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Abstract

The proliferation of digital data across all areas of society has transformed our ability to
hypothesize, study, and understand social systems. From this richness of data we have
seen the development of innovative instruments to study—and make decisions with—the
digital artifacts of the modern day. These developments build on advancements in compu-
tation, connectivity, analytical methodologies, and sociological theories. The sociotechnical
instruments we have developed have been revolutionary to how we understand society and
how we conduct business, but with these broad leaps comes ample room (and need) for
more nuanced advancements. As with the development of any field, as the digital humani-
ties evolve there is opportunity for targeted progress and the need for more tectonic shifts
in practices. Iterative improvements include building more full-featured instruments that
include a broader set of variables when analyzing and presenting results. More profound
topics such as fairness, accountability, transparency, and ethics need increased attention as
well—especially to create equitable, pro-social tools. Both in academia and in industry,
there is room to improve how we curate, study, and operationalize data sets and the AI
pipelines that sit atop them. Here we use natural language processing, machine learning,
tools from data ethics, and other methods to explore how we can contextualize results and
improve representations within instruments used to understand sociotechnical systems.

In the first study we examine the dynamics of responses to posts by US presidents
on Twitter. These results offer a piece of culturally significant data in themselves—the
ratio of response types is an unofficial measurement on the platform. Moreover, the results
improve our understanding of the temporal dynamics that lead to the final counts that users
may ultimately see. Deeply analyzing response activity dynamics provides insights on how
the public responds to posts, the tenacity of supporters, and abnormalities that may be
indicative of inauthentic behavior.

The second study examines the interaction between gender biases in health records and
language models and how to mitigate these biases. We present specific language that is
more commonly associated with female and male patients. We go on to demonstrate how
the deliberate augmentation of text can minimize the gender signal present in data while
retaining performance on medically relevant tasks. We conclude by showing how much of
this bias is domain specific, and the non-trivial interaction with general-purpose language
models.

Our final study investigates gender bias in resume text and relates this bias to the gender
wage-gap. We show that language differences within occupations are associated with the
gender pay gap. Our results highlight the value of utilizing high dimensional representations
of individuals and the potential for previously undocumented biases to influence hiring
pipelines.
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Chapter 1

Introduction

1.1 Overview

In the 21st century, most fields have experienced an explosion of available data. Ex-

tracting meaning from vast volumes of digital artifacts has become a task relevant to

research, business, and policy. Sources include trace data—such as social media and

cell phone activity—that provide both a conduit for communication and an instru-

ment for sensing individual behaviors. Other more deliberate collections of human

activities and attributes include electronic health records, worker resumes, and li-

braries of digitized books—artifacts that are constructed with a clear purpose, but

never-the-less contain nuanced and often times difficult to extract insights. Further

adding to the complications, many pieces of information reside in unstructured text

data. With the advent of large-language models, the potential of text data is greater

than ever. Impressive advancements have been made but limitations are becoming

more apparent. There is the need for progress in under-addressed areas if we want

to see the ethical and sustainable maturation of how we utilize sociotechnical data.
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Two areas of focus include 1) improving our understanding of biases in these datasets,

models, and analytical pipelines; and 2) finding new ways to provide context to large

data sets, enriching our understanding of human behavior as sensed through the

digital lens.

Improving representations is a key component of text-as-data research. Often

times these datasets—such as social media, medical records, and resumes—are viewed

in aggregate without interrogating contextualizing information. High-level views of

these systems are a vital starting point and important perspective to have—and re-

quire non-trivial research and engineering efforts. Occam’s razor is indeed a worthy

guiding principle. We should not needlessly complicate our analyses. We need to

take system level readings and understand the macro-scale to properly understand

the meso- and micro-scale phenomena. However, there are justified cases for addi-

tional complexity. Some of the most pressing reasons for exploring more nuanced

representations come from the ethical considerations present in society increasingly

defined by artificial intelligence (AI) and big data. Questions such as, who gets to

decide when systems, groups, or individuals are adequately represented? What ques-

tions do we want to ask? What level of performance is sufficient and for what groups?

Accurate representations of individuals and groups is a broad issue in computa-

tional social science and machine learning. From a technical perspective, the task

may fall under the umbrella of feature engineering and data set curation—crucial

tasks familiar to most practitioners of AI and data science. From a philosophical

perspective, the question becomes more abstract. What constitutes an individual?

What information must be included to accurately represent a given person, case, or

state in an accurate fashion? To answer these questions we engage with the perspec-
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tive broadly offered by the algorithmic and data fairness space. Fairness in AI is

itself asking seemingly basic and foundational questions with profound implications.

There are lofty issues raised (such as asking society to neatly define a set of ethical

objectives) while more earthly questions abound as well (e.g., does the algorithm do

what we think it does?).

In the 21st century digital trace data abounds and we are inclined to ‘look where

the light is’. Platforms that were not designed as research instruments are being repur-

posed to yield insights about society that were previously unimaginable. At the same

time, many of these platforms were designed to market to the masses—influencing

brand opinions of politicians, products, and policies. In light of the proliferation of

these approaches, now more than ever is the time for more critical examinations of

these data and analytical frameworks [4]. This includes creative approaches to ex-

tracting contextualizing information from the platforms that generate this data (e.g.,

Chpt. 2), understanding how large language models interact with societal bias (e.g.,

Chpt. 3), and investigating the impact of latent factors in high dimensional data (e.g.,

Chpt. 4).

Throughout this piece, textual data will play a central role. Text-as-data is a

common analytical paradigm for investigating sociotechnical systems. Repositories

of textual data are used to understand the specific system under examination, or as a

means to an end when capturing latent attributes of natural language (e.g., training

language models). Language data is inherently high dimensional and contains some

of the richness that is lacking in other data streams—with this comes the potential

for biases to be incorporated in opaque manners. Further, the sheer volume of data

used in many cases makes careful curation of text data difficult.
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The big data revolution has been eating many unsuspecting fields. Articles such as

The unreasonable effectiveness of data (2009) [5] give credence to the now deeply held

view that more data is better in most fields. Indeed, the presence of large data sets

and the infrastructure to develop large models has revolutionized at least corners, if

not the entirety, of many fields. The hyper-scale data set revolution has perhaps had

the most striking impact in the field of natural language processing. By the mid-2010s

the word-embedding revolution had firmly established its worth—with models such

as word2vec [6] and GloVe [7] demonstrating an impressive ability recover semantic

information from what in retrospect is a relatively straightforward model architecture

and modest training data set. Massive (but minimally curated) data sets such as the

Colossal Clean Crawled Corpus [8] (750GB of “clean” English text) has enabled the

creation of large models with billions of parameters such as T5 [9], GPT-3 [10], and

OPT [11].

It is important to think critically about the generative source of the data used

for directly analyzing sociotechnical systems and training these models. For instance,

in the case of social media, the fact that a communication is written by bots, anti-

social actors, partisans, etc. may endue text with dimensions that are not readily

ascertained by the text of the artifact itself.

There are a plethora of factors that lead to sub-optimal representations in data

sets, some of which can never be fully reduced. As Dana Coyle writes in Socializing

Data (2022) [12],

Although big data offers great potential for progress, any data set is a

limited, encoded representation of reality, embedding biases and assump-

tions, and ignoring information that cannot be codified.
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There are limiting factors that we have yet to look at and there are blindspots

that may be irreducible. This dissertation in part demonstrates some of the views

we can take to improve our understanding of data sets that describe sociotechnical

phenomena and the instruments we build atop these data sets. We show how we

can further enrich social media posts with information from the broader user base—

lending a voice to how the broader platform responds to famous individuals. We

investigate how demographic signals are embedded in textual data, how these signals

interact with large language models, and what can be done to mitigate bias detected

through this lens. Finally, we present a case where we extract salient information from

the text data of resumes, highlighting the signal present in this data and how it can

help us understand real world harms. Taken together these approaches highlight case

studies where researchers and engineers alike can dive deeper and seek to understand

salient features of data and analytical pipelines.

1.2 Background

Natural language processing

Natural language processing (NLP) is concerned with deriving representations of lan-

guage that can be utilized in computational pipelines. The field sits at the intersection

of computer science and linguistics, and has experienced catalyzing advancements in

recent years—owing to synergies in the development of larger-datasets, greater com-

putational power, and advanced language models. As most relevant to this piece, we

focus on topics such as token and concept representation, distributional measures,

text classification, and language models.
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Text representation

Free text is inherently a high dimensional artifact. Even without factoring in con-

textualizing information and metadata, language and the semantic information it

contains is highly complex. Representing text in a fashion that enables statistical

analysis and the application of AI requires careful consideration.

Starting with tokens—the atomic unit of language in an NLP pipeline—we can

then build up broader representations of documents. The n-gram—often a space

separated sequence of characters—is a conceptual building block for most (but not

all) parsers and a small unit of language that humans can reason about. The n-

gram is also a common token for simple language models. It is worth noting that

n-grams may refer to space separated character sequences (e.g., one word is a 1-

gram), sub-word sequences, or individual characters, depending on the context. For

the purpose of this dissertation, when referring to n-grams we are discussing space

separated character sequences unless otherwise stated. Defining the n-gram can be a

nuanced task with scriptio continua languages which do not incorporate spaces (such

as Chinese, Japanese, and Thai). More generally, in the era of widely used unicode

characters—especially emoji—discretion is required when deciding what constitutes

an n-gram. Often, varying N is helpful when analyzing a given corpus—in general

higher order n-grams might reveal meaningful sequences such as proper nouns and

phrases.

It is generally at the n-gram level that one might implement normalization, stem-

ming, and/or lemmatization. All of these efforts are motivated by mapping n-grams

that represent the same concepts to the same character representations. For a basic

example, we might map the plural “computers” to the singular “computer”. These
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efforts are well motivated, but for the research outlined in this dissertation we rarely

employ normalization efforts. There are a few main reasons for avoiding normaliza-

tion in our research. For one, the volume of data is often sufficient that the main

signal associated with a given concept is readily detected even if there are multiple

tokens associated with that concept. Secondly, and especially in social media analysis,

keeping the original text intact can be informative for downstream analyses—both

because misspellings, specific tenses, and similar can be meaningful, but also because

it can be difficult to fully anticipate the breadth of possibilities with technical jar-

gon and ‘internet speak’ (which can have non-trivial interactions with normalization

efforts).

Tokenizing supports many downstream tasks, such as direct analysis of language

distributions and training language models. For the former task, tokens are often

kept relatively whole (e.g., complete n-grams). For the later task of language mod-

elling, some of the earlier word-embedding models (e.g., GloVe [7] and word2vec [13])

use whole 1-grams. More recent neural-network based models use tokenizers that

both retain some full 1-grams and split other words into pieces (sub-strings). For

instance, the Bidirectional Encoder Representations from Transformers (BERT) lan-

guage model uses the WordPiece tokenizer. Other tokenizers operate on bytes as their

primary unit of string representation in order to limit vocabulary sizes (e.g., Byte-

level Byte-Pair Encoding [14]). Operating closer to the character level can reduce the

dependency of the resulting tokenizers characteristics on the training data. Sentence

level encodings have also been developed that address issues with scriptio continua

languages. All of these tokenizers must be trained to optimize the vocabulary and

have some reliance on the base training set. This is a potential source of bias, for in-
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stance uncommon names are less likely to be tokenized as singular word pieces which

can lead to these uncommon words be grouped together in some tokenizers [15].

While we do not discuss the entire language modelling pipeline in technical detail,

we make a point to provide an overview of tokenization because the step sits at

the intersection of human- and machine-interpretable data while also providing an

example of how modelling assumptions can begin to instill biases in a given pipeline.

The simple power of language distributions

Taking a bag-of-words approach to a corpus and tabulating simple counts of n-grams

allow for the construction of language distributions which can unlock powerful and

interpretable insights. In the bag-of-words paradigm, corpora are represented by un-

ordered sets of their constituent n-grams and their respective counts. The resulting

distribution is a Zipf distribution for natural language [16]—a special case of the power

law distribution where a word’s frequency is inversely proportional to its rank. The

Zipf distribution parameters in themselves can be informative for estimating coarse-

grained insights about a corpus—for instance deviations in the α scaling parameter

may be indicative of errors in data processing or the presence of unnatural language.

But much of the power in tabulating corpora as Zipf distributions comes from investi-

gating the constituent elements. The ranks and normalized frequencies of n-grams can

provide contextualized information on the relative prevalence of terms and phrases.

Arranging collections of these distributions in the temporal domain creates time se-

ries that provide insights on the dynamics of the foundational building blocks of

narratives in a given system. Alternatively, we can compare distributions to quan-

tify differences in the overall distribution and specific elements that have the highest
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contrast in the two systems. Using information theoretic (and similar) approaches—

such as Kullback-Leibler divergence [17], Jensen-Shannon divergence [18], and the

recently introduced Rank-turbulence divergence [2]—we can calculate the degree to

which language distributions diverge. From this calculation, we can identify the in-

dividual n-grams contributing to this divergence—a powerful tool for characterizing

each distribution relative to each other.

Language models

Language modelling can be thought of in a very broad sense as the process of creating

representations of language that machines can meaningfully reason about. That is to

say, the representations of the text retain semantic meaning so that useful tasks can

be carried out in computationally efficient manners.

Recent advancements in language models have revolutionized the way we view

text data. Larger models, more extensive pre-training, domain-adaptation, and more

user-friendly libraries have lead to a proliferation of language models for a multitude

of tasks. In the present dissertation, we utilize language models for classification,

establishing semantic similarity, and evaluating bias.

Language models generate word-embeddings, a term that we will use to discuss the

specific, numeric output of language models. Word-embeddings allow us to calculate

meaningful results from numeric representations of words (e.g., cosine similarity) and

were in the past perhaps more central to the use of language models. It is worth noting

that new paradigms with large-language models and user friendly model application

program interfaces (APIs) have partially abstracted the role of the embedding away

from the NLP practitioner (for instance, zero-shot learning may largely be concerned

9



with text-to-text interfaces). Of course, regardless of downstream task language mod-

els produce some form of numeric representation—what varies is the extent to which

the produced embedding is optimized for certain tasks, such as evaluation of semantic

similarity.

Language models generate word embeddings by learning the distribution of lan-

guage for a given training data set. At a high-level, most language models are

trained—at least in part—by predicting words or tokens based on some context lan-

guage. Stated more generally, language models learn what language commonly occurs

together. Classically, the distributional hypothesis states “a word is characterized by

the company it keeps” (Firth, 1957) [19]. The “company” or context can be con-

structed in a few different ways. When representing documents or context, one of

the simplest approaches is the bag-of-words (BOW), a representation of language

that ignores the order and proximity of tokens. A BOW representation is one of the

ways the now classic word2vec language model can be trained [6]. Another technique

developed for word2vec is the skipgram—a training procedure that considers rela-

tive position of context and target words, down weighting the context terms that are

further away. Both techniques produce word2vec word embeddings that are static in

that after training, when retrieving the embedding for a word it will not change based

on the context (i.e., embeddings are retrieved much like a lookup table). There are

variations on the skipgram approach, such as the fastText model [20] that includes

character-level n-grams to improve representations.

A major advancement in language modelling came with sequence-to-sequence

models in 2014 [21]. In brief, sequence-to-sequence models take into consideration

the previous portions of a passage—beyond the simple rolling window or BOW ap-
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proach used in word2vec. One of the most significant advances with sequence-to-

sequence models came with attention in 2014 [22] and the subsequent transformer

model architecture of 2017 [23]. At a high level, the transformer architecture enables

models to incorporate non-local interactions into the language modelling process—

providing a mechanism to focus model attention on salient interactions in text. Ex-

amples of these models include Bidirectional Encoder Representations from Trans-

formers (BERT) [24] and Generative Pre-trained Transformers (GPT-n) [25]. Owing

to their use of broader sequence information, these models result in contextual word-

embeddings where the numeric representation of a given word or token is dependent

on the broader context within which it appears. Contextual word-embeddings achieve

state-of-the-art performance on common benchmarks, but present challenges with in-

terpretability and direct comparison with static embeddings [26]. The state-of-the-art

models that produce these contextual word-beddings can have over 100-billion param-

eters [10] making the models’ behavior difficult to understand.

For all of these language models (and machine learning models in general) the

training data matters immensely for the performance characteristics of the model.

The curation of massive data sets such as the colossal clean crawled corpus [9]—a

data set created by scrapping much of the known internet and weighing in at over 25

terabytes in its fullest version—has been central in creating models with hundreds of

millions or hundreds of billions of parameters. As we will discuss below, how these

data sets are created and what data is included in them can be problematic from

a fairness and ethical standpoint. In light of the tendency for language models to

be heavily influenced by the characteristics of their training data, techniques such

as transfer learning and domain adaptation have become helpful in building models
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tailored to specific applications without having to retrain from scratch. Transfer

learning is the use of model weights from one training context for use in another,

basically initializing the model with previously learned parameters before continuing

with training or deployment. In the case of BERT, the model has been adapted

using transfer learning to improve performance on scientific literature [27], medical

notes [28], and COVID-19 content on Twitter [29].

The above overview of some key aspects of modern language modelling is meant

to highlight a few areas for potential bias to enter the process. Language models are

increasingly powerful and widely used but also growing in their complexity and lack

of transparency. Starting with the training, there are potential issues with the dis-

tribution of language included (e.g., hate speech, inaccurate information, personally

identifiable information). This training data is then used to create tokenizers that

may begin biasing language models (although, this has been addressed somewhat by

more modern tokenizers). The training distribution is then instilled in the model

itself, where larger and larger models make auditing and bias detection increasingly

difficult. Language models are a central tool in the modern digital ecosystem—they

unlock an immense amount of information contained in unstructured language—but

we must seek to understand them if we wish to use them in equitable and ethical

fashions.

1.2.1 Algorithmic fairness

Work in the AI fairness, accountability, transparency, and ethics (FATE) space goes

by many names and has come to include researchers from a variety of disciplines.

The field has tied together stakeholders from the social sciences, computer science,
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philosophy, law, and others in an effort to understand how AI interacts with social

systems and ideally how to mitigate harms. FATE raises questions related to societal

morals and goals while forcing us to operationalize specific metrics to describe these

ideals. Fairness includes critically evaluating the constructs we create to model the

world and track outcomes [30]. For instance, what is the purpose of the criminal

justice system, and how do we measure the stated purpose? If we say we want

equitable employment outcomes, for what groups or individuals are we specifically

addressing? How will equity be defined? From questions like these rise not just

technical challenges but ethical and political debates.

In many regards, FATE is just good science. FATE encourages AI researchers and

practitioners to think about foundational questions that may get overlooked when

trying to simplify problems and how we frame them. In 2022, the National Insti-

tutes for Standards and Technology (NIST) released a publication entitled Towards a

Standard for Identifying and Managing Bias in Artificial Intelligence [31]. The pub-

lication states “Trustworthy and Responsible AI is not just about whether a given AI

system is biased, fair or ethical, but whether it does what is claimed.” The authors

go on to state “What is missing from current remedies is guidance from a broader

SOCIO-TECHNICAL [sic] perspective that connects these practices to societal val-

ues.” Indeed, to address FATE issues in the fullest we need a full sociotechnical

accounting of the system under examination. There is a conversation between the

technical and social side of FATE. The social perspectives push inquiries into the

performance of AI—inquires that must be informed by real world impacts. Technical

analysis of data can in turn push societal reflection on the goals and values we wish to

pursue—large data sets enable auditing of institutions on a level that was previously
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impossible, while AI systems create the potential to codify and operationalize ethical

objectives at scale.

Foundational developments in the field of algorithmic fairness and accountabil-

ity have come through works such as Datasheets for Datasets [32]—a generalizeable

framework for documenting data sets. Datasheets are intended to be a standardized

format for sharing fundamental information about data sets such as how the data

was collected, funding sources, intended use, and how the data set will be updated.

Datasheets are a simple but powerful tool that both encourage researchers to reflect

on the data set creation and utilization process, while ensuring pertinent informa-

tion is documented for future users. Other documentation frameworks—similar to

(and often inspired by) datasheets—have been proposed such as model cards [33],

network cards [34], Healthsheets [35], and interactive model cards [36]. While each

of these approaches is has its own focus, they are unified in their effort to document

the salient features of models and data sets in consistent, useful, and transparent

fashions. These tools help work towards establishing norms in the field and provide

the necessary information for broad sets of stakeholders to at least begin evaluating

AI systems (e.g., returning to NIST’s framing of “whether it does what is claimed”).

With the rate of AI research rapidly increasingly [37] and the proliferation of AI tech-

nology in everyday life, having effective documentation procedures and norms are

crucial underpinnings of fairness work.

There are broad categorizations of bias which can be helpful when analyzing a

system—here we use the framework of Mehrabi et al. (2019) [38]. These biases

include data set bias, algorithm bias, and human biases (NIST [31] presents a sim-

ilar framing when identifying opportunities for bias mitigation). Data set bias in-
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cludes measurement bias, where flawed measurements may be collected; representa-

tion bias, where sampling issues create non-representative data sets; and aggregation

bias, where faulty assumptions lead to deriving insights about individuals based on

membership in poorly constructed groups. Algorithm bias can result from decisions

made when training (e.g., optimization functions), how users interact with an algo-

rithm, or faulty evaluation approaches (e.g., biased benchmarks). Finally, human

biases include historical bias, where existing societal bias permeates the data used

to train AI; and social biases, where humans may feel social pressure to behave in a

certain way when conducting surveys (or constructing AI systems).

Part of the dialogue opened up by work in the FATE space is a conversation

around clearly defining what ethical objectives we wish to see in our society. At

the end of the day, computers do exactly what we tell them to do. Even given

stochastic elements or opaque processes, the user never-the-less issues some set of

instructions that the machine faithfully executes (whether those instructions are what

the user thought they were is another matter). Thinking about AI through the lens

of FATE forces us to more explicitly say what we are optimizing for from an ethical

perspective. In this dissertation we do not state what those broader ethical stances

should be, but we do use some framings of fairness for the work on gender bias.

General framings of fairness in the FATE space include ideas such as demographic

parity, counterfactual fairness [39], and fairness through unawareness [40]. These

three related forms of fairness motivate the work on patient health records and worker

resumes. In the former case, we seek to develop a system where AI could be unaware

of key demographic information when appropriate. In the latter case of resumes, our
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work is partially motivated by the premise of demographic fairness—that is to say

the gender pay gap should not exist.

Interpretable machine learning

Interpretable machine learning (IML) does not necessarily sit within FATE, but the

concept is highly complementary to evaluations of fairness and bias. At the high-

est level, IML is an effort to provide insights into how machine learning algorithms

make predictions. This can be accomplished by choosing more interpretable models

(e.g., tree-based models, linear regression) or by applying specific IML frameworks to

blackbox models. With linear regressions, one can look at feature importance within

models to investigate how a model is making a prediction. For more complex mod-

els, it may be difficult to examine model internals in a meaningful way, so instead

data perturbation is used to evaluate how varying inputs affect output [41]. There

have been growing efforts to better understand at least some internal components

of large lanugage models. For instance, BERTology has been coined as a body of

work seeking to make BERT-based language models more interpretable. From these

efforts, researchers have gained insights on how knowledge is represented within the

BERT model architecture [42]. There are now full fledged libraries for IML analyses

on even large, black box models—including tools for determining what pieces of a

text language models are focusing on for a given output [43].

Demographic bias in language models

Language models encode the relationships present in their training data which in-

cludes biases along racial and gender lines. Seminal work on bias in language models
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includes quantifying the gender dimensions of word-embeddings [44,45] and attempt-

ing to debias word-embeddings from trained models [46]. Others have proposed mod-

ified training regimens to train language models to be less biased [47]. These types

of debiasing efforts have been criticised for only addressing limited dimensions of

bias, leaving additional demographic signals and biases unmitigated [48]. A language

model adapted for medical contexts has been found to contain harmful biases includ-

ing performing worse for non-dominant gender and racial classes [49].

1.2.2 Instruments and data sets in computational

social science

To understand the sociotechnical systems, it is helpful to have instruments that can

detect phenomena at varying scales. In the digital ecosystem of social media, many

platforms report versions of this implicitly or explicitly—trending terms and entities

are reported or suggested to users. For research purposes we need a more holistic

accounting and broader access to the full breadth of conversation on platforms. A

high-level aggregate view provides both indication of what narratives have achieved

the highest levels of attention for a given day (e.g., US presidents on election day),

as well as an initial entry point for research on more nuanced topics that may require

tailored research (e.g., conspiracy theories that are simmering beneath the surface).

