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Abstract

The Reference Governor (RG) is a methodology based on predictive control for con-
straint management of pre-stablized closed-loop systems. This problem is motivated
by the fact that control systems are usually subject to physical restrictions, hardware
protection, and safety and efficiency considerations. The goal of RG is to optimize the
tracking performance while ensuring that the constraints are satisfied. Due to struc-
tural limitations of RG, however, these requirements are difficult to meet for Multi-
Input Multi-Output (MIMO) systems or systems with preview information. Hence,
in this dissertation, three extensions of RG for constraint management of these classes
of systems are developed. The first approach aims to solve constraint management
problem for linear MIMO systems based on decoupling the input-output dynamics,
followed by the deployment of a bank of RGs for each decoupled channel, namely
Decoupled Reference Governor (DRG). This idea was originally developed in my pre-
vious work based on transfer function decoupling, namely DRG-tf. This dissertation
improves the design of DRG-tf, analyzes the transient performance of DRG-tf, and
extends the DRG formula to state space representations. The second scheme, which
is called Preview Reference Governor, extends the applicability of RG to systems
incorporated with the preview information of the reference and disturbance signals.
The third subject focuses on enforcing constraints on nonlinear MIMO systems. To
achieve this goal, three different methods are established. In the first approach, which
is referred to as the Nonlinear Decoupled Reference Governor (NL-DRG), instead of
employing the Maximal Admissible set and using the decoupling methods as the DRG
does, numerical simulations are used to compute the constraint-admissible setpoints.
Given the extensive numerical simulations required to implement NL-DRG, the sec-
ond approach, namely Modified RG (M-RG), is proposed to reduce the computational
burden of NL-DRG. This solution consists of the sequential application of different
RGs based on linear prediction models, each robustified to account for the worst-case
linearization error as well as coupling behavior. Due to this robustification, how-
ever, M-RG may lead to a conservative response. To lower the computation time of
NL-DRG while improving the performance of M-RG, the third approach, which is
referred to as Neural Network DRG (NN-DRG), is proposed. The main idea behinds
NN-DRG is to approximate the input-output mapping of NL-DRG with a well-trained
NN model. Afterwards, a Quadratic Program is solved to augment the results of NN
such that the constraints are satisfied at the next timestep. Additionally, motivated
by the broad utilization of quadcopter drones and the necessity to impose constraints
on the angles and angle rates of drones, the simulation and experimental results of
the proposed nonlinear RG-based methods on a real quadcopter are demonstrated.
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Chapter 1

Introduction

1.1 Background and Motivation

A control system regulates and manages the system behavior so that desired perfor-

mance is achieved, such as setpoint tracking, disturbance rejection, and closed-loop

stability. Almost all physical systems are subject to constraints, including physical ac-

tuator limits, safety limitations, hardware protection, and efficiency requirements. In

recent decades, besides focusing on the performance of the system, practitioners have

increasingly recognized the importance of constraint management. As such, numer-

ous control strategies have been proposed to enforce constraints on system dynamics

with the intention to protect the hardware components and operators from damage

and keep the desired closed-loop system performance. The Reference Governor (RG)

is one such a scheme, which is an add-on mechanism that modifies the setpoint (i.e.,

reference) to a pre-stabilized closed-loop system only if a violation of constraints is

predicted; otherwise, the system performance remains unchanged. RG has numer-

ous attractive features, such as recursive feasibility, bounded-input bounded-output

1



stability, convergence of output for constant setpoint signals, and computational ef-

ficiency. However, due to its structural limitation, RG may lead to a conservative

response on multi-input multi-output systems (MIMO), yet most of the industrial

control systems are MIMO. Also, RG only takes the current references into consid-

eration and, thus, is unable to incorporate the preview information of references and

disturbance into its design. Furthermore, RG is not capable of effectively handling

system nonlinearities, which are the characteristics of almost all practical systems.

This dissertation presents extensions of RG to overcome the above shortcomings and,

thus, extend the applicability of RG. More specifically, this work pursues: a new RG

solution for linear MIMO systems that maintains the computational simplicity of RG;

a novel RG-based solution to enforce the constraints while incorporating the preview

information of the reference and disturbance signals; and a new RG scheme that can

be applied to nonlinear MIMO systems. Finally, motivated by the broad utilization of

quadcoper drones, this dissertation also presents the implementation of the proposed

nonlinear RG-based methods on quadcopter drones.

1.2 Overview of Reference Governor and

Problem Statement

Reference governor (RG) is an add-on predictive control scheme that enforces pointwise-

in-time state and output constraints in the closed-loop systems [3]. More specifically,

a block diagram of RG is shown in Figure 1.1. As the figure shows, RG modifies,

whenever is required, the reference (v(t)) to a well-designed stable closed-loop system

G(z) to enforce the constraints on the state and/or outputs. The RG employs the

2



Reference
Governor

Closed-Loop
Plant: G(z)

r(t) v(t) y(t)

x(t)

Figure 1.1: Reference governor block diagram. In this figure, r(t), u(t), y(t), and x(t) are
the reference, input, constrained output, and state, respectively.

so-called Maximal Admissible set (MAS) [4], , which is defined as the set of all initial

conditions and inputs that ensure constraint satisfaction for all future times. This

set is computed offline. In real-time, RG computes an optimal v(t) to maintain the

system state inside the MAS and, thus, enforce the constraints. This is achieved

by solving, at every timestep, a simple linear program (LP), whose solution can be

computed explicitly.

As mentioned before, the application of RG has be limited to certain systems. Be-

low, a detailed explanation on the problems aimed to solve in the dissertation will be

presented. For the sake of clarity, the problem statement for each one of the constraint

management schemes presented in this dissertation is explained individually.

1.2.1 Constraint Management for linear MIMO

systems

Many control systems in practice are multiple-input and multiple-output systems

(MIMO). Control and constraint management of MIMO systems have been explored

in the field of controls for many decades. The control of MIMO systems has been the

focus of many works in the literature, for example the Linear Quadratic Regulator

(LQR), state feedback control methods, sliding mode control, H2 and H∞ control,

3



and decentralized and centralized control methods, please see [5–13]. The problem

of constraint management of MIMO systems has been explored as well. One route

is to first find a suitable compensator to decouple the input-output dynamics, see

[14–16] (for a more comprehensive review on decoupling method, please see [17]).

Afterwards, a diagonal controller for the newly decoupled plant is designed. The

constraint management problem is tackled by nonlinear functions (e.g., saturation

functions) that maintain the constrained signal within the desired bounds. However,

this approach can compromise the closed-loop stability and may not enforce state

constraints. Another approach is Model Predictive Control (MPC), see [18–20], which

addresses tracking problem while simultaneously enforce point-wise time state and

output constraints. However, MPC tends to be computationally demanding, which

has limited its applicability, especially for systems with fast dynamics and/or high

order. Other approaches to solve constraint management are l1-optimal control, see

[21], barrier Lyapunov function, see [22,23], and constrained LQR, see [24].

A computationally attractive alternative to MPC is the RG (as shown in Fig-

ure 1.1), which can be designed independently of the tracking controller and allevi-

ates the above shortcomings of MPC. However, Standard RG uses a single decision

variable in the LP to simultaneously govern all the channels of a MIMO system. As

a result, it tends to have a conservative response. A modification of the RG, which

performs well in MIMO systems, is the so-called Vector Reference Governor (VRG),

see [25]. This technique handles constraint management by solving a quadratic pro-

gram (QP) with multiple decision variables (one for each reference input). Even

though VRG shares some properties with RG, its implementation demands a higher

computational load in comparison with RG. This is because of the QP with multiple
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decision variables that must be solved at each time step, either by implicit methods

or multi-parametric explicit methods.

Problem statement: The first problem tackled in this dissertation is constraint

management for linear MIMO systems as motivated above. Note that in my previous

work [26], a novel RG-based approach is developed to solve this problem, namely

Decoupled Reference Governor based on Transfer Function (DRG-tf), by decoupling

the input/output dynamics of the system in the transfer function (Laplace) domain,

followed by the implementation of a bank of RGs. However, [26] lacks a thorough

analysis of DRG-tf, cannot handle systems with disturbances and noise, lacks appli-

cability to non-square MIMO systems, and does not address the issue of observer

design. This dissertation targets to fill those gaps, as well as extend the formula of

DRG to systems with state-space representations.

1.2.2 Constraint Management with Preview Con-

trol

Preview control has been a subject of study in the field of control theory for many

decades. The essential idea behind preview control is to incorporate known or esti-

mated information on the future values of the disturbances or references (i.e., preview

information) in the computation of the current control command. Such preview may

be computed from models or may be available from measurements. As an example,

in a wind turbine control application, preview information on wind velocity may be

available from lidar sensors or measurements taken elsewhere in the wind farm [27].

Incorporating this information in the calculation of the control command can result in
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improved system performance and cost effectiveness [28]. Other examples of preview

control applications include automotive active suspension [29] and swing leg trajec-

tories of biped walking robots [30]. In the former, preview information of the road

can be used to improve ride comfort. In the latter, the preview information can be

Incorporated to help robots adapt to the environment.

Common approaches for preview control are H∞ preview control [31], LQR pre-

view control [32], and mixed H2-H∞ method, just to mention a few (see [33] for

a comprehensive review). These methods, however, do not allow pointwise-in-time

state and control constraints enforcement, which is important to ensure safe and ef-

ficient system operation. A preview control method that can, in fact, enforce these

constraints is Model Predictive Control (MPC) [28–30]. However, as mentioned in

previous section, MPC tends to be numerically expensive and not suitable for sys-

tems with fast dynamics. A computationally attractive alternative to MPC is the

Reference Governor (RG). However, as shown in Figure 1.1, RG uses only the value

of the reference signal at the current time and thus is unable to take the preview

information into account.

Problem statement: The second problem solved in this dissertation is con-

straint management, based on RG, to enforce output, state, and control constraints

while taking into account the preview information of the reference and/or disturbance

signals to further improve system performance.
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1.2.3 Constraint Management for Nonlinear MIMO

systems

As mentioned before, many control systems in practice are MIMO, and almost all

systems are nonlinear. Existing constraint management schemes for nonlinear MIMO

systems are either computationally demanding (for example, due to the use of a

Nonlinear Model Predictive Control [34, 35]) or require Lyapunov-based functions

[36, 37] that may be difficult to obtain in practice (also may lead to conservative

response).

Recently, RG, which was originally proposed for linear system, has been extended

to handle constraint management for nonlinear systems. Some of nonlinear RG

schemes still rely on Lyapunov-based methods [38–40], which, as mentioned before,

may result in conservative solutions depending on the application. Reference [41] is

one exception, where a bisectional search together with online numerical simulations

is proposed to compute optimal constraint-admissible references for a nonlinear hy-

drogen fuel cell application. The method does not employ Lyapunov functions but

is very costly in terms of computation time. We refer to the method in [41] as the

nonlinear RG (NL-RG) and leverage it in our work. While NL-RG can guarantee

constraint enforcement for nonlinear systems, its response may be overly conservative

for MIMO systems such as quadcopter drone since, similar to RG, only one decision

variable is used to govern all the channels.

Problem statement: Thus, the third problem solved in this dissertation is con-

straint management, based on RG, to enforce constraints on nonlinear MIMO sys-

tems without the overly conservative response of NL-RG. This dissertation also aims
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to lower the computational footprint of the developed scheme, using techniques from

machine learning.

1.2.4 Constraint Management for Quadcopter

Drones

Unmanned aerial vehicles (UAV) are widely used in military and commercial ap-

plications. Military applications include border security [42] and surveillance [43].

Commercial applications include agriculture monitoring [44], livestock classification

and counting [45], and fire detection [46]. This increased utilization is due to the

numerous advantages of UAVs, including safety, efficiency, simplicity, etc. In the con-

trol field, various strategies have been developed to stabilize and control the attitude

and/or attitude rate of the quadcopter. Examples are cascade PID controller [47],

linear quadratic regulator [48], sliding mode control [49], feedback linearization [50],

and Model Predictive Control (MPC) [51]. For a more comprehensive review, please

see [52].

The focus of this dissertation is on constraint management of nonlinear quadcopter

drones, which is motivated by the fact that constraining the angles (pitch, roll, and

yaw) and angle rates is typically necessary to ensure safe and robust operation. For

example, constraining pitch and roll angles will prevent the quadcopter operating

point from entering nonlinear regions, where linear controllers fail to stabilize the

system.

Current constraint management strategies include MPC [53, 54], which may be

computationally challenging, Lyapunov-based function [55, 56], and nonlinear RG
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schemes [2, 40, 57], which may be conservative on MIMO systems. These methods

are not satisfactory for quadcopters, whose dynamics are fast and sampling time

are small. Current research on implementing RG-based approaches for a quadcopter

includes [58–61]. However, these works either only consider linearized quadcopter

dynamics, implement Command Governors, which have a larger computational time

than RG, or use Explicit Reference Governor that has a more conservative response

since it leverages Lyapunov functions.

Problem statement: The final problem solved in this dissertation is the con-

straint enforcement of quadcopter drones, validated in both numerical simulations

and practical experiments. Our experimental platform is the Crazyflie 2.0 [62], which

is a open source flying development platform.

1.3 Literature Review

In this section, a more thorough literature review will be presented on the following

topics: constraint management strategies; Neural Network function approximation,

which will be employed to speed up the computation time of our proposed schemes;

and quadcopter control.

1.3.1 Literature Review on Constraint Manage-

ment

Some common strategies for constraint management includes:
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Figure 1.2: MPC [1]

Model Predictive Control (MPC)

MPC is a scheme that can simultaneously tackles the tracking problem as well as con-

straint enforcement. MPC has a tremendous impact on industry due to its numerous

attractive features, such as: 1) it allows the system performance at current time to

be optimized while also take the future performance into consideration; 2) it admits

the design of multivariable feedback controllers with similar procedural complexity as

single variable ones; 3) can be generalized to numerous systems with different struc-

tures, such as MIMO or SISO systems, systems with preview information, linear or

nonlinear systems, etc; 4) allows for the requirements in the design of constraints on

system inputs, states, and outputs.

The main idea behinds MPC is duplicated in Figure 1.2, where k is the discrete
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time index. For a vector y, the notation y(k + i|k) denotes the value of y predicted i

steps ahead of k. At current time index k, MPC involves predicting the future trajec-

tories of the system ŷ(k+j|k), where j = 0, . . . , N−1, over the prediction horizon (N)

based on the information up to k. By solving optimization problems, MPC intends

to select a best input trajectory u(k|k), u(k + 1|k), . . . , u(t + N − 1|k) so that the

design requirements are met, such as setpoint tracking, constraint enforcement, etc.

Only the first sample of the input trajectory u(k|k) is applied to the system and the

optimization problem solved again at the next step [63–65] to implement feedback.

Some commonly used MPC scheme are listed below.

• Distributed MPC (DMPC) [66–69]: DMPC is designed for multi-agent system

where a centralized controller is not sufficient or even fails to be implemented. In

the DMPC scheme, instead of using a single MPC, multiple MPC controllers,

each for a particular system, are adopted to take the dynamics, constraints,

objectives, interactions among the systems into consideration.

• Robust MPC [70–73]: In real world, almost all systems are affected by distur-

bance and noise. Robust MPC aims to stabilize the system while enforcing the

state and control constraints for all possible realizations of the uncertainties and

disturbances.

• Explicit MPC [74–76]: Explicit MPC remove one of the main drawbacks of

MPC, namely the need to solve a mathematical optimization program online

to compute the control action. Explicit MPC pursues to solve the optimization

problem offline by implementing multi-parametric programming techniques and

computes the optimal control action offline as an explicit function of the state
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and reference.

Besides the MPC scheme listed above, stochastic MPC, where stochastic disturbances

is considered, is proposed in [77, 78]. Cascade or hierarchical MPC, as reviewed

in [79], is proposed to tackle the computational complexity, robustness and reliability

problems, and communication bandwidth limitations of large-scale systems.

Barrier Lyapunov Functions (BLF)

BLF is a level-set function used to provides formal safety guarantees for nonlinear

control systems. One property of a BLF is that it tends to infinity as its argument

approaches the selected constraint, which can be naturally fit into the constraint

enforcement problem [80]. By keeping the BLF bounded in the closed-loop system,

it is thus guaranteed that the limits are never violated. Several works related to the

BLF methods are listed below. The work presented in [81] investigates the output

tracking problem as well as constraint enforcement of nonlinear switched systems. [82]

proposes a control design for strict feedback nonlinear systems with time-varying

output constraints. [83–87] present several works related to BLF implementation on

the systems with parameter uncertainty, disturbance, and noise.

Reference Governor (RG)

Reference Governor (RG) was first proposed as a continuous-time framework [88],

whose goal is to modify the control law when necessary to enforce constraints on

linear continuous-time systems. However, the continuous-time RG does not involve

any prediction on the system dynamics and, thus, the tracking performance can not
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be optimized. Then, motivated by the work of Gilbert in 1991 [4], where the Maximal

Admissible Set is presented, the prediction control was brought into RG design and

the natural extensions of RG to discrete-time systems have been widely adopted. In

the same year (1991), a static RG was presented in [4], where a scalar gain is used

to govern the input. Because of the possibility of convergence issue, the static RG

was replaced by a dynamic RG [89], where the convergence for constant references

is guaranteed. In 1995, [25] proposed an extension of dynamic RG to systems with

disturbance inputs. The first RG scheme for nonlinear systems was presented in

1998 [90]. After then, numerous RG-based approaches have been developed and the

applicability of RG has been extended broadly. For linear system:

• Vector Reference Governor [25]: VRG is proposed with the intention to improve

the system performance of RG on multi-input multi-output systems. This is

achieved by adding more flexibility in the choice of v(t) but at a cost of increased

computational effort.

• Command Governor [91] (CG): CG is developed to speed up the response time of

RG by changing the update law of v(t). However, since Quadratic Programming

(QP) is required to solve in CG scheme, it thus has a larger computational load

than that for RG.

• Extended Command Governor (ECG) [25, 92]: ECG, a modification of CG,

is proposed to offer a larger domain of attraction with respect to CG/RG by

manually introducing a fictitious dynamics of v.

Besides, [93] presents a Recovery Reference Governor aiming for recovering the system

from constraint violation. In [94], a RG-based method for systems with slowly time-
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varying references or for enforcing slowly time-varying constraints is proposed. [95]

brings a stochastic approach to RG and MAS using chance constraints.

For nonlinear systems:

• Explicit Reference Governor (ERG) [40, 96]: ERG presents a novel control law

that modifies the reference of a nonlinear system to ensure the satisfaction of

constraints, which is done by translating the constraints into an upper bound

on the value of the Lyapunov function and manipulating the velocity of the

applied reference to enforce this bound.

• Parameter Governor [57, 57]: The main idea behind Parameter Governor is to

modify parameters (such as gains or offsets) in the nominal control laws to avoid

violation of pointwise-in-time state and control constraints as well as to improve

the overall system transient performance by optimizing a cost function over a

finite horizon.

• Nonlinear Reference Governor for Fuel Cell [2]: This thesis proposes a bisec-

tional search algorithm together with online numerical simulations of the system

dynamics to find an optimal constraint-admissible reference for a nonlinear hy-

drogen fuel cell application.

Other than those, [97] presents a output feedback RG for nonlinear systems with

unmeasurable states by utilizing an ellipsoidal region in which the state is guaranteed

to lie. In [98], a Transient Robust RG is introduced to enforce constraints on nonlinear

systems, where a novel Robust Output Admissible Set is introduced. [99] proposes

a RG-based approach, which does not require an explicit model of the system or

constraints by constructing an approximation of the MAS using online neural network
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learning.

Constrained Linear Quadratic Regulator (LQR)

LQR is a state feedback controller aiming to find the optimal feedback gain to optimize

the following quadratic program [100]:

J =
∞∑
k=0

(‖x(k)‖2
Q + ‖v(k)‖2

R) (1.1)

where x and v represent the state and the control input of the linear system, respec-

tively. The symmetric definite matrix Q and R are usually chosen to be diagonal

matrix that determines the significant of the states and control inputs on the cost

function. The LQR seeks an optimal feedback gain to minimize (1.1), where the gain

can be found using Ricatti equation [101]. Different from MPC, the cost function

in LQR has infinite prediction horizon. Also, LQR does not involve any real-time

optimization solver. However, traditional LQR method can only be applied to linear

and unconstrained systems.

In recent decades, motivated by the importance of constraint management, LQR

has been extended to constrained systems. In [102], a technique to compute the

explicit state-feedback solution to the linear quadratic optimal control problem sub-

ject to state and input constraints is presented. Instead of using Ricatti equation to

find the optimal feedback gain, [102] paper proposes a Multi-parametric quadratic

programming that can enforce constraints while have lower computational burden

than on-line quadratic programming solvers. [103] illustrates an explicit solution to

the LQR problem subjects to constraint in order to reduce the demand for real-time
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computations. However, in order to address the constraints, a possibly suboptimal

strategy is developed.

Constrained H2 and H∞

The H2 and H∞ control problem consist of internally stabilizing the control system

while minimizing the H2 and H∞ norm of its transfer function [104]. The H2 and

H∞ technique are readily applicable to problems involving multivariate systems with

coupling behavior between different channels.

The extensions of H2 and H∞ methods to constrained systems are proposed in

[105, 106], where a linear matrix inequality (LMI) optimization problem is solved to

ensure the control and output constraints are respected.

Network Function

Recently, with a broad usage of Neural Network (NN), constraint management strate-

gies based on NN have been widely studied. The constraint-enforcement problem

using NN can be achieved using three different routes. First, a traditional constraint-

management strategy (i.e., barrier Lyapunov function, Moore Penrose inverse, etc)

is employed to deal with the output constraints while the NNs are used to approx-

imate the model of the system [107, 108]. As discussed before, this route may lead

to conservative response or may be limited to specific systems. Second, inspired

by the seminal work of Hopfield and Tank [109], various neural networks for solv-

ing linear and nonlinear programming problems have been investigated. This is

achieved by utilizing projective gradient based neural network models, which are de-
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rived from constrained minimization problems and complementarity problems with

KKT-conditions [110–113]. Additionally, in the control field, NN can be used to ap-

proximate the functionality of MPC. The main idea behinds these papers is either

modifying the structure of the NN properly [114–116] or projecting the output of the

NN into an appropriately defined invariant set [99, 117], where the set can be found

using Lyapunov functions.

1.3.2 Literature Review on Neural Network Func-

tion Approximation

Neural Networks (NNs), also referred to as Artificial Neural Networks (ANNs), are the

method of choice for building learning algorithms. They are now being investigated

for numerous tasks such as optical character recognition [118], image recognition

[119, 120], system identification [121, 122], etc. Their popularity stems from their

success on several challenging learning problems and some superior features they

own, such as can be generalized to different data types or different applications using

the same NN models, can be executed easily in most application, etc. [123]. A neural

network consists of an input layer, an output layer and, in between, hidden layers.

The layers are connected via nodes, and these connections form a network. Learning

an input-output mapping from a set of examples is one of the most common usages of

a NN. This is attained by minimizing a cost function, which is usually defined as the

difference between the target output and the output given by NN, over the internal

weights and bias. Several common NN models for function approximation are listed

below:
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• Feedforward Neural Network [124–126]: Feedforward NN refers to the NN mod-

els where there is no feedback from the outputs of the neurons toward the inputs

throughout the NN.

• Recurrent Neural Network (RNN) [127–129]: Contrast to the feedforward NN,

RNN model has feedback loops where data can be fed back into the input

before it is fed forward again for further processing and final outputs. Some have

argued that since time series data may have autocorrelation or time dependence,

the RNN models which take advantage of time dependence may be more suitable

than feedforward NN.

• Radial Basis Function Networks (RBF NN) [130–132]: An RBF network is a

type of feedforward neural network composed of three layers, namely the input

layer, the hidden layer with a nonlinear RBF activation function and a linear

output layer. RBF NN gained much popularity in recent times due to their

ability to approximate complex nonlinear mappings directly from the input-

output data with a simple topological structure.

• Generalized Regression Neural Network (GRNN) [133–135]: GRNN network

structure is similar to the RBF network except a slight modification in the

hidden layer. More specifically, GNRR is a single-pass associative memory

feedforward NN and uses normalized Gaussian kernels in the hidden layer as

activation functions.

Besides the NN models listed above, in [136], a new single-layer NN which

is based on orthogonal functions, is presented. Spiking NN [137], which is

more biologically realistic than ANNs, is also used for function approximation.
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Pi-Sigma network, which is a feedforward network with a single hidden layer

of linear summing units and with product units in the output layer that can

uniformly approximate any continuous function defined on a compact set, is

presented in [138].

1.3.3 Literature Review on Quadcopter Control

The common control strategies to stabilize quadcopter dynamics include:

• Cascade Proportional-Integral-Derivative Control (PID) [139, 140]: PID con-

troller is the most widely used controller in engineering practice using pro-

portional, integral and differential to zero out the error between the tracking

setpoint and the actual output of the system. Cascade PID is an advanced ap-

plication of the PID that can improve the control of systems that are subject to

significant lag. In quadcopter application, the cascade PID controller consists

of two loops: the inner (also the angular velocity or “rate") loop and the outer

(also the angle or “attitude") loop, in which the outer loop regulates the inner

loop.

• Linear Quadratic Regulator (LQR) [141, 142]: As mentioned before, LQR in-

tends to solve (1.1) using Ricatti equation. However, the applicability of LQR

has been limited to linear systems. Thus, to implement LQR on nonlinear quad-

copter dynamics, feedback linearization or linearization around hovering model

should be used.

• Model Predictive Control (MPC) [51, 143]: MPC, as mentioned before, can

simultaneously address setpoint tracking issue as well as constraint enforcement
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problem. However, MPC tends to require a large computation time than RG,

which may not be applicable to real quadcopter drones, whose dynamics are

fast and sampling time are small.

