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     Deep Reinforcement Learning (DRL) has the capability to solve many complex tasks in 
robotics, self-driving cars, smart grids, finance, healthcare, and intelligent autonomous systems.  
During training, DRL agents interact freely with the environment to arrive at an inference model.  
Under real-world conditions this training creates difficulties of safety, cost, and time 
considerations.  Training in synthetic environments helps overcome these difficulties, however, 
this only approximates real-world conditions resulting in a ‘reality gap’.  The synthetic training 
of agents has proven advantageous but requires methods to bridge this reality gap.  This work 
addressed this through a methodology which supports agent learning.  A framework which 
incorporates a modifiable synthetic environment integrated with an unmodified DRL algorithm 
was used to train, test, and evaluate agents while using a modified Structured Domain 
Randomization (SDR+) technique.  It was hypothesized that the application of environment 
domain randomizations (DR) during the learning process would allow the agent to learn 
variability and adapt accordingly.  Experiments using the SDR+ technique included naturalistic 
and physical-based DR while applying the concept of context-aware elements (CAE) to guide 
and speed up agent training.  Drone racing served as the use case. The experimental framework 
workflow generated the following results.  First, a baseline was established by training and 
validating an agent in a generic synthetic environment void of DR and CAE.  The agent was then 
tested in environments with DR which showed degradation of performance.  This validated the 
reality gap phenomenon under synthetic conditions and established a metric for comparison.  
Second, an SDR+ agent was successfully trained and validated under various applications of DR 
and CAE.  Ablation studies determine most DR and CAE effects applied had equivalent effects 
on agent performance.  Under comparison, the SDR+ agent’s performance exceeded that of the 
baseline agent in every test where single or combined DR effects were applied.  These tests 
indicated that the SDR+ agent’s performance did improve in environments with applied DR of 
the same order as received during training.   The last result came from testing the SDR+ agent’s 
inference model in a completely new synthetic environment with more extreme and additional 
DR effects applied.  The SDR+ agent’s performance was degraded to a point where it was 
inconclusive if generalization occurred in the form of learning to adapt to variations.  If the 
agent’s navigational capabilities, control/feedback from the DRL algorithm, and the use of visual 
sensing were improved, it is assumed that future work could exhibit indications of generalization 
using the SDR+ technique. 
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Chapter 1 

Introduction 

 

 

Background 

    The concept of generalization in learning is based on the premise that past learning can be 

applied to future situations.  The premise is that previous experience, events, and actions provide 

a guide into future experiences, and this is achieved by finding similarities between past and 

current events and actions.  The assumption is that there exists a transfer of knowledge that can 

apply across many domains and environmental conditions.  Humans learn to abstract from these 

previous events from which they formulate principles, characteristics, and patterns.  These are 

applied to future situations where the stimulus triggers a sense of familiarity with the current 

observed state and then recalls related situations from those of past states.  This in turn allows the 

person to take actions with respect to current conditions based on experiences observed and the 

results of their reaction as seen in the consequences of those reactions.  Such conditions allow 

people to better navigate their world by avoiding the negative and seeking positive rewards.  As 

humans learn to generalize certain conditions, they build in mechanisms which allow them to 

react or understand more appropriately for that current event or even anticipated events even 

though the circumstances may differ. 

    Generalized learning, if not extensive in coverage, can lead to wrong generalizations where 

experiences possessing one or more similarities may not necessarily lead to a proper correlation 
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with the calculated reaction used in evaluation and reaction to the current event.  A more 

advanced form of learning called discrimination learning extends this by combining classical and 

operant conditioning.  Classical conditioning involves learning associations where two 

conditions are repeatedly paired together.  Extension beyond a single pair for comparisons in 

general can become complex very quickly.  Operant conditioning utilizes reinforcement for 

reactions applied to positive stimulus and punishment for reaction applied to negative stimulus.  

Combining these two provide a synergistic learning paradigm.   

    Within the world of Artificial Intelligence (AI) these learning techniques have been examined, 

mimicked, and formulated into versions of these learning principles.  One of the primary goals 

for AI applications is to generalize inferred solutions to real world use cases while striving to 

achieve an improved proximation of human learning.  Reinforcement Learning (RL) (Sutton & 

Barto, 2018; Kaelbling, Littman & Moore, 1996) is one field in AI which closely resembles both 

generalized and discriminating learning principles.  RL differs from machine learning in that it 

does not require the use of annotated data as is the case for supervised learning processes.   RL 

allows an agent to freely act in an environment whereby the agent is rewarded for positive 

actions and punished for negative actions.  This consequential exploration can then be 

maximized based on a cumulative reward and serve to provide a balanced exploitive capability 

based upon previous findings. As stated, annotated data is generally not required in this learning 

process.  As an agent acts in an environment and then the state and reward for that action are fed 

back into process.  This is then repeated while the agent traverses the environment.  Deep 

Learning (LeCun, et al., 2018; Donahue, et al., 2016; Krizhevsky, Sutskever & Hinton, 2017), as 

a machine learning method, based on Neural Networks (NN) and representation learning, when 

combined with RL formulates Deep Reinforcement Learning (DRL) (Francois-Lavet et al., 2018; 
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Arldumaran, Deisenroth, Brundage & Bharath, 2017).  This combination integrates the use of 

raw sensor or image signals to be used for the input into the RL.  This sensor capability 

instruments the agent with better sensing capabilities to explore the environment.  An additional 

benefit is that it is relatively easy to formulate reward functions in RL based algorithms.  DRL 

has demonstrated achieving next level capability in AI for learning algorithms which also avoids 

the costs associated with data annotation. 

    DRL based algorithms provide a unique capability over supervised machine learning 

algorithms yet suffers itself from prohibitive costs, safety issues, and difficult to build and 

modify training environments.  A current popular solution is to overcome these limitations and 

constraints by training in synthetic environments.  Training in synthetic environments is cost 

effective and safe, and it provides capability to adapt the training environment for different 

scenarios.  When considering the generalization of the trained inferred solutions, a new problem 

arises: the reality gap (Jakobi et al., 1995).  The reality gap appears when failure or degradation 

in performance occurs when transferring the trained synthetic solution to real-world conditions.  

Real world conditions will always lie outside of the scope of the training received by agents in a 

synthetic environment.  The Domain Randomization (DR) (Tobin, et al., 2017) technique along 

with improvements found in Structured Domain Randomization (SDR) (Prakash, et al., 2018) are 

recent synthetic training works which have shown reduction in the reality gap and have provided 

new research approaches for improvement in generalization of DRL inferred solutions. 

 

Problem Statement  

    There are known problems of safety, cost, and training time for Deep Reinforcement Learning 

(DRL) algorithms.  One solution, which supports in some degree this set of problems, has been 
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the generation of synthetic data or the use of synthetic environments during training (Patki, 

Wedge & Veeramachanei, 2016; Peng, Sun, Ali & Saenko, 2015).  Synthetic approaches, 

however, only represent a limited approximation of the real world.    These solutions tend to 

work well under the same conditions in training but often fail when real-world conditions, such 

as unanticipated observations, differ from those of synthetic training (Zhu et al., 2017; Gu et al., 

2017).   

     When a synthetic trained model is applied to real-world use,  it often causes a performance 

problem known as the reality gap (Jakobi et al., 1995).  The inference model solution tends to 

work well in the synthetic environment in which it was trained but lacks the ability to generalize 

for real-world use.  DR is a technique which provides variation to the synthetic environment so 

that it can better generalize to the real-world.  While DR supports a partial solution to the reality 

gap, it can still lead to suboptimal high-variance policies and thus requires additional adaptation 

to achieve an improvement in generalization. This problem causes a uniform sampling in the DR 

process which in turn causes the agent to remain within a repeated cycle of solutions paths and 

thus limit the exploration.  The remedy becomes one of balancing exploration with exploitation.  

Although DR has proven to be very effective, additional measures are required to achieve 

improved generalization.   One DR-based adaptation to overcome this problem is Structured 

Domain Randomization (SDR) (Prakash, et al., 2018).  SDR provides indications of 

improvement over DR by inclusion of embedded context aware elements in the synthetic training 

environment and providing more structure to randomization during training.  SDR is a very 

recent research area with limited experimentation and application and thus requires more 

research.  A modified SDR (SDR+) was examined and validated in this work through the use of 

DRL-based learning algorithms (Francois-Lavet, Henderson, Islam, Bellemare & Pineau, 2018; 
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Mnih, V., et al., 2015; Arulkumaran, Deisenroth, Brundage, Bharath, 2017), through 

experimentation of training the agent within a synthetic environment framework (Lester, et al., 

2013; Frutos-Pascual & Zapirain, 2017; Unity, 2019) and based on the use case of  drone racing 

(Loquercio, et al., 2019).    

 

Dissertation Goal 

     A framework was developed a framework which incorporates a modifiable synthetic 

environment with an integrated DRL algorithm.  The framework served to examine and validate 

a SDR+ technique for potential generalization improvement of the given DRL learning 

algorithm.   An inferred DRL model was obtained from a SDR+ training technique which 

includes naturalistic domain randomization and training supported context-aware elements.  

These modifications to the training environment were assumed to provide sufficient variation to 

the environment and guidance through context aware elements to leverage and improve upon the 

SDR technique.  This concept, incorporating guided variations within the training synthetic 

environments, while not changing the DRL algorithm, was the means to reach the goal in this 

work.  The DRL-based framework applied use case scenarios in the domain of drone racing to 

quantitatively measure the effectiveness of the methodology.  The framework provided the 

structure to generate, test, and evaluate gathered metrics of the DRL algorithm’s performance all 

within synthetic environments.  Generalization was tested with a drone use case.  In summary, 

the key elements in achieving this goal are the use of naturalistic randomizations and context 

aware elements applied in synthetic environments for training the agent in a drone racing setting. 
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Research Questions and Hypothesis    

Research Question 1: Can expanding upon and modifying SDR research through use of 

naturalistic domain randomization along with training guidance from context-aware synthetic 

environment elements improve upon the generalization capability of a DRL algorithm-based 

agent and help bridge the reality gap? 

     Research into DR (Tobin, et al., 2017) and then SDR (Prakash, et al., 2018) have shown the 

ability to close the reality gap caused through synthetic environment-based training of intelligent 

agents or learning algorithms.  DR, followed by improvements in SDR, provide indications that 

additional variability in the synthetic environment can be learned by the agent.  This added 

variability to the training environment provides the evidence in both DR and SDR that a given 

agent could better handle or generalize to unseen conditions that arise under real world 

conditions.  The variation and guidance during training allows the agent to better adapt to 

variance in other environments.  The level and type of generalization achievable can only be 

truly understood via experimentations and then examination of the results.  This analysis 

determines the trained variability through SDR+ can increase generalization in the application of 

the agent in circumstances which differ from training. 

 

Research Question 2:  Can the expanded or SDR+ be effective within a synthetic environment 

without modifying the structure or nature of the DRL algorithm deployed in the technique? 

    This research was restricted to training, testing, and evaluation of the SDR+ technique all 

within synthetic environments.  Extension to real-world conditions, such a porting the inferred 

solution into an actual drone, was not undertaken.  Given this condition an assumption is made 

that experimental findings from the synthetic world would apply in some degree to real-world 
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application.  More importantly, it was assumed that this improvement to generalization to bridge 

the reality gap can take place through adaptation of the synthetic training process without 

changing the structure or nature of the DRL algorithm used in the agents.  This constrains the 

research to be independent from modifications to the DRL algorithm itself.   

 

Hypothesis 1: Naturalistic domain randomization provides an easier and a better structured 

approach to the existing domain randomization approach. 

   The methodology used in DR research tends to apply a wide range of randomization forms to 

synthetic features such as lighting, texture, size or scale, color and so forth.  These 

randomizations are often performed in a non-realistic or natural way.  This was done 

intentionally by design to easily modify the synthetic environment.  This research hypothesized 

that moving away from a broad base of extreme randomizations, as seen in DR and SDR,  to a 

more natural approach could provide the same or even better results than the more extreme DR 

applications.  It was hypothesized that employing more realistic randomizations, closer to those 

more likely to be encountered, and providing more instinctive environments to train the agent 

which align better with variations than might be seen under real-world conditions.  Such 

conditions would include time of day, shading, shadowing, climate changes such as rain, snow, 

fog, smoke and haze, time of year or seasonal based changes, foliage changes, region of 

environment (coastal, inland, desert, snow bound etc.).  Naturalistic randomizations would 

include changes to manmade elements such as roads, vehicles, and buildings without morphing 

outside the norm of these elements.  Experimentation through ablation studies examined the 

effect of the timing, frequency, and the degree of modifications to the synthetic environment to 

determine their effect during the training. 
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Hypothesis 2: SDR+-based context aware elements can provide training guidance. 

