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Abstract

We introduce and prove Sperner’s lemma, the well known combinatorial
analogue of the Brouwer fixed point theorem, and then attempt to gain a
better understanding of the polytopal generalization of Sperner’s lemma
conjectured in Atanassov (1996) and proven in De Loera et al. (2002). After
explaining the polytopal generalization and providing examples, we present
a new, simpler proof of a slightlyweaker result that helpsus better understand
the result andwhy it is correct. Some ideas for how to generalize this proof to
the complete result are discussed. In the last two chapters we provide a brief
introduction to the basics of matroid theory before generalizing a matroid
generalization of Sperner’s lemma proven in Lovász (1980) to polytopes. At
the end we present some partial progress towards proving the polytopal
generalization of Sperner’s lemma using this matroid generalization.
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Chapter 1

Introducing Sperner’s Lemma

In this thesis we will be attempting to develop an understanding of the
polytopal generalization of Sperner’s lemma and an intuition for why it is
true. We attempt to do this by way of providing clear exposition explaining
the result; a new, simpler partial proof of the result; and exploring the
connection between this result and the concept of matroids. However, before
we begin any of that we need to start at the basics—we need to understand
the original lemma that this generalization is based on. Sperner’s lemma is
an elegant little theorem that is a combinatorial analogue of the Brouwer
fixed point theorem. In fact, it is well known that Sperner’s lemma, the
Brouwer fixed point theorem, and the Knaster-Kuratowski-Mazurkiewicz
(KKM) lemma are all equivalent results, where the Brouwer fixed point
theorem is a result in topology, Sperner’s lemma is a result in combinatorics,
and the KKM lemma is a set covering result. Sperner’s lemma is also well
known for being used in the proof of the Kakutani fixed-point theorem—the
result used by John Nash in his description of Nash equilibria. In this
chapter we provide the foundation for the following chapters by introducing
Sperner’s lemma and providing intuition for why it is true in the form of
two different proofs.

1.1 Sperner’s Lemma in Two Dimensions

We’ll start with the statement of Sperner’s lemma in two dimensions and
then explain each piece of terminology needed to understand the result.

Theorem 1.1 (Sperner’s Lemma). A Sperner labeled triangulation of a triangle
must have an odd number of full cells. In particular there must be at least one.
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Tounderstandwhat thismeans, we need to define the terms triangulation,
Sperner labeling, and full cells. Let’s get started!

A triangulation of a polygon is a decomposition of the polygon into a
set of triangles with non-intersecting interiors such that the faces of two
triangles intersect at a face common to both of them, or not at all. We call
the triangles in the decomposition cells. Sperner’s lemma relies only on
triangulations of the triangle, so we will not consider triangulations of other
polygons for now. We can see examples of triangulations of a triangle in
Figure 1.1, while Figure 1.2 shows examples of decompositions of triangles
that are not triangulations.

Figure 1.1 Examples of triangulations of a triangle

A Sperner labeling of a triangulation of a triangle ��� is an assignment
of the labels {1, 2, 3} to the vertices in the triangulation such that:

1. Each of the three vertices �, �, and � have distinct labels.

2. Any vertex on side -. for -,. ∈ {�, �, �} is labeled !(-) or !(.)
where !(G) is the label of vertex G.

Notice that the definition places no restrictions on the labels of the vertices on
the interior of the triangle. Figure 1.3 explains these labeling requirements
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A

a. vertex is on the face of A b. not all cells are triangles

Figure 1.2 Examples of decompositions that are not triangulations

Figure 1.3 Sperner labeling rules for triangulated triangles

visually. Lastly, we call a cell in the triangulation a full cell if its label set (the
labels on its vertices) is {1, 2, 3}. Figure 1.5 shows some examples of Sperner
labeled triangulations with the full cells highlighted.

So Sperner’s lemma tells us that when we have such a labeling, we must
have an odd number of full cells, and since zero isn’t odd, there must be at
least one full cell. Figure 1.6 show’s that changing the labels on the interior
vertices in Figure 1.5 still results in an odd number of full cells—exactly
what we would expect given this result. Now that we understand the result,
let’s prove it! The proof we present here follows the proof presented in Su
(1999). Before we start, we need to introduce the concept of a path through
the triangulation. The notion of a path is important for both this proof and
proofs presented later in this thesis. To explain this notion, we are borrowing
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an excellent analogy presented in Su (1999).
Think of the triangle as a "house" and of the cells in the triangulation as

"rooms" in the house. The (1, 3)-edges (those whose endpoints are labeled
{1, 3}) both on the interior and on the boundary are the "doors" between
the rooms. Note that if a room is not a full cell, it must have 0 or 2 doors, so
if you enter such a room, you are able to leave it through a different door.
This is because a room with at least one door must either be a full cell, or
have a repeated label, which must give rise to another door. Thus, if you are
walking through the house, each time going through a different door, then
you will eventually exit the house (go through a door on the boundary), or
reach a full cell. Note that if you do exit the house, the door must have been
on the (1, 3)-side of the triangle since there are no (1, 3)-edges, and thus no
doors, on any other side of the triangle.

A path is a sequence of cells that you would pass through by starting
either at a door on the boundary or in a full cell, and then going through
doors until you can no longer continue. Note that this means that both the
first and last cells in a path must be either a full cell or a cell with one of
its doors on the boundary. We do not care about the direction of paths, so
we will consider a path and its reverse as the same path. Note that instead
of defining (1, 3)-edges as the doors, we could have defined any other type
of edge with two labels as the doors ((1, 2)-edges or (2, 3)-edges). Because
of this, we will sometimes specify the type of edge when discussing paths,
so for example, in this case we would refer to the paths as (1, 3)-paths. See
figure 1.4 for an example of what paths look like. We now prove Theorem
1.1.

Proof. Consider the (1, 3) side of the triangle. Since we have a Sperner
labeling, every vertex on that side must then be labeled 1 or 3. We claim that
this side of the triangle must have an odd number of (1, 3) edges. This is
because as we move along the side from one endpoint to the other, there
must be an odd number of label changes (from 1 to 3 or 3 to 1) in order to get
different labels at the endpoints. Each of these (1, 3)-edges is associated with
a (1, 3)-path. Recall that endpoints of paths are either edges on the boundary
or edges of full cells. This means that an even number of (1, 3)-edges on
the boundary are connected to each other by paths. Since there are an odd
number of (1, 3)-edges on the boundary, there must then be an odd number
of (1, 3)-edges whose associated path terminates at a full cell. Figure 1.7
shows how you can find all such full cells constructively.

At this point we have proven that there are an odd number of full cells
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Figure 1.4 The (1, 3)-paths in a Sperner labeled triangulation: (1, 3)-edges
are marked in green, full cells are marked in orange, and the (1, 3)-paths are
shown as black arrows.

who connect to the boundary by paths, so we are almost done. However,
we must also prove that there cannot be an odd number of full cells whose
associated paths do not terminate at the boundary, since then we would
have an even number in total. However, this is easy to see since if they do
not terminate at the boundary, they must terminate at another full cell, and
so, all such full cells come in pairs. As there are an even number of full cells
that do not connect to the boundary by paths, and an odd number of full
cells that do, we can conclude that there must be an odd number of full cells
in the Sperner labeled triangulation. �

This proof not only guarantees the existence of an odd number of full
cells, but also provides an algorithm for actually finding an odd number of
the full cells in the triangulation, though not necessarily all the full cells, as
the last part of the proof illustrates. For this reason this proof is considered
a constructive proof of Sperner’s lemma. In section 1.2, we present an
alternative proof of Sperner’s lemma that is nonconstructive.
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1.2 Sperner’s Lemma in Arbitrary Dimensions

Now that we have seen Sperner’s lemma in two dimensions, we can relatively
easily generalize to 3 dimensions. The first step in doing so is answering the
question "how do we generalize triangles into higher dimensions?" For this
we need the notion of a simplex. A 3-simplex is a 3-dimensional polytope
which is the convex hull of 3 + 1 points. In case you don’t know, a convex
hull of a set of points is the intersection of all convex polytopes containing
those points. For example,

1. the convex hull of two points is a line

2. the convex hull of three noncollinear points is a triangle

3. the convex hull of four points in the plane, with no three being collinear,
is a quadrilateral

