) ∈ (3Col𝑘−1)
c },

𝛱⏟
∈Σ𝑘P

= { 𝐵 | ∃𝑀. (𝐵,𝑀) ∈ 𝛱 ′⏟
∈Π𝑘−1P

},

By splitting up the two conditions, we can think of 3Col𝑘 union of two problems:

3Col𝑘 = {(𝛤 , 𝜅, …) | 𝜅 is improper} ∪ {(𝛤 , 𝜅, …) | ∃𝛿. (𝛤 , 𝜅[𝛿], …) ∈ 3Col𝑘−1}

The first term in the union, determining improperness of 𝜅, is basically equivalent to 3ColPropc,
which is in P (theorem 5.1 and corollary 2.4). Meanwhile, the second term appears to comply
with the Σ𝑘P definition—if we assume (yet unproven, but sort of as an inductive hypothesis) that
3Col𝑘−1 ∈ Σ𝑘−1P, then the second term is indeed in Σ𝑘P.

So 3Col𝑘 is the union of a problem in P with a problem allegedly in Σ𝑘P.

Then, it makes sense to expect 3Col𝑘 ∈ Σ𝑘P for the following (conjectured) reasons:

• We expect P ⊆ Σ𝑘P: any game with 0 turns can be thought of as game with 𝑘 no-op turns.
More generally, any 𝑘-turn game is also a (𝑘 + 1)-turn game, with an extra no-op move by the
first (or last) player; games with fewer turns are no harder than games with more turns.

• The union of two problems in Σ𝑘P should also be in Σ𝑘P (i.e., Σ𝑘P is closed under union):
intuitively, directly combining two problems doesn’t make them harder.

Below, we state these conjectures in general terms and prove them.

Theorem 5.2 ▶ polynomial hierarchy inclusions

For every 𝑘 = 0, 1, 2, …,

Σ𝑘P ⊆ Σ𝑘+1P, Σ𝑘P ⊆ Π𝑘+1P, Π𝑘P ⊆ Σ𝑘+1P, Π𝑘P ⊆ Π𝑘+1P.

Proof. We prove each of the four inclusions separately.

[1] Claim: Π𝑘P ⊆ Σ𝑘+1P.

This follows directly from the definition of Σ𝑘+1P. Let 𝛱 ∈ Π𝑘P, and define

𝛱 ′ = {(𝑋 , (empty)) | 𝑋 ∈ 𝛱}, 𝑝(𝑛) = 0.

Note that 𝛱 ′ is the same problem as 𝛱, differing only in “formatting” of inputs, so
𝛱 ′ ∈ Π𝑘P as well. Thus 𝛱 fits the definition of a Σ𝑘+1P game:

page 29

CHAPTER 5
Graph 3-coloring games

SECTION 5.4
𝑘-turn 3-Colorability is in Σ𝑘P, right?

For all inputs 𝑋 ∈ {0, 1}∗, 𝑋 ∈ 𝛱 if and only if
letting 𝑌 be the empty string, we have |𝑌 | = 0 ≤ 𝑝(|𝑋 |), and

(𝑋 , 𝑌) = (𝑋 , (empty)) ∈ 𝛱 ′.

Thus 𝛱 ∈ Σ𝑘+1P.

Aside The intuition here: 𝛱 ∈ Π𝑘P is an impossible-to-win 𝑘-turn game. Then, 𝛱 ′

is a (𝑘 + 1)-turn game in which, on the first turn, the other player does nothing. Still,
they guarantee a win, because the remaining game already dooms the second player
to a loss.

[2] Claim: Σ𝑘P ⊆ Π𝑘+1P.

This follows directly from the previous result [1], since Σ𝑘P = co-Π𝑘P and Π𝑘+1P =
co-Σ𝑘+1P.

[3] Claim: Σ𝑘P ⊆ Σ𝑘+1P.

We prove this by induction on 𝑘.

• For 𝑘 = 0, Σ0P = P = Π0P by definition. Thus the argument from part [1] applies
in this case: Σ0P = Π0P ⊆ Σ1P.

• For 𝑘 ≥ 1, assume Σ𝑘−1P ⊆ Σ𝑘P. Suppose𝛱 ∈ Σ𝑘P. Then there exists a 𝛱 ′ ∈ Π𝑘−1P
and a polynomial 𝑝 such that

𝛱 = {𝑋 | ∃𝑌 . |𝑌 | ≤ 𝑝(|𝑋 |), (𝑋 , 𝑌) ∈ 𝛱 ′}.

Recalling that Π is just co-Σ, the induction hypothesis implies Π𝑘−1P ⊆ Π𝑘P. Thus
𝛱 ′ ∈ Π𝑘−1P is also inΠ𝑘P. Consequently, 𝛱 is also in Σ𝑘+1P. Since 𝛱 was arbitrary,
we conclude Σ𝑘P ⊆ Σ𝑘+1P.

[4] Claim: Π𝑘P ⊆ Π𝑘+1P.

This follows directly from the previous result [3], since Π = co-Σ.

As a side note, 5.2 justifies calling the collection of complexity classes Σ𝑘P/Π𝑘P a hierarchy—each
level of the hierarchy is contained within the next, etc. The following diagram illustrates this
hierarchy of containments:

Σ1P = NP Σ2P Σ3P ⋯

Σ0P = Π0P = P

Π1P = co-NP Π2P Π3P ⋯

⊆

⊆

Figure 5.2. Hierarchy of inclusions in the polynomial hierarchy.

page 30

SECTION 5.4
𝑘-turn 3-Colorability is in Σ𝑘P, right?

CHAPTER 5
Graph 3-coloring games

Theorem 5.3 ▶ Σ𝑘P and Π𝑘P are closed under union, intersection

If 𝛱1, 𝛱2 ∈ Σ𝑘P, then 𝛱1 ∪ 𝛱2 and 𝛱1 ∩ 𝛱2 are both in Σ𝑘P.

Likewise, if 𝛱1, 𝛱2 ∈ Π𝑘P, then 𝛱1 ∪ 𝛱2 and 𝛱1 ∩ 𝛱2 are both in Π𝑘P.

Proof. By induction on 𝑘.

• For 𝑘 = 0, let 𝛱1, 𝛱2 ∈ Σ0P = Π0P = P; we wish to show that 𝛱1 ∪ 𝛱2, 𝛱1 ∩ 𝛱2 ∈ P.

Let𝐴1, 𝐴2 be polynomial-time algorithms deciding𝛱1, 𝛱2 respectively. To decide𝛱1∪𝛱2,
run the two algorithms in sequence, returning “yes” if at least one of the two algorithms
returns “yes”; to decide 𝛱1 ∩ 𝛱2, return “yes” if both return “yes”.

Algorithm 5.2 ▶ decider for union or intersection of two P problems

given: an arbitrary input string 𝑋 ∈ {0, 1}∗

𝑦1 ← 𝐴1(𝑋)
𝑦2 ← 𝐴2(𝑋)
if deciding 𝛱1 ∪ 𝛱2 then

return “yes” if at least one of 𝑦1, 𝑦2 is “yes” (i.e., 𝑦1 ∨ 𝑦2)
else if deciding 𝛱1 ∩ 𝛱2 then

return “yes” if both 𝑦1, 𝑦2 are “yes” (i.e., 𝑦1 ∧ 𝑦2)
end if

This algorithm runs in polynomial time because both 𝐴1 and 𝐴2 run in polynomial time;
the overall running time is a sum of two polynomials (plus some constants for the last
comparison), which is still a polynomial. Thus 𝛱1 ∪ 𝛱2, 𝛱1 ∩ 𝛱2 ∈ P.

• Suppose that the claim holds for all levels below some 𝑘 ≥ 1. First, we show that Σ𝑘P is
closed under union and intersection.