    The second hypothesis builds upon the SDR concept (Prakash et al., 2018) of using context 

aware elements within the synthetic environment.  Context aware elements are understood as a 

means that let DRL-based agent understand  the context of specified elements within the 

synthetic environment.  The basic premise is that sensors provided feedback on objects in the 

synthetic environment.  The return from the sensor provides an indication of the context of that 

element.  Is it a road or building?  If so, it might have context of something which the agent 

should avoid.  It might also signify that the road may serve as a path for the agent to follow.  It is 

hypothesized that such context aware elements could help guide the agent in the proper path as 

well to overcome uniform randomizations in DR which leads to stagnation of agent actions 

around local minima. Evidence to point to the usefulness of embedded context was also 

demonstrated in the determination of segmentation using a deep neural network for object 

detection (Zhu, Urtasun, Salakhutdinov & Fidler, 2015).  By determining global parameters of a 

scene within a synthetic environment, context regarding a region in this environment can be 

placed into a graphical entity in the environment such as spline or mesh with control points that 

can then be triggered as the agents interacts with the environment.  A relationship exists between 

the global parameters and context splines.  That context is further classified by a relationship 

between the context spline and the objects which reside along that spline.  Control points placed 

along the spline provide indications of context and clarify the object to control spline 

relationships.  Control points without objects reflect the global parameters to context spline 

relationships.  The hypothesis proposed that these context aware elements play a critical role in 

the learning algorithm’s ability to balance the fundamental concepts of DRL algorithms, those of 
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exploration and exploitation during training.  Furthermore, they provided a guide to better 

identify difficult to determine objects due to limited pixel size and the ability to better distinguish 

objects of limited size or lack of detection due to occlusion.  In summary, the context aware 

splines act as advisors to DRL agents and supply hints that direct toward reward and away from 

punitive objects within the scene.  This is useful because the naturalistic domain randomization 

in the process resets the agent’s learned responses and would thus cause the training time to 

lengthen. 

 

Relevance and Significance 

     AI applications have been developed for knowledge reasoning, planning, recommender 

systems, natural language processing, computer vision, robotics and much more.  This 

demonstrates a wide scope of applicability.  A good portion of recent applications and innovation 

in AI are based on the development of intelligent unmanned autonomous systems or UASs.  

Conveyors of such systems can be used on the ground, in the air, on or below the water, 

underground or in space.  Within the domain of intelligent UASs, RL and DL and have 

demonstrated the means to advance UAV capability through integration of autonomous systems.  

Combining RL and DL to form DRL based algorithms was a natural progression in achieving 

better UAS autonomy when used in conjunction with their sensing capabilities. 

     Historically, DRL first gained success in games such as backgammon (Tesauro, 1995), Atari 

games (Mnih et all, 2015), Go, Texas hold’em: Libratus (Silver et al., 2016), Deepstack 

(Moravcik et al., 2017), and more recent games such as Montezuma’s Revenge (Burda, Edwards, 

Storkey & Klimov, 2018) and StarCraft II (Vinyals et al., 2017).  Many of these techniques have 

demonstrated success in achieving better than human play in environments where the game itself 
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becomes the environment in which the DRL algorithm was applied.   The environment plays a 

critical part in both the RL and the DL components.  More importantly, DRL has shown promise 

in real-world applications such as self-driving cars (You, Pan, Wang & Lu, 2017), speech 

systems (Frazel-Zarandi et al., 2017), smart grids (Francois-Savant et al., 2016), robotics 

(Kalashnikov et al., 2018) and finance (Deng, Boa, Kong, Ren & Dai, 2017).  This variety 

implies a potential for DRL on a wide range of problems especially in consideration of using a 

Serious Games-based approach (Lester, et al., 2013; Frutos-Pascual & Zapirain, 2017) which 

uses a gaming technology to train in synthetic environments. 

     DRL supports conditions where human abilities to formulate decisions and act appropriately 

are exceeded in speed and action as well as when human interaction is a safety concern.  All of 

these are valid points for the development of autonomous system applications.  Recent 

advancements in DRL indicate potential for augmenting UASs for task processing or human 

assistance with intelligent capability (Humr, 2019).  Examples of recent works within the DRL 

domain for autonomous vehicles illustrate its potential and provide use cases for scenario to 

drive virtual experimentation (Anderlini, Parker & Thomas, 2019; Chaoxing & Li, 2017; Zhang, 

Wang, Liu & Chen, 2019; Khan, 2018; Wang, Wu, Liu, Li & Negenborn, 2019; Munoz, 

Barrado, Cetin & Salami, 2019; Huang, et al., 2019; Liaq & Byun, 2019; Yang & Liu, 2018; 

Zeng, Ju, Qin, Hu, Yin & Hu, 2019; Kersandt, Munos & Barrado, 2018; Polvara et al., 2017; 

You, Diao & Gao, 2019; Kumar, Bharathi & Indhumathi, 2019; Leclerc et al., 2018).  The 

significance of the performance that DRL demonstrates, provides value and incentive to 

overcome any limitations or issues which currently exist while providing a significant use case 

for autonomous systems.  By design, a DRL algorithm is positioned as an ideal learning 
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algorithm to learn variance from exploration and exploitation in a synthetic training 

environment.   

 

Indicators for Success 

     Indicators which provide insight into the successfulness of this research are based primarily 

on the success of the related research works in literature.  Examination of the various research 

works illustrate the probability of success of this work. 

     First, DRL techniques demonstrated their capability in winning challenging games starting in 

the mid-1990s up to the current time (Tesauro, 1995; Mnih et all, 2015; Silver et al., 2016; 

Moravcik et al., 2017; Burda, Edwards, Storkey & Klimov, 2018; Vinyals et al., 2017).  These 

works demonstrated DRL’s capability for complex, diverse and higher dimensional inputs.  Even 

more impressive was the use of DRLs for real-world applications of self-driving cars, natural 

language processing, robotic, smart grids, finance and defense related applications (You, Pan, 

Wang, & Lu, 2017; Fazel-Zarandi, et al., 2017; Kalashnikov, et al.,  2018); Francois-Lavet, 2016 

; Deng, Boa, Kong, Ren & Dai, 2017;  Anderlini, Parker & Thomas, 2019; Chaoxing & Li, 2017; 

Zhang, Wang, Liu & Chen, 2019; Khan, 2018; Wang, Wu, Liu, Li & Negenborn, 2019; Munoz 

& Barrado, 2019; Huang, et al., 2019; Liaq & Byun, 2019; Yang & Liu, 2018; Zeng, Ju, Qin, Hu, 

Yin & Hu, 2019).  The success of DRL learning algorithms imply their adaptability and 

robustness as an algorithm would be suited to learn variability through applied SDR+ techniques 

in synthetic training environment.  

      Second, for any complex intelligent system, real-world training is a costly endeavor and 

impractical in many situations.  The generation of synthetic data (Patki, Wedge & 

Veeramachanei, 2016; Peng, Sun, Ali & Saenko, 2015) has presented itself as a training solution 
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especially for machine learning.  A DRL-based approach using a synthetic environment training 

is a natural fit.  Serious Games, which leverage gaming environments, have proven to be 

successful in simulation and training based on aspects of real-world applications.  Examples of 

this has been used in applications for military operations (You, Diao & Gao, 2019; Kumar, 

Bharathi & Indhumathi, 2019; Leclerc et al., 2018).  Leveraging serious games, virtual 

environments, or simulations as a framework for testing and evaluation of DRL-based AI 

techniques provides a cost-effective means for training, testing, and validation in a moldable 

synthetic environment.  Serious gaming community has grown significantly over the past two 

decades.  

     A third indicator for success is related research which has shown promise in areas of robotics 

(Tobin et al., 2017; Ramos, Possas & Fox, 2019; Tobin et al., 2018; Muratore, Treede, Gienger 

& Peters, 2018; Vuong, Vikram, Su, Gao & Christensen, 2019), drones (Polvara et al., 2018; 

Sadeghi & Levine, 2017; Loquerico et al., 2019), self-driving cars (Johnson-Roberson et al., 

2017; Pouyanfar, Saleem, George & Chen, 2019) and computer vision (Ren et al., 2019).   

     Finally, several works have modified DR to overcome the limitations of uniform sampling of 

environment parameters when suboptimal high-variance policies are manifested.  Examples 

include learning the parameter sample strategy in Active Domain Randomization (Mehta, Diaz, 

Golemo, Pal & Paull, 2019), leveraging Actor Critic methodologies (Pinto, Andrychowicz, 

Welinder, Zaremba & Abbeel, 2017), applying Pyramid Consistency with DR (Yue, et al., 2019), 

minimizing the Lipschitz constant (Slaoui, Clements, Foerster & Toth, 2019), applying non-

realistic style in DR (Tremblay et al., 2018), and using context-aware synthetic data in SDR 

(Prakash et al., 2018).  
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Barriers and Issues 

     The barriers related to this work have been addressed in the research literature.   RL (Sutton 

& Barto, 2018), which plays a large role in DRL algorithms, demonstrates the barriers and issues 

in the inherited techniques.  There are many approaches to RL (Hafner et al., 2018; Mnih et al., 

2015; Silver et al., 2016) as well as evidence that RL based applications perform well in 

synthetic environments (Lillicrap et al., 2015; Mnih et al., 2015; Silver et al., 2016) however, 

they still present difficulties and issues in overcoming the reality gap.  Although slightly 

different, this also applies to uses of DR and SDR which themselves were meant to bridge this 

reality gap.  They illustrate improvement but also demonstrate issues and limitations to the 

degree of generalization expected.  The real world provides an extreme case of high-dimensional 

continuous states and action spaces, making it impractical to form even a close approximation.  

Being able to sort out and reduce the dimensionality to a small degree is possible, however, it 

introduces issues on determining the proper dimensional reduction from both an algorithmic 

point of view and the implementation of synthetic environments regarding its defined structure.   

    Agent tasks may be only partially observable and dynamic in nature which becomes 

challenging for even the best performing intelligent agents.  This also makes the training process 

even more difficult in terms of how the synthetic environment can be modified to instill 

behaviors learning to accept and understand variability or adjustments for unseen events.  The 

concept of integrated context-aware elements assumes improved support in these areas when 

coupled with advances in sensing via the DL elements in DRL.  These add their own issues and 

barriers as well.  One barrier associated with RL is the formulation of reward functions.   

Integrating DL with RL elements, makes it easier to formulate RL reward functions.  In the SDR 

research it was observed that DL becomes less effective for object recognition of obscured or 
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very small objects.  In similar fashion it was a difficult task to determine and define how to 

properly integrate context aware elements to provide the correct amount of guidance.  The 

potential problem was that use of inappropriate context-aware elements may invalidate the 

usefulness of the DRL algorithm.  This was caused through overly deterministic context and 

information which causes the agent to just follow the context-aware elements versus 

understanding the context of the scene from the elements. The DRL algorithms capability to 

explore was overshadowed.  It could also lead the DRL algorithm to explore incorrect space or 

re-explore space unnecessarily. 

    Another issue, which was only partially technical in scope, deals with the human need to have 

explainable policies and actions of the agents.  Humans require reassurance that the intelligent 

autonomous systems act and perform as intended.  Public policies are put into place to protect 

the public from developing autonomy which would do harm either intentionally or 

unintentionally.  The industrial concern was that the agent initiates actions which can have 

detrimental consequences thus voiding the use of any such agent.  This set of issues is beyond 

the scope of this work, however, the concept to assure an agent’s response to given stimuli was 

as expected or appropriate. 

    The final barrier, also considered mostly out of scope of this work, was the requirement for 

agents to react at the speed and frequency of the intended use.  It was often a goal of agents to 

provide solutions and actions faster than current systems or human capabilities.  In synthetic 

environments most items behave in an ideal manner.  Real world the physics, dynamics and 

interactions are difficult to model especially for cases of failure, decreased system performance, 

faulty components, degraded environments in terms of weather, communications, and many 

other anomalous considerations.  This work recognizes the difficulty these conditions imply.  
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The intent was to scope and experiment within a reasonable set of constraints which can at least 

demonstrate the method’s ability to improve generalization through modified synthetic training.  

    

Assumptions, Limitations and Delimitations 

Assumptions 

    A DRL algorithm serves as the base component in this work and was assumed it to be the best 

choice of artificial intelligence-based algorithm for this work.  A set of research works (You, 

Pan, Wang, & Lu, 2017; Fazel-Zarandi, et al., 2017; Kalashnikov, et al.,  2018); Francois-Lavet, 

2016 ; Deng, Boa, Kong, Ren & Dai, 2017;  Anderlini, Parker & Thomas, 2019; Chaoxing & Li, 

2017; Zhang, Wang, Liu & Chen, 2019; Khan, 2018; Wang, Wu, Liu, Li & Negenborn, 2019; 

Munoz & Barrado, 2019; Huang, et al., 2019; Liaq & Byun, 2019; Yang & Liu, 2018; Zeng, Ju, 

Qin, Hu, Yin & Hu, 2019) gave credit to DRL through demonstrations of its promise as a 

learning algorithm.    The DL elements that make up part of DRL acts as a sensor for the agent, 

however, it was founded upon NN whose solutions tend to be opaque and difficult to explain.  

Furthermore, the RL part of DRL provides a good learning algorithm for exploration and 

exploitation of synthetic environments.  One of the major assumptions of this work was that 

variations in synthetic environments during training transfers to an agent’s capability to handle 

variations seen in real-world conditions.  Furthermore, it was assumed that the embedded context 

aware elements provide DRL algorithms with sufficient training guidance without any 

modification to the DRL algorithm. 
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Limitations 

    This work emphasized a technique that provided improvement in the generalization of 

synthetically trained DRL algorithms.  A conscious decision was made to use a specific DRL 

algorithm to limit the focus to methods of generalization achieved via DR related techniques.  

The approach was to accept the algorithm as is, rather than apply modifications to its structure.  