• Feedback linearization [54, 144]: Feedback linearization is a common strategy

used to control nonlinear systems. This approach targets to transform the

nonlinear system into an equivalent linear control system through a change of

variables and a suitable control input. However, the feedback linearization can

not handle the large modeling errors and disturbances effectively and requires

a precisely modeling of the nonlinear systems.

Besides the control strategies listed above, adaptive control is used to stabilize the

quadcopter dynamics in the presence of large/complete parameter uncertainties [145].

Fuzzy controller, which can update the control rule to maintain ideal system perfor-

mance, is also utilized in [146].

1.4 Original Contributions

This dissertation contributes to the literature of constraint management in the area of

dynamical systems and control. Most of the content presented in this dissertation have

been published in scientific journals [147,148] or conference proceedings [148,149]. At

a high level, this work contributes to the field of set-theoretic constraint management

with the focus on both linear and nonlinear systems. Specifically, we develop novel

RG schemes that can handle the problems mentioned in Section 1.2. By contributing

to the literature with novel schemes in the RG framework, this dissertation provides

practical tools and theoretical frameworks for constraint management of a broader
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class of dynamical systems.

The individual contributions per topic are listed below.

Decoupled Reference Governor

Chapter 3 presents a computationally efficient solution of constraint management

for MIMO systems. The solution, referred to as the Decoupled Reference Governor

(DRG), maintains the highly-attractive computational features of RG while having

performance comparable to Vector Reference Governors (VRG). The main contribu-

tions of Chapter 3 are:

• The transient analysis of DGR-tf as well as observer design.

• The extension of DRG formula to state space representation (i.e., DRG-ss).

• A novel extension of DRG to systems that are affected by unknown additive

disturbances and parametric uncertainties is presented.

• An modification of DRG to non-square MIMO systems, which enhances the

applicability of DRG.

Preview Reference Governor

Chapter 4 presents a constraint management strategy based on RG to enforce output,

state, and control constraints while taking into account the preview information of

the reference and disturbance signals. The strategy, referred to as the Preview Ref-

erence Governor (PRG), can outperform RG while maintaining the highly-attractive

computational benefits of RG. The main contributions of Chapter 4 are:
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• A novel RG-based constraint management scheme with preview capabilities,

namely the PRG, which is more computationally efficient than existing methods

such as MPC or Command Governors.

• An extension of PRG (Multi-N PRG) to further improve the performance of

PRG by considering multiple preview horizons.

• Analysis of recursively feasibility, closed-loop stability, and convergence under

constant inputs.

• Comparison of the computational footprint and performance of these schemes.

• Extensions of PRG to systems with disturbance preview, parametric uncertain-

ties, inaccurate preview information, and multi-input systems.

Nonlinear Reference Governor

Chapter 5 presents three constraint management strategies based on RG to enforce

output and state constraints on nonlinear MIMO systems. The first solution, referred

to as the nonlinear decoupled reference governor (NL-DRG), can outperform NL-RG

but at the cost of increased computational effort. To address the above shortcoming,

the second solution, which is referred to as the modified reference governor (M-RG),

is proposed. The M-RG scheme consists of the sequential application of SRGs and,

thus, maintains the highly-attractive computational features of SRG. However, the

performance of M-RG may be overly conservative compared to NL-DRG. To address

the computational issue of NL-DRG while perusing a less conservative response than

M-RG, a third solution, which is referred to as the Neural Network Decoupled Refer-

ence Governor (NN-DRG), is proposed. The NN-DRG consists of a Neural Network
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to approximate the input-output mapping of NL-DRG and a Quadratic Program to

ensure the constraints are satisfied at next time step. The main contributions of

Chapter 5 are:

• To enforce the constraints on nonlinear MIMO systems, the NL-DRG scheme

is introduced and analyzed.

• To further improve the computational footprint of NL-DRG, the M-RG is pro-

posed.

• To reduce the computation time of NL-DRG while having performance superior

than M-RG, Neural Network is brought in NL-DRG design, namely NN-DRG.

• The comparison of the computational footprint and performance of all schemes

is demonstrated.

• The extensions of the proposed methods to systems with disturbances and noises

are presented.

Constraint Management for Nonlinear Quadcopter Dynamic

Chapter 6 illustrates the simulation and experimental results of the proposed non-

linear RG scheme, namely NL-DRG, M-RG, and NN-DRG, to enforce the angle and

angle rates of Crazyflie 2.0. The main contributions of Chapter 6 are:

• Motivated by the fact that the real Crazyflie is affected by disturbance and noise

and, to ensure constraint satisfaction, the proposed methods must take those

uncertainties into consideration. A technique to quantify these disturbances

and noise of Crazyflie 2.0 is presented.
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• The simulation and experimental results of the proposed nonlinear RG-based

solutions on a real system is demonstrated.

1.5 Statement of Impact

The development of the new constraint management strategies for linear as well as

nonlinear systems have implications on both theoretical and practical fronts. On the

theoretical front, this work provides:

• a new computationally efficient method for constraint management of MIMO

system, which has performance comparable to VRG;

• a modification of RG that is able to incorporate the preview information of

references and/or disturbances;

• a nonlinear RG that can enforce constraints on a real quadcopter drone with

disturbance and sensor noise.

On the practical aspect, this dissertation offers new tools to robustly design closed-

loop systems with constraint enforcement capability by extending the proposed meth-

ods to systems with additional disturbances, plant/model mismatch, and inaccurate

preview information (for PRG).

On the societal front, this work

• develops computationally-efficient constraint management strategies that can

be used in distillation process, autonomous driving, flight control, unmanned

aerial vehicles, etc;
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• provides a more efficient and safe operation by imposing constraints on the out-

puts and/or states of the system, which improves the products we use everyday,

such as autonomous vehicles, wind turbines, air conditioner, etc.

1.6 Notation

The following notations are used in this dissertation. Z+ denotes the set of all non-

negative integers. Let V, U ⊂ Rn. Then, V ∼ U := {z ∈ Rn : z+u ∈ V, ∀u ∈ U} is the

Pontryagin-subtraction (P-subtraction) ( [150]). The identity matrix with dimension

i × i is denoted by Ii. Given a discrete-time signal u(t) = [u1(t), u2(t), . . . , um(t)]T ,

the L2 norm is defined as: ‖u‖2
L2 = ∑∞

t=−∞ u(t)Tu(t), and its L∞ norm is represented

as: ‖u(t)‖L∞ = supt(maxi |ui(t)|). For a system with transfer function F (z) and

impulse response f(t), the H∞ norm is defined as: ‖F‖H∞ = maxw σ̄(F (ejw)), where

σ̄ represents the maximum singular value, and the L1 norm is defined as: ‖f(t)‖L1 =

maxi
∑m
j=1

∑∞
τ=0 |fij(τ)|, where fij is the ij-th element of f , and m is the number of

columns of f . The condition number of a matrix (defined by the ratio of the maximum

to the minimum singular values) is denoted by γ. A zero matrix with dimension i× j

is denoted as 0i,j.

1.7 Outline

The outline of the rest of the dissertation is as follows. In Chapter 2, brief reviews on

Reference Governor, Maximal Admissible set, decoupling methods, Neural Network

approximation, DRG-tf, and the dynamics of one-arm link robot, rollover prevention,

25



and quadcopter are provided. In Chapter 3, standard RG is extended to systems with

multi inputs and multi outputs, namely DRG, and a thorough analysis on DRG is pro-

vided. Chapter 4 describes a novel RG formulation that can enforce the constraints

while taking into account the preview information of the reference signals, namely

PRG. In Chapter 5, three RG-based schemes are presented to enforce constraints on

nonlinear MIMO systems. Chapter 6 demonstrates the simulation and experimen-

tal results of the proposed nonlinear RG-based methods on real quadcopter drones.

Finally, Chapter 7 concludes the dissertation.
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Chapter 2

Review of Reference Governor, De-

coupling Methods, Neural Network

Approximation, DRG-tf, Practical

Examples

This chapter presents reviews on Reference Governor, Maximal Admissible set, decou-

pling methods, Neural Network approximation, and Decoupled Reference Governor

based on Transfer Function (DRG-tf). The practical examples used in this disserta-

tion, namely one-arm link robot, vehicle rollover prevention, and quadcopter drone,

are reviewed as well.
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2.1 Review of Maximal Admissible Set

To have a better understanding of Reference Governor (RG), first, a review on Max-

imal Admissible set (MAS) will be provided

Consider the closed-loop discrete time linear time-invariant system G(z) in Fig-

ure 1.1 be represented by:

x(t+ 1) = Ax(t) +Bv(t)

y(t) = Cx(t) +Dv(t)
(2.1)

where x(t) ∈ Rn is the state vector, v(t) ∈ Rm is the input, and y(t) ∈ Rp is the

constrained output vector. Over the output, the following polyhedral constraint is

imposed:

y(t) ∈ Y := {y : Sy ≤ s} (2.2)

where S is introduced to allow freedom to impose constraints on linear combinations

of the outputs. To construct the MAS, the following assumptions are made [4]:

A. 1. System G(z) in Figure 1.1 reflects the combined closed-loop dynamics of the

plant with a stabilizing controller. Accordingly, G(z) is asymptotically stable (i.e.,

|λi(A)| < 1, i = 1, ..., n). Moreover, the pair (C,A) is observable, the constraint set

Y is bounded, and 0 ∈ int Y .

The MAS, denoted by O∞, is the set of all initial states and constant references

that satisfy (2.2) for all future time steps [4]:

O∞ := {(x0, v0) ∈ Rn+m : x(0) = x0, v(t) = v0, y(t) ∈ Y,∀t ∈ Z+} (2.3)
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where y(t) is the output starting from the initial state x0 and constant input v0:

y(t) = CAtx0 + C(I − A)−1(I − At)Bv0 +Dv0 (2.4)

The fact that the construction of MAS involves checking infinite number of inequali-

ties, which make the MAS nearly impossible to characterize in real implementation.

To overcome this challenge, [4] presents an finitely determined inner approximation

of O∞ can be obtained by tightening the steady-state constraint and introducing it

as a new half-space:

Pss := {(x, v) : G0v ∈ Yss} (2.5)

where G0 = C(I − A)−1B + D is the DC gain of system (2.1), Yss := (1 − ε)Y and

0 < ε � 1. By introducing (2.5) to (2.3), the inner approximation of O∞ can be

characterized by:

Ō∞ = {(x, v) : Sy(∞) ≤ (1− ε)s, Sy(j) ≤ s,∀j} (2.6)

As proved in [4], there exists a finite time, j∗, such that Ōj∗ = Ōj∗+1, implying that

(2.6) can be rewritten as:

Ō∞ = {(x, v) : Sy(∞) ≤ (1− ε)s, Sy(j) ≤ s, j = 1, . . . , j∗} (2.7)

Substituting (2.4) and (2.5) into (2.7), Ō∞ can be redefined as:

Ō∞ = {(x, v) : Hxx+Hvv ≤ h} (2.8)
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where

Hx =



0

SC

SCA

...

SCAj
∗


, Hv =



S(C(I − A)−1B +D)

SD

S(C(I − A)(I − A)−1B +D)
...

S(C(I − Aj∗)(I − A)−1B +D)


, h =



(1− ε)s

s

s

...

s



Besides the finitely deterministic of Ō∞, [4] also proves that if Y is convex, com-

pact, and polytopic, then so is Ō∞. To summarize, the set Ō∞ can be viewed as a

polytope, which characterizes the set (x(t), v(t)) so that constraint management is

achieved for all future time. Without further abuse the notation, in later discussion,

O∞ is referred to the inner approximation of the MAS.

2.1.1 Maximal Admissible Sets for systems with

disturbances

In this section, we review the concept of robust MAS for systems affected by additive

disturbances [151]:
x(t+ 1) = Ax(t) +Bv(t) +Bww(t)

y(t) = Cx(t) +Dv(t) +Dww(t)
(2.9)

Similarly, the constraints are imposed on the output so that (2.2) is satisfied. The

disturbance input satisfies w ∈ W, where W ⊂ Rd is a compact polytope with the

origin in its interior.

In order to construct the robust MAS for system (2.9), the system output y(t) is
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rewritten as a function of the initial state, x0, the constant input, v(t) = v0, and the

disturbances:

y(t) = CAtx0 + (C(I − A)−1(I − At)B +D)v0 + C
t−1∑
j=0

At−j−1Bww(j) +Dww(t)

(2.10)

A key ingredient to simply mathematical computation is the set operation Pontryagin-

subtraction (abbreviated as P-subtraction). Defining the sets Yt using the following

recursion:

Y0 = Y ∼ DwW, Yt+1 = Yt ∼ CAtBwW (2.11)

P-subtraction allows us to rewrite the requirement y(t) ∈ Y, ∀w(j) ∈W, j = 0, . . . , t

as:

CAtx0 + (C(I − A)−1(I − At)B +D)v0 ∈ Yt

Finally, the robust MAS is defined as:

Ō∞ := {(x0, v0) ∈ Rn+m : G0v0 ∈ Ȳ,

CAtx0 + (C(I − A)−1(I − At)B +D)v0 ∈ Yt}
(2.12)

where G0 is the DC gain of (2.9) from input v to output y, and Ȳ := (1 − ε)Yt for

some 0 < ε� 1 and large t. Similar to previous section, the Ȳ is introduced to ensure

finite-determinism of O∞.

The robust MAS, denoted by Ō∞, is the set of all safe initial conditions and inputs,

such that for any given disturbance, the output constraints are satisfied for all times.
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2.2 Review of Reference Governor

In this section, three RG-based schemes will be reviewed. Section 2.2.1 review Scalar

Reference Governor. Section 2.2.2 reviews Vector Reference Governor. Section 2.2.4

provides a review on nonlinear Reference Governor.

2.2.1 Review of Scalar Reference Governor

From Section 2.1, it is possible to see that the MAS contains the predictions of the

outputs based on the current states and the constant inputs. Based on the predictions,

the controller can foretell if a constraint may be violated and then take corrective

actions over the reference. The SRG computes v(t) by implementing the following

dynamics:

v(t) = v(t− 1) + κ(r(t)− v(t− 1)) (2.13)

where κ is a scalar and solved by the following linear program:

maximize
κ∈[0,1]

κ

s.t. v(t) = v(t− 1) + κ(r(t)− v(t− 1))

(x(t), v(t)) ∈ O∞

(2.14)

where O∞ is the MAS discussed before. Note that (2.14) implies that κ maneuvers

v(t) along a straight line between v(t − 1) and r(t). More specifically, κ = 0 means

that, in order to keep the system safe, v(t) = v(t − 1), where v(t − 1) is already

admissible. Furthermore, κ = 1 means that no violation is predicted and, therefore,
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v(t) = r(t). This RG formulation ensures system stability, convergence, and recursive

feasibility. For more details, see [25].

One drawback of SRG is that, for Multi-Input Multi-Output (MIMO) systems,

since (2.14) solves for only one decision variable, κ, this implies that the control

law will prioritize the input with higher risk of constraint violation by manipulating

the single κ, which will affect all other input channels. As a results, the system

performance may be deteriorated.

2.2.2 Review of Vector Reference Governor

Vector Reference Governor (VRG) extends the capabilities of SRG to MIMO systems

and uses diagonal matrix K instead of a scalar κ:

v(t) = v(t− 1) + K(r(t)− v(t− 1))

where K = diag(κi). The values of κi, i = 1, ...,m, are chosen by solving the following

Quadratic Program (QP):

minimize
κi∈[0,1]

‖r(t)− v(t)‖Q

s.t. v(t) = v(t− 1) + K(r(t)− v(t− 1))

(x(t), v(t)) ∈ O∞

where Q = Q> > 0. Because of the increased number of optimization variables and

the utilization of the QP formulation, VRG has superior system performance than

SRG but at a cost of increased calculation effort.
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2.2.3 Review of Command Governor

The intention behinds Command Governor (CG) is, similar to VRG, minimize the Q

norm between the input r(t) and the governed command v(t). However, instead of

manipulating κ, CG tends to solve the problem by computing v(t) directly:

minimize
v

‖r(t)− v(t)‖Q

s.t. (x(t), v(t)) ∈ O∞

As proved in [91], CG guarantees convergence for a constant reference and system

stability.

2.2.4 Review of Nonlinear Reference Governor

As introduced in Section 2.1, the MAS is constructed based on a linear or almost-

linear systems. Thus, the applicability of SRG, VRG, and CG has been limited to

linear systems as well. Motivated by the necessity to handle nonlinearities in practical

applications, numerous extensions of RG theory to nonlinear systems are explored in

recent decades. In this section, a detailed review on nonlinear reference governor

proposed in [2] is provided. Moreover, the method in [2] is referred as the nonlinear

RG (NL-RG) and is leveraged in this thesis.

The essential idea behinds NL-RG is to replace the MAS with online numerical

simulation of the system dynamics and find the κ (shown in (2.14)) using bisectional
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search algorithm. More specifically, denoted the nonlinear stabilized system as:

x(t+ 1) = f(x(t)) + g(x(t))v(t),

y(t) = h(x(t))
(2.15)

The main idea behinds the bisectional search algorithm is explained below. At current

time step t, the decision variable κ is found by simulating the nonlinear dynamics

(2.15) forward in time over a finite time horizon N . If the constraints are violated for

any time during the simulation, then κ will be reduced and simulation reinitiated. If

all the constraints are satisfied for the simulated trajectory, then, κ will be increased

to minimize the tracking error. The detailed information to compute the κ is shown

in Figure 2.1.

NL-RG inherits the drawback of SRG since only a scalar decision variable κ is

used. Moreover, because of the online iterations to find κ, NL-RG tends to be more

computationally demanding compared to SRG, VRG, and even CG.
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Start

set κ = 0, κ̄ = 1,
κi = 1 for i = 1

simulate system
(2.15) over time

horizon N with input
(2.14) (κ = κi)

Constrained
satisifed?

κi = 1 or
|κi−κi−1| ≤ ε

set κ = κi
set i = i + 1 and
κi = (κ̄ − κ)/2

set κ̄ = κi

set κ = κi

Stop

yes

no

no

yes

Figure 2.1: Bisectional search algorithm for determining κ at current time step t, where ε
represents the tolerance for convergence test [2].
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2.3 Decoupling Methods

In this section, two decoupling methods will be reviewed, one based on transfer func-

tions ( [152]) and the other based on state space representation ( [153]).

2.3.1 Decoupled Methods Based on Transfer Func-

tion

Consider the square coupled system G(z) defined as:

Y1(z)
...

Ym(z)

 =

G11(z) . . . G1m(z)
... . . . ...

Gm1(z) . . . Gmm(z)


︸ ︷︷ ︸

G(z)

V1(z)
...

Vm(z)

 (2.16)

where Yi and Vi are the Z-transforms of yi and vi, respectively. The system G(z)

consists of diagonal subsystems with dynamics Gii(z) and off-diagonal (interaction)

subsystems with dynamics Gij(z), i 6= j. A decoupled system is perfectly diagonal

(i.e., each output depends on only one input). The decoupling the system is achieved

by adding a filter, F (z), before G(z), so that the product G(z)F (z) yields a diagonal

transfer function matrix W (z) := G(z)F (z) ( [152]). By doing so, each output Yi

depends only on the new input Vi through: Yi(z) = Wii(z)Vi(z), where Wii(z) is the

i-th diagonal elements of W (z).

In this dissertation, two structures for W (z) are reviewed, which lead to the

following two decoupling methods:
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• Diagonal Method: We find F (z) such that

W (z) =


G11(z) . . . 0

... . . . ...

0 . . . Gmm(z)



The filter and the inverse filter are defined as:

F (z) = G−1(z)W (z), F−1(z) = W−1(z)G(z) (2.17)

• Identity Method: The filter F (z) is found such that W (z) equals the identity

matrix. The filter and the inverse filter are defined as:

F (z) = G−1(z), F−1(z) = G(z) (2.18)

Notice that in both methods, the elements of either F (z) or F−1(z) (or both) may

be improper transfer functions because of G−1(z) and W−1(z). If this is the case,

they cannot be implemented on a LTI systems. In order to make them proper, we

multiply F (z) and F−1(z) by time-delays of the form 1
zβ
, where β refers to how much

time delay should be added to make the transfer functions proper.

Remark 1. In the above discussion, the matrix W (z) is assumed to be diagonal,

which implies that every yi depends only on vi. This, however, is only one possible

structure for W (z). It is also possible to decouple the system by having each yi depend

on one vj, j 6= i. In this case, the W (z) will be constructed such that every row will

have only one non-zero element. Similarly, each column will also have one non-zero
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Γ G(z)

Φ

v(t) + u(t)

+

y(t)

Figure 2.2: State feedback decoupling

element.

2.3.2 Decoupled Methods Based on State Feed-

back

In this section,the input-output decoupling via state-feedback, as presented in [153,

154], will be described. Consider a discrete-time MIMO coupled system, G, given in

state-space form using (2.1). In this section, it is assumed that the input v ∈ Rm and

output y ∈ Rm.

In the remainder of this discussion, it is assumed that no direct feed through

between v and y (i.e., D = 0) as required by [153, 154]. Note that the case where

D 6= 0 can be handled as well (e.g., see [155]), but for the sake of simplicity, the case

where D = 0 will only be presented.

The block diagram of state-space decoupling is duplicated in Figure 2.2. The

decoupling is achieved by modifying the feedback gain Φ and input factor Γ. More

specifically, the substitution of u = Φx+ Γv, where Φ is an m×n matrix and Γ is an
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m×m matrix, into (2.1) results in:

x(t+ 1) = (A+BΦ)︸ ︷︷ ︸
Ā

x(t) + BΓ︸︷︷︸
B̄

v(t), y(t) = Cx(t) (2.19)

Let d1, d2, . . . , dm be defined by:

di = min{j : CiAjB 6= 0, j = 0, 1, . . . , n− 1}

where Ci denotes the i-th row of C. If CiAjB = 0 for all j = 0, 1, . . . , n− 1, then we

set di = n− 1. Let A∗∈ Rm×n and B∗∈ Rm×m be defined by:

A∗ =


C1A

d1+1

...
CmA

dm+1

 , B∗ =


C1A

d1B
...

CmA
dmB

 (2.20)

It is proved in [153] that there exist a pair of matrices Φ and Γ that decouple the

system from v to y if and only if B∗ is nonsingular.

Below, two structures for Φ and Γ are studied, which lead to the following two

decoupling methods:

• Identity method: The pair

Φ = −B∗−1A∗, Γ = B∗−1 (2.21)

leads to yi(t + di + 1) = vi(t), which means that the i-th output depends only

on the i-th input with one or more time delays.

• Pole-assignment method: We can decouple the system while simultaneously

40



assigning the poles of the decoupled system by using the following choice of Γ

and Φ:

Φ = B∗−1
[

δ∑
k=0

MkCA
k − A∗

]
, Γ = B∗−1 (2.22)

where δ = max di and Mk are m × m diagonal matrices that are designed to

assign the poles at specific locations. For more details, please see [153]. Note

that not all of the eigenvalues of Ā can be arbitrarily assigned. However, it is

shown in [153] that if m + ∑m
i=1 di = n, then, all the poles of the decoupled

system can be assigned.

2.4 Review of Neural Network Approx-

imation

Discover the explicit input-output mapping of a function is one of the most common

performance in Neural Network (NN) construction. A literature review on several

NN models to solve function approximation problem is presented in Section 1.3.2.

For the sake of simplicity, in this section, feedforward NN with one hidden layer will

be reviewed. A simple structural diagram of feedforward NN is shown in Figure 2.3.

It can be seen that the NN consists of three layers: input layer, output layer, and, in

between, hidden layer. The layers are connected with node, which forms a network.

Let the number of neurons in the hidden layer be denoted by Nhidden. The input

and output of the NN are denoted by rNN ∈ Rnr and yNN ∈ Rny , respectively. For

a feedforward NN model with a single layer, the output can be characterized by
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Input
layer

Hidden
layer

Output
layer

Figure 2.3: A simple structure of Feedforward Neural Network

following:

yNN = w1 · σ(w2 · rNN + b2) + b1 (2.23)

where w1 ∈ Rny×Nhidden and b1 ∈ Rny×1 represent the weight connecting the hidden

layer to the output layer and the bias in the output layer, respectively. The w2 ∈

Rnr×Nhidden and b2 ∈ RNhidden×1 refer to the weight connecting the input layer to the

hidden layer and the bias in the input layer, respectively. In (2.23), σ(·) represents

the activation function. Several common utilized activation function includes:

• Linear function: σ(x) = x

• Sigmoid function: σ(x) = 1
1+e−x

• ReLU function:

σ(x) =


x, if x ≥ 0

0, otherwise
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Neural Network approaches are trained by presenting sets of input-output data

pairs. Then, the internal weights and bias (i.e., w1, w2, b1, and b2) are optimized to

capture the implicit mapping from the inputs vNN to the outputs yNN . This process

of adjusting weights and biases, from supplied data, is called training and the used

data is called the training set. The training process can be broadly classified into two

typical categories: Supervised learning, such as back-propagation, and Unsupervised

learning [156]. Back-propagation, which is applied to multilayer perceptrons is the

most popular and well studied training algorithm. It is a gradient-descendent method

that minimizes the mean square error of the difference between the network outputs

and the targets in the training set:

J(f) = 1
M

M∑
i=1
‖yi − yNN,i‖

where vi and vNN,i represent the target output and the output given by NN with the

same input, respectively. The M represents the number of data samples. Once the

NN is trained, it is able to predict the correct outputs corresponding to the “unseen”

data.
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2.5 Review of Decoupled Reference Gov-

ernor based on Transfer Function

Decoupling (DRG-tf)

In this section, a brief explanation on DRG-tf will be introduced. As shown in [26],

DRG-tf, which is a RG-based scheme that can enforce constraints on linear MIMO

systems, maintains the highly-attractive computational features of SRG compared

to VRG. The block diagram of DRG-tf is illustrated in Figure 2.4. The main idea

behinds DRG-tf is based on decoupling the system dynamics (G(z)) using the method

described in Section 2.3 to obtain a completely diagonal system W (z):

W (z) := F (z)G(z) =


W11(z) . . . 0

... . . . ...