Let 𝛱1, 𝛱2 ∈ Σ𝑘P. Then there exist 𝛱 ′
1 , 𝛱 ′

2 ∈ Π𝑘−1P and polynomials 𝑝1, 𝑝2 such that

𝛱1 = {𝑋 | ∃𝑌 . |𝑌 | ≤ 𝑝1(|𝑋 |), (𝑋 , 𝑌) ∈ 𝛱 ′
1},

𝛱2 = {𝑋 | ∃𝑌 . |𝑌 | ≤ 𝑝2(|𝑋 |), (𝑋 , 𝑌) ∈ 𝛱 ′
2}.

Define two new problems

𝛱″
1 = {(𝑋 , (𝑌1, 𝑌2)) | (𝑋 , 𝑌1) ∈ 𝛱 ′

1},
𝛱″
2 = {(𝑋 , (𝑌1, 𝑌2)) | (𝑋 , 𝑌2) ∈ 𝛱 ′

2}.

Notice that 𝛱″
𝑖 is the same problem as 𝛱 ′

𝑖 , differing only in that it takes in and ignores
an additional component in the input. Therefore, they are equivalent; 𝛱 ′

𝑖 ∈ Π𝑘−1P
implies 𝛱″

𝑖 ∈ Π𝑘−1P as well.

page 31

CHAPTER 5
Graph 3-coloring games

SECTION 5.4
𝑘-turn 3-Colorability is in Σ𝑘P, right?

Now, construct the problems

𝛱∪ = {𝑋 | ∃(𝑌1, 𝑌2). (𝑋 , (𝑌1, 𝑌2)) ∈ 𝛱″
1 ∪ 𝛱″

2 },
𝛱∩ = {𝑋 | ∃(𝑌1, 𝑌2). (𝑋 , (𝑌1, 𝑌2)) ∈ 𝛱″

1 ∩ 𝛱″
2 }.

By the induction hypothesis, Π𝑘−1P is closed under union and intersection, so 𝛱″
1 ∪

𝛱″
2 , 𝛱″

1 ∩ 𝛱″
2 ∈ Π𝑘−1P. Additionally, the length of the second component (𝑌1, 𝑌2) is

bounded by 𝑝1 + 𝑝2 (plus some constants to account for delimiters), polynomial in the
size of the “board” 𝑋. Thus 𝛱∪, 𝛱∩ ∈ Σ𝑘P.

Finally, we claim that 𝛱∪ = 𝛱1 ∪ 𝛱2, and 𝛱∩ = 𝛱1 ∩ 𝛱2. We show both equalities below.

– Claim: 𝛱∪ = 𝛱1 ∩ 𝛱2. The following statements are equivalent:

∗ 𝑋 ∈ 𝛱∪.
∗ There exists (𝑌1, 𝑌2) so that (𝑋 , (𝑌1, 𝑌2)) is in either (or both) of 𝛱″

1 , 𝛱″
2 .

∗ There exists 𝑌1 so that (𝑋 , 𝑌1) ∈ 𝛱 ′
1 , or there exists 𝑌2 so that (𝑋 , 𝑌2) ∈ 𝛱 ′

2 .
∗ 𝑋 ∈ 𝛱1 or 𝑋 ∈ 𝛱2.
∗ 𝑋 ∈ 𝛱1 ∪ 𝛱2.

– Claim: 𝛱∩ = 𝛱1 ∩ 𝛱2. The following are equivalent:

∗ 𝑋 ∈ 𝛱∩.
∗ There exists (𝑌1, 𝑌2) so that (𝑋 , (𝑌1, 𝑌2)) is in both of 𝛱″

1 , 𝛱″
2 .

∗ There exists 𝑌1 so that (𝑋 , 𝑌1) ∈ 𝛱 ′
1 , and there exists 𝑌2 so that (𝑋 , 𝑌2) ∈ 𝛱 ′

2 .
∗ 𝑋 ∈ 𝛱1 and 𝑋 ∈ 𝛱2.
∗ 𝑋 ∈ 𝛱1 ∩ 𝛱2.

This concludes the main proof: for any𝛱1, 𝛱2 ∈ Σ𝑘P, both𝛱1∪𝛱2 = 𝛱∪ and𝛱1∩𝛱2 = 𝛱∩
are in Σ𝑘P, as desired. Thus Σ𝑘P is closed under union and intersection.

Closure of Π𝑘P under union and intersection follows from Π𝑘P = co-Σ𝑘P, and from
DeMorgan’s set identities:

(𝛱1 ∪ 𝛱2)
c = 𝛱 c

1 ∩ 𝛱 c
2 , (𝛱1 ∩ 𝛱2)

c = 𝛱 c
1 ∪ 𝛱 c

2 .

We may now confidently conclude, having proven these two theorems, that 3Col𝑘 ∈ Σ𝑘P. We
discussed why earlier, but just to be thorough, we restate the full proof below.

Corollary 5.4

3Col𝑘 ∈ Σ𝑘P.

Proof. By induction on 𝑘.

• For 𝑘 = 0, we have 3Col0 = 3ColPropc ∈ P = Σ0P.

page 32

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

• For some 𝑘 ≥ 1, assume 3Col𝑘−1 ∈ Σ𝑘−1P. We have

3Col𝑘 = {(𝛤 , 𝜅, …) | 𝜅 is improper} ∪ {(𝛤 , 𝜅, …) | ∃𝛿. (𝛤 , 𝜅[𝛿], …) ∈ (3Col𝑘−1)
c}.

The first set in the union is equivalent to 3ColPropc, which is in P and therefore also in
Σ𝑘P (theorem 5.2). The second set in the union is by construction a Σ𝑘P problem, since
(3Col𝑘−1)

c ∈ Π𝑘−1P. Thus the union of the two is also in Σ𝑘P (theorem 5.3).

Of course, theorems 5.2 and 5.3 are useful beyond 3Col𝑘; they make it much more convenient for
us to construct and describe Σ𝑘P/Π𝑘P problems in general. One important use-case, as exemplified
by 3Col𝑘, is for incorporating game rules checked at each turn of gameplay, rather than only at
the end after all turns have been played. These rules, for example, can stipulate conditions on
what types of moves are valid, shortcuts to winning/losing, etc.

5.5 𝑘-turn 3-Colorability is Σ𝑘P-complete

So, we just showed that 3Col𝑘 ∈ Σ𝑘P. But that’s hardly surprising: given what we understand now
about Σ𝑘P/Π𝑘P, almost anything we can conceive of as a 𝑘-turn game—that is, with polynomial-
time-checkable rules, and 𝑘 fixed turns of reasonable size—most likely falls within Σ𝑘P/Π𝑘P.

Really, the more interesting, more profound result is that 3Col𝑘 is among the hardest 𝑘-turn games:
it is Σ𝑘P-complete. Before jumping into the proof of this claim, we first discuss the key idea behind
it: graph 3-colorings are powerful enough to “encode” boolean circuits.

5.5.1 Using 3-colorings to emulate circuits

Graph 3-colorings can emulate boolean circuits. To illustrate what this means, associate each
boolean value with a color: we take the (convenient) convention that 0 means False and 1 means
True (2 is an “auxiliary” color used to enforce intermediate constraints but never to represent a
boolean value). Then, it is possible to convert any boolean circuit into a graph so that properness
on the graph’s colorings causes them to exactly compute the circuit.

We define this idea more precisely below.

Definition 5.5 ▶ boolean 3-coloring graphs

Let 𝛤 be a graph, and let 𝜅 be a proper partial coloring on 𝛤.

A vertex 𝑣 is called a boolean vertex if 𝑣 neighbors some vertex 𝑣 ′ such that 𝜅(𝑣 ′) = 2.

Assume 𝛤 contains the following “special” boolean vertices:

• 𝑛 distinct input vertices 𝒊1, … , 𝒊𝑛;
• an output vertex 𝒐.