Although such modifications are possible it was constrained to its initial form to scope the effort 

and provide focus on the generalization techniques applied via the variations applied to the 

synthetic training environment.  Modification to the DRL algorithm configuration and parameter 

settings still need to be adjusted as is the case with any agent development.   

   The ability to represent the real world in a synthetic environment is impossible and the closer 

the approximation is to the real world the greater the complexity and computation time.  Real 

world conditions will always be out scope for any simulation and modeling effort.  Any 

synthetically trained system is only a limited approximation but may serve the scoped need.  This 

work set to limit the experiments to simple cases of drone racing scenarios in simple scenes. 

 

Delimitations 

      The use case of drone racing was specifically selected to serve as a confined and well scoped 

set of measures used in the evaluation of this work.  The parameters and goals of this use case 

are well understood.  A drone, as an unmanned autonomous air vehicle, adjusts its flight 

parameters in a manner to be most efficient in time between targets which are the gates in this 

case.  This includes the ability to be on target by passing through the gate and not missing it, the 

ability to navigate the course as prescribed, the ability to detect and avoid static and dynamic 

obstacles, and to recognize and disregard distractors.  Limiting measures of training to these 
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parameters provided better management during development, testing, and evaluation.  These 

parameters and goals also set the metrics by which the effectiveness of this research was 

measured.    

    Limiting the scope of realism in the synthetic environment was determined as a requirement, 

otherwise attempting to provide the best realism possible would consume most of the time and 

effort for this research.  A good representation of adequate realism exists in many serious gaming 

platforms which serve as the standard for this research.  Research (Shah, Dey, Lovett & Kapoor, 

2017; Sadeghi & Levine, 2017; Amini et al., 2020) performed in this area points out the effects 

of using high resolutions along with realistic simulator environments.  Generally, they have costs 

which outweigh the benefits associated with the use of synthetic environments.    

    Additional limitations were imposed upon the research to achieve manageability during 

development, testing, and evaluation.  One specific DRL algorithm was used as defined with the 

assumption that similar DRL algorithms have similar results.   A limited number of synthetic 

environments were used for training, testing, and evaluation of inferred solutions.  This was 

practical in terms of the labor required to instrument a large variety of synthetic environments.  

In this work, initial but simple synthetic environment with naturalist variations were used for 

purposes of development.  A slightly more complex synthetic environment was used for 

evaluation purposes.  Exact physics and dynamics of drone model actuations were not imposed 

rather the use of a less complex model was suitable for evaluation as outlined.  Drone racing 

metrics are simple, measurable, and easy to understand.   Limitations were applied to the 

quantity and complexity of context aware elements.  Placement and use of context-aware 

elements used were adjusted for the intended use. 
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List of Acronyms 

 AI Artificial Intelligence 

DL Deep Learning 

 DR Domain Randomization 

 DRL Deep Reinforcement Learning 

 NN Neural Network 

 RL Reinforcement Learning 

 SDR Structured Domain Randomization 

  

Summary 

     An overview of DRL based algorithms was performed with the intent to understand the 

makeup of DRL as a combination of RL and DL.  More importantly however, was the 

explanation of utility of DRL learning algorithms that was used for the technique of this research 

to have an agent learn to accept and handle variability when trained in a synthetic environment.  

A research goal was presented which defined a framework for training a DRL algorithm and then 

evaluating it in a synthetic environment to measure improvement in bridging the reality-gap.   

The value of DRL-based algorithms for use with intelligent autonomous agents was discussed, 

along with its shortcomings and methods for overcoming these issues.  SDR and concepts from 

DR were presented as works that have shown improvement in this area.  A hypothesis was 

presented which assumes that a modified version of SDR can improve generalization of the 

solution.  This SDR+ utilizes context-aware element integration along with naturalistic 

randomization of the domain as the proposed means for generalization improvements.  DRL-
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based algorithms have proven to be quite effective and support the costly and labor-intensive 

data annotation processes currently required in supervised learning techniques.  Synthetic data 

and environments have been proposed and used to illustrate its effectiveness for reduction in 

costs, flexibility in training, and elimination of safety issues.  These added benefits make the case 

for the value of this research and its potential to add to the body of work in generalization of AI 

algorithms.  The research presented to date for DRL, DR and SDR warrant further research in 

these areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

 

 

Chapter 2 

Review of Literature 

 

 

Overview 

     A review of research literature has illustrated how the field of AI has increased in capability 

due to improvements in computing power, better algorithms, and the availability of data; 

however, there is a long way to go to make its intended end use practical and reliable.  Often 

gaps and shortcomings in algorithms, processing capability and availability of data often require 

additional research to improve upon existing concepts.  Additionally, there exist other drivers 

that require measures of improvement which include issues of safety, computational training 

time, requirement of and degree of labor associated with the annotation of data, financial costs, 

and the ability to explain what the AI is doing.  A common underlying goal in solving several of 

these AI based problems is to arrive at an inferred solution which can generalize when used in 

practice.  A review of current research literature reveals these facts, however, also provide 

solutions in specific areas and in part some degree of advancement in this field. 

     Research literature and the AI community have classified three branches of machine learning 

algorithms: supervised learning (Russell & Norvig, 2010), unsupervised learning (Hinton & 

Sejnowski, 1999) and reinforcement learning (Kaelbling & Littman, 1996).  Much effort is spent 

to optimize AI applications to achieve the best computational performance and provide a 

solution for the intended domain.  Each area in machine learning was examined in the research 
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literature to determine the most applicable and beneficial learning technique for the use case 

which applies for this research work.   

     For the case of supervised learning, the data is annotated which explicitly provides the 

answers or indicators thus allowing a direct learning relationship to be formed for either 

classification or regression type problems.  Classification separates data as a member of a class 

or group based on the training data.  Regression applies to continuous data for prediction based 

on previous instances.   

     In the case of unsupervised learning, no annotated data was used to compare, group, and 

surmise an output based on patterns discovered in the input data.  The difference between this 

learning technique and supervised learning is how the data is analyzed.  This is done in real-time 

for unsupervised learning as opposed to offline analysis for supervised learning.  Unsupervised 

learning can be improved using back propagation which reconsiders erroneous classifications by 

feeding back results which help modify it for the next pass. 

     The final category of machine learning is reinforcement learning (RL) which differs from 

both unsupervised and supervisor learning.  The algorithm self-learns by interacting within the 

environment it explores and responding to the rewards or punishment received for a given action.  

This is essentially a trial-and-error methodology.  RL best suits the general use case of 

autonomous unmanned vehicle navigation and control considered useful in many circumstances 

including the drone racing domain.  When considering RL over supervised and unsupervised 

learning methods, it was shown to be the better choice for drone racing and autonomous 

vehicles.  The use of RL aligns not only with the selected domain of drone racing but also 

includes the ability to freely explore the environment during training.  There was no requirement 

to obtain large amounts of annotated data to better achieve generalization.  There were 
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limitations in RL as well as training considerations being performed in a synthetic or a real 

environment.  Conclusions examined from the research literature provided evidence to both 

successful and unsuccessful efforts to achieve generalization of AI based applications as well as 

the gaps that exist. 

 

Criteria Justification  

     Advances for RL algorithms have assumed many forms.  One of these forms, the addition of 

DL, enhances the capability which applies to this research work.  A literature review and 

consideration of the utility of DL (Bengio, LeCun, Hinton, 2015) played a significant part in the 

formulation of DRL, which combines both RL and DR.  DL can be considered as an autonomous 

agent used to find patterns in the data presented using NNs.  DL is trained from a dataset and 

applies that learning in some deployable fashion through training of the NN.  DL is added to RL 

with the intent that they are good function approximators.  In the practical application of RL, it is 

often difficult to determine a good reward function, which is essential.  Often a reward function 

is in the form of a value function or policy functions upon which the NN map states to values or 

state-action pairs.  In the case of autonomous vehicles, the NN or more specifically a 

Convolutional Neural Network (CNN), can process sensor-based state information such as visual 

input and then use that input as feedback into the RL algorithm to identify and better predict the 

reward-based action.  For the use case of drone racing, a particular type of DRL called Proximal 

Policy Optimization (PPO) (Schulman, Wolski, Dhariwal, Radford & Klimov, 2017) was 

selected based on its wide application and ability to perform well.  An additional benefit was that 

a PPO-based DRL algorithms was already integrated into Unity’s ML-Agents, which constitutes 

a fundamental part of the experimental framework used in this study.  This provided a solid 
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implementation of the DRL for use in experimentation while constraining the type of learning 

algorithm used.  This permitted the concentration on synthetic training techniques versus details 

of a given algorithm or trying to determine the impact among a multitude of learning algorithms. 

     The choice to restrict the use to a PPO-based DRL algorithm was because the intent of this 

research work was not to explore the nature of a specific DRL algorithm, but rather to explore 

how external factors can support and improve an existing algorithm.  In this case the PPO-based 

DRL was well known in the literature as a good performing algorithm.  The intent was to see 

how new approaches in the research literature have used techniques in agent training 

environments to improve generalization.  Consideration for the costs and safety issues associated 

with training a DRL based agent in the real world was a driver for this research.  Synthetic based 

training, while alleviating a large portion of the cost and safety issues, also provides flexibility in 

modifications to the training scenarios.  The results from synthetically trained agents (Patki, 

Wedge & Veeramachaneni, 2016; Nikolenko, 2019; Schraml, 2019) have demonstrated their 

own issues related to the reality-gap.  Research has shown that the reality gap lessens the ability 

of the algorithm to generalize beyond the training environment itself.  These results led to a 

relatively new approach called DR.  This approach maintained the advantages of training in a 

synthetic environment while striving to overcome the reality-gap.  The basic premise behind DR 

is to train in a simulator which randomizes the visual renderings.  This concept was based on 

providing sufficient variability in the simulated environment that the inferred model can handle 

and interpret unseen real-world situations as just another variation.  This initial development of 

DR (Tobin et al., 2017) uses a uniform probability distribution for the placement and 

modification of objects in the synthetic environment.  This uniform probability distribution gives 
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way to suboptimal high-variance policies and thus requires additional adaptation to achieve the 

desired generalization. 

     The ability of DRL to solve problems above and beyond human level capability has been 

demonstrated first in Atari 2600 video games (Mnih, V., et al., 2015) in AlphaGo’s (Silver, et al., 

2016) ability to win against a top human expert Lee Sedol in the game of Go.  Later AlphaGo 

Zero (Holcomb, Porter, Ault, Mao & Wang, 2018), which did not utilize data from human play, 

defeated AlphaGo with a score of 100 to 0.  Before and since that time there have been various 

implementations of DRL successfully playing against games such as backgammon, Atari, and 

Texas Hold’em card game and Deepstack (Tesauro, 1995; Mnih et al., 2015; Brown & 

Sandholm, 2017; Morvcik et al., 2017).  Production quality environments for DRL exist for 

Facebook (Gauci et al., 2019) and in various fields of application such as sequence prediction 

(Ranzato, Chopra, Auli & Zaremba, 2015; Bahdanau et al., 2016), solving classic computer 

science problems such as the travelling salesman (Bello, Pham, Le, Norouzi & Bengio, 2016) 

and others.  In principle DRL can be used to solve many types of real-world problems given the 

proper training environment.   

     Often the difficulty in solving real-world problems comes in the limitation of permitting 

freedom of action of a DRL agent in the real world.  This brings concerns for safety, cost, and 

training time constraints.  Additional reasons include the fact that real world conditions change 

such as weather, location, non-recurring or unseen events which modifies the environment.  

Overcoming these issues with a virtual environment from a serious games’ perspective provides 

value in lifting many of these restrictions because of the ability to easily make modifications and 

then re-training.  On the other hand, there is a known drawback that is often observed when 

transferring from simulation to the real-world domains.  This drawback is called a reality gap 
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(Jakobi, Husbands & Harvey, 1995) where limitations of training in a synthetic environment can 

result in improper ability to handle the injection of noise into the applied real-world 

environment.  This is because the underlying dynamics of the system do not provide a means to 

handle variation seen under these real-world conditions.  SDR modifications to the virtual 

environment during training allows the learning to see multiple variations of the domain 

resulting in the assumption that its policy is more robust towards uncertainties and errors.  A 

context-aware capability built into SDR, which was added to DR, serves to give intended context 

to the DRL training and avoid the problem of reduced exploration as seen in the DR research.  