0 . . . Wmm(z)



Afterwards, m independent scalar reference governors (SRG) for the resulting decou-

pled subsystems are implemented to ensure the constraints are satisfied, as required,

followed by coupling the dynamics using F (z)−1 to cancel the steady-space tracking

error caused by F (z). As mentioned in above, the F (z) or F−1(z) (or both) may be

improper transfer functions and time-delays are added to make the transfer functions

proper. Note that if this is the case, the system response will be delayed under the

DRG-tf scheme, even if no constraint violation is likely. This is a caveat of the DRG-tf

approach; however, if the sample time is small enough, the introduced delay would be
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F−1(z)
SRG1

SRGm

F (z) G(z)

x1

xm

... ... ... ... ...

r′1

r′m

...

v1

vm

u1

um

r1

rm

y1

ym

W (z)

Figure 2.4: Block Diagram for DRG-tf

negligible. Also note that G−1(z) might introduce unstable poles to F (z) or F−1(z),

which will cause the system to become unstable. Further assumptions are introduced

later to avoid such situations.

The following assumptions are made to construct DRG-tf:

A. 2. System G(z) in Figure 2.4 reflects the combined closed-loop dynamics of the

plant with a stabilizing controller. Consequently, G(z) is asymptotically stable. Fur-

thermore, we assume that all diagonal subsystems of the decoupled system W (z) are

also asymptotically stable.

A. 3. G(z) in Figure 2.4 is invertible and has a stable inverse.

A. 4. The constraint sets Yi are closed intervals of the real line containing the origin

in their interiors. This is in agreement with the assumptions commonly made in the

literature of reference governors.

Consider the system in Figure 2.4 with G(z) given in (2.16). To design the m

different SRGs, the maximal admissible set (MAS) for each Wii, denoted by OWii
∞ , is

required. To obtain these sets, the minimal state-space realization of each subsystem
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Wii (i.e., both controllable and observable) is used, and its MAS is computed as:

OWii
∞ :={(xi0 , vi0) ∈ Rni+1 : xi(0) = xi0 ,

vi(t) = vi0 , yi(t) ∈ Yi, ∀t ∈ Z+}
(2.24)

where xi and ni are the state and the order of Wii, respectively. The DRG-tf for-

mulation is based on the sets OWii
∞ . Specifically, the inputs vi are defined, similar to

(2.14), by:

vi(t) = vi(t− 1) + κi(r′i(t)− vi(t− 1)) (2.25)

where κi are computed by m independent linear programs (LP):

maximize
κi∈[0,1]

κi

s.t. vi(t) = vi(t− 1) + κi(r′i(t)− vi(t− 1))

(xi(t), vi(t)) ∈ OWii
∞

(2.26)

We showed in [26] and [147] that, since F (z) and F−1(z) are both assumed to

be stable, the DRG formulation above inherits the stability and recursive feasibility

properties of SRG theory. Specifically, for a constant signal r(t) = r, r′(t) converges

(because of stability of F−1), which implies that v(t) converges (because of stability

of SRGs). Thus, the system of Figure 2.4 is guaranteed to be stable.

In [26], two DRG-tf formulations based on different decoupling methods is in-

troduced, namely the diagonal and the identity methods (as explained in Section

2.3). One possible shortcoming of DRG-tf is that, because of the additional F (z) and

F−1(z), the tracking performance may be deteriorated. However, as shown in [26],

at steady state, the closeness of u and r and, hence, the performance of DRG-tf,
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depends on the decoupling filter, F (z) (as shown in Algorithm 1). Additionally, the

distillation process example is implemented to illustrate that DRG-tf has a superior

performance than SRG and an efficient algorithm to compute DRG-tf is provided.

Besides all the designing and analysis of DRG-tf in [26], the DRG-tf scheme still

lacks of a thorough analysis on the transient performance, observer design, and the

extensions to systems with disturbance and model mismatch. Also, DRG-tf as pro-

posed above only works on square MIMO system (i.e., the number of inputs is equal

to the number of outputs), the modification of DRG-tf to non-square MIMO systems

is left to be explored.

Theorem 1. Given the system of Figure 2.4, at steady-state, we have that:

‖F−1
0 ‖−1‖v − r′‖ ≤ ‖u− r‖ ≤ ‖F0‖‖v − r′‖

where ‖ · ‖ refers to the induced matrix norm and F0 is the DC-gain of F (z).
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Figure 2.5: One-link arm.

2.6 Review of One-arm Link Robot Dy-

namics, Roll-over Prevention, and

Quadcopter Dynamics

In this section, a review on the one-link arm robot dynamics, vehicle rollover pre-

vention example, and quadcopter dynamics will be given. Also, these three practical

examples are used to illustrate the performance of the proposed methods.

2.6.1 One-arm Link Robot

The one-link arm robot, shown in Figure 2.5, has sate space form [157]:

ẋ1

ẋ2

 =

 0 1

− 3g
2lr 0


x1

x2

+

 0
3

mrl2r

 τ, y =
[
1 0

] x1

x2

 (2.27)

where mr is the mass of the robot arm, g represents the gravitational acceleration,

and lr refers to the arm length. The x1 , θ, x2 , θ̇ are the states and τ (i.e., external

torque) is the control input. To stabilize the one-link arm dynamics, a state-feedback
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controller with a pre-compensator is applied to ensure that the output, θ, tracks the

desired angle, v, perfectly, that is:

τ = Φv − Γ

x1

x2

 .

2.6.2 Vehicle Rollover prevention

A rollover accident may occur during extreme driving scenario, such as excessive

speed during cornering, obstacle avoidance, and abrupt lane change maneuvers, where

rollover occurs as a result of the wheel forces induced during these maneuvers. It is

however, possible to prevent such a rollover incident by monitoring the car dynamics

and applying proper steering control. The work in [158] proposes a model for rollover

prevention where the input is the steering angle and the performance output is the so-

called Load Transfer Ratio LTR, which is related to tire lift-off and can be considered

as an indicator of impending vehicle rollover. Before describing the motion of the

vehicle model, several notations are needed to be introduced. As presented in [158],

the equation of motion corresponding to vehicle model is as follows:

ξ̇ = Aξ +Bδ, y = Cξ (2.28)
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Table 2.1: Vehicle Model Parameters

parameter description value
mh vehicle mass (kg) 1224
vh vehicle speed (km/s) 144
σh steering angle (radians) 270240
Jxx roll moment of inertia at CG (kg · m2) 362.6
Jzz yaw moment of inertia at CG (kg · m2) 1280
lv longitudinal CG position w.r.t. front axle (m) 1.102
lh longitudinal CG position w.r.t. rear axle (m) 1.25
T vehicle track width (m) 1.51
h distance of CG from roll axis (m) 0.375
cv suspension damping coefficient (N · m · s/rad) 4000
kv suspension spring stiffness (N · m · s/rad) 36075
Cv linear tire stiffness for front tire (N/rad) 90240
Ch linear tire stiffness for rear tire (N/rad) 180000

where ξ =
[
vy Ψ̇ φ̇ φ

]T
corresponds to the lateral velocity, yaw rate, roll rate, and

roll angle, respectively. The state space matrix is defined as:

A =



− σhJxeq

mhvhJxx

ρJxeq

mhhJxx
− v −hcv

Jxx

h(mhgh−kv)
Jxx

ρ
Jzzvh

−γvh

Jzzvh
0 0

−hσv

Jxxvh

hρ
Jxxvh

−cv

Jxx

mhgh−kv

Jxx

0 0 1 0


, B =

[
cvJxeq

mhJxx

cvlv
Jzz

hcv

Jxx
0
]T
,

C =
[
0 0 −2cv

mhgT
−2kv

mhgT

]
(2.29)

where Jxeq , σv, ρ, γ, and kv are defined as:

Jxeq = Jxx +mvh
2, σh = Cv + Ch,

ρ = Chlh − Cvlv, γ = Chl
2
h + Cvl

2
v, kv = Cvl

2
v + Chl

2
h,
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Figure 2.6: The structure of Crazyflie

The output, y, represents the LTR. As shown in [158], to prevent rollover accident,

LTR is required to be within [−1, 1].

2.6.3 Quadcopter Dynamics

In this section, a briefly explanation on the modeling and control of the Crazyflie 2.0,

which is the experimental platform to examine the proposed control strategies (i.e.,

NL-DRG, M-RG, and NN-DRG), will be introduced.
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Modeling of Quadcopter

A structural diagram of the Crazyflie is shown in Figure 2.6. The dynamical states

are the roll angle (φ), pitch angle (θ), yaw angle (ψ), roll angular velocity (p), pitch

angular velocity (q), and yaw angular velocity (r). The roll, pitch, and yaw angles are

defined in the earth-fixed reference, while the angular rates are defined in the body

frame. The translation from body-frame to earth-frame can be obtained by [159]:


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ




p

q

r

 (2.30)

Note that this relationship is only valid when the pitch angle (i.e., θ) is not ±90

degrees. At θ = ±90◦, the so-called “Gimbal lock” occurs. In this dissertation, we

will constrain θ away from ±90◦ so this is not a limitation. In general, quaternion

representation of angles would overcome Gimbal lock.

The actual structure of Crazyflie is almost symmetric around x and y axis but

asymmetric in z axis. However, for simplicity, it is still assumed that the inertia matrix

is diagonal (also, as will be shown later, the diagonal inertial matrix is sufficient to

obtain a satisfactory model of the Crazyflie):

J =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.31)

where Ixx, Iyy, and Izz represent the inertia matrix in the x axis, y axis, and z
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axis, respectively. Using the Newton-Euler equations, the dynamics of the angular

velocities can be found to be:

ṗ = Iyy − Izz
Ixx

qr + τφ
Ixx

, q̇ = Izz − Ixx
Iyy

pr + τθ
Iyy

ṙ = Ixx − Iyy
Izz

pq + τψ
Izz

(2.32)

The total thrust and the body torques generated by the propellers can be related to

the motor speeds according to [160]:



τφ

τθ

τψ

ft


=



−lCT/
√

2 −lCT/
√

2 lCT/
√

2 lCT/
√

2

−lCT/
√

2 lCT/
√

2 lCT/
√

2 −lCT/
√

2

−CD CD −CD CD

CT CT CT CT


︸ ︷︷ ︸

Γ



ω2
1

ω2
2

ω2
3

ω2
4


(2.33)

where d, CT , and CD represent the arm length, thrust coefficient, and aerodynamic

drag coefficient, respectively. And ωi, where i = 1, . . . , 4, represents the rotation speed

of i-th motor. By using the Newton’s law, the altitude dynamics can be written as:

z̈ = −g + ft
cosφ cos θ .

Next, a linearization model of the quadcopter dynamics from the torque and thrust to

the outputs of angles and angle rates (i.e., (2.30) and (2.32)) will be introduced. Define

uτ and x as the control input and state vector, respectively (i.e., uτ = [ft, τφ, τθ, τψ]T

and x = [ż, p, q, r, z, φ, θ, ψ]T ). The equilibrium point is chosen to be the hover con-
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dition:

xe =
[
0 0 0 0 ze 0 0 0

]T
uτe =

[
mg 0 0 0

]T
(2.34)

Consequently, the state space form of the linear dynamics model can be described by:

ẋ = Ax+Buτ (2.35)

where

A =
 04×4 04×4

I4×4 04×4

 and B =



1
m

0 0 0
0 1

Ixx
0 0

0 0 1
Iyy

0
0 0 0 1

Izz

04×4


Note that by applying a Taylor’s first order expansion and taking into account the

equilibrium state vector specified in (2.34), the transformation from the thrust and

torques to the motor speed (as shown in (2.33)) can be linearized as [160]:



ft

τφ

τθ

τψ


= 2

√
mg

4CT
Γ



ω1

ω2

ω3

ω4


(2.36)

Cascade PID Control of Crazyflie

The overall block diagram of Crazyflie is shown in Figure 2.7. As can be seen, the

tracking setpoints are desired roll angle (φd), pitch angle (θd), yaw rate (ψ̇d), and

altitude (zd). Note that the reason for controlling φ, θ, and ψ̇ is that φ and θ are

influential for stability and will directly affect the trajectory of the quadcopter. How-
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Controller
Controller
Mixer
(Φ)

PWM
to RPM

Square Γ Crazyflie

u1, u2
u3, u4 PWM RPM RPM2

ft, τφ
τθ, τψ̇

φ, θ

ψ̇, z

φd, θd
ψ̇d, zd

disturbance: d

noise: Ns
measured state

+
+

+

+

Figure 2.7: Control system block diagram.

Attitude
PID

Control

Rate PI
Control

φd, θd

+

φ, θ

−

φ̇d, θ̇d

+

φ̇, θ̇

−

u1, u2

Figure 2.8: Cascaded PID controller for the roll angle and pitch angle. The PID gains for
the attitude controller are denoted by KP,φ, KI,φ KD,φ and KP,θ, KI,θ, KD,θ for roll angle
and pitch angle, respectively. The rate controller is a PI controller with gains denoted by
KP,p, KI,p and KP,q, KI,q for roll angle and pitch angle, respectively

ever, yaw angle ψ is not as important as other angles and, for the ease of designing, ψ̇

is chosen to be controlled instead. The constraints are imposed on the output, namely

φ ∈ [−5◦, 5◦], θ ∈ [−5◦, 5◦], and ψ̇ ∈ [−10◦/sec, 10◦/sec]. Detailed information on the

controllers is provided in Figures 2.8 to 2.10. The controller gains and quadcopter

parameters are presented in TABLE 2.2.

Rate PI Control
(PI gains:

KP,r and KI,r)

ψ̇d

+
ψ̇
−

u3

Figure 2.9: The block diagram of the rate controller for ψ̇.
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Altitude
PI Control

Rate PI
Control

zd

+
z
− +

Gain
+

ż
−

ū4 + u4

36000

Figure 2.10: The block diagram for altitude controller. Gain = 1000. The bias 36000 is used
to compensate for the effect of gravity. The gains for the altitude PI controller is denoted
by KP,z and KI,z. The rate controller is also a PI controller with gains KP,ż and KI,ż

Table 2.2: Quadcopter Parameters and PID Gains

parameter value
g 9.81
m 0.03
l 0.045
CT 8.511× 10−7

CD 1.221× 10−8

Ixx 1.138× 10−5

Iyy 1.138× 10−5

Izz 2.95× 10−5

parameter value
KP,φ = KP,θ 350
KI,φ = KI,θ 550
KD,φ = KD,θ 3.5
KP,p = KP,q 6
KI,p = KI,q 4
KP,r, KI,r 100, 16.7
KP,z, KI,z 2, 0.5
KP,ż, KI,ż 25, 15

To move and rotate the quadcopter appropriately, the output of the controller

(i.e., u1, u2, u3, and u4) has to be distributed to four motors using a proper mixing

matrix (i.e., Φ in Figure 2.7), which is defined as:



PWM1

PWM2

PWM3

PWM4


=



−0.5 −0.5 −1 1

−0.5 0.5 1 1

0.5 0.5 −1 1

0.5 −0.5 1 1


︸ ︷︷ ︸

Φ



u1

u2

u3

u4


(2.37)

where PWMi ∈ [0, 65535], i = 1, . . . , 4 represents the Pulse-width modulation (PWM)

signal that is used to control the i-th motor. From (2.37), it can be clearly seen that,
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Figure 2.11: Comparison between simulation and experiment results. The desired setpoint
is shown in the title of each subfigure.

a command u1 > 0 will be distributed to motors 3 and 4, leading a reduction of the

power supplied to motors 1 and 2 and an increase of the power supplied to motors 3

and 4. Thus, a appropriate angular momentum will be obtained in the roll direction

(as shown in Figure 2.6). Moreover, the experiments proved that the angular speeds

of the motors (i.e., RPM) have a linear relationship with the PWM inputs, following

the equation [62]:

RPM = 0.041× PWM + 380.84 (2.38)

Finally, Ns in Figure 2.7 is the measurement noise (i.e., IMU noise), while d

models the effects of modeling uncertainties and disturbances. To characterize Ns

and d for the experimental setup, the hovering data from the Crazyflie is collected.
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It is observed that, for the roll angle and pitch angle, the Ns can be modeled by

a normally distributed random sequence with mean as 0 and variance as 0.01, and

the disturbance d can be modeled by a sine wave with amplitude 100 and frequency

20π. For the yaw rate, similarly, Ns can be modeled by a normally distributed random

sequence with mean as 0 and variance as 0.05. The disturbance sine wave for yaw rate

has amplitude 50 and frequency 40π. Given these frequencies of d, the disturbance is

most likely due to the non-rigid structural modes of the Crazyflie. The comparison

between the simulation results and the experiment results conducted on the Crazyflie

is shown in Figure 2.11. As can be seen, the model as shown in Figure 2.7 is able to

capture the overall behavior (i.e., key features of the response that are of importance

for constraint management) of the real Crazyflie.
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Chapter 3

Decoupled Reference Governor

The transient analysis and observer design of DRG-tf (as explained in Section 2.5)

are presented in this Chapter. Also, the Decoupled Reference Governor based on

state-space decoupling (DRG-ss) is introduced. Extensions of DRG-tf and DRG-

ss to systems with disturbance and model mismatch, and systems with non-square

input/output channels will be provided.

3.1 Decoupled Reference Governor based

on Transfer Function Decoupling:

DRG-tf

As explained in Section 2.5, DRG-tf is based on decoupling the system dynamics

using the method described in Section 2.3 to obtain a completely diagonal system

W (z), followed by implementing m independent scalar reference governors (SRGs)

for the resulting decoupled subsystems. Finally, to ensure that ui = ri when ri is
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constraint-admissible, F (z)−1 is introduced to cancel the effects of F (z) while also

guarantee that ui and ri are close if ri is not constraint-admissible. Because of the

additional F (z) and F−1(z), one challenge with DRG-tf is quantifying the transient

performance of the system dynamics. State estimation is another challenge. More

specifically, how can the states of the decoupled subsystems be obtained and fed back

to the SRGs? In the following section, we elaborate on DRG-tf with a special focus

on the above challenges.

3.1.1 Observer design

In this section, we consider the case where the states of Wii (see Figure 2.4) are not

measured. Consequently, an observer will be required to estimate the states. One

option is to use an open loop observer for each Wii. To explain, let (Aii, Bii, Cii, Dii)

be a minimal realization ofWii. An open loop observer can be designed by computing

the state estimate recursively:

x̂i(t+ 1) = Aiix̂i(t) +Biivi(t) (3.1)

where x̂i is the estimate of the state xi. In real-time, the SRGs in the DRG-tf

formulation use x̂i instead of xi. Note that the open loop observer works properly

only when the system model and the initial conditions are both accurately known,

which is not always hold in real scenario.

To improve upon the open loop observer, feedback can be implemented from the

measured output, as is done in standard observer design. We consider two observer

design strategies below. The first approach assumes that all yi are measured, which
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leads to m decoupled observers, and the second assumes that some yi are not mea-

sured, necessitating a centralized observer.

Decoupled observers:

To begin with, suppose that all yi are available for measurement. In this case, m

decoupled Luenberger observers can be designed as follows:

x̂i(t+ 1) = Aiix̂i(t) +Biivi(t) + Li(yi(t)− Ciix̂i(t)−Diivi(t)) (3.2)

where Li is designed to assign the eigenvalues of Aii − LiCii in the unit circle (since

discrete time LTI systems is considered). In the real-time implementation of DRG-tf,

the state that feeds back to SRGi is x̂i.

A challenge with the decoupled observer strategy explained above is that of se-

lecting the initial conditions for each x̂i. Indeed, if the observers are not initialized

properly, the DRG-tf scheme may not be able to enforce the constraints. We provide

a solution to this problem below, for the case where the initial condition of G(z),

denoted by x0, is known precisely. We will treat the case of unknown x0 later.

Our solution is to modify the input to G(z) so that the effects of x0 is explicitly

canceled. To see how this can be done, note that the output of G(z) with initial

condition x0 can be written as:

y(t) = CAtx0 + (C(I − At)(I − A)−1B +D)u0

where A, B, C, and D are the state space matrices of G(z). Denote by M(z) the
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Z-transform of CAt for the sake of simplicity of notation. Note that M(z) represents

the initial condition response of the system. In order to get Y (z) = W (z)V (z) with 0

initial condition, where W is a desired diagonal matrix as before, we define U(z) as:

U(z) = F (z)V (z)−G−1(z)M(z)x0 (3.3)

where F (z) = G(z)−1W (z). This will effectively cancel the initial conditions and

result in a completely decoupled system with respect to the system dynamics and

initial condition. The observers given in (3.2) with 0 initial condition now be applied

as before. Note that the inverse filter F−1(z) in Figure 2.4 need not be altered.

Centralized observer

Now consider the more interesting case, where some yi (see Figure 2.4) are not mea-

sured. Since the dynamics from governed input v to output y are still required to

be decoupled, m SRGs can still be implemented in the DRG-tf formulation. How-

ever, since independent measurements on yi are not available, we can not design m

decoupled observers for each Wii as mentioned before, and must instead design one

centralized observer for W . This, in turn, implies that the SRGs must use one MAS

different from (2.24). To elaborate on these ideas, let y(t), as before, denote the

constrained output vector, and the measured output vector be denoted by ym . Let

(A,B,C,D), (A,B,Cm, Dm), and (Af , Bf , Cf , Df ) be realizations of G(z) from u to

y, G(z) from u to ym, and F (z), respectively. Note that the states of F (z), denoted

by xf , are known at the time of implementation so they do not need to be estimated.

To estimate the states of G(z), x, an observer is designed using feedback on the
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measurements ym:

x̂(t+ 1) = Ax̂(t) +Bu(t) + L(ym(t)− Cmx̂(t)−Dmu(t)) (3.4)

Using the above, the states of the entire system W (z), i.e., xw = (xf , x), can be

estimated by x̂w = (xf , x̂). Note that initialization of this observer is simple if the

initial condition of G(z), i.e., x0 is known: in this case, the initial condition of the

observer is set to (0, x0).

Recall that to construct OWii
∞ (see (2.24)), the state-space model of the i-th diag-

onal subsystem of W , Wii, is required. However, the states of each individual Wii is

not directly available from the centralized observer, which is why the SRGs can no

longer use the OWii
∞ set. To solve this issue, the following realization of W , which is

the augmented dynamics of F (z) and G(z), is use :

xw(t+ 1) =
[
Af 0
BCf A

]
︸ ︷︷ ︸

Aw

xw(t) +
[
Bf

BDf

]
︸ ︷︷ ︸

Bw

v(t)

y(t) = [DCf C]︸ ︷︷ ︸
Cw

xw(t) +DDf︸ ︷︷ ︸
Dw

v(t)

(3.5)

Using (3.5), the state-space model of Wii is given by: (Aw, Bw(:, i), Cw(i, :), Dw(i, i)),

whereBw(:, i) is the i-th column ofBw, Cw(i, :) is the i-th row of Cw, andDw(i, i) is the

(i, i)-th element of Dw. Thus, we construct OWii
∞ based on the state-space realization

(Aw, Bw(:, i), Cw(i, :), Dw(i, i)) and, for real-time implementation, each SRG uses the

state of the entire system (i.e., x̂w = (xf , x̂)) as feedback.

Finally, for the case where the initial conditions are not known, either observer

((3.2) or (3.4)) can still be used to estimate the states; however, during the transient
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phase of the observer, the states may be incorrect, which may lead to constraint

violation. To remedy this issue, one can “robustify” OWii
∞ , or alternatively, one could

allow the transients to subside before running the system with the DRG-tf.

3.1.2 Analysis of DRG-tf

In this section, the steady-state analysis of DRG-tf [26] is extended and the transient

performance of DRG-tf is explored. The analysis of this section relies on the H∞ and

L1 norm of F (z). Because of the delays introduced in F (z) and/or F−1(z) to make

them proper, care must be taken in interpreting the results, as we show below.

Theorem 2. For the system of Figure 2.4, the following relationship holds:

‖u(t+ β1)− r(t− β2)‖L2 ≤ ‖F‖H∞‖v − r′‖L2 (3.6)

where β1 and β2 are the number of delays added to make F and F−1 proper, respec-

tively.

Proof. By Parseval’s theorem, ‖u− r‖L2 = ‖U −R‖H2 and ‖v− r′‖L2 = ‖V −R′‖H2 .

where R′, R, U , and V are the Z-transforms of r′, r, u, and v, respectively. From

Figure 2.4 the following equations hold:

U(z) = 1
zβ1

F (z)V (z), R′(z) = 1
zβ2

F (z)−1R(z) (3.7)
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Then,
‖zβ1U(z)− z−β2R(z)‖2

H2

= 1
2π

∫ π

−π
‖F (ejw)((V (ejw)−R′(ejw))‖2

2dw

≤ 1
2π

∫ π

−π
(‖F (ejw)‖2‖V (ejw)−R′(ejw)‖2)2dw

where ‖.‖2 refers the Euclidean norm. Since ‖F‖H∞ = maxw σ̄(F (ejw)), we have that:

1
2π

∫ π

−π
(‖F (ejw)‖2‖V (ejw)−R′(ejw)‖2)2dw

≤ ‖F‖2
H∞‖V −R

′‖2
L2

(3.8)

By Parseval’s theorem, the result follows.

Note that (3.6) can be rewritten as:

‖u(t)− r(t− β2 − β1)‖L2 ≤ ‖F‖H∞‖v − r′‖L2

This equation shows that the average distance between u and the delayed version of

r is bounded by the average distance between v and r′ scaled by ‖F‖H∞ . Thus, if

‖F‖H∞ is small, the DRG-tf and VRG will perform similarly in transient.