We call any non-input/output vertex as a internal vertex of 𝛤.

page 33

CHAPTER 5
Graph 3-coloring games

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

Let 𝜅′ be an arbitrary proper total coloring that extends 𝜅. For each input or output vertex
𝑣, since 𝑣 neighbors a (pre-colored) 2 by construction and 𝜅′ is proper, we know 𝜅′(𝑣) ∈
{True, False}. We say the boolean value assigned by 𝜅′ to 𝑣 is True if 𝜅′(𝑣) = 1, and False if
𝜅′(𝑣) = 0.

To simplify notation, we will conflate the colors 1/0 with their corresponding boolean values
True/False(respectively), except where the distinction is needed for clarity.

Next, let 𝜙∶ {True, False}𝑛 → {True, False} be a boolean function. We say that 𝛤 computes 𝜙
if the following properties hold:

Attainability For every combination of boolean values (𝑥1, … , 𝑥𝑛) ∈ {True, False}𝑛, there
exists at least one proper 3-coloring 𝜅 such that 𝜅(𝒊𝑗) = 𝑥𝑗 for each 𝑗 = 1, … , 𝑛.

Consistency For every proper coloring 𝜅,

𝜅(𝒐) = 𝜙(𝜅(𝒊1), 𝜅(𝒊2), … , 𝜅(𝒊𝑛)).

In order to convert circuits in general to boolean graphs, we start by converting the basic building
blocks of circuits. As mentioned in the definition, we represent each wire to a boolean vertex, i.e. a
vertex joined to a pre-colored 2, so that it can only be colored 0 or 1 (namely, a boolean value).

⟼
𝑥𝑥

Figure 5.3. Representation of a wire as a boolean vertex.

To negate the boolean value of a vertex, create an edge joining the input and output vertices, which
forces them to have opposite colors:

Definition 5.6 ▶ NOT graph

Let 𝒊 be a boolean vertex. Construct a NOT graph on input 𝒊 by introducing a new boolean
vertex 𝒐, i.e., the output vertex, and an edge 𝒊 ↔ 𝒐.

𝒊
¬

𝒐
⟼

𝒊 𝒐

Figure 5.4. Conversion of NOT gates to NOT graphs.

If, for whatever reason, we wish to replicate/propagate a boolean value across multiple vertices
(called a “buffer” gate), we can use two NOT gates in a row (¬¬𝑥 = 𝑥):

page 34

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

Definition 5.7 ▶ buffer graph

Let 𝒊 be a boolean vertex. Construct a buffer graph on input 𝒊 by creating two new vertices, ̄𝑖
and 𝒐 (the output), and edges 𝒊 ↔ ̄𝒊 ↔ 𝒐.

𝒊 𝒐
⟼

𝒊 𝒐̄𝑖

Figure 5.5. Conversion of buffer gates to buffer graphs.

AND and OR gates are somewhat trickier to implement as graphs. To help in their construction, we
first introduce an auxiliary graph that “approximates” AND/OR gates, which we call the semi-OR
graph:

Definition 5.8 ▶ semi-OR graph on two (boolean) vertices

Let 𝑥, 𝑦 be boolean vertices. The semi-OR graph on 𝑥, 𝑦 is constructed as follows:

• Create three vertices 𝑥′, 𝑦 ′, 𝑡 and edges joining them in a triangle.
• Create edges 𝑥 ↔ 𝑥′ and 𝑦 ↔ 𝑦 ′.
• Pre-assign 𝑡 the color 1.

𝑥

𝑦

𝑥′

𝑦 ′

𝑡

Figure 5.6. A semi-OR graph on two vertices.

The semi-OR graph is named as such because it constrains at least one of 𝑥, 𝑦 to have the 1; no
proper coloring exists if both 𝑥, 𝑦 are colored 0. We state and prove this property below.

Lemma 5.5

Let 𝑥, 𝑦 be boolean vertices, and let 𝜅 be a proper coloring of the semi-OR graph on 𝑥, 𝑦. Then
it must not be the case that 𝜅(𝑥) = 𝜅(𝑦) = 0.

In other words, the following implications hold:

• If 𝜅(𝑥) = 0, then 𝜅(𝑦) = 1.
• If 𝜅(𝑦) = 0, then 𝜅(𝑥) = 1.

Proof. Suppose towards a contradiction that 𝜅(𝑥) = 𝜅(𝑦) = 0. Then, 𝑥′ and 𝑦 ′, which
neighbor 𝑥 and 𝑦 respectively, cannot be colored 0. Furthermore, 𝑥′ and 𝑦 ′ neighbor 𝑡, which

page 35

CHAPTER 5
Graph 3-coloring games

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

has color 𝜅(𝑡) = 1, so they also cannot be colored 1. Therefore, both 𝑥′ and 𝑦 ′ can only be
colored 2. However, they also neighbor each other, so they must receive different colors, a
contradiction.

The semi-OR graph doesn’t yet behave like a real OR graph because, in a real OR graph, coloring
𝑥, 𝑦 both 0 should merely cause the output vertex to be colored 0, rather than rule out proper-
colorability altogether.

Multiple semi-OR graphs can be “stacked” together to impose the the same OR-like colorability
constraint on three or more boolean vertices. For example, we define below the semi-OR graph on
three vertices.

Definition 5.9 ▶ semi-OR graph on three vertices

Let 𝑥, 𝑦 , 𝑧 be boolean vertices. Construct the semi-OR graph on 𝑥, 𝑦 , 𝑧 as follows:

• Create vertices labeled 𝑥′, 𝑦 ′, 𝑡1 and edges joining them in a triangle.

• Create edges 𝑥 ↔ 𝑥′ and 𝑦 ↔ 𝑦 ′.

• Join 𝑡1 to another vertex pre-colored 2, thereby making 𝑡1 a boolean vertex. This step
differs from the two-vertex semi-OR construction, wherein we would just pre-color 𝑡1 1.

• Create a two-vertex semi-OR graph on 𝑡1 and 𝑧.

𝑥

𝑦
𝑧

𝑥′

𝑦 ′

𝑧′

𝑡1 𝑡′1

𝑡2

Figure 5.7. A three-vertex semi-OR graph.

Again, the three-vertex semi-OR graph constrains at least one of its inputs to be 1.

Lemma 5.6

Let 𝑥, 𝑦 , 𝑧 be boolean vertices, and let 𝜅 be a proper coloring of the semi-OR graph on 𝑥, 𝑦 , 𝑧.
Then it is impossible that 𝜅(𝑥) = 𝜅(𝑦) = 𝜅(𝑧) = 0.

Proof. Suppose towards a contradiction that 𝜅(𝑥) = 𝜅(𝑦) = 𝜅(𝑧) = 0. Then 𝑥′ and 𝑦 ′, which
neighbor 𝑥 and 𝑦 respectively, must be colored 1 or 2. Since they also neighbor each other,
they must receive different colors:

• either 𝜅(𝑥′) = 1 and 𝜅(𝑦 ′) = 2,
• or 𝜅(𝑥′) = 2 and 𝜅(𝑦 ′) = 1.

page 36

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

In either case, 𝑡1, which neighbors both 𝑥′ and 𝑦 ′, can only be colored 0. Therefore, observe
that 𝑡1 and 𝑧 both have color 0.

By construction, 𝑡1 and 𝑧 are constrained by a two-vertex semi-OR graph. Thus 𝜅(𝑡1) = 𝜅(𝑧) = 0
violates lemma 5.5, a contradiction.

We are now prepared to construct full-blown OR gates. To do so, we create three boolean vertices
𝑥, 𝑦 , 𝑧; the plan is to use combinations of NOT graphs and semi-OR graphs to constrain 𝑥, 𝑦 , 𝑧 under
the relation

𝑧 = 𝑥 ∨ 𝑦,

so that 𝑧 corresponds to the output wire of the OR gate with inputs 𝑥 and 𝑦. To do so, first observe
that the condition 𝑧 = 𝑥 ∨ 𝑦 is equivalent to

𝑧 ∧ (𝑥 ∨ 𝑦) ∨ ¬𝑧 ∧ ¬(𝑥 ∨ 𝑦).