This work did not explore the actual transfer from virtual to real-world usage. This was left for 

future research.  This exclusion does not hinder the ability to determine the validity for this 

method. This was because the validation of the inferred solution was applied to different and 

more complex synthetic environments not seen during training.  These synthetic environments 

were used for validation.  Validating the inferred solutions in synthetic environments was 

assumed sufficient to demonstrate improved generalization without the extra complexity of 

applying it to real world environments.  The experimentation and metrics obtained in this work 

were thus restricted to synthetic environments for  training, testing, and validation.  The 

experimentation examined and compared of effectiveness of using a SDR+ technique to achieve 

generalizing the DRL based solutions within the baseline serious game environment of drone 

racing. 
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Existing Studies and their Analysis 

Previous Works on Generalization 

     DRL generalization as a concept, strives to achieve improved performance through DRL 

training methods.  This improvement in generalization applies to any operational environment 

regardless of the differences in the training received versus the operational deployment.  The 

application of a well performing DRL agent trained in a synthetic environment typically 

demonstrates good results when it is applied to environments which are the same or closely 

match the one in which it was trained.  The size of the state-action space becomes impossible to 

fully cover in a real-world setting.  This introduces the idea of sample efficiency where large 

amounts of interaction in the environment by the agent becomes necessary to approach better 

generalization.  The question remains, can similar results be achieved through some specialized 

subset of the training or by other means (Yu, 2018)?  Several methods have been examined for 

sample efficiency in the areas of exploration (Plapper et al., 2018; Fortunato et al., 2018; Singh, 

Barto, & Chentanez, 2004; Pathak, Agrawal, Efros & Darrell, 2017), experience transfer (Finn, 

Abbeel & Levine, 2017; Peng, Andrychowicz, Zaremba & Abbeel, 2018; Yu, Chen, Da & Zhou, 

2018; Zhang, Yu & Zhou, 2018; Lazaric, Restelli & Bonarini, 2008; Ferrente, E., Lazaric, A. & 

Restelli, M., 2008; Sutton, R. S., Precup, D. & Singh, S. P., 1999), abstraction by hierarchy (Dai, 

Xu, Yu & Zhou, 2018; Evans & Grefensette, 2018; Hu, Ma, Liu, Hovy & Xing, 2016; Graves et 

al., 2016; Sahni, Kumar, Tejani & Isbell, 2017; Vezhnevets et al., 2017; Bacon, Harb & Precup, 

2017; Florensa, Duan & Abbeel, 2017; Dayan & Hinton, 1992; Parr & Russell, 1997; Sutton et 

al., 1999), sample optimization methods (Jaderberg et al., 2017; Raginsky, Rakhlin & Telgarsky, 

2017; Beyer & Schwefel, 2002; Snoek, Larochelle & Adams, 2012; Hu, Qian & Yu, 2017; Qian, 
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Hu & Yu, 2016; Wang, Qian & Yu, 2018) and environment modeling (Pong, Gu, Dalal & 

Levine, 2018; Shi, Yu, Da, Chen & Zeng, 2018).   

     The use of exploration versus exploitation gives an agent the ability to discover solutions not 

available under a rigid policy.  Noise was typically injected into the output so that the agent 

continues to explore new space.  This injection of noise, however, can lead the agent away from 

the intend policy path.  One work (Plappert et al., 2018) showed that rather than adding noise to 

the action space it should be added to the actual parameter space.   The results of noise added to 

the parameter space indicated improvement for the given algorithms, domain and experiments 

performed when compared to action space noise.  Additionally, another work (Fortunato et al., 

2018) explored randomizing the neural network for both action and parameter space through 

application near the output layers.  Both works suffered from searching without intent or 

guidance often going back to the same search space.  A different type of exploration called 

curiosity-driven exploration (Singh et al., 2004), has a built in a reward to promote going to less 

visited spaces but falters in high-dimensional space due to difficulty in determining if the state 

has been visited before. 

     Experience transfer is a process to learn from a set of previous experiences.  Works in this 

area include: 1) learning from a model based on averages (Finn, Abbeel & Levine, 2017) which 

assumes focus on a small set of tasks, 2) using crudely trained policies to look at the environment 

(Yu, Chen, Da & Zhou, 2018), 3) using a LSTM network to infer the environment during 

interactions (Peng, Andrychowicz, Zaremba & Abbeel, 2018), and 4) using calibration actions in 

probing the environment parameters (Zhang, Yu & Zhou, 2018).  All these methods lack general 

transfer capabilities because they only work for a small subset of uses. 
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     The concept of abstraction attempts to take a higher-level state space to a lower dimension to 

achieve sample efficiency.  Several older works (Sutton, Precup & Singh, 1999; Parr & Russell, 

1997; Dayan & Hinton, 1992) strive to use a hierarchy with abstraction but have reliance on 

prior knowledge of the space which requires manual creation of the hierarchies.  More current 

studies (Florensa, Duan & Abbeel, 2017; Bacon, Harb & Precup, 2017; Vezhnevets et al., 2017) 

have tried to use sub-polices in learning higher-level policies to alleviate the manual creation of 

hierarchies but, these still required prior knowledge to design rewards.  Other works on 

abstraction (Dai, Xu, Yu & Zhou, 2018; Hu, Ma, Liu, Hovy & Xing, 2016; Graves et al., 2016; 

Evans & Grenfenstette, 2018) noted that neural networks do perform computations which are 

abstract in nature but, this works attempted to overcome these limitations by applying a variety 

of techniques.  These attempts included adding memory and embedding logic in the neural 

networks.  These approaches however, created models too large for use or would only allow 

primitive logic within neural networks.  

     The optimization approach (Schulman, Levine, Abbeel, Jordan & Mortiz, 2015; Duan, Chen, 

Houthooft, Schulman & Abbeel, 2016) strives to use the gradient of an objective to optimize a 

solution but, it provided no means to explore.  A work around to the lack of exploration was the 

use of derivative-free optimization (Beyer & Schwefel, 2002; Snoek, Hugo & Adams, 2012; 

Such et al., 2018; Whiteson, 2012) via use of random samples in the search space.  This 

approach suffered from slow convergence, sensitivity to noise and scaling difficulties. 

     Finally, the environment model approach utilized a transition function to identify how state 

changes based on an action and follow-on reward.  This approach qualified it as a supervised 

learning approach.  This work performed well in limited states but fails in higher dimensional 

space.  Attempts have been made to combine both model-based and model-free approaches 
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(Tamar, Wu, Thomas, Levine & Abbeel, 2016; Weber et al., 2018; Pong, Gu, Dalal & Levine, 

2018) where adding the model-free approaches to exiting model-based approaches does tend to 

improve results.  This, however, has difficulty in modeling stochastic environments and to date 

have only worked in limit cases.  Another approach (Shi, Yu, Da, Chen & Zeng, 2018) has 

incorporated a simulator in which environments were manually constructed and then a generative 

adversarial network was added to improve the learning technique.  In this case learning is 

separated between the environment and the policy but concluded that the concept of combining 

them may prove to provide a better generalization. 

    The set of works examined here took several approaches to reduce or control the amount of 

state-action space required by DRL agents in each environment.  Justification for these 

approaches was due to the enormity of the state-action space coverage required by the DRL 

algorithm and the need to reduce that space through various methods of sample efficiency.  

Many of the pros and cons of these methods were mentioned which also illustrates a wide variety 

of techniques used to solve the interaction of DRL agents in environments.  It was noted that 

many of these works provide some benefit while falling short in other areas which still leaves 

gaps in generalization improvements. 

 

Deep Reinforcement Learning 

     DRL is an Artificial Intelligence (AI) technique that comprises the two widely used 

techniques of Reinforcement Learning (RL) (Sutton & Barto, 2018; Kaelbling, Littman & 

Moore, 1996) and Deep Learning (DL) (Bengio, LeCun & Hinton, 2015) both of which have 

shown remarkable results in recent years.  RL utilized the Markov Decision Process (MDP) 

(Bellman, 1957) and represents a process as an agent which observes and acts within some 
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defined environment.  A reward was derived from the action based upon the state and the 

feedback of that action as well as a diminished summation of previous actions.  From this 

continuous time step loop of action-state feedback, the agent learns.   

     This work utilized the model of Serious Games (Lester, et al., 2013; Frutos-Pascual & 

Zapirain, 2017), which creates a game-like or synthetic environment that models a real-world 

application and is well suited for as an environment for DRL.  This environment was abstracted 

and simplified with respect to the real world.  It served as a playground for observations and 

actions to be taken by an agent which in turn provided the learning experience for the agent.  

Included in that environment were representations of items to observe and act upon with 

consideration of object detection and navigation required in a drone racing scenario.  The general 

concept was that items of reward are sought, and punitive items are avoided.  In RL, the reward 

is often based on some function which is generally not easy to define.  The definition of a reward 

function is a common problem in RL approaches.  This becomes even more difficult in 

conditions with sparse rewards within in an expansive and diverse environment.   

     DL comes into play as the second component of DRL because of its ability to leverage neural 

networks to represent the often difficult to define reward function in RL.  DL, which is a 

supervised learning technique in machine learning, can utilize a convolutional neural network to 

determine outputs from specified inputs.  A DL network is known to perform well as a reward 

function approximation which applies to the V-Value, Q-Value, policy, and models used in RL 

(Francois-Lavet, Islam, Pineau, Henderson & Bellemare, 2018).  This simplifies and automates 

the determination of the reward function in support of the RL based computations.   These 

combined elements of DRL can provide the means to learn by action and observation within a 

virtual serious game environment.  This implies a self-learning structure with the additional 
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support of defining the elements which drive the self-learning.  This work concentrated on 

synthetic environments which served to provide the location-based scenarios which applied to 

the use case of drone racing.  This approach, using a DRL agent for self-learning in a synthetic 

training environment was an ideal candidate to examine an AI based technique for improving 

generalization.  This has been applied to a drone racing scenario which has shown promise in 

research (Loquerico et al., 2019) which has also extended the capability to real world drone 

racing experiments. 

    The use of a DRL based algorithms for this work was limited to one DRL, that based on 

Proximal Policy Optimization (PPO) (Schulman, Wolski, Dhariwal, Radford & Klimov, 2017).  

Details with respect to PPO are explained later.  A variety of DRL algorithms exist and have 

generally been found to provide a higher degree of generalization (Li, 2017).  Deep 

Deterministic Policy Gradients (DDPG) algorithm (Rodriguez-Ramos, Sampedro, Bavle, de la 

Puente & Campoy, 2019) has been used as an effective learning strategy for autonomous landing 

of UAVs for continuous state and action domains. A research work (Kang, Belkhale, Kahn, 

Abbeel & Levine, 2019) utilized a modified DRL to achieve generalization through simulation 

for a vision-based autonomous flight of a quadrotor.  This modified DRL utilized a deep neural 

network Q-function approach along with training gather from real world data.  A survey on DRL 

(Arulkumaran, Deisenroth, Brundage & Bharath, 2017) indicates that the primary types of DRL 

algorithms are either value-based or policy-based methods.  The survey also included how DL 

has accelerated the progress of RL in addressing dimensional scalability.  DL adds this 

advantage via deep neural networks which tend to mathematically create low-dimensional 

features from high dimensional data based upon the inherent nature of how neural networks are 
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formulated.  Because of the DL addition to RL, it allows decision-based autonomy to be less 

intractable as previously seen in RL by itself.   

    There are many approaches for both the use of value functions and the use of policy search in 

DRL algorithms.  Value functions achieved early success with applications such as 

Backgammon (Tesauro, 1995) but more recent research works (Mnih et al., 2014; Schulman, 

Levine, Abbeel, Jordan & Moritz, 2015; Mnih et al., 2016; Oh, Chockalingam, Singh & Lee, 

2016; Zhu et al., 2017) have seen success in more complicated environments.  An example of a 

value function based DRL is DQN (Mnih et al., 2014) and follow-on adaptations which have 

achieved success in playing arcade type games.  Policy search methods obtain policies by means 

of back propagation or gradient-based methods however recent research indicates better 

scalability through back propagation (Salimans, Ho, Chen & Sutskever, 2017; Werbos, P. J., 

1974; Rumelhart, Hinton & Williams, 1988).  When a policy was being searched, local minima 

tend to be problematic in this approach.  Guided policy searches (Levine & Abbeel, 2014; 

Levine & Koltun, 2013; Levine, Finn, Darrell & Abbeel, 2016) helped to overcome local minima 

stagnation through integration of a few actions obtain from another control.  Trust Region Policy 

Optimization (TRPO) was another improvement for policy search where optimization was 

limited to regions in which the true cost function still holds.  TRPO, by constraining the 

optimization, requires the calculation of second-order derivatives which can be costly and 

difficult to formulate.  PPO (Abbeel & Schulman, 2016; Heess et al., 2017; Schulman, Wolski, 

Dhariwal, Radford & Klimov, 2017) works around this optimizing constraint by only requiring 

the use of first-order gradients and as such is less expensive in computation while maintaining 

the performance of TRPO.  It has also been more widely adopted for RL uses.  PPO is essentially 

a stochastic type of policy gradient method and has the advantage of being used in either discrete 
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or continuous action spaces in environments.  Actor-Critic methods tend to combine the 

advantages of policy search methods with the integration of learned value functions and have 

shown promise over PPO methods, however, tend to be more complex.   

     Determination of the PPO method as the selected type of DRL for use in this research work 

was based upon the advantages stated for PPO.  One of those advantages is that it is less complex 

than other DRL methods such as the Actor-Critic method.  Furthermore, two other major 

decision factors support the selection of PPO.  First, PPO is a well-known and often used 

method.  Second, it is implemented and integrated into the ML-Agents module of Unity.  Unity 

with ML-Agents are both key elements of the experimental framework.  This makes the use of 

the PPO DRL very practical for experimentation purposes.  Since the emphasis of this work is on 

the use of SDR+ techniques in synthetic environments and not on a specific type of DRL 

algorithms, the PPO selection suffices for this work.  Future research could evaluate different 

DRL algorithms with regards to the same process. 