Storywrangler [50] provides an example of an instrument—derived from social

media data—that makes an effort to begin to disentangle communications based

on the most salient features. Other efforts blur the lines between instruments and

data sets, but they share the goal of providing a view into sociotechnical systems.
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Other examples include Hedonometer [51] for sentiment on Twitter, PushShift [52]

for Reddit and other platforms, MediaCloud for conventional news media [53], and

Google Ngrams [54] for books. We have seen important caveats for these tools, such

as the Google Ngrams corpus composition changing over time and researchers not

properly interpreting the cultural significance of results [55]. Examples of concerns

for Twitter include the representativeness of the platform’s users [56], the ability for

researchers to capture the full breadth of user behavior [57], and the randomness of

the Twitter API [58].

Storywrangler makes a few important distinctions for data during processing. The

instrument ultimately serves n-gram time series, but classifies activities before doing

so. The processing pipeline classifies communications based on the originality of the

message (i.e., original tweets or retweets) and the language spoken in the message.

The classification is an example of starting to peel back the layers of digital trace

data and providing context for the final output.

Deliberate data

As we have seen with the training data for large-language models, the curation of data

sets is often driven by technical objectives (e.g., sufficient data volumes for model size)

and overt social concerns (e.g., the presence of blatantly offensive language). The

same could be said for data sets used for algorithmic decision making in other areas.

We need to think more about the data we are feeding to large language models. The

current practice—defined by leading researchers as “feed the model with as much data

as possible and minimal selection within these datasets” [11]—results in biased and

often toxic behaviors in models. Bender and Gebru et al., write “large, uncurated,
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Internet-based datasets encode the dominant/hegemonic view, which further harms

people at the margins” [59]. Even efforts to reduce bias and toxicity have actually

increased these traits when carried out through simple target-word exclusion criteria

[60].

Data is often not interrogated for demographic biases—issues such as who is cov-

ered in the data and how they are covered. Addressing these biases is crucial to fully

understanding how the derived AI systems will behave, but also presents and oppor-

tunity to look at the underlying social system with a critical eye. As we will show

in Chpt. 4, surfacing these biases we can both better understand the sociotechnical

system as well as the AI systems we operationalize on top of them.

1.3 Ethics statement

There are a few ethical considerations we wish to highlight in the current studies.

These can broadly be characterized as relating to the data sets we used, the framing

of our research questions, and the broader impact of the results.

For the data sets, there are issues of privacy and representation. In the case of

Twitter data used in Chpt. 2, individual tweets are only presented for public figures

(i.e., US presidents) and data from other users’ individual tweets is aggregated to the

point of obscuring any individual contribution. There are concerns about sample bias

and questions about who actually uses Twitter, with some studies finding Twitter

to be younger and better educated than the US population in general [61]. For the

electronic health records used in Chpt. 3 the data had been anonymized prior to our

access (the records are housed at a research initiative that requires training and strict
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usage agreements before granting access to bona fide researchers). The data was from

a single hospital, presenting potential biases with the demographics of patients likely

to access care in that setting. The resume data studied in Chpt. 4 was anonymized

and accessed through a strict usage agreement with the vendor and was stored on

a secure compute cluster. The representativeness of the resume data could not be

established beyond gender, approximate age, and geographic location.

The framing of research questions for the study in Chpt. 2 was partially moti-

vated by studying reactions from a broad base of individuals—however, owing to the

biases in Twitter user demographics and those likely to engage with the tweets of US

presidents we must acknowledge that many voices are left out. Indeed, this is but one

instrument for sensing public response to communications and we should make an

effort to listen to an array of sources. The last two studies (Chpts. 3 and 4) examine

gender bias as the main point of inquiry. In both cases, we are limited to binary

cases of gender due to the available data sets. The irony is not lost that in these

studies, the additional dimension of analysis is in itself reduced to dipoles which are

reductionist and miss broader insights.
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Chapter 2

Ratioing the President: An explo-

ration of public engagement with

Obama and Trump on Twitter

2.1 Abstract

The past decade has witnessed a marked increase in the use of social media by politi-

cians, most notably exemplified by the 45th President of the United States (POTUS),

Donald Trump. On Twitter, POTUS messages consistently attract high levels of en-

gagement as measured by likes, retweets, and replies. Here, we quantify the balance

of these activities, also known as “ratios”, and study their dynamics as a proxy for

collective political engagement in response to presidential communications. We find

that raw activity counts increase during the period leading up to the 2016 election,

accompanied by a regime change in the ratio of retweets-to-replies connected to the
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transition between campaigning and governing. For the Trump account, we find words

related to fake news and the Mueller inquiry are more common in tweets with a high

number of replies relative to retweets. Finally, we find that Barack Obama consis-

tently received a higher retweet-to-reply ratio than Donald Trump. These results

suggest Trump’s Twitter posts are more often controversial and subject to enduring

engagement as a given news cycle unfolds.

2.2 Introduction

The ability for US presidents to communicate directly with the public changed dra-

matically during the 20th and early 21st centuries. Moving from Franklin Delano

Roosevelt’s famous fireside chats through the television addresses of Harry Truman

and John F. Kennedy, we now find ourselves in the era of social media campaigns

and presidencies [62]. Communication technology has especially accelerated the abil-

ity for presidents to “go public” [63] and make appeals directly and instantly to the

electorate.

With its introduction in the 2000s, social media provided a new platform for di-

rect communication. New mechanisms for information sharing have consequences

for contagion: rapid spreading of content through a user-base capable of respond-

ing in real-time. While these platforms democratize sharing for many categories of

individuals on social media (e.g., celebrities interacting with fans), US presidential ac-

counts present a unique opportunity to analyze particularly salient signals indicative

of broader sociotechnical phenomena in an increasingly prominent aspect of politics.
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Advertisers and political campaigns alike are concerned with engagement metrics

for social media posts. Twitter itself markets its data as an early warning system for

customer satisfaction and reputation management [64]—although the company has

recently banned political advertising [65]. The rate with which a given post garners

interactions (e.g., clicks, profile views, mouse-hovers, etc.) is a common measure of

engagement in the digital realm. Activities in response to social media posts include

retweets/shares, likes/favorites, and replies/comments. These activities all reflect

specific user actions such as endorsing a post or expressing a divergent opinion. Some

have theorized that simple ratios of activities may be used as proxies for of the polarity

of the public’s response to a given message [66,67].

The term ‘ratioed’ is a Merriam-Webster “word we’re watching” [68]. In the most

general sense, the term refers to a social media post that receives more replies or

responses than likes, favorites, or shares. In recent years the ratio has attracted

growing interest by tech-journals and internet researchers, although this has largely

been relegated to news articles and industry blog posts. [69–71]. On Twitter, the

ratio value is generally taken to be defined by the ratio or balance of replies to likes

or retweets. Here we will focus on the ratio of retweets to replies, as we show that

like volume is often stable, while replies and retweets seem more reflective of specific

public responses (Sec. 2.4).

In an effort to explore the dynamics of ratio space, in 2017 the website FiveThir-

tyEight Politics presented ternary ratios with activity counts normalized across retweets,

comments, and likes [72]. Using this metric, the authors compared US politicians

based on the ratio values their tweets receive. This work found noteworthy differ-

ences between politicians and political parties. As of late 2017, Trump tweets tended
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to be met with relatively more replies, while Obama tweets were met with relatively

more retweets. Tweets for both presidents had a high value of normalized activities

that were likes (formerly known as ‘favorites’). Beyond presidents, FiveThirtyEight

Politics compared responses to the tweets of Republican and Democratic senators.

The senatorial accounts exhibited normalized response values largely reflective of

their party’s most recent president—Republican senators tended to have high values

of normalized reply activities while Democratic senators had more retweets and likes.

We have found minimal academic research on the topic of response activity ratios and

their temporal dynamics, although response activities have been studied separately.

More broadly speaking, time series of Twitter response activities have been used

to investigate the relationship between on- and off-line political activity by analyzing

correlations between current events and trends in cumulative activity sums [73]. Fun-

damental models relating retweet activity to external activity have been proposed at

the hour and day scale for the 2012 South Korean presidential election [74]. Kobayashi

and Lambiotte find future retweet activity to be log-linear correlated with early tweet

levels [75]. Outside of Twitter, analysis of Instagram posts immediately preceding the

2016 US presidential election showed a higher volume of user activity for Trump sup-

porters as well as more intense pro-Trump activity at the sub-day time-scale when

compared to pro-Clinton posts [76].

Twitter specifically has been identified as playing an active role in the politi-

cal arena as evidenced by studies of improved social organization during the Arab

Spring [77,78], disinformation campaigns during the 2016 US presidential election [79–

81], and political cohesion on the platform [82, 83]. Twitter has been shown to be

a valuable source for data pertaining to domestic protests and social movements in
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the US [84–86]. The 2016 US presidential election in particular has been extensively

analyzed through the lens of Twitter data [87–90]. There is also increasing academic

interest in the unique communication style of President Trump on Twitter [91, 92].

Twitter has been used to study several large-scale socio-technical phenomena such

as the stock market [93, 94] and medical research [95, 96]. Messages on the platform

have been shown to have a relationship with presidential approval rating polls [97–

102]. Wang et al. examine how likes on Twitter can identify the preferences of Trump-

account followers [103]. Although noisy at times, Twitter data can provide valuable

insights on how audiences and populations respond to current events and specific

messaging. Information diffusion and cascades on Twitter and other social networks

has been the topic of much research [104–108]. Beyond politics on Twitter, Candia et

al. propose a bi-exponential model to describe collective attention for online videos

and manuscripts [109]. Media coverage of major events has been found to decay

on roughly a weekly cycle, and scaling superlinearly with the population size of the

affected area [110]. Amati et al. model retweet actions on dynamic and cumulative

activity networks [111] while ten Thij et al. identify retweet graph characteristics

common among viral content [112].

Some researchers have proposed critical levels of activity required to trigger in-

formation cascades on Twitter in light of tweet characteristics [113]. Others have

proposed more general cascade requirements on social networks [114]. Jin et al. in-

vestigate how messages cross language and state communities on the platform [115].

Lee et al. predict retweet volume based on prior retweet spacing, user meta-data,

tweet content [116]. Others have identified celebrity-users (including Barack Obama)

that are central in spreading new content [117].
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Regarding the representativeness of social media data, several studies have ex-

amined the degree to which Twitter represents the general population and voting

public [61, 118–120]. Grinberg et al. investigate fake news exposure for Twitter ac-

counts belonging to eligible voters and found disproportionate exposure to a small

number of accounts [121].

How likely are Twitter users, and specifically POTUS account followers, to be

eligible voters in the US? Pew Research Center has estimated that 26% and 19%

of US adults on Twitter follow the Obama and Trump accounts, respectively [56].

The New York Times estimated however that less than 20% of Trump’s followers

are voting-age US citizens [122]. These considerations are important to remember

when attempting to establish a relationship between Twitter metrics and political

outcomes. Nevertheless, the platform has been shown to be a powerful tool for evalu-

ating public sentiment towards politicians, and even detecting adversarial actions in

the US political process.

Presidential communications are a timely topic in light of rapidly changing norms

surrounding how the executive branch communicates with the public. Moreover,

highly influential Twitter users such as US presidents produce signals in the medium

that largely transcend the social network dynamics. When a president tweets, the

message is nearly instantly amplified and spread by official and unofficial sources

on the platform. Indeed, US presidents are often discussed at rates approaching

function words on Twitter (i.e., the rate of usage of the name “Trump” may approach

usage rates for words such as “the” and “RT” on the platform) [123]. Examining

ultrafamous users somewhat removes the more prominent effects of network topology

26



on the response activity and provides an opportunity to view response behavior largely

as a function of timing and message content.

The volume of response activities on Twitter is arguably the most tangible metric

that is publicly available for evaluating user-base responses to content on the platform.

Furthermore, these values are highly visible to users and may influence behavior when

users seek to affect the collective response to a communication (e.g., ‘take a stand’ by

responding [124]). Establishing characteristic scales of activity volume and temporal

dynamics for engagement is an important step in understanding how these values can

provide insights on user-base response.

Counts of user activities responding to tweets can be readily viewed through the

icons at the bottom of every tweet, which also provide the interface for user engage-

ment. These values provide the end user with an indication of the tweet popular-

ity and, in some cases, controversiality. Taken together with the cultural context

surrounding the original tweet, the ratio of these values open up the possibility of

studying tweets through the lens of “ratiometrics”. This allows for the distillation of

response activities into aggregated measures of the user base’s reaction. Moreover,

enables the comparison of response activities on Twitter across accounts and across

time. From there, we can begin to use the ratio values as a criteria when evaluating

the content of tweets.

A simple calculation of the publicly accessible response activity counts is a start-

ing point, but insufficient to fully investigate the full potential of ratiometrics. Here

we present a suite of tools—collectively referred to as the “ratiometer”—that help us

understand response activity profiles for tweets. Many factors contribute to interpret-

ing the activity counts for a tweet, including typical activity ratios for the user and
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the age of the tweet. Understanding the typical response that an account receives

requires building a historical view of the user’s tweets and their subsequent response

activities. Another challenge is determining the typical response volume at a given

time step since the tweet was issued.

We show example time series for retweets and replies in response to four Trump

tweets authored after the 2016 election in Fig. 2.1. In the case of an ultra-famous

user like Trump, we see an immediate response to tweets with early retweets and

replies occurring seconds after the original tweet. For Trump’s tweets from after

the 2016 election, we generally observe thousands of response activities within the

quarter-hour, with response-activity counts nearing their final values within 24-hours

of the original tweet. There may be modest growth during the proceeding week, but

generally these values have stabilization periods at the day-scale (S1 Fig. and S2 Fig.).

The insets in Fig. 2.1 show the retweet-to-reply ratio time series. These values often

fluctuate even while individual ratio time series appear to have a more stable trend.

The above highlights some of the challenges in building an understanding for the

expected volume and time scale associated with response activities for a specific

account.

In the present study, we explore the time series of the volume of user activities

in response to presidential tweets. We summarize the ratio values of responses to

Obama and Trump tweets over three distinct periods of recent US political history.

Our investigation includes ratio values for all three activity counts normalized against

the sum of all activities (we refer to these as ternary ratios below). We also present

characteristic time scales for response activity volume over the three political periods

for both presidents. Finally, we present words that tend to appear more often in
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Figure 2.1: Time series for the cumulative sum of retweet and reply activities
for four tweets authored by the Trump account after the 2016 presidential election. The
temporal axis is logarithmically spaced to show early-stage growth. Insets represent the
cumulative ratio of Nretweets/Nreplies for the same time period. Vertical lines with H, D,
W, M correspond to hour, day, week, and month intervals. Triangles indicate inflection
points where the second derivative of retweet volume transitions from positive to negative
(see Sec. 2.4.2 and Fig. 2.6). Nretweets can decrease because the values are retrieved directly
from the Twitter data—with account deletions leading to declines over time. The tweets
examined here only provide some illustrative examples of how response activity time series
behave.
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ratioed tweets for the @realDonaldTrump account. In section 2.3.1, we describe our

data and methodology. In section 2.4, we present and discuss the results of our study.

Finally, in section 2.5, we offer concluding remarks and point to areas for future work.

2.3 Methods

2.3.1 Data

We construct the dataset analyzed in the present study by filtering Twitter’s Decahose

Streaming API [125] an, in principle, random 10% sample of tweets authored since

2009. The stream contains a variety of activity types including tweets, retweets, quote

tweets, and replies. While the Twitter REST API serves up-to-date information for a

given user or activity, the Streaming API data offers a snapshot of each activity at the

moment of generation. The specific form of this dataset allows us to create a historical

timeline of activities; responses to each original activity arrive with timestamped

counts for several metrics including replies, likes, and retweets. For the purposes of

this study, we define ‘activity’ to refer to any user action recorded in the historical

sample including original tweets, retweets, retweets with comments, and replies.

Given the sampling rate of the Decahose API, each individual activity has an

approximately 10% chance of appearing in our data set. For popular users and tweets

(i.e., tweets that garner retweets and replies that number in the thousands or more),

we are almost certain to record activities responding to the original activity. Moreover,

we are able to observe a number of activities with sufficient temporal resolution to

construct historical time series down to the level of a single second.
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For this study, we are looking at 2 very popular users on Twitter. Their tweets

regularly receive sufficient response-activity volume for our sampling method to be

effective. It is worth noting that our method would yield noisier estimates for less

popular accounts (and tweets).

2.3.2 Tracking Retweets and Replies

Starting with the 10% random sample of Twitter activities, we collect activities re-

sponding to presidential tweets by filtering for replies and retweets responding to

the @BarackObama and @realDonaldTrump accounts. We do not include the offi-

cial US Presidential Twitter account (@POTUS) or the official White House account

(@WhiteHouse). The random sample feed serves original tweets, retweets, and replies.

Each of these activities are served in a tweet object that contains metadata which

includes creation time and follower counts for the author of the activity. In the case

of retweets, the tweet object contains a count of retweets and likes at the moment

the activity is retweeted. Replies are tagged with user metadata and time of activity.

Altogether, the metadata provides the historical data allowing construction of the

response activity timeline.

Quote tweets appear in our data stream but we do not count them towards our

tally of retweets. This is partially motivated by a desire to maintain backwards

compatibility of our analysis with earlier periods before quote tweets were an of-

ficial feature on Twitter. In a preliminary analysis of 20 Trump tweets with high

engagement, we determined that for 16 out of 20 tweets the number of replies and

quote tweets both out numbered the number of regular retweets. We mention this as

reference point but leave in-depth analysis of quote tweets to future research.
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2.3.3 Measuring the Ratio

While retweets counts are observable via tweet metadata, replies must be gathered

by maintaining a cumulative summation of reply activity counts (multiplying the

final value by 10 to account for our sample rate). We collect counts of retweets and

likes from the metadata, while replies are tallied using the cumulative sum method.

Validating these estimates for final reply values, we find the error to be less than 1%

in terms of actual/predicted reply counts for high activity tweets (actual reply counts

were collected for a random sample of tweets via the Twitter web-interface).

In order to calculate the ratio at a common time step, we linearly interpolate

the values for replies, retweets, and favorites, resulting in time series that can be

sampled at arbitrary intervals for all activity types. We report time steps at the

second resolution unless otherwise stated.

There are several challenges associated with the historical feed, stemming from

contradicting metadata on activity objects that occurred simultaneously. With times-

tamps at the 1 second resolution, sometimes tweet activities are reported as occurring

at the same time (inferring time stamps from Twitter snowflake IDs did not resolve

these conflicts [126]). Activities that reportedly occur at the same time often have

conflicting values for retweets and likes (sometimes differing by hundreds of activi-

ties). This may be due the count values growing so quickly that the activities within

a given second window have differing values and/or it may be an artifact of the slow

update times within the platform’s database. This latter point is made more notable

when taken in combination with Twitter’s practice of deleting millions of tweets per

week (this would lead to fluctuations in the activity counts for a given tweet).
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Regardless of the cause, fluctuations in activity counts result in time series that

increase non-monotonically. To make model fitting and data analysis easier, we re-

move observations that result in non-monotonically increasing behavior before the

maximum value of the activity time series. When calculating first and second deriva-

tives we use a Gaussian filter to smooth the time series so that we avoid incorrectly

identifying noisy regions as notable transitions from positive to negative derivatives.

There is decay in values for retweets while replies only increase—the exact reasons

for the decay are not investigated here, but the lack of decay in the replies is due to

the cumulative sum method we use for estimating reply values. There is further work

to be conducted on the possibility that these jagged portions are a signal of banned

account activity, and the dynamics of the jagged regions may indicate activity by

accounts that the platform ultimately deems ban-worthy.

Ternary activity values are calculated by dividing each activity count by the sum

of all activities at a given time step. The ternary ratio value for activity type τ at

time step t is given by

Rτ (t) = Nτ (t)
Nretweets(t) +Nlikes(t) +Nreplies(t)

, (2.1)

where Nτ (t) is the count of the activity at time step t. With the above each ob-

servation is comprised of a 3-dimensional vector representing the normalized activity

values for a tweet.

The ternary ratio values are represented on a ternary plot (2-dimensional simplex)

where the values of activities at each time step sum to 1,

∑
τ

Rτ (t) = 1 . (2.2)
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2.3.4 Vocabulary of Ratioed Tweets

We are also interested in how the text content of tweets relates to ratios of response

activities. To investigate this we calculate rank turbulence divergence—as defined by

Dodds et al.—between ratioed and non-ratioed tweets [2].

The rank turbulence divergence between two sets, Ω1 and Ω2, is calculated as

follows,

DR
α (Ω1||Ω2) =

∑
δDR

α,τ

= α + 1
α

∑
τ

∣∣∣∣∣ 1
rατ,1
− 1
rατ,2

∣∣∣∣∣
1/(α+1)

,

(2.3)

where rτ,s is the rank of element τ (n-grams in our case) in system s and α is a tunable

parameter that affects the impact of starting and ending ranks.

While there are numerous techniques to compare two corpora, we use rank di-

vergence in light of its robustness when working with subsamples of heavy tailed

distributions. Working with ranked values also alleviates some challenges that may

arise when normalizing n-gram occurrences to arrive at frequency of usage. Further,

rank divergence gracefully deals with the problem of n-grams only occurring in one

of the two corpora. Finally, ranked values make interpretation more straightforward

when presenting results (with the reader need not worry about normalization, etc.).

These factors combined with the tunability of rank divergence lead us to find it was

best suited for our use case.

Here, we take the content of tweets from the Trump account after his declaration

of candidacy on June 16, 2015. We then split this set by ratioed (Nretweets/Nreplies < 1

) and non-ratioed tweets (Nretweets/Nreplies > 1). Obama’s account did not have a
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sufficient number of ratioed tweets to conduct this analysis. From here we calculate

the rank divergence, between the two sets. We set α = 1/3 based on experimentation

outlined in the original rank divergence piece by Dodds et al. This value of alpha

tends to balance the influence of high- and low-ranked items.

2.4 Results

2.4.1 Overall time series

Viewing replies, retweets, and likes for individual tweets over time, we see how activ-

ities in response to Trump and Obama tweets have changed in the years around the

2016 election. In Fig. 2.2, we show the final count (the activity volume 168 hours after

the original tweet is authored) of activities for each tweet in the POTUS data set.

Then-candidate Trump’s tweets experienced a notable increase in response activity

following his June 16, 2015 declaration of candidacy. Prior to this point, Trump’s

tweets garnered 2 to 3 orders of magnitude less activities than during the height of

his campaign and his subsequent time in office.

Because of the difficulty in sampling replies using our data (see Sec. 2.3.1 for tweets

that receive few replies), many of the tweets from the Trump account from before his

candidacy have a high degree of uncertainty in their true value. This uncertainty is

introduced by our method for inferring reply counts introduces variance in the overall

activity balance.

In Fig. 2.3 we present the normalized activity values for tweets from Obama and

Trump from 2013 to 2019. The ternary histograms allow us to compare all activity

35



2014 2015 2016 2017 2018 2019
0

2

4

6

lo
g 1

0
N

R
ep

li
es

↓ 2016 ElectionTrump candidacy ↓
A

2014 2015 2016 2017 2018 2019
0

2

4

6
↓ 2016 ElectionTrump candidacy ↓

D

2014 2015 2016 2017 2018 2019
0

2

4

6

lo
g 1

0
N

R
et

w
ee

ts B

2014 2015 2016 2017 2018 2019
0

2

4

6 E

2014 2015 2016 2017 2018 2019
0

2

4

6

lo
g 1

0
N

L
ik

es

C

2014 2015 2016 2017 2018 2019
0

2

4

6 F

2 200 400
Tweets per bin

Barack Obama Donald Trump

Figure 2.2: Time series histogram of maximum activity counts for tweets posted
from the Barack Obama (A–C) and Donald Trump (D–F) Twitter accounts. Each bin
represents a collection of tweets at their original author date along with their respective
maximum observed activity count. Bins with less than 2 tweets are shown as grey dots.
We include all tweet types (e.g., advertisements, promoted, etc.); see Section 2.3.1 for
information on collection methods. We annotate Trump’s declaration of candidacy and the
2016 US general election with solid vertical grey bars. A marked decrease in Obama account
activity is apparent immediately following the 2016 election. The region of outliers in the
Trump time series immediately preceding the 2016 election has been determined to be largely
reflective of promoted tweets which have abnormal circulation dynamics on the platform [1].
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values, while the time series in Fig. 2.3D and Fig. 2.3H show the retweet-to-reply ratio.

We choose the latter as it appears to offer a more descriptive measure of response

activities (i.e., counts of likes are generally more stable within sub-regions of the

yearly time series). The Obama Nretweets/Nreplies time series (Fig. 2.3D) demonstrates

how the Obama account tends to receive more retweets than replies (median ratio

value of 3.67 between June 6, 2015 and November 8, 2016).

Once Obama leaves office, the account receives consistently more retweets than

replies on the limited number of tweets authored (median ratio value of 7.77 after

November 8, 2016).