4. the convex hull of four affinely independent points is a tetrahedron

So a 0-simplex is a point, a 1-simplex is a line, a 2-simplex is a triangle, and a
3-simplex is a tetrahedron (see Figure 1.8). At any higher dimension we can
not visualize simplices, but the idea stays the same. A :-face of a 3-simplex
is the convex hull of any : + 1 of the 3 + 1 points making up the simplex. So
for example a 2-face of a simplex is a triangle, and a 3-face of a simplex is
a tetrahedron. For convenience, we refer to the (3 − 1)-faces of a 3-simplex
(or of any 3 dimensional polytope) as facets. So the facets of a tetrahedron
are triangles, the facets of a cube are squares, and the facets of a triangle are
edges.

a. a 0-simplex b. a 1-simplex c. a 2-simplex d. a 3-simplex

Figure 1.8 Examples of simplices in di�erent dimensions

The equivalent of a triangulation in higher dimension is a simplicial
subdivision, butwewill often still refer to it as a triangulation for convenience.
Just as we previously decomposed a polygon into a set of triangles, we now
decompose a 3-dimensional polytope into a set of 3-simplices. A simplicial
subdivision of a 3-dimensional polytope is a decomposition of the polytope
into a set of 3-simplices with non-intersecting interiors such that the faces of
two simplices intersect at a face common to both of them, or not at all.
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Figure 1.9 Sperner labeling rules for triangulated tetrahedrons

We can now define a Sperner labeling for a simplicial subdivision of
a 3-simplex analogously with how we defined a Sperner labeling for a
triangulation of a triangle. A Sperner labeling of a 3-simplex �1�2 · · ·�3+1
is an assignment of the labels {1, 2, . . . , 3 + 1} to the vertices in the simplicial
subdivision such that:

1. Each of the vertices �8 has a distinct label.

2. Any vertex on a :-face �1�2 · · · �:+1 of the 3-simplex (i.e. �8 ∈
{�1 , �2 , . . . , �3+1} and �8 ≠ � 9 if 8 ≠ 9) must have a label in the
set {!(�1), !(�2), . . . , !(�:+1)} where !(G) is the label of vertex G.

Once again notice that this definition places no restrictions on labels of
vertices on the interior of the 3-simplex. Also note that when we let 3 = 2,
this definition is identical to the one given in the previous section. Figure
1.9 explains these labeling requirements for three dimensions (3 = 3). A
3-simplex in the Sperner labeled simplicial subdivision is called a full cell if
its label set is {1, 2, . . . , 3 + 1}.

We can now state Sperner’s lemma in full generality.

Theorem 1.2 (Sperner’s Lemma). A Sperner labeled simplicial subdivision of a
3-simplex must have an odd number of full cells. In particular there must be at least
one.

It is straightforward to generalize the constructive proof from earlier to
arbitrary dimension using induction. The main adjustment we must make is
to our definition of paths. Instead of our doors being a certain kind of edge,
we now have them be a certain kind of (3 − 1)-simplex. In three dimensions
this means that triangles within the simplicial subdivision are our doors. For
example, we might say have (1, 2, 3)-paths where (1, 2, 3)-faces are our doors,
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or (1, 3, 4)-paths where (1, 3, 4)-faces are our doors. All of our reasoning
about doors and paths from before remains correct, and so we can reason
about them in exactly the same way as before. We can now present the proof
of Sperner’s lemma for arbitrary dimension, once again following the proof
presented in Su (1999).

Proof. We proceed using induction. Our base case is when 3 = 2 and is
simply Theorem 1.1. Now we assume that Theorem 1.2 holds for 3 < = and
show that it holds for 3 = =.

Consider a Sperner labeled simplicial subdivision of an =-simplex. Now
consider the (1, 2, . . . , =)-facet of the =-simplex. Since the triangulation is
Sperner labeled, when we consider this facet as a triangulated = − 1-simplex,
it is also Sperner labeled. Thus, by the inductive hypothesis it must have
an odd number of full cells on it, which would mean (= − 1)-simplices that
are labeled (1, 2, . . . , =). Just as in the proof of Sperner’s lemma in two
dimensions, we consider the (1, 2, . . . , =)-paths associated with each of these
simplices, Since each path connects either two of these simplices to each
other, or connects one of these simplices to a full cell, we know that there are
an even number of these simplices that connect to each other, and thus that
there are an odd number remaining which connect to a full cell. Now note
that every full cell which does not connect to one of the (1, 2, . . . , =)-simplices
on the boundary must connect to another full cell, so there must be an even
number of such full cells. As there are an odd number of full cells that
connect to one of the (1, 2, . . . , =)-simplices on the boundary and an even
number that do not, we conclude that there must be an odd number of full
cells in total, which completes the inductive proof. �

This proof, like the proof of Sperner’s lemma in two dimensions, is
constructive since it provides us with an algorithm for finding an odd
number of full cells. To do so, we start by finding an odd number of full cells
for any one of the 2-simplices on the boundary. Then we use those to find
an odd number of full cells for the 3-simplex containing that 2-simplex as
described in the above proof. If we repeat this process, each time moving up
one dimension, we eventually arrive at an odd number of full cells of the
Sperner labeled triangulation of the 3-simplex.

However, there also exists a non-constructive proof of this result that
relies on a parity argument, which we now present. A short sketch of the
proof is laid out in Su (1999), and that is what the below proof is based off of.

Proof. Let # be the number of (3− 1)-simplices with labels {1, 2, . . . , 3}, and
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" be the number of full cells. We will prove this result by showing that the
parity of " and # must be the same, that is # ≡ " (mod 2), and that # is
odd.

In order to show this, we will use induction. Our base case is the
two-dimensional case. Imagine placing pebbles in each cell of the Sperner
labeled triangulation of the triangle equal to the number of (1, 2) edges on
the boundary of that cell. So a full cell would have 1 pebble and other cells
would have 0 or 2 pebbles, see Figure 1.10. Another way to count the pebbles
would be to observe that (1, 2)-edges on the interior of the triangulation
contribute 2 pebbles, one for each triangle that has the (1, 2)-edge as a facet,
and (1, 2)-edges on the boundary of the triangulation contribute 1 pebble.
Thus, we see that

# full cells ≡ # pebbles ≡ # (1, 2) edges on boundary (mod 2)

Weknowfrom theproof of Theorem1.1 that in a Sperner labeled triangulation
of a triangle there must be an odd number of (1, 2) edges on the boundary,
and so we conclude that there must be an odd number of full cells as well.
Our inductive hypothesis is that there are an odd number of full cells in a
Sperner labeled simplicial subdivision of a :-simplex. Now we will prove
that this holds for a (:+1)-simplex. Place pebbles in each cell of the simplicial
subdivision equal to the number of (1, 2, . . . , : + 1) :-simplices it has on its
boundary. The remaining steps follow exactly from the steps taken in the
base case, and so we can conclude that

# full cells ≡ # (1, 2, . . . , : + 1) :-simplices on boundary (mod 2)

The (1, 2, . . . , :+1) :-simplices on the boundary are all in the :-face spanned
by the vertices of ( labeled 1, 2, . . . : + 1. This :-face is Sperner labeled, so
using our inductive hypothesis, theremust be an odd number of (1, 2, . . . , :+
1) :-simplices in its simplicial subdivision. Finally, we conclude that since
there is an odd number of (1, 2, . . . , : + 1) :-simplices on the boundary of
our (: + 1)-simplex, that there must be an odd number of full cells as well.
This completes our induction and proves the desired result. �

We have now seen two complete proofs of Sperner’s lemma in arbitrary
dimension. The goal of this chapter was to explain Sperner’s lemma and
provide intuition for why this result is true. In the next chapter we introduce
a generalization of Sperner’s lemma, known as the polytopal generalization
of Sperner’s lemma. This generalization tells us something about the number



Sperner’s Lemma in Arbitrary Dimensions 11

Figure 1.10 A Sperner labeled triangulation of a triangle with pebbles placed
in cells depending on the number of (1, 2) edges on their boundary

of full cells in Sperner labeled triangulations of convex polytopes, as opposed
to only simplices. As you might realize, our current definition of Sperner
labelings and full cells do not make sense for any convex polytope, so we
will also see how we generalize those appropriately. The understanding
that we have built up in this chapter as well as many of the notions we have
defined, especially the notion of paths, will help us understand and prove
this generalization.