 

Synthetic Based Training 

    Training AI agents in a real-world environment has obvious benefits of learning from the same 

environment in which it was deployed.  There are however significant hurdles to overcome.  The 

scale of the real-world  not only impacts the agent’s ability to handle the unknown or unforeseen 

but the enormity of variations that occur in a real-world environment are impractical to predict or 

to train for.  Furthermore, the deployment of most any algorithm is more than likely to occur in 

an environment which differs from the training environment.  The exponential rise in costs is 

directly proportional as  the real-world representation increases.  An incremental improvement 

requires significant additional costs for both the training environment and impact of needing 
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varied and multiple real-world training environments.  Training with agents in a real-world 

environment brings on concerns of safety, damage during training to the environment, robots, 

and autonomous agents.  There are expenses of labor and materials as well as the length of 

training and computation time due to the complexity and number of training iterations required.   

    Overcoming these impacts of real-world training motivates research into other suitable 

training methods such as synthetic based training and simulation systems.  Recent use of 

synthetic data or environments for AI based training and model development has been in the 

areas of visual representation understanding.  This has a large emphasis in robotics and general 

machine vision applications.  Specific research has been done in the areas of image classification 

(Borrego et al., 2018), object detection (Gaidon, Wang, Cabon & Vig, 2016; Johnson-Roberson 

et al., 2017; Mueller, Casser, Lahoud, Smith & Ghanem, 2017; Hinterstoisser, Lepetit, Wohlhart 

& Konolige, 2017), 3D reconstruction (Handa, Patraucean, Badrinarayanan, Stent & Cipolla, 

2016; McCormac, Handa & Leutenegger, 2017), optical and scene flow (Butler, Wulff, Stanley 

& Black, 2012; Dosovitskiy et al., 2015; Mayer et al., 2016),  stereo and depth (Qiu & Yuille, 

2016; Zhang, Qiu, Chen, Hu & Yuille, 2016), pose estimation with 3D key point extraction 

(Mueller, Casser, Lahoud, Smith & Ghanem, 2017; Suwajanakorn, Snavely, Tompson, Norouzi, 

2018), and semantic and instance segmentation (Ros, Sellart, Materzynska, Vazquez & Lopez, 

2016; Richter, S. R., Vineet, V., Roth, S. & Koltun, V., 2016).  These examples, within this 

specific domain of machine vision have demonstrated the utility of synthetic data and synthetic 

environments for training vision systems.   
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Reality Gap 

     The driving issue for this work was the reality gap.  The reality gap occurs when synthetic 

training fails to translate into adaptation to a more expansive variations encountered in real world 

operations.  A different view on this same problem was manifested by the need to provide an 

overwhelming large set of real-world data to support generalization (Deng et al., 2012; 

Everingham et al., 2015; Hinterstoisser et al., 2013).  The inability to provide even a close 

representation of real-world environments became evident in the field of robotics where 

simulations proved to be useful but lacked the ability to simulate the actual dynamics of robotic 

system (Brooks, 1992).  Synthetic environments are also hampered by the true representation of 

discrepancies and failures of elements in the environment or from non-ideal sensors and 

mechanics used to explore the environment (Miglino, Lund & Nolfi, 1995).  This creates unseen 

variations which arise and differ from the expected norm.  Such discrepancies and failures are 

even harder to represent in a synthetic environment.  The causes illustrated here have been 

addressed in many research studies, for example, such as using synthetic environments to train 

swarm robots (Francesca, Brambilla, Brutschy, Trianni & Birattari, 2014). 

     Current research efforts to bridge this reality gap are Domain Adaptation (DA), Domain 

Randomization (DR) and Structured Domain Randomization (SDR).  DA is a method which 

shows promise for learning from unrelated sources and adapting them to a particular problem.  

The concept was to apply a known solution from another source and then adapt it into the 

domain of interest (Redko, Morvant, Habrard, Amaury & Bennani, 2019; Ben-David, John, 

Kolby, Kulesza, Pereira & Wortman Vaghan, 2012; Bridle & Cox, 1990).  A common approach 

to achieve this adaptation was using adversarial machine learning.  This creates a feature space 

which is representative of both domains to make the difference in the domains become more 
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indistinguishable thus reaching a solution space which works for both domains (Hajiramezanali, 

Siamak, Karbalayghareh, Zhou & Qian, 2017; Ganin et al., 2016).  This method has proven to be 

successful in finding solutions to problems with little to no annotated data.   It does become 

heavily reliant upon the other source which is used to adapt to a new common domain.  The 

model trained on the source domain distribution must still be able to relate or have some 

similarity to the target distribution.  The closer the relationship between the two domains, the 

better the resultant target.   The existence of similarity between domains is generally not be the 

case.  It is assumed that the resulting adaptation becomes more difficult as the domains become 

less and less similar.  Research in DR and SDR illustrate how these approaches differ from the 

approach taken by DA.  The DA research further implies the requirement to have a well-defined 

domain with ample data.   Under these conditions, adaptation is not only difficult but not 

guaranteed.  This provides motivation to use DR and SDR over that of DA.  The concentration of 

this work was on DR and SDR and the following two sub-sections cover research in these areas.  

 

Domain Randomization 

     Domain randomization (Tobin et al., 2017) was formulated to support robotics research which 

leverages the ability to train deep neural networks and more specifically DRL in a simulation 

environment for the task of robotic manipulation skill development.  The ability to perform the 

training in simulation provides the ability to accelerate and fully test capabilities of the robot.   In 

the initial DR research, the emphasis was placed upon object localization with the goal to 

determine the object of interest.   Then the robot could utilize a robotic grasper to pick up the 

specified object and eventually place it in the desired location as part of a manufacturing process.  

The application of this research work was hindered by effects of the reality gap.  The translation 
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from simulation to real world applications, through a process called system identification, was 

determined to be time-consuming and error prone.  The complex physical characteristics of such 

things as part flexibility, gear backlash and unforeseen motion of robotic elements are very 

difficult to model.  In related works, real world imagery would be used in the simulation 

however, the noise associated with the corresponding real-world robot in its vision system was 

not being captured.  These factors for this domain add to the reality gap. 

     DR (Tobin et al., 2017) was specifically proposed to investigate a means to bridge the reality 

gap.  The approach was to train a model in multiple environments while randomizing elements in 

the environment during training.  The DR work hypothesized that the exposure to a greater 

amount of variability in the simulated environment during training would generalize better to 

real world conditions without requiring the tedious and error prone system identification 

processes.  In addition, the need for large amounts of labeled data required in DNN-based 

applications would instead be replaced by the known data in the simulation which was then 

randomized.  Furthermore, the work moved away from doing any training on real world images 

and applied the process strictly to learning in a simulated environment.  Object randomization 

occurred by randomly changing the textures of objects in the experiment which included an 

ablation study to determine the effects of different approaches in randomization. 

     Other research works tried to match the simulator to real world conditions including the use 

of high-quality rendering (James & Johns, 2016). These works did not achieve the success 

expected.  One work (Planche et al., 2017) utilized depth information while others (Richter, 

Vineet, Roth & Koltun, 2016; Cutler & How, 2015; Kolter & Ng, 2007; Ghadirzadeh, Maki, 

Kragic & Bjorkman, 2017; Zhang, Leitner, Upcroft & Corke, 2016; Rusu et al., 2016; Tzeng et 

al., 2016; Mitash, Bekris & Boularias, 2017; Abbeel, Quigley & Ng, 2006; Cutler, M., Walsh, T. 
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J. & How, J. P. (2014); Ven Den Berg, et al., 2010; Antonova, Cruciani, Smitth & Kragic, 2017; 

Koos, Mouret & Doncieux, 2013) used more exact representation in the simulator combined with 

fine-tuning, domain adaptation, integration of real-world data, 3D models and iterative learning 

control approaches.  The claims established by the DR works state that it does not rely upon 

Domain Adaptation for the transfer of simulation to real, it was easier in its implementation and 

requires less training while being easier to scale. 

     The DR approach randomized synthetic elements such as: 1) number of lights and 

characteristics of those lights used in the scene, 2) the position and texture used on the objects of 

interest, 3) the textures of surroundings, 4) random noise, and 5) the position, orientation, and 

field of view of the camera and 6) the shape and number of distractor objects used in the scene.  

These types of the randomizations appeared to be usable and appropriate for the domain of this 

problem.  The DR work was striving to experimentally evaluate the accuracy of localization of 

objects of interest while determining which elements of the approach provide the best transfer of 

methods sufficiently accurate for robotic manipulation tasks.  In this example for an average 

sized robot arm, an average tolerance of 1.5 cm in localization was achieved which included 

distractors and occlusions based on camera angles.  The performance of the DR method was 

weakened because of domain mismatches.  The method produced other errors by not being able 

to localize the edge cases.   Misinterpretation of objects near the edges of the table was higher 

than those further in on the interior of the tabletop.  The DR work experimented with more 

complex textures during the randomization and determined that the model had learned object 

representation in such a manner that they were invariant to these variations in textures.  DR 

ablations studies determined that pretrained models performed well with fewer samples however, 

both pretrained and training from scratch models perform equally when the number of samples 
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are sufficiently high.  The ablation studies also determined that the localization error continued 

to reduce as the number of unique textures were utilized in the training.  Additional findings 

indicated that using distractors in the training helped to improve the detection of distractors in 

the real world.  Camera randomization only provided slight improvements.  The addition of noise 

provided no effect other than helping convergence of the algorithm out of local minima. 

     Since the inception of the DR technique many other research works have examined its 

potential based on new domain applications or modifications to the technique.  Such examples 

provide qualitative evidence of DR utility.  Examples include thermostatically controlled loading 

with RL using DR for knowledge transfer (Peirelinck, Hermans, Spiessens & Deconinck, 2020); 

object detection using parametric shapes and synthetic textures (Dehban et al., 2019); automobile 

detection with pose estimation (Khirodkar, Yoo & Kitani, 2019); combining with pyramid 

consistency for generalization without domain data (Yue et al., 2019); 3D localization using 

CNNs and DR (Zuo, Zhang, Zheng, Gu & Gong, 2019); transfer learning research based on DR  

(Grun, Honinger, Scheikl, Hein & Kroger, 2019); using DR for active pose estimation (Ren et 

al., 2019); training drones with DR for drone racing (Loquercio et al., 2020); generative models 

using DR for robot grasping, a follow-on work (Tobin et al., 2018); deep networks with synthetic 

data bridging the reality gap with DR (Tremblay et al., 2018); DR used to help transfer of control 

policies to mobile robots (Sheckells, Garimella, Mishra & Kobilarov, 2019); and other similar 

works. 

 

Structured Domain Randomization 

     Structured Domain Randomization (SDR) (Prakash et al., 2018) was built on the foundation 

of DR but implemented with additional features to overcome the limitations of DR.  DR utilizes 
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a uniform probability distribution when applying randomization to objects in the environment.  

This uniform probability distribution was proven to work well for large and obvious objects 

within a scene.  For objects in the scene which are small or occluded, in terms of visual 

representation for the number of pixels that represent the object, the performance of DR is 

significantly degraded.  SDR took the approach to keep the benefits of DR and address DR 

limitations by embedding structure and context in the synthetic environment.  The SDR work 

claimed that by adding context-aware elements in the environment, the DR algorithms performed 

better for the detection of small or occluded objects.  This implied an improvement to the NN as 

it learns and incorporates the context provided in the NN structure.  The work of SDR claimed to 

achieve state-of-the-art for 2D object detection in the domain of car detection for the easy, 

moderate, and hard KITTI datasets (Geiger, Lenz & Urtasun, 2012).   

     SDR research work also included the examination of related works which used synthetic data 

for object detection.  Findings from an optical flow research work (Mayer et al., 2018) 

discovered simplistic synthetic versus realistic environment to be sufficient for training.  This led 

to being able to perform randomizations of less complex synthetic scenes over those that use 

more realistic renderings.  These limitations noted in the DR technique was researched in the 

SDR work.  Improvement in detailed object recognition was achieved when a certain level of 

realism was added to the synthetic environment.  A prior research work (Tremblay et al., 2018) 

by the same authors of SDR, utilized DR to train for object detection of cars.  The work provided 

results that indicated that DR requires a large set of data for the randomization process.  

Furthermore, the prior research noted the difficulty in detecting small image representations of 

cars without providing some context.  The importance of context was also noted in other research 
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on robotics and in object detection work through semantic segmentation (Georgakis, Mousavian, 

Berg & Kosecka, 2017; Zhu, Urtasun, Salakhutdinov & Fidler, 2015). 

     The approach taken by SDR was to procedurally generate synthetic images of a scene which 

can then be randomized at the same time.  For purposes of this work, context was an indicator of 

what the object means for the surrounding area.  An example would be a road.  In the context of 

a city scene, it would be a pathway.  It would also be considered as a hard object which the drone 

should avoid impacting with such as a building.  The context was striving to convey that the road 

may lead to the desired path for the drone but, it should not run into such an object.  It provides 

additional guidance. In the SDR work, context was structured through a graphical tree 

representation of the scenario, global parameters, context splines and objects in the scene.  The 

scenario is placed at the root of the tree from which global parameters are determined as a node 

of the scenario.  This hierarchical structure provides a high-level context at the root and works its 

way to details of a given object at leaf nodes.  From the global parameters, which are represented 

as a single node, a one-to-many number of context splines are defined as children of the global 

parameters.  The context splines lead to specific common objects in the scene which lie along the 

splines.  Each child as a context spline represents each of the specific global parameters defined.  