The Trump Nretweets/Nreplies time series (Fig. 2.3H) shows the tendency of then-

candidate Trump’s account to be ratioed less during the campaign season. Soon after

transitioning to office the Trump account begins receiving more replies relative to

retweets—with a transition period roughly corresponding to the time between the

day of the election and inauguration. For the campaign period Trump has a median

ratio value of 3.1 while after the election the account garners a median ratio value of

1.32.

In Fig. 2.3E we show a ternary histogram for the pre-campaign Trump account,

where the high variance in reply estimates are evidenced by broad coverage of most

regions of the simplex. Error in estimating replies alone does not account for this high

variance, with the like and retweet time series from Fig. 2.2 showing higher variance

for Trump as well. Another time series artifact is the presence of Trump tweets that

were met with low activity counts around the 2016 election. Around the same time,

the Obama account activity drops precipitously. After the election, Obama’s limited

number of tweets are met with consistently high counts of likes, retweets, and replies.
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Figure 2.3: Ternary histograms and Nretweets/Nreplies ratio time series for the
@BarackObama (A–D) and @realDonaldTrump (E–H) Twitter accounts. The ternary his-
tograms (A–C and E–H) represent the count of retweet, favorite, and reply activities nor-
malized by the sum of all activities. White regions indicate no observations over the given
time period. See Fig. 2.4 for examples of full time series for response activity for example
tweets. Heatmap time series (D and H) consist of monthly bins representing the density
of tweets with a given ratio value. Single observations (bin counts < 2) are represented
by grey points. The two dates annotated correspond to the date of Trump’s declaration of
candidacy (2015 − 05 − 16) and the 2016 general election (2016 − 11 − 09). We show the
tendency for Trump tweets to have ternary ratio values with a greater reply component—
with pre-candidacy tweets having higher variability and pre-election tweets having a higher
Nretweets/Nreplies ratio value. Post-election Obama tweets have ternary ratio values with
more likes than other periods for both Obama and Trump.
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The rapid increase in activities in response to Trump tweets, and the corresponding

decrease in the overall variance of counts for activities, are important insights visible in

Fig. 2.2. These measures are indicative of the meteoric rise of then-candidate Trump,

along with his now pre-eminent Twitter presence (in 2020 his name appears more

frequently than the word “god” on most days [123]). While the two time periods are

not directly comparable, by the end of the 2016 election, Trump’s account consistently

garnered more response activities than President Obama’s. After the 2016 election,

the Obama account’s tweeting frequency is reduced while also experiencing a notable

rise in response activities. These results helped inform the selection of distinct periods

around the 2016 election. These time periods were both meaningful in a political

context—marking Trump’s declaration of candidacy and the 2016 election day—as

well as in the context of response activity time series.

2.4.2 Example Ternary Time Series

Using observations of responses to historical tweets, we can construct the time se-

ries for all ratios of activities. In Fig. 2.4 we show the ratio time series for three

Trump tweets. We selected the tweets based on the value of their final retweet-to-

reply ratio—with a tweet from approximately the 90th, 50th, and 10th percentiles of

final Nretweets/Nreplies ratio values. The response activities to most tweets (with high

response activity) tend to experience some early volatility, partially owing to the low

number of observations. One hour after the original tweet has been authored, the re-

sponse ratios tend to fall into a stable region, or at least adopt a stable trend. Within

this signal there is also the effect of bots (S2 Appendix) that are likely programmed

to respond to Trump account activity within seconds.
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Figure 2.4: Ternary time series for three popular Trump tweets, selected to repre-
sent messages in approximately the upper 90th percentile, 50th percentile, and bottom 10th
percentile of Nretweets/Nreplies ratios. The time series represent observations from first ac-
tivity observation to the final observation of the tweet. These ternary time series contrast
the simple 2-dimensional ratio trajectories and illustrate example trajectories through the
3-dimensional ratio space. See S1 Fig. and S2 Fig. for the distribution of ternary ratio
values for Obama and Trump tweets over time. Each of these three tweets were authored on
May 25, 2019. Direct links to tweets for Screenshots were collected on May 28, 2020.
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We show how ratios tend to stabilize by presenting ternary histograms of activity

response ratios over the seconds and days after a tweet is published. S1 Fig. shows

how the Obama account largely has ratios biased towards retweets and likes through-

out the period after a tweet is authored. Ratios for the Trump account (S2 Fig.) tend

to have greater variance in their ratio values in the seconds and hours after a tweet

is released. The ratios for Trump’s account are also biased towards more replies,

relative to the Obama account, throughout the period after issuing a tweet. This is

consistent with the final ratio values for each president across three political periods

surrounding the 2016 election.

2.4.3 Distribution of Ratios

The final observed ratio value for a tweet offers an aggregate measure of user-base

reactions. We examine tweets which were authored at least 168 hours prior to the

activity calculation to ensure the responses have largely stabilized. Of course, there is

still the possibility that users will respond to the tweet long after the original activity

period, but we have found these lagging response activities to minimally affect the

normalized ratio value. It is worth noting that this delayed response behavior is

common for prominent users such as Obama and Trump, with some response activities

taking place months or years after the original activity (often in reference to current

events that are addressed in the old tweet: ‘there is always a tweet’).

In Fig. 2.5 we show the distribution of Trump and Obama Nretweets/Nreplies ratios,

highlighting the tendency for the Trump account to “get ratioed” more often relative

to the Obama account. Of 13,639 tweets in Fig. 2.5 from the Trump account, 18%

receive more replies than retweets. The Obama account generates a relatively limited
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Figure 2.5: Histogram of final observed ratios for tweets authored by
@BarackObama and @realDonaldTrump accounts. Observations left of the dashed
vertical line correspond to tweets that are considered ratioed. The shift in the distribution
corresponding to Trump’s account can be plainly seen—with the account producing more
tweets that are ratioed than compared with Obama’s account. For both accounts, tweets
shown here are restricted to those authored after Trump’s declaration of candidacy. Of
16,708 tweets included from the Trump account, 3,015 (18%) have a log10Nretweets/Nreplies
value less than or equal to 0 and 13,693 (82%) have a score greater than 0. Of 1,786
tweets from the Obama account, 7 (< 1% have log10Nretweets/Nreplies values ≤ 0 while 1,779
(> 99%) have values > 0. From the distribution of ratio values we see that ratioed tweets
are outliers for the Obama account while the Trump account often gets ratioed and has a
lower ratio value on average.

number of tweets that receive more replies than retweets (less than 1%, see S4 Fig. for

Obama’s ratioed tweets). This simple ratio calculated with two of the three activity

measures loses some context in terms of overall user-base responses, and we now move

to incorporate the like activity volumes.
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We subset the tweets for Presidents Obama and Trump based on the time periods

introduced in Fig. 2.2. In Fig. 2.3 we show that for both Obama and Trump accounts

there is a higher degree of variation in final ternary ratio values for earlier years.

This is likely in part due to the reply thread mechanisms and structure changing on

Twitter’s platform, as well as the growing popularity of political accounts on Twitter,

aside from background changes in how users engage on the platform. This shift is

especially prominent for the Trump account, which experienced a marked growth in

response activity after Trump’s declaration of candidacy. The higher variance of final

ratio values is accentuated when the sample of replies is lower, owing to our method

of estimating reply activities. Comparing Obama and Trump ternary histograms

(Fig. 2.3) we observe more Trump activity ratios in the reply region of the simplex.

For the Obama account, Figs. 2.3A–D, we see notably higher values for normalized

retweet and like activity compared with the Trump account. The retweet-to-reply ra-

tio is consistently higher in the time series presented in Fig. 2.3D. Once leaving office,

the Obama account demonstrated a further tendency to receive a higher proportion

of likes and retweets.

2.4.4 Characteristic Time Scale

To empirically investigate the characteristic time scale of response activities, we report

the time index t for the local maxima of the instantaneous retweet count for each

tweet (the local maxima of the first derivative of cumulative retweets Nretweets, or

argrelmax d
dt
Nretweets). More specifically, we use the second derivative test to find

points where the second derivative of cumulative retweet counts drops below 0,
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d2

dt2
Nretweets(ti−1) > 0 and d2

dt2
Nretweets(ti) < 0 . (2.4)

These points are viewed as being indicative of the start of a decreasing trend for the

volume of new response activity, specifically marking the moment when the rate at

which new activities are generated begins decreasing. Going forward we will refer to

these points as inflection points (examples of these points can be seen with triangular

markers in Fig. 2.1).

A similar measure could examine the point where the second derivative rises above

0. This would be a valid measure, but we prefer our measure for a couple of reasons.

First, we found it better characterizes the time scale of the initial burst of activity

that most POTUS tweets receive (i.e., how long the first wave of response activities

is sustained). Second, it provides a closing bound on a period of increased response

activity (i.e., the point indicates when activity starts to fade). We were more inter-

ested in characterizing when attention, as indicated by response activity, is no longer

maintained for the POTUS tweets. We include results for “inverse-inflection” points

in S3 Fig. as a point of reference.

When viewing time since an original tweet in Fig. 2.6, we see a higher density

of inflection points around the 1 minute and 1 day time intervals. This suggests

that many periods of intense activity take place within the first day of a tweet being

authored. We also observe inflection points in cases where more sporadic engagement

occurs later in the tweet response-activity timeline. This leads to another spike in

activity around 1 week after the original tweet. Over 90% of inflection points are

observed before 105 seconds (∼ 1.15 days) for both accounts and for all time periods

as evidenced by complementary cumulative distribution functions (see Fig. 2.7).
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Figure 2.6: Distribution of inflection points, the local maxima of instantaneous retweet
volume, argrelmax d

dtNretweets, where d2

dt2 Nretweets(ti−1) > 0 and d2

dt2 Nretweets(ti) < 0 . A
and E: Example cumulative retweet time series and inflection points (solid triangles) for
Obama and Trump tweets. Histograms show the distribution of inflection points across all
tweets binned by time periods before (B and F), during (C and G), and after (D and
H) the 2016 US presidential election campaign. The January 1st 2009 to June 15th 2015
period for Trump (F) contains inflection point counts that are largely reflective of low initial
activity and high(er) late activity (months or years later) leading to unusually high values for
seconds to first inflection point (> 108 seconds). For Obama’s and Trump’s time in office,
tweets experience inflection points around 1-minute and 1-day after the tweet is authored—
indicating characteristic time-scales of activity waning. Histogram bin widths are in effect
logarithmically spaced over the displayed time span. This has the effect of providing a higher
temporal resolution for shorter timer periods. Screenshots were collected on May 28, 2020.
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There is a notable difference between the governing periods for Obama and Trump,

Figs. 2.6A and 2.6G, respectively. Trump tweet response time lines demonstrate a

tendency to generate inflection points before the 1-minute mark—indicative of rapid

response to his account’s tweets. Additionally, we find more time series inflection

points after 1-week has passed for the Trump time series than compared with Obama.

This suggests that users may return to Trump tweets later to comment on the content

(perhaps as new political developments occur). This is further illustrated in Fig. 2.7B,

where we show that 10% of Trump inflection points take place after 106 seconds (∼ 10

days). This is true for the pre-campaign, campaigning, and governing periods. By

contrast, 90% of Obama inflection points take place before 105 seconds (∼ 1 day).

2.4.5 Ratio Content

We can investigate how tweet content relates to response activities by comparing the

distributions of words that appear in ratioed and non-ratioed tweets. Taking the rank

of the frequency of occurrence for each group, we then compare the rank-turbulence

divergence for the two groups [2]. Per the allotaxonograph in Fig. 2.8, we are able

to tune the impact of starting and ending rank magnitude on the overall score for

the word. The allotaxonograph is an instrument that allows us to compare the Zipf

distributions of two corpora. The figure features a rank-rank histogram and a vertical

bar plot describing each 1-grams’ contribution to the overall rank divergence value.

In Fig. 2.8, we show that ratioed tweets contain more words related to fake news,

the Mueller inquiry into Russian interference, and Colin Kaepernick and kneeling

during the national anthem in the National Football League (NFL). For non-ratioed

tweets, we see words from campaign-related communications (e.g., “Jeb”, “Iowa”, and
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Figure 2.7: Complementary cumulative distribution function for inflection point
timing. Roughly 90% of Obama inflection points (A) took place before 105 seconds (∼ 1
day) for the period before the 2016 election cycle. For the period during and after the 2016
campaign season, both Obama and Trump tweets (B) receive 10% of inflection points after
roughly 106 seconds (∼ 10 days) from the initial tweet.
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Figure 2.8: Rank divergence allotaxonograph [2] for 1-grams from Trump ac-
count tweets authored after Trump’s declaration of his candidacy on June 16, 2015.
“Ratioed” tweets are those where the proportion of retweets over replies is less than
1 (Nretweets/Nreplies < 1), non-ratioed tweets accumulated a ratio greater than 1
(Nretweets/Nreplies > 1). There is a notable class imbalance. The majority of tweets are
non-ratioed, with a median value of ∼ 2. To generate the above figure we examined 3,313
ratioed tweets and 15,274 non-ratioed tweets. The 1-grams “Fake”, “News”, “Russia” and
“NFL” are ranked higher in the ratioed corpus. For the non-ratioed corpus, the 1-grams
“Jeb”, “Carolina”, and “Ted” are ranked higher. This illustrates the tendency of ratioed
tweets from this period to contain more politically contentious 1-grams related to Trump
scandals. Non-ratioed tweets from this period more often contain campaign related mes-
sages. In the main horizontal bar chart, the numbers next to the terms represent their rank
in each corpus, while terms that appear in only one corpus are indicated with a rotated
triangle. The smaller three vertical bars describe the balances between the ratioed and non-
ratioed corpora: 77.1% of total counts occur in the non-ratioed corpus; we observe 90.3% of
all 1-grams in the non-ratioed corpus; and 61.7% of 1-grams in the non-ratioed corpus are
unique to that corpus.
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“VOTE”) tend to appear more often than in ratioed tweets. The imbalance of word

counts in the ratioed and non-ratioed tweets is roughly proportional to the tweet

imbalance with 22.9% of words occurring in the ratioed tweets. Of all unique words,

nearly twice as many occur once or more in the non-ratioed tweets compared to the

ratioed tweets.

2.5 Discussion

We have considered how both the volume and kind of user activities in response to US

presidents on Twitter varies over multiple time scales. We found the Trump account to

have greater variability in the normalized ratio of activities—including a tendency to

receive more replies relative to likes and retweets than when compared to the Obama

account. Obama’s tendency to receive more retweets and likes was only amplified

after his departure from public office. We found that in ratioed tweets authored by

Trump, words pertaining to fake news, the Mueller inquiry, and the NFL are more

common than in non-ratioed tweets. We also showed more general results for response

activity profiles, with responses to the two Twitter presidents often stabilizing around

the 1-day scale. The Trump account also experiences more activity fluctuations after

1-week than compared to the Obama account, perhaps owing to users more often

returning to Trump’s comments as political actions unfold.

How the public responds to messages over the course of a politician’s career is a

fundamental dynamic in politics. As candidates rise to prominence and are elected to

office, the reach and importance of their communication changes. Further, the rapid

proliferation of digital technology provides a backdrop of constant evolution in polit-
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ical communications. Response activity by users on social media provides a valuable

set of features for gauging how social networks respond to political messaging. Beyond

simple counts, response time series dynamics provide insight into the characteristics

of political engagement. This includes determining when activity counts stabilize and

perhaps establishing how polarized push-and-pull dynamics play out in response to

messages. We speculate these techniques may also be useful for detecting non-human

user behavior in response to tweets. When combined with more conventional natural

language processing techniques, these “ratiometrics” hold promise in improving our

understanding of how specific messaging (e.g., word choice) affects user responses.

This study was not able to control for background changes in the Twitter interface—

changes to the manner in which retweets are served could have effects on the response

profiles. Further, there are some types of posts—namely “promoted” or “ad” posts—

that have different distribution characteristics (i.e. may be viewed by a more targeted,

limited audience). We were not able to fully filter these posts and they were included

in the analysis.

Twitter is a constantly changing system, and this is especially true for the nature

of political discourse on the platform. While we make efforts here to highlight some

notable exogenous events, we cannot control for background flux of user-engagement

with politics. Simple changes that may be occurring include shifts in the distribu-

tion of users from across the political spectrum (i.e., more left- or right-leaning user

activity) or more subtle changes in content (e.g., more spam and less in-depth conver-

sation). There is also the potential for modifications to Twitter’s timeline algorithms

to affect how users engage with content through response activities. Related to this

point, we are unsure of algorithmic factors that affect the circulation of inflammatory
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content on the platform—it is conceivable that increased views of controversial activ-

ities could lead to a snowball effect with heated debates taking place between users

in the reply section of a tweet.

With social media playing such a prominent role in today’s political process, it

is our goal that the methods presented here can contribute to a broader suite of

instruments for analyzing political communication in the digital realm. This is the

first piece of an effort to systematically evaluate the communications of US presidents

on Twitter. Building from our understanding of ratiometrics, the “POTUSometer”

is envisioned as sitting alongside instruments such as the Hedonometer [127] (which

provides a measurement of collective sentiment on Twitter). The POTUSometer

would tap into the ‘wisdom of the crowd’ (or at least the reality of collective responses)

in order to evaluate and better understand how presidents speak and are listened to

on social media platforms.

Future research could explore how the sentiment changes with response activities

(commented retweets and replies). Similarly, topic modelling could be used to explore

which subjects are discussed throughout the response activity time line. A more

sophisticated null model for the ternary ratio values (and ratio time series) would be

worthwhile to enable anomaly detection. There would be further work in the area of

researching attention reinforcement along with analyses of time series stability. With

recent advancements in language modelling, text regression on tweet content in order

to predict ratio scores may be worthy of investigation. Finally, replicating this work

across a broad base of users beyond Obama and Trump would better inform how

certain social network attributes effect the above results.
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Supporting information

S1 Appendix. Ternary histogram snapshots

Snapshots of ternary histograms are another way of investigating the characteristic

time scale described in Sec. 2.4.4 and presented in Fig. 2.6. Here, we calculate the

ternary ratios at logarithmically spaced intervals after a tweet is authored (this is in

contrast to the stabilized or ‘final’ ratio values in Fig. 2.3).

S1 Fig. and S2 Fig. show histograms of the ternary ratio values for Obama and

Trump tweets at logarithmically spaced time intervals after a tweet is authored. For

both presidents there is a greater spread in ternary ratio values immediately after a

tweet is authored, with ratios tending to stabilize in the hours and days after a tweet is

released. For Trump’s tweets, the tendency for ternary ratio values to have a greater

reply component is seen throughout the progression of the snapshots. Compared to

Obama, Trump tends to have greater spread in the distribution of ternary ratios for

each time interval. These results are consistent with our understanding of activity

stabilization occurring roughly 1 day after a tweet is authored (as shown in Fig. 2.7).
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S1 Fig. Snapshots of ternary activity ratio values for tweets in response to

the Obama account. Observations are recorded at logarithmically spaced intervals

after the release of the original tweet. Included here are 3,015 tweets from the period

of time after Trump’s declaration of candidacy on June 16, 2015. Whereas Fig. 2.3

shows a final ratio value for tweets over distinct political periods, here we show how

ratios unfold over the life of each tweet. This is serves as a snapshot of the ternary

ratio time series presented in Fig. 2.4. Obama’s tweets tend to receive a greater

volume of likes and retweets relative to replies, and this ratio is often maintained

throughout the response timeline.
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S2 Fig. Snapshots of ternary activity ratios for tweets in response to the

Trump account. Observations are recorded at logarithmically spaced intervals after

the release of the original tweet. Included here are 16,708 tweets from the period of

time after Trump’s declaration of candidacy on June 16, 2015. Whereas Fig. 2.3 shows

a final ratio value for tweets over distinct political periods, here we show how ratios

unfold over the life of each tweet. This is serves as a snapshot of the ternary ratio time

series presented in Fig. 2.4. We can see the greater variation in ternary ratio values

compared to the snapshots for Obama (S1 Fig.). There is also a greater tendency for

tweets to have higher reply counts when compared to the Obama snapshots.

S3 Fig. Distribution of inverse-inflection points, the local minima of instan-

taneous retweet volume,
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argrelmin d
dtNretweets, where d2

dt2 Nretweets(ti−1) < 0 and d2

dt2 Nretweets(ti) > 0 . Here we

switch the criteria from Fig. 2.6 in order to show how our choice affects the results for

the characteristic time scale. For the results in this figure we show points where the

second derivative of the retweets activity time series goes from negative to positive.

A and E: Example cumulative retweet time series and inverse-inflection points (solid

triangles) for Obama and Trump tweets. Histograms show the distribution of inverse-

inflection points across all tweets binned by time periods before (B and F), during (C

and G), and after (D and H) the 2016 US presidential election campaign. The Jan-

uary 1st 2009 to June 15th 2015 period for Trump (F) contains inflection point counts

that are largely reflective of low initial activity and high(er) late activity (months or

years later) leading to unusually high values for seconds to first inflection point (> 108

seconds). For Obama’s and Trump’s time in office, tweets experience inflection points

around 1-minute and 1-day after the tweet is authored—indicating characteristic time-

scales of activity waning. Direct links for Obama tweet (A): https://twitter.

com/BarackObama/status/693571153336496128 and Trump tweet (E): https:

//twitter.com/realDonaldTrump/status/1090729920760893441. Screenshots

were collected on May 28, 2020.

S4 Fig. Obama’s ratioed tweets from the study period. Here we show the

instances where we observed Obama’s tweets garnering more replies than retweets.

For the tweets in panels (B, D and G) the response activities later changed to reflect

fewer replies than retweets. This behavior is consistent with what we have seen

in other cases, with activity shifts either owing to authors deleting the activity or

responding-accounts being deleted. Here it seems Obama’s tweets are a combination
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of controversial (the Iran nuclear deal) and engagement-seeking (soliciting entries in

a contest to meet the Obama).

Direct links to tweets for panel (A): https://twitter.com/BarackObama/

status/733055491664797696,

panel (B): https://twitter.com/BarackObama/status/639553864006430721,

panel (C): https://twitter.com/BarackObama/status/794926969829920768,

panel (D): https://twitter.com/BarackObama/status/666396723191808000,

panel (E): https://twitter.com/BarackObama/status/652914197454561281,

panel (F): https://twitter.com/BarackObama/status/732691885139984384,

and

panel (G): https://twitter.com/BarackObama/status/715194440487309312.

Tweet screenshots were collected on November 15, 2020.

S2 Appendix. Brief note on bots

In the main body, we discuss the likely influence of bots in the response activity

time series. While we do not address this topic in-depth at any point in the present

work, we reviewed accounts that retweet to reply to one of two Trump and two Obama

tweets in order to gain a preliminary understanding of the volume of bot activity.

Bot detection is a challenging and open-ended task. We use Botometer [128] to

score the likelihood that accounts are bots. We randomly select 200 unique users who

retweeted highly-liked Trump and Obama tweets. We also randomly select 200 unique

users who replied to the same tweets, presenting these results separately. We then

run these users through Botometer and report the conditional probability (“cap”)

that users with a similar score are bots.
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For the 200 retweets of Obama tweets, 2.3% had conditional probability scores

greater than or equal to 0.8 ( cap ≥ 0.8). For the 200 retweets of Trump tweets we

found that 9.5% of tweets had cap values greater than or equal to 0.8.

For the 200 replies, 16.9% and 8.0% of the Obama and Trump replies, respectively,

had conditional probability scores greater than or equal to 0.8.

These results are initial estimates of the overall prevalence of bots in the response

activity data. It provides a sense for the order of magnitude of bot activity that may

truly be occurring. There is ample room for future research on a larger sample and

with more developed methods.

The two Trump tweets examined: https://twitter.com/realDonaldTrump/

status/1157345692517634049 and https://twitter.com/realDonaldTrump/

status/881503147168071680.

The two Obama tweets examined:

https://twitter.com/BarackObama/status/896523232098078720 and

https://twitter.com/BarackObama/status/1221552460768202756.
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Chapter 3

Mitigating bias in electronic health

records

3.1 Abstract

Medical systems in general, and patient treatment decisions and outcomes in partic-

ular, can be affected by bias based on gender and other demographic elements. As

language models are increasingly applied to medicine, there is a growing interest in

building algorithmic fairness into processes impacting patient care. Much of the work

addressing this question has focused on biases encoded in language models—statistical

estimates of the relationships between concepts derived from distant reading of cor-

pora. Building on this work, we investigate how differences in gender-specific word

frequency distributions and language models interact with regards to bias. We iden-

tify and remove gendered language from two clinical-note datasets and describe a new

debiasing procedure using BERT-based gender classifiers. We show minimal degrada-

tion in health condition classification tasks for low- to medium-levels of dataset bias
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removal via data augmentation. Finally, we compare the bias semantically encoded

in the language models with the bias empirically observed in health records. This

work outlines an interpretable approach for using data augmentation to identify and

reduce biases in natural language processing pipelines.