Chapter 2

The Polytopal Generalization of
Sperner’s Lemma

Much as its name suggests, the polytopal generalization of Sperner’s lemma
is a result very similar to Sperner’s lemma, but instead of only considering
triangulations of simplices, it considers triangulations of all convex polytopes,
which are generalizations of polygons and polyehdra for arbitrary dimension.
This generalization was originally conjectured in Atanassov (1996), where it
was also proven for the 3 = 2 case, i.e. for triangulations of polygons. The
result was later proven for all dimensions by De Loera et al. (2002). Their
paper presents two different proofs of this result, one constructive and one
non-constructive. However, both of these results rely on tricky arguments
that lose some of the elegance of the proof of Sperner’s lemma. One of the
primary goals of this thesis was to produce a simpler proof of this result
that allows for a more intuitive understanding of the result and more closely
parallels the constructive proof of Sperner’s lemma presented in Chapter 1.
While this goal was not completely attained, reasonable progress has been
made in this direction. In this chapter we will present a relatively simple
proof of this result where one key assumption has been added, namely that
the polytope has at least one simplicial facet. We will also discuss directions
one might try for generalizing this proof to the complete result. However, to
start off, we must first state the polytopal generalization of Sperner’s lemma
and work to understand what it is saying.

Theorem 2.1. Any Sperner labeled triangulation of a convex (=, 3)-polytope must
contain at least = − 3 non-degenerate full cells.

As we are now dealing with polytopes instead of simplices, our old
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Figure 2.1 Sperner labeling rules for triangulated pentagons

definitions for Sperner labelings and full cells are no longer sufficient. We
also need to define what an "(=, 3)-polytope" is and explain what it means
for a full cell to be non-degenerate. We will tackle these one at a time,
starting from the easiest. A (=, 3)-polytope is a polytope with = vertices
in 3 dimensions. For example, a (4, 2)-polytope is a quadrilateral in the
plane. We define Sperner labelings very similarly to how they were defined
for Sperner’s lemma. Let % be a triangulated (=, 3)-polytope with vertices
{�1 , �2 , . . . , �=}. A labeling of the vertices in the triangulation using the
labels {1, 2, . . . , =} is called a Sperner labeling if

1. Each vertex of % has a unique label.

2. Each vertex on a :-face of %, �1�2 · · · �:+1, where �8 ∈ {�1 , �2 , . . . , �=}
and �8 ≠ � 9 if 8 ≠ 9, has a label in the set {!(�1), !(�2), . . . , !(�:+1)},
where !(G) is the label of vertex G.

Figure 2.1 explains these labeling requirements in the case of 3 = 2 and
= = 5 (i.e. for a pentagon). Since it is possible that there are more than 3 + 1
labels (when = > 3 + 1), we now define a full cell as any cell that has no
repeating labels. We can not yet explain what it means for a full cell to be
degenerate (that requires some additional explanation - see section x). For
now, we just need to know that degenerate full cells are a subset of full cells
and that full cells cannot be degenerate in two dimensions.
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Now that we have defined everything, we can mostly understand what
the polytopal generalization of Sperner’s lemma is telling us. It is worth
noting that unlike Sperner’s lemma, there are no guarantees about the parity
of the number of full cells. Instead, it gives a guaranteed lower bound on
the number of full cells. For example, for a Sperner labeled triangulated
pentagon, Theorem 2.1 guarantees that we have at least 5 − 2 = 3 full cells.
Figure 2.2 shows an example of a Sperner labeled pentagon with its full cells
highlighted. If we apply Theorem 2.1 to a Sperner labeled 3-simplex, we
have = = 3 + 1, so we are guaranteed at least (3 + 1) − 3 = 1 full cells, which
is the same lower bound that Sperner’s lemma provides. This is why this
result is considered a generalization of Sperner’s lemma

1

2

34

5 1

1

2

2

4

5

1

5

Figure 2.2 A Sperner labeled triangulated pentagon. Observe that in this case
= = 5 and 3 = 2 so we are guaranteed = − 3 = 3 full cells. As we can see, we
have 5 full cells (highlighted in blue).

2.1 A Proof in Two Dimensions

We noted above that the proof we present in this chapter requires the
additional assumption that the polytope have at least one simplicial facet. In
two dimensions, every facet is an edge, and thus simplicial. This means that
our proof does prove the full result for the case of 3 = 2. However, while this
may be true, it is by no means the simplest proof available for 3 = 2. While
attempting to find a proof for the general result, the hardest step was usually
finding a way to generalize a proof that worked in two dimensions to three
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dimensions and above. Here we will prevent one proof that we came up
with that works for 3 = 2 but breaks down when 3 ≥ 3. As we noted above,
full cells in two dimensions cannot be degenerate (this is in fact due to every
facet being simplicial, as we shall see later), so the result we are proving here
is:

Proposition 2.2. A Sperner labeled polygon has at least = − 2 full cells.

Proof. Let % be a Sperner labeled =-gon. Consider an arbitrary facet of %, it
must have two labels which we will refer to as 0 and 1. From the proof of
Theorem 1.1, we know that there must be an odd number of (0, 1)-edges on
that facet, and thus that an odd number of full cells are connected to this
side by paths. In particular, we know there must be at least one such full cell.
This full cell is connected by an (0, 1)-path to the facet, so its labels must be
(0, 1, -), where - can be any label that is neither 0 nor 1. Since we were
considering an arbitrary facet, this means that each facet connects to at least
one full cell. If each facet connects to a unique full cell, as they do in Figure
2.3, then we have = full cells and we are done.

Figure 2.3 A Sperner labeled pentagon with each side connecting to at least
one unique full cell. Note that-1 , . . . , -5 ∈ {1, 2, 3, 4, 5} such that all five cells
are full cells. The black lines represent the paths connecting each side to its full
cell.

However, if this is not the case then at least two facets connect to the
same full cell. Without loss of generality assume that one of the two facets
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is the (0, 1)-facet, so the full cell must be labeled (0, 1, -). Thus, the only
facets that could also be connected to this full cell are the (0, -)-facet and
the (1, -)-facet, if such facets exist. However, the only facet other than the
(0, 1)-facet that has the label 0 is one of the two facets adjacent to the (0, 1)
facet, and the only facet other than the (0, 1)-facet that has the label 1 is
the other facet adjacent to the (0, 1)-facet. This means that the two facets
connecting to the same full cell must be adjacent. Without loss of generality,
we will assume that the (1, 2)-facet is adjacent to the (0, 1)-facet and is the
other facet connecting to the full cell, which we now know is labeled (0, 1, 2).

The next step in the proof is to show that given the existence of an
(0, 1, 2)-full cell, �, connected to the adjacent facets (0, 1) and (1, 2), we can
construct a new Sperner labeled polygon with = − 1 vertices such that every
full cell in the new polygon corresponds to a full cell in the original polygon
but with no full cell corresponding to �.

To do so, start by constructing a sequence of adjacent edges that

1. starts at the vertex of% labeled 0 and follows the edges on the (0, 1)-facet
until it reaches the first edge in the path to the full cell �

2. then follows the (0, 1)-edges in the path until it reaches the (0, 1, 2)-full
cell �

3. crosses the (0, 2)-edge of �

4. then follows the (1, 2)-edges in the path from � to the (1, 2)-facet

5. finally follows the (1, 2)-edges on the (1, 2)-facet until it reaches the
vertex of % labeled 2.

After constructing this sequence of edges, replace the label on every vertex
in the triangulation labeled 1 with the label 0. The process of constructing
this sequence of edges from the paths and replacing the labels is shown
in Figures 2.4a and 2.4b. Observe that at this point, we have a sequence
of edges going from the vertex of % labeled 0 to the vertex of % labeled 2
such that the label of every vertex in the sequence is 0 or 2. We can imagine
"straightening out" this sequence of edges into a straight line between the
two vertices to get a (= − 1)-gon that

1. is a subset of the original triangulation, so every full cell in this new
(= − 1)-gon must correspond to a full cell of the original =-gon

2. is Sperner labeled
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a. A Sperner labeled pentagon with two
sides connecting to the same full cell.

b. Replace each 4 in the Sperner labeling
from (a)with a 5 and cut out the area en-
closed by the two paths (shown in red).

c. Redraw the figure in (b) as a quadrilateral where the red path is one of the sides. This
new quadrilateral is Sperner labeled.

Figure 2.4 Algorithm for going from =-gon to (= − 1)-gon in the proof of the
polytopal generalization of Sperner’s lemma in two dimensions.

3. does not contain the full cell �.

This is the step between Figures 2.4b and 2.4c. The reason every full cell in
the new Sperner labeled polygon corresponds to a full cell in the original
polygon is that if you undo the relabeling of the vertices, the cell must still
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have no repeating labels.
We can now finish the proof with relative ease by applying induction.