These are represented by a spline shape with control points.  The control points specify locations 

in the synthetic environment where there exists context of interest.  Objects are then placed at or 

near the context splines control points based on the specified relationship of the object to the 

global parameter representation.  Other control points along the context spline can include 

control points with objects defined as distractors or as objects of no interest.  This approach 

creates a conditional dependence between objects in the scene and the context provided by in a 

tree like data structure.  This provides the underlying understanding of the scene structure which 
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was lacking in DR.  The context spline concept for SDR was also used to support the procedural 

generation of the scene.  Two-dimensional snapshots or images of the scene were then used for 

object detection training. 

     A comparison between SDR and DR for both Average Precision (AP) and the dataset size, 

indicate a much higher AP for SDR while saturation for training data required by SDR is one 

fifth that of DR.  Improvement in AP while reduction in size of the dataset. are both strong 

indications of the value of the context-aware nature of SDR.  SDR outperformed real-world 

dataset training when results were validated against differing domains.  The SDR researchers 

(Prakash, et al., 2018) claim improvement over the DR (Tobin et. al., 2017) but further claim that 

SDR when it was used just for the initialization of the neural network with real data to be used in 

training, it significantly increased performance when switched back to using real data for 

training.  From the SDR ablation study it was determined that under the normal DR approach 

that randomization of lighting provided the most impact amongst the various randomized 

parameters.  When SDR was applied the effects of eliminating saturation, scene randomization 

and context provided the lowest AP results which indicate their relative importance in the SDR 

process.   

     In general, the results for SDR are positive.  There are, however, additional considerations to 

understand with SDR.  The foremost consideration was that SDR is a singular body of research 

for the niche area of domain randomization.  As a singular body of work in this area there are no 

known research methods which extend or validate SDR.  This fact has the implication that the 

SDR technique has not been validated through additional research.  This implies either a gap, 

which would be useful to examine, or that the method itself provided no benefit.  An assumption 

was made that the later argument was not valid based on the findings of the SDR work.  There 
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are also no other work to validate or contradict their findings.    The literature review for this 

research effort did not find any research related to SDR, although that does not mean it does not 

exist.  It is noted that several thorough searches were made in the most common and recognized 

research libraries to discover related works or works that referenced SDR.  The work of SDR is 

just over two years old.   Most DR related works were only published a year earlier.  This 

research took on the assumption that SDR has useful principles upon which new techniques can 

be formulated especially using the discovery environment structure by an agent through context-

aware elements while simultaneously applying the advantages of DR. 

 

Result Formats from Related Literature 

     There exists a pattern of presentation and formatting of results found in the research works 

examined which were leveraged for this study (Tobin et al., 2017; Loquerico et al., 2019; 

Prakash et al., 2018; Tremblay et al., 2018).   

     In the seminal work (Tobin et al., 2017) on DR, the study of robotic grasping devices realized 

value to be found using a synthetic training environment.  Their analysis and results were 

focused on the amount of distance error determined in the positioning of a robotic grasper to the 

object to be detected, grabbed, and moved.  Formats were based on an actual distance in 

centimeters plus or minus typical error due to the robotic accuracy itself.  Seven shapes including 

distractors and occlusions were applied.  For each of the object shapes examined, an error 

distribution was plotted.  For all attempts the number of similar distances were plotted to show 

the distribution for the given object of distances error.  The mean values of this were calculated 

to show the relative error for a given shape.  Additionally, the error distribution was examined 

based on where the object was positioned on the platform versus the amount of error obtained.  A 
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heat map distribution across the table was utilized and divided the area into to a 4 by 4 grid to 

illustrate if certain locations on the table had impact upon the degree of error obtained.  A scale 

of 0 to 6 was utilized for values across the distribution.  Objects on the table edges turned out to 

be the most prone to errors.  Distance error was also measured for use of complex and baseline 

textures used on the object during domain randomization which included a sensitivity plot of the 

average distance error determined as the number of unique textures that were utilized in the 

domain randomization.  Finally, ablation studies were performed to understand the effects that 

certain components have on the over performance.  SDR looked at components such as noise, 

camera randomization and the use of distractors.  Both DR and SDR included measurement to 

determine average precision indicators for the methodology.    This research work followed these 

patterns for average precision indicators and apply them to drone racing in terms of the agent’s 

performance in the drone racing courses. 

     In the Deep Drone Racing research work (Loquerico et al., 2019) a CNN was used to make 

predictions on determining the next target direction based on images generated from a camera or 

from a synthetic image.  Local control systems then calculate a minimum-jerk trajectory to stay 

on target.  The agent can pass through the designated gates in the racecourse by using inflight 

predictions which use the current pose of the drone along with a global target trajectory to 

calculate the needed corrections to stay on the targeted path. This trajectory formulates a task-

based effort for the drone and thus provides metrics of percentage of task completion.  Three 

such tasks presented and formatted in deep drone racing work are completion of the track, 

number of successful consecutive laps completed and the success of passing through 

dynamically moving gates based upon the relative distance of moving gates.  The first task was 

based upon the speed of the drone going through the course.  It was a measure of how fast the 
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drone can fly before the performance degrades because the velocity begins to be too fast making 

it harder to pass through gates.  The second task measured success on consecutive laps through 

the course without a crash or fault.  The last task measured how far the gates moved as part of a 

dynamic track or course.  The first task with respect to speed was also examined as an ablation 

study to illustrate the effect of a particular item such as background, shape, or illumination.  

Another format of the results was the percentage of gate passes to that of percentage of gate 

occlusion.  The work on deep drone racing provides good insight into the data, format, and 

presentation because the domain is very similar.  Given that these stated tasks are formats and 

approaches which match the intent of this work, it served as a guide for the metrics to be studied.   

    The SDR work of (Prakash et al., 2018) examined the size of a given dataset and compared 

average performance for detecting vehicles and providing bounding boxes around them.  They 

were classified as easy, moderate, or hard based upon the bounding box size and occlusion.  The 

SDR work examined the more difficult part of object detection where the object’s apparent size 

was small, and the object was also partly occluded.  The size of the datasets used was also 

examined for average precision.  The ablation studies provide the insight into the utility of 

specific randomization items as well as the context-aware splines.  A simple chart illustrated 

each of ablation studies as an evaluation of average precision at 0.7 Intersection of Union.  This 

presentation of ablation studies made it clear the importance of scene randomization, context, 

and saturation.  It served as a good presentation to illustrate this point when full SDR 

performance is used in comparison with each ablation study. 
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Literature Gap 

     There is plenty of research to indicate the benefits that simulations using synthetic 

environments to train AI models provides.  Research continues to overcome shortcomings 

related to the reality gap because of the mismatch between synthetic and real-world training.   

Most research efforts in this area have occurred within the past five years.   Given that this is a 

new and developing area within the AI domain, the amount of literature in support of bridging 

the reality gap remains somewhat limited.  Research such as DR however, provided success in 

several areas and initiated a series of research efforts to improve or apply DR techniques as 

outlined in the Domain Randomization sub-section of Existing Studies.  The Structured Domain 

Randomization sub-section as well pointed out the faults of DR and illustrated a method to gain 

improvement over DR.  No known research exists which has incorporated concepts of the SDR 

method like this work.  This works filled this gap.  In this area, a literature gap exists because 

there was only one known research method that has applied context-aware structure to AI related 

synthetic environment training which was also somewhat limited in scope and application. 

     DR related research was also lacking where the randomization was directly applied to the 

synthetic environment in naturalistic and non-uniform manner versus the known methods used in 

DR.  This included works that used high fidelity renderings as the means to bridge the reality 

gap.   The research for SDR also used similar patterns of randomization because of its foundation 

upon the DR approach.  Specific research on the use of naturalistic non-uniform randomization 

in such processes were unknown and assumed by the efforts of this research to be non-existent.  

The use of high-fidelity or high-quality rendering of synthetic environments has been considered 

a means to achieve improved generalization but refuted by another research (Mayer et al., 2018).  

The general concept of varying these high-quality rendered environments has been applied in 
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these research efforts.  This was done in a limited sense and not specifically related to the 

approach of providing variation to the environment during synthetic training so the model can 

handle real-world variations. 

 

Summary  

     The primary goal for this work was to generalize learning algorithms via methods used in the 

training phase.  Examples from literature were examined regarding generalization techniques.  

Research works in sample efficiency were examined to reduce or control the state-action space 

which is integral to RL methods.  This applies to the PPO-based DRL method.  The sample 

efficiency methods in literature covered a wide range of implementations including exploration, 

experience transfer, abstraction from hierarchy, sample optimization and environment modeling, 

which provided a range of techniques used to generalize AI solutions. 

     The fundamental instrument to which the generalization applies was the PPO-based DRL 

algorithm.  The selection of this learning algorithm was based on a broad view of AI techniques, 

research literature recommendations that a DRL based approach would provide the optimum 

approach given the use case under investigation.  RL, as a sequence which observes, acts, 

rewards and updates state-action processes provided the fundamental algorithm.  Research also 

indicated that faults in the RL approach alone could be overcome by adding DL to RL, thus 

creating a DRL method.  Due to difficulties in formulating reward functions and processing 

sensor-based observations, DL research results proved useful and served as the means to 

overcome these difficulties.   Both value function and policy search research were examined as 

types of DRL methods.  The use of policy search method was considered the best approach for 
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this work due to its common use in literature and it ease in implementation versus a value 

function approach.  

     For RL based applications the agent required an environment in which it can observe and act.  

Doing so in a real-world environment comes with complications of costs for training setup, 

safety issues, impact and cost associated with embodied agents in forms of unmanned 

autonomous systems, as well as the lack of flexibility and scalability in training.  Research which 

used and introduced simulation, synthetic data, and synthetic environments for training was 

examined.  The exact negative impacts of training in the real-world were shown in literature to 

be solved in part using simulation and synthetic approaches.  The computational time savings 

and flexibility in setting up training scenarios were key factors pointed out in the research 

literature. 

     Research using synthetic and simulated methods determined that a reality gap was created 

when deploying a trained model from the simulated or synthetic based-training environment to 

that of the real-world.  Synthetic trained models have a limited representation of the real-world 

and as illustrated in the research literature an agent would act poorly in the deployed real-world 

environment.  This is essentially the reality gap problem.  Research was examined regarding 

Domain Adaptation as one of the first approaches to help bridge the reality gap.  This led to 

additional research in DR which had indications of being more suitable to solving the reality gap. 

     DR was formulated based on a problem in robotics where training and testing in the real 

world held complications.  Simulations and synthetic environments provided an approach to 

overcome the complications but also introduced the realty gap into the solution.  The research for 

DR was based on solving the reality gap for object localization of robotic grasping and 

manipulation.  The uniform probability distribution of randomization of objects in the scene was 
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successfully tested in several research efforts.  The concept was to have the agent learn 

variability as it was trained in a synthetic environment and integrated with DR.  The success 

promoted DR as a research mean to bridge the reality gap.  

     SDR was founded upon DR with the addition of context-aware splines.  SDR research 

determined problems with DR caused by the uniform probability distribution it used during 

randomization.  This caused an agent to be stuck in local minima.  Additionally, for object 

detection, objects which appear to be small, occluded, or indistinguishable their identification 

could not be handled properly by DR.  Context-aware splines created embedded elements in the 

synthetic environment with the goal which aided the agent in continuous exploration and 

provided structured context to the environment as a guide to the agent.  The context-aware 

splines also provided the means to procedurally generate the synthetic environments.  The 

splines contained control point which either contained context for that point or an object placed 

at that point.  Given the research search performed, the SDR methodology is a singular and 

limited work in this research area specifically for use of context-aware elements.   

     This discovery path found in the research literature led to the substance of this research work.  

The requirement to improve generalization of AI techniques for better deployment usage was the 

overarching goal and provided the guidance in leading towards a proposed solution.  Selection of 

a drone racing domain and the desire to avoid the massive amounts of annotated data required in 

machine learning, led to the decision to use a RL-based algorithm which allows an agent to learn 

by exploring the environment.  In the use of RL to explore the environment, a sensor-based 

observation capability was required along with a better way to formulate reward functions.  

These capabilities are provided in DRL which is a method that incorporates both RL and DL in a 

PPO-based implementation.  The DR methods was one of several methods that demonstrated 
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ability to bridge the reality gap.   Further research literature investigation discovered the SDR 

methodology as a modification to DR.  SDR reported even better results for generalization 

through methods to augment DR.  Finally, conclusions from the literature led to improvement 

concepts which are more unique to this research work.  First, the randomization was based on 

naturalistic randomization and, second, additional modifications to context-aware elements while 

providing more control over the environment helped the agent learn how to understand and 

perform with unseen or unplanned variability. The experimentation and validation of concepts 

and approaches of this work were built upon the body of work covered in the literature review.  

This foundation provided good indications that this work could contribute and provide an 

additional step forward in training AI systems in more convenient and cost-effective ways. 
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Chapter 3 

Methodology 

 

Overview 

     The following list provides a high-level view of the methodology for this research work.  

Each item in the list illustrates key factors in the methodology.  They comprise the techniques 

and methods used to arrive at a solution to the proposed problem. 

1. Determine through simple agent testing those DRL PPO-based algorithm configuration 
settings that should be used in the drone agent.  Several options exist and providing a 
series of simplified tests yielded a better selection for configuration parameters. 