3.2 Introduction

Efficiently and accurately encoding patient information into medical records is a crit-

ical activity in healthcare. Electronic health records (EHRs) document symptoms,

treatments, and other relevant histories—providing a consistent reference through

disease progression, provider churn, and the passage of time. Free-form text fields,

the unstructured natural language components of a health record, can be incredibly

rich sources of patient information. With the proliferation of EHRs, these text fields

have also been an increasingly valuable source of data for researchers conducting

large-scale observational studies.

The promise of EHR data does not come without apprehension however, as the

process of generating and analyzing text data is open to the influence of conscious

and unconscious human bias. For example, health care providers entering information

may have implicit or explicit demographic biases that ultimately become encoded in

EHRs. Furthermore, language models that are often used to analyze clinical texts can

encode broader societal biases [49]. As patient data and advanced language models

increasingly come into contact, it is important to understand how existing biases may

be perpetuated in modern day healthcare algorithms.
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In the healthcare context, many types of bias are worth considering. Race, gender,

and socioeconomic status, among other attributes, all have the potential to introduce

bias into the study and treatment of medical conditions. Bias may manifest in how

patients are viewed, treated, and—most relevant here—documented. Due to ethical

and legal considerations, as well as pragmatic constraints on data availability, we have

focused the current research on gender bias.

There are many sources of algorithmic bias along with multiple definitions of fair-

ness in machine learning [38]. Bias in the data used for training algorithms can stem

from imbalances in target classes, how specific features are measured, and historical

forces leading certain classes to have longstanding, societal misrepresentation. Defini-

tions of fairness include demographic parity, counterfactual fairness [39], and fairness

through unawareness (FTU) [40].

In the current work, we use a more general measure that we refer to as potential

bias in order to gauge the impact of our data augmentation technique. Potential bias

is an assessment of bias under a sort of worst-case scenario, and provides a generalized

measure independent of specific bias definitions.

With our methods, we seek to provide human-interpretable insights on potential

bias in the case of binary class data. Further, using the same measurement, we

experiment with the application of a FTU-like data augmentation process—although

the concept of FTU does not neatly translate to unstructured text data (owing to the

challenge of neatly and meaningfully redacting linguistic features in textual data).

Combined, these methods can identify fundamental bias in language usage and the

potential bias resulting from the application of a given machine learning model.
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We refer to two classes of algorithmic-bias evaluation: a) intrinsic evaluation for

exploring semantic relationships within an embedding space, and b) extrinsic eval-

uation for determining downstream performance differences on extrinsic tasks (e.g.,

classification) [129].

In medical context there are gender specific elements that can influence treatment

and care. However, in this same context there might also be uses of gender when it

is not relevant. In this manuscript we aim to understand the latter through analysis

of clinical notes.

There is growing interest in interpretable machine learning (IML) [130]. In the

context of deep language models this can involve interrogating the functionality of

specific model layers (e.g., BERTology [42]), or investigating the impact of pertur-

bations in data on outputs. This latter approach ties into the work outlined in this

manuscript.

Our use of the term ‘interpretable’ here mostly refers to a more general case where

a given result can be interpreted by a human reviewer. For instance, our divergence-

based measures highlight gendered terms in plain English with a clearly explained

ranking methodology. While this conceptualization is complementary to IML, it does

not necessarily fit cleanly within the field—we will mention explicitly when referring

to an IML concept.

3.2.1 Prior work

Gender bias in the field of medicine is a topic that must be viewed with nuance in

light of the strong interaction between biological sex and health conditions. Medicine
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and gender bias interact in many ways—some of which are expected and desirable

whereas others may have uncertain or negative impacts in patient outcomes.

Research has reported differences in the care and outcomes received by male and

female patients for the same conditions. For example, given the same severity symp-

toms, men have higher treatment rates for conditions such as coronary artery dis-

ease, irritable bowel syndrome, and neck pain [131]. Women have higher treatment-

adjusted excess mortality than men when receiving care for heart attacks [132]. Fe-

male patients treated by male physicians have higher mortality rates than when

treated by female physicians—while male patients have similar mortality regardless

of provider gender [133].

The rate of care-seeking behavior in men has been shown to be lower than women

and has the potential to significantly affect health outcomes [134]. Some work has

shown female providers have higher confidence in the truthfulness of female patients

and resulting diagnoses when compared to male providers [135]. The concordance of

patient and provider gender is also positively associated with rates of cancer screen-

ing [136].

Beyond gender, the mortality rate of black infants has been found to be lower

when cared for by black physicians rather than their white counterparts [137]. Race

and care-seeking behavior have also been shown to interact, with black patients more

often seeking cardiovascular care from black providers than non-black providers [138].

It is important to note historical mistreatment and inequitable access when discussing

racial disparities in health outcomes—for instance, the unethical Tuskegee Syphilis

Study was found to lead to a 1.5-year decline in black male life expectancy through
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increased mistrust in the medical field after the exploitation of its participants was

made public [139].

The gender of the healthcare practitioner can also impact EHR note characteristics

that are subsequently quantified through language analysis tools. The writings of

male and female medical students have been shown to have differences, with female

students expressing more emotion and male students using less space [140]. More

generally, some work has shown syntactic parsers generalize well for men and women

when trained on data generated by women whereas training the tools on data from

men leads to poor performance for texts written by women [141].

The ubiquity of text data along with advances in natural language processing

(NLP) have led to a proliferation of text analysis in the medical realm. Researchers

have used social media platforms for epidemiological research [142–144]—raising a sep-

arate set of ethical concerns [145]. NLP tools have been used to generate hypotheses

for biomedical research [146], detect adverse drug reactions from social media [147],

classes and expand the known lexicon around medical topics [148, 149]. There are

numerous applications of text analysis in medicine beyond patient health records.

While this manuscript does not directly address tasks outside of clinical notes, it is

our hope that the research could be applied to other areas. It is because our methods

are interpretable and based on gaining an empirical view of bias that we feel they

could be a first resource in understanding bias beyond our example cases of gender

in clinical texts.

Our work leverages computational representations of statistically derived relation-

ships between concepts, commonly known as word embedding models [150]. These

real-valued vector representations of words facilitate comparative analyses of text
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data with machine learning methods. The generation of these vectors depends on

the distributional hypothesis, which states that similar words are more likely to ap-

pear together within a given context. Ideally, word embeddings map semantically

similar words to similar regions in the vector space—or ‘semantic space’ in this case.

The choice of training dataset heavily impacts the qualities of the language model

and resulting word embeddings. For instance, general purpose language models are

often trained on Wikipedia and the Common Crawl collection of web pages (e.g.,

BERT [24], RoBERTa [151]). Training language models on text from specific do-

mains often improves performance on tasks in those domains (see below). More

recent, state-of-the-art word embeddings (e.g., ELMo [152], BERT [24], GPT-2 [25])

are generally ‘contextual’, where the vector representation of a word from the trained

model is dependent on the context around the word. Older word embeddings, such as

GloVe [7] and word2vec [6,13], are ‘static’, where the output from the trained model

is only dependent on the word of interest—with context still being central to the task

of training the model.

As medical text data are made increasingly accessible through EHRs, there has

been a growing focus on developing word embeddings tailored for the medical do-

main. The practice of publicly releasing pre-trained, domain-specific word embed-

dings is common across domains, and it can be especially helpful in medical contexts

described using specialized vocabulary (and even manner of writing). SciBERT is

trained on a random sample of over one million biomedical and computer science

papers [153]. BioBERT similarly is trained on papers from PubMed abstracts and

articles [27]. There are also pre-trained embeddings focused on tasks involving clin-

ical notes. Clinical BERT [28, 154] is trained on clinical notes from the MIMIC-III
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dataset [155]. A similar approach was applied with the XLNet architecture, resulting

in clinical XLNet [156]. These pre-trained embeddings perform better on domain-

specific tasks related to the training data and procedure.

The undesirable bias present in word embeddings has attracted growing atten-

tion in recent years. Bolukbasi et al. present evidence of gender bias in word2vec

embeddings, along with proposing a method for removing bias from gender-neutral

terms [46]. Contextual word embeddings (e.g., BERT) show gender-biases [157] that

can have effects on downstream tasks, although these biases may present differently

than those in static embeddings [158,159]. Vig et al. investigate which model compo-

nents (attention heads) are responsible for gender bias in transformer-based language

models (GPT-2) [160]. A simple way to mitigate gender bias in word embeddings is to

‘swap’ gendered terms in training data when generating word embeddings [47]. Beu-

tel et al. [161] develop an adversarial system for debiasing language models—in the

process, relating the distribution of training data to its effects on properties of fairness

in the adversarial system. Simple masking of names and pronouns may reduce bias

and improve classification performance for certain language classification tasks [162].

Swapping names has been shown to be an effective data augmentation technique for

decreasing gender bias in pronoun resolution tasks [163]. Simple scrubbing of names

and pronouns has been used to reduce gender-biases in biographies [164]. Zhang et

al. examine the gender and racial biases present in Clinical BERT, concluding that

after fine-tuning “[the] baseline clinical BERT model becomes more confident in the

gender of the note, and may have captured relationships between gender and medical

conditions which exceed biological associations.” [49] Some of these techniques for
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bias detection and mitigation have been critiqued as merely capturing over-simplified

dimensions of bias—with proper debiasing requiring more holistic evaluation [48].

Data augmentation has been used to improve classification performance and pri-

vacy of text data. Simple methods include random swapping of words, random dele-

tion, and random insertion [165]. More computationally expensive methods may

involve using language models to generate contextually accurate synonyms [166], or

even running text through multiple rounds of machine translation (e.g., English text

to French and back again) [167]. De-identification is perhaps the most common

data augmentation task for clinical text. Methods may range from simple dictionary

look-ups [168] to more advanced neural network approaches [169]. De-identification

approaches may be too aggressive and limit the utility of the resulting data while also

offering no formal privacy guarantee. The field of differential privacy [170] offers prin-

cipled methods for adding noise to data, and some recent work has explored applying

these principles to text data augmentation [171]. Applying data-augmentation tech-

niques to pipelines that use contextual word-embeddings presents some additional

uncertainty given on-going nature of research working on establishing what these

trained embeddings actually represent and how they use contextual clues (e.g., the

impact of word order on downstream tasks [172]).

In the present study, we explore the intersection of the bias that stems from lan-

guage choices made by healthcare providers and the bias encoded in word embeddings

commonly used in the analysis of clinical text. We present interpretable methods for

detecting and reducing bias present in text data with binary classes. Part of this

work is investigating how orthogonal text relating to gender bias is to text related

to clinically-relevant information. While we focus on gender bias in health records,
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this framework could be applied to other domains and other types of bias as well.

In Sec. 3.3, we describe our data and methods for evaluating bias. In Sec. 3.4, we

present our results contrasting empirically observed bias in our sample data with bias

encoded in word embeddings. Finally, in Sec. 3.5, we discus the implications of our

work and potential avenues for future research.

Our main contributions include the following:

• We demonstrate a model-agnostic technique for identifying biases in language

usage for clinical notes corresponding to female and male patients. We provide

examples of words and phrases highlighted by our method for two clinical note

datasets. This methodology could readily be applied to other demographic

attributes of patients as well.

• Continuing with the bias identification technique, we contrast the results from

the model-agnostic bias detection with results from evaluating bias within a

word-embedding space. We find that our model-agnostic method highlights

domain- and dataset-specific terms, leading to more effective bias identification

than when compared with results derived from language models.

• We develop a data augmentation procedure to remove biased terms and present

results demonstrating that this procedure has minimal effect on clinically rele-

vant tasks. Our experiments show that removing words corresponding to 10% of

the language-distribution divergence has little effect on condition classification

performance while largely reducing the gender signal in clinical notes. Fur-

ther, the augmentation procedure can be applied to a high volume of terms (for

terms corresponding to up to 80% of total language-distribution divergence)
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with minimal degradation in performance for clinically relevant tasks. More

broadly, our results demonstrate that transformers-based language models can

be robust to high levels of data augmentation—as indicated by retention of

relative performance on downstream tasks.

Taken together, these contributions provide methods for bias identification that

are readily interpreted by patients, providers, and healthcare informaticians. The

bias measures are model-agnostic and dataset specific and can be applied upstream

of any machine learning pipeline. This manuscript directly supports the blossoming

field of ethical artificial intelligence in healthcare and beyond. Our methods could be

helpful for evaluating the impact of demographic signals—beyond gender—present in

text when developing machine learning models and workflows in healthcare.

3.3 Methods

Here we outline our methods for identifying and removing gendered language and

evaluating the impact of this data augmentation process. We also provide brief de-

scriptions of the datasets for our case study. The bias evaluation techniques fall into

two main categories. First, we make intrinsic evaluations of the language by looking

at bias within word-embedding spaces and empirical word-frequency distributions of

the datasets. The set of methods presented here enable the identification of biased

language usage, a data augmentation approach for removing this language, and an ex-

ample benchmark for evaluating the performance impacts on two biomedical datasets.

Second, there are extrinsic evaluation tasks focused on comparing the performance

of classifiers as we vary the level of data augmentation. For our dataset, this process
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involves testing health-condition and gender classifiers on augmented data. The ex-

trinsic evaluation provides a measurement of potential bias and is meant to be similar

to some real-world tasks that may utilize similar classifiers.

3.3.1 Bias measurements

We define three different bias evaluation frameworks for our study. The first is a

measure of empirical bias between language distributions for two classes observed in a

given dataset. The second is a measure of intrinsic bias present in a word embedding

space (as explored with a given corpus). Finally, the third measure addresses the

potential extrinsic algorithmic-bias present in a machine learning pipeline.

For our evaluations of intrinsic language bias in empirical data we use a divergence

metric (details in Sec. 3.3.2) which is calculated between the language distributions

of male and female patients. We use a straightforward notion of bias that rates n-

grams as more biased when their divergence contribution is higher. In this case we are

detecting data bias, which may in itself have multiple sources such as measurement

or sampling biases.

We evaluate intrinsic language bias in embedding spaces by calculating similarity

scores between gendered word-embedding clusters and n-grams appearing in male

and female patient notes (details in Sec. 3.3.4). Here we are focused on a measure

of algorithmic bias as expressed via language from a specific dataset that is encoded

with a given language model.

Finally, we evaluate extrinsic bias to test the effects of our data augmentation

procedure. In this case we diverge from the largely established definitions of bias by

using an evaluation framework that does not claim to detect explicit forms of bias for
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protected classes. Instead, we reframe our extrinsic measure as potential bias (PB),

which we define generally as the capacity for a classifier to predict protected classes.

Our PB measure does not equate directly to real-world biases, but we argue that it

has utility in establishing a generalizeable indication of the potential for bias that is

task-independent. Stated another way, it is a measure of the signal present in a data

set and the capacity for a given machine learning algorithm to utilize this signal for

biased predictions. In our case, we present PB as measured by the performance of a

binary classifier trained to predict patient gender from text documents.

We recognize concerns raised by Blodgett et al. [173] and others relating to the

imprecise definitions of bias in the field of algorithmic fairness. Indeed, it is often

important to motivate a given case of bias by establishing its potential harms. In our

case, we are limiting what we present to precursors to bias, and thus do not claim to

be making robust assessments of real-world bias and subsequent impact.

3.3.2 Rank-divergence and trimming

We parse clinical notes into n-grams—sequences of space delimited strings such as

words or sentence fragments—and generate corresponding frequency distributions.

To quantify the bias of specific n-grams we compare their frequency of usage in text

data corresponding to each of our two classes. The same procedure is extended as a

data augmentation technique intended to remove biased language in a targeted and

principled manner.

More specifically, in our case study of gendered language in clinical notes we

quantify the “genderedness” of n-grams by comparing their frequency of usage in

notes for male and female patient populations. For the task of comparing frequency
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of n-gram usage we use rank-turbulence divergence (RTD), as defined by Dodds et

al. [3]. The rank-turbulence divergence between two sets, Ω1 and Ω2, is calculated as

follows,

DR
α (Ω1||Ω2) =

∑
δDR

α,τ

= α + 1
α

∑
τ

∣∣∣∣∣ 1
rατ,1
− 1
rατ,2

∣∣∣∣∣
1/(α+1)

,

(3.1)

where rτ,s is the rank of element τ (n-grams, in our case) in system s and α is a

tunable parameter that affects the starting and ending ranks. While other techniques

could be used to compare the two n-gram frequency distributions, we found RTD to

be robust to differences in overall volume of n-grams for each patient population. For

example, Fig. 3.1 shows the RTD between 1-grams from clinical notes corresponding

to female and male patients.

A brief note on notation: τ always represents a unique element, or n-gram in

our case. In certain contexts τ may be an integer value that ultimately maps back

to the element’s string representation. This integer conversion is to allow for clean

indexing—in these cases τ can be converted back to a string representation of the

element with the array of element strings Wτ .

We use the individual rank-turbulence divergence contribution, δDR
α,τ , of each 1-

gram to the gendered divergence, DR
α (Ωfemale||Ωmale), to select which terms to remove

from the clinical notes. First, we sort the 1-grams based on their rank-turbulence

divergence contribution. Next, we calculate the cumulative proportion of the over-

all rank-turbulence divergence, RCτ , that is accounted for as we iterate through the

sorted 1-gram list from words with the highest contribution to the least contribution

(in this case, terms like “she” and “gentleman” will tend to have a greater contribu-
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tion). Finally, we set logarithmically spaced thresholds of cumulative rank-divergence

values to select which 1-grams to trim. The method allows us to select sets of 1-grams

that contribute the most to the rank-divergence values (measured as divergence per

1-gram). Fig. 3.2 provides a graphical overview of this procedure.

Using this selection criteria, we are able to remove the least number of 1-grams

per a given amount of rank-turbulence divergence removed from the clinical notes.

The number of unique 1-grams removed per cumulative amount of rank-turbulence

divergence grows super linearly as seen in Fig. 3.8I. This results in relatively stable

distributions of document lengths for lower trim values (10–30%), although at higher

trim values the procedure drastically shrinks the size of many documents (Fig. 3.8A-

H).

To implement this trimming procedure, we use regular expressions to replace the

1-grams we have identified for removal with a space character. We found that using

1-grams as the basis for our trimming procedure is both effective and straightforward

to implement. Generally, if higher order n-grams (e.g., 2-grams) are determined to

be biased, the constituent 1-grams are also detected by the RTD metric. Our string

removal procedure is applied to the overall corpus of data, upstream of any train-test

dataset generation for specific classification tasks.

Other potential string replacement strategies include redaction with a generic

token or randomly swapping n-grams that appear within the same category across

the corpus [171]. The RTD method we use could also be adapted for use with these

and other replacement strategies. We chose string removal because of its simplicity

and prioritization of the de-biasing task over preserving semantic structure (i.e., it

presents an extreme case of data augmentation). The pipeline’s performance on
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downstream tasks provides some indication of the semantic information retained, and

as we show in Sec. 3.4 it is possible retain meaningful signals while pursuing relatively

aggressive string removal.

Algorithm 1 RTD trimming procedure
Input: Documents Di , i = 1, ..., N
Input: 1-gram rank dists. for each class Ωψ , ψ = 1, 2
Output: Trimmed text data C(k)

i , i = 1, ..., N ; k ∈ (0, 1]
1: δDR

α,τ ,Wτ ← RTD_calc(Ω1,Ω2, α) , τ = 1, ...,M ▷ δDR
α,τ is RTD

contribution for ngram Wτ , both sorted by RTD contribution
2: RCτ ← cumsum(δDR

α,τ )
3: for k = .1, .2, ..., .9 do
4: r ← max(where(RC <= k)) ▷ index up to bin max b
5: S ← W0:r
6: for i = 1, ..., N do
7: C

(k)
i ← strip(Di, S) ▷ remove 1−grams from doc.

8: end for
9: end for

3.3.3 Language models

Large language models are increasingly common in many NLP tasks, and we feel it

is important to present our results in the context of a pipeline that utilizes these

models. Furthermore, language models have the potential to encode bias, and we

found it necessary to contrast our empirical PB detection methods with bias metrics

calculated on general purpose and domain-adapted language models.

We use pre-trained BERT-base [24] and Clinical BERT [154] word embeddings.

BERT provides a contextual word embedding trained on “general” language whereas

Clinical BERT builds on these embeddings by utilizing transfer learning to improve
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performance on scientific and clinical texts. All models were implemented in PyTorch

using the Transformers library [174].

For tasks such as nearest-neighbor classification and gender-similarity scoring,

we use the off-the-shelf weights for BERT and Clinical BERT (see Fig. 3.3 for an

example of n2c2 embedding space). These models were then fine-tuned on the gender

and health-condition classification tasks.

In cases where we fine-tuned the model, we added a final linear layer to the

network. All classification tasks were binary with a categorical cross-entropy loss

function. All models were run with a maximum sequence length of 512, batch size

of 4, and gradient accumulation steps set to 12. We considered various methods for

handling documents longer than the maximum sequence length (see Variable length

note embedding in SI), but ultimately the performance gains did not merit further

use.

We also run a nearest-neighbor classifier on the document embeddings produced

by the off-the-shelf BERT-base and Clinical BERT models. This is intended to be a

point of comparison when evaluating the potential bias present within the embedding

space, as indicated by performance on extrinsic classification tasks.

In addition to the BERT-based language models, we used a simple term frequency-

inverse document frequency (TFIDF) [175] based classification model as a point of

comparison. For this model, we fit a TFIDF vectorizer to our training data and use

logistic regression for binary classification.

For classification performance metrics we report the Matthews correlation coeffi-

cient (MCC) and receiver operating characteristic (ROC) curves. We primarily use
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MCC values for ease of presentation and because of the balanced nature of the mea-

surement even in the face of class imbalances [176]. MCC is calculated as follows,

MCC = TP · TN − FP · FN√
(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

(3.2)

Where TP , TN , FP ,and FN are counts of true positives, true negatives, false

positives, and false negatives, respectively. MCC ranges between -1 and 1 with 1

indicating the best performance and 0 indicating performance no better than random

guessing. The measure is often described as the correlation between observed and

predicted labels.

3.3.4 Gender distances in word embeddings

Using a pre-trained BERT model, we embed all the 1-grams present in the clinical

note datasets. For this task, we retain the full length vector for each 1-gram, taking

the average in cases where additional tokens are created by the tokenizer. The results

of this process are 1x768 vectors for each n-gram. We also calculate the average

embedding for a collection of terms manually selected to constitute ‘gender clusters’.

From these gender clusters we calculate the cosine similarly to each of the embeddings

for n-grams in the Zipf distribution.

Using measures such as cosine similarity with BERT raises some concerns, es-

pecially when looking at absolute values. BERT was not trained on the task of

calculating sentence or document similarities. With BERT-base, all dimensions are

weighted equally, which when applying cosine similarity can result in somewhat ar-

bitrary absolute values. As a workaround, we believe that using the ranked value of
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word and document embeddings can produce more meaningful results (if we do not

wish to fine-tune BERT on the task of sentence similarity). We use both absolute

values and ranks of cosine similarity when investigating bias in BERT-based language

models—finding the absolute values of cosine similarity to be meaningful in our rela-

tively coarse-grained analysis. Further, taking the difference in cosine similarities for

each gendered cluster addresses some of the drawbacks of examining cosine similarity

values in pre-trained models.

Generating word or phrase embeddings from contextual language models raises

some challenges in terms of calculating accurate embedding values. In many cases,

the word-embedding for a given 1-gram—produced by the final layer of a model

such as BERT—can vary significantly depending on context [177]. Some researchers

have proposed converting contextual embeddings to static embeddings to address this

challenge [178]. Others have presented methods for creating template sentences and

comparing the relative probability of masked tokens for target terms [158]. After

experimenting with the template approach, we determined that the resulting embed-

dings were not different enough to merit switching away from the simple isolated

1-gram embeddings.

3.3.5 Rank-turbulence divergence for embeddings

and documents

We use rank-turbulence divergence in order to compare the bias encoded in word-

embeddings and empirical data. For word embeddings, we need to devise a metric for

bias—here we use cosine similarity between biased-clusters and candidate n-grams.

76



The bias in the empirical data is evaluated using RTD for word-frequency distributions

corresponding to two labeled classes.

In terms of the clinical text data, for the word embeddings we use cosine similarity

scores to evaluate bias relative to known gendered n-grams. For the clinical note

datasets (text from documents with gender labels), we use rank-turbulence divergence

calculated between the male and female patient populations.

To evaluate bias in the embedding space, we rely on similarity scores relative to

known gendered language. First, we create two gendered clusters of 1-grams—these

clusters represent words that are manually determined to have inherent connotations

relating to female and male genders. Next, we calculate the cosine similarity between

the word embeddings for all 1-grams appearing in the empirical data and the average

vector for each of the two gendered clusters. Finally, we rank each 1-gram based on

the distribution of cosine similarity scores for the male and female clusters.