Above algorithm only discusses the performance of DRG-tf in time averages, be-

low, another theorem is provide to demonstrate that the peak of the distance between

u and r is related to ‖f‖L1 , where f is the impulse response matrix of F (z) and ‖f‖L1

refers to the L1 norm of f .

Theorem 3. For the system of Figure 2.4, the following relationship holds with re-
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spect to the L1 norm:

‖u(t+ β1)− r(t− β2)‖L∞ ≤ ‖f‖L1‖v − r′‖L∞ (3.9)

Proof. Based on the inverse Z-transform of (3.7), we have:

|ui(t+ β1)− ri(t− β2)| = |fi(t) ∗ v(t)− fi(t) ∗ r′(t)|

= |
∞∑

τ=−∞

m∑
j=1

fij(τ)(vj(t− τ)− r′j(t− τ))|

≤
∞∑

τ=−∞

m∑
j=1
|fij(τ)(vj(t− τ)− r′j(t− τ))|

≤ ‖v − r′‖L∞
∞∑

τ=−∞

m∑
j=1
|fij(τ)|

(3.10)

where fij refers to the ij-th element of f , ∗ denotes the convolution operator, and

in the last inequality, we have used the fact that ‖v − r′‖L∞ is the maximal value of

|vj(t)− r′j(t)| over j and over t. Taking the maximum of both sides of the above with

respect to i, we get:

max
i
|ui(t+ β1)− ri(t− β2)| ≤ ‖f‖L1‖v − r′‖L∞ (3.11)

and the result follows.

This theorem implies that if ‖f‖L1 is small, then the DRG-tf will perform similarly

to VRG in transient. If, however, ‖f‖L1 is large, no conclusion can be drawn.
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Γ−1 SRGs Γ G(z)

Φ x

r
r′ v + u y

+−

W (z)

+

Figure 3.1: DRG-ss block diagram. r, r′, v, u, y represent [r1, r2, . . . , rm]T , [r′1, r′2, . . . , r′m]T ,
[v1, v2, . . . , vm]T , [u1, u2, . . . , um]T , and [y1, y2, . . . , ym]T , respectively.

3.2 Decoupled Reference Governor based

on State Feedback Decoupling: DRG-

ss

Decoupled Reference Governor based on State Feedback Decoupling, namely DRG-ss,

is based on decoupling the input-output dynamics as shown in Figure 3.1 by using

state feedback, where the feedback matrices Φ and Γ are properly chosen as discussed

in Section 2.3. Similar to DRG-tf, then, m decoupled SRGs, whose goal is the same

as the SRGs in DRG-tf, is introduced. Finally, to make sure that ui = ri when ri is

constraint-admissible, x is fed back through Γ−1(r−Φx). The following assumptions

are made for the development of DRG-ss:

A. 5. Similar to A. 2, system G(z) in Figure 3.1 is asymptotically stable.

A. 6. B∗ matrix in (2.20) is nonsingular.

Consider the system in Figure 3.1, where state feedback decoupling method is

applied to get a diagonal system, W , which has state space form (Ā, B̄, C, 0) given
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Q(z)

SRG Γ−1− + rv r′

Figure 3.2: Rearrangement of Figure 3.1.

by (2.19). Note that the feedthrough matrix D is assumed to be 0 as discussed in

Section 2.3.2, but this assumption can be relaxed. A state-space realization for each

decoupled subsystem, Wii, is given by: (Ā, B̄(:, i), C(i, :), 0), where B̄(:, i) is the i-th

column of B̄, and C(i, :) is the i-th row of C. Next, for each decoupled subsystem,

the MAS , denoted by OWii
∞ , is constructed as:

OWii
∞ :={(xw0 , vi0) ∈ Rn+1 : xw0 = xw(0),

vi(t) = vi0 , yi(t) ∈ Yi,∀t ∈ Z+}
(3.12)

where xw represents the state ofW . As for implementation, the SRGs within DRG-ss

compute the inputs, vi, to the decoupled system the same as (2.25) and κi is computed

using the same LP as shown in (2.26).

Because of the additional feedback loop (i.e., −Φx shown in Figure 3.1), the

stability of DRG-ss is not guaranteed (unlike DRG-tf). Below, we provide a sufficient

condition for stability of the DRG-ss scheme.

The block diagram of DRG-ss (Figure 3.1) can be rearranged as shown in Fig-

ure 3.2, where

Q(z) = Γ−1Φ(I −Gx(z)Φ)−1Gx(z)Γ

and Gx(z) = (zI − A)−1B. From Small Gain Theorem ( [161]), if there exist four
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constants J1, J2, K1, and K2, with J1J2 < 1, such that:

‖v‖ ≤ K1 + J1‖r′‖, ‖Q(z)v‖ ≤ K2 + J2‖v‖ (3.13)

then, the system is bounded input bounded output stable (i.e., BIBO). While ‖·‖ can

be chosen to be any signal norm, we use the ∞-norm in the discussion that follows.

Recall that in the SRG optimization (2.26), κi satisfies: 0 ≤ κi ≤ 1, which implies

that:
‖v(t)‖ = ‖v(t− 1) +K(r′(t)− v(t− 1))‖∞

≤ ‖(I −K)v(t− 1)‖∞ + ‖Kr′(t)‖∞

≤ ‖v(t− 1)‖∞ + ‖r′(t)‖∞

where K is diagonal matrix with κi as its main-diagonal elements. Since v is bounded

(because OWii
∞ is compact), we have that ‖v(t − 1)‖∞ ≤ M̄ for some M̄ > 0. Thus,

‖v(t)‖∞ ≤ M̄ + ‖r′‖∞ (i.e., J1 = 1, K1 = M̄). Then, from small gain theorem,

the system is BIBO stable if there exist a K2 and J2 < 1, such that: ‖Q(z)v‖∞ ≤

K2 + J2‖v‖∞. Recall that the induced system norm ‖q‖L1 , where q is the impulse

response matrix of Q(z), is defined as: ‖q‖L1 = sup ‖Qv‖∞‖v‖∞ . Then, for J2 to exist, the

following inequality needs to be satisfied:

‖q‖L1 < 1

In summary, the DRG-ss scheme is BIBO stable if ‖q‖L1 < 1. It is important to

note that Q(z) depends on Γ and Φ. Thus, stability must be checked after Φ and

Γ have been designed, which means that iterations might be needed if the stability

condition above is not satisfied. Finally, asymptotic stability can also be proved by
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Figure 3.3: Simulation results of DRG-ss. The purple and yellow dashed lines on the top
two plots represent the constraints on the outputs.

applying the results from absolute stability ( [162]) to the system of Figure 3.2 and

using the fact that 0 ≤ κi ≤ 1.

3.2.1 Illustration Example

In this section, an example will be provided to demonstrate the performance of DRG-

ss, where the two decoupling methods in Section 2.3.2 are applied to decouple the
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system. Consider the system G given by:

A =


0.1 1 0

0 0.1 0

0 0 0.1

 , B =


0 1

1 0

1 0

 , C =

1 1 −1

0 1 0

 (3.14)

The pair (2.21) and (2.22) are used to find Φ and Γ, and proceed to compute OW11
∞ and

OW22
∞ based (3.12) (for the identity and pole assignment methods, respectively). Note

that for pole assignment method, we choose Mk = diag(0.9, 0.9) to locate two of the

poles of W at 0.9. The constraint set is defined as Y := {(y1, y2) : y1 ≤ 2.1, y2 ≤ 1.1}.

We simulate the response of this system to a step of size 1 in both r1 and r2. The

simulation results are depicted in Figure 3.3.

Figure 3.3 (top) reveals that the outputs are within the constraints for both iden-

tity and pole assignment methods. Note that, from the bottom plots of Figure 3.3,

there is a gap between u and r. Later, this gap will be investigated.

As a final remark, similar to the identity method for DRG-tf, while the identity

method for DRG-ss is simpler and computationally superior to the pole assignment

method, it may lead to large oscillations for underdamped systems [26].

3.2.2 Analysis of DRG-ss

In this section, similar to the analyses of DRG-tf, the steady-state and transient

performance of DRG-ss will be analyzed.
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Steady-state Analysis

Motivating by the steady-state halfspace in (2.5) for a generic system, the steady-

state constraint for OWii
∞ can be defined similarly. More specifically, the projection of

the steady-state halfspace onto the vi coordinate is considered, which results in:

V Wi,i
ss := {vi ∈ R : Wii0vi ∈ Yi,ss} (3.15)

where Wii0 ∈ R is the DC gain of subsystem Wii and Yi,ss = (1 − ε)Yi. Since W is

diagonal, it follows that the steady-state constraint-admissible input set for W is:

V W
ss := V W1,1

ss × V W2,2
ss × · · · × V Wm,m

ss (3.16)

We now compare the above set with the steady-state constraint-admissible input set

of system G, i.e., the projection of the steady-state halfspace onto the u coordinate,

which arises in Vector Reference Governor (VRG) applications. This set, noted by

Uss, is defined by:

Uss := {u ∈ Rm : G0u ∈ Yss}. (3.17)

Below, we present a theorem to relate Uss and V W
ss .

Theorem 4. For the system of Figure 3.1, and Uss and V W
ss defined in (3.17) and

(3.16), the following relation holds

V W
ss = C(I − Ā)−1B̄(C(I − A)−1B)−1 × Uss (3.18)

where Ā = A+BΦ and B̄ = BΓ.
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Proof. Given the state-space realization (A,B,C, 0) for G(z), the DC-gain of G from

u to y is given by G0 = C(I − A)−1B. Similarly, the DC-gain of W from v to y is

given by W0 = C(I − (A + BΦ))−1BΓ. Therefore, the relationship between W0 and

G0 is as follows:

W0 = C(I − (A+BΦ))−1BΓ(C(I − A)−1B)−1 ×G0

The proof follows from the definitions of Uss and V W
ss .

This theorem shows that if r is not admissible with respect to system G (i.e.,

r /∈ Uss), then, after feeding through Γ−1, r′ must also not be admissible with respect

to the system W (i.e., r′ /∈ V W
ss ).

Before, we mentioned one requirement for DRG, which was u and r should be as

close as possible. From Figure 3.1, we see that v and r′ are as close as possible, but

u and r may not be close. Below, we provide a theorem to quantify the closeness of

u and r in steady state.

Theorem 5. For the system of Figure 3.1, the following relation holds at steady state:

‖Γ−1‖−1‖v − r′‖ ≤ ‖u− r‖ ≤ ‖Γ‖‖v − r′‖

where ‖.‖ refers to any vector norm and its associated induced matrix norm.

Proof. At steady state, we have that u = Γv + Φx and r = Γr′ + Φx. Therefore:

‖u − r‖ = ‖Γv − Γr′‖ = ‖Γ(v − r′)‖ ≤ ‖Γ‖‖v − r′‖. This proves the right hand

inequality. To show the left hand inequality, write ‖v − r′‖ = ‖Γ−1u − Γ−1r‖ =
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‖Γ−1(u− r)‖ ≤ ‖Γ−1‖‖u− r‖. This can be re-written as ‖Γ−1‖−1‖v − r′‖ ≤ ‖u− r‖,

which concludes the proof.

The above theorem shows that ‖u − r‖ is bounded above and below by ‖v − r′‖

scaled by ‖Γ‖ and ‖Γ−1‖−1, which are known a-priori and can be changed based on

different design requirements. More specifically, if ‖Γ‖ is small, then, small ‖v − r′‖

implies small ‖u−r‖, which is desirable. Also, if ‖Γ−1‖−1 is large, then small ‖v−r′‖

implies large ‖u− r‖, which is undesirable. In the case of large ‖Γ‖ or small ‖Γ−1‖−1,

no definite conclusion can be made. Note that the steady-state analysis of v is similar

to that in DRG-tf (see [26]), except that instead of having r′ = F−1
0 r in DRG-tf, we

have r′ = Γ−1(r − Φx) in DRG-ss.

Transient Analysis

Recall from Figure 3.1 that the following relationship holds:

r′ = Γ−1(r − Φx), u = Γv + Φx (3.19)

From these equations, the following theorem emerges.

Theorem 6. For the system in Figure 3.1, the following inequalities hold:

‖u− r‖L2 ≤
√∑

i,j

Γ2
ij × ‖v − r′‖L2 (3.20)

‖u− r‖L∞ ≤ m×max
i,j
|Γij| × ‖v − r′‖L∞ (3.21)

where Γij is the ij-th element of Γ.
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Proof. From (3.19), the following equation holds: u− r = Γ(v − r′). Then,

‖u− r‖2
L2 = ‖Γ(v − r′)‖2

L2 =
∞∑
t=0

m∑
i=1

(Γi(v(t)− r′(t)))2

where Γi refers to the i-th row of Γ. By Cauchy-Schwarz inequality, we have:

∞∑
t=0

m∑
i=1

(Γi(v(t)− r′(t)))2 ≤
∞∑
t=0

m∑
i=1
‖Γi‖‖v(t)− r′(t)‖

≤
m∑
i=1
‖Γi‖

∞∑
t=0
‖v(t)− r′(t)‖ =

∑
i,j

Γ2
ij‖(v − r′)‖2

L2

Taking the square root of both sides proves (3.20). Next, we will show the proof of

(3.21). We have that:

‖u− r‖L∞ = ‖Γ(v − r′)‖L∞ = sup
t≥0

(max
i
|Γi(v − r′)|)

≤ sup
t≥0

(max
i,j
|mΓij|)(max

i
|(v − r′)|) = max

i,j
|mΓij|‖(v − r′)‖L∞

Then, (3.21) follows.

The theorem presents the relationship between v− r′ and u− r and shows that if

the elements of Γ are small, then the distance between u and r would also be small.

This implies that tracking will not be significantly deteriorated as compared with

VRG.
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3.3 Robust DRG

In previous discussion, the G(z) is assumed to be not affected by disturbances and

noise, which is unlikely to happen in real world application. In Section 2.1.1, a brief

explanation of how SRG can be modified to handle systems affected by unknown

disturbances and sensor noise is explained. Essentially, MAS is “robustified” (i.e.,

shrunk) to account for the worst-case realization of the disturbances. In this section,

we extend these ideas to DRG-tf and DRG-ss, where we show that an initial pre-

processing is required to have the system in the form (2.9). Secondly, we consider

the scenario where the system model is uncertain, where we present an innovative

solution for handling these systems.

3.3.1 DRG for Systems with Unknown Distur-

bances

In this section, the robustified DRG to systems with unknown but bounded distur-

bance is presented.

DRG-tf for systems with unknown disturbances

Assumed that the system (2.16) is affected by an unknown disturbance d(t) ∈ Rd:

Y (z) = G(z)U(z) +Gw(z)D(z) (3.22)
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where D(z) is the Z-transform of d(t). Consistent with the literature of SRG, it is

assumed that d ∈ D, where D is a compact polytopic set.

In this section, DRG-tf with the diagonal decoupling method explained in Section

2.5 is considered (the identity decoupling method can be applied similarly). Under

Assumption A.3, the filter F (z) defined in (2.17) is characterized. This leads to each

yi described by:

Yi(z) = Gii(z)Vi(z) +
d∑
j=1

Gwij(z)Dj(z)

is decoupled from input v to output y, but not from disturbance d to output y. To

address this issue, the dynamics of each yi is first converted to state-space form:

xi(t+ 1) = Aixi(t) +Bivi(t) +Bwid(t)

yi(t) = Cixi(t) +Dwid(t) ∈ Yi

(3.23)

For each subsystem (3.23) we now proceed to compute the corresponding robust MAS

using the procedure described in Section 2.1.1. Other than the modification of MAS,

the implementation process of DRG-tf remains unchanged.

Below, a illustration example will be presented to demonstrate the performance

of robust DRG-tf. We consider the following system:

G(z) =

 0.9
(z−0.2)2

0.05
3z+1

3
(2z−1)2

0.4
z−0.6

 (3.24)

and

Gw(z) =


0.2

(z−0.5)2(3z+1)

0.3
(2z+1)(z−0.7)2



77



The constraints are imposed on the outputs so that −1.2 ≤ y1 ≤ 1.2 and −3.9 ≤ y2 ≤

3.9. The robust DRG-tf is implemented for this system assuming that the disturbance

satisfies d ∈ D := [−0.1, 0.1]. For the purpose of simulations, the disturbance is

generated randomly and uniformly from the interval [−0.1, 0.1].

The results of DRG-tf with disturbance are shown in Figures 3.4. In the top

subplots, “y1 coupled” and “y2 Coupled” refer to the response of the system without

DRG-tf (i.e., r applied to G directly), which shows that, without the DRG-tf imple-

mented, the constraints are violated, as expected. These results confirm that DRG-tf

is able to satisfy the constraints in the presence of disturbances. As can be seen from

the plots, the disturbance affects both outputs (the outputs appear noisy). Interest-

ingly, the disturbance does not affect u for DRG-tf (see Figure 3.4), but it affects

u for DRG-ss (see u in Figure 3.5). The reason for this behavior can be explained

as follows: it can be seen from Figure 3.1 that the outer feedback in DRG-ss may

transmit the effects of disturbances and sensor noise to r′. As a result of this, the

effect of the disturbance on the output may be higher in DRG-ss than in DRG-tf.

This may be a decisive argument to select between DRG-ss and DRG-tf, since the

latter does not show this type of behavior.

DRG-ss for systems with unknown disturbances

To decouple the system (2.9) from the inputs u to the outputs y, the pole assign-

ment decoupling method explained in Section 2.3 is proposed; similar results can be

obtained for the identity decoupling method. The decoupled system to characterized
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Figure 3.4: DRG-tf with disturbance.

as:
x(t+ 1) = (A+BΦ)x(t) +BΓv(t) +Bwd(t)

y(t) = Cx(t) +Dwd(t) ∈ Y
(3.25)

where Φ and Γ are computed based on (2.22), and v is the input obtained from the

SRGs (see Figure 3.1). The i-th decoupled subsystem can then be written as:

x(t+ 1) = Āx(t) +Bivi(t) +Bwd(t)

yi(t) = Cix(t) +Dwid(t) ∈ Yi

(3.26)

where Ā = A+BΦ, Bi is the ith column of BΓ, Ci is the ith row of C, and Dwi is the

ith row of Dw. Based on (3.26) we create the corresponding robust MAS for the i-th

subsystem. The DRG-ss implementation is otherwise unchanged.

Next, a simple example will be presented to show the performance of robust DRG-

ss. We consider again system (3.14) with the output constraints: y1 ≤ 2.1, y2 ≤ 1.1.
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Figure 3.5: DRG-ss with disturbance.

Assume Dw is zero, Bw = [1.3, 0.3, 2.51]>, and that the disturbance also satisfies

d(t) ∈ D := [−0.1, 0.1]. We decouple the system using the pole assignment method,

i.e., placing the closed-loop poles at 0.1.

The results of robust DRG-ss with disturbance are shown in Figure 3.5. In the

top subplots of these figures, “y1 couple” and “y2 Coupled” refer to the response of

the system without DRG-ss (i.e., r applied to G directly), which shows that, with

DRG-ss, the constraints are satisfied, as required. As interesting behavior can be

realized by comparing the performance of DRG-tf ( 3.4) and DRG-ss ( 3.5) It can be

seen, from the comparison, the disturbance does not affect u for DRG-tf but it affects

u for DRG-ss (see u in Figure 3.5). The reason for this behavior can be explained

as follows: it can be seen from Figure 3.1 that the outer feedback in DRG-ss may

transmit the effects of disturbances and sensor noise to r′. As a result, the effect of

the disturbance on the output may be higher in DRG-ss than in DRG-tf. This may
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be a decisive argument to select between DRG-ss and DRG-tf.

Remark 2. For a system in which the states are not measured, a standard observer

may not provide accurate estimation of the state if unknown disturbances is considered

in the design. In such a case, the observer developed in [163] can be implemented,

where the observer has the ability to take the error introduced by unknown disturbances

into consideration.

3.3.2 DRG with Parametric Uncertainty

In this section, we sketch the DRG scheme to the system G(z) in Figures 2.4 and

3.1 with parametric uncertainty, that is, matrices A and B are uncertain or vary in

time. For simplicity, in this discussion, it is assumed that the matrix C is known

and D = 0. The approach we develop is similar to [164]. Note that we consider

parametric uncertainties in the state-space representation since RG approach is a

time-domain approach. Therefore, frequency domain uncertainties will not be inves-

tigated. Furthermore, we assume that the uncertain/time-varying closed-loop system

is asymptotically stable. Thus, stability is still not a concern in DRG-tf, but ad-

ditional analysis must be carried out to ensure stability of DRG-ss since additional

feedback loop is involved in the DRG-ss designing.

For this discussion, reconsider system G(z) but with parametric uncertainty on

the A and B matrices, which leads to the square linear system given by:

x(t+ 1) = A(t)x(t) +B(t)u(t)

y(t) = Cx(t) ∈ Y
(3.27)
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In [164], in order to compute the robust MAS for this type of systems, it is assumed

that the pair (A(t), B(t)) belongs to a given uncertainty polytope defined by the

convex hull of the matrices (A(j), B(j)), that is

(A(t), B(t)) ∈ conv{(A(1), B(1)), . . . , (A(N), B(N))},

where N is the number of vertices in the uncertainty polytope ( [165]). Applying the

proposed method in [164] directly to DRG, however, may not guarantee constraint

satisfaction because the parametric uncertainties will prevent us from perfectly de-

coupling the system. To explain, suppose a nominal pair of A and B matrices is

selected from a convex hall, and the Φ and Γ presented in (2.21) or (2.22) are used

to decouple this nominal system. Since the matrices of the actual system will be

different from the nominal ones, this decoupling process results in:

x(t+ 1) = Ā(t)x(t) + B̄(t)v(t), y(t) = Cx(t) (3.28)

where the pair (Ā(t), B̄(t)) satisfies:

(Ā(t), B̄(t)) ∈ conv{(Ā(1), B̄(1)), . . . , (Ā(N), B̄(N))}, (3.29)

where Ā(j) = A(j) + B(j)Φ, B̄(j) = B(j)Γ. Obviously, a same pair of Γ and Φ is

incapable to decouple all the matrices in the uncertainty polytope. This implies that

DRG implemented on (3.28) can not achieve perfect decoupling and thus may not

enforce the constraints.

To address the above issue, a novel margin in each OWii
∞ to robustify every channel
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against these coupling dynamics is introduced. To elaborate this idea, consider the

dynamics of the i-th output of (3.28):

x(t+ 1) = Ā(t)x(t) + B̄i(t)vi(t) +Bw(t)v̄(t)

yi(t) = Cix(t)
(3.30)

where Ci is the i-th row of C, B̄i(t) corresponds to the ith column of B̄(t), Bw(t)

represents all columns of B̄(t) except the ith one, and v̄(t) represents the vector

containing all inputs except the i-th one, i.e., vector of all vk’s, k 6= i. Our solution

described below treats v̄ as an unknown bounded disturbance. To accomplish this, we

quantify a lower and an upper bound on v̄ and robustify OWii
∞ base on these bounds

using results similar to Section 2.1.1. Specifically, to find the bounds, we leverage

the fact that each element of v̄(t), v̄k, is the output of an SRG (i.e., monotonically

increasing or decreasing), whose goal is to enforce the constraints on the k-th output

(i.e., yk(t) ∈ Yk). Thus, we can define upper and lower bounds on each element of v̄

using the steady-state constraints (3.15):

v̄max
k = max{v̄k : W (j)

kk0 v̄k ∈ (1− ε)Yk, j = 1, . . . , N}

v̄min
k = min{v̄k : W (j)

kk0 v̄k ∈ (1− ε)Yk, j = 1, . . . , N}
(3.31)

where W (j)
kk0 represents the DC gain of the system from the k-th input to the k-th

output given the pair (Ā(j), B̄(j)). Since each v̄k(t) ∈ [v̄min
k , v̄max

k ], we can now treat

v̄(t) in (3.30) as an unknown bounded disturbance to create a robust MAS set for the

i-th channel, which can be achieved using the ideas from Section 2.1.1 (for unknown

disturbances) and references [164,165] (for polytopic uncertainties). Implementation
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Figure 3.6: DRG-tf block diagram for non-sqaure systems with larger number of inputs.
ȳp+1, . . . , ȳm represent the outputs that are manually added to system G(z) to transfer it
into a square system.

of DRG using the above structure of MAS’s will ensure that the system is robust to

the plant/model mismatch and, thus, the constraints will be satisfied. It is important

to notice that this approach may lead to conservative results depending on how much

the MAS is shrunk (i.e., how large the model mismatch is). However, if the system

is “almost” decoupled (i.e., the nominal system is close to the actual one), then the

shrinkage will be negligible. For the sake of brevity, numerical examples and further

analysis on this topic will appear in our future work.

3.4 Extension of DRG to non-square MIMO

systems

In this section, the extension of DRG to non-square MIMO systems, i.e., systems

where the number of inputs is either larger or smaller than the number of outputs,

will be introduced. For better explanation, we will treat these cases separately in

the following discussion. Generally speaking, we achieve this by either introducing

fictitious outputs to transform the system into a square one (see Figure 3.6), or only
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Figure 3.7: DRG-tf block diagram for non-sqaure systems with larger number of inputs.

decoupling a square subsystem of it (see Figure 3.7). For the sake of clarity, we will

only focus on the extension of DRG-tf with the diagonal method; the same process

can be applied to DRG-tf with identity method and DRG-ss scheme.

3.4.1 Systems with larger number of inputs

Recall that the main idea behinds the extension of DRG to non-square systems with

m inputs and p outputs (m > p) is to transfer the system into a square one. To

elaborate this idea, we manually introduce m − p outputs, Ȳp+1, . . . , Ȳm, leading to

the square system G̃, described below:



Y1(z)
...