The base case is = = 3 and holds as a direct consequence of Sperner’s
lemma. Our inductive hypothesis is that Proposition 2.2 holds for all = < :.
Now, consider a Sperner labeled :-gon. Following the algorithm described
above, we can find a full cell � and a (: − 1)-gon with the above-mentioned
properties. By the inductive hypothesis, this (: − 1)-gon has at least : − 3
full cells, and by the construction, each of them corresponds to a full cell of
the :-gon that is not �. Those full cells plus � brings us up to a total of at
least : − 2 full cells. By induction, this result holds for all = > 3, completing
the proof. �

One question we might ask is: why is this result harder to prove in three
dimensions and above? One reason is that paths connecting to full cells no
longer partition the polygon in a clear way, which is something we relied on
in the above proof. It is possible for two paths to be linked together, even
though they do not intersect or interact in any way (imagine two links in a
chain). The other reason is that in three and higher dimensions, the facets
are no longer forced to be simplices, which introduces degenerate full cells
which cause additional complications for proofs. In the next section we will
finally define what it means for a full cell to be degenerate, as well as present
the proof of the polytopal generalization of Sperner’s lemma in the case
where at least one facet is simplicial.

2.2 A Partial Proof of the Polytopal Generalization of
Sperner’s Lemma

As we mentioned earlier, one of the primary goals of this thesis was to
produce a simpler proof of the polytopal generalization of Sperner’s lemma.
In particular, we hoped for a proof thatmore closely parallels the constructive
proof of Sperner’s lemma. We did not succeed at producing such a proof,
but we do have a simpler proof of a slightly weaker result.

Proposition 2.3. Any Sperner labeled triangulation of a convex (=, 3)-polytope
with at least one simplicial facet must contain at least = − 3 non-degenerate full
cells.

For a proof of the stronger result, Theorem 2.1, refer to De Loera et al.
(2002). As we shall see, we have found a proof that is, at least intuitively,
quite simple. We believe that there may be a way to simplify the proof
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further by finding a replacement for the part of the proof that relies on results
from Euclidean degree theory. We now present our proof. It is easiest to
understand most of the ideas in this proof (other than perhaps degenerate
full cells) by considering the two-dimensional case, and for that reason, the
figures will be a running example in two dimensions.

To prove this result we must first define several concepts. Let % be a
(=, 3)-polytope with Sperner labeled triangulation ). We define a piecewise
linear map 5 : % → % that maps each vertex of ) to the vertex of % that
shares the same label, and is linear on each 3-simplex of ).

Figure 2.5 An example of the piecewise linear map 5 mapping a full cell in a
square back into the square.

The piecewise linearmap 5 allows us to define the concept of a degenerate
full cell. We say a full cell, �, is degenerate if 5 (�) ⊂ %%. One way to think
about this is that a full cell is degenerate if all of its labels come from a single
facet of %. If we make the assumption that all the vertices of % are affinely
independent, we can also think of degenerate full cells as full cells whose
image under 5 encloses no volume. Earlier we said that any polytope with
only simplicial facets can not have degenerate full cells, and now we can
understand why that is. If every facet is simplicial, then every facet has
exactly 3 labels, so it is impossible for all 3 + 1 labels of a full cell to come
from the same facet.

The paths between full cells and fully labeled (3 − 1)-simplices on the
boundary give us a way to partition the full cells of the triangulation into
"connected components", which we will call networks. A network is the
smallest set of full cells such that no full cells outside the network are
reachable by path-following, along with the 3-simplices that make up all
paths reachable from these full cells. We require that it be the smallest set so
that the union of two networks will not be considered a network.

Similarly, a non-degenerate network is the same as a network, except that
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Figure 2.6 An example of a degenerate full cell. The full cell � gets mapped
to the boundary of the cube by the piecewise linear map 5 .

it contains no degenerate full cells, and thus if a non-degenerate full cell is
only reachable by path-following through a degenerate full cell, it would not
be included in the non-degenerate network. It might be helpful to note that
each network is the union of some (possibly empty set of) non-degenerate
networks and (possibly empty set of) degenerate full cells, along with the
3-simplices that make up paths that are part of no non-degenerate network
(because the path is either (a) between two degenerate full cells or (b) between
a degenerate full cell and a fully labeled (3 − 1)-simplex on the boundary).
Figure 2.8 provides intuition for how a network can be made up of several
non-degenerate networks.

The next notion we need to define is that of a full cell complex generated
by a (non-degenerate) network, which we will write FC(·). Let � be a network.
Then FC(�)will be the simplicial complex constructed by taking copies of
the full cells of � and quotienting together each pair of facets connected by
a path in �. Figure 2.9 shows examples of full cell complexes.

From now on, we will abuse our notation somewhat by letting 5 be a
piecewise linear map from ��(�) to % instead of only being a map from %

to %. This is convenient to do since the behavior of the map is the same in
both cases. Figure 2.10 shows the images of some full cell complexes under
the piecewise linear map 5 .

Our approach to proving Proposition 2.3 will involve showing that there
is a non-degenerate network whose label set contains all = labels. This is
important due to following lemma.

Lemma 2.4. If the label set of a network contains = unique labels, then it contains
at least = − 3 full cells.

Proof. In a network, every full cell is connected to at least one other full
cell by a path. Also note that it is impossible to partition the full cells in a
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a. A Sperner labeled pentagon with only one
network, with paths shown as green ar-
rows.

b. A Sperner labeled square with two net-
works. The paths connecting the full cells
in each network are shown as colored ar-
rows.

Figure 2.7 Two Sperner labeled polygons with networks shown.

network into nonempty sets � and � such that no full cell in � is connected
by a path to a full cell in �, because this violates the minimality requirement
for networks.

Now observe that if two full cells are connected by a path, they must
share at least 3 labels. Since each full cell has 3 + 1 unique labels, we can
conclude that two connected full cells have at most 3 + 2 unique labels.
Starting at a full cell, we can follow one of the paths to a new full cell. We
can repeat this path-following step, reaching a new full cell by following a
path from one of the previously visited full cells, until no full cells are left
unvisited in the network. At each step the label set of the visited full cells
increases by at most one. Since the starting full cell has 3 + 1 unique labels,
this means that after : − 1 steps we have visited : full cells and have at most
3 + : unique labels. Thus, if a network contains = unique labels, it will take
a minimum of = − 3 − 1 steps to reach every label at least once, at which
point we will have visited = − 3 full cells. We conclude that any network
with = unique full cells must have at least = − 3 full cells. �

The general structure of the proof is as follows. We will show that
5 (FC(�)) covers every point in % \ %% the same number of times up to
parity. Then, we will show that every point in % \ %% must be covered an
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Figure 2.8 A representation of a network made up of two non-degenerate net-
works. The networks are colored green and orange and the degenerate full cell
is colored black. Note: degenerate full cells do not exist in two dimensions.
This diagram is only supposed to help provide intuition for what is meant
by a network beingmade of multiple non-degenerate networks.

a. Full cell complex generated by Sperner la-
beled pentagon in Figure 2.7a.

b. Full cell complexes generated by Sperner
labeled square in Figure 2.7b.

Figure 2.9 Example of full cell complexes generated by networks.

odd number of times, which in turn means that there must be at least one
network that covers each point in % \ %% an odd number of times. Such a
network will be seen to have all = labels in its label set, and then Lemma 2.4
will guarantee the existence of = − 3 full cells, completing the proof.

Thus, the first step we need to take is to prove the following lemma

Lemma 2.5. Let � be a network. Every open set in % \ %% is covered the same
number of times up to parity by 5 (FC(�)).

We can see that this holds true in our examples in Figure 2.10. Proving
this will require us to take a quick detour into topological degree theory.
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a. Image of full cell complex in Figure 2.9a under the
piecewise linear map 5 .

b. Image of full cell complex in Figure 2.9b
under the piecewise linear map 5 .

c. Image of full cell complex in Figure 2.9b
under the piecewise linear map 5 .

Figure 2.10 Images of full cell complexes under the piecewise linear map 5 .

Intuitively, The degree of a continuous mapping at the point, x, written 3(6, G)
is the number of times that a point in the image of the mapping is covered
accounting for orientation. For example, if a point in the image has two
elements in its preimage (we would say its covered twice) then the degree
at that point would be 0 or 2. This depends on whether the orientation of
the covering is the same at each of the preimages, in which case the degree
is 2, or if the orientations are opposite, in which case the degree is 0. The
orientation of the mapping at a point G is sgn(|�(G)|)where sgn(·) is the sign
function and |�(G)| is the determinant of the Jacobian. Since orientation is
only ever positive or negative, the parity of the number of times a point
is covered and its degree must be the same. So if a point is covered an
odd number of times, it must have odd degree, and if it is covered an even
number of times, it must have even degree.