For the empirical data, we calculate the RTD for 1-grams appearing in the clinical

note data sets. The RTD value provides an indication of the bias—as indicated by

differences in specific term frequency—present in the clinical notes.

Combined, these steps provide ranks for each 1-gram in terms of how much it

differentiates the male and female clinical notes. Here again we can use the highly

flexible rank-turbulence divergence measure to identify where there is ‘disagreement’

between the ranks returned by evaluating the embedding space and ranks from the

empirical distribution. This is a divergence-of-divergence measure, using the iterative

application of rank-turbulence divergence to compare two different measures of rank.

Going forward, we refer to this measure as RTD2. RTD2 provides an indication of

which n-grams are likely to be reported as less gendered in either the embedding space
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or in the empirical evaluation of the documents. For our purposes, RTD2 is especially

useful for highlighting n-grams that embedding-based debiasing techniques may rank

as minimally biased, despite the emperical distribution suggesting otherwise.

3.3.6 Data

We use two open source datasets for our experiments: the n2c2 (formerly i2b2) 2014

deidentification challenge [179] and the MIMIC-III critical care database [155]. The

n2c2 data comprises around 1300 documents with no gender or health condition

coding (we generate our own labels for the former). MIMIC-III is a collection of

diagnoses, procedures, interventions, and doctors notes for 46,520 patients that passed

through an intensive care unit. There are 26,121 males and 20,399 females in the

dataset, with over 2 million individual documents. MIMIC-III includes coding of

health conditions with International Classification of Diseases (ICD-9) codes, as well

as patient sex.

For MIMIC-III, we focus our health-condition classification experiments on records

corresponding to patients with at least 1 of the top 10 most prevalent ICD-9 codes.

We restrict our sample population to those patients with at least one of the 10 most

common health conditions—randomly drawing negative samples from this subset for

each condition classification experiment. Rates of coincidence vary between 0.65 and

0.13 (Fig. 3.9). All but one of the top 10 health conditions have more male than

female patients (Table 3.1). As a point of reference, we also present summary results

for records corresponding to patients with ICD-9 codes that appear at least 1000

times in the MIMIC-III data (Table 3.8).
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Sex Count
ICD Description. Nf Nm Nf/Ntotal Nm/Ntotal

Acute kidney failure 3941 5178 0.43 0.57
Acute respiratory failure 3473 4024 0.46 0.54
Atrial fibrillation 5512 7379 0.43 0.57
Congestive heart failure 6106 7005 0.47 0.53
Coronary atherosclerosis 4322 8107 0.35 0.65
Diabetes mellitus 3902 5156 0.43 0.57
Esophageal reflux 2990 3336 0.47 0.53
Essential hypertension 9370 11333 0.45 0.55
Hyperlipidemia 3537 5153 0.41 0.59
Urinary tract infection 4027 2528 0.61 0.39

Table 3.1: Patient sex ratios for the top 10 conditions in MIMIC-III. For most
health conditions there is an a imbalance in the gender ratio between male and female pa-
tients. This reflects an overall bias in the MIMIC-III dataset witch has more male patients.

3.3.7 Text pre-processing

Before analyzing or running the data through our models, we apply a simple pre-

processing procedure to the text fields of the n2c2 and MIMIC-III data sets. We

remove numerical values, ranges, and dates from the text. This is done in an effort to

limit confounding factors related to specific values and gender (e.g., higher weights and

male populations). We also strip some characters and convert common abbreviations.

See Sec. 3.7.1 for information on note selection.

3.4 Results

Here we present the results of applying empirical bias detection and potential bias

mitigation methods. Using rank-turbulence divergence (RTD) we rank n-grams based

on their contribution to bias between two classes. Next we apply a data augmenta-
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tion procedure where we remove 1-grams based on their ranking in the RTD results.

The impact of the data augmentation process is measured by tracking classification

performance as we apply increasingly aggressive 1-gram trimming to our clinical note

datasets. Finally, we compare the bias present in the BERT embedding space with

the empirical bias we detect in the case study datasets.

One of our classification tasks is predicting patient gender from EHR notes. We

include gender classification as a synthetic test that is meant to directly indicate the

gender signal present in the data. Gender classification is an unrealistic task that we

would not expect to see in real-world applications, but serves as an extreme case that

provides insight on the potential for other classifiers to incorporate gender information

(potential bias).

We present results for both the n2c2 and MIMIC-III datasets. The n2c2 dataset

provides a smaller dataset with more homogeneous documents and serves as a ref-

erence point for the tasks outlined here. MIMIC-III is much larger and its explicit

coding of health conditions allows us to bring the extrinsic task of condition classifi-

cation into our evaluation of bias and data augmentation.

3.4.1 Gender divergence

Interpretability is a key facet of our approach to empirical bias detection. To gain

an understanding of biased language usage we start by presenting the ranks of RTD

values for individual n-grams in text data corresponding to each of the binary classes.

The allotaxonographs we use to present this information (e.g., Fig. 3.1) show both the

RTD values and a 2-d rank-rank histogram for n-grams in each class. The rank-rank

histogram (Fig. 3.1 left) is useful for evaluating how the word-frequency distributions
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(Fig. 3.1 right) are similar or disjoint among the two classes, and in the process visually

inspecting the fit of the tunable parameter α, which modulates the impact of lowly-

ranked n-grams. See Figs. 3.12, 3.13, 3.14, and 3.15 for additional allotaxonographs,

including 2- and 3-grams.

In the case of our gender classes in the medical data, we find the rank distributions

to be more similar than disjoint and visually confirm that α = 1/3 is an acceptable

setting (by examining the relation between contour lines and rank-rank distribution).

More specifically, in our case study gendered language is highlighted by calculating

the RTD values for male and female patient notes. We present results from apply-

ing our RTD method to 1-grams in the unmodified MIMIC-III dataset in Fig. 3.1.

Unsurprisingly, gendered pronouns appear as the greatest contribution to RTD be-

tween the two corpora. Further, 1-grams regarding social characteristics such as “hus-

band”, “wife”, and “daughter” and medically relevant terms relating to sex-specific or

sex-biased conditions such as “hysterectomy”, “scrotal”, and “parathyroid” are also

highlighted.

Some of these terms may be obvious to readers—suggesting the effectiveness of

this approach to capture intuitive differences. Upon deeper investigation, 1-grams

such as “husband” and “wife” often appear in reference to a patient’s spouse providing

information or social histories. The reasons for “daughter” appearing more commonly

in female patient notes are varied, but appear to be related to higher relative rates

of daughters providing information for their mothers. However the identification and

ranking of other n-grams in terms of gendered-bias requires examination of a given

dataset—perhaps indicating unintuitive relationships between terms and gendered

language, or potentially indicating overfitting of this approach to specific datasets.
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For instance, “parathyroid” likely refers to hypoparathyroidism which is not a sex-

specific condition, but rather a sex-biased condition with a ratio of 3.3:1 for female

to male diagnoses. Further, men are more likely to present asymptomatically, which

may be less likely to be diagnosed in an ICU setting [180].

The application of RTD produces, in a principled fashion, a list of target terms

to remove during the debiasing process—automating the selection of biased n-grams

and tailoring results to a specific dataset. Using the same RTD results from above, we

apply our trimming procedure—augmenting the text by iteratively removing the most

biased 1-grams. For instance, in the MIMIC-III data the top 268 1-grams account for

10% of the total RTD identified by method—and these are the first words we trim.

3.4.2 Gender classification

As an extrinsic evaluation of our biased-language removal process, we present perfor-

mance results for classifiers predicting membership in the two classes that we obscure

through the data augmentation process. We posit that the performance of a classi-

fier in this case is an important metric when determining if the data augmentation

was successful in removing bias signals and thus potential bias from the classification

pipeline. The performance of the classifier is analogous to a real-world application

under an extreme case where we are trying to predict the protected class.

We evaluate the performance of a binary gender classifier based on BERT and

Clinical BERT language models. As a starting point, we investigate the performance

of a basic nearest neighbors classifier running on document embeddings produced with

off-the-shelf language models. The classification performance of the nearest-neighbor

classifier is far better than random and speaks to the embedding space’s local clus-
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tering by gendered of words in these datasets, suggesting that gender may be a major

component of the words embedded within this representation space. The tendency

for BERT, and to a lesser extent Clinical BERT, to encode gender information can

be seen in the tSNE visualization of these document embeddings (Figs. 3.3 and 3.17).

As seen here and in other results, Clinical BERT exhibits less potential gender-bias

according to our metrics. We leave a more in-depth comparison of gender-bias in

BERT and Clinical BERT to future work, but it is worth noting that different em-

beddings appear to have different levels of potential gender-bias. Further, clinical

text data may be more or less gender-biased than everyday text.

The performance of the BERT-based nearest neighbor classifier on the gender clas-

sification task is notable (Matthews correlation coefficient of 0.69) given the language

models were not fine-tuned (Table 3.2). Using Clinical BERT embeddings result

in a MCC of 0.44 for the nearest neighbor classifier—with Clinical BERT generally

performing slightly worse on gender classification tasks.

As a point of comparison, we attempt a naive approach to removing gender bias

through data augmentation that involves trimming a manually selected group of 20

words. When we run our complete BERT classifier, with fine tuning, for 1 epoch

we find that the MCC drops from 0.94 to -0.06 when we trim the manually selected

words. This patterns holds up for Clinical BERT as well. However, if we extend

the training run to 10 epochs, we find that most of the classification performance is

recovered. This suggests that although the manually selected terms may have some of

the most prominent gender signals, removing them by no means prevents the models

from learning other indicators of gender.
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BERT Clinical BERT
Model notes Gendered No-gend. Gendered No-gend.

Nearest neighbor 0.69 * 0.44 *
1 Epoch 0.94 -0.06 0.92 0.00

10 Epochs * 0.88 * 0.56

Table 3.2: Matthews Correlation Coefficient for gender classification task on
n2c2 dataset. BERT and Clinical BERT based models were run on the manually generated
“no gender” test dataset (common pronouns, etc. have been removed). The nearest neighbor
model uses off-the-shelf models to create document embeddings, while the models run for 1
and 10 Epochs were fine tuned.

On the MIMIC-III dataset we find gender classification to be generally accurate.

With no gender trimming applied, MCC values are greater than 0.9 for both BERT

and Clinical BERT classifiers. This performance is quickly degraded as we employ our

trimming method (Fig. 3.5K). When we remove 1-grams accounting for the first 10%

of the RTD, we find a MCC value of approximately 0.2 for the gender classification

task. The removal of the initial 10% of rank-divergence contributions has the most

impact in terms of classification performance. Further trimming does not reduce the

performance as much until 1-grams accounting for nearly 80% of the rank-turbulence

divergence are removed. At this point, the classifier is effectively random, with a

MCC of approximately 0.

Taken together these results point to a reduction in potential bias through our

trimming procedure.

The large drop in performance for gender classification is in contrast to that of

most health conditions (Fig. 3.4B). On the health condition classification task most

trim values result in negligible drops in classification performance.
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3.4.3 Condition Classification

To evaluate the impact of the bias removal process, we track the performance of classi-

fication tasks that are not explicitly linked to the two classes we are trying to protect.

Under varying levels of data augmentation we train and test multiple classification

pipelines and report any degradation in performance. These tasks are meant to be

analogous to real world applications in our domain that would require the mainte-

nance of clinically-relevant information from the text—although we make no effort

to achieve state-of-the-art results (see Table 3.3 for baseline condition classification

performance).

ICD9 Description ICD9 Code MCC
Diabetes mellitus 25000 0.53
Hyperlipidemia 2724 0.46
Essential hypertension 4019 0.41
Coronary atherosclerosis 41401 0.67
Atrial fibrillation 42731 0.53
Congestive heart failure 4280 0.51
Acute respiratory failure 51881 0.43
Esophageal reflux 53081 0.43
Acute kidney failure 5849 0.29
Urinary tract infection 5990 0.23

Table 3.3: Clinical BERT performance on top 10 ICD9 codes in the MIMIC-III
dataset.

In the specific context of our case study, we train health-condition classifiers that

produce modest performance on the MIMIC-III dataset. This performance is suitable

for our purposes of evaluating the degradation in performance on the extrinsic task,

relative to our trimming procedure.
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In the case of each health condition, we find that relative classification performance

is minimally affected by the trimming procedure. For instance, the classifier for atrial

fibrillation results in a MCC value of around 0.48 for the male patients (Fig. 3.5C)

in the test set when no trimming is applied. When the minimal level of trimming

is applied (10% of RTD removed), the MCC for the males is largely unchanged,

resulting in a MCC of 0.48. This largely holds true for most of the trimming levels,

across the 10 conditions we evaluate in-depth. For 6 out of 10 conditions, we find

that words accounting for approximately 80% of the gender RTD need to be removed

before there is a noteworthy degradation of classification performance. At the 80%

trim level, the gender classification task has a MCC value of approximately 0, while

many other conditions maintain some predictive power.

Comparing the relative degradation in performance, we see that the proportion of

MCC lost between no- and maximum-trim between 0.05 and 0.4 for most conditions

(Fig. 3.4B). The only condition with full loss of predictive power is for urinary tract

infections, which one might also speculate to be related to the anatomical differences

in presentation of UTIs between biological sexes. Although, this task also proved the

most challenging and had the worst starting (no-trim) performance (MCC ≈ 0.2).

The above results suggest that, for the conditions we examined, performance

for medically relevant tasks can be preserved while reducing performance on gender

classification. There is the chance that the trimming procedure may result in bi-

ased preservation of condition classification task performance. To investigate this we

present results from a lightweight, TF-IDF based classifier for 123 health conditions.

We find that when we trim the top 50% of RTD that classifiers for most conditions

are relatively unaffected (Fig. 3.6). For those conditions that do experience shifts in
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classification performance, any gender imbalance appears attributable related to the

background gender distribution in the dataset.

3.4.4 Gender distance

To connect the empirical data with the language models, we embed n-grams from

our case study datasets and evaluate their intrinsic bias within the word-embedding

space. These language models have the same model-architectures that we (and many

others) use when building NLP pipelines for classification and other tasks. Bias

measures based on the word-embedding space are meant to provide some indication

of how debiasing techniques that are more language model-centric would operate (and

what specific n-grams they may highlight)—keeping with our theme of interpretability

while contrasting these two approaches.

In the context of our case study, we connect empirical data with word embeddings

by presenting the distributions of cosine similarity scores for 1-grams relative to gen-

dered clusters in the embedding space. Cosine similarity scores are calculated for all

1-grams relative to clusters representing both female and male clusters (defined by

1-grams in Table. 3.4). In our results we use both the maximum cosine similarity

value relative to these clusters (i.e., the score calculated against either the female or

male cluster) as well as differences in the scores for each 1-gram relative both female

and male clusters. Looking at the distributions of maximum cosine similarity scores

for 1-grams appearing in both the n2c2 dataset (Fig. 3.16) and the MIMIC-III dataset

(Fig. 3.7B) we observed a bimodal distribution of values. In both figures, a cluster

with a mean around 0.9 is apparent as well as a cluster with a mean around 0.6.

Through manual review of the 1-grams, we find that the cluster around 0.9 is largely
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comprised of more common, conversational English words whereas the cluster around

0.6 is largely comprised of medical terms. While there are more unique 1-grams in

the cluster of medical terms, the overall volume of word occurrences is far higher for

the conversational cluster.

Referencing the cosine similarity clusters against the rank-turbulence divergence

scores for the two data sets, we find that a high volume of individual 1-grams that are

trimmed are present in the conversational cluster. However, the number of unique

terms there are removed for lower trim-values are spread throughout the cosine-

similarity gender distribution. For instance, when trimming the first 1% of RTD,

we find that terms are selected in both the more conversational cluster and the more

technical cluster (Fig. 3.7E), with the former accounting for far more of the total

volume of terms removed. The total volume of 1-grams is skewed towards the conver-

sational cluster with terms that have higher gender similarity (Fig. 3.7G). The fact

that the terms selected for early stages of trimming appear across the distribution

of cosine similarity values illustrates the benefits of our empirical method, which is

capable of selecting terms specific to a given dataset without relying on information

contained in a language model. The contrast between the RTD selection criteria and

the bias present in the language model helps explain why performance on the condi-

tion classification task is minimally impacted even when a high volume of 1-grams are

removed—with RTD selecting only the most empirically biased terms. Using RTD-

trimming there is a middle ground between obscuring gender and barely preserving

performance on condition classifications—some of the more nuanced language can be

retained using our method.

88



3.4.5 Comparison of language model and empir-

ical bias

Finally, we identify n-grams that are more biased in either the language model or in

the empirical data, using RTD to divert attention away from n-grams that appear

to exhibit similar levels of bias in both contexts. Put more specifically, the first

application of RTD—on the empirical data and word-embeddings—ranks n-grams

that are more male or female biased. The second application, the divergence-of-

divergence (RTD2), ranks n-grams in terms of where there is most disagreement

between the two bias detection approaches.

For the MIMIC-III dataset, we find RTD2 highlights sex-specific terms, social

information, and medical conditions (Table 3.6). The abbreviations of “f” and “m”

for instance are rank 6288 and 244, respectively for RTD bias measures on BERT.

Moving to RTD bias measurements in MIMIC-III, “f” and “m” are the 3rd and 7th

most biased terms, respectively, appearing in practically every note when describing

basic demographic information for patients. The BERT word embedding of the 1-

gram “grandmother” has a rank of 4 but a rank of 3571 in the MIMIC-III data—due

to the fact that the 1-gram “grandmother” is inherently semantically gendered, but in

the context of health records does not necessarily contain meaningful information on

patient gender. “Husband” on the other hand does contain meaningful information

on the patient gender (at least in the MIMIC-III patient population), with it being

rank 4 in terms of its empirical bias—the word embedding suggests it is biased, but

less so with a rank of 860.
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As a final set of examples, we look at medical conditions. It is worth noting

our choice of BERT rather than Clinical BERT most likely results in less effective

word embeddings for medical terms. “Cervical” has a rank of 7 in the BERT bias

rankings and a rank of 18374 in the empirical bias distribution—most likely owing

to the split meanings in a medical context. Conversely, “flomax” has a rank of 10891

for the word embedding bias, while the empirical bias rank is 11—most likely due

to the gender imbalance in the incidence of conditions (e.g., kidney stones, chronic

prostatitis) that flomax is often prescribed to treat. Similarly, “hypothyroidism” is

ranked 12 in MIMIC and 17831 in BERT RTD ranks, with the condition having a

known increased prevalence in female-patients.

The high RTD2 ranks for medical conditions somewhat owe to the fact that we

used BERT rather than the medically-adapted Clinical BERT for these results. For

these results the choice to use the general purpose BERT rather than Clinical BERT

was motivated by illustrating the discrepancies in bias rankings when using the gen-

eral purpose model (with the added contrast of a shifted domain, as indicated by

jargonistic medical conditions). When applying this type of comparison in practice,

it will most likely be more beneficial to compare bias ranks with language models

that are used in any final pipeline (in this case, Clinical BERT). Additionally, the

difficulty of constructing meaningful clusters of gendered terms using technical lan-

guage limits the utility of the our cosine similarity bias measure in the Clinical BERT

embedding space (see Table 3.7). Inspection of the 1-grams with high RTD2 values

for BERT suggests a word of caution when using general purpose word embeddings on

more technical datasets, while also illustrating how specific terms that drive bias may

differ between different domains. The lesson derived by the case study of applying
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BERT to medical texts could be expanded to provide further caution when working

in domains that do not have the benefit of fine-tuned models or where model fit may

be generally poor for other reasons.

3.5 Concluding remarks

Here we present interpretable methods for detecting and reducing bias in text data.

Using clinical notes and gender as a case study, we explore how using our methods to

augment data may affect performance on classification tasks, which serve as extrinsic

evaluations of the potential-bias removal process. We conclude by contrasting the

inherent bias present in language models with the bias we detect in our two example

datasets. These results demonstrate that it is possible to obscure gender-features

while preserving the signal needed to maintain performance on medically relevant

classification tasks.

Our methods start by using a divergence measure to identify empirical data bias

present in our EHR datasets. We then assess the intrinsic bias present within the

word embedding spaces for general purpose and clinically adapted language mod-

els. We introduce the concept of potential bias (PB) and evaluate the reduction of

extrinsic PB when we apply our mitigation strategy. PB results are generated by pre-

senting performance on a gender classification task. Finally, we compare the results

of assessing empirical data bias and intrinsic embedding space bias by contrasting the

rankings of 1-grams produced by each method.

When evaluating the differences in word use frequency in medical documents,

certain intuitive results emerge: practitioners use gendered pronouns to describe pa-
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tients, they note social and family status, and they encode medical conditions with

known gender imbalances. Using our rank-turbulence divergence approach, we are

able to evaluate how each of these practices, in aggregate, contribute to a divergence

in word-frequency distributions between the male- and female-patient notes. This

becomes more useful as we move to identifying language that while not explicitly

gendered may still be used in an unbalanced fashion in practice (for instance, non-sex

specific conditions that are diagnosed more frequently in one gender). The results

from divergence methods are useful for both understanding differences in language

usage and as a debiasing technique.

While many methods addressing debiasing language models focus on the bias

present in the model itself, our empirically-based method offers stronger debiasing of

the data at hand. Modern language models are capable of detecting gender signals in

a wide variety of datasets ranging from conversational to highly technical language.

Many methods for removing bias from the pre-trained language model still leave the

potential of meaningful proxies in the target dataset, while also raising questions

on degradation in performance. We believe that balancing debiasing with model

performance is benefited by interpretable techniques, such as those we present here.

For instance, our bias ranking and iterative application of divergence measures allow

users to get a sense of disagreement in bias ranks for language models and empirical

data.

Our study is limited to looking at a) intrinsic bias found in our dataset and

pre-trained word embeddings, and b) the extrinsic potential bias identified in our

classification pipeline. We recognize concerns raised by Blodgett et al. [173] and

others relating to the imprecise definitions of bias in the field of algorithmic fairness.
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Indeed, it is often important to motivate a given case of bias by establishing its

potential harms. In this piece, we address precursors to bias, and thus do not claim

to being making robust assessments of real-world bias and subsequent impact. The

potential bias metric is instead meant to be a task agnostic indicator of the capacity

for a complete pipeline to discriminate between protected classes.

Due to the available data we were not able to develop methods that address

non-binary cases of gender bias. There are other methodological considerations for

expanding past the binary cases [181], although this is an important topic for a variety

of bias types [182].

There are further complications when moving away from tasks where associated

language is not as neatly segmented. For instance, we show above that when evalu-

ating language models such as BERT much of the gendered language largely appears

in a readily identifiable region of the semantic space. As a rough heuristic: terms

appearing in a medical dictionary tended to be less similar to gendered terms than

terms that might appear in casual conversation. For doctors notes, the bulk of the

bias stems from words that are largely distinct from those that we expect to be most

informative for medically relevant tasks. Further research is required to determine

the efficacy of our techniques in domains where language is not as neatly semantically

segmented.

Using clinical notes from an ICU context could bias our results due to the types of

patients, conditions, and interactions that are common in this setting. For instance,

there may be fewer verbal patient-provider interactions reflected in the data and social

histories may not be as in-depth (compared with a primary-care setting). Further, the

ways in which clinicians code health conditions may vary across contexts, institutions,
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and providers. In our study we aim to reduce the impact of how conditions are coded

by selecting common conditions that have large sample sizes in our data set—but this

is still a factor that should be considered when working with such data.

Future research that applies these interpretable methods to clinical text have the

opportunity to examine possible confounding factors such as patient-provider gender

concordance. Further, it would be worthwhile to separately address the impact of

author gender on the content of clinical texts through using analytical framework.

Other confounding factors relating to the patient populations and broader socio-

demographic factors could be addressed by replicating these trials on new data sets.

There is also the potential to research how presenting the results of our empirical bias

analysis to clinicians may affect note writing practices—perhaps adding empirical

examples to the growing medical school curriculum that addresses unconscious bias

[183].

Our methods make no formal privacy guarantees nor do we claim complete removal

of bias. There is always a trade-off when seeking to balance bias reduction with overall

performance, and we feel our methods will help all stakeholders make more informed

decisions. Our methodology allows stakeholders to specify the trade-off between bias

reduction and performance that is best for their particular use case by selecting

different trim levels and reviewing the n-grams removed. Using a debiasing method

that is readily interpreted by doctors, patients, and machine learning practitioners is

a benefit for all involved, especially as public interest in data privacy grows.