Yp(z)

Ȳp+1(z)
...

Ȳm(z)


=
 Gc1,p Gcp+1,m

0m−p,p Ḡ


︸ ︷︷ ︸

G̃



U1(z)
...

Up(z)
...

Um(z)

 (3.32)

where Ḡ is an (m− p)× (m− p) transfer matrix representing the fictitious outputs,

and Gc1,p and Gcp+1,m denote the first p columns of G and the last (m − p) columns

of G, respectively.

The choice of the fake dynamics (i.e., [0m−p,p Ḡ]) in (3.32) is not unique. The
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reason for choosing [0m−p,p Ḡ] is that G̃−1 and F can be easily obtained through

block matrix inversion ( [166]), and the structure of F is easy to study, as will be

explained below. For the diagonal method in DRG-tf, the decoupled system W (see

Figure 3.6) is constructed as:

W =



G11(z) . . . 0
... . . . ...

0(z) . . . Gpp(z)︸ ︷︷ ︸
Wp

0p,(m−p)

0(m−p),p Ḡw



(3.33)

where Ḡw is a (m− p)× (m− p) transfer function matrix that is chosen such that it

has a stable inverse, so that F−1 can be computed (see (2.17)). Note that the choice

of Ḡw will not affect the system performance since Ḡw corresponds to the fictitious

outputs.

Recall that the actual outputs of the system are Y1, . . . , Yp and the constraints

are on these outputs. So, as Figure 3.6 shows, only p different SRGs are needed to

ensure these outputs satisfy the constraints and there is no need to design SRGs for

Ḡw. Finally, F−1 is introduced to ensure that u is close to r, as before. By choosing

G̃ and W as shown in (3.32) and (3.33), F can be written as:

F =


G−1
c1,pWp −G−1

c1,pGcp+1,m

0m−p,p Ḡ−1Ḡw

 (3.34)
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An interesting case is that the Ḡ is chosen to be equal to the Ḡw, then, Ḡ−1Ḡw in

(3.34) will become an identity matrix, which implies that F is unrelated to the choice

of Ḡ. Of course, for this to hold, Ḡ needs to be invertible to ensure that (3.34) exists.

Remark 3. As can be seen from (3.34), if Ḡ 6= Ḡw, then F is related to the designing

of both Ḡ and Ḡw. This implies that a proper set of Ḡ and Ḡw can be selected such

that the norm of F is small, which as discussed in Section 3.1.2, will lead to a small

distance between u and r (see Figure 3.6) and, thus, good tracking performance.

Since G(z) has been transformed into a square system, the same analysis presented

in Section 3.1.2 can be applied to study the steady-state and transient performance

of DRG-tf for non-square systems. Hence, further analysis will not be provided here.

3.4.2 Systems with larger number of outputs

Assume system G(z) in Figure 3.7 has m inputs and p outputs, with p > m. Instead

of decoupling the entire G(z), only a square subsystem of G is decoupled.

Without loss of generality, it is assumed that the square subsystem corresponds

to the first m outputs of G, but the method proposed below can be applied to other

square subsystems as well. Let us denote the m ×m square subsystem of G as Gm.

Same as DRG-tf for square systems (see Section 2.3), F is designed to decouple Gm,

resulting in the diagonal subsystem, Wm, shown below:

Wm =


Gm11(z) . . . 0

... . . . ...

0(z) . . . Gmmm(z)

 (3.35)
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Then, the whole system W (i.e., GF ) can be described by:

W =


Wm

FGm+1,p︸ ︷︷ ︸
Wp

 (3.36)

where Gm+1,p represents the last (p−m) rows of G.

As can be seen, from Figure 3.7, one DRG (which contains m decoupled SRGs) for

Wm is designed to ensure that the outputs y1, . . . , ym satisfy the constraints. After-

wards, a single SRG for Wp is implemented to ensure that the outputs ym+1, . . . , yp

satisfy the constraints. The challenge of this approach is that two sets of v’s are

computed: one by the DRG and one by the SRG (as shown in Figure 3.7). Thus, one

question is raised: how can the two sets of v’s be “fused” together while all outputs

are satisfied the constraints. There are several ways to accomplish this task. The

most straightforward solution is to select the smallest κ among the m + 1 different

κ’s, denoted as κ̄, that is:

κ̄ = min(κ1, . . . , κm+1) (3.37)

and the update law for v becomes:

v(t+ 1) = v(t) + κ̄(r′(t)− v(t)).

With the above κ̄, the convexity of the MAS guarantees that the constraints for all

outputs are satisfied and the solutions from the DRG and SRG are unified. However,

the response of this approach may be conservative since the smallest κ is utilized. An

alternative way to fuse the v’s is explained follows. First, denote the set of v’s given
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by the SRG as vs and the set of v’s given by the DRG as vd. We solve an RG-like LP

(see (2.14)) to find the point in OWm
∞ that is closest to vs (recall that OWm

∞ refers to

the MAS for Wm), denoted as vt1 . Similarly, we solve another LP to find the closest

point to vd in OWp
∞ , where OWp

∞ represents the MAS for Wp, denoted as vt2 . Note that

vt1 and vt2 are both constraint-admissible for all outputs since they are in OWp
∞ and

OWm
∞ at the same time.

Finally, the actual set of v’s that is applied to F (z) is characterized by:

v =


vt1 if ‖r′ − vt1‖ ≤ ‖r′ − vt2‖

vt2 otherwise

By choosing v as above, it is guaranteed that the constraints for all outputs are

satisfied. Also, the second approach has a less conservative response than that given

by the first approach but at a cost of higher computational effort since two more LPs

are required to be solved. Finally, F−1 is introduced to ensure that u is close to r, as

before.
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Chapter 4

Preview Reference Governor

Recall from Section 1.2.2, Preview Reference Governor (PRG) intends to solve pointwise-

in-time state and control constraints while taking into account the preview informa-

tion of the reference and/or disturbances signals. More specifically, as shown in the

black diagram of PRG (Figure 4.1), it is assumed that the preview information of

the reference signal is available, that is r(t), r(t+ 1), . . . , r(t+N), are known to the

controller at time t, where N refers to the “preview horizon”. Similar to SRG, the goal

of PRG is to select v(t) as close as possible to r(t) such that the output constraints

are satisfied for all times. Meanwhile, the PRG scheme must take into consideration

the preview information of r(t) in order to improve the transient performance as com-

Preview
RG

Closed-Loop
Plant, G(z)

rN(t) v(t) y(t)

x(t)

Figure 4.1: Preview Reference Governor block diagram. rN (t) represents the lifted reference
over the preview horizon, i.e., rN (t) = (r(t), . . . , r(t+N)).
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pared to SRG. To achieve these goals, first, r(t) and v(t) are lifted from R to R(N+1)

in order to describe them over the entire preview horizon. Next, the system G is

represented based on the lifted input and a new construction of Maximal Admissible

set (MAS) is calculated based on this new representation. Finally, PRG is formu-

lated as an extension of SRG, where a new optimization problem is solved based on

the new MAS and a new update law is used to compute v(t). In this chapter, first,

the PRG for single-input system will be introduced. With the simulation of PRG

on the onr-link arm robot example, one drawback of PRG is demonstrated that is

PRG may calculate conservative inputs under certain conditions, especially for long

preview horizons. Then, an extension of PRG, namely Multi-N PRG, is proposed

to remedy this issue. The modification of PRG to systems with inaccurate preview

information, and systems with disturbance and noise is also presented. Finally, two

solutions to handle multi-inputs systems is proposed to extend the applicability of

PRG.

4.1 Preview Reference Governors for

Single Input Systems

In this section, the PRG for single-input systems is introduced and analyzed. Addi-

tionally, PRG is compared with SRG using the one-link arm robot example to demon-

strate that it can significantly improve the transient performance while enforcing the

constraints.

Consider the system G(z) shown in Figure 4.1. Assume r(t), r(t+1), . . ., r(t+N)

are available at time t, where r(t) ∈ R is the current value of the setpoint and
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r(t+ 1), . . . , r(t+N) ∈ R are the preview information (N ≥ 0 represents the preview

horizon). We now define the lifted signals rN(t) ∈ R(N+1) (shown in Figure 4.1) and

vN(t) ∈ R(N+1), as follows:

rN(t) = (r(t), . . . , r(t+N)), vN(t) = (v(t), . . . , v(t+N)) (4.1)

Using the lifted signals, G(z) can be equivalently expressed as:

x(t+ 1) = Ax(t) +
[
B 0 . . . 0

]
︸ ︷︷ ︸

B̃

vN(t),

y(t) = Cx(t) +
[
D 0 . . . 0

]
︸ ︷︷ ︸

D̃

vN(t)
(4.2)

Next, a detailed explanation on constructing the Maximal Admissible Set (MAS)

for the lifted system will be provided. Recall from (2.3) that in order to characterize

MAS in the SRG framework, it is assumed that v(t) is held constant for all future

time. This assumption ensures that the optimization problem (2.14) will always have

a feasible solution, namely κ = 0. In order to extend these ideas to PRG, we assume

that v(t) may vary within the preview horizon to extend the flexibility in choosing

the v, but is held constant beyond the preview horizon. Therefore, the dynamics of

vN(t) are selected to be:

vN(t+ 1) = ĀvN(t) (4.3)
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with initial condition vN(0) = vN0 , where Ā is defined by:

Ā =



0 1 . . . 0
... ... . . . ...

0 0 . . . 1

0 0 . . . 0

0 0 . . . 0︸ ︷︷ ︸
N

0
...

0

1

1


(4.4)

This choice of Ā, together with the definition of vN(t) in (4.1), enforce that for all

t ≥ N , v(t) = v(N). With these dynamics, the new MAS is defined as:

ON
∞ :={(x0, vN0) ∈ Rn+(N+1) : x(0) = x0, vN(0) = vN0

vN(t+ 1) = ĀvN(t), y(t) ∈ Y,∀t ∈ Z+}
(4.5)

Similar to (2.6), a finitely determined inner approximation of the new MAS can be

computed by tightening the steady-state constraint (to prove finite determinism, note

that after N time steps, v(t) converges to a constant, which reduces the problem to

that in the standard MAS theory). In the rest of this dissertation, with an abuse of

notation, the ON
∞ is used to denote the finitely determined inner approximation of

the MAS.

With the new MAS (ON
∞) defined, we are now ready to present the PRG formula-

tion. Recall from SRG theory, it computes v(t) using the update law in (2.13), where

κ is obtained by solving the LP shown in (2.14). Note from (2.13) that v(t) ∈ R can

be viewed as the internal state of the SRG. To extend these ideas to PRG, (N + 1)

new states is introduced in PRG formulation, where the state update law is shown as
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follows:

vN(t) = ĀvN(t− 1) + κ(rN(t)− ĀvN(t− 1)) (4.6)

where κ is the solution of the following linear program:

maximize
κ∈[0,1]

κ

s.t. vN(t) = ĀvN(t− 1) + κ(rN(t)− ĀvN(t− 1))

(x(t), vN(t)) ∈ ON
∞

(4.7)

An explicit algorithm, similar to the one in SRG [149], can be developed to solve

this LP efficiently. At every time step, the PRG solves the above LP to compute κ,

updates vN(t) using (2.14), and applies the first element of vN(t) to the system G.

Remark 4. When N = 0, PRG reduces to SRG because Ā turns into the scalar with

value 1. Therefore, PRG is a proper extension of SRG.

PRG inherits the properties of SRG, including bounded-input bounded output

stability, convergence, and recursive feasibility, as shown in the following proposition.

Proposition 1. The PRG formulation is recursively feasible, bounded-input and

bounded-output stable (BIBO), and for a constant r, v(t) converges.

Proof. To show recursively feasibility, consider the update law (4.6). As can be seen,

κ = 0 implies that vN(t) = ĀvN(t − 1), which matches the dynamic of vN that is

assumed in ON
∞. Positive invariance of ON

∞ implies that if the pair (x(t−1), vN(t−1))

is admissible, then (x(t), vN(t− 1)) is also admissible. As a result, κ = 0 is always a

feasible solution to the LP in (4.7), implying recursively feasibility of the PRG. As for

BIBO stability, recall that vN(t) is the convex combination between ĀvN(t− 1) and
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the current reference rN(t). Thus, if r(t) is bounded, then so is vN(t). This, together

with the asymptotic stability of G, implies BIBO stability of the system. To prove

the convergence property, assume r(t) = r,∀t ∈ Z+. It can be shown that, from (4.6),

every element in vN(t) is monotonic ∀t ≥ N and bounded by r. Thus, vN(t) must

converge to a limit.

Remark 5. For the case where the state of G(z) (i.e., x(t) shown in Figure 4.1) is

not measured, standard Luenberger observers can be designed to estimate the state.

Illustration Example

Next, the illustration of the PRG using the one-link arm robot, shown in Figure 2.5,

is presented. A state-space model of the arm is given by:

ẋ1

ẋ2

 =

 0 1

−14.7 0


x1

x2

+

0

3

 τ, y =
[
1 0

] x1

x2

 (4.8)

where x1 , θ, x2 , θ̇ are the states and τ (i.e., external torque) is the control input.

For this example, we assume that both states are measured.

To design a controller and consequently implement the PRG, the system model (4.8)

is first discretized at Ts = 0.01s. Then, a state-feedback controller is applied to ensure

that the output, θ, tracks the desired angle, v, perfectly (see Section 2.6.1), that is:

τ = 66.67v − 61.77x1 − 9.64x2. This results in the closed-loop system G shown in

Figure 4.1. In this discussion, a trajectory-following maneuver is simulated, wherein

the PRG is implemented to ensure that the output, θ, remains within [−45◦, 45◦]. We

assume that the preview information is available from the given pre-set trajectory and
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Figure 4.2: Comparison of PRG and SRG. The blue lines represent the results of SRG and
the red lines refer to the results of PRG. The top plot shows the outputs and the bottom plot
shows the control inputs and the setpoint.

the preview horizon, N , is chosen to be 25 (i.e., 0.25 seconds).

The comparison between the performance of PRG and SRG is shown in Figure 4.2.

As can be seen, v(t) given by PRG is closer to r(t) when t ∈ [0.3, 0.5], implying that

PRG is less conservative than SRG. This is because when t = 0.3, the PRG has the

future information that the reference would drop down to 0 in future 25 time steps

so that it allows a larger v(t) than SRG. For the same reason, v(t) given by PRG is

less conservative when t ∈ [0.7, 0.9].
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Meanwhile, Figure 4.2 shows a limitation of PRG. Specifically, it can be seen that

when t ∈ [0.54, 0.64], v(t) given by PRG can not reach r(t) = 0, even though 0

is an admissible input. To explain the root cause of this behavior, note that when

t = 0.54, the preview information available to the PRG is that r(t) drops down to

−69◦ at t = 0.7 and stays constant, and the increase of r(t) back to 0 at t = 0.9 is

beyond the preview horizon. To enforce the lower constraint for t > 0.7, the PRG

calculates a κ smaller than 1. However, since κ affects all elements of vN(t) (see

(4.6)), this leads to v(t) 6= r(t) when t ∈ [0.54, 0.64] and, thus, a more conservative

solution is obtained.

It is important to realize that the above limitation of PRG can be addressed by

decreasing the preview horizon N . However, if N is too short, the tracking perfor-

mance of the system might not be improved significantly as compared with SRG. To

ensure a superior system performance while addressing the above limitation of PRG,

an extension of PRG is provided in the following section.

4.1.1 Multi-Horizon PRG (Multi-N PRG)

To overcome the limitation of PRG, this section introduces a modification of PRG,

namely Multi-Horizon Preview Reference Governor (Multi-N PRG). As the name

suggests, instead of having a single preview horizon, multiple preview horizons are

considered. More specifically, for each horizon, a MAS is characterized, and multiple

PRGs are solved at each time step, one for each MAS. A technical challenge for this

approach is that vN(t)’s for different preview horizons will have different dimensions

and different interpretations. In addition, a practical challenge of Multi-N PRG is

that storing multiple MASs will lead to a significant increase in the memory require-
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ments. Our novel solution overcomes these challenges by unifying the vN ’s so that

only one MAS is required, and fusing the different PRG solutions in a special way to

guarantee constraint satisfaction and recursively feasibility.

Initially, consider the following set of q preview horizons: N1 < N2 < . . . < Nq.

Let ONi
∞ be defined identical to (4.5), i.e., the MAS of the lifted system with preview

horizon Ni. We first reveal that there exists a simple relationship between ONi
∞ ,

i = 1, . . . , q − 1, and ONq
∞ . Recall from (4.5) and (4.1) that in order to construct

ONi
∞ , it is assumed that v(t) is held constant beyond the preview horizon (i.e., after

t = Ni). Similarly, to construct ONq
∞ , it is assumed that v(t) is held constant after

t = Nq. Thus, ONi
∞ and ONq

∞ have the following relationship:

(x, vNi) ∈ ONi
∞ ⇔ (x, [vTNi , vNi(Ni + 1)T , . . . , vNi(Ni + 1)T︸ ︷︷ ︸

Nq−Ni terms

]T ) ∈ ONq
∞

where ⇔ denotes the bidirectional implication and vNi(Ni + 1) refers to the last ele-

ment in vNi . Therefore, given this relationship, only ONq
∞ is needed to be computed

and stored.

Next, the Multi-N PRG formulation is described, which solves q PRGs at each

time step, one for each Ni. As justified in the previous section, all PRGs use the same

MAS, namely ONq
∞ . More specifically, recall from Section 4.1 that PRG contains an

internal state with an update law given by (4.6). Similarly, an internal state, denoted

here by ṽ ∈ R(Nq+1), is also introduced in the Multi-N PRG scheme. The i-th PRG

in the Multi-N PRG framework assumes the update law:

ṽ(t) = Mi(Āṽ(t− 1) + κi(rNq(t)− Āṽ(t− 1)) (4.9)
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where Ā is defined the same as (4.4) but with N = Nq, and rNq(t) is the lifted version

of r at time t (defined as in (4.1)). The matrixMi is introduced to enforce the control

inputs beyond the preview horizon Ni to be constant (this is to maintain consistency

with the fact that the i-th PRG has a preview horizon of length Ni). This is achieved

by constructing Mi as:

Mi =

 I(Ni+1) 0(Ni+1)×(Nq−Ni)

Ĩ(Nq−Ni)×(Ni+1) 0(Nq−Ni)×(Nq−Ni)



where Ĩ(Nq−Ni)×(Ni+1) is a matrix with zeros everywhere except the rightmost columns,

which are given by [1, 1, . . . , 1]T . In the update law (4.9), for the i-th PRG , the scalar

κi is computed by solving the following LP:

maximize
κi∈[0,1]

κi

s.t. ṽ(t) = Mi(Āṽ(t− 1) + κi(rNq(t)− Āṽ(t− 1))

(x(t), ṽ(t)) ∈ ONq
∞

(4.10)

Finally, in order to obtain the most superior performance among different preview

horizons, the solutions calculated in different PRGs are fused by taking the maximum

value among {κi}, i = 1, . . . , q, denoted by κi∗ . The index that corresponding to κi∗

is denoted by i∗. Then, the final update law of Multi-N PRG is shown as follows:

ṽ(t) = Mi∗(Āṽ(t− 1) + κi∗(rNq(t)− Āṽ(t− 1))

This formulation maintains recursively feasibility. Indeed, suppose PRG i∗ is the

PRG that computes κi∗ at time step t. At next time step t + 1, the same PRG can
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calculate a feasible solution due to the recursively feasibility of the PRG formulation.

Note that not all PRGs in the Multi-N PRG formulation is guaranteed to have

feasible solutions at every time step. Moreover, if a feasible solution to these PRGs

does not exist, κi’s for these PRGs are set to be 0.

Illustration Example

In this section, the performance of Multi-N PRG on the one-link arm robot is demon-

strated. The dynamics of the one-link arm robot with controller can be found in

Section 4.1.

The simulation results of Multi-N PRG on the one-link arm robot example are

shown in Figure 4.12. For comparison, the simulation results of PRG with N = 25 is

also provided. For the sake of illustration, we consider the extreme scenario where the

Multi-N PRG uses all preview horizons between 0 and 25; i.e., q = 26 and N1 = 0,

N2 = 1, . . . , N26 = 25.

It can be seen, from Figure 4.12, the outputs for both Multi-N PRG and PRG

satisfy the constraints, as expected. However, from the bottom plot of Figure 4.12,

when t ∈ [0.54, 0.64], v(t) given by Multi-N PRG reaches r(t) while v(t) computed by

PRG is above r(t). The reason for this behavior can be explained as follows. When

t ∈ [0.54, 0.64], the PRG corresponding to N1 = 0 computes κ = 1, which leads to

v(t) = r(t). Note that the actual performance improvement of Multi-N PRG (as

seen on the output plot) is not large for this specific example but it could be large in

general.

Next, the impact of the choice of q in the Multi-N PRG on the system performance

will be discussed. For the sake of illustration, consider two extreme cases: first, N1
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Figure 4.3: Comparison of Multi-N PRG and PRG with N = 25.
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and N2 are chosen to be 0 and 100 (i.e., q = 2); second, N1, . . . , N100 are chosen to

be all numbers from 0 to 100 (i.e., q = 101). The reason Nq = 100 is selected is that

the preview horizon in this case is 1 second (recall the sample time is Ts = 0.01),

which is longer than the variation of the reference in our specific example, and can

clearly show the difference on the system performance between the two cases. The

comparison between the two cases implemented on the one-link arm robot example is

shown in Figure 4.4, which demonstrates performance improvements when a larger q is

used. Generally, in the designing aspect, when the preview horizon is longer than the

expected variations of the reference, it is better to use the Multi-N PRG formulation

with a larger q. However, this will lead to an increase in the computational burden,

which is discussed later.

4.2 Robust Preview Reference Gover-

nor

In previous discussion, PRG is deigned for a perfectly known system with accurate

preview information, which is unlikely to happen in real scenario. In this section,

the extensions of PRG to systems with disturbance preview, systems with parametric

uncertainties, as well as preview-information uncertainties, are introduced.
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4.2.1 Preview Reference Governor with Distur-

bance Preview

In previous sections, we consider systems in which the preview information of the ref-

erence signal is available. However, there are situations wherein preview information

of disturbance signals may be available as well. For example, in printing systems, the

effect of paper, which modeled as disturbance, on the heating or charging systems

are known with some preview, since the timing of the paper leaving the printing tray

is precisely controlled [167]. Motivated by this example, in this section, we consider

systems where preview information of disturbances is available within a given preview

horizon. For simplicity, the preview for the reference signal is not considered in the

discussion, though the results can be combined with those of the previous sections to

consider preview on both references and disturbances.

Consider a system with additive bounded disturbance given by:

x(t+ 1) = Ax(t) +Bv(t) +Bww(t)

y(t) = Cx(t) +Dv(t) +Dww(t)
(4.11)

where w ∈W and W is a compact polytopic set with origin in its interior. Essentially,

the disturbance preview is incorporated into the PRG formulation as follows: the MAS

is characterized as a function of the current state, input, and the known disturbances

within the preview horizon. The set is then shrunk to account for the worst-case

realization of the unknown disturbance beyond the preview horizon. Specifically, the
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robust MAS for systems with disturbance preview can be defined as:

Ow
∞ ={(x0, v0, w0, . . . , wN) : x(0) = x0, v(0) = v0, w(i) = wi,

0 ≤ i ≤ N, y(t) ∈ Y,∀t ∈ Z+,∀w(j) ∈W, j > N}
(4.12)

To compute this set, define Yt = Y for t = 0, . . . , N , YN+1 = Y ∼ DwW, and

Yt+1 = Yt ∼ CAt−N−1BwW for t ≥ N + 1, where ∼ represents the Pontryagin

subtraction. Then, the condition y(t) ∈ Y in (4.12) can be characterized equivalently

by:

CAtx0 +
(
t−1∑
k=0

CAkB +D

)
v0 + hd(t) ∈ Yt

where hd(t) is defined as:

hd(t) =


t−1∑
k=0

CAt−1−kBww(k) +Dww(t) if t ≤ N

N∑
k=0

CAt−1−kBww(k) if t > N

In summary, by shrinking the MAS to take the worst case disturbance into consid-

eration, robust PRG guarantees constraints satisfaction for all values of disturbance

beyond the preview horizon.

Proposition 2. The robust PRG formulation to disturbance previews is BIBO stable,

recursively feasible, and for a constant r, v(t) converges.

Proof. Similar to the proof for Proposition 1
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Illustration Example

In this section, the system performance of the robust PRG with preview disturbance

(as explained above) on the one-link arm robot example will be presented. The

disturbance is assumed to be generated from the joint torque, i.e. Bw = B and

Dw = 0. We also assume that the disturbance satisfies w ∈W := [−0.1, 0.1]. For the

purpose of simulations, the disturbance is generated randomly and uniformly from

the interval [−0.1, 0.1].

The results of PRG with the disturbance as the preview information are shown

in Figure 4.5. Two preview horizons are chosen, namely N = 20 and N = 50, in

order to illustrate the relationship between the system performance and the length of

the preview horizon. For a better comparison, Figure 4.5 also shows the response of

robust SRG with unknown bounded disturbance (i.e., no preview).

The following observations can be made. First and most importantly, the output

from all methods satisfy the constraints, as expected. Second, it can be seen that

v(t) given by PRG is closer to r(t) (less conservative) than that of SRG. The reason

for this behavior is that the constraint set for PRG with disturbance preview is less

conservative than that for SRG with unknown disturbance. Third, the longer the

preview horizon, the better the performance (less conservative) obtained.
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Figure 4.5: Comparison of PRG with disturbance preview and SRG with bounded unknown
disturbance.