The theorem we need is the following.

Theorem 2.6 (Outerelo et al. (2009) Proposition IV.2.3). Let < ∈ ℤ+ and
� ⊂ ℝ< be a bounded open set. Also let 5 : � → ℝ< be a continuous mapping.
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Then the degree 3( 5 , ·) is constant on every connected component of ℝ< \ 5 (%�).
No proof of this theoremwill be presented here, but Outerelo et al. (2009)

contains an excellent introduction to Euclidean degree theory along with a
relatively accessible proof of this theorem. We now prove Lemma 2.5.

Proof. We will prove this in two steps. The first will be to show that the
boundary of a full cell complex is mapped into the boundary of % by the
piecewise linear map 5 . We then use that along with 2.6 to prove the lemma.

Part I: 5 (%FC(�)) ⊆ %%

The boundary of a full cell complex is comprised of facets of full cells. Based
on how we defined the full cell complex, these facets are exactly the ones
whose associated path in ) connects to a facet of a degenerate full cell or
to a (3 − 1)-simplex on %%. Note that if two (3 − 1)-simplices are connected
by a path in ), they must have exactly the same labels (by the definition of
a path), and thus the same image under 5 . If � is a facet of a degenerate
full cell �, then using the definition of a degenerate full cell we see that
5 (�) ⊂ 5 (�) ⊂ %%. If � is a (3 − 1) simplex on a facet, �, of %, then its label
set must be a subset of the label set of the vertices of �. Thus, 5 (�) ⊂ � ⊂ %%.
Putting this all together, we see that each facet on the boundary of FC(�)
must map into %% under 5 , and therefore that 5 (%FC(�)) ⊆ %%.

Part II: Showing that every open set in % \ %% is covered the same number of times
up to parity
Since % ⊂ ℝ3, FC(�) ⊂ ℝ3 and is closed, and 5 : FC(�) → % is con-
tinuous, we can apply Lemma 2.6. Thus, every connected component
of % \ 5 (%(FC(�)◦)) is covered the same number of times up to parity by
5 (FC(�)). From Part I we know that 5 (%FC(�)) ⊆ %% so every connected
component of % \ %% is covered the same number of times up to parity by
5 (FC(�)). Since % \ %% is connected, every open set in % \ %% is covered the
same number of times up to parity by 5 (FC(�)). �

Lemma 2.7. Let ) be a Sperner labeled triangulation of the polytope with at least
one simplicial facet, %, and let {�1 , �2 , . . . , �:} be the set of all networks in ).
Then every open set in % \%% is covered an odd number of times by

⋃:
8=1 5 (FC(�8)).

Proof. Let �Δ be the simplicial facet of %, and let {�1 , �2 , . . . , �:} be the
(3 − 1)-simplices on �Δ with all unique labels.

Due to Sperner’s Lemma, we know that : is odd. Now observe that the
path connected to each �8 terminates at either a full cell of ) or some � 9
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where 8 ≠ 9. This means that the (3 − 1)-simplices that do not connect to
a full cell must pair up. Thus, there must be an odd number of full cells
that are connected to �Δ directly by a path. Each other full cell in ) that has
a facet whose image under the piecewise linear map 5 is �Δ must then be
connected by a path to another such full cell—that is to say, they also pair
up. So in total, there are an odd number of full cells with a facet which maps
to �Δ.

Now consider every 3-simplex made up of vertices of % that has �Δ as
a facet, and call the intersection of them OΔ. An example of this in two
dimensions is shown in Figure 2.11. Note that OΔ has non-empty interior
and that the image of a full cell covers �Δ under the piecewise linear map if
and only if it also covers all of OΔ. Since an odd number of full cells cover
�Δ, it must be that OΔ is also covered an odd number of times.

Lemma 2.5 tells us that each full cell complex covers everything in % \ %%
the same number of times up to parity, so it must be that

⋃:
8=1 5 (FC(�8))

does as well. We have shown that one part of % \ %% is covered an odd
number of times by

⋃:
8=1 5 (FC(�8)), namely, OΔ, so we conclude that all of

% \ %% is covered an odd number of times.

Figure 2.11 An example of anOΔ set in two dimensions.

�

Using Lemma 2.7 and Lemma 2.5, we can now present a short proof of
Proposition 2.3.

Proof. Using Lemma 2.5 we know that every open set in % \ %% is covered
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the same number of times up to parity by the full cell complex of a network.
Since the total covering must be odd, by Lemma 2.7, there must exist at
least one network, �, such that 5 (FC(�)) covers every open set in % \ %%
an odd number of times. However, note that a degenerate full cell covers
% \ %% zero times, so the full cell complex of each non-degenerate network
that makes up � must also cover all of % \ %% the same number of times up
to parity. Thus, there must be a non-degenerate network in � that covers
% \ %% an odd number of times. We can conclude that this network must
cover every part of % \ %% at least once, and thus must have all = unique
labels in its label set. Lemma 2.4 guarantees that this network has at least
= − 3 full cells. Since this network is non-degenerate, all of these full cells
must be non-degenerate, which completes the proof.

�

2.3 Future Work

While we did not succeed at producing a simpler proof of the polytopal
generalization of Sperner’s lemma without an additional assumption, we do
have some ideas for how the proof we presented can be generalized to prove
the complete result. The rough idea is to use induction to show that each
facet is covered an odd number of times by the full cells, and then show that
this means that there is a volume enclosing set near a facet that is covered an
odd number of times. This would replace the part of our proof that relies on
the existence of a simplicial face, and the rest of the proof works the same
way. The main difficulty with this approach is that the full cells connected
by paths to a specific facet might terminate at degenerate full cells, so even
though there may be an odd number of full cells connected by paths to the
facet, it is unclear how to show that there is not only an even number of
them covering a volume enclosing set near the facet (if there are an odd
number of degenerate full cells). However, we do have one idea for how we
might solve this issue. We are relatively confident that degenerate full cells
cover the facet they map onto under the piecewise linear map 5 an even
number of times, but have not proven this. If this is the case, then if we can
show that each facet is covered an odd number of times in total, then there
must be an odd number of non-degenerate full cells that cover it, and thus
cover a volume enclosing set near it. While this seems like a very promising
direction, we did not have time to flesh out all the details and turn it into a
complete proof.





Chapter 3

Matroids

Before we introduce the concept of matroids, we should say something
about why we are discussing them at all in this thesis. The thing that
brought our attention to matroids was the paper Lovász (1980) which proves
a generalization of Sperner’s lemma using matroids. The proof presented in
that paper has a construction that initially seemed similar to a part of the
constructive proof in De Loera et al. (2002). For this reason, we thought we
might be able to find some connection between these two results, or find
a new proof of the polytopal generalization of Sperner’s lemma using the
matroid generalization of Sperner’s lemma. While this did not end up being
the case, we found some interesting partial results connecting matroids
and the polytopal generalization of Sperner’s lemma, as well as proving a
matroid version of the polytopal generalization of Sperner’s lemma. Before
we present any of this work, we must first introduce the concept of matroids,
which is the purpose of this chapter.

Matroids attempt to generalize the notion of linear independence from
linear algebra to a more abstract setting. So instead of only considering
independence in vector spaces, that is, linear independence, Matroids allow
us to define a notion of independence on arbitrary sets. In this chapter we
will be covering the basics of matroid theory that are needed to understand
the ideas and results in the following chapters. It is important to note that
this is not a comprehensive overview of the foundations of matroid theory.
Everything in this section is based on Oxley (2003), and if you would like
to learn more about matroids that is a great place to start. Matroids were
first introduced in 1935 and have been an active area of research since the
1950s. They play an important role in combinatorial optimization and have
applications in other fields as well. For example, matroids have applications
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in electric network theory and statics, see Recski (2013).

3.1 A Motivating Example

Instead of jumping right into the definition ofmatroids, we’ll explore the idea
of linear independence from linear algebra in order to motivate a definition
for matroids.

Let’s start by considering the dependence relations for the set of vectors

� =



1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

1
1
0

 ,

0
1
1




One way of encoding all the information relating to dependence is to
enumerate every subset of � that is linearly independent (in this case we are
assuming that we are in a vector field over ℝ):

∅,


1
0
0


 ,



0
1
0


 , · · · ,



0
0
1

 ,

1
1
0


 ,



1
1
0

 ,

0
1
1


 , · · · ,



0
0
1

 ,

1
1
0

 ,

0
1
1




Let’s call this set �. This set contains every piece of information relating to
the dependence relations of the elements of the set �. For example, given
any subset, �, of the set �, we can check whether its elements are linearly
independent by checking whether � is in �. If it is not, we can conclude that
� is linearly dependent.