Moving towards replacing strings rather than trimming or dropping them com-

pletely should be investigated in the future. More advanced data augmentation meth-

ods may be needed if we were to explore the impact of debiasing on highly tuned
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classification pipelines. Holistic comparisons of string replacement techniques and

other text data augmentation approaches would be worthwhile next steps. Further

research on varying and more difficult extrinsic evaluation tasks would be helpful in

evaluating how our technique generalizes. Future work could also investigate coupling

our data-driven method with methods focused on debiasing language models.
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3.7 Supplementary Information (SI)

3.7.1 Note selection

After reviewing the note types available in the MIMIC-III dataset, we determined

that many types were not suitable for our task. This is due to a combination of

factors including information content and note length (Fig. 3.22. Note types such as

radiology often include very specific information (not indicative of broader patient

health status), are shorter, and may be written in a jargonistic fashion. For the

work outlined here we only include notes that are of the types nursing, discharge
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summary, and physician. In order to be included in our training and test datasets,

documents must come from patients with at least three recorded documents.
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3.7.2 Document lengths after trimming

3.7.3 Variable length note embedding

When tokenized, many of notes available in the MIMIC-III dataset are longer than

the 512-token maximum supported by BERT. To address this issue with experiment

with truncating the note at the first 512 tokens. We also explore embedding at the

sentence level (embedding with a maximum of 128 tokens) and simply dividing the

note in 512-token subsequences. In the latter two cases, we use the function outlined

by Huang et al. [28],

P (Y = 1) = P n
max + P n

meann/c

1 + n/c
(3.3)

where P n
max and P n

mean are the maximum and mean probabilities for the n sub-

squences associated with a given note. Here, c is a tunable parameter that is adjusted

for each task.

For our purposes, the improvement in classification performance returned by em-

ploying this technique did not merit use in our final results. If overall performance

of our classification system were our primary objective, this may be worth further

investigation.
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3.7.4 ICD Co-occurrence

3.7.5 Hardware

BERT and Clinical BERT models were fine-tuned on both an NVIDIA RTX 2070

(8GB VRAM) and NVIDIA Tesla V100s (32GB VRAM).
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3.7.6 Gendered 1-grams

Female 1-grams Male 1-grams
her his
she he
woman man
female male
Ms Mr
Mrs him
herself himself
girl boy
lady gentleman

Table 3.4: Manually selected gendered terms.
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1gram BERT
RTD rank

n2c2
RTD rank

BERT-n2c2
RTD rank

1 mrs 1.0 1172.5 1.0
2 ms 4.0 6560.5 2.0
3 her 279.0 3.0 3.0
4 mr. 15307.0 6.0 4.0
5 male 21798.0 8.0 5.0
6 mr 5.0 437.0 6.0
7 female 5150.0 9.0 7.0
8 linda 10.0 3681.5 8.0
9 ms. 2208.0 11.0 9.0
10 gentleman 3054.0 13.0 10.0
11 pap 25105.0 17.0 11.0
12 breast 4314.0 14.0 12.0
13 cervical 14.0 2483.0 13.0
14 biggest 16.0 5301.5 14.0
15 mammogram 25054.0 21.0 15.0
16 mrs. 2860.0 16.0 16.0
17 f 10458.0 20.0 17.0
18 woman 120.0 7.0 18.0
19 psa 6082.0 19.0 19.0
20 kathy 19.0 5301.5 20.0
21 he 3.0 1.0 21.0
22 them 20.0 4146.0 22.0
23 prostate 2223.0 18.0 23.0
24 bph 8601.0 23.0 24.0
25 husband 920.0 15.0 25.0
26 guy 22.0 5301.5 26.0
27 take 4278.0 22.0 27.0
28 infected 18.0 1455.0 28.0
29 patricia 21.0 2701.5 29.0
30 smear 21455.0 29.0 30.0
31 ellen 24.0 3681.5 31.0
32 cabg 19064.0 33.0 32.0
33 distal 7754.0 30.0 33.0
34 pend 22515.0 36.0 34.0
35 tablet 2322.0 25.0 35.0
36 cath 7111.0 31.0 36.0
37 qday 12829.0 34.0 37.0
38 peggy 17.0 485.0 38.0
39 flomax 17413.0 37.5 39.0
40 lad 2383.0 27.0 40.0
41 prostatic 23978.0 43.0 41.0
42 gout 11948.0 40.0 42.0
43 taking 9534.0 39.0 43.0
44 trouble 34.0 4183.5 44.0
45 harry 33.0 3372.0 45.0
46 vaginal 10418.0 41.0 46.0
47 qty 18645.0 45.0 47.0
48 she 6.0 2.0 48.0
49 p.o 9293.0 42.0 49.0
50 xie 20584.0 47.5 50.0

Table 3.5: Rank-turbulence divergence of the rank-turbulence divergence between
male and female Zipf distributions according to n2c2 rank-turbulence divergence
and BERT cosine similarity ranking.
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Figure 3.1: Rank-turbulence divergence allotaxonograph [3] for male and female
documents in the MIMIC-III dataset. For this figure, we generated 1-gram frequency
and rank distributions from documents corresponding to male and female patients. Pro-
nouns such as “she” and “he” are immediately apparent as drivers of divergence between
the two corpora. From there, the histogram on the right highlights gendered language that
is both common and medical in nature. Familial relations (e.g., “husband” and “daughter”)
often present as highly gendered according to our measure. Further, medical terms like
“hysterectomy” and “scrotum” are also highly ranked in terms of their divergence. Higher
divergence contribution values, δDR

α,τ , are often driven by either relatively common words
fluctuating between distributions (e.g., “daughter”), or the presence of disjoint terms that
appear in only one distribution (e.g., “hysterectomy”). The impact of higher rank values can
be tuned by adjusting the α parameter. In the main horizontal bar chart, the bars indicate
the divergence contribution value and the numbers next to the terms represent their rank in
each corpus. The terms that appear in only one corpus are indicated with a rotated triangle.
The smaller three vertical bars describe balances between the male and female corpora: 43%
of total 1gram counts appear in the female corpus; we observed 68.6% of all 1grams in the
female corpus; and 32.2% of the 1grams in the female corpus are unique to that corpus.
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Figure 3.2: Overview of the rank-turbulence divergence trimming procedure. Solid
lines indicate steps that are specific to our trimming procedure and evaluation process. The
pipeline starts with a repository of patient records that include clinical notes and class labels
(in our case gender and ICD9 codes). From these notes we generate n-gram rank distri-
butions for the female and male patient populations, which are then used to calculate the
rank-turbulence divergence (RTD) for individual n-grams. Sorting the n-grams based on
RTD contribution, we then trim the clinical notes. Finally, we view the results directly from
the RTD calculation to review imbalance in language use. With the trimmed documents we
compare the performance of classifiers on both the un-trimmed notes and notes with varying
levels of trimming applied.
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Female
Male

Figure 3.3: A tSNE embedding of n2c2 document vectors generated using a pre-
trained version of BERT with off-the-shelf weights. We observe the appearance of
gendered clusters even before training for a gender classification task. See Fig. 3.17 for the
same visualization but with Clinical BERT embeddings.
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Figure 3.4: Patient condition and gender classification performance. Using the
fine-tuned Clinical BERT based model on the MIMIC dataset. (A) Proportion of baseline
classification performance removed after minimum-trim level (1% of total RTD) is applied to
the documents. (B) Same as (A) but with maximum trimming applied (70% of total RTD).
Of all the classification tasks, ‘gender’ and ‘Urinary tra.’ experience the greatest relative
decrease in classification performance. However, due to the low baseline performance of
Urinary (≈ 0.2), the gender classification task has a notably higher absolute reduction in
MCC than Urinary tra. (or any other task). It is worth noting under low levels of trimming
MCC values slightly improved in individual trials. Further, under maximum trim levels the
gender classification MCC was slightly negative. See Fig. 3.5 for full information on MCC
scores for each of the health conditions.
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Figure 3.5: Matthews correlation coefficient (MCC) for classification results of
health conditions and patient gender with varying trim levels. Results were pro-
duced with clinicalBERT embeddings and no-token n-gram trimming. (A) − (J) show MCC
for the top 10 ICD9 codes present in the MIMIC data set. (K) shows MCC for gender clas-
sification on the same population. (L) presents a comparison of MCC results for data
with no trimming and the maximum trimming level applied. Values are the relative MCC,
or the proportion of the best classifiers performance we lose when applying the maximum
rank-turbulence divergence trimming to the data. Here we see the relatively small effect of
gender-based rank divergence trimming on the condition classification tasks for most con-
ditions. The performance on the gender classification task is significantly degraded, even
at modest trim levels, and is effectively no better than random guessing at our maximum
trim level. It is worth noting that many conditions are stable for most of the trimming
thresholds, although we do start to see more consistent degradation of performance at the
maximum trim level for a few conditions.
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Figure 3.6: Degradation in performance for Matthews correlation coefficient for
condition classification of ICD9 codes with at least 1000 patients. The perfor-
mance degradation is presented relative to the proportion of the patients with that code who
are female. We find little correlation between the efficacy of the condition classifier on highly
augmented (trimmed) datasets and the gender balance for patients with that condition (co-
efficient of determination R2 = −2.48). Values are calculated for TF-IDF based classifier
and include the top 10 health conditions we evaluate elsewhere.
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Figure 3.7: Measures of gender bias in BERT word-embeddings. (A) tSNE visual-
ization of the BERT embedding space, colored by the maximum cosine similarity of MIMIC-
III 1grams to either male or female gendered clusters. (B) Distribution of the maximum
cosine similarity between male or female gender clusters for 163,539 1grams appearing the
MIMIC-III corpus. Through manual inspection we find that the two clusters of cosine simi-
larity values loosely represent more conversational English (around 0.87) and more technical
language (around 0.6). The words shown here were manually selected from 20 random draws
for each respective region. (C) tSNE visualization of BERT embeddings space, colored by
the difference in the values of cosine similarity for each word and the male and female clus-
ters. (D) Distribution of the differences in cosine similarity values for 1-grams and male
and female clusters. (E) Distribution maximum gendered-cluster cosine similarity scores
for the 1-grams selected for removal when using the rank-turbulence divergence trim tech-
nique and targeting the top 1% of words that contribute to overall divergence. The trimming
procedure targets both common words that are considered relatively gendered by the cosine
similarity measure, and less common words that are more specific to the MIMIC-III dataset
and relatively less gendered according to the cosine similarity measure. (F) Weighted dis-
tribution of differences in cosine similarity between 1-grams and male and female clusters
(same measure as (D), but weighted by the total number of occurrences of the 1-gram in the
MIMIC-III data). (G) Weighted distribution of maximum cosine similarity scores between
1-grams and male or female clusters (same measure as (B), but weighted by the total num-
ber of occurrences of the 1-gram in the MIMIC-III data).
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Figure 3.8: Document length after applying a linearly-spaced rank-turbulence di-
vergence based trimming procedure. Percentage values represent the percentage of
total rank-turbulence divergence removed. Trimming is conducted by sorting words highest-
to-lowest based on their individual contribution to the rank-turbulence divergence between
male and female corpora (i.e., the first 10% trim will include words that, for most distribu-
tions, contribute far more to rank-turbulence divergence than the last 10%).
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Figure 3.9: Normalized rates of health-condition co-occurrence for the top 10
ICD-9 codes.
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Figure 3.10: Classification performance for the next 123 most frequently occur-
ring conditions. Matthews correlation coefficient for condition classification of ICD9 codes
with at least 1000 patients compared to the proportion of the patients with that code who are
female. While the most accurate classifiers tend to be for conditions with a male bias, we
observed that this is in-part due to the underlying bias in patient gender.
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Figure 3.11: ROC curves for classification task on top 10 health conditions with
varying proportions of rank-turbulence divergence removed. Echoing the results in
Fig. 3.5, the gender classifier has the best performance on the ‘no-trim’ data and experiences
the greatest drop in performance when trimming in applied. Under the highest trim level
reported here, the gender classifier is effectively random, while few condition classifiers
retain prediction capability (albeit modest). The bar chart show the area under the ROC
curve for classifiers, by task, trained and tested with no-trimming and maximum-trimming
applied.
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Figure 3.12: Rank-turbulence divergence for 2014 n2c2 challenge. For this figure,
2-grams have been split between genders and common gendered terms (pronouns, etc.) have
been removed before calculating rank divergence.
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Figure 3.13: Rank-turbulence divergence for 2014 n2c2 challenge. For this figure,
1-grams have been split between genders and common gendered terms (pronouns, etc. see
Table 3.4) have been removed before calculating rank divergence.
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Figure 3.14: Rank-turbulence divergence for 2014 n2c2 challenge. For this figure,
3-grams have been split between genders and common gendered terms (pronouns, etc.) have
been removed before calculating rank divergence.
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Figure 3.15: Rank-turbulence divergence for 2014 n2c2 challenge. For this figure,
2-grams have been split between genders.
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Figure 3.16: Maximum cosine similarity scores of BERT-base embeddings for 26,883 1grams
appearing in n2c2 2014 challenge data relative to gendered clusters.
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Figure 3.17: A tSNE embedding of n2c2 document vectors generated using a pre-trained
version of Clinical BERT.
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Figure 3.18: A tSNE embedding of MIMIC document vectors generated using a
pre-trained version of Clinical BERT.
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Figure 3.19: A tSNE embedding of MIMIC document vectors generated using a
pre-trained version of Clinical BERT.

tSNE  ClinicalBERT

10000

20000

30000

40000

Do
c.

 c
ha

ra
ct

er
 le

n

Figure 3.20: A tSNE embedding of MIMIC document vectors generated using a
pre-trained version of Clinical BERT.
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1gram BERT
RTD rank

MIMIC
RTD rank

BERT-MIMC
RTD rank

MIMIC
F rank

MIMIC
M rank

sexually 2.0 16755.5 1.0 10607.0 10373.5
biggest 3.0 7594.5 2.0 17520.5 21172.5
f 6288.0 3.0 3.0 251.0 1719.0
infected 5.0 16076.0 4.0 3475.0 3402.5
grandmother 4.0 3517.0 5.0 6090.0 7643.0
cervical 7.0 18374.0 6.0 1554.0 1551.5
m 244.0 2.0 7.0 2103.0 249.0
sister 6.0 4153.0 8.0 1213.5 1365.0
husband 860.0 4.0 9.0 495.0 5114.0
teenage 9.0 5513.0 10.0 15449.0 19594.0
trouble 12.0 10119.0 11.0 3778.5 4095.5
brother 10.0 1921.0 12.0 1925.0 1598.0
teenager 8.0 936.5 13.0 12928.5 21172.5
connected 16.0 16682.0 14.0 5184.5 5089.5
shaky 11.0 2341.0 15.0 10607.0 7872.0
my 15.0 8198.0 16.0 2395.0 2624.5
breast 3397.0 6.0 17.0 1075.0 4673.5
expelled 19.0 14652.5 18.0 20814.0 19594.0
them 18.0 11337.0 19.0 1738.5 1832.0
prostate 2196.0 5.0 20.0 9436.0 1576.5
immune 20.0 15043.5 21.0 9119.0 8753.0
daughter 1.0 16.0 22.0 463.0 801.5
initial 23.0 11433.0 23.0 632.5 610.0
ovarian 16374.0 8.0 24.0 3137.0 14082.0
recovering 24.0 11867.0 25.0 5351.5 5749.5
abnormal 25.0 9010.0 26.0 1849.5 1994.0
alcoholic 17.0 1136.0 27.0 3885.5 2952.0
obvious 26.0 10154.0 28.0 2725.5 2540.5
huge 28.0 13683.5 29.0 8069.0 7643.0
dirty 29.0 13264.5 30.0 8613.5 9179.5
suv 27.0 5911.0 31.0 14704.0 18377.5
container 31.0 17776.0 32.0 12090.5 12214.5
flomax 10891.0 11.0 33.0 17520.5 4095.5
sisters 32.0 17680.5 34.0 4727.0 4687.5
uterine 7260.0 10.0 35.0 4263.0 19594.0
hypothyroidism 17831.0 12.0 36.0 1239.5 2920.0
dried 34.0 15661.0 37.0 5124.5 4982.0
osteoporosis 18010.0 13.0 38.0 2354.0 7003.0
breasts 4727.0 9.0 39.0 4394.5 21172.5
certain 37.0 18020.5 40.0 7973.0 8023.0
i 30.0 4601.0 41.0 403.0 435.5
restless 21.0 1144.0 42.0 1366.0 1123.0
wife 13.0 1.0 43.0 5545.0 245.5
sle 8083.0 14.0 44.0 3511.0 12504.5
granddaughter 14.0 210.0 45.0 4656.5 7872.0
localized 47.0 14357.5 46.0 6136.0 6405.0
ciwa 7921.0 15.0 47.0 3106.5 1341.0
honey 44.0 11076.0 48.0 10868.5 9861.0
coronary 11570.0 18.0 49.0 560.0 349.0
systemic 41.0 6361.0 50.0 3696.0 4214.0

Table 3.6: Comparison of rank-turbulence divergences for gendered clusters in BERT embeddings and the
MIMIC patient health records text. BERT RTD ranks are calculated based on cosine similarity scores for word
embedding and gendered clusters (i.e., the RTD of cosine similarity score ranks relative to male and female clusters).
MIMIC RTD ranks are for 1-grams from male and female clinical notes. “BERT-MIMIC RTD rank” is the rankings
for 1-grams based on RTD between the first two columns—we also refer to this as RTD2 (ranking divergence-of-
divergence).
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1gram BERT
RTD rank

MIMIC
RTD rank

BERT-MIMC
RTD rank

MIMIC
F rank

MIMIC
M rank

is 1.0 18545.5 1.0 24.0 24.0
wife 3588.0 1.0 2.0 245.5 5545.0
yells 2.0 11292.0 3.0 10563.0 9615.0
looking 3.0 16700.0 4.0 3238.5 3289.5
m 7181.0 2.0 5.0 249.0 2103.0
kids 4.0 13675.0 6.0 8753.0 9266.5
essentially 5.0 17864.0 7.0 2269.0 2279.5
alter 6.0 15840.0 8.0 15764.0 16387.5
f 2166.0 3.0 9.0 1719.0 251.0
bumps 7.0 6936.0 10.0 13612.0 11417.0
husband 2958.0 4.0 11.0 5114.0 495.0
historian 8.0 7645.0 12.0 6895.0 6045.5
insult 9.0 7241.0 13.0 8854.5 10361.0
moments 10.0 16287.0 14.0 10563.0 10868.5
our 11.0 16938.0 15.0 2803.0 2838.0
asks 13.0 16147.0 16.0 7257.0 7449.5
goes 15.0 17662.0 17.0 3653.0 3624.5
someone 16.0 14030.0 18.0 6197.0 5920.5
ever 17.0 10698.0 19.0 5114.0 5545.0
prostate 6070.0 5.0 20.0 1576.5 9436.0
breast 6010.0 6.0 21.0 4673.5 1075.0
experiences 20.0 17062.0 22.0 9452.5 9615.0
suffer 12.0 1463.5 23.0 10968.5 16387.5
recordings 21.0 13249.5 24.0 12504.5 13440.5
wore 23.0 14774.5 25.0 8854.5 9266.5
largely 26.0 16941.0 26.0 4581.5 4515.5
hi 22.0 6459.0 27.0 3992.5 4558.0
et 27.0 17615.0 28.0 2079.0 2093.5
staying 25.0 10254.5 29.0 4366.5 4746.5
pursuing 18.0 1561.5 30.0 13612.0 20814.0
pet 24.0 4873.0 31.0 5879.0 7076.5
town 28.0 10038.0 32.0 10754.0 9615.0
tire 30.0 12053.5 33.0 12834.5 11736.5
ovarian 13390.0 8.0 34.0 14082.0 3137.0
beef 19.0 1355.5 35.0 23307.0 14704.0
dipping 34.0 17764.0 36.0 6371.0 6318.5
dip 35.0 18328.0 37.0 5585.0 5600.0
hat 33.0 10106.5 38.0 14082.0 12478.5
flomax 14782.0 11.0 39.0 4095.5 17520.5
punch 31.0 5064.5 40.0 11203.5 14033.0
ease 38.0 17265.5 41.0 6471.5 6556.0
hasn 36.0 11324.0 42.0 10373.5 11417.0
lasts 39.0 14072.5 43.0 11203.5 10607.0
grabbing 32.0 4294.0 44.0 10968.5 14033.0
hypothyroidism 17820.0 12.0 45.0 2920.0 1239.5
whatever 37.0 8524.5 46.0 13200.5 15449.0
osteoporosis 18276.0 13.0 47.0 7003.0 2354.0
uterine 6519.0 10.0 48.0 19594.0 4263.0
sle 16374.0 14.0 49.0 12504.5 3511.0
dump 47.0 15439.0 50.0 10968.5 11417.0

Table 3.7: Comparison of rank-turbulence divergences for gendered clusters in Clinical BERT embeddings
and the MIMIC patient health records text. Clinical BERT RTD ranks are calculated based on cosine similarity
scores for word embedding and gendered clusters (i.e., the RTD of cosine similarity score ranks relative to male
and female clusters). MIMIC RTD ranks are for 1-grams from male and female clinical notes. “BERT-MIMIC
RTD rank” is the rankings for 1-grams based on RTD between the first two columns—we also refer to this as RTD2

(ranking divergence-of-divergence). The presence of largely conversational terms rather than more technical, medical
language owes to our defining of gender clusters through manually selected terms.
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Figure 3.21: Document length for MIMIC-III text notes.
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Figure 3.22: Document length for MIMIC-III by note type. For our study we include
discharge summary, physician, and nursing notes. Consult notes were initially considered
but were ultimately found to be highly varied in terms of notation and nomenclature. This
had the effect of making results more difficult to interpret and would have required additional
data cleaning. We believe our methods could be applied to patient records that include consult
notes, just at the cost of additional pre-processing and more nuanced interpretation.
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Sex Count Sex Prop.

ICD Description. F M F M

Personal history of malignant neoplasm of prostate 0 1207 0.00 1.00

Hypertrophy (benign) of prostate without urinar... 0 1490 0.00 1.00

Routine or ritual circumcision 0 2016 0.00 1.00

Gout, unspecified 552 1530 0.27 0.73

Alcoholic cirrhosis of liver 323 879 0.27 0.73

Retention of urine, unspecified 283 737 0.28 0.72

Intermediate coronary syndrome 466 1197 0.28 0.72

Chronic systolic heart failure 321 776 0.29 0.71

Aortocoronary bypass status 896 2160 0.29 0.71

Other and unspecified angina pectoris 330 770 0.30 0.70

Paroxysmal ventricular tachycardia 548 1263 0.30 0.70

Chronic hepatitis C without mention of hepatic ... 380 838 0.31 0.69

Coronary atherosclerosis of unspecified type of... 479 1015 0.32 0.68

Percutaneous transluminal coronary angioplasty ... 889 1836 0.33 0.67

Portal hypertension 332 675 0.33 0.67

Surgical operation with anastomosis, bypass, or... 406 805 0.34 0.66

Coronary atherosclerosis of native coronary artery 4322 8107 0.35 0.65

Old myocardial infarction 1156 2122 0.35 0.65

Acute on chronic systolic heart failure 406 737 0.36 0.64

Cardiac complications, not elsewhere classified 847 1496 0.36 0.64

Atrial flutter 444 773 0.36 0.64

Paralytic ileus 394 678 0.37 0.63
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Sex Count Sex Prop.

ICD Description. F M F M

Chronic kidney disease, unspecified 1265 2170 0.37 0.63

Personal history of tobacco use 1042 1769 0.37 0.63

Pneumonitis due to inhalation of food or vomitus 1369 2311 0.37 0.63

Tobacco use disorder 1251 2107 0.37 0.63

Obstructive sleep apnea (adult)(pediatric) 891 1489 0.37 0.63

Cirrhosis of liver without mention of alcohol 486 801 0.38 0.62

Hypertensive chronic kidney disease, unspecifie... 1300 2121 0.38 0.62

Diabetes with neurological manifestations, type... 438 700 0.38 0.62

Other primary cardiomyopathies 664 1045 0.39 0.61

Cardiac arrest 542 819 0.40 0.60

Peripheral vascular disease, unspecified 564 837 0.40 0.60

Hyperpotassemia 874 1295 0.40 0.60

Bacteremia 599 879 0.41 0.59

Other and unspecified hyperlipidemia 3537 5153 0.41 0.59

Thrombocytopenia, unspecified 1255 1810 0.41 0.59

Pure hypercholesterolemia 2436 3494 0.41 0.59

Pressure ulcer, lower back 530 759 0.41 0.59

Subendocardial infarction, initial episode of care 1262 1793 0.41 0.59

Acute kidney failure with lesion of tubular nec... 945 1342 0.41 0.59

Acute and subacute necrosis of liver 441 626 0.41 0.59

Hypertensive chronic kidney disease, unspecifie... 1091 1539 0.41 0.59

Hemorrhage complicating a procedure 637 898 0.41 0.59
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Sex Count Sex Prop.