4.2.2 Robust PRG for systems with Parametric

Uncertainties

Reconsider system G(z) in Figure 4.1, but now with modeling uncertainty on the A

and B matrices:
x(t+ 1) = A(t)x(t) +B(t)v(t)

y(t) = Cx(t) +Dv(t)
(4.13)

where the pair (A(t), B(t)) is assumed to belong to an uncertainty polytope defined

by the convex hull of the matrices:

(A(t), B(t)) ∈ conv{(A(1), B(1)), . . . , (A(L), B(L))}
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where L is the number of vertices in the uncertainty polytope. As shown in [165],

a robust MAS can be constructed for this uncertain system. We note that a similar

idea can be implemented for the PRG. Similar to (4.2), we write the dynamics in

terms of the lifted input, but now we consider the uncertainties:

x(t+ 1) = A(t)x(t) +
[
B(t) 0 . . . 0

]
︸ ︷︷ ︸

B̃(t)

vN(t),

y(t) = Cx(t) + D̃vN(t)

(4.14)

Then, the pair (A(t), B̃(t)) must belong to a convex hull of the following matrices:

(A(t), B̃(t)) ∈ conv{(A(1), B̃(1)), . . . (A(L), B̃(L))}

where B̃(l) =
[
B(l) 0 . . . 0

]
, l = 1, . . . , L. By doing this, the method proposed

in [165] can be used to compute the robust MAS for PRG with system uncertainties.

For the sake of brevity, numerical examples will not be provided in this section.

4.2.3 Robust PRG for systems with Uncertain

Preview Information

In previous designing, we assumed that the preview information is accurate along

the preview horizon. However, this assumption might not hold in practice if the

preview information comes from inaccurate measurements or uncertain models. In

this section, an extension of PRG that can handle inaccurate preview information of

references is presented. A brief explanation on the effectiveness of inaccurate preview
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information on the system performance will be provided below. As can be seen from

(4.7), the inaccurate values in rN(t) will result in the incorrectly calculation of vN(t).

The implication of this is that, in the next time step, vN(t + 1) will be computed

based on the delayed version of this incorrect vN(t), which, for example, might cause

v(t) to change before r(t) does. This behavior is unacceptable for most systems. Note

that the constraints will still be satisfied; however, as argued above, performance may

suffer. Thus, our solution in this section focuses on avoiding this loss of performance

when the preview information is inaccurate.

To begin, we assume that at time t, r(t) is accurately known, but there is un-

certainty on the value of r along the preview horizon, i.e., r(t + 1), . . . , r(t + N)

are inaccurate. To accommodate this uncertainty, the update law of vN(t) (4.4) is

modified to:

Ā =



1− λ1 λ1 0 . . . 0

1− λ1 λ1 − λ2 λ2 . . . 0
... ... ... ... ...

1− λ1 λ1 − λ2 λ2 − λ3 . . . λN

1− λ1 λ1 − λ2 λ2 − λ3 . . . λN


(4.15)

where λi ∈ [0, 1] are tuning parameters to account for preview uncertainties. This

implies that instead of using the delayed structure of (4.4), vN(t) now evolves such

that the value of v at each time step along the preview window is a convex combination

of the value at that time and the values in the previous times. This effectively

incorporates a “forgetting” term into the formulation to counteract the uncertainties

in the preview information. The parameter λi is tuned according to the relative level

of uncertainty on the i-th preview information, r(i). Specifically, if the uncertainty
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on r(i) is large, λi is chosen to be close to 0. If this is the case, PRG with the new Ā

matrix (i.e., (4.15)) will behave similarly to SRG. If ri is very accurate, on the other

hand, λi will be chosen close to 1. Then, PRG with the new Ā will turn to standard

PRG. Therefore, robust PRG is a proper extension of both standard PRG and SRG.

Typically, the level of uncertainty on ri increases along the preview horizon, which

means that the sequence of λi is increasing.

The construction of ON
∞ and the computation of vN are the same as (4.5) and

(4.10), except that Ā is changed from (4.4) to (4.15).

Proposition 3. The robust PRG formulation to inaccurate preview information is

BIBO stable, recursively feasible, and for a constant r, v(t) converges.

Proof. The proof of BIBO stable and recursively feasibility are the same as the proof

for Proposition 1. To prove the convergence property, assume r(t) = r,∀t ∈ Z+.

Note that limj→∞ Ā
j = Ā0, where Ā0 is a static matrix, since Ā shown in (4.15) is

a stochastic matrix. Then, from (4.6), it can be shown that every element in vN(t)

is monotonic increasing after Āj converges and bounded by r. Thus, vN(t) must

converge to a limit.

Illustration Example

Now, we will illustrate the performance of robust PRG to uncertain preview informa-

tion using the one-link arm robot example (see the example in Section 4.1). First, a

comparison on the Maximal Admissible set (MAS) between standard PRG and robust

PRG is presented, followed by the numerical simulation of robust PRG.

Suppose, first, that the preview horizon, N , is equal to 1 for the ease of illustration.
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Figure 4.6: The slice of ON∞ at x = 0. vN,0 and vN,1 represent the first and second element
in vN , respectively.

The slice of ON
∞ at x = 0 is shown in Figure 4.6. The red region corresponds to the

slice of ON
∞ given by the standard PRG at x = 0. The green region represents the

slice of ON
∞ given by the robust PRG at x = 0, where λ1 = 0.2 is selected. Note that

in this case, the matrix Ā has only one λ. The situation we consider is as follows.

Suppose at t = 0, the preview information is given by rN(0) := (r(0), r(1)) = (0, 0.5)

(yellow dot in Figure 4.6). However, assume that the actual preview information is

(r̄(0), r̄(1)) = (0, 0) (purple dot), which is unknown to the PRG. Note that r(0) = r̄(0)

since current information is assumed to be accurate. Obviously, vN(0)’s given by

standard PRG and robust PRG will be equal to rN(0) (i.e., vN(0) = (0, 0.5)) since
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Figure 4.7: Comparison of standard PRG and robust PRG. Red lines represent the simula-
tion results of standard PRG and blue lines refer to the simulation results of robust PRG.

rN(0) is in both MASs (red and green regions in Figure 4.6). In the next time step

(t = 1), if κ 6= 1, vN(1) given by standard PRG is a convex combination between

the delay version of vN(0) (i.e., (0.5, 0.5)) and rN(1) (see (4.7)). However, for robust

PRG, vN(1) is a convex combination between ĀvN(0) = (0.45, 0.45) and rN(1). Note

that if the uncertainty is large, λ1 would be chosen close to 1 and ĀvN(0) will be

close to (0, 0). By doing so, robust PRG decreases the impact of the wrong preview

information on the computation of current vN by multiplying the previous information

with values smaller than 1 (i.e., λ’s).

We now perform numerical simulations of the one-link arm robot example. In

this discussion, the preview horizon is changed from N = 1 to N = 4 for the sake
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of illustration. We consider the scenario where the assumed preview information is

larger than the actual preview information along the preview horizon. The Ā is chosen

to be:

Ā =



0.1 0.9 0 0 0

0.1 0.15 0.75 0 0

0.1 0.15 0.3 0.45 0

0.1 0.15 0.3 0.35 0.1

0.1 0.15 0.3 0.35 0.1


(4.16)

We acknowledge that there are other possibilities to choose Ā and finding the optimal

set of λs is outside of the scope of this dissertation and will be explored in future work.

The comparison on the system performance between standard PRG and robust PRG

is duplicated in Figure 4.7. It can be seen that when t ∈ [0.21, 0.24], v(t) given

by robust PRG (blue line) is closer to r(t) than that given by standard PRG (red

line). The reason for the behavior can be explained as follows. At t = 0.20, vN(20)’s

given by standard PRG and robust PRG are both equal to rN(20). Recall that the

first element in rN(20) is accurate and the rest elements in rN(20) are inaccurate.

Then, in the next time step, for standard PRG, v(21) is calculated as a convex

combination between the delayed version of rN(20) (inaccurate) and rN(21). From

simulation results, with κ = 0.25, v(21) is calculated as 0.13. For robust PRG, v(21)

is computed as a convex combination between ĀrN(20), where Ā is shown in (4.16),

and rN(20). With κ = 0.69, v(21) = 0.05. Also, by increasing the value of λ1 in

(4.16) (i.e., 0.1), v(21) would become closer to r(21) := 0. However, the tracking

performance would not be improved significantly as compared with SRG.
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4.3 Computational considerations

In this section, a comparison between the computation time of PRG, Multi-N PRG,

and SRG by simulating the one-link arm robot example with all three methods will

be presented. Recall that SRG and PRG require the solution to one linear program

(LP) at each time step, while Multi-N PRG requires the solutions to q LP’s (q = 26

for our example). However, generic LP solvers is not used to solve them. Instead, we

use the Algorithm presented in [149] to solve the LPs in SRG and Algorithm 3 below

to solve the LPs in PRG. The LPs in Multi-N PRG can be solved using a similar

algorithm as Algorithm 3. The notation in Algorithm 3 is as follows. It is assumed

that ON
∞ is finitely determined and given by polytopes of the form (2.8). In addition,

j∗ denotes the number of rows of Hx, Hv, and h.

Algorithm 1 Custom Explicit PRG Algorithm
1: let a = Hv(rN(t)− ĀvN(t− 1))
2: let b = h−Hxx(t)−HvĀvN(t− 1)
3: set κ = 1
4: for i = 1 to j∗ do
5: if b(i) < 0 then
6: κ = 0
7: else
8: if a(i) > 0 then
9: κ = min(κ, b(i)/a(i))
10: end if
11: end if
12: end for
13: κ = max(κ, 0)

We simulated the one-link arm robot example with all three methods, namely

SRG, PRG, and Multi-N PRG. All simulations were performed for 150 time steps
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Table 4.1: Comparison of the computation time between SRG, PRG, Multi-N PRG, and
CG for one-link arm robot example

SRG PRG (N = 25)
avg 6.8× 10−7s 3.1× 10−5s
max 9.2× 10−7s 4.74× 10−5s

Multi-N PRG (Nq = 25) CG (N = 25)
avg 6.54× 10−4s 6.3× 10−3

max 8.5× 10−4s 0.0162

in Matlab on an Apple Macbook Pro with 1.4 GHz Intel Core i5 processor and

8 GB memory. To eliminate the effects of background processes running on the

computer, each of the above experiments were run 10 times and the averages were

calculated. The per-timestep averages and maximums of each of the three methods

were calculated. The results are shown in Table 4.1. As can be seen, PRG runs

two orders of magnitude slower than SRG (because the matrices that arise in the

computations are larger). The Multi-N PRG is slower by one order of magnitude

(because q PRGs are solved at each time step).

Finally, to provide a comparison of these computation times with those of other

existing preview control methods, we simulate the one-link arm robot example with

the PRG replaced by a Command Governor (as explained in Section 2.2.3). The QP

is solved at every time step using explicit Multi-Parametric Quadratic Programming

(MPQP), which is introduced in [75]. The computation time of CG is shown in Table

4.1. As can be seen, CG is one order of magnitude slower than Multi-N PRG. Note

that we also implemented online QP solver for the CG, provided by MPT3 Toolbox

in Matlab and Gurobi, and found that the computation times for both cases were

longer than that of MPQP.
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4.4 PRG for multi-input systems

In this section, we will introduce the extension of PRG to multi-input systems. One

simple and straightforward solution is to apply the PRG ideas directly to multi-input

systems. However, as will be shown in an example later, this approach might lead

to a conservative response since PRG uses a single decision variable κ to simultane-

ously govern all the channels of the multi-input system. To address this issue, we

propose another solution, which combines the PRG idea with the Decoupled Refer-

ence Governor (DRG) scheme (explained in Section 3.2). Detailed information will

be introduced below.

To begin with, suppose that systemG(z) in Figure 4.1 hasm inputs (i.e., v(t), r(t) ∈

Rm). Let us denote the preview horizon for the m different inputs (i.e., r1, . . . , rm)

by N1, . . . , Nm, respectively. Define the lifted signals rN and vN as follows:

rN(t) = (r1(t), . . . , r1(t+N1), . . . , rm(t), . . . , rm(t+Nm))

vN(t) = (v1(t), . . . , v1(t+N1), . . . , vm(t), . . . , vm(t+Nm))
(4.17)

The dynamics of vN(t) can be selected to be the same as (4.3) but with Ā constructed

by:

Ā =

 ĪN1 . . . 0N1×Nm... . . . ...
0Nm×N1 . . . ĪNm

 (4.18)

where ĪNi (i = 1, . . . ,m) is defined the same as (4.3), with N replaced by Ni. The

construction of ON
∞ and the calculation of vN are the same as (4.5) and (4.7), except

that Ā is modified to (4.18).

Below, an illustrative example will be provided to show that this approach works
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as required but might lead to a conservative response. Consider a two-link arm robot,

which has dynamics as follows [168]:



ẋ1

ẋ2

ẋ3

ẋ4


=



0 0 1 0

0 0 0 1

−0.46 −0.62 0 0

0.25 −6.62 0 0





x1

x2

x3

x4


+



0 0

0 0

0.78 −0.04

0.04 0.13



τ1

τ2

 (4.19)

where τ1 and x1 := θ1 represent the external torque and the joint angle for the first

link, respectively. Similarly, τ2 and x2 := θ2 are the torque and the joint angle for

the second link, respectively. The constraints are imposed on the joint angles: θ1 ∈

[−60◦, 60◦] and θ2 ∈ [−60◦, 60◦]. To implement PRG, the system is first discretized

at Ts = 0.01s. Then, a state feedback controller is designed to ensure that θ1 and θ2

track desired setpoints, v1 and v2, respectively, that is:

τ1

τ2

 =

769.23 0

0 3333.3


v1

v2

−
 750 155 59 19

−226 2867 −18 350





x1

x2

x3

x4



The preview horizons for both references are chosen to be 40 (i.e., N1 = N2 = 40).

The simulation results of PRG on the two-link arm robot are shown in Figure 4.8.

As can be seen, the outputs both satisfy the constraints, as required. However, when

t ∈ [0.8, 1.2], v2 give by PRG can not reach r2, even though y2 (i.e., red line in the

top plot) is far from the lower constraint. This is caused by the fact that y1 (i.e.,

the blue line in the top plot of Figure 4.8) reaches the constraint when t ∈ [0.8, 1.2],
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Figure 4.8: Simulation results of PRG for the two-link arm robot. The blue lines represent
the response of joint 1 and the red lines represent the response of joint 2.

implying that κ is selected to be 0. Since a single κ is used in PRG scheme, v2 can

not reach r2.

To address this shortcoming, another method is proposed below, which combines

the PRG theory with the DRG scheme.

4.4.1 PRG Theory with the DRG Scheme

As a quick review, DRG is based on decoupling the input-output dynamics of the

system, followed by the application of a bank of SRGs to each decoupled channel. In

the solution proposed below, instead of using SRGs to govern the decoupled channels,
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Figure 4.9: PRG block diagram for square MIMO systems. ri,Ni(t) represents the lifted ri
over the preview horizon, i.e., ri,Ni(t) = (ri(t), . . . , ri(t+Ni)).

we use the PRG presented in Section 4.1. This leads to the block diagram shown in

Figure 4.9. For ease of presentation, it is assumed that the system is square. Non-

square case can be handled as well by considering the DRG scheme for non-square

systems presented in Section 3.4.

To elaborate, suppose the closed-loop system G(z) is described using (2.16). Simi-

lar to DRG, as shown in Figure 4.9, the dynamics of G(z) is decoupled by introducing

F (z), leading to a diagonal system: W (z). As discussed in Section 2.5, there are sev-

eral ways to construct W (z). For the sake of brevity, we only consider the case where

W (z) is given by: W (z) = diag(G11, G22, . . . , Gmm). Then, m different PRGs for

single-input systems (see Section 4.1) are implemented, one for each Wii. Finally, as

discussed in Section 2.5, F−1 is introduced to ensure that v = r if r is constraint-

admissible. Note that the same process to combine PRG idea and DRG scheme can

be applied to other structure of W (z) as well.

To elaborate the DRG-tf idea, the two-link arm robot is transferred to frequency

domain. Simulation results of the second approach on the two-link arm robot are

shown in Figure 4.10. As can be seen, the constraints are satisfied, as required. Also,
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Figure 4.10: Simulation results of PRG for the two-link arm robot. The blue lines represent
the response of joint 1 and the red lines represent the response of joint 2.

differs from the first approach, when t ∈ [0.8, 1.2], v2 reaches r2. This behavior can

be explained as follows. When t = 0.8, the PRGs have the future information that

r2 will drop down to −56 at t = 1 and then go up towards −20 at t = 1.2 (recall

that N1 = N2 = 40). Also, from the top plot of Figure 4.10, it can be seen that when

t ∈ [0.8, 1.2], y2 (red line in the top plot) does not reach the lower constraint, which

leads to κ2 = 1. Hence, v2 reaches r2.

Finally, it is worthwhile to mention that both extensions of PRG to multi-input

systems discussed above can be easily extended to multi-N PRG by combining DRG

scheme with Multi-N PRG idea.
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Figure 4.11: Comparison of PRG and SRG. The red lines represent the results of PRG and
the blue dash lines refer to the results of SRG.

4.5 Rollover Prevention: PRG

In this section, the implementation of PRG on the rollover prevention example is

presented. As reviewed in Section 2.6.2, to prevent the vehicle from rollover, the

Load Transfer Ratio (LTR) should be within [−1, 1]. The state space matrices A, B,

C, and D are obtained from (2.29) combined with Table 2.1.

To implement the PRG scheme, the system dynamics is first discretized at Ts =

0.01s. The preview horizon, N , is chosen to be 20 (i.e., 0.2 seconds). This preview
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horizon is reasonable according to the work of [169]. The obstacle avoidance maneuver

is considered, which takes place at a speed of v = 144 km/h. The comparison between

the performance of PRG and SRG is shown in Figure 4.11.

It can be seen that, from Figure 4.11, v(t) given by PRG is closer to r(t) (less

conservative) when t ∈ [0.3, 0.45]. This is because when t = 0.3, the PRG has the

future information that the reference would drop down to 0 after 16 time steps so

that it allows higher reference (i.e., v(t)) than SRG. For the same reason, v(t) given

by PRG is less conservative when t ∈ [0.74, 0.8].

Figure 4.11, however, also shows a limitation of PRG. It can be seen that when

t ∈ [0.46, 0.59], v(t) given by PRG can not reach r(t) = 0, even though 0 is an

admissible input. The reason can be explained the same as that for one-link arm

robot example (explained in Section 4.1). More specifically, note that when t = 0.46,

the preview information available to the PRG is that r(t) drops to −11.4 at t = 0.6

and stays constant afterwards. To enforce the lower constraint for t > 0.6, the PRG

calculates a κ smaller than 1. However, since κ affects all elements of vN(t), this leads

to a v(t) that is different from r(t) at t = 0.46, leading to a conservative solution.

Next, the simulation results of Multi-N PRG method on the vehicle rollover pre-

vention example will be demonstrated. For the sake of illustration, the extreme case

where the Multi-N PRG uses all preview horizons between 0 and 20; i.e., q = 21 and

N1 = 0, N2 = 1, . . . , N21 = 20, is considered.

The simulation results is duplicated in Figure 4.12. For comparison, the results

of the implementation of PRG with N = 20 is also provided. As Figure 4.12 shows,

the outputs for both Multi-N PRG and PRG satisfy the constraints, as expected.

However, from the bottom plot of Figure 4.12, it can be seen that when t ∈ [0.45, 0.6],
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Figure 4.12: Comparison of Multi-N PRG and PRG with N = 20. The top plot shows the
outputs and the bottom plot shows the setpoint and the governed setpoint.

v(t) given by Multi-N PRG reaches r(t) while v(t) computed by PRG is above r(t).

The reason for this behavior is that when t ∈ [0.45, 0.6], the PRG corresponding to

N1 = 0 computes κ = 1, which leads to v(t) = r(t).
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Chapter 5

Nonlinear Reference Governor for

MIMO systems

In this chapter, the extensions of Nonlinear Reference Governor as reviewed in Section

2.2.4 and Scalar Reference Governor (SRG) to nonlinear Multi-Input Multi-Output

systems (MIMO) will be introduced, especially focusing on quadcopter applications.

More specifically, as highlighted in Section 1.4, three different approaches will be pre-

sented below, namely Nonlinear Decoupled Reference Governor (NL-DRG), Modified

Reference Governor (M-RG), and Neural Network DRG (NN-DRG). In the NL-DRG

scheme, a bank of NL-RGs are implemented, where the constraint for each is tightened

to account for the worst-case coupling behavior among different channels. However,

due to the iterations to find the optimal decision variable and the implementation

of multiple NL-RGs, NL-DRG tends to be more computationally expensive than

NL-RG and SRG. To address the above limitation of NL-DRG, M-RG is proposed,

where multiple SRG are solved and the constraint for each SRG is shrunk to to take

the worst-case realization of the coupling behavior as well as the linearization error
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into consideration. Obviously, NL-DRG will obtain a less conservative response than

M-RG but at a cost of larger computational effort. To address the response issue

of M-RG while maintaining a low computational effort. The NN-DRG is proposed,

where a well-trained NN is utilized the approximate the input-output mapping of NL-

DRG. And a Quadratic Program (QP) is solved to augment the output of NN so that

the constraints are satisfied at next time step. For the sake of clarity, in the following

discussion, the quadcopter application will be the mainly focus to build the proposed

algorithms. However, it is emphasized that the proposed solutions are not necessarily

limited to quadcopters and can be applied to constraint management of general non-

linear MIMO systems that are mildly nonlinear, have mild interactions between the

different input/output channels, and for which a relatively good dynamical model is

available.

5.1 Nonlinear Decoupled Reference Gov-

ernor (NL-DRG)

The block diagram of NL-DRG for the quadcopter application is shown in Figure 5.1.

As can be seen from the diagram, the NL-DRG scheme is comprised of three sequential

NL-RGs, one for each input/output pair. Each NL-RG calculates a desired setpoint

(either pitch, roll, or yaw rate) to enforce the constraints on the corresponding out-

put. As such, we model the interactions among the various input-output channels

by a fictitious bounded exogenous disturbance and robustify each NL-RG against

this disturbance such that the constraints are satisfied despite the worst-case possible

coupling behavior. Each NL-RG is also robustified against the worst case effect of
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Figure 5.1: Block diagram of NL-DRG for quadcopter constraint management. The dashed
box represents the NL-DRG algorithm.

the disturbance d and the measurement noise Ns (shown in Figure 2.7). More details

on the approach is provided next.

5.1.1 Quantification of disturbance and sensor

noise

Consider the closed-loop quadcopter control system shown in Figure 2.7 and described

by Eqs. (2.30)-(2.38) and controlled by inner loop controllers shown in Figures 2.8-

2.10. This closed-loop system can be discretized (e.g., using forward Euler or the

exponential map methods with sufficiently fast sampling rate) and expressed in the

following standard form:

x(t+ 1) = f(x(t)) + g(x(t))v(t) + gw(x(t))w(t),

y(t) = h(x(t)) + hw(x(t))w(t)
(5.1)
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Figure 5.2: This figure shows the histogram of w̃φ when the Crazyflie is hovering

where x are the states (i.e., the three body angles, the three body angular rates, and

the controller integral and derivative filter states), y are the constrained outputs (i.e.,

yφ, yθ, and yψ̇), v are the setpoint commands (i.e., vφ, vθ, and vψ̇), and w is the

vector comprised of disturbance d and measurement noise Ns shown in Figure 2.7.

For the Crazyflie application, the dimensionality of the various variables is as follows:

x ∈ R12, y ∈ R3, v ∈ R3, and w ∈ R15. Since the disturbance and noise are typically

bounded in magnitude, it is assumed that w ∈ W, where W ⊂ Rd is a compact

polytope with the origin in its interior. For the remainder of this thesis, the closed-

loop system with disturbance and noise is denoted by Σ, and the system without

noise and disturbance (i.e., w set equal to zero, which represents the ideal model) is

referred by Σdisfree.

In the traditional NL-RG scheme, in order to account for w(t), the bisectional
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Figure 5.3: This figure shows an example of randomly generated time-series reference for
roll angle (N = 1000 points and Ts = 0.01s)

search algorithm (as shown in Figure 2.1) would be modified in one of two ways. If

disturbances affect the states, then in every iteration of NL-RG bisection, multiple

simulations with different realization of w(t) must be carried out, which is impractical

for real-time implementation. If the disturbance is on the output only, then the

constraints can simply be tightened to account for the worst-case realization of the

output disturbance, and only one simulation would be run in every iteration of the

bisection search, which is more numerically efficient. In this thesis, the latter approach

is taken for the sake of computational feasibility despite the fact that the quadcopter

system shown in Figure 2.7 has disturbance and noise on both the states and the

output. To achieve this, our novel solution is to “convert" the set-bounded state

disturbance into a set-bounded output disturbance, which inevitably introduces some

degree of conservatism. As will be show later, this conservatism is acceptable for the
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quadcopter application. More specifically, (5.1) is rewritten as:

x̃(t+ 1) = f(x̃(t)) + g(x̃(t))v(t),

y(t) = h(x̃(t)) + w̃(t)
(5.2)

where x̃ is different from x in (5.1) because now d(t) = 0. Thanks to the fact that

the system (5.1) is pre-stabilized, bounded disturbance input d leads to bounded

changes in the output y, which means w̃ exists and is bounded: −W̃ ≤ w̃ ≤ W̃ . To

characterize the bound W̃ numerically, we carry out numerous experiments on the

real Crazyflie 2.0 and also simulate system Σdisfree (i.e., (5.1) with w = 0) for the same

inputs. The difference between the output of the Crazyflie and that of the simulated

system is exactly w̃ in (5.2). A histogram of w̃ from numerical study is shown in

Figure 5.2 for the roll channel. The maximum value of w̃ for all time-instants in all

the experiments provides an approximation of W̃ .