In other words, 𝑧 = 𝑥 ∨ 𝑦 holds if and only if the values of 𝑧 and of 𝑥 ∨ 𝑦 are both True or both
False. Using DeMorgan’s identities and distributivity properties, we derive that this condition is
equivalent to

(𝑧 ∧ (𝑥 ∨ 𝑦)) ∨ (¬𝑧 ∧ ¬(𝑥 ∨ 𝑦)) =����XXXX(𝑧 ∨ ¬𝑧)((𝑧 ∨ ¬(𝑥 ∨ 𝑦))((𝑥 ∨ 𝑦) ∨ ¬𝑧)(((((((((hhhhhhhhh((𝑥 ∨ 𝑦) ∨ ¬(𝑥 ∨ 𝑦))
= ((𝑧 ∨ (¬𝑥 ∧ ¬𝑦))(𝑥 ∨ 𝑦 ∨ ¬𝑧)
= (𝑧 ∨ ¬𝑥)(𝑧 ∨ ¬𝑦)(𝑥 ∨ 𝑦 ∨ ¬𝑧).

Thus 𝑧 = 𝑥 ∨ 𝑦 holds if and only if all three of the following conditions simultaneously hold:

• At least one of 𝑧 and ¬𝑥 is 1.
• At least one of 𝑧 and ¬𝑦 is 1.
• At least one of 𝑥, 𝑦, and ¬𝑧 is 1.

Aside I recently learned that this conversion—from “structured” relations like 𝑧 = 𝑥 ∨ 𝑦 to
conjunctions of constraints like (𝑧 ∨ ¬𝑥)(𝑧 ∨ ¬𝑦)(𝑥 ∨ 𝑦 ∨ ¬𝑧)—is a well-known result called the
Tseitin transformation (Tseitin 1970).

I happened to derive this on my own before coming across it on Wikipedia, which I found
rewarding for two reasons: first, it tells me that I, too, am capable of coming up with fame-
worthy math, like the “pro” mathematicians of old; second, it reveals that these famous results
are often backed by exceedingly simple ideas—in this case, basic algebra.

We construct an OR graph by using NOT graphs to compute ¬𝑥, ¬𝑦, ¬𝑧, and then constraining them
using semi-OR graphs on 𝑧, ¬𝑥; 𝑧, ¬𝑦; and 𝑥, 𝑦 , ¬𝑧.

Definition 5.10 ▶ OR graph

Let 𝒊1, 𝒊2 be boolean vertices. Construct an OR graph on inputs 𝒊1, 𝒊2 as follows:

• Introduce a new vertex 𝒐, the output vertex.
• Construct NOT graphs on each of 𝒊1, 𝒊2, 𝒐; name their output vertices ̄𝑖1, ̄𝑖2, ̄𝑜, respectively.
• Construct two-vertex semi-OR graphs on 𝒐, ̄𝑖1 and on 𝒐, ̄𝑖2.

page 37

CHAPTER 5
Graph 3-coloring games

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

• Construct a three-vertex semi-OR graph on 𝒊1, 𝒊2, ̄𝑜.

𝒊1 ̄𝑖1 𝒊2 ̄𝑖2 𝒐 ̄𝑜

𝒊1

𝒊2
̄𝑜 𝒐 𝒐

̄𝑖1 ̄𝑖2

Figure 5.8. An OR graph. For readability, some vertices are drawn as dupli-
cates, with copies sharing the same label to indicate that they refer to the
same vertex.

Aside Just for fun, here’s what the fully-assembled OR graph looks like. This isn’t exactly
the same graph as the one above: some 2 vertices have been added/elided/rearranged, but
the functional structure is otherwise the same.

𝒊1

𝒊2
𝒐

̄𝑖1

̄𝑖2

̄𝑜

Figure 5.9. A fully-assembled OR graph (drawn without duplicated
boolean vertices).

Finally, to construct an AND graph, we leverage DeMorgan’s identity to represent AND operations
in terms of NOT and OR operations, which we already know how to implement:

𝑧 = 𝑥 ∧ 𝑦 ⟺ ¬𝑧 = ¬𝑥 ∨ ¬𝑦.

Therefore we construct an AND graph simply by switching the labels 𝑥, 𝑦 , 𝑧 with ¬𝑥, ¬𝑦, ¬𝑧 in the
construction of the OR graph.

Definition 5.11 ▶ AND graph

Let 𝒊1, 𝒊2 be boolean vertices. Construct an AND graph on inputs 𝒊1, 𝒊2 as follows:

• Introduce a new vertex 𝒐, the output vertex.
• Construct NOT graphs on each of 𝒊1, 𝒊2, 𝒐; name their output vertices ̄𝑖1, ̄𝑖2, ̄𝑜, respectively.

page 38

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

• Construct two-vertex semi-OR graphs on ̄𝑜, 𝒊1 and ̄𝑜, 𝒊2.
• Construct a three-vertex semi-OR graph on ̄𝑖1, ̄𝑖2, 𝒐.

𝒊1 ̄𝑖1 𝒊2 ̄𝑖2 𝒐 ̄𝑜

̄𝑖1

̄𝑖2
𝒐 ̄𝑜 ̄𝑜

𝒊1 𝒊2

Figure 5.10. An AND graph.

Aside I did it for the OR graph, so I might as well also do it for the AND graph:

̄𝑖1

̄𝑖2
̄𝑜

𝒊1

𝒊2

𝒐

Figure 5.11. A fully-assembled AND graph.

Thus we have defined graph encodings for all three logic gates. We summarize this discussion by
proving the correctness of these constructions, according to definition 5.5.

Theorem 5.7

[1] The NOT graph (definition 5.6) computes the function 𝜙(𝑥) = ¬𝑥.
[2] The OR graph (definition 5.10) computes the function 𝜙(𝑥, 𝑦) = 𝑥 ∨ 𝑦.
[3] The AND graph (definition 5.11) computes the function 𝜙(𝑥, 𝑦) = 𝑥 ∧ 𝑦.

Proof. In each case, we wish to show that for each combination of input boolean values, the
following properties hold:

Attainability There exists a proper total coloring 𝜅 of the graph such that 𝜅 assigns those
values to the input vertices.

Consistency Every coloring under this input combination assigns the correct boolean value

page 39

CHAPTER 5
Graph 3-coloring games

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

to the output vertex.

We prove each part separately.

[1] Let 𝒊 be the input vertex and 𝒐 be the output vertex of a NOT graph.

Attainability Both input settings are attained by some proper coloring:

𝒊 ↦ 0 𝒐 ↦ 1 𝒊 ↦ 1 𝒐 ↦ 0

Consistency We claim that the colorings shown above are the only possible proper
colorings (and therefore all proper colorings assign the same output values). This is
straightforward to see. Since 𝒊 and 𝒐 are both boolean vertices (they are connected
to a 2), they can only take colors in {0, 1}. Then, since 𝒊 and 𝒐 are joined to each
other by an edge, their colors must be opposite, so for every proper coloring 𝜅, we
have 𝜅(𝒐) = ¬𝜅(𝒊), as desired.

Thus the NOT graph indeed computes 𝜙(𝑥) = ¬𝑥.

[2] Let 𝒊1, 𝒊2, 𝒐 be boolean vertices such that 𝒐 is the output vertex of an OR graph on input
vertices 𝒊1 and 𝒊2.