If we want to develop a notion of independence for objects other than
vectors, we might try to encode the information in the same way, that is,
by enumerating every set of those objects that we consider independent.
However, we want this new notion of independence to "feel" like linear
independence, so we do not want to be able to specify just any family of
sets to be our linearly independent sets. What might this mean? Well, we
probably would not want to allow the set {0, 1, 2} to be independent without
the set {0, 1} being independent.

So want to try to capture the essential properties of linear independence
and require that our new notion of independence also have these properties.
To figure out which properties these are, let’s consider the properties of the
set � above. We’ve already alluded to one property we care about, which
is that � is hereditary, that is, every subset of a linearly independent set is
linearly independent. The set � has another property fundamental to the
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idea of linear independence, though it’s probably not one that is immediately
apparent: If � and � are linearly independent and |�| > |�|, then there is an
element 0 ∈ � \ � such that � ∪ {0} is independent.

Let’s consider a concrete example to build intuition for why this property
holds. Consider the following linearly independent sets of vectors in ℝ3

� =



6
5
0

 ,

−10

4
0

 ,

−3
3
4


 , � =




5
−7
0

 ,

−5
5
0




Since both sets are linearly independent and |�| > |�|, we claim that there
must be a vector in � that we can append to � such that the new set is
linearly independent. Why must this be the case? Well, any two vectors
in ℝ3 span a plane, and we know that it is impossible for three linearly
independent vectors in ℝ3 to be in the same plane (otherwise they would
be linearly dependent). Thus, at least one of the three vectors cannot be in
the plane spanned by the two vectors in the other set. The vector not in the
plane is exactly the vector that we can append to the set to form a linearly
independent set with three elements. In our example, the plane spanned by
� is the GH-plane and there is exactly one vector in � not in the GH-plane, the

vector

−3
3
4

 (see Figure 3.1). Appending this vector to �, we get the linearly

independent set

� ∪ {0} =



5
−7
0

 ,

−5
5
0

 ,

−3
3
4




By generalizing this line of reasoning to arbitrary dimensions, we see why
the property of linear independence we have been considering must hold
in general. In some sense, this property captures the idea of dimensions in
vector spaces.

The two properties of linear independence we have considered together
characterize the essential properties of linear independence that we need in
order to define an independence relation that "feels" like linear independence.
So we can now define a notion of independence on any set, �, by providing
a set � of subsets of �, which we will refer to as the independent sets, with
the following requirements:

1. The set � is nonempty.
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2. The set � is hereditary, that is, every subset of an independent set is
independent.

3. If � and � are independent and |�| > |�|, then there is an element
0 ∈ � \ � such that � ∪ {0} is independent.

The first requirement is necessary so that at least the empty set is always
independent, and the other two are the properties we observed linear
independence to have. By requiring these properties, we have assured that
this new notion of independence behaves at least somewhat like the notion of
linear independence that we are familiar with. Now that we have considered
how we might construct a notion of independence for general sets, let’s look
at the definition of a matroid.

G

I

H
6
5
0


−10

4
0




−3
3
4



−5
−5
0

 
5
−7
0



Figure 3.1 The three linearly independent blue vectors can’t all be in the span
of the two linearly independent red vectors

3.2 Definition of a Matroid

A matroid is a pair (�, �), where � is a finite set called the ground set, and �
is a family of subsets of �, called the independent sets, with the following
properties:

1. The set � is nonempty.
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2. (hereditary property) Every subset of an independent set is independent.

3. (augmentation property) If � and � are independent and |�| > |�|, then
there is an element 0 ∈ � \ � such that � ∪ {0} is independent.

This definition should look very familiar as it is the exact definition we
arrived at in Section 3.1. Observe that the pair (�, �) of sets from earlier,
where

� =



1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

1
1
0

 ,

0
1
1




and � was all the linearly independent subsets of �, satisfies these properties,
so we have already seen one example of a matroid. Let’s consider a more
abstract matroid now that we are armed with the technical definition.

Example 3.1. Let � = {0, 1, 2} and � = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}}. Then
we have a matroid (�, �).

Notice how, in order to define our matroid in Example 3.1, we needed to
list out the entirety of the set �. This can quickly become unwieldy as the size
of the ground set and the number of independent sets increases. However,
there is another way to uniquely specify a matroid, and that is by specifying
its maximal independent sets. Once we have the maximal independent
sets, we can find all the sets in � by finding all subsets of the maximal
independent sets. We might ask why its true that for any matroid (�, �),
we can specify the same matroid with only its maximal independent sets.
This is because we know that (1) every subset of a maximal independent set
must be independent by the hereditary property, and (2) every independent
subset must be a subset of some maximal independent set due to the
augmentation property. The augmentation property implies (2) because
given somemaximal independent set � and some smaller independent set �,
we must be able to augment � with elements of � to form a set �∗ such that
|�| = |�∗ |, and thus this �∗ is a maximal independent set containing �. Thus,
enumerating every subset of the maximal independent sets is guaranteed to
get us exactly the independent sets of the matroid.

Example 3.2. The maximal independent sets of the matroid from Example
3.1 are {{0, 1}, {0, 2}}. Observe that these uniquely specify the matroid
since {∅, {0}, {1}, {2}, {0, 1}, {0, 2}} is the set of all subsets of the maximal
independent sets, and is also exactly the set � of the matroid.
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Since the maximal independent subsets fully define the matroid, we give
them a special name: we call each of them a basis of the matroid and call all
of them together the bases of the matroid. Rephrasing our above observation,
we can say that every matroid is uniquely specified by its bases. However, we
cannot specify just any family of sets to be the bases of a matroid. There are
some requirements on what can constitute the bases for a matroid, induced
by the definition of matroid:

1. The bases set is nonempty

2. Every basis has the same cardinality

3. (basis exchange property) If � and � are bases, for every element 0 ∈ �,
there must exist an element 1 ∈ � such that (� \ {0}) ∪ {1} is a basis

Let’s consider these one at a time and see how they come about from the
definition of a matroid.

1. Since the set � must be nonempty, the bases set must be nonempty.

2. If we had two bases � and � such that |�| > |�|, then by the augmenta-
tion property we would be able to find a new independent set �∗ ) �,
which contradicts the maximality of � (since � is a basis). Therefore,
all bases must have the same cardinality.

3. Let � and � are bases. For every element 0 ∈ �, the set � \ {0} must
be independent by the hereditary property. Since |�| > |� \ {0}|, the
augmentation property guarantees us that there must be an element
1 ∈ � such that (� \ {0}) ∪ {1}.

Since every basis of a matroid has the same cardinality, we call the
cardinality of the basis sets the rank of the matroid. Note that a rank A
matroid cannot have any independent set with more than A elements.

Example 3.3. The rank of the matroid from Example 3.1 is 2 since its bases
are {0, 1} and {0, 2}, both of which have cardinality 2.

Example 3.4. The rank of the matroid from Section 3.1 is 3 since one of the

basis elements is


1
0
0

 ,

0
1
0

 ,

0
0
1


.
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Example 3.5. We cannot specify a matroid with ground set {0, 1, 2, 3} and
bases {{0, 1}, {2, 3}} since the family of sets

� = {∅, {0}, {1}, {2}, {3}, {0, 1}, {2, 3}}

does not satisfy the requirements for a matroid. For example, |{0}| < |{2, 3}|
but both {0, 2} and {0, 3} are dependent so we have not satisfied the
augmentation property.

3.3 Flats of a Matroid

There is one more idea from matroid theory that we will need to understand
for the result in the next chapter, and that is the idea of a flat of a matroid.
However, before we explain what a flat is we must generalize our idea of
rank from the previous section.

We define a rank function, rank(�), on subsets, �, of the ground set, to
be the cardinality of the largest independent subsets of �.

Example 3.6. The rank of a matroid equals rank(�), where � is the ground
set.

Example 3.7. Using the matroid from Example 3.1, rank({0}) = 1,
rank({0, 1}) = 2, and rank({1, 2}) = 1.