2. Run experiments to determine if a proposed training methodology can provide 
improvement in generalization to the inferred solution.  Experiments include the training, 
testing, and validation of inferred solutions. 

3. Utilize a DRL algorithm that is based on a PPO implementation.  No modifications to the 
algorithm are made, however, there are typical allowances made for configurations, 
parameters, and settings. 

4. Perform all training, tests, and validations within the structure of synthetic environments.  
Apply a use case of drone racing to gather and score metrics. 

5. Leverage DR and specifically SDR techniques in the methodology. 
6. Develop an experimental framework which integrates all necessary components and 

allows for variations in the synthetic simulation environments, agents based on a DRL 
algorithm to effectively explore and exploit the environment, incorporate variance 
through naturalistic DR with improved training via context-aware elements. 

7. Build into the framework methods to capture and measure specific metrics.  Include 
ablation studies to examine the sensitivity and effects on the results for both naturalistic 
DR components, use of context-aware elements and the application of settings and 
parameters applied to the DRL PPO agent. 

8. Compare and contrast a baseline trained agent to that of agents which incorporate various 
elements of naturalistic domain randomization and embedding of context aware elements. 
 

     This work was based on the two research questions and two hypotheses that were previously 

mentioned.  Each question and hypothesis provided the foundational structure to the type of 
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research to be conducted and was formulated through examination of research literature.  These 

are discussed in the following sections which describe the specific sections of the methodology.  

 

Research Methods 

     The methods utilized in this research are described in distinct subsections to help illustrate the 

purpose of the methodology by breaking it down into logical groupings.  When these are 

combined, they provide a composite approach in answering the research questions of this work 

along with testing the proposed hypotheses.  Relationships, connections, or reliance for each 

category to other categories was declared in each section.  The last subsection describes the 

integrated picture of the entire methodology. 

 

Testing to Select DRL PPO-Based Algorithm Configuration Parameters 

     This work did not concern itself so much with the modifications or adjustments to the 

algorithm used. There are three factors, however, which were required of the algorithm to be 

used for learning agents.  First, the algorithm must be suitable for the primary purpose of the 

research, the use of the SDR+ approach with the purpose to yield improved generalization.  

Second, the algorithm would be suitable for use in synthetic environments and without annotated 

data, rather learn from exploring and exploiting the synthetic environment.  The third factor is 

the main discussion for this section.  Given the selection of the DRL PPO-based algorithm from 

previous discussions, what should be the configuration parameters for this learning algorithm 

that were best suit the methodology?  This was answered via a methodology to perform simple 

agent tests to examine each of the configuration parameters and determine which set of 

parameters would be most effective. 
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     A description of “simple agent tests” was outlined as follows.  Determine which configuration 

parameters were available to the DRL PPO based learning algorithm found in the Unity ML-

Agents software.  These parameters defined the series of tests required.  The framework for these 

tests consisted of the following: 

• In Unity define the agent as a sphere which is restricted to motion along the plane of the x 
and z axes.  This agent was configured with DRL PPO-based algorithm supplied in ML-
Agents. 

• In Unity define a stationary target as a block.  The goal of the agent is to run into the 
target.  A reward of 1.0 would be obtained.  This process would then repeat until the 
ability to consistently achieve this goal was obtained. 

• In Unity define connected sections of flat planes upon which the sphere agent can 
traverse and where the stationary target can reside.   The agent sphere is gravity based 
and when it left the define platform gravity would take over the agent sphere would fall.  
At this point it was penalized and a new training episode would begin. 

• A degree of difficulty was provided to the agent via the shape of the platform upon which 
the agent moved.  The concept was to bridge two square regions by a narrow plane which 
would bridge the two areas.  The agent and target were placed on opposite squares or side 
of the platform so that the agent needed to traverse the narrow part of the platform.   

• A series of test were developed based on the various combinations of configuration 
parameters that existed for the ML-Agents learning agent.  Each test was evaluated to 
determine the best set of configurations to use. 
 

     The series of simple agent tests that took place were based the various combination of the 

learning algorithm parameters.  Three main configurations existed which were: 1) environment 

observations, 2) ray cast-based sensors, and 3) visual sensors based on a special Unity camera 

object which is attached to the agent.  For these three configurations a total of seven 

combinations existed: just observations, just ray cast sensing, just visual observations, 

combination of observations and ray casts, combination of observations and visual, combination 

of visual and ray cast sensing, and finally a combination of all three.  It should be noted that 

visual observations needed to be included given the visual nature of naturalistic domain 

randomizations.  Before the experiments began it was assumed that all three configurations 

combined would be the logical choice based upon the added capability of each configuration.  
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The visual observation sensor also provided a total of four more additional configurations.  

These options are based on the type, size and configuration of neural networks used for the 

visual observation sensor.  The options consisted of simple, natural CNN, resnet and match3.  

For testing purpose this set of configurations was only tested with all three main configurations 

combined, that being, environment observations, ray cast sensor and visual observations sensor. 

     The visual observation sensor configurations are part of the ML-Agents neural network 

settings.  The simple configuration is the default simple encoder which has two convolutional 

layers with minimum observation size of 20x20.  The nature_cnn configuration is a 

Convolutional Neural Network (CNN) implementation (Mnih et. al, 2015) made up of three 

convolutional layers with minimum observation size of 36x36.  The resnet configuration uses the 

IMPALA Resnet (Espeholt et. al., 2018) implementation which has three stacked layers with two 

residual blocks.  The minimum observation size is 15x15 however, this is a much larger neural 

network and thus more computational expensive.  The last configuration option is match3 which 

is a smaller CNN (Gudmundsoon, Eisen, Poromaa & Nodet, 2018) but can capture the granular 

spatial relationships as one might find in the examination of board games.  The minimum 

observation size limitation for match3 is 5x5.   

     With these configurations for visual sensor observations along with the other combinations, 

there was therefore a total of ten simple agent test that took place in the experimental framework 

previously discussed.  These tests are listed below: 

1. Simple Agent Test 01 – environment observation only 
2. Simple Agent Test 07 – ray cast sensor only 
3. Simple Agent Test 08 – visual sensor only 
4. Simple Agent Test 03 – environment observation with ray cast sensor 
5. Simple Agent Test 04 – environment observation with visual sensor 
6. Simple Agent Test 06 – ray cast and visual sensors combined 
7. Simple Agent Test 05 – ray cast sensor, environment observations, and visual sensor with 

simple configuration combination 
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8. Simple Agent Test 09 - ray cast sensor, environment observations, and visual sensor with 
natural CNN configuration combination 

9. Simple Agent Test 10 - ray cast sensor, environment observations, and visual sensor with 
resnet configuration combination 

10. Simple Agent Test 11 – ray cast sensor, environment observations, and visual sensor with 
match3 configuration combination 

     

Experimental Framework 

     An experimental framework was be developed to serve as the means to test and validate the 

methodology.  Furthermore, the framework allowed data to be gathered and then analyzed to 

determine the level of generalization achievable compared to a baseline model from the training 

environment.  This same process assesses the viability of the proposed hypotheses.  The 

framework is primarily software but includes the supporting hardware specifications such as a 

good quality workstation computer with sufficient memory, processing power and a high-end 

graphics card.  These are components commonly found  in most modern workstations. 

     The framework was based on the Unity game engine (Unity, 2019).  Unity, as a Serious Game 

framework (Frutos-Pascual & Zapirain, 2017), provides the structure and API support required to 

develop and utilize synthetic environments.  The API supports a scripting tool utilizing C# to 

integrate development code into Unity objects and interfaces.  For this work Unity constituted 

the main component of the framework and it permitted integration of required support 

components.  Unity provides modules as add-on features or as synthetic objects, both which 

enhance the framework’s capability and extensibility.   

     A more detailed understanding of Unity helps illustrate how it was be used both conceptually 

and operationally.  Unity is primarily considered a game engine used to develop video games and 

simulations.  It is a cross platform development tool but, for this work the Windows 10 operating 

system platform was utilized.  Unity as a serious game platform provides the ability to construct 
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the synthetic environments as training environment for AI agents.   Built-in features of Unity 

allow the creation, manipulation, and destruction of two- and three-dimensional objects as well 

as obtaining access to the objects via C# scripting and built-in tools.  Events for objects were 

created which include time and spatial manipulations and both physics and graphics-based 

effects.  Objects were created or provided as pre-built objects or obtained through third-party 

asset sources.  Unity has a concept of a ‘prefab’  A prefab is a single or composite set of objects 

which was re-used multiple times and modified in their re-use.  An environment can contain 

either a portion or a composition of both separate objects and combined objects as prefabs.  All 

these Unity based capabilities are stored, positioned, accessed, modified within the Unity 

application with various tools for scene management.  The content of the created synthetic 

environment, generally viewed as a scene, was run directly in the Unity application, or complied 

as an executable application.  This work leverages these features of Unity for the creation of 

synthetic environments which were then run as the training, testing, and evaluation 

environments.  These same tools used in conjunction with the integrated C# scripting allowed 

this work to modify the synthetic environment both for the naturalistic domain randomization 

and embedding context-aware elements within a scene.  A common feature of DR is to 

procedurally generate synthetic content to save labor and costs in building synthetic training 

environments.  This work in contrast, utilized Unity supported hand-crafted environments, versus 

procedurally generated environments.  This allowed for a more controlled and understood 

structure for the experiments and since there are a limited number of environments this became 

less of a factor.  Although this was more manually intensive, it was better suited for the 

experimental nature of this work. 
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     A Unity module, ML-Agents, is an enhancement which this work utilized to integrate existing 

capabilities for a PPO-based DRL algorithm.  PPO or Proximal Policy Optimization (Schulman, 

Wolski, Dhariwal, Radford & Klimov, 2017) has proven itself to be comparable to other similar 

algorithms but is easier to implement using a first-order optimizer like the gradient decent 

method.  This single PPO based DRL algorithm was used as is.  This allowed emphasis to be 

placed on the SDR+ techniques put into the training environment.  The integration of this 

algorithm was essentially automatic when ML-Agents was added as a Unity package.  ML-

Agents comes pre-installed, however, requires some integration and adjustments.  ML-Agents 

comes with several working code examples of AI algorithms linked to synthetic training 

environments in Unity.  The PPO-based DRL algorithm is one of several that have been used 

with ML-Agents.  There exist several advantages to this ML-Agents integration.  First, a well 

implemented PPO-Based DRL algorithm is readily available.  Since the emphasis of this work 

was not on the inner workings of a DRL algorithm, time and effort are saved from an 

implementation and in turn was focused on how generalization of that algorithm could be 

improved.  Second, with the addition of ML-Agents to Unity, the algorithm comes integrated 

into the framework including the procedure to connect to Python-based code used to run the 

algorithm.  This connection was already established in ML-Agents.  Access to Python code was 

available and no code modifications were required other than applying the proper configuration 

and setup of parameters.  These were used to adjust the settings of the algorithm. 

     Unity’s C# scripting API becomes the means within the framework for the additions of the 

naturalistic randomization of the environment and context-aware elements.  Unity provides many 

instruments within its application that were programmatically achieved through the C# scripting 

API.  This scripting capability was used to modify objects, prefabs, scenes, lighting, camera 
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properties and any element of the environment.  Such manipulation of the environment supports 

the ability to naturally randomize elements of the synthetic environment.  C# code was tied to 

objects, prefabs, and other element in a scene as well as associated events.  The C# scripts were 

written to trigger randomizations on Unity based objects, graphics, or simulation properties.   

The control to randomize the objects, graphics and simulation properties subscribed to natural 

affects.  C# scripts can control environmental elements and conditions such as time of day, 

weather, shadows as well as the physics of objects.  Some of the C# scripts allowed management 

of environmental randomization while others provide information to the sensors of the agent 

through being able to build content into the objects examined by the sensors.  With the scripts in 

place an agent can explore the synthetic environment which was automatically preset to 

randomize during the training.  For purposes of controlled experimentation, a set of seeds would 

allow a range of parameterizations or strategies for the agents to undergo within a controlled set 

of randomized environments.  In a similar fashion the C# scripts was also tied to the activation 

and use of context-aware elements.  This becomes a bit more involved since the context gets tied 

to objects and locations in the scene.  For the framework, it was sufficient that context-aware 

elements are formulated with a combination of objects and their integration in Unity scripts. 

     The final element of the experimental framework was the ability to gather data based on 

metrics for the domain of drone racing.  This includes data related to the agent’s interaction 

within the synthetic environment.  Instrumentation of the synthetic environment was achieved 

through existing elements in the Unity application as well as C# script code.  This was written 

specifically to record an agent’s actions and the elements within the synthetic environment with 

which it interacts.  Part of this is driven by intersection or collisions of volumes, surfaces, and 

lines from the agent’s actions in the environment.  These intersection-based collisions trigger 
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events and responses which were include the recording of specific information related to the 

metrics of interest and potentially to understand how well the training is being absorbed by the 

agent. 

  

Deep Reinforcement Learning PPO-based Algorithm 

     The experimental framework provides a synthetic environment for an agent to explore as part 

of its training process.  It was mentioned that in the framework there wa an integrated ML-Agent 

capability in Unity which provides a process and the code to apply this to synthetic agent 

training.  ML-Agents has a Proximal Policy Optimization (PPO) (Schulman, Wolski, Dhariwal, 

Radford & Klimov, 2017) based DRL algorithm which was used for this work to see how 

external factors might affect the algorithm’s training capability.  Direct modifications to the 

algorithm were not necessary.  This research maintains scope by restricting it to one DRL agent 

algorithm with the assumption that adequate results were obtained with a PPO-based DRL 

algorithm. 