Attainability As shown in the diagrams below, each input combination is properly
attainable (this time, the colorings for each combination are not necessarily unique).
In each diagram, the NOT-graphs joining 𝑥/¬𝑥, 𝑦/¬𝑦, and 𝑧/¬𝑧 have been omitted
to avoid visual cluttering; assume that they are implicitly present.

page 40

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

𝒊1 ↦ 𝑥1 𝒊2 ↦ 𝑥2 𝒐 ↦ 𝑥1 ∨ 𝑥2 coloring

False False False

𝒊1

𝒊2
̄𝑜 𝒐 𝒐

̄𝑖1 ̄𝑖2

False True True

𝒊1

𝒊2
̄𝑜 𝒐 𝒐

̄𝑖1 ̄𝑖2

True False True

𝒊1

𝒊2
̄𝑜 𝒐 𝒐

̄𝑖1 ̄𝑖2

True True True

𝒊1

𝒊2
̄𝑜 𝒐 𝒐

̄𝑖1 ̄𝑖2

Consistency Let 𝜅 be an arbitrary proper coloring of the OR graph. We wish to show
that 𝜅(𝒐) = 𝜅(𝒊1)∨𝜅(𝒊2) always holds. In other words, we will argue that 𝜅(𝒐) = True
if and only if at least one of 𝜅(𝒊1), 𝜅(𝒊2) is True.

[⇒] Suppose that 𝜅(𝒐) = True. Then consistency of the NOT graph implies that
𝜅(̄𝑜) = False. By construction of the OR graph, the vertices 𝒊1, 𝒊2, ̄𝑜 are con-
strained by a three-vertex semi-OR, which necessitates that at least one of
𝒊1, 𝒊2, ̄𝑜 is colored True. Since ̄𝑜 isn’t, that means at least one of 𝒊1, 𝒊2 must be
colored True, as desired.

[⇐] Suppose that at least one of 𝒊1, 𝒊2 is colored True; assume without loss of
generality that 𝜅(𝒊1) = True. Consistency of the NOT graph implies 𝜅(̄𝑖1) =
False. There is a two-vertex semi-OR constraining ̄𝑖1 and 𝒐, so at least one of
them must be colored True; ̄𝑖1 isn’t, leaving 𝜅(𝒐) = True, as desired.

[3] Let 𝒊1, 𝒊2, 𝒐 be boolean vertices such that 𝒐 is the output vertex of an AND graph on input
vertices 𝒊1 and 𝒊2.

Attainability Each input combination is attainable, per the diagrams below (again, not
necessarily unique):

page 41

CHAPTER 5
Graph 3-coloring games

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

𝒊1 ↦ 𝑥1 𝒊2 ↦ 𝑥2 𝒐 ↦ 𝑥1 ∧ 𝑥2 coloring

False False False

̄𝑖1

̄𝑖2
𝒐 ̄𝑜 ̄𝑜

𝒊1 𝒊2

False True False

̄𝑖1

̄𝑖2
𝒐 ̄𝑜 ̄𝑜

𝒊1 𝒊2

True False False

̄𝑖1

̄𝑖2
𝒐 ̄𝑜 ̄𝑜

𝒊1 𝒊2

True True True

̄𝑖1

̄𝑖2
𝒐 ̄𝑜 ̄𝑜

𝒊1 𝒊2

Consistency Note that the AND graph is constructed by swapping each boolean vertex
𝒊1, 𝒊2, 𝒐with its negation ¬𝒊1, ¬𝒊2, ¬𝒐, respectively. Thus consistency of the AND graph
follows from consistency of the OR graph (proven above) and DeMorgan’s identities:
for any proper coloring 𝜅,

𝜅(̄𝑜) = 𝜅(̄𝑖1) ∨ 𝜅(̄𝑖2) ⟺ ¬𝜅(𝒐) = ¬𝜅(𝒊1) ∨ ¬𝜅(𝒊2) ⟺ 𝜅(𝒐) = 𝜅(𝒊1) ∧ 𝜅(𝒊2).

Finally, any circuit can now be converted to a boolean 3-coloring graph computing it, by converting
each gate in the circuit to its corresponding graph. We define this construction exactly below.

Definition 5.12 ▶ boolean graph of a circuit

Let 𝐶 be a boolean circuit. The boolean graph of 𝐶, denoted 𝛤𝐶, is constructed as follows:

• For each wire 𝑤 in 𝐶, construct a corresponding boolean vertex 𝑣𝑤.

If 𝑤 is an input wire of 𝐶, then label 𝑣𝑤 an input vertex of 𝛤𝐶. Similarly, if 𝑤 is the output
wire, then label 𝑣𝑤 the output vertex of 𝛤𝐶.

• For each NOT gate with input wire 𝑤1 and output wire 𝑤2, construct a NOT graph (defini-
tion 5.6) on input vertex 𝑣𝑤1 and output vertex 𝑣𝑤2 .

page 42

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

• For each AND/OR gate with input wires 𝑤1, 𝑤2 and output wire 𝑤3, construct a corre-
sponding AND/OR graph (definitions 5.10 and 5.11) on input vertices 𝑣𝑤1 , 𝑣𝑤2 and output
vertex 𝑣𝑤3 .

For each logic gate 𝑔 in 𝐶, let 𝛤𝑔 denote its corresponding subgraph in 𝛤𝐶.

First, observe that this definition directly describes an algorithm that takes a circuit 𝐶 and returns
its boolean graph 𝛤𝐶. This algorithm runs in polynomial-time, because constructing each subgraph
“component” (boolean vertices, logic-gate subgraphs) incurs a constant amount of work (plus some
polynomial-time bookkeeping), and the total number of component-construction iterations is
bounded by the size of 𝐶 itself.

Next, we prove that 𝛤𝐶 correctly computes 𝐶; this result follows straightforwardly from correctness
of each logic-gate subgraph (theorem 5.7).

Theorem 5.8

Let 𝐶 be a boolean circuit, and let 𝛤𝐶 be the boolean graph of 𝐶 (definition 5.12). Then 𝛤
computes (definition 5.5) 𝐶.

Proof. Assume that the input wires of 𝐶 are 𝑤∗
1 , … , 𝑤∗

𝑛 , and that the corresponding boolean
vertices in 𝛤𝐶 are 𝒊𝑗 = 𝑣𝑤∗

𝑗
for each 𝑗 = 1, … , 𝑛.

We wish to show that any input combination 𝑋 ∈ {True, False}𝑛 is attainable by some proper
coloring on 𝛤𝐶, and that all proper colorings generate outputs consistent with 𝐶.

Attainability Let 𝑋 ∈ {True, False}𝑛 be arbitrary. We describe a procedure to construct a
proper coloring on 𝛤𝐶 attaining 𝑋 on the input vertices.

Initially, for each wire 𝑤 in 𝐶, its boolean vertex 𝑣𝑤 is uncolored; correspondingly, mark
𝑤 as “unvisited”. Start by assigning 𝑋, as colors, to the input vertices 𝒊1, … , 𝒊𝑛, and
correspondingly mark each input wire 𝑤∗

1 , … , 𝑤∗
𝑛 as “visited”.

Next, as long as there remain unvisited wires in 𝐶, repeatedly color logic-gate subgraphs
in 𝛤 as follows. 𝐶 contains no cyclic dependencies, so there must exist at least one gate
𝑔 with already-visited input wire(s) 𝑤𝑖 and unvisited output wire 𝑤 ′. Then the corre-
sponding vertex/vertices 𝑣𝑤𝑖 is/are colored, while 𝑣𝑤 ′ remains uncolored. By consistency
of each logic-gate subgraph (theorem 5.7), there exists a proper coloring of 𝛤𝑔 extending
the pre-existing coloring on 𝑣𝑤𝑖 ; assign those colors to 𝛤𝑔, and mark the wire 𝑤 ′ as visited.
This assignment preserves properness of the partial coloring because, by construction
of 𝛤𝐶, there are never any edges joining the internal or output vertices across different
logic-gate subgraphs, so we may freely color 𝛤𝑔 without worrying about introducing
improper edges with neighbors outside 𝛤𝑔. By induction on the number of visited wires,
this procedure preserves properness at each iteration, thereby resulting in a proper total
coloring of 𝛤𝐶.