The closure, cl(�), of a subset, � ⊆ �, is the maximal set �∗ such that
� ⊆ �∗ and rank(�) = rank(�∗). One way to think of this is that for each
element in the ground set, you check whether you could use it and the
elements in � to create an independent set larger than any independent set
in �, and if you can’t, then this element is in the closure of �.

Example 3.8. Continuing Example 3.7, cl({0}) = {0}, cl({0, 1}) = {0, 1, 2},
and cl({1, 2}) = {1, 2}.

Now we can finally define a flat of a matroid. A flat of a matroid is any
subset, �, of the ground set, such that � = cl(�). Note that since the closure
function is idempotent (i.e. cl(cl(�)) = cl(�)), the closure of any set is a flat
of the matroid. For this reason we say that the flat generated by the set � is the
closure of �.

Example 3.9. We can see from Example 3.8 that {0} and {1, 2} are flats of
the matroid and that the flat generated by the set {0, 1} is the set {0, 1, 2}.





Chapter 4

Connecting Matroids and
Sperner’s Lemma

Now that we have explored both Sperner’s Lemma and matroids, we are
ready to put them together and explore the connections between them. The
main motivation for believing that a deeper connection exists comes from
a generalization of Sperner’s Lemma where we label the vertices in the
simplicial subdivision with elements of a matroid. This generalization was
proven by Dr. László Lovász in Lovász (1980). In this chapter we present
this result as well as generalize it to polytopes. We then discuss some partial
results hinting at connections between matroids and the number of full cells
in a Sperner labeling.

4.1 The Matroid Generalization of Sperner’s Lemma

We can now finally state the matroid generalization of Sperner’s Lemma
from Lovász (1980).

Theorem 4.1 (Lovász). Let ( be a 3-simplex,  a simplicial subdivision of (, and
" a rank 3 + 1 matroid. Given a labeling of the vertices in  by elements of "
such that

1. The label set of the vertex-set of (, !(+(()), is independent in ".

2. For each face of (, the labels of the vertices of  on the face are in the flat
generated by the labels of the vertices of that face.

Then  has a simplex whose label set forms a basis.
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The big idea here is that this result is almost exactly Sperner’s Lemma,
but instead of using 3+ 1 integers as labels, we use the elements of a matroid
with rank 3+1 as labels, and our conception of a full cell changes to a simplex
whose vertices are all independent, that is, they form a basis of the matroid.
The two requirements on the labeling are almost identical as well, with the
main difference being that instead of requiring vertices on a boundary face
to be labeled from the label set of the vertices defining that boundary face,
we require them to be labeled from the flat generated by that label set.

Example 4.2. We define amatroid" with ground set {0, 1, 2, 3, 4} and bases
{{0, 1, 2}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}, {1, 2, 3}, {0, 3, 4}, {1, 3, 4}, {2, 3, 4}}. We
will label the vertices of our triangle with labels 0, 1, and 2. Then we will
be able to label the vertices on the sides of the triangle with elements from
the flat generated by {0, 1}, {1, 2}, and {0, 2}, depending on the endpoints
of that side. The flat generated by {0, 1} is {0, 1, 3}, the flat generated by
{1, 2} is {1, 2, 4}, and the flat generated by {0, 2} is {0, 2}. If we label a
triangulation of a triangle in the way described here, we are guaranteed to
have a basis cell by Theorem 4.1. Figure 4.1 is an example of such a labeled
triangulation, and as we can see, it has at least one basis cell (basis cells
marked with green).

Figure 4.1 A triangulation of triangle appropriately labeled with elements of
matroid " from Example 4.2 for the requirements of Theorem 4.1. The basis
cells are marked with green.
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This result is considered a generalization of Sperner’s Lemma because
we can define a matroid such that this result reduces to Sperner’s Lemma.
To do so, define a rank (3 + 1)-matroid with ground set � = {0, 1, 2, . . . , 3}
and bases set {�}. Then label any simplicial subdivision of a 3-simplex with
elements of this matroid following the requirements in Theorem 4.1. Note
that this labeling is also a Sperner labeling. Due to this theorem, we know
that there is a simplex in the simplicial subdivision whose label set forms a
basis, however, since the only basis is �, we know that there must be some
simplex whose label set is {0, 1, 2, . . . , 3}. Thus, this result implies that a
Sperner labeled simplicial subdivision is guaranteed to have a full cell.

We will now present a simplified proof of Theorem 4.1 inspired by the
proof in Lovász (1980). Lovász’ proof is nonconstructive and follows a
similar line of reasoning to the pebble counting argument presented in
Section 1.2. We have taken the main idea from his proof but chosen to make
use of Sperner’s Lemma directly instead of repeating the counting argument
that he relies on. Interestingly, the proof shown here can be considered
either constructive or nonconstructive, depending on whether you rely on
the constructive or non-constructive proof of Sperner’s Lemma. This is
because when we apply Sperner’s Lemma, we can use it either to guarantee
the existence of a full cell or to actually find a full cell. First, we prove a
simple lemma about matroids.

Lemma 4.3. Let � and � be independent sets of a matroid such that � ∪ � is
independent. Then the flat generated by � and the flat generated by � are disjoint.

Proof. If � = cl(�) the result is straightforward, since for every element in
0 ∈ �, the independence of � ∪ � along with the hereditary property of
independent sets guarantees that � ∪ {0} is an independent set, and thus,
that 0 ∉ cl(�).

Now assume that � ( cl(�). Choose 2 ∈ cl(�) \ �. Let 0 ∈ � and let
�′ = (� ∪ {2}) \ {0}. Since |� ∪ �| > |�′ |, the augmentation property of
independent sets tells us that there must exist a �′ ⊂ (� ∪ �) \ �′ = � ∪ {0}
such that �′ ∪ �′ is independent and |�′ ∪ �′ | = |�∪ �|. Note that �′ and �′
are disjoint and |�′ | = |�|, so it must be that |�′ | = |�|. By the definition of
cl(�), �′ ∪ 0 = � ∪ 2 cannot be independent. Thus, �′ cannot contain 0, for
if it did, it would contradict the independence of �′ ∪ �′, which means that
�′ = �. Finally, we see that �′ ∪ � is independent, so 2 ∉ cl(�), and thus the
flat generated by � and the flat generated by � are disjoint. �

Now we prove Theorem 4.1.
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Proof. Let � = {00 , 01 , . . . , 03} be a basis of ", and define a sequence
of flats �0 , �1 , . . . , �3 where we define �8 as the flat generated by the set
{00 , 01 , . . . , 08}. Note that �8 ( �8+1 since the independenceof {00 , 01 , . . . , 08 , 08+1}
implies that 08+1 ∉ �8 .

Now define a new labeling of  in the following manner. Given a vertex
with label < in the original labeling, label it 8, where 8 is chosen such that
< ∈ �8 \ �8−1. We claim that this new labeling is a Sperner labeling.

First observe that since +(() is independent, it’s impossible for two
labels in the label set of +(() to both be in the flat �8 without either of them
being in the flat �8−1. Therefore, each of the vertices of ( has a distinct
label in the new labeling. Given a vertex E on a :-face (=1(=2 · · · (=:+1 of
( (where each =8 is a unique element in {0, . . . , 3}) we know that !(E) is
in the flat generated by {!((=1), !((=2), . . . , !((=:+1)}. Thus, by Lemma 4.3,
!(E) is not in the closure of the label set of any subset of +(() disjoint
with {!((=1), !((=2), . . . , !((=:+1)}. This is equivalent to saying that if !(E) ∈
�8 \ �8−1, then there must exist some 1 ≤ 9 ≤ : + 1 such that !((= 9 ) ∈ �8 \ �8−1,
which in turn means that in the new labeling, E will have the same label as
one of the vertices making up the :-face it is a part of. Thus the new labeling
is a Sperner labeling.

By Sperner’s Lemma, there must be a full cell in  , which means that
it has label set {0, 1, . . . , 3}. Returning to the original labeling, this cell
must then have labels {G0 , G1 , . . . , G3} where G0 ∈ �0 and G8 ∈ �8 \ �8−1. It’s
straightforward to confirm that this set is independent—{G0} is independent
since G0 is in the flat �0, and then if we imagine adding one element at a time
we know that each new set is independent due to how we constructed the
flats �8 . Finally, we conclude that there exists a simplex in  whose vertices
form a basis. �

4.2 The Matroid Generalization of the Polytopal Gen-
eralization of Sperner’s Lemma

One of the benefits of howwe proved the matroid generalization of Sperner’s
Lemma, is that we can use a very similar proof to prove a matroid general-
ization of the polytopal generalization of Sperner’s Lemma.