5.1.2 Quantification of coupling behavior

As mentioned before, to implement three sequential NL-RGs (see Figure 5.1), the

interactions among different channels must be modeled by set-bounded exogenous

disturbances. By doing so, the constraint set for each NL-RGs can be shrunk to take

the worst-case realization of this disturbance into consideration and thus enforce the

constraints. Below, we elaborate on how this can be done. For this discussion, we

focus on the roll channel (same arguments can be applied to pitch and yaw).
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The roll output as presented in (5.2) can be equivalently expressed by:

x̃φ(t+ 1) = f(x̃φ(t)) + g(x̃φ(t))


vφ(t)

0

0

 ,

yφ(t) = hφ(x̃φ(t)) + w̃φ(t) + dcφ(t)

(5.3)

where dcφ now captures the perturbations in the roll angle caused by the interactions

from the pitch and yaw channels, x̃φ denotes the states of the system with input

as v(t) = [vφ(t), 0, 0]T , hφ and w̃φ represent the first element of vectors h and w̃

respectively (i.e., the element corresponding to the roll angle), and yφ is the first

element of y in (5.2). Clearly, x̃φ is different from x̃ in (5.2) because the two systems

are driven by different inputs, but the roll angle outputs are the same because any

difference between them is captured by the fictitious disturbance dcφ. Moreover, dcφ
must be set-bounded by the same argument as the previous subsection, i.e., −d̄cφ ≤

dcφ ≤ d̄cφ. The bounds of dcφ can be quantified either by analytically finding the worse

case coupling using (2.32) and (2.30) (in an open-loop setting), or by simulating

(5.3) a large number of times with different references and numerically evaluating the

worst-case. In this thesis, the latter route is taken because, with the first route, the

system performance became too conservative (i.e., d̄cφ was too large) since the extreme

value on the angles and angle rates needed to be considered simultaneously, which

will not occur in practice.

To numerically find d̄c, we simulate (5.3) with 0 initial condition (i.e., hovering)

for a sufficiently large number of times. For each simulation, the setpoints, denote by

φd(t), θd(t), and ψ̇d(t) (t = 1, . . . , N and N represents a given finite time horizon for
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Algorithm 2 Quantify the maximum coupling behavior for the roll angle. J1 rep-
resents the number of simulations with different φd. J2 represents the number of
simulations with different θd and ψ̇d.
1: d̄cφ = 0
2: The initial condition is set to the 0
3: for i← 1 to J1 do
4: The inputs (i.e., φd, θd, and ψ̇d) are generated as three sequences of steps

with random heights and times, where the heights are uniformly distributed
random numbers with the bounds defined by the constraint sets. The times
are integers from the uniform distribution on the set 0 : N . An example of the
random generated time-series reference is shown in Figure 5.3.

5: The disturbance w̃φ, whose histogram is shown in Figure 5.2, is generated as
one sequence with N timestep and the height for each timestep is normally dis-
tributed random number with mean and variance obtained from the empirical
distribution, which can be found experimentally using data collected from the
Crazyflie.

6: for j ← 1 to J2 do
7: Simulate (5.2) with 0 initial condition, φd, θd, ψ̇d, and w̃φ over the finite time

horizon N , denoted the output for roll angle as yφ(t).
8: Choose dcφ(t) properly such that the simulation output of (5.3) with w̃φ(t) is

equal to yφ(t).
9: Define dtmp = max

t∈{1,...,N}
(|dcφ(t)|) and redefine d̄cφ as d̄cφ = max(dtmp, d̄cφ).

10: Repeat Step 4 to get different sequences of θd and ψ̇d.
11: end for
12: end for
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the simulation), are randomly generated time-series sequences consisting of different

steps at different times. Thanks to the fact that the DC-gain of the three input/out-

put channels (from setpoints to outputs) are all equal to 1, the randomly generated

setpoints are selected to be bounded within the corresponding constraint sets. The

maximum coupling behavior on the roll angle (d̄cφ) is characterized as the maximum

difference between the simulated dcφ with inputs φd, θd = 0, ψ̇d = 0, and w̃φ and the

simulated dcφ of the same system but with different randomly generated θd and ψ̇d.

The values of d̄cθ and d̄cψ̇ can be found similarly. The detailed process is presented in

Algorithm 2 for the roll angle. Note that, because we apply steps of different heights

at random times within the same simulation, we are effectively taking the system to

various states, which means it is not necessary to consider non-zero initial conditions

in the algorithm.

5.1.3 NL-DRG

As seen in Figure 5.1, the inputs of the NL-DRG scheme are the states of the quad-

copter x(t), the previous governed references given by NL-DRG (i.e., vφ(t−1), vθ(t−1),

and vψ̇(t− 1), though these are omitted from the figure to ensure visual clarity), and

the desired setpoints (i.e., φd(t), θd(t), and ψ̇d(t)). The outputs are the governed,

constraint-admissible references vφ(t), vθ(t), and vψ̇(t). In real time, at each time step

t, three NL-RGs are solved sequentially. Each NL-RG leverages the update law (2.13),

where the κ in each is obtained by a bisectional algorithm as reviewed in Section 2.2.4.

The constraint in each NL-RG is tightened by d̄, where d̄ := [d̄φ, d̄θ, d̄ψ̇]T = d̄c + W̃

is quantified offline using Algorithm 2. Furthermore, the input to each NL-RG inside

the NL-DRG scheme is either the setpoint from the previous timestep or the set-
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point calculated by an upstream NL-RG, with the prioritization order of pitch, roll,

then yaw rate. Detailed information is provided in Algorithm 3 and further discussed

below.

Algorithm 3 NL-DRG at Timestep t
1: Implement the bisectional search algorithm to find vθ(t) such that −sθ+ d̄θ ≤ θ ≤
sθ − d̄θ, where sθ is the constraint value for the pitch angle. For each iteration
of the bisection search, simulate Σdisfree with x(t), vφ(t− 1), and vψ̇(t− 1) over a
finite time horizon.

2: Implement the bisectional search algorithm to find vφ(t) such that −sφ + d̄φ ≤
φ ≤ sφ − d̄φ. For each iteration of the bisection search, simulate the plant with
x(t), vθ(t), and vψ̇(t− 1) over a finite time horizon.

3: Implement the bisectional search algorithm to find vψ̇(t) such that −sψ̇ + d̄ψ̇ ≤
ψ̇ ≤ sψ̇ − d̄ψ̇. For each iteration of the bisection search, simulate the plant with
x(t), vφ(t), and vθ(t) over a finite time horizon.

Remark 6. In Algorithm 3, the three sequential NL-RGs are computed based on the

order of θ, φ, and ψ̇, which means that θ is prioritized over φ and φ takes precedence

over ψ̇. In other words, NL-DRG computes the governed references so that vθ is as

less conservative as possible. The reason for choosing this prioritization order is that

θ and φ are more important than ψ̇ as they directly affect stability and maneuverability

of the drone. Also, the pitch angle, which affects the backward and forward motion of

the quadcopter, typically plays a more important role when piloted by a human. Note

that depending on different prioritization, the order in Algorithm 3 can be changed.

Proposition 4. Asymptotically (i.e., as J1 → ∞ and J2 → ∞ in Algorithm 2),

NL-DRG guarantees constraint satisfaction, bounded-input bounded-output stability

(BIBO), and convergence for constant references.

Proof. The proof for constraint satisfaction is straightforward. Take the roll angle as

an example. Recall the robustification of the constraint set: −sφ + d̄φ ≤ φ ≤ sφ− d̄φ.
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Combining this with the fact that the disturbance on the roll angle caused by the

coupling behavior, d, and noise, Ns, is bounded by d̄φ, it is guaranteed that, no

matter how vθ and vψ̇ are varying and/or how d and Ns are changing, if the pair

(x(t), vφ(t− 1)) is constraint-admissible with respect to sφ, then, so is (x(t), vφ(t)) at

the computed value of κ. Furthermore, in the iterations of the bisectional algorithm

within the NL-RG, the inputs are held constant along the simulations, meaning that

κ = 0 would always be a feasible solution at each timestep, which shows existence of

a κ ∈ [0, 1] to enforce constraints. Similar proofs can be obtained for θ and ψ̇. As for

the BIBO stability and convergence for a constant reference, the proofs are similar

as those for RG, which can be found in [58]. Essentially, because the NL-RG uses

the update law as shown in (2.13) with κ ∈ [0, 1], each v(t) is a bounded monotonic

sequence for a constant reference, which has a limit.

Obviously, in practice, it is not possible to collect an infinite amount data to

quantify the disturbance in Algorithm 2. As such, a small amount of additional safety

margin should be introduced (in addition to d̄c + W̃ ) in order to ensure constraint

satisfaction in the finite-data regime.

One drawback of NL-DRG is that, since three NL-RGs are computed at every

timestep, the computational demand for NL-DRG is higher than that in both NL-RG

and RG. Below, an alternative approach (namely M-RG), which is more computa-

tionally efficient, will be introduced.
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5.2 Modified Reference Governor (M-

RG)

Recall that the main idea behinds M-RG is to employ a bank of SRGs, where the

constraints in each is tightened to take the worst-case realization of coupling behavior

as well as linearization error into consideration. Below, the quantification of the

linearization error is introduced followed by the explanation of M-RG.

5.2.1 Quantification of linearization error

Algorithm 4 Quantify the linearization error for the roll angle. J1 represents the
number of simulations with different inputs.
1: deφ = 0
2: x0 is set to be 0
3: for i← 1 to J1 do
4: The inputs (i.e., φd, θd, and ψ̇d) are generated as three sequences of steps with

random heights and times, where the heights are uniformly distributed random
numbers with the bounds defined by the constraint sets. The times are integers
from the uniform distribution on the set 0 : N .

5: The disturbance w̃φ, whose histogram is shown in Figure 5.2, is generated as
one sequence with N timestep and the height for each timestep is normally dis-
tributed random number with mean and variance obtained from the empirical
distribution, which can be found experimentally using data collected from the
Crazyflie.

6: Simulate both Σ and the linearized closed-loop quadcopter system (i.e., (5.4))
with x0, φd, θd, and ψ̇d over the finite time horizon N . The simulation outputs
on the roll angle are denoted by φ̂(t) for the nonlinear system and φ̃(t) for the
linear system.

7: Define dtmp = max
t∈{1,...,N}

(|φ̂(t)− φ̃(t)|) and set deφ = max(dtmp, deφ).
8: end for

To elaborate this idea, the nonlinear dynamics as shown in (5.2) are first linearized
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at a equilibrium point:

xlin(t+ 1) = Alinxlin(t) +Blinv(t),

ylin(t) = Clinxlin(t) + w̃(t)
(5.4)

where xlin denotes the states of the linearized system. The maximum linearization

error (de) refers to the maximal difference of the output between the linearized and

nonlinear system, both driven by the same initial conditions and desired inputs. This

error can be calculated as shown in Algorithm 4. Note that another route to quantify

de is by finding the difference between the outputs of (5.2) and (5.4), and analytically

finding the maximal error. However, this approach may lead to a conservative de

since the extreme value on different states needs to be considered simultaneously.

5.2.2 M-RG

Recall that the problem of implementing separate SRGs on the nonlinear system is

that the linearization errors and coupling behaviors are not accounted for. In M-RG,

this issue is overcame by shrinking the constraint sets (i.e., (2.2)) for each SRG by

dall := dc + de + W̃ (see Algorithm 2 and Algorithm 4). Note that the M-RG is

applicable if dall < s, otherwise, the MAS’s for the three SRGs will be empty, which

means no admissible v will be obtained or v will be calculated as 0 at every time step.

In conclusion, M-RG, where sequential SRGs are implemented, may lead to a

more conservative system response in exchange for a less computational cost. Below,

a new RG-based scheme is pursued that has a superior performance than M-RG while

maintaining a highly-attractive computational feature, namely NN-DRG.
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Figure 5.4: Block diagram of NN-DRG.

5.3 Neural Network Decoupled Refer-

ence Governor (NN-DRG)

The block diagram of NN-DRG is shown in Figure 5.4. The essential idea behind NN-

DRG is to replace NL-DRG (i.e., Algorithm 3) with a well-trained Neural Network

representing the input/output mapping of the NL-DRG. To achieve this, during the

design stage, numerous data samples are collected offline by simulating the NL-DRG

applied to Σ (i.e (5.1)) with randomly generated time-series references and noise a

large number of times. For each simulation, the references φd(t), θd(t), and ψ̇d(t),

where t = 1, . . . , N with N ∈ Z+ being a finite simulation window, are generated as

discussed in step 4 of Algorithm 2. The input dataset, which will be used to train

the NN, consists of the time series vector [x(t), v(t − 1), r(t)]T (i.e., the inputs of

the NL-DRG scheme) and the output dataset is the time series data v(t) (i.e., the

output of the NL-DRG). The motivation behind choosing Σ as the simulation model

as opposed to Σdisfree (i.e (5.1) with w = 0) will be discussed in Remark 8). After the

data samples are collected, a feedforward neural network with one hidden layer (as

reviewed in Section 2.4). The number of neurons and the activation functions will be

discussed in Section 6.1. In real-time, the neural network output is calculated using

standard forward propagation.
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However, due to the training errors caused by the potentially small size of the net-

work and the incomplete training data, running the quadcopter with the NN alone

may not guarantee constraint satisfaction. To address this issue, as shown in Fig-

ure 5.4, the NN output vNN(t) is further augmented at each timestep by solving a

quadratic program (QP), which computes a vaug(t) that is constraint-admissible in

the next timestep. To be specific, reconsider the state space representation of the

nonlinear system as shown in (2.15). Assume that, at current timestep t, the state

x(t) is measured or estimated from the plant. Then, y(t+ 1) can be expressed as:

y(t+ 1) = h (f(x(t)) + g(x(t))v(t)) (5.5)

The QP aims to find vaug(t) that is as close as possible to vNN(t) while satisfying the

constraints at next timestep:

minimize
vaug(t)

(vNN(t)− vaug(t))TQ(vNN(t)− vaug(t))

s.t. − s ≤ h(f(x(t)) + g(x(t))vaug(t) ≤ s

(5.6)

where s = [sφ, sθ, sψ̇]T and Q is a design parameter.

Remark 7. From (5.5), it can be seen that, if h is linear, which is the case for

quadcopter application (i.e., the output is a subset of the state), then, the mapping

from vaug(t) to y(t+1) is also linear. Thus, the optimization problem as shown in (5.6)

can be solved using a standard QP solver. On the other hand, if h(x) is nonlinear,

which is the more general case, then (5.6) can be solved either by linearizing the system

dynamics around the constraints and applying the QP (5.6) on the linearized dynamics

or using a nonlinear programming solver, such as an interior-point algorithms [170].
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As we will show in Section 6.1.5, NN-DRG requires significantly lower computa-

tional effort than NL-DRG and can enforce the constraints. However, it may cause

relatively large, sudden changes in vaug since only one-timestep prediction of the out-

put is involved in the QP. This effect can be minimized if certain conditions are met.

Below, an analysis on the performance of NN-DRG will be provided. It will be shown

that if: 1) the number of training samples is large and the dataset covers most of the

state space; 2) the Lipschitz constant of the NN is small; 3) the worst case training

error is small, then, the distance between vNN(t) and vaug(t) (as shown in Figure 5.4)

will also be small.

First, several notations need to be introduced. The training dataset of NN (the

number of training samples is M) is denoted by:

T = {(x1, vpre,1, r1), . . . , (xM , vpre,M , rM)}

where xi, vpre,i, ri (i ∈ 1, . . . ,M) represent the states, the previous governed input

of NL-DRG, and the desired references, respectively. Then, the maximum training

error of the NN is defined as:

etraining = max{‖v1 − vNN,1‖, ‖v2 − vNN,2‖, . . . , ‖vM − vNN,M‖}

where vi and vNN,i represent the output given by NL-DRG and NN with the same

input [xi, vpre,i, ri]T , respectively. At each timestep t, the measured or estimated state

is denoted by x(t) and the desired reference is denoted by rd(t). The closest point

with respect to the Euclidean distance in the dataset T to (x(t), vNN(t− 1), rd(t)) is

denoted by (x̄, v̄pre, r̄). Finally, v̄ and v̄NN refer to the output of NL-DRG with input
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[x̄, v̄pre, r̄]T and the output of NN with the same input, respectively.

Theorem 7. At timestep t, the difference between the output given by Σ with the

states x(t) and input vNN(t) (denoted by y(t+ 1)), and the output of the same system

but with x̄ and v̄ (denoted by ȳ) is bounded by:

‖y(t+ 1)− ȳ‖︸ ︷︷ ︸
dvio

≤L̄‖x(t)− x̄‖+ ‖g(x(t))‖etraining + LNN‖g(x(t))‖

‖[x̄, v̄pre, r̄]T − [x(t), vNN(t− 1), r(t)]T‖

where L̄ = LhLf + Lg‖v̄‖, and Lh, Lg, Lf , and LNN represent the Lipschitz constant

of h, g, f , and the NN, respectively.

Proof. Using the Lipschitz continuity of the quadcopter dynamics, the following in-

equalities holds:

dvio = ‖h(f(x̄) + g(x̄)v̄)− h(f(x(t))− g(x(t))vNN(t)‖

≤ Lh‖f(x̄)− f(x(t))‖+ ‖g(x̄)v̄ − g(x(t))vNN(t)‖

≤ LhLf‖x̄− x(t)‖+ ‖g(x̄)v̄ − g(x(t))vNN(t)‖

= LhLf‖x(t)− x̄‖+ ‖g(x̄)v̄ − g(x(t))v̄ + g(x(t))v̄ − g(x(t))vNN(t)‖

≤ LhLf‖x(t)− x̄‖+ Lg‖v̄‖‖x(t)− x̄‖+ ‖g(x(t))‖‖vNN(t)− v̄‖

(5.7)

Also, ‖vNN(t)− v̄‖ can be bounded by:

‖vNN(t)− v̄‖ = ‖vNN(t)− v̄NN + v̄NN − v̄‖

≤ ‖vNN(t)− v̄NN‖+ ‖v̄NN − v̄‖

Recall that the training error is bounded by etraining, which implies that ‖v̄NN − v̄‖ is
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bounded by etraining. Then, the above inequality can be rewritten as:

‖vNN(t)− v̄‖ ≤ ‖vNN(t)− v̄NN‖+ etraining

≤ LNN‖[x̄, v̄pre, r̄]T − [x(t), vNN(t− 1), r(t)]T‖+ etraining

(5.8)

By combining (5.7) and (5.8), the result follows

From Theorem 7, it can be seen that if the training dataset is large and covers the

whole state space (i.e., ‖[x(t)− x̄‖ is small), LNN is small, and the maximum training

error is small, then ‖y(t + 1) − ȳ‖ is also small, which implies that the maximal

constraint-violation of y(t+ 1) is small (recall that ȳ must satisfy the constraint since

the input v̄ is computed by NL-DRG). This means that the distance between vNN(t)

and vaug(t) will also be small. Note that LNN, which can be quantified using [171],

exists since the activation function (denoted by σ) of the NN is Lipschitz continuous

and, from (2.23), the output of the NN is just a rotation and stretch of σ, which is also

Lipschitz continuous. Additionally, from Theorem 7, it can be seen that, to ensure dvio

is small, the multiplication between LNN and ‖[x(t), vNN(t− 1), r(t)]T − [x̄, v̄pre, r̄]T‖

should also be small. Note that the distance between [x(t), vNN(t − 1), r(t)]T and

[x̄, v̄pre, r̄]T is related to how well the NN is trained (i.e., the NN can or can not

approximate the input-output map of NL-DRG accurately). More specifically, if the

NN is not trained well (i.e., [x(t), vNN(t−1), r(t)]T is far from from [x̄, v̄pre, r̄]T ), then,

LNN is required to be small so that large difference in the input will not cause large

difference in the output. However, small LNN may lead to a slow system response.
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Chapter 6

Constraint Management for Quad-

copter Drones

With the increasing utilization of quadcopter drones, more and more studies have

been focused on the constraint management of quadcopter (as explained in Section

1.2.4). Motivated by the necessity of constraints in the quadcopter control design,

below, the proposed nonlinear RG-based solutions (NL-DRG, M-RG, and NN-DRG)

will be implemented on the Crazyflie 2.0 [62] (as reviewed in Section 2.6.3). Both

simulation and experimental results will be presented.

6.1 Simulation results of Proposed Meth-

ods

In section, the simulation results of NL-DRG, M-RG, and NN-DRG on the model

of Crazyflie will be provided. Recall from Section 2.6.3, the constraints are imposed
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on the roll angle: φ ∈ [−5◦, 5◦]; pitch angle: θ ∈ [−5◦, 5◦]; and yaw rate: ψ̇ ∈

[−10◦/sec, 10◦/sec]. Also, for a better demonstration, the simulation results of NL-

RG (explained in Section 2.2.4) will also be presented.

By implementing Algorithm 2 with J1 = J2 = 5000 and N = 1000 (corresponding

to 10 second simulation), we obtain W̃ = [0.65◦, 0.65◦, 5.3◦/sec]T , d̄φ = 0.95◦, d̄θ =

0.95◦, and d̄ψ̇ = 6.7◦/sec. The simulation results of NL-DRG are shown in Figure 6.2.

It can be seen that the outputs satisfy the constraints as required. We will provide

details on the computation times after we show simulation results for NN-DRG, which

is provided next.

6.1.1 Nonlinear Reference Governor (NL-RG)

on Quadcopter

In this section, the NL-RG method, as reviewed in Section 2.2.4, is implemented

on the nonlinear quadcopter dynamics. To ensure the constraint satisfaction of the

nonlinear system affected by disturbance and noise, the constraint set as shown in

Figure 2.1 is modified from y ∈ [−s, s] to y ∈ [−s + W̄ , s − W̄ ]. The simulation

results of NL-RG on the quadcopter dynamics are duplicated in Figure 6.1. It can be

seen that, when t ∈ [1, 3], the roll angle and pitch angle can not track the setpoints

even no constraint violation is detected. To explain the root cause of this behavior,

note that a single κ is used in NL-RG scheme to govern φ, θ, and ψ̇ simultaneously.

Also note, from Figure 6.1, ψ̇ already reaches the constraint when t ∈ [1, 3], implying

κ = 0. As a result, the governed references given by NL-RG for the roll angle and

pitch angle could not arise above 00, which lead φ = θ = 0.
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Figure 6.1: Simulation results of NL-RG on the nonlinear quadcopter dynamics.

6.1.2 Nonlinear Decoupled Reference Governor

(NL-DRG) on Quadcopter

The simulation results of NL-DRG on the quadcopter dynamics are shown in Fig-

ure 6.2. The desired pitch angle is set to be 0. As the figure shows, the constraints

are satisfied, as required. Note that one advantage of NL-DRG compared to NN-DRG

(as will be shown later) is that, thanks to the fact that v given by NL-DRG is forced

to be monotonic increasing or decreasing (see (2.13)) for a constant setpoint, thus,

v will not respond to the noise and disturbance (in other words, the sensor noise
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Figure 6.2: Simulation response of NL-DRG

and/or disturbance will not transmit to v), which is not the case for NN-DRG. More

specifically, as (2.23) shows, the output and input of NN are connected via the weight

matrices (w1 and w2) and bias (b1 and b2). Thus, depending on the training results,

the output of NN may be heavily or slightly affected by the disturbance in the input.

Below, the simulation of M-RG on the quadcopter dynamics is presented to address

the computational issue of NL-DRG
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6.1.3 Modified Reference Governor (M-RG) on

Quadcopter

In this section, the simulation results of M-RG on the quadcopter dynamics are deliv-

ered. Recall from Section 5.2, first, the linearization error (denoted by de) between the

linearized model (Eqs. (2.34) and (2.35)) and nonlinear model (Eqs. (2.30) and (2.32))

needs to be quantified offline. Denoted the linearized quadcopter dynamics as Σlin.

As Algorithm 4 shows, the de is quantified by simulating Σlin and Σ with same time-

series setpints and numerically finding the maximum difference between the output

given by Σlin and the output given by Σ. From simulation, with J1 = 5000 and

N = 1000, the maximum linearization error on roll angle, denoted by deφ, equals to

0.8◦, the maximum linearization error on pitch angle (deθ), equal to 0.8◦, and the

maximum linearization error on yaw rate (de
ψ̇
), equivalent to 0.9◦.

In real-time implementation, for each SRG, the constraint set is shrunk to take

the worst-case realization of linearization error, coupling behavior, as well as distur-

bance and noise into consideration. The simulation results of M-RG on quadcopter

modeling are illustrated in Figure 6.3. It can be seen, from Figure 6.3, the constraints

are satisfied, as expected. Meanwhile, the performance on yaw rate is more conser-

vative than that given by NL-DRG (as shown in Figure 6.2) since M-RG shrinks the

constraints further than that for NL-DRG.