Consistency Consistency of each logic-gate subgraph (theorem 5.7) implies that the boolean

page 43

CHAPTER 5
Graph 3-coloring games

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

relations at each logic gate in 𝐶 are exactly matched by the boolean colorings at each
logic-gate subgraph in 𝛤𝐶. Thus by induction on the structure of 𝐶, the output vertex in
𝛤𝐶 must always have the same boolean value as the output wire in 𝐶.

The takeaway here, intuitively, is that 3-coloring graphs are as computationally powerful as circuits
are. If any algorithm can be encoded as a sequence of circuit computations, and circuits can be
embedded in graph 3-colorings, then effectively, any algorithm is essentially a graph 3-coloring
computation—with data stored as colors, and logic being carried out by properness constraints.
Therefore, we would be unsurprised to find, as we discuss in the next subsection, that every circuit
game is also just a graph 3-coloring game, under the appropriate translations of terminology/game-
rules.

5.5.2 Translating Circuit Satisfiability games to 3-Colorability games

Recall that in a CircSat𝑘 game, two players alternate turns assigning inputs to a circuit, with
victory decided by the final output of the circuit: True means the first player wins; False means
the second player wins. We now wish to encode these objectives in the language of 3-colorings
and properness.

To start with, we are given a circuit 𝐶, with inputs partitioned into 𝑘 groups, 𝐼1, … , 𝐼𝑘. Naturally,
we start by converting 𝐶 to a boolean graph 𝛤𝐶, mapping the groups of circuit inputs directly to
groups of vertices,

𝑈𝑖 = {𝑣𝑤 | 𝑤 ∈ 𝐼𝑖}

for 𝑖 ∈ {1, 2, … , 𝑘}. So far, this doesn’t define a valid 3Col𝑘 game yet, as 𝑈1, … , 𝑈𝑘 don’t partition all
vertices in 𝛤𝐶—the uncolored internal vertices are unaccounted for.

In choosing who colors the remaining vertices, we wish to ensure that, whatever coloring gets
assigned to the internals of 𝛤𝐶, it should be consistent with the wire values in 𝐶, so that theorem 5.8
applies. The easiest way to do so is to wait until all input vertices have been colored before coloring
the internal vertices. To this end, we place all internal vertices in the last group, 𝑈𝑘. Of course, in
the special case that 𝑘 = 0, there are no turns to be played, so we include the full coloring of the
graph (computable by simply evaluating the circuit and filling in the proper colorings at each gate,
per theorem 5.7) in the pre-coloring.

Finally, we translate the winning condition as follows. In CircSat𝑘, the winning condition is that
the first player wins if and only if the final output is True. Meanwhile, in 3Col𝑘, the winning
condition is that the last player wins if and only if all turns finish, resulting in a proper total
coloring. The asymmetry between CircSat𝑘 and 3Col𝑘 is the difference in who wins according to
the parity of the number of turns:

• The first player plays on odd-numbered turns, so when 𝑘 is odd, the first player is the last
player. Thus for odd 𝑘 the winning incentive of the first player in CircSat𝑘, should exactly
match that of the last player in 3Col𝑘: a proper total coloring should be obtained if and only
if the circuit finally outputs True.

page 44

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

• When 𝑘 is even, the second player is the last player. Thus for even 𝑘 the winning incentive of
the first player should be opposite that of the last player: the final coloring is proper if and
only if the circuit outputs False.

In all cases, we enforce the winning condition in all cases by appending 𝑘 NOT-graphs to the output
vertex of the graph and pre-coloring the final output vertex to False.

We summarize this reduction from CircSat𝑘 to 3Col𝑘, including the steps of the circuit-to-graph
conversion (definition 5.12), in the algorithm below.

Algorithm 5.3 ▶ reduction from CircSat𝑘 to 3Col𝑘

given: a circuit 𝐶 with inputs partitioned as 𝐼1 ⊔ ⋯ ⊔ 𝐼𝑘
▷ construct the boolean graph of 𝐶 ◁
create a blank graph 𝛤 and partial-coloring 𝜅
introduce (in 𝛤) a special vertex 𝑣2
pre-color 𝜅(𝑣2) = 2
for each wire 𝑤 in 𝐶 do

introduce a vertex 𝑣𝑤
introduce an edge 𝑣𝑤 ↔ 𝑣2

end for
for each logic gate 𝑔 in 𝐶 do

if 𝑔 is a NOT gate with input wire 𝑤1 and output wire 𝑤2 then
add to 𝛤 a NOT graph on input 𝑣𝑤1 and output 𝑣𝑤2 , following definition 5.6

else if 𝑔 is an AND gate with inputs 𝑤1, 𝑤2 and output 𝑤2 then
add to 𝛤 an AND graph on inputs 𝑣𝑤1 , 𝑣𝑤2 and output 𝑣𝑤3 , per definition 5.11

else if 𝑔 is an OR gate with inputs 𝑤1, 𝑤2 and output 𝑤2 then
add to 𝛤 an OR graph on inputs 𝑣𝑤1 , 𝑣𝑤2 and output 𝑣𝑤3 , per definition 5.10

end if
end for
if 𝑘 = 0 then

▷ no turns, pre-color all vertices ◁
for each logic gate 𝑔 in 𝐶 do

evaluate 𝑔 and color 𝛤𝑔 accordingly, per theorem 5.7
end for

else
▷ partition uncolored vertices by turn ◁
𝑈1 ← {}; 𝑈2 ← {}; … ; 𝑈𝑘 ← {}
for each 𝑖 ∈ {1, 2, … , 𝑘} do

for each wire 𝑤 ∈ 𝐼𝑖 do
add 𝑣𝑤 to 𝑈𝑖

end for
end for
for each remaining (unused) vertex 𝑣 in 𝛤 do

if 𝑣 is not pre-colored then

page 45

CHAPTER 5
Graph 3-coloring games

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

add 𝑣 to 𝑈𝑘
end if

end for
end if
▷ encode parity of winning condition via 𝑘 NOT graphs ◁
𝑤 ← output wire of 𝐶
for each 𝑖 = 1, 2, … , 𝑘 do

introduce a new vertex 𝑤 ′

introduce an edge 𝑤 ′ ↔ 𝑣2
introduce an edge 𝑤 ↔ 𝑤 ′

𝑤 ← 𝑤 ′

end for
return (𝛤 , 𝜅, (𝑈1, … , 𝑈𝑘))

We prove the correctness of this reduction below, thereby showing that CircSat𝑘 ≤ 3Col𝑘.

Theorem 5.9 ▶ CircSat𝑘 ≤ 3Col𝑘

For any CircSat𝑘 instance (𝐶, (𝐼1, … , 𝐼𝑘)), let (𝛤 , 𝜅, (𝑈1, … , 𝑈𝑘)) denote the 3Col𝑘 instance
obtained by running algorithm 5.3 on (𝐶, (𝐼1, … , 𝐼𝑘)); then

(𝐶, (𝐼1, … , 𝐼𝑘)) ∈ CircSat𝑘 ⟺ (𝛤, 𝜅, (𝑈1, … , 𝑈𝑘)) ∈ 3Col𝑘.

Proof. By induction on 𝑘.

• In the base case, 𝑘 = 0, the CircSat0 = CircVal instance has no inputs (all inputs are
already specified as constants). Thus the resulting 3Col0 = 3ColPropc instance has
no uncolored vertices; (𝛤 , 𝜅) is a totally-colored graph. Since 𝑘 = 0 additional parity-
adjusting NOT-graphs are appended at the output, 𝛤 is exactly same as the boolean
graph 𝛤𝐶 of 𝐶.

By construction of the pre-coloring, 𝜅 is internally consistent. Thus theorem 5.8 implies
that the output color is forced, under properness, to be same as the output value of 𝐶.
But by construction the output is pre-colored 0, so the coloring 𝜅 is proper if and only if
𝐶 outputs False to match that pre-coloring. Equivalently, 𝜅 is improper if and only if 𝐶
outputs True, or

(𝛤 , 𝜅) ∈ 3ColPropc ⟺ 𝐶 ∈ CircVal,

as desired.