Theorem 4.4. Let % be a convex (=, 3)-polytope,  a simplicial subdivision of %,
and " a rank = matroid. Given a labeling of the vertices in  by elements of "
such that
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1. The label set of the vertex-set of %, !(+(%)), is independent in ".

2. For each face of %, the labels of the vertices of  on the face are in the flat
generated by the labels of the vertices of that face.

Then  has = − 3 simplices whose label sets are independent sets.

Proof. Define a sequence of flats just as we did in the proof of Theorem
4.1 and then create a new labeling of the simplicial subdivision using
that sequence to get a Sperner labeling of the polytope. By the polytopal
generalization of Sperner’s lemma, Theorem 2.1, we are guaranteed that
there are at least = − 3 non-degenerate full cells. By the construction of the
new labeling, a non-degenerate full cell corresponds to a cell whose label set
is an independent set in the original labeling, completing the proof. �

4.3 Some Partial Progress Proving the Polytopal Gen-
eralization of Sperner’s Lemma using the Matroid
Generalization of Sperner’s Lemma

Wewill nowdiscuss theworkwe have done attempting to prove the polytopal
generalization of Sperner’s lemma using the matroid generalization of
Sperner’s lemma. It is probably not clear how this might be done, but that
is because the statement of the matroid generalization of Sperner’s Lemma
in Lovász’ paper is different from the one we presented in Section 4.1. The
main theorem he proves in his paper is actually

Theorem 4.5. Let  be a simplicial complex which is also a 3-dimensional manifold.
Assume that the vertices  are labeled with elements of a rank 3 + 1 matroid ".
Then if  contains a 3-simplex for which the labels on its vertices form a basis, then
there must be at least one other such 3-simplex.

Theorem 4.1 is then stated as a corollary to this result. Proving this
is very similar to our proof of Theorem 4.1—you either construct a path
of (3 − 1)-simplices from the 3-simplex you know about until you reach
another one, or you use a counting argument similar to the one in the proof
of Theorem 1.2. If you would like to see a written out proof, refer to Lovász
(1980).

Given this result, it is worth asking howwe get Theorem 4.1 as a corollary,
as Lovász states it without proof. One reasonable interpretation is that you
would use the same proof with someminor alterations to prove the corollary,



42 Connecting Matroids and Sperner’s Lemma

and this, as we have discussed above, does work. However, there is also
a way to prove Theorem 4.1 by directly applying Theorem 4.5. We will
demonstrate this by an example that will make abundantly clear how a
formal proof would go. Let " be a matroid with ground set {0, 1, 2, 3} and
bases {{0, 1, 2}, {0, 1, 3}} Consider the triangulation of a triangle labeled
with elements of the matroid " in Figure 4.2.

Figure 4.2 A matroid labeled triangulation of a triangle for which we’d like to
prove the existence of a basis cell using Theorem 4.5.

We want to prove that this triangulation must have a triangle for which
the labels of its vertices form a basis using Theorem 4.5 instead of by
inspection. One way that we can do this is by constructing another triangle
with a labeled triangulation such that

1. the vertices on the boundaries and the labels of those vertices align
with the boundaries of the labeled triangulation in Figure 4.2

2. there is only one simplex whose vertex labels form a basis

Thenwe can quotient them together to form a 2-manifold and apply Theorem
4.5 to conclude that there must be a second triangle whose vertex labels
form a basis. Since we know that there is only one in the second triangle (by
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construction), the second one must be in our original triangle, which is what
we had set out to prove. Figure 4.3 is an example of a labeled triangulation
of a triangle that satisfies the above requirements with respect to the labeled
triangulation in Figure 4.2. Therefore, we have proven that the triangulation
in Figure 4.2 must have a basis cell. It should be clear that we can make an
equivalent construction for any labeling of any triangulation of a triangle, so
this proves Theorem 4.1.

Figure 4.3 A triangle whose boundary aligns with the boundary of the triangle
in Figure 4.2 and has only one basis cell.

Now let’s return to the original question, can we do this to prove the
polytopal generalization of Sperner’s Lemma? We don’t have a definite
answer to this, but it seems reasonable that we could make a construction
similar to the one in Figure 4.3 for any convex polygon, and possibly for
any convex polytope, but this time with a matroid whose ground set is
{1, 2, . . . , 3 + 1} and only basis being the ground set (this makes it so that a
basis cell is equivalent to a full cell of Sperner’s Lemma).

However, making such a construction becomes a little more complicated
for polygons and even more complicated for polytopes. For polygons, it is
easy to draw a triangulation that works, but isn’t immediately clear how to
guarantee that there will be only one basis simplex, since the copy of the
polygon on the interior needs to be triangulated as well. Also, we now need
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to repeat this argument multiple times, each time with a different matroid
so that we can guarantee the existence of not only one full cell, but = − 2 full
cells. For polytopes, we not only need to solve the problems we are facing
with polygons, but it also becomes difficult to define a simplicial subdivision
that works with a smaller copy of the polytope in the interior—in fact, we
are not certain that it is possible.

For now lets focus on polygons. Let’s consider the case of a square to
get a better idea of what we were saying above. Consider the construction
shown in Figure 4.4.

Figure 4.4 By quotienting the boundary of this square with another square
and using Theorem 4.5 we can prove that the other square must have a basis
cell (full cell)

We could quotient this square with another labeled, triangulated square
(assuming the boundaries aligned, but it is easy to fix if they do not) and
then apply Theorem 4.5 to guarantee the existence of a full cell in the other
triangulated square, but only if only one of {1, 2, 4} and {2, 3, 4} are bases of
the matroid. If they are both bases of the matroid, then we do not satisfy
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the condition of only one basis cell existing in the triangulation, and then
when we apply Theorem 4.5 we are not guaranteed that the other basis cell
we find is in the other triangulated square and not in the same one. In this
case however, it is easy to define a matroid with the desired properties. We
need the ground set to be {1, 2, 3, 4} just as before, but now let our bases be
{1, 2, 4} and {1, 2, 3}. Then using this matroid and applying Theorem 4.5,
we guarantee the existence of a full cell with labels {1, 2, 4} or {1, 2, 3} in
the other triangulated square. We can now define another matroid, again
with ground set {1, 2, 3, 4}, but this time with bases {2, 3, 4} and {1, 3, 4}.
Applying the theorem again we guarantee the existence of a full cell with
labels {2, 3, 4} or {1, 3, 4}. Thus, we have guaranteed the existence of 2
unique full cells in every triangulation of a square. Note that this is what
the polytopal generalization of Sperner’s Lemma guarantees as well since
= = 4 and 3 = 2 so = − 3 = 2.

The important step in the above example is that we split up all sets of size
3 with elements {1, 2, 3, 4} into two disjoint sets such that each set satisfied
the requirements for being the bases of a matroid (it is straightforward to
check that they did in the above example). While it is easy to generalize
the construction we used for the square to any convex polygon with =

vertices, is not clear that we can define = − 2 rank 3 matroids with ground
set {1, 2, . . . , =} such that their bases are disjoint. If we could, that would
provide a proof of the polytopal generalization of Sperner’s Lemma for two
dimensions.

In the higher dimensional case, we still have the problem of needing to
define =−3matroidswith disjoint bases thatwe faced in the two-dimensional
case, but now we have the additional difficulty of it not being as easy to
construct a simplicial subdivision of a 3-dimensional convex polytope that
behaves the same way as the construction used above. If we could define
such a construction, and prove that we can define the needed = − 3matroids,
that would provide a proof for the polytopal generalization of Sperner’s
Lemma in all dimensions.

Future Work

There are several possible avenues for making progress on this problem.
The first and probably easiest would be to prove that there is a way to define
= − 2 rank 3 matroids with ground set {1, 2, . . . , =} such that their bases are
disjoint for all = > 3. With this we would be able to write out a full proof of
the polytopal generalization of Sperner’s Lemma in two dimensions. The



46 Connecting Matroids and Sperner’s Lemma

next step would be to generalize this to =− 3 rank 3+ 1 matroid with ground
set {1, 2, . . . , =} such that all their bases are disjoint for all = > 3. This would
be a necessary piece of the puzzle for proving the polytopal generalization
of Sperner’s Lemma using matroids.

A different avenue of work that is also necessary would be attempting
to construct simplicial subdivisions for all 3-dimensional convex polytopes
with = vertices such that there are very few full cells (and no more than one
copy of each). If we had this, we would hopefully be able to combine it with
the different matroids to prove the polytopal generalization of Sperner’s
Lemma.
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