ICD Description. F M F M

Cardiogenic shock 480 674 0.42 0.58

Aortic valve disorders 1069 1481 0.42 0.58

Polyneuropathy in diabetes 667 917 0.42 0.58

Other postoperative infection 503 683 0.42 0.58

Respiratory distress syndrome in newborn 559 755 0.43 0.57

Cardiac pacemaker in situ 592 798 0.43 0.57

Atrial fibrillation 5512 7379 0.43 0.57

Pulmonary collapse 931 1234 0.43 0.57

Delirium due to conditions classified elsewhere 622 823 0.43 0.57

Diabetes mellitus without mention of complicati... 3902 5156 0.43 0.57

Hemorrhage of gastrointestinal tract, unspecified 602 795 0.43 0.57

Other and unspecified coagulation defects 438 578 0.43 0.57

Acute kidney failure, unspecified 3941 5178 0.43 0.57

End stage renal disease 836 1090 0.43 0.57

Accidents occurring in residential institution 456 583 0.44 0.56

Single liveborn, born in hospital, delivered by... 1220 1538 0.44 0.56

Sepsis 563 709 0.44 0.56

Hyperosmolality and/or hypernatremia 1009 1263 0.44 0.56

Other specified surgical operations and procedu... 600 750 0.44 0.56

Severe sepsis 1746 2166 0.45 0.55

Unspecified protein-calorie malnutrition 562 697 0.45 0.55

Long-term (current) use of insulin 1138 1400 0.45 0.55
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Sex Count Sex Prop.

ICD Description. F M F M

Long-term (current) use of anticoagulants 1709 2097 0.45 0.55

Other iatrogenic hypotension 953 1168 0.45 0.55

Anemia in chronic kidney disease 623 761 0.45 0.55

Intracerebral hemorrhage 618 749 0.45 0.55

Unspecified essential hypertension 9370 11333 0.45 0.55

Acute posthemorrhagic anemia 2072 2480 0.46 0.54

Unspecified septicemia 1702 2023 0.46 0.54

Chronic airway obstruction, not elsewhere class... 2027 2404 0.46 0.54

Pneumonia, organism unspecified 2223 2616 0.46 0.54

Septic shock 1189 1397 0.46 0.54

Other convulsions 892 1042 0.46 0.54

Other specified procedures as the cause of abno... 693 809 0.46 0.54

Diarrhea 484 565 0.46 0.54

Hematoma complicating a procedure 566 658 0.46 0.54

Acute respiratory failure 3473 4024 0.46 0.54

Other specified cardiac dysrhythmias 1137 1316 0.46 0.54

Need for prophylactic vaccination and inoculati... 2680 3099 0.46 0.54

Personal history of transient ischemic attack (... 498 574 0.46 0.54

Neonatal jaundice associated with preterm delivery 1052 1212 0.46 0.54

Observation for suspected infectious condition 2570 2949 0.47 0.53

Congestive heart failure, unspecified 6106 7005 0.47 0.53

Hypovolemia hyponatremia 641 733 0.47 0.53
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Sex Count Sex Prop.

ICD Description. F M F M

Single liveborn, born in hospital, delivered wi... 1668 1898 0.47 0.53

Unspecified pleural effusion 1281 1453 0.47 0.53

Acidosis 2127 2401 0.47 0.53

Esophageal reflux 2990 3336 0.47 0.53

Encounter for palliative care 485 535 0.48 0.52

Hyposmolality and/or hyponatremia 1445 1594 0.48 0.52

Iron deficiency anemia secondary to blood loss ... 482 530 0.48 0.52

Hypoxemia 625 673 0.48 0.52

Mitral valve disorders 1416 1510 0.48 0.52

Primary apnea of newborn 506 537 0.49 0.51

Hypotension, unspecified 996 1055 0.49 0.51

Personal history of venous thrombosis and embolism 786 826 0.49 0.51

Obesity, unspecified 744 767 0.49 0.51

Intestinal infection due to Clostridium difficile 716 728 0.50 0.50

Obstructive chronic bronchitis with (acute) exa... 598 600 0.50 0.50

Anemia of other chronic disease 550 543 0.50 0.50

Anemia, unspecified 2729 2677 0.50 0.50

Dehydration 704 681 0.51 0.49

Other chronic pulmonary heart diseases 1101 1047 0.51 0.49

Do not resuscitate status 694 633 0.52 0.48

Depressive disorder, not elsewhere classified 1888 1543 0.55 0.45

Morbid obesity 648 522 0.55 0.45
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Sex Count Sex Prop.

ICD Description. F M F M

Iron deficiency anemia, unspecified 657 514 0.56 0.44

Chronic diastolic heart failure 708 532 0.57 0.43

Hypopotassemia 816 609 0.57 0.43

Anxiety state, unspecified 944 636 0.60 0.40

Dysthymic disorder 663 446 0.60 0.40

Asthma, unspecified type, unspecified 1317 878 0.60 0.40

Urinary tract infection, site not specified 4027 2528 0.61 0.39

Other persistent mental disorders due to condit... 698 428 0.62 0.38

Acute on chronic diastolic heart failure 779 441 0.64 0.36

Unspecified acquired hypothyroidism 3307 1610 0.67 0.33

Osteoporosis, unspecified 1637 310 0.84 0.16

Personal history of malignant neoplasm of breast 1259 18 0.99 0.01

Table 3.8: Condition name and gender balance for the ICD9 codes with at least
1000 observations in the MIMIC-III dataset.
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Chapter 4

Gender biases in resume text data

4.1 Abstract

The gender wage gap has remained steady over the past decade with women earning

on average 84 cents for every dollar earned by men. The reasons for this are mul-

tifaceted and only partially understood. Despite gains in education and workforce

representation, there remain challenges related to broad societal factors and work-

place gender-discrimination. In the present study we analyze the text from millions

of resumes to investigate the extent to which language features are associated with

labor market gender disparities such as wages and gender representation. We start

by describing observed differences in language distributions along gendered lines—

highlighting the gender disparities of sub-specialities within occupations. We go on

to describe the resume text space with topic models, and provide a sense for what

terms commonly co-occur in individual resumes. We find that differences in job-

specific language distributions explain roughly 11% of the variation in gender pay

gap on their own. Through the same analysis we find that as job-specific language
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differences increase, gender pay gap decreases. We go on to control for gender-biases

of words themselves, and find that gender bias poorly describes the variance in wage

gap. As part of this study we show that gender-bias of word-embeddings for sets of

terms appearing in female and male resumes are strongly associated with the gender

balance of an occupation but not the gender wage gap. Taken together these results

suggests that textual data is a powerful piece of information for improving worker

representations. Additionally, the results highlight the necessity of understanding bi-

ases of this data—especially as artificial intelligence increasingly comes into contact

with hiring decisions.

4.2 Introduction

Written texts such as resumes, cover letters, and job ads are often a central feature

of the hiring process. Free text allows for the representation of skills, experience, and

responsibilities with nuance and specificity. Job advertisements often have lengthy

position descriptions to attract and select for the right talent, while workers (ideally)

take time to carefully craft brief narratives describing the most relevant aspects of

their work experience. The presence of text opens the possibility for societal biases

to manifest in intuitive and non-intuitive manners. In the modern day this bias may

come about both from human and machine reviewers in the hiring pipeline. Bias in

hiring is a common case study raised when discussing bias in artificial intelligence

(AI) systems [184–187], but relatively little is known about the data set bias present

with the primary artifact for job seekers: resumes. With resumes being a central

piece of information in the hiring process, any bias present in the data could be incor-
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porated into trained models while also having an impact on the individual trajectory

of applicants.

The National Institute for Standards and Technology (NIST) has been working to-

wards improved standards for quantifying and understanding bias in AI systems [31].

The main sources of bias in an AI system can be roughly attributed to structural, hu-

man, and statistical factors. We can conceptualize mitigation as occurring primarily

at the data set level [188,189], at test and evaluation time, and/or with modification

of human factors. In all mitigation approaches it is helpful to understand domain spe-

cific bias present in the main data artifacts of the field. Ultimately, bias mitigation

has ethical and performance implications. Improving representations of individuals

in AI pipelines not only improves outcomes with respect to ethical considerations,

but also improves our understanding of systems through a scientific lens. Indeed, we

hope the current work can serve to reduce the precursors to bias in AI pipelines while

also improving how workers are represented in future-of-word and labor economics.

There are four main stages in the hiring process: sourcing, screening, interviewing,

and selection [190, 191]. AI may come into contact with resumes at multiple points

in the hiring and employment process. For instance, selecting candidates for recruit-

ment based on public profiles and screening candidates based on their resumes. More

generally, AI might be used to understand broader labor market dynamics—including

prediction of workers’ future jobs [192] or modelling the interaction of skills in labor

markets [193]. Other work has sought to improve worker representations beyond sim-

ple titles—creating a system that can translate positions across companies [194]. The

representativeness of resumes and its interaction with AI thus has impacts for workers

in the hiring process and broader efforts to understand labor market dynamics.
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Prior work has found gender-biases in language models that mirror broader societal-

biases on gender representation in specific jobs [45, 46, 195–197]. These biases have

been found in recent state-of-the-art natural language generation models [198]. Some

of the same studies use gender proportions of names as a point of reference when

evaluating language model biases [44]. In one notable case, names and employment

intersected, with hiring software used by a major technology company found to dis-

proportionately select for stereotypically male names [186]. Gendered language in job

postings has been found to lead to reduced diversity of applicants and longer time

to fill a job, with at least one company selling a product to make the text of job ads

gender-neutral [199]. While AI has the potential to perpetuate biases and introduce

new forms of bias, there are companies claiming to use screening algorithms where

bias is mitigated, or even companies marketing mitigation tools for human resources

professionals [200].

Linguistic patterns have been shown to vary with demographic factors such as

speaker location [201, 202] and gender [203]. Analysis of Facebook messages found

significant variations in vocabulary for female and male users, with females using more

emotion words and males swearing more often and writing about objects at a higher

rate [204]. Similarly, syntactic features have been found to vary between female and

male writers [205]. Another study found the written evaluations of medical students

contains language that can vary significantly between male and female students [206].

Artificial intelligence systems operating on text are all but guaranteed to contain

some human biases which may be harmful, neutral, or simply reflect on-the-ground

realities [44]. Seminal work on gender bias in embedding spaces [46] demonstrated

how word embeddings encode societal gender biases that largely match the gender
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imbalance of employment in given jobs. Follow-on work for more recent language

models shows bias in how gender is encoded, partially stemming from imbalances in

training data [207]. Word embeddings have been used as a tool for quantifying lan-

guage bias over time [45]. The gender bias in word embedding spaces correlates with

the gender ratings of professions by human reviewers [208]. Gender bias as it relates

to job titles is a common theme in fairness work [44, 46], for instance co-reference

resolution of job titles and pro-nouns [195]. Sentiment analysis models have been

found to contain similar bias, as outlined in Bhaskaran and Bhallamudi [209]. More

generally, gender information can improve performance on NLP tasks utilizing word-

embeddings—suggesting gender, textual data, and NLP pipelines interact in notable

ways [210]. There are proposed systems to mitigate gender bias in word embed-

dings [211]. These approaches have been criticized for simply reducing bias in known

measurements while leaving other forms of bias unaddressed [212]. However, recent

work on gender bias and language classification shows that datasets can be augmented

to reduce gender signal while maintaining performance on the classification task with

count-based models [187] and with neural network language models [213].

Recent work found that in 2020 the median hourly earnings of women were 84%

of men’s earnings in the US [214]. Despite progress made on the pay gap in the

1980s and 90s, the rate of convergence has decreased in recent years. This comes

at a time when women have greatly increased educational attainment, but gender

segregation in specific bachelors and doctoral degrees has remained steady since the

90s [31]. Some of the pay gap is explained by factors such as experience, part-time

work, and an overrepresenation of women in lower paying jobs. Between the 1980s and

the 2010s the proportion of the wage gap explained by variables such as experience,
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industry distribution, education, and unionization has decreased—this has left labor

economists looking for variables that address the unexplained portion of the gap [215].

A study of US Census data from 1950 to 2000 found that on average fields that in-

creased the proportion of female workers experienced a decrease in wages—potentially

owing to the devaluation of women’s work [216]. Women often take on a dispropor-

tionate amount of unpaid care work compared with men, a factor that has historically

been overlooked when examining gender pay gaps [217]. The unpaid care work and

time devoted to family-oriented goals is one of the factors cited as contributing to the

difficulty of applying established career-trajectory models to female workers [218]. In-

deed, these differences may manifest—at least partially—as an increased proportion

of women working part-time, with women working part-time at roughly twice the

rate of men [219]. Mothers are slightly more likely than fathers to report that they

felt like they needed to reduce work hours or turn down a promotion due to family

reasons [214]. In academia, there appears to be a parenthood penalty for mothers

more so than fathers in terms of the productivity effects of having children [220]. The

effects of parenthood on employment have been especially stark during the COVID-

19 pandemic, with childcare issues negatively impacting women’s professional lives

at greater rates than men [221]. Additional factors are only beginning to be under-

stood, such as the preference for shorter commutes by women, its relation to family

responsibilities, and ultimately wages [222].

Occupation selection and disparities in specific occupations along gender lines

drives some of the overall gender pay gap [215]. In science, technology, engineering,

and mathematics (STEM) there is a notable gender imbalance—with women having

higher representation in biological and chemical sciences and men tending towards

132



mathematics and computational occupations. The imbalance is nuanced within fields,

for instance in computer science women are more prevalent in human computer inter-

action and men are overrepresented in robotics [223]. Some of this gap may be driven

by gender stereotypes that are instilled in children from a young age, with research

finding that men and boys are more likely to view themselves as talented [224].

Hiring practices may also negatively impact mothers at higher rates than fathers.

Correll et al. [225] show that changing parental status on application materials re-

duces the wage and perceived competence scores attributed to mothers, whereas men

may experience a slight benefit from being parents. In the EU labor market fa-

therhood has been found to have a wage premium whereas there are varied impacts

of motherhood—but it generally decrease women’s compensation [226]. Recent re-

search from the Swedish labor market suggests that male applicants to jobs in female-

dominated occupations have lower response rates than their female counterparts (with

balanced and male-dominated occupations having near parity in response rates) [227].

One study of resume rankings on the job sites Indeed, Monster, and CareerBuilder

found modest but statistically significant biases that benefited men both at the group

and individual level (for a subset of titles and labor markets explored) [228].

Job postings and resumes are perhaps the primary artifacts that companies and

job seekers interact with when filling roles. Job postings have been shown to relate

to the average wages of professionals and firm productivity [229]. Other work has

used large-language models trained on job postings to explain some of the variance

in offered wages [230].

There are relatively fewer large-scale studies of resume content and how it relates

to worker compensation or hiring decisions. Small scale studies have suggested there
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is an interaction between applicant, recruiter gender, and how resumes are perceived,

with female recruiters being more likely to rank male applicants as having more work

experience [231]. Another small-scale study from 1975 found that female applicants

are perceived as less competent than their male counterparts [232]. Similarly sized

studies found inconclusive results for a set of resume reviewers—with varied inferences

made based on hobbies, professional formatting, and reference writers among the

reviewer panel [233].

When conducting research in the area of AI fairness, it is important to define our

working definitions of bias and harm. For the current piece, we are primarily con-

cerned with quantifying the gender biases present in resume data. More specifically,

in our case gender bias takes the form of meaningful differences in the textual data

associated with female and male workers—where meaningful is in turn informed by

the biases’ relation to known harms. The primary harm we are concerned with is the

gender pay gap. Female workers earning less than their male counterparts presents

tangible harms related to economic hardships and is indicative of issues related to

career advancement. Secondary (and related) to the wage gap, is the gender repre-

sentation gap in a given field. Aggregate gender representation in a given field does

not present the same level of specific harm as wage. However research suggests gender

representation imbalances can be a precursor to wage disparities [216]. Additionally,

there are concerns about feedback loops in fields being viewed as stereotypically fa-

voring female or male workers, subsequent discrimination, and trainees having access

to peer mentorship. Finally, seminal studies on the gender bias present in language

models use the proportion of female to male workers in a field as reference point when

demonstrating gender biases [44,46,208].
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We build on prior studies studies in two primary areas: 1) we analyze real world

resume data, examining the information that is used in practice when making hiring

decisions; and 2) we include wage gap as a measurement of harm. To be clear, our

work operates at the data set level—identifying biases present in the data that could

manifest as biased AI pipelines (e.g., for candidate screening, job recommendation,

etc.).

In the current study, we quantify the language differences between female and

male workers using data from their resumes. We relate these differences to broader

labor market conditions, such as the gender pay gap and gender representation in

specific jobs. To do this we combine a large data set of resumes with demographic

data and labor economics data. Combining these data sets allows us to conduct

regression analyses to determine the extent to which language differences between

female and male workers describe the gender pay gap in the US labor market. In

Sec. 4.3 we introduce our data sets and describe our analytical methods. In Sec. 4.4

we present our results, describing differences in female and male language usage and

their association with the gender pay gap. Finally, in Sec. 4.5 we summarize our

findings and suggest directions for future research.

4.3 Methods

4.3.1 Data

We combine data from a large collection of resumes from the US labor market with

population level statistics from the US Bureau of Labor Statistics (BLS) to conduct
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the current study. In addition, we use data from the Occupational Information Net-

work (O*NET) to provide work place activities associated with specific occupations.

Throughout the study, we use the BLS 2018 Standard Occupation Classification

(SOC) system as a consistent taxonomy of job titles [234]. The SOC system provides

a widely adopted standard for describing and grouping occupations that enables us

to aggregate and compare results in a principled fashion. Within the SOC there

are major, minor, broad, and detailed occupations—with detailed occupations rep-

resenting the lowest level of the taxonomy. We use the example titles included with

the SOC that correspond to each detailed position to generate word-embeddings for

the positions. We then use the detailed occupation word-embeddings for matching

worker-provided job titles to one of the 867 detailed occupations for further analysis.

See Fig. 4.1 for a visual summary of the example title embedding space and list of

major occupation categories.

The Occupational Information Network (O*NET) provides detailed work activi-

ties (DWAs) that consist of sentence-level descriptions of typical activities performed

within given job families [235]. Using a crosswalk between BLS SOCs and O*NET

job classes we create sets of DWAs associated with each SOC—these collections of

DWAs are used to created word-embeddings to generate DWA clusters representative

of each occupation.

Resume data is provided by FutureFit AI. The FutureFit AI data includes machine

readable information on over 200 million resumes from the US labor market. In the

resume dataset we have information on worker gender, education, location, and self-

reported positions held over the course of their career. For each position on a resume
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there are fields for dates of tenure, job title, location, company, and a free text

description of the position.

Management
Business and Financial Operations
Computer and Mathematical
Architecture and Engineering
Life, Physical, and Social Science
Community and Social Service
Legal
Educational Instruction and Library
Arts, Design, Entertainment, Sports, and Media
Healthcare Practitioners and Technical
Healthcare Support
Protective Service
Food Preparation and Serving Related
Building and Grounds Cleaning and Maintenance
Personal Care and Service
Sales and Related
Office and Administrative Support
Farming, Fishing, and Forestry
Construction and Extraction
Installation, Maintenance, and Repair
Production
Transportation and Material Moving
Military Specific

Figure 4.1: t-distributed stochastic neighbor embedding (tSNE) of example job
titles using sentence BERT (SBERT). The embedding visualization provides a general
indication of semantic similarity of job titles in the SBERT semantic space. Points represent
an individual example job title provided by the US Bureau of Labor Statistics Standard
Occupational Classification (SOC) system. Points are colored based on their membership in
one of 23 major occupation categories.

4.3.2 Language distribution divergence

We use rank-turbulence divergence (RTD) [3] and Jensen-Shannon divergence (JSD)

to quantify the differences in language distributions between female and male work-

ers’ resumes. These divergence values allow us to highlight some the most salient

differences in language usage by female and male applicants based purely on empiri-

cal observations of language use frequency (see Fig. 4.2 for an example). Divergence
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values in general, namely RTD and JSD in our case, are helpful both for identify-

ing specific words or phrases that have meaningfully different usage between language

distributions, as well as summarizing the overall divergence between two distributions.

The rank-turbulence divergence between two sets, Ω1 and Ω2, is calculated as

follows,
DR
α (Ω1||Ω2) =

∑
δDR

α,τ

= α + 1
α

∑
τ

∣∣∣∣∣ 1
rατ,1
− 1
rατ,2

∣∣∣∣∣
1/(α+1)

,

where rτ,s is the rank of element τ (n-grams in our case) in system s and α is a tunable

parameter that affects the impact of starting and ending ranks.

The Jensen-Shannon divergence between two sets, Ω1 and Ω2, is calculated as

follows,

JSD(Ω1||Ω2) = 1
2D(P1||PM) + 1

2D(P2||PM) (4.1)

Where, D(Px||Py) is the Kullback-Leibler divergence between probability distri-

butions Px and Py, PM = 1
2(P1 +P2), and Pi is the probability distribution for set Ωi.

To generate the language distributions divergences we start by counting the oc-

currences of 1-grams (words, basically) in resumes delimited by gender and detailed

occupations. We then calculate the JSD and RTD between female and male language

distributions. For the analysis of differences between genders we mainly compare

language within detailed occupations to control for differences in occupation specific

language usages and associated gender imbalance.

138



3.94

1.17

0.251

3.94

1.17

0.251

8 6 4 2 0 2 4 6 8

Figure 4.2: Allotaxonograph [3] for female and male software developers (detailed
occupation). The central diamond shaped plot shows a rank-rank histogram for 1-grams
appearing in each gender’s resume language distributions. The horizontal bar chart on
the right shows the individual contribution of each 1-gram to the overall rank-turbulence
divergence value (DR

1/3). The triangles to the right or left of 1-grams indicate that the term
is unique to that distribution. The 3 bars under “Balances” represent the total volume of
1-gram occurring in each distribution, the percentage of all unique words we saw in each
distribution, and the percentage of words that we saw in a distribution that were unique to
that distribution.
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4.3.3 Skills embeddings

We match text descriptions of positions from resumes with DWAs from O*NET using

sentence BERT (SBERT) [236]. SBERT is a BERT-based language model optimized

for semantic similarity tasks. SBERT allows us to establish a link between latent

skills present in resumes and canonical skillsets from O*NET. In this we have SBERT

embeddings of worker resumes, −→r , and O*NET detailed workplace activities (DWAs),
−→a , for a given SOC. More specifically,

−→ai = meani∈soc(
−−−−−−→activitiesi)

To match resumes with SOCs using their associated DWAs, we take the maximum

cosine similarity score between a resume embedding −→r and all pairwise comparisons

with activities embeddings −→a . Assigning resume rj to a detailed occupation with the

following:

SOCj = argmax
i

(cos(−→rj ,−→ai )) ,∀i

The detailed occupation with a DWA cluster that is most similar to the resume

embedding is assigned to the resume. We compare these results with the title-matched

detailed occupations assigned from Sec. 4.6.

4.3.4 Word-Embedding Association Test

We use the methodology from Caliskan et al. (2017) [44] to measure the association of

1-grams from resumes with the concept of gender. At its core, the Word-Embedding
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Association Test (WEAT) relies on cosine similarity scores between attribute words

and target words. Examples of attribute categories from Caliskan et al. include

pleasant vs. unpleasant, temporary vs. permanent, and male vs. female. Examples

of target categories include instruments vs. weapons, math vs. arts, and young vs.

old people’s names. In our case, the attribute words are male vs. female and the

target words are the top 50 words contributing to RTD from the female and male

language distributions (100 words total) for a detailed occupation.

The association is measured by comparing distributions for women and men with

the gender attribute terms and looking at the standardized difference between the

similarity scores. More specifically, the test statistic for each target word w is defined

by

s(w,A,B) = meana∈Acos(−→w ,−→a )−meanb∈Bcos(−→w ,−→b )
std_devx∈A∪Bcos(−→w ,−→x )

The difference in s(w,A,B) for all target words associated with the female and

male distributions provides the final bias measure. This is defined by

s(X, Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈y

s(y, A,B)

Where X and Y are our target terms from female and male resumes. A and B

are attribute terms corresponding to female and male genders.

We use the pretrained word2vec-google-news-300 model from the original

word2vec paper for all WEAT tests [13]. While the model is older and far from

state-of-the-art, the main point is to gain a measure of gender association from a

word embedding space, a task that is well understood with an older model such
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as word2vec. Caliskan et al. (2017) find similar results when using the GloVe [7]

word-embedding model.

4.3.5 Regression analysis

We conduct regression analyses to determine the impact of language distribution di-

vergences between female and male workers on the wage gap for detailed occupations.