• Assume 𝑘 > 1. We show both directions of the implication separately.

[⇒] Suppose that (𝐶, (𝐼𝑖)) ∈ CircSat𝑘; we wish to show that (𝛤 , 𝜅, (𝑈𝑖)) ∈ 3Col𝑘.

(𝐶, (𝐼1, … , 𝐼𝑘)) ∈ CircSat𝑘 means that there exists 𝑋 ∈ {True, False}|𝐼1| such that
¬𝐶[𝐼1 ≔ 𝑋], with remaining inputs partitioned as 𝐼2, … , 𝐼𝑘, is in (CircSat𝑘−1)

c.

page 46

SECTION 5.5
𝑘-turn 3-Colorability is Σ𝑘P-complete

CHAPTER 5
Graph 3-coloring games

Construct 𝛿∶ 𝑈1 → {0, 1, 2} by interpreting the boolean-value assignment 𝐼1 ≔ 𝑋
as an assignment of colors to 𝑈1:

𝛿(𝑣𝑤𝑖) = {
1 𝑥𝑖 = True,
0 𝑥𝑖 = False

.

Then, observe that the remaining (𝑘 −1)-turn game instance, comprising 𝛤, the aug-
mented coloring 𝜅[𝛿], and with uncolored vertices partitioned as 𝑈2, … , 𝑈𝑘, is exactly
same as that obtained by the reduction algorithm 5.3 on (¬𝐶[𝐼1 ≔ 𝑋], (𝐼2, … , 𝐼𝑘)).
To see this, recall that:

– In the 𝑘-turn game, 𝛤 is formed by appending 𝑘 NOT-graphs to 𝛤𝐶.
– In the (𝑘 − 1)-turn game, 𝛤 is formed by appending 𝑘 − 1 NOT-graphs to 𝛤¬𝐶.

In both instances, the original circuit 𝐶 gets negated a total of 𝑘 additional times.

Therefore, by induction,

(¬𝐶[𝐼1 ≔ 𝑋], (𝐼2, … , 𝐼𝑘)) ∈ (CircSat𝑘−1)
c ⟺ (𝛤, 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) ∈ (3Col𝑘−1)

c.

Consequently, 𝛿 is indeed a winning move for the original 𝑘-turn game; it certifies
that

(𝛤 , 𝜅, (𝑈1, … , 𝑈𝑘)) ∈ 3Col𝑘,

as desired.

[⇐] Suppose that (𝛤 , 𝜅, (𝑈𝑖)) ∈ 3Col𝑘; we wish to show that (𝐶, (𝐼𝑖)) ∈ CircSat𝑘.

(𝛤 , 𝜅, (𝑈𝑖)) ∈ 3Col𝑘 means that either 𝜅 is improper, or there exists a “winning”
coloring 𝛿∶ 𝑈1 → {0, 1, 2} such that

(𝛤 , 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) ∈ (3Col𝑘−1)
c.

By construction, 𝜅 is proper, because the only pre-colored vertices are the special
vertex 𝑣2 ↦ 2 and the output vertex 𝒐 ↦ 0. Thus it must be that a winning 𝛿 exists.

Note that if 𝜅[𝛿] were improper, we would immediately have

(𝛤 , 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) ∈ 3Col𝑘−1

(the responding player automatically wins). But by assumption, that is not the
case: we actually have

(𝛤 , 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) ∈ (3Col𝑘−1)
c

(𝛿 leads to a guaranteed loss for the responding player). Thus 𝜅[𝛿] must be proper.

page 47

CHAPTER 5
Graph 3-coloring games

SECTION 5.6
Can we avoid pre-coloring vertices?

Therefore, for each vertex 𝒊𝑗 ∈ 𝑈1, we know that 𝜅[𝛿] only assigns colors 0 or 1 to
𝒊𝑗 since by construction 𝒊𝑗 neighbors 𝑣2, which is pre-colored 2. Thus construct a
boolean assignment 𝑋 = (𝑥1, … , 𝑥|𝐼1|) ∈ {True, False}|𝐼1| by

𝑥𝑗 = {
True 𝛿(𝒊𝑗) = 1
False 𝛿(𝒊𝑗) = 0

.

As before, note that (𝛤 , 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) is exactly the same (𝑘 − 1)-turn instance
as obtained by algorithm 5.3 on (¬𝐶[𝐼1 ≔ 𝑋], (𝐼2, … , 𝐼𝑘)). Thus by induction

(𝛤 , 𝜅[𝛿], (𝑈2, … , 𝑈𝑘)) ∈ (3Col𝑘−1)
c

implies that
(¬𝐶[𝐼1 ≔ 𝑋], (𝐼2, … , 𝐼𝑘)) ∈ (CircSat𝑘−1)

c,

and therefore 𝑋 certifies that

(𝐶, (𝐼1, … , 𝐼𝑘)) ∈ CircSat𝑘,

as desired.

Finally, the correctness of this reduction implies the big theorem of this chapter: Σ𝑘P-completeness
of 3Col𝑘 games.

Theorem 5.10 ▶ yay!

3Col𝑘 is Σ𝑘P-hard. Together with corollary 5.4, this implies that 3Col𝑘 is Σ𝑘P-complete.

5.6 Can we avoid pre-coloring vertices?

Yes! For sake of brevity, we give no formalisms/proofs in this chapter; instead, we focus only on
the intuition of why un-colored graphs, despite seeming more limited at first glance, are basically
equivalent to pre-colored graphs. That is, the choice to work with pre-colored graphs makes
virtually no practical difference; it is only a convenient device to simplify discourse.

At the start of this chapter, we assumed a specific convention for representing boolean values as
colors: True is 1 and False is 0, leaving 2 unused. Aside from being intuitively convenient, this
convention is entirely arbitrary. In the context of proper 3-colorings, none of the three colors are
special in any way; properness/improperness is preserved under any permutation of colors.

Therefore, when we start with an uncolored graph, there is no association a priori between specific
colors and boolean values. However, an association is induced as soon as some vertices are colored
in. For example, whatever color is received by the special 𝑣2 vertex represents the “not-a-boolean”
color. It doesn’t matter what exactly that color is—red, yellow, green—by permuting the names of
the colors, we can always call that color 2, without loss of generality. Similarly, the AND-graphs

page 48

SECTION 5.6
Can we avoid pre-coloring vertices?

CHAPTER 5
Graph 3-coloring games

and OR-graphs link to a pre-colored 1 vertex. Here, that vertex starts out uncolored, but as soon as
it becomes colored, we call that color 1. Finally, we call the last remaining color 0.

To ensure that these induced pre-coloring associations are consistent—e.g., that 1 and 2 don’t
accidentally coincide—we start out by constructing a special triangle comprising vertices 𝑣0, 𝑣1, 𝑣2.
Because these special vertices are joined by a triangle, they must receive all three distinct colors
(under any proper coloring). Regardless of which specific hues the players choose to color this
triangle, we simply call the colors of this triangle by the names 0, 1, 2, respectively.

In the original construction, wherever we would have made connections to a pre-colored vertex, we
instead make connections to one of the special vertices instead. Finally, in 3Col𝑘 games, we ensure
that the triangle actually functions as a pre-coloring, by including special vertices in the first group
of vertices 𝑈1, so that they are the first to be colored, and subsequent properness constraints imply
that all other colorings must be consistent with the special pre-colorings.

page 49

CHAPTER 5
Graph 3-coloring games

SECTION 5.6
Can we avoid pre-coloring vertices?

page 50

Chapter 6

Conclusion

In this thesis, I explore the computational complexity of fixed-turn games under the polynomial
hierarchy, with Σ𝑘P representing the class of “can the first player guarantee a win?” decision
problems for all games with 𝑘 turns, and Π𝑘P representing the class of complement decision
problems, “is the first player doomed to lose?”. Using the foundational Circuit Satisfiability
games as a starting point, we search for other Σ𝑘P/Π𝑘P-complete games—games that are maximally
hard for each class and are therefore ideal representatives characterizing the difficulty of each
class. Finally, we introduce the 𝑘-turn Graph 3-Colorability games on graphs, and by embedding
circuits in graph 3-colorings show that 𝑘-turn 3-Colorability is Σ𝑘P-complete.