     ML-Agents comes with examples of two primary DRL algorithms.  They are both effective 

DRL algorithms, but each have separate advantages.  SAC is utilized when the environment is 

expensive in terms of sampling because of its sample efficiency.  If the sampling is more 

abundant and easier to obtain, then PPO is better because of its straightforward implementation, 

ease of set up and robustness in terms of the hyperparameter settings.  

     The methodology of this work required a proper setup of ML-Agents to be able to have the 

drone agent work with the PPO-based DRL algorithm inside the synthetic environment.   ML-

Agents communicates via Python through a tool such as Anaconda.  The ML-Agents library and 

code was downloaded and installed in Unity as a package and the code which leveraged the ML-
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Agents package was placed and utilized within the specific project.  The code was tied to 

specific items which gets acted upon by the agent or to the agent itself.  The Unity interface 

allowed the developer to connect the scripts to the representative objects in the scene to provide 

the behaviors to the objects or agent.  An Anaconda environment was created and run on the 

same machine containing the Unity application.  ML-Agents provides the connections between 

Python, TensorFlow and the Unity engine.  The Python environment was set using an existing 

ML-Agents code which installs TensorFlow, and other utilities required.  A training 

configuration file was set up and then used to configure how the Python code was executed 

including the necessary instructions regarding location and inclusion of parameters when training 

the agent with this code.  The Unity application was started with the specific project and waits 

for the connection with the Python code.  The Python code indicated that “Play” in the Unity 

interface should be executed.  In Unity the Play feature not only starts the synthetic simulation 

but it also initiates ML-Agents.   For training purposes this was a requirement based on the way 

ML-Agents is integrated into Unity.  A product of the training was a model which was stored in 

a file with an onnx extension.  These files can then be used for the testing and evaluation phases 

of the experimentation.  Since TensorFlow is utilized, ML-Agents can also leverage a dashboard 

called Tensorboard, where output during training were examined to help determine convergence 

and performance of the agent during training. 

 

Synthetic Environment 

     Synthetic training for agents permits flexibility in the creation and use of synthetic 

environments.  Many obstacles found in training agents in a real-world environment have been 

overcome using synthetic environments.  This provides emphasis for the continued use of 
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synthetic environments.  An adaptable environment was a strong requirement for this work for 

both domain randomization and the use of context-aware elements. 

     The Unity framework was a natural fit for training agents in a synthetic environment.  The 

core functionality of Unity is the creation of objects, construction of scenes and interaction in 

that scene with objects of interest.  The building of the synthetic environment was based on the 

domain of drone racing.   The environment contained terrain, bodies of water, man-made 

structures and other objects which were added to the scene as a series of simple or complex 

objects.  In Unity, three-dimensional models are constructed in the application or imported as 

third-party assets.  Unity allows the placement and orientation of such objects.  In general, 

rudimentary objects can be created in Unity through its interface but, more often some types of 

existing assets are incorporated.  Such assets were created in three-dimensional modeling tools or 

obtained as pre-constructed models.  It is also possible to leverage entire environments for 

existing projects such as AirSIM (Shah, Dey, Lovett & Kapoor, 2017).  This work leveraged 

existing synthetic environment, when possible, if domain randomization and context-aware 

elements were applied within the synthetic environment.  Such environments were beneficial not 

only in terms of time and labor savings but, more importantly, because many such pre-

constructions are well formed and provide rich environment which generally provide a broad use 

in simulation, AI agent training, and games.   

     Existing environments were modified to fit a domain for drone racing where the drone can 

explore and train in a naturalistic environment.  The racecourse was a predetermined ordered 

path through the synthetic environment which was populated with a series of gates.  These were 

easy additions to existing environments that requires only the placement of gates in the 

environment.  Racecourses were constructed from a simple to a sufficiently challenging drone 
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racing course.    A simple environment was used during development and at least two more 

complex environments for the final training, testing, and evaluation.  A dynamic changing drone 

racing course was instrumented to examine the effect on training and as a means for naturalistic 

domain randomization of the position of the gates.  Additional objects were placed into the scene 

to serve as distractors.  Distractors are placed into the scene randomly in terms of type, number, 

placement, and orientation.  Their purpose was to distract the agent and provide negative reward 

when the agent responds to them or collides with them.  This supported the opposing nature to 

the RL algorithm.  Instead of seeking reward for a correct action by the agent, a penalty is 

exacted for a wrong action.  Distractors may also vary in their ability to lead the agent away from 

the intended task.  Objects such as the terrain, walls or structures indirectly serve as distractors 

which became a negative reward when a drone collides with them. 

     Synthetic environments allowed an unlimited number of training, testing, and validation 

scenarios to take place because they were modified more easily than real-world environments.  

The development of such synthetic environments can however still be time consuming and 

costly.  Scoping out the number of environment and their complexities must be considered in 

context of the desired result.  Synthetic environments have been created which provide a large 

range in terms of their complexity, detail, and number of objects within that environment.  Unity 

has recently expanded its capabilities to scale up in these areas through Data Oriented 

Technology (DOTS) and Entity Component System (ECS).  DOTS improves level of 

performance by taking advantage of multicore processing on a data-oriented stack.  ECS 

incorporates DOTS where it consists of entities and data but organizing this in a structure that is 

data oriented versus entity oriented.  These improvements and extensions to Unity permit 

additional scale for synthetic environments and brings them one step closer to real-world 
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environments.  Such features were not required for this work and not used to maintain the scope 

of the project.  DOTS and ECS require an additional level of effort as well as the creation of a 

more complex environment.  Such environments do exist such as Unity’s Adam and MegaCity 

datasets. however, consideration must also be given to the effect on the training in terms of 

computation time and number of episodes required by the DRL algorithm.  DOTS and ECS are 

mentioned to indicate potential future research and the impact that a more complex environment 

would have on this work’s methodology and other related works which have utilized synthetic 

environments.   

      

Naturalistic Domain Randomization 

     The original work of DR (Tobin, et al., 2017) introduced the concept of domain 

randomization to overcome the reality gap.  It performs this by randomizing objects in a scene to 

be manipulated by a robotic agent.  The randomization in this technique were performed through 

modifications to position, orientation, shape, size, color, textures, and lighting.  These 

randomizations were often varied in such ways that they did not appear to be realistic.  Often the 

textures where complete mismatches to the object.  Sometimes objects like cars were floating in 

the air or turned sideways.  Some object became multiple times their size or diminished by the 

same factor.  The point for such extreme randomization was to make the object different enough 

to add variability, but still be recognizable.  The assumption made by the DR work provided 

more than enough variance to the agent while training.  The agent learned to accept variance to 

better adjust for items not seen during training.  DR used neural networks which made it difficult 

to determine how the learning occurred other than looking to the result of the inference model’s 



64 
 

performance.  The methodology of this research assumed that such extreme randomizations may 

not be necessary.           

     Randomization in this work’s method kept all objects in a scene in a natural looking state and 

behaving as normal.  The framework for this relied upon Unity-based simulations and games 

which have various techniques to modify an environment in a natural manner.  Unity has built in 

capabilities to dynamically modify such things as camera properties, lighting and shading, 

weather conditions and so forth.  Using weather as an example, a drone agent can run through 

the course while at various locations it may be sunny and bright and then runs into inclement 

weather or some form of visual impairment.  Lighting, fog, smoke, haze, and water or rain are all 

integral to existing techniques in simulations and games built with Unity.  Changing from one 

weather environment to the next while the drone is traversing along the drone racecourse was 

applied in this methodology.  This introduces a variance into the environment, which is more 

naturalistic like changes in weather patterns.  In DR, such an effect is more blunt and often very 

synthetic is its approach to demonstrate variance.  These concepts explained here, apply beyond 

the theme of weather.       

     Differing approaches to DR based on photo-realistic simulation as seen in the GTA-based 

(Richter, Vineet & Roth, 2016; Johnson-Roberson et al., 2017; Richter, Hayder & Koltun, 2017) 

and Virtual KITTI-based (Gaidon, Wang, Cabon & Vig, 2016) simulators assumed the reality 

gap could be bridged by providing high fidelity environments which are modeled to look as 

much as possible as the real world.  As previously stated, (Mayer et al., 2018), this technique did 

not achieve the desired effect rather it cost in terms of the labor and time to create such 

environments.  Furthermore, the expense and availability of hardware in terms of graphics and 

computing speed to achieve this for real-time behavior provided further evidence against using 
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such a methodology.  This research was based upon synthetic training environments which are in 

a middle ground between simplistic and high-fidelity.  Most development for simulations and 

games tend to meet at the middle ground based upon constraints mentioned.  Environments 

found in these simulations and games were adapted for use in this work. 

     Another technique for domain randomization applied to deep drone racing (Loquercio et al., 

2019) included the dynamic motion of drone racing course gates during training.  This work 

examined the ability to transfer the training to real-world drones where the gates were moved 

during the real-world validation phase.  The methodology for this work took on a similar 

dynamic modification of the drone racing course during training.  This approach included the 

movement of the gates and course path.  This was done in conjunction with other randomizing 

techniques such as changing the size, shape, and color of drone course objects such as the gates.  

This became an added part of domain randomization and was achieved in a realistic fashion to 

maintain the prescribe type of naturalistic domain randomization. 

     In this work there were several possible types of domain randomizations which occurred in a 

natural fashion in a synthetic environment.  The value for each type of randomization was 

determined through experimentation which includes ablation studies to discern the effects of 

specific features.  The list of features that were randomized follows: 

• Synthetic environment lighting variations were performed by changing the degree of 
lighting in various scenes used during training, testing, and validation.  No dynamic 
lighting variations were performed other that switching between scenes that held various 
levels of lighting from nighttime to mid-day. 

• Shadows were not directly used as measures of variability but are inherent to the lighting 
changes.  The shadows performed a key function in the visual representation of a scene 
through changing the lighting hitting was specific areas covered by the shadows. 
Visibility was varied through smoke, fog, steam, or other elements.  In the work visibility 
was adjusted using fog, rain, and snow. 

• Weather and seasons were varied.  In this work, rain and snow were used as weather 
variations.  Seasons were used which included autumn, spring/summer, and winter. 
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• Backgrounds which include sky color, clouds were also varied.  These domain changes 
were generally associated with other environment changes such as lighting, seasons, and 
visibility 

• Variation to man-made structures via scale, position, orientation and texture or coloring 
occurred in this work, however, represent an additional domain randomization for future 
work. 

• Drone racecourse gates provide another key element in domain randomization.  This 
work deployed the use of varying the drone course layout which included specific 
locations and number of gates used.  The gates themselves were modified in size, shape 
and descriptive coloring or texturing. 
 

Context-Aware Elements 

     The SDR technique (Prakash, A. et al., 2018) supports overcoming the suboptimal and high-

variant policies produced by uniform sampling of environment parameters in the DR 

methodology.  SDR utilized context-aware splines with control points and known objects which 

lie along the splines or close to them.  This proved beneficial in overcoming the weaknesses of 

uniform sample randomization in DR.  This work leveraged this methodology to keep the drone 

agent on the exploration track during training.  Uniform randomization caused agents to get 

caught within a minimum solution.  The context-aware spline with specific objects planted at 

control points provided information back to the agent relative to what that object means in the 

current scene.  The RL-based nature of the agent’s algorithm allows the context-aware elements 

to drive the agent onto continued exploration.  This process helped solve the problem associated 

with the DR method.   

     The SDR+ technique used for context-aware elements was used in a different manner.  This 

work used it to guide the agent during training to improve the speed and performance of the 

training.   In the original SDR method, one of the main reasons for the spline-based approach 

was to augment procedural generation of the synthetic environment.  The splines would provide 

paths along which given objects would be placed thus allowing procedural generation of these 
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objects in the scene.   This work’s methodology utilized context-aware element as more than just 

splines for procedural generation of scene objects.  They applied to surfaces, volumes, splines, 

and points.  This permits a broader base in the type of elements used which could provide 

context to the drone agent.  In synthetic environments such entities were represented as points, 

splines, surfaces, or volumes.  This work did not use procedurally generated environments.  The 

context-aware elements served just as information in the scene that are gleamed by the agent 

rather than to be used to determine where and how the objects were generated and placed.  For 

this work it became a manual process which was suitable for the scale of the project.  Future 

work can examine the inclusion of procedural generation of the environment.  

     Parameters set within Unity served as context-aware elements.  The information provided by 

the elements became an embedded part of objects, terrain, and other items which make up the 

scene.  Often intersection testing based on ray casting was the means to activate the context-

aware element within an object which then were programmed to send information back to the 

agent.  The agent receives this information to gain improved context of elements in the surround 

region.  The algorithms utilized this information to assess if each element scanned would contain 

a positive or negative reward based on exploitation from previous experience or to explore new 

potential rewards for the objects scanned that contain context-aware elements.  This gets 

incorporated into the RL-based exploration of the agent during training with the intent to provide 

guidance which helped to keep the agent on target.  This is similar in nature to a plan, or a 

mission being used as a guide during execution.  It is common that the actual outcome differs 