Below, the simulation results of NN-DRG, which has an improved performance

than M-RG while maintaining a lower computational cost than NL-DRG, on the

quadcopter dynamics will be delivered.
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Figure 6.3: Simulation results of M-RG on the quadcopter dynamics

6.1.4 Neural Network Decoupled Reference Gov-

ernor (NN-DRG) on Quadcopter

To implement NN-DRG, first, 100000 input-output pairs (where the input is [x(t), v(t−

1), r(t)] and output is [v(t)]) are collected off-line by simulating the NL-DRG on the

Σ with randomly generated time-series inputs as described previously. Second, a

simple-structure feedfoward Neural Network (NN) with 1 hidden layer is trained by
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Table 6.1: Performance of the Neural Network Model

# of
hidden neurons

Mean square
error (in degree2)

Largest
training error (in degree)

training
Epochs

2 0.0498 6.5776 33
5 0.0054 6.4973 269
10 2.842× 10−3 6.8755 165
30 1.233× 10−3 6.9729 409

the backpropagation method with the Levenberg-Marquardt, which needs fewer train-

ing iterations. The activation function is chosen to be the Sigmoid in the hidden layer

and linear in the output layer. The motivation behind using a single hidden layer is

that, according to the NN universal approximation theory, one layer is sufficient to

represent the input-output mapping of NL-DRG, because its outputs are continuous

functions of its inputs. The training errors of NNs with different number of neurons

are listed in Table 6.1. It can be seen that, with the increasing of the number of

neurons, the MSE is decreasing while the maximum training error maintains almost

the same. Note that, by modifying the architecture of the NN model (e.g., using

recurrent NN), the maximum training error may be reduced. Further investigation

on this topic will be studied in our future work. For the illustration purpose, feedfor-

ward NN with 10 neurons in the hidden layer is sufficient to show the performance of

the proposed methods because, as shown in Figure 6.4 and Figure 6.5, most training

samples have training error less than 1◦ and the system performance of NN-DRG

on the closed-loop Crazyflie dynamics with 10 and 30 neurons perform better than

that with 2 and 5 neurons. The setpoints in Figure 6.5 are φd = 10◦, θd = 0, and

ψ̇d = 20◦/sec, and the constraints are φ, θ ∈ [−5◦, 5◦] and ψ̇ ∈ [−10◦/sec, 10◦/sec].

Additionally, Figure 6.6 visually shows, using a shadow region, the cross-sections
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Figure 6.4: This figure represent the histograms, where the x-axis refers to the training
error and the y-axis represent the number of instances where the training error lies in the
corresponding range.

of the maximal admissible set along the p (the pitch rate as introduced in (2.30)), φ

(the roll), and θ (the pitch), with all other states set to 0. These sets indicate the

regions in the state-input planes where constraints will be satisfied if the inputs are

held constant. Since the quadcopter system is nonlinear, these sets are numerically

obtained by simulating Σdisfree with the NL-DRG with many randomly generated

references. As comparison, the approximation of this set, as obtained numerically

through similar simulations but with the trained NN, is shown using dots. It can
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Figure 6.5: Comparison of neurons number

be seen that the NN can accurately approximate the mapping from v to φ and θ.

However, the mapping from v to angular velocity p is not accurately captured.

Remark 8. An obvious difference between the collection of the training data based

on Σ and Σdisfree is that the dataset constructed based on Σ covers states with noise

and disturbance. For simplicity, in this discussion only, let us call the NN-DRG as

“std NN-DRG" for the case where the NN is trained based on Σdisfree and “robust NN-

DRG" for the case where the NN is trained based on Σ. With such minor modification

to the dataset, the system performance varies massively. The comparison between the
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Figure 6.6: The cross sections of the MAS

simulation results of robust NN-DRG and std NN-DRG is shown in Figure 6.7 (the

desired roll angle and yaw rate are 10◦ and 20◦/sec, respectively). It can be seen

that the v given by robust NN-DRG remains almost a constant while the v given

by std NN-DRG oscillates widely, which is caused by the noise and disturbance in

the input of the NN. The reason for this is that the dataset for robust NN-DRG is

more similar to the input-output pairs that are observed during the real-time operation

of the Crazyflie (with disturbance and noise). Moreover, because of the disturbance

and noise, the training dataset for the robust NN-DRG contains more regions of the

state-space where the Crazyflie might actually operate.

150



0 0.5 1 1.5 2

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
v given by NN

v
roll

 given by NN: std NN-DRG

v
roll

 given by NN: robust NN-DRG

0 0.5 1 1.5 2

time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
output of CL system: roll angle

output in roll angle: std NN-DRG

output in roll angle: robust NN-DRG

Figure 6.7: The comparison on the simulation response of std NN-DRG and robust NN-DRG

Next, we show the simulation results of the entire NN-DRG scheme (i.e., the NN

augmented with the QP in (5.6)) in Figure 6.8. In this simulation, we set Q to be the

identity matrix (i.e., I3). The impact of Q on the system performance is explained in

Remark 9. The desired roll angle and yaw rate are 15◦ and 20◦/sec, respectively. It

can be seen that, from Figure 6.8, the constraints are satisfied in the outputs. Note

that vψ̇ drops down to nearly 4.8◦ when t is around 1.5sec while the output on yaw rate

is still far away from the constraint. The reason for this can be explained as follows.

First, recall that to ensure constraint satisfaction for the nonlinear Crazyflie system

with disturbance and noise, the constraint set is shrunk by d̄ψ̇, which represents the

effects of the worst-case coupling behavior, disturbance, and sensor noise. This is the

reason why the output appears to be far from the constraint (i.e., the “conservatism"
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Figure 6.8: The simulation results of NN-DRG on the closed-loop nonlinear Crazyflie model.
The oscillations are due to the stochastic sensor noise and the deterministic sinusoidal
disturbance introduced in the simulation.

seen in the response). The reason for the drop around 1.5sec is that the QP in the

NN-DRG formulation detects a possible violation of the tightened constraint (i.e.,

s− d̄ shown in Algorithm 3), so it lowers its computed output to avoid what it deems

to be a potential constraint violation on the yaw rate.

Remark 9. The diagonal matrix, Q, is used in the optimization problem shown in

(5.6) to penalize the deviations from the NN output in the roll, pitch, and yaw rate

channels. The larger the Qii is, the more the corresponding angle is prioritized over

the other two angles/angle rates to be as close as possible to the output given the NN.
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Table 6.2: Comparison of the computation time among the proposed nonlinear RG-based
methods

NL-RG NL-DRG M-RG NN-DRG
avg (sec) 0.0203 0.0717 2.24× 10−5 8.79× 10−3

max (sec) 0.0518 0.12 6.36× 10−5 0.0261

6.1.5 Computational Comparison

In this section, we will provide a computational comparison between NL-RG, M-

RG, NL-DRG, and NN-DRG on the discretized nonlinear quadcopter dynamics with

Ts = 0.01 (the discretization is achieved by using the Forward Euler method). The

references used in this comparison (φd, θd, and ψ̇d) are shown in Figure 6.3. Recall

that M-RG requires the solution to three LPs at each time step, while NL-RG and

NL-DRG require simulating the plant over a finite time horizon (which is chosen to

be 10sec in this thesis) and implementing the bisectional search algorithm to find the

solution. Note that instead of using generic LP solvers to solve M-RG, we use the

algorithm presented in [149] to solve them. The NN-DRG requires the solution to one

quadratic program (QP) at each time step. The QP is solved using Multi-Parametric

Quadratic Programming (MPQP), which is introduced in [75].

We simulated the nonlinear Crazyflie dynamics (no disturbance involved) with all

four methods: NL-RG as well as the proposed M-RG, NL-DRG, and NN-DRG. All

simulations were performed for 1000 time steps in Matlab on an Apple Macbook Pro

with M1 chip and 8 GB memory. In order to eliminate the effects of background

processes running on the computer, each of the above experiments were run 10 times

and the averages were calculated. We calculate the per-time step averages and max-

imums of each of the three methods. The results are shown in Table 6.2. As can be
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Figure 6.9: Communication between client and Crazyflie

seen, M-RG runs two orders of magnitude faster than NN-DRG because NN-DRG

needs to solve a QP problem. The NN-DRG is almost 2 times faster than NL-RG

since NL-RG needs to simulate the plant over 10sec and implement the bisectional

search algorithm. The NL-RG terminates almost 3 times faster than NL-DRG since

in NL-DRG scheme, at every time step, three NL-RGs are needed to be implemented.

6.2 Experimental Results of Proposed

Methods

In this section, the simulation results of NL-DRG, M-RG, and NN-DRG on the real

Crazyflie are presented. At first, a brief background on how to send commands
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to Crazyflie will be introduced. The communication between the client (desktop

computer) and the Crazyflie is shown in Figure 6.9. More specifically, after running

NL-DRG. M-RG, or NN-DRG on a desktop computer using the Python programming

language, the computed setpoints are transmitted to the Crazyflie via a USB radio

dongle. The communication rate is 100Hz (i.e., commands are sent every 10 ms) to

ensure a smooth flying. The Crazyflie, then, will communicate its states back to the

desktop computer. The states will be logged and also used for the next computation.

The logging rate is also 100Hz to ensure that the proposed methods have the accurate

information on the state of the Crazyflie. Additionally, to have a better performance,

the states of the Crazyflie are first mildly filtered using FIR filters before using them

in the proposed algorithms. More specifically, a 1st order FIR filter (averaging among

two timesteps) is used on p, q, φ, and θ. The r is filtered using a 2nd order FIR filter

(averaging among three timesteps).

6.2.1 Experimental Results of NL-DRG

The experimental results of NL-DRG on the real Crazyflie are shown in Figure 6.10.

The setpoints are φd = 10◦, θd = 0◦, and ψ̇d = 15◦/sec. As can be seen, the

constraints are satisfied. However, due to the very large computation time of NL-

DRG, the sending and logging rate of Crazyflie had to be changed from 0.01sec to

0.2sec, which is why the plots look jagged. This is not desirable as it leads to poor

performance. This shortcoming is addressed by the M-RG, whose experimental results

are provided next.
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Figure 6.10: The response of NL-DRG on the real Crazyflie. The sending and logging rate
is 0.2sec

6.2.2 Experimental Results of M-RG

The experimental results of M-RG on the real Crazyflie is shown in Figure 6.11. The

desired stepoints are: φd = 6◦ and ψ̇d = 12◦/sec. It can be seen that the outputs

satisfy the constraints, as expected.

Next, we will show the experimental results of NN-DRG to improve the perfor-

mance of M-RG while maintaining a low computational cost.
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Figure 6.11: The experiment results of NN-DRG on the Crazyflie

6.2.3 Experimental results of NN-DRG

For a more clear illustration, first, the experimental results of only NN (i.e, without

QP implementation) on the real Crazyflie are presented. From Figure 6.12, it can be

seen that the output for yaw rate violates the constraints when t ∈ [0.5, 1.5] due to

the training error and/or incomplete data collection.

Next, we will show that the experimental results of NN-DRG (i.e., the NN fol-

lowed by the QP). In this experiment, the QP is solved using python-embedded CVX
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Figure 6.12: The experiment results of NN on the Crazyflie

toolbox, which has average computation time around 0.02s. To ensure that the NN-

DRG works as expected, the command sending rate and logging rate are modified

from 0.01s to 0.02s.

The experimental results of NN-DRG on the Crazyflie is shown in Figure 6.13.

It can be seen that the outputs satisfy the constraints, as required. Also, to avoid

constraint violation, vaug for the yaw rate drops down from 5.7◦ to 5.2◦ when t ∈

[1, 1.5]. Note that, as Theorem 7 shows, if larger and more comprehensive training

dataset is used, the distance between vNN(t) and vaug(t) will decrease.

Remark 10. The results presented in this thesis (i.e., NL-DRG, M-RG, and NN-
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Figure 6.13: Experiment results of NN-DRG on the real Crazyflie

DRG) can be applied to constraint management of nonlinear MIMO systems that can

be described by equations of the form (5.1). The shortcoming is that the response may

be conservative in some cases. Generally, if the interactions between the different

channels in the nonlinear system are mild, the sensor noise and disturbances are

relatively small, and a prioritization order can be defined between the channels, then,

d̄ would be small and, thus, conservatism would be small. Otherwise, the NL-DRG

might lead to a overly conservative response. In the most extreme case, if d̄ is larger

than the constraint s, then, no admissible v can be obtained, i.e., v will be calculated

as 0 at every time step.
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Chapter 7

Conclusions and Future Works

This dissertation focused on the theoretical extensions and practical applications

of RGs. More specifically, the RG theory has been extended to different types of

systems, namely MIMO systems, systems incorporated with preview information,

and nonlinear systems. The schemes presented in this dissertation were supported

by systematical analysis. As for the application aspect of RG, the real quadcopter

done, namely Crazyflie 2.0, was implemented as the platform to exam our proposed

nonlinear RG-based solutions. The main developments and results are summarized

below for each of the above developments.

7.1 Decoupled Reference Governor

A method for constraint management of coupled linear MIMO systems was studied in

Chapter 3. The method is referred to as the Decoupled Reference Governor (DRG)

and is based on decoupling the input-output dynamics, followed by application of

scalar reference governors to each decoupled channel. This idea was first developed
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in my previous work [26], namely DRG-tf. This work improved the design of DRG-tf,

analyzed the transient performance, and studied the observer design for DRG-tf. Also,

the DRG formula was extended to state space decoupling method, namely DRG-ss.

Unknown disturbances and parametric uncertainties for DRG scheme were addressed.

Finally, DRG was extended to non-square MIMO systems.

7.2 Preview Reference Governor

In Chapter 4, a reference governor-based method for constraint management of linear

systems was proposed. The method is referred to as Preview Reference Governor

(PRG) and can systematically account for the preview information of reference and

disturbance signals. The method is based on lifting the input of the system to a

space of higher dimension and designing maximal admissible sets based on the sys-

tem with lifted input. We showed a limitation of PRG and proposed an alternative

method, which we referred to as Multi-horizon PRG (multi-N PRG), to overcome

the limitation. Disturbance previews, parametric uncertainties, and inaccurate pre-

view reference information were also addressed. We also showed that the PRG for

multi-input systems using the lifting idea (i.e., first solution in Section 4.4) might

cause conservative response. Thus, we proposed another method, which combines

the Decoupled Reference Governor scheme and PRG, to overcome this limitation.
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7.3 Nonlinear Reference Governor on

MIMO systems

Three reference governor-based solutions to enforce constraints on nonlinear MIMO

systems were presented in Chapter 5. The first solution, referred to as the Nonlinear

Decoupled Reference Governor, was proposed to address the limitation of NL-RG

(e.g. overly conservative on MIMO systems), an existing RG-based method applicable

to nonlinear systems. In NL-DRG scheme, the sequential NL-RGs are computed,

where the constraint for each NL-RG is shrunk to account the worst-case coupling

dynamics. As a result, it performs better than NL-RG, but at the expense of a larger

computational cost. The second approach, namely M-RG, was proposed to address

computational issue of NL-DRG. The M-RG scheme is based on the standard SRG,

which can guarantees constraint satisfaction of the nonlinear systems but leads to

a more conservative response as compared to NL-DRG. To lower the computation

time of NL-DRG while maintaining a superior performance than M-RG, the third

method, namely NN-DRG, was presented, where a well-trained Neural Network is

used to replace the functionality of NL-DRG and a QP is solved to ensure that the

outputs in the next time step satisfy the constraints. The limitation of NN-DRG is

that, since only one-timestep prediction of the output is involved in the QP design,

a large drop in the governed command (i.e., v(t) sent to the closed-loop quadcopter

dynamics) may be obtained, which can be alleviated by training the NN using a larger

and comprehensive dataset, and choosing a NN with a smaller Lipschitz constant and

training error.
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7.4 Constraint Management for Quad-

copter Drones

Chapter 6 presented the simulation and experimental results of NL-DRG, M-RG, and

NN-DRG on a real quadcopter drones, namely Crazyflie 2.0. From simulation results,

it can be seen that NL-DRG performed better than M-RG and NN-DRG. Moreover,

M-RG led to a more conservative response than NL-DRG since the constraints are

shrunk further to prevent the constraint violation. To address the shortcoming of

M-RG while maintaining low computational effort, NN-DRG was implemented. The

NN-DRG scheme guaranteed constraint satisfaction. However, due to the fact that

only one-timestep prediction of the output is involved in the QP, NN-DRG may

cause the commanded reference to drop upon detection of a constraint violation. We

showed that such a drop can be made small by training the NN using a larger and

more comprehensive dataset and reduced training error.

From experimental results, due to the large computational time of NL-DRG, it

may lead to a undesirable system performance. Meanwhile, M-RG can guarantee con-

straint satisfaction and has a relatively small computational effort, which inevitably

introduces some degree of conservatism. Finally, NN-DRG improves the performance

of M-RG and has a smaller computational cost compared to NL-DRG.
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7.5 Future Works

There are still numerous open questions in the constraint management, such as how

to recover from constraint violation and how to effectively handle the internal and

external disturbance. As for the practical applications, the RG still lacks an impact

on the industry and, thus, the implementation of RG-based methods on real systems

should be explored broadly. For each of the RG schemes proposed in this dissertation,

the future works are listed below:

• DRG: Future work will explore modifications to DRG to ensure that the inputs

to the closed-loop system (i.e., u in Figure 4.9) remain below the references (i.e.,

r). We will also explore DRG formulations that have the ability to recover from

constraint violation, should unknown disturbances or observer errors push the

system outside of the maximal admissible sets.

• PRG: Future work will explore preview control in the context of Vector Ref-

erence Governors, as well as finding the optimal set of λs that gives the best

performance in our robust PRG formulation. We will also investigate the ex-

tension of PRG to nonlinear systems.

• Nonlinear RG-based solutions: Future work will remove the QP from the NN-

DRG formulation and quantify the probability that the NN will satisfy the

constraints despite training errors to further simplify the computations. I will

also explore other Neural Network models on the approximation of NL-DRG to

improve the performance of NN-DRG. The extensions of the proposed methods

to systems with parametric uncertainties will be studied. Finally, the stability
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and convergence analysis of NN-DRG will also be explored.
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Appendix A
Crazyflie Code and Common Ques-
tions

The Crazyflie can be controlled through mobile app or computer. More specifically,
the mobile app can be downloaded through Bitcraze website. In the app, the desired
roll angle, pitch angle, and yaw angle can be sent to the Crazyflie and the latest version
of the firmware can be updated. To control the Crazyflie via computer, Crazyradio
PA is necessary to be used. Detailed information on this topic and corresponding
python code will be presented below.

A.1 Logging
Logging configurations are used for logging variables from the firmware. Each log
configuration contains a number of variables that should be logged as well as a time
period (in millisecond) of how often the data should be sent back to the host. Once
the log configuration is added to the firmware, the firmware will automatically send
back the data at every period. These configurations are implemented in the following
ways:

1. Connect to the Crazyflie.

2. Create a log configuration that contains the variables that are required to be
logged

3. Add the log configuration and define the log period

4. Set up callbacks for the data and start the log configuration

5. Each time the firmware sends data back to the host, the callback function will
the called with a time-stamp and the data
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Detailed python code is demonstrated below:
1 import numpy as np
2 import logging
3 import cflib.crtp
4 from cflib.crazyflie import Crazyflie
5 from cflib.crazyflie.syncCrazyflie import SyncCrazyflie
6 from cflib.crazyflie.log import LogConfig
7 from cflib.positioning.motion_commander import MotionCommander
8

9 # URI of the Crazyflie to connect to, most are channel 80
10 uri = 'radio://0/80/2M/E7E7E7E7E7'
11

12 # DataNames and Data_Lists are for all the logging variables to be logged
13 DataNames = ['stabilizer.roll','stabilizer.pitch', 'stabilizer.yaw']
14 Data_List = [0]* len(DataNames1)
15

16 # ensure the Crazyflie has the flow deck attached
17 is_deck_attached = False
18 def param_deck_flow(name, value_str):
19 value = int(value_str)
20 global is_deck_attached
21 if value:
22 is_deck_attached = True
23 print('Deck is attached')
24 else:
25 is_deck_attached = False
26 print('Deck is NOT attached')
27

28 #logging callbacks for each of the logging groups
29 def log_stab_callback(timestamp, data, logconf):
30

31 for i in range(0,len(DataNames)):
32 Data_List[i] = data[DataNames[i]]
33 with open("Data.txt", "a") as file:
34 file1.write('%d' % timestamp)
35 for i in range(0,len(DataNames)):
36 file.write('\t%s' % Data_List[i])
37 file.write('\n')
38 # this is the method that the drone runs first
39 if __name__ == '__main__':
40 cflib.crtp.init_drivers()
41

42 # initalizing logg for data set. The logging rate is 10ms
43 Log_Config1= LogConfig(name='Attitude', period_in_ms=10)
44

45 # add variables to the logging configurations
46 for i in range(0,len(DataNames)):Log_Config.add_variable(DataNames[i], 'float')
47

183



48 # 'run_method' is executed to send the commands
49 if is_deck_attached:
50 run_method(scf, Log_Config)

A.2 Command Sending
Below, for simplicity, the python code for M-RG will only be presented. And the
structures of the code for NL-DRG and NN-DRG are similar to that for M-RG. The
Crazyflie executes the "run_method" to send the commands:

1 from math import pi
2 # code to compute the decision variable: kappa
3 # the inputs are the MAS (Hx, Hv, and h), reference: r, the states: x,
4 # and the previous governed command: v
5 def kappa_compute(Hx,Hv,h,r,v,x):
6 kappa=1.0;
7 a=np.multiply(Hv,(r-v));
8 b=np.array(h)-np.matmul(Hx,x)-np.multiply(Hv,v);
9 for j in np.arange(0, len(Hx)):

10 if b[j] > 0.0:
11 if a[j] > 0.0:
12 kappa=min(kappa,b[j]/a[j])
13 if b[j] <= 0.0:
14 kappa=0
15 kappa = np.amax(kappa,0);
16 return kappa
17

18 # Log_Config1 represents the roll angle and pitch angle
19 # Log_Config2 refers to the angular velocity: p, q, and r
20 def run_method (scf, Log_Config1, Log_Config2):
21 # starting all logging configurations
22 Log_Config1.start()
23 Log_Config2.start()
24

25 # must give 0,0,0,0 command first
26 scf.cf.commander.send_zdistance_setpoint(0,0,0,0)
27 time.sleep(.1)
28

29 # using motion commander to control the initial height when take off
30 # when this is called, drone will rise to DEFAULT_HEIGHT (m)
31 DEFAULT_HEIGHT = 1
32 with MotionCommander(scf, default_height = DEFAULT_HEIGHT) as mc:
33 time.sleep(1)
34 # the sending rate is 10ms and the code runs 2s
35 for i in range (0,200):
36 # set the setpoints: roll angle is 6 degree and yaw rate is 12 degree/s
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37 r_roll,r_pitch,r_dyaw=6*pi/180,0,12*pi/180
38

39 # get the current states
40 roll=float(Data_List1[0])*pi/180
41 pitch=float(Data_List1[1])*pi/180
42 q=float(Data_List2[1])*pi/180
43 r=-float(Data_List2[2])*pi/180
44

45 # compute the current governed command for roll angle
46 x_temp1=[[x_angle1], [x_rate1], [p],[roll]
47 # The MAS for roll angle is represented by Hx1, Hv1, and h1
48 kappa1=kappa_compute(Hx1,Hv1,h1,r_roll,v0,x_temp1)
49 v0=float(v0+kappa1*(r_roll-v0))
50

51 # compute the current governed command for pitch angle
52 x_temp1=[[x_angle2], [x_rate2], [q],[pitch]
53 # The MAS for pitch angle is represented by Hx2, Hv2, and h2
54 kappa2=kappa_compute(Hx2,Hv2,h2,r_pitch,v1,x_temp2)
55 v1=float(v1+kappa2*(r_pitch-v1))
56

57 # compute the current governed command for yaw rate
58 x_temp3=[[x_rate3],[r]]
59 # The MAS for yaw rate is represented by Hx3, Hv3, and h3
60 kappa3=kappa_compute(Hx3,Hv3,h3,r_dyaw,v2,x_temp3)
61 v2=float(v2+kappa3*(r_dyaw-v2))
62

63 # send the command with the unit in degree
64 scf.cf.commander.send_zdistance_setpoint(v0*180/pi,v1*180/pi,v2*180/pi,
65 DEFAULT_HEIGHT)
66

67 # the computation time of M-RG is around 0.006s.
68 # to ensure the sending rate is 0.01s, the code will pause for 0.004s.
69 time.sleep(.004)
70 mc.start_back()
71 time.sleep(1)
72

73 time.sleep(1)
74

75 Log_Config1.stop()
76 Log_Config2.stop()
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A.3 Communication
The communication from computer to Crazyflie is achieved via Crazyraio PA1, which
is a long range open USB radio dongle. After executing "run_method", the results
will be sent to the quadcopter via Crazyraio PA.

A.4 Common Questions for Crazyflie
• Q:Wwhy the Crazyflie can not take off even the flow deck is attached and

command is sent successfully?
A: There are several things we can check:

– are the propellers assembled correctly? More specifically, the propellers
with “A” labeled should attached to the arms with M2 and M4 labeled.
The propellers with “B” should attached to the the arms withM1 andM3.

– does the motor work properly?
– are the wires connected the motor mounts to the wings broken?

• Q: What happen if the code returns "Deck is NOT attached"?
A: This is highly because the deck is not attached correctly, More specifically,
the forward direction is labeled in both the flow deck and Crazyflie. And they
should be pointed in the same direction

• Q: Why the Crazyflie can not fly as expected when above the dark floor?
A: This is because the sensor in the Crazyflie can not recognize the altitude
distance from a dark floor.

• Q: why the blue LED inM2 arm lights up solidly when turning on the Crazyflie?
A: This may happen when the firmware of the Crazyflie is updated while the
Crazyflie has a low battery. It is recommended to charge the power when
updating the Crazyflie. But if this situation happens, we can resolve it using
following steps:

1. open the Crazyflie PC client2

2. insert the Crazyradio to the computer and, in the PC client, scan the
Crazyflie around and connect the one we want

1https://www.bitcraze.io/products/crazyradio-pa/
2https://www.bitcraze.io/documentation/repository/crazyflie-clients-python/

master/
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3. open the "bootloader", programming the old version of the firmware into
the Crazyflie, such as "2016.11-Crazyflie"

4. after the programming finished, update the Crazyflie firmware with the
latest version. Be carefully that we should select the version with "CF2"
instead the ones with "Bolt" or "Tag".

• Q: why the code returns "Too many packets lost"?
A: This might because of the wrong number of the channel in the URL of the
Crazyflie. For most cases, the channel number should be 80. But if is isn’t, the
channel number can be found in the Crazyflie PC client
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