Unfortunately, in a mere half year of thesis (having spent the first half figuring out only what
question to explore), I had time to include in my thesis the full treatment of only one flavor of
game—3-Colorability—even though I am absolutely confident there are tons more.

For instance, consider the Exact Set Covering problem, which I like to informally call the “sushi
problem”: you run an eccentric sushi restaurant serving 𝑛 distinct flavors of sushi, numbered
1, … , 𝑛; your restaurant’s menu contains a list of combos, each a subset of {1, … , 𝑛}; is there a way
to order certain combos such that each sushi flavor is included exactly once? This is a well-known
NP-complete problem, and it can be straightforwardly extended into a 𝑘-turn game by partitioning
the combos into 𝑘 groups and having players take turns choosing whether or not to order each
combo, subject at each turn to the “properness” constraint that ordering a previously-ordered
sushi flavor causes immediate defeat. There is a straightforward way to map logic gates to sushi
flavors and combos, and this game is therefore Σ𝑘P-complete—though there is no room for me to
detail this treatment here.

Moreover, my success with these two problems leads me to suspect that there should be a straight-
forward way to extend almost any well-known NP-complete puzzle into interesting Σ𝑘P-complete
games. To this end, I can think of two overarching future directions for this work:

• Explore a ton of NP-complete problems (perhaps starting with Karp’s famous 21 (Karp 1972)),
and try to see how naturally they extend to Σ𝑘P-complete multi-turn games.

• Drawing on commonalities between the 3-colorability games explored in chapter 5 and the

page 51

CHAPTER 6
Conclusion

sushi games sketched above, come up with a general framework for lifting 1-turn puzzles into
𝑘-turn games.

For instance, both the 3-colorability games and the sushi games share a properness constraint:
in 3-colorings, it is that no two neighboring vertices may share a color; in sushi orders, it
is that no two selected combos may share a flavor. Likewise, both games have a condition
indicating the total completion of the game: in 3-colorings, it is totality of the coloring after
all vertices have been filled in; in sushi orders, it is that each flavor is ordered at least once.
Together, totality and properness result in successful “emulation” of circuits.

Perhaps there is some way to define general notions of turn, properness, totality, and emulation
in order to streamline the process of showing Σ𝑘P-completeness of games.

Finally, to recap it all, the most important question surrounding this thesis (and really any work)
is, why is it interesting? To this, I say: everybody knows about P-vs-NP—the pervasion of NP-
completeness among interesting real-world puzzles makes the P-vs-NP question extremely im-
pactful, both theoretically and practically. Taking the perspective of this thesis, we view P as the
class of 0-turn games and NP the class of 1-turn games; why stop at P-vs-NP? Why not ask about
NP-vs-Σ2P? Σ2P-vs-Σ3P? The central question really boils down (or boils up, perhaps?) to, does
the number of turns in a game make a difference? The answers to this question, at every level, not
just 0-vs-1, are worth exploring, and together, they give resounding insight on the general structure
of puzzles and games.

page 52

Bibliography

Beaulieu, G., K. Burke, and E. Duchêne (May 13, 2013). “Impartial coloring games”. In: Theoretical
Computer Science 485, pp. 49–60. doi: 10.1016/j.tcs.2013.02.032.

Bodlaender, Hans L. (1991). “On the complexity of some coloring games”. In: WG 1990: Graph-
Theoretic Concepts in Computer Science. Vol. 484, pp. 30–40. doi: 10.1007/3-540-53832-1_29.

Burke, Kyle and Robert A. Hearn (2019). “PSPACE-complete two-color planar placement games”.
In: International Journal of Game Theory 48, pp. 393–410. doi: 10.1007/s00182-018-0628-8.

Cook, Stephen A. (May 1971). “The complexity of theorem-proving procedures”. In: STOC ’71:
Proceedings of the third annual ACM symposium on Theory of computing, pp. 151–158. doi:
10.1145/800157.805047.

Costa, Eurinardo et al. (Aug. 30, 2019). “PSPACE-hardness of Two Graph Coloring Games”. In:
Electronic Notes in Theoretical Computer Science 346, pp. 333–344. doi: 10.1016/j.entcs.2019.
08.030.

Gasarch, William I. (June 2002). “The P=?NP poll”. In: ACM SIGACT News 33 (2), pp. 34–47. doi:
10.1145/564585.564599.

Karp, Richard M. (1972). “Reducibility among Combinatorial Problems”. In: Complexity of Computer
Computations, pp. 85–103. isbn: 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_9.

Levin, Leonid A. (1973). “Universal search problems”. Trans. Russian by Boris A. Trakhtenbrot. In:
Problems of Information Transmission 9 (3), pp. 115–116. doi: 10.1109/MAHC.1984.10036.

Papadimitriou, Christos H. (1993). Computational Complexity. University of California – San Diego:
Addison-Wesley. isbn: 0-201-53082-1.

Schaefer, Thomas J. (Apr. 1978). “On the complexity of some two-person perfect-information
games”. In: Journal of Computer and System Sciences 16 (2), pp. 185–225. doi: 10.1016/0022-
0000(78)90045-4.

Stockmeyer, Larry J. (Oct. 1976). “The polynomial-time hierarchy”. In: Theoretical Computer Science
3 (1), pp. 1–22. doi: 10.1016/0304-3975(76)90061-X.

Tseitin, Gregory S. (1970). “On the complexity of derivation in propositional calculus”. In: Studies
in Constructive Mathematics and Mathematical Logic, Part II. Steklov Mathematical Institute,
pp. 115–125.

Wrathall, Celia (Oct. 1976). “Complete sets and the polynomial-time hierarchy”. In: Theoretical
Computer Science 3 (1), pp. 23–33. doi: 10.1016/0304-3975(76)90062-1.

page 53

https://doi.org/10.1016/j.tcs.2013.02.032
https://doi.org/10.1007/3-540-53832-1_29
https://doi.org/10.1007/s00182-018-0628-8
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/j.entcs.2019.08.030
https://doi.org/10.1016/j.entcs.2019.08.030
https://doi.org/10.1145/564585.564599
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1016/0022-0000(78)90045-4
https://doi.org/10.1016/0022-0000(78)90045-4
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/0304-3975(76)90062-1

	Games for One, Games for Two: Computationally Complex Fun for Polynomial-Hierarchical Families
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Overview
	Prior work and inspirations

	Basic concepts in complexity theory
	Decision problems
	Complexities and classes
	Hard problems and reductions
	Complements of decision problems

	A primer on boolean logic
	Algebraic properties of ¬,∧,∨
	DeMorgan's identities

	Boolean circuits

	Boolean circuit puzzles and games
	The Circuit Value problem, and 𝐏
	The Circuit Satisfiability puzzle, and 𝐍𝐏
	Circuit Satisfiability is 𝐍𝐏-complete

	Two-player circuit games, and the polynomial hierarchy

	Graph 3-coloring games
	Preliminaries: graphs and proper colorings
	The 0-turn game
	The 𝑘-turn games
	k-turn 3-Colorability is in 𝚺ₖ𝐏, right?
	k-turn 3-Colorability is 𝚺ₖ𝐏-complete
	Using 3-colorings to emulate circuits
	Translating Circuit Satisfiability games to 3-Colorability games

	Can we avoid pre-coloring vertices?

	Conclusion
	Bibliography