For this analysis we fit a model predicting women’s wages as a percentage of male

wages, Gf = Wf/Wm, where WF and Wm are the median weekly wages for women

and men, respectively. We include observations of detailed occupations for the 12

years spanning from 2005 to 2017. The full model includes the following features:

• JSDgender and RTDgender: Rank-turbulence divergence (RTD) Jensen-Shannon

divergence (JSD) values for language distributions of female and male works in

detailed occupations.

• JSDmajor and RTDmajor: RTD and JSD values for language distributions of de-

tailed occupations and the language distribution of major occupation (with the

distribution of the given detailed occupation removed from the major distribu-

tion).

• w2v bias: Word-Embedding Association Test (WEAT) effect sizes.

• state quotient: state employment quotients for 50 states and 6 territories—

defined as the percentage of a state’s worker force employed in a detailed occu-

pation divided by the national percentage of workers in that detailed occupation.
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• Female emp.: Gender balance, GB, of female and male workers in the detailed

occupation (GB = Nf/Nm).

• Major SOC FE: Fixed effects for SOC major occupation categories.

• Year FE: Year fixed effects.

4.4 Results

4.4.1 Resume topics

We fit top2vec topic models for a sample of resume position descriptions from each

major occupation. In Fig. 4.3 we show the top 10 topics for the Computer and

Mathematical Occupations major SOC. To determine the top topics and the gender

composition of each topic, we assign positions from resumes to the nearest topic.

After assigning positions (and associated workers) to each topic, we can calculate the

gender balance of each topic.

In the case of the example topics in Fig. 4.3, we see an overall imbalance towards

male workers—with roughly 26% of Computer and Math positions in our dataset

belonging to female workers. In topic 10, we can see 1-grams that are associated

with cybersecurity such as “vulnerability”, “thread”, and “intrusion”. Topic 10 is

also a male-dominated topic with only 13% of associated resumes belonging to fe-

male workers. On the other hand, topic 7 contains 1-grams related to clerical work,

including words such as “entered”, “filling”, and “paperwork” The clerical topic has

more female and male resumes associated with it, with 61% of this topic’s workers

being female.
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100% Male 0% 100% Female

Topic 1: corrective | audits | ppap | capa | iso | qms
(m=70%: f=30%)

Topic 2: engineer | sr | senior | ii | developer | software
(m=84%: f=16%)

Topic 3: computers | laptops | printers | laptop | desktops | peripherals
(m=86%: f=14%)

Topic 4: calls | escalate | tickets | answered | inquiries | escalated
(m=65%: f=35%)

Topic 5: deliverables | requirements | stakeholders | specifications | functional | define
(m=64%: f=36%)

Topic 6: defects | cases | defect | regression | test | executing
(m=64%: f=36%)

Topic 7: entered | clerical | filing | entering | entry | paperwork
(m=39%: f=61%)

Topic 8: ospf | bgp | firewalls | asa | juniper | cisco
(m=94%: f=6%)

Topic 9: really | don | excited | too | thing | say
(m=81%: f=19%)

Topic 10: vulnerability | siem | vulnerabilities | threat | remediation | intrusion
(m=87%: f=13%)

Figure 4.3: Topics for the mathematics and computer occupations major SOC
category. The bars represent the balance of women and men for each topic as determined
by assigning resumes to their most similar topic. Associated words are the 6 most similar
1-grams in the joint 1-gram and topic embedding space produced by top2vec. Topics are
ordered from most prevalent (topic 1) to least prevalent. See Fig. 4.11 for a visualization of
the topic space.

4.4.2 Similarity of job descriptions to canoni-

cal activities

We find notable differences in the semantic similarity of position descriptions on re-

sumes and the corresponding set of detailed work place activities (DWAs) provided by144



O*NET. We evaluate this difference by embedding job descriptions from resumes and

DWAs using SBERT. The distribution of cosine similarity scores provides an indica-

tion of how close job descriptions from resumes are to O*NET DWAs in the semantic

space—in theory, higher similarity scores represent worker-generated descriptions that

are closer to expected descriptions.

Fig. 4.4 shows the rank distribution of true titles matched using the DWA ap-

proach for 6 major occupation classes. Kolmogorov-Smirnov tests show where there

are significant deviations between female and male distributions. For instance, for

computer and mathematical occupations males’ true job titles are more important

(lower rank value) than females’ when using the position descriptions and DWA simi-

larity method. Alternatively, for office and administration jobs, females’ true position

is more important than males’ when using the DWA similarly approach.

4.4.3 Gender language divergence

Divergence results for language distributions corresponding to female and male work-

ers within the same detailed occupations reveal some salient differences between gen-

ders. As an example we look at the software developer detailed occupation. Fig. 4.2

shows how specific words contribute to the divergence between the language distri-

butions for female and male software developers. Overall, we notice an abundance of

unique or somewhat rare words in the divergence contributions. Terms such “sccm”,

“gbif”, and “linkus” refer to specific tools, organizations, or products. Indeed, there is

a rather heavy tail of rare terms owing partially to the prevalence of specific tools and

technologies in the field. We see more common words such as “requirements”, “cases”,

and “tests” appearing more frequently in female resumes, which likely corresponds to
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a higher prevalence of female developers in the sub-fields of quality assurance. On the

other hand, we see the words “embedded” and “hardware” appear more frequently in

the male distributing, likely owing to the higher prevalence of men in sub-specialities

that deal more directly with computer hardware.

Moving to a different detailed occupation, Fig. 4.7 provides a counter example

from the legal profession where we see less unique words driving the divergence. In

this case, we see the female distribution contains relatively more occurrences of terms

related to family law (e.g., “family”, “domestic”, “guardianship”). The distribution

for male lawyers contains relatively more words related to intellectual property (e.g.,

“intellectual”, “secrets”) and personal injury (e.g., “accident”, “injury”).

4.4.4 Inter-occupation language divergence

To contextualize the divergence results presented throughout this piece, we calculate

the pairwise language distribution divergence for all detailed SOCs (including workers

from both genders). In Fig. 4.10 we present a tSNE visualization of these divergences

but embedding them in a 2-dimensional space—in the figure the grouping of jobs by

major SOC is apparent.

For context, using the RTD measure, two of the most similar detailed occupations

are Appraisers and Assessors of Real Estate and Real Estate Sales Agents

(RTD = 0.303). Notably, these occupations are from different major occupation

groups, but due to their domain specific experience and skills the RTD measure is

relatively small between them. On the other hand, two of the most different detailed

occupations—as determined by RTD—are Ophthalmologists, Except Pediatric
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and Cutting, Punching, and Press Machine Setters, Operators, and

Tenders, Metal and Plastic (RTD=0.862).

4.4.5 Regression analysis

Differences in language usage by female and male workers have modest but statisti-

cally significant correlation with female wage share (r = 0.29, p < 0.001, see Fig. 4.5).

On its own, Jensen-Shannon divergence describes roughly 11% of the variation in the

female wage gap (See Table 4.1). The effect remains when controlling for women’s

employment share and the language differences of detailed occupations relative to

the occupation’s major occupation class, with this model accounting for roughly 22%

of the variation in the wage gap. Our full model includes fixed effects for year and

major occupation as well as state employment quotients. Adding in the language

divergence feature for gender improves classification for the full model, as evidenced

by the increased R2 = 0.546 value. Further, the coefficients for the gender language

distribution are relatively stable and statistically significant at the p < 0.001 level for

for all model types. See Fig. 4.6 for a comparison of model root mean squared errors.

In an effort to control for gendered language, we include a WEAT variable (w2v

bias) that describes the bias of 1-grams for the distributions corresponding to each

observation. On its own, w2v bias accounts for roughly 6% of the variance in the

wage gap, but after adding the variable to the full model we find the coefficient is

pushed to effectively 0 and there is no change in variance explained. In contrast, when

we fit a model to predict the gender employment gap, w2v bias describes roughly

18% of the variance by itself. In the employment gap model, the w2v bias coefficient
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remains significant when included in the full model, and improves the R2 value by

roughly 0.03.

Qualitatively, the employment gap results are consistent with Caliskan et al. who

find that there is a positive correlation between word-embedding gender bias of job

titles and the gender distribution of a detailed occupation (r = 0.90, p < 0.001). In

our case, we find that the word-embedding gender bias of the top divergence-driving

words and the gender distribution of occupations is positively correlated as well, but

with a smaller effect size (r = −0.38, p < 0.001, see Fig. 4.8).

4.5 Conclusion

In the current piece we describe aggregate level language differences between female

and male workers’ resumes. We go on to demonstrate an association between these

differences and the gender pay gap. We show the gender composition of resume topics

for a major category of jobs, shedding light on the signal present in the resume-text

data set and its relation to gender (im)balances. We also present follow-on work from

prior research that expands on the connection between gender bias present in semantic

spaces with on-the-ground realities of gender distributions within occupations. Taken

together these results demonstrate the value in leveraging text data to improve our

understandings of workers’ skills, experience, and other factors. We show that textual

data contains signals that help describe real world harms such as the wage gap.

Further, we see how one must be thoughtful about constructing text-based features—

in our case wage gap and employment share required two different lenses to surface

meaningful associations.
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Dependent variable:
Female wage percentage

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Female emp. 0.081∗∗∗

(0.009)
0.074∗∗∗

(0.009)
0.079∗∗∗

(0.009)
0.057∗∗∗

(0.011)
0.057∗∗∗

(0.011)
0.059∗∗∗

(0.011)

JSDgender
0.185∗∗∗

(0.021)
0.317∗∗∗

(0.039)
0.221∗∗∗

(0.044)
0.221∗∗∗

(0.044)

JSDmajor

-
0.493∗∗∗

(0.103)

-0.212∗

(0.108)
-0.214∗

(0.109)

RTDgender
0.289∗∗∗

(0.038)
0.185∗∗∗

(0.052)

RTDmajor
-0.094
(0.069)

0.152
(0.124)

w2v bias
-

0.087∗∗∗

(0.013)

-0.001
(0.014)

State
quotient Yes Yes Yes

Year FE Yes Yes Yes
Major SOC

FE Yes Yes Yes

R2 0.100 0.114 0.230 0.189 0.063 0.556 0.556 0.543
Adj. R2 0.099 0.112 0.227 0.185 0.061 0.490 0.489 0.475

p < 0.1∗, p < 0.01∗∗, p < 0.001∗∗∗

Table 4.1: Ordinary least squares models predicting the wage percentage for
women. Coefficient values are reported with standard errors in parentheses. State quo-
tients, year fixed effects (FE) and Major SOC FE are reported as binary inclusion.
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The first indication of meaningful differences in language usage between genders is

seen with the divergence measures. We show that the individual words contributing

to the divergences are noteworthy and that viewing the words provides explainability

of the divergence results. The next indication of gender disparities came with our

analysis of matching canonical workplace activities for specific jobs with the text

portion of position descriptions. The activity matching shows differences for female

and male workers—suggesting that the idealized candidate for specific jobs may have

gender bias, at least relative to empirically observed resume data. Topic modelling

provided an indication of how resume text commonly clustered together along with the

gender composition of these clusters. In an attempt to more meaningfully investigate

biases, it is important examine the harms that may result [173]—in our case gender

pay gap and gender representation within occupations are two examples of harm.

Our regression analysis demonstrates that job-specific language divergence mea-

surements (JSD and RTD) detect salient differences between female and male workers’

resumes with respect to the gender wage gap. These differences are likely not sim-

ply a function of gender employment share or other factors such as location, year,

or major occupation. Indeed, the divergence measures are poor predictors of female

employment percentage as seen in Table 4.2 and the correlation in Fig. 4.9 (r = 0.01).

Further, the divergence measures appear to capture information that is not entirely

described by measurements of gender bias in a word-embedding space. Taken to-

gether, these results suggest that there are latent characteristics of language distribu-

tions for female and male workers that help describe at least part of the gender pay

gap.
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The job-specific language divergence measurements are likely influenced by a

plethora of factors. Broadly, geographic variation in language usage, temporal effects,

and industry effects are all factors that likely influence the language characteristics

we report here. We make an effort to control for these specific factors using fixed

effects for time and major occupation category along with including a control for

detailed occupation employment at the state-level. There are also factors related to

specific firms and educational institutions that may affect the language features of

resumes—something we do not control for in the present study.

We have presented some evidence that the distribution divergences are contributed

to by sub-specialization (e.g., quality assurance vs. hardware engineers for software

developers). Indeed, no two workers are exactly the same. Experience, qualifications,

and skills, all contribute to workers that are best thought of as having high dimen-

sional characteristics. Language is one manner by which to capture salient informa-

tion that would be difficult to collect in tabular form—especially given current data

repositories. Text-as-data, when used correctly, can help use create improved rep-

resentations of workers for the purposes of labor economics, future-of-work research,

worker re-skilling, talent screening, and other areas. But first we need to understand

how linguistic features interact with other worker attributes and may contribute to

real world harms. The gender wage gap is but one example of these harms—one for

which data was available for the present study—but there other worker attributes that

should be understood in relation to textual data (e.g., race, parental status, age, etc.).

Using free text descriptions could unlock a vast amount of information that is increas-

ingly important in today’s modern workforce—especially as jobs, skills, and careers

change more rapidly than ever. Accessing the promise of this data must come in tan-
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dem with understanding how biases and inequalities are contained within—both for

the purposes of better understanding and mitigating these issues. For instance, other

research has emphasized the limitations of efforts to debias language models [212],

and our work suggests that salient gender signals exist outside the dimensions of

gender that would commonly be encoded in a general purpose language model.

Thinking broadly about our results, we believe there is some logic behind the find-

ing that the representation gap is associated with gender bias in the word-embedding

space, while the wage gap would be associated with job-specific language differences.

For one, the gender bias present in language models is likely owing to societal associ-

ations of genders and occupations based on the demographics of workers (this point

can lead to feedback loops with subconscious selection for stereotypical workers). On

the other hand, intra-occupation wage gaps are less discussed and likely less central

to societal perceptions of jobs and worker characteristics. Instead, wage gaps within

occupations are more likely related to factors that are also encoded in resumes—skills,

experience, certifications, and so on.

We were limited to examining binary cases of gender due to the constraints on

the available datasets (both the resumes and BLS data are coded with female and

male genders). Future research should be conducted with non-binary cases of gender.

Furthermore, we were not able to evaluate the accuracy of the gender variable in our

resume data set—a potential issue given some gender classifiers have been shown to

vary in accuracy along racial and ethnic lines [237]. Our resume dataset does not

purport to be a totally representative sample of workers from the US labor market,

and the potential for sampling bias influencing our results cannot be ruled out. We

are also unable to comment on the direct causes of the wage gap based on our ana-
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lytical framework—we are merely able to present notable associations. Future work

could investigate how modifying language in resumes affects job screening and hiring

processes—putting our theories to the test in more real world settings.

4.6 Supplementary Information (SI)

Job title classification

Using sentence BERT (SBERT) we create job title word-embeddings, −→t , for all titles

appearing in the FutureFit AI resume dataset. We apply a similar procedure to the

BLS SOC example titles, starting by creating a word-embedding for each title (BLS

provides 4-10 example titles for each detailed occupation). Next, we take the average

embedding of the example job titles for each detailed SOC—this mean vector will

represent the detailed SOC category for the resume title classification task. The

collection of these mean vectors for occupations, −→o , forms the set of all occupation

mean vectors, O. Classification is performed by searching for the most similar SOC

embeddings for each resume position title embedding, −→t in the resume title set T .

Using cosine similarity, we calculate the pairwise cosine similarity between each title

and all 867 detailed SOC embeddings. We take the argmax of the cosine similarly

vector for each resume title, and assign the corresponding SOC job title as a candidate

match,

argmax
i

cos(−→t ,−→o i) , ∀i
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Finally, we threshold by calculating the empirical cumulative distribution function

for all pairwise matches (i.e., not just the ‘best’ or most similar match) and retaining

the candidate matches that are greater than 99.9% of all cosine similarity scores.
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Dependent variable:
Female employment percentage

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Female sal. 1.237∗∗∗

(0.155)
1.314∗∗∗

(0.157)
1.309∗∗∗

(0.160)
0.765∗∗∗

(0.154)
0.702∗∗∗

(0.145)
0.742∗∗∗

(0.153)

JSDgender
0.106

(0.068)
-0.104
(0.186)

-0.496∗∗

(0.185)
-0.453∗∗

(0.176)

JSDmajor
-0.113
(0.534)

-0.209
(0.528)

-0.575
(0.508)

RTDgender
-0.192
(0.142)

-
1.182∗∗∗

(0.167)

RTDmajor
-0.631∗

(0.334)
-0.314
(0.445)

w2v bias
-

0.589∗∗∗

(0.048)

-
0.318∗∗∗

(0.048)
State

quotient Yes Yes Yes

Year FE Yes Yes Yes
Major SOC

FE Yes Yes Yes

R2 0.100 0.002 0.104 0.115 0.189 0.608 0.639 0.625
Adj. R2 0.099 0.001 0.100 0.111 0.188 0.550 0.585 0.569

p < 0.1∗, p < 0.01∗∗, p < 0.001∗∗∗

Table 4.2: Ordinary least squares models predicting the employment percentage
for women. Coefficient values are reported with standard errors in parentheses. State quo-
tients, year fixed effects (FE) and Major SOC fixed effects are reported as binary inclusion.
Female salary (sal.) is the dependent variable from Table 4.1.
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Figure 4.4: Rank distributions for job titles when inferred from resume descrip-
tions matched against detailed workplace activities (DWAs). Position descriptions
from resumes are embedded using SBERT along with detailed workplace activities pertaining
to each detailed SOC (provided by BLS). Rank values are for the cosine-similarity scores
between DWA and resume embeddings. In general, a distribution being shifted to the right
indicates that DWAs are less similar to the resumes belonging to that gender. Transporta-
tion has a larger difference in the female and male rank distribution than compared with
Management. Stars indicate where difference in distribution is significant as detected by a
one-sided Kolmogorov-Smirnov test.
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Figure 4.5: Pearson correlation between RTD and female wage share for detailed
occupations from 2005 to 2017. There is a positive correlation between women’s earn-
ings and the language divergence between women and men for a given detailed occupation
in the data set.

157



Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

0.07

0.08

0.09

0.10

0.11

0.12

R
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r

Figure 4.6: Root mean squared error for models predicting women’s wage share.
See Table. 4.1 for model specifications and R2 values.
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Figure 4.7: Alltotaxonograph [3] for the 1-gram distributions of resumes for
female and male lawyers (detailed occupation).
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Figure 4.8: Bias scores for word2vec-derived gender bias effect compared with
proportion of workers who are female for detailed occupations.
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Figure 4.9: Rank-turbulence divergence over female employment share
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Figure 4.10: tSNE embedding of language distribution rank-turbulence diver-
gences. Each point corresponds to a detailed occupation and is colored by its corresponding
major occupation. The location in the visualization is determined by an embedding created
using the RTD divergence values as a pre-computed distance.
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Figure 4.11: tSNE embedding of top2vec topics for resumes in the Computer and
Mathematical Occupations major SOC.
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Chapter 5

Libraries

5.1 Overview

This section provides an overview of the libraries behind the research projects pre-

sented in this dissertation. Scientific computing is a central component of computa-

tional social science, but the software is not always discussed prominently.

5.2 List of libraries

• twitter-utils: a utility package for working with tweet JSON objects, man-

aging flatfiles at scale, and scheduling jobs on a high performance compute

cluster.

• potusometer: an API for interfacing with reply threads stored in MongoDB.

The Ratiometer project (Chpt. 2) required the collection and indexing of hun-

dreds of millions of tweets. Storing these tweets in MongoDB allowed for rapid
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iteration of queries and answering more complicated research questions. This

library abstracted much of the convoluted MongoDB queries away from the end

user.

• doctors-notes: a library for augmenting textual documents based on complex

characteristics of the document meta-data and the documents themselves. As

part of the interpretable bias mitigation project (Chpt. 3) this library allowed

for text documents to be readily augmented based on language distribution

divergence measures. In addition, the library provides a facility for training

a high number of language models to test the efficacy of the augmentation

procedure.

• soc-classification: a library for classifying free text based on semantic

similarity to the text of target classes. The library was primarily used for

classifying job titles and detailed workplace activities in the resume bias project

(Chpt. 4). The primary functionality is provided by the matching engine based

on the sentence BERT (SBERT) [236] language model. In addition, the library

provides functionality for locality-sensitive hashing for document deduplication.
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Chapter 6

Conclusion

Here we present a collection of three works broadly concerned with improving our

understanding of the representativeness of data that describes sociotechnical sys-

tems. The improved representation can be additional context of social media posts

for a class of ultra-famous users, as in Chpt. 2. Another improvement can come

with better understanding the biases present in the data and AI pipelines as with

Chpts. 3 and 4. Chpt. 3 explores differences in language usage in electronic health

records corresponding to female and male patients, and presents a methodology for

reducing gender signals in the data. Chpt. 4 investigates how differences in the lan-

guage distributions of resumes for female and male workers may be associated with

the gender pay gap—in the process highlighting the subtleties of sub-specialities in

many fields.

The motivations for understanding the dynamics of response activities in Chpt. 2

are multifaceted. For one, the ratio of these activities has become a cultural phe-

nomenon on Twitter—more replies or quote tweets than likes or retweets can be seen

as indicative of a controversial post. Second, the types of users we examined qualify
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as ultra-famous users [123] on Twitter. Obama and Trump are examples of users who

are talked about and engaged with at a rate that few others can match. With Twit-

ter being a direct line to the public, it is important to understand how users respond

(and spread) presidential communications on the platform. Finally, understanding

response activities provides helpful context to data on social media. With this work

it is possible to weight posts by the absolute value of responses, the ratio of these

responses, or some function of response volume over time. We hope that a better

understanding of the ratio leads to an additional filter that can be applied to lexical

instruments operating on social media data.

More broadly, response activity dynamics may be helpful when making content

moderation decisions and understanding the impact of recommendation algorithms

on social media platforms. Future work in this area should address broader classes

of users as defined by their fame on that platform. Further, it is worth pursuing

analogous studies of response activities from other platforms and ideally developing

a unified framework for cross-platform comparison.

We move to examining health records and large-language models in Chpt. 3, mo-

tivated by the goal of understanding the gendered dimensions of clinical texts and its

interaction with language modelling pipelines. More generally, we are motivated to

investigate demographic signals in text and the extent to which these signals could be

reduced. We show that a divergence based measure can surface meaningful differences

in language usage for female and male patients. We also find that using divergence

results we can obscure the gender signal in patient notes—retaining classification

performance on medically relevant tasks but preventing the identification of patient

gender. Finally, we highlight the differences between gender bias as detected in the
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word-embedding space with the bias detected on the data set using the divergence

measure. The last point highlights the issue of tailoring our instruments to specific

domains and tasks.

Going forward, studies could investigate how our data augmentation procedure

compares (and perhaps interacts) with other debiasing techniques (e.g., adversarial

debiasing [238]). Moving beyond binary definitions of gender and other demographic

variables is another important next step for this research—a step that will require a

modified framework and access to data sets with additional features. Looking towards

fields other than medicine would help explore the generalizability of this framework.

Given that interpretability was a central driver of the methodology, going forward we

would like to evaluate how various stakeholders perceive and react to different bias

mitigation approaches.

Our final study (Chpt. 4) investigates the connection between the position descrip-

tions on resumes and the gender wage gap. The work is novel for making a large-scale

assessment of the free-text portion of resumes and connecting the textual data to wage

gaps and gender representation by field. Previous work in NLP had connected gen-

der imbalances in fields with semantic biases—but to the best of our knowledge, we

are the first to relate gender biases in the labor market with the actual text content

of workers’ resumes at scale. We find that the job-specific language differences are

associated with gender wage gap, while semantic differences in the language used on

resumes is associated with gender representation within occupations. One broader

takeaway from this result is the value of more nuanced representations of workers in

this data. The standard taxonomies of occupations fail to fully capture the details of

sub-occupation specialization. Workers are high dimensional, having attributes like
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skills and experience that are difficult to neatly quantify in tabular formats. Here we

see the value of text-as-data, and the necessity of evaluating it critically to discover

biases and improve our understanding of central processes in a sociotechnical system.

Similar to work in Chpt. 3, the framing of gender bias in Chpt. 4 fails to move

beyond binary definitions of gender. A next step for the research is to investigate

how to represent and study other framings of gender. Furthermore, future work

should incorporate additional demographic variables and consider how to assess bias

through an intersectional lens that factors in the interaction between these variables

[239, 240]. It is worth considering how we could evaluate labor markets beyond the

US. Moving beyond the US labor market may be difficult owing to available data and

varying norms surrounding hiring. All of the studies discussed above were developed

primarily with data from the US. While they offer examples of how we can improve

our understandings of sociotechnical systems, it is important to remember the bias

introduced by the US-centric view. Making sociotechnical instruments adaptable

and effective across cultural contexts is a worthwhile future direction for all of these

projects.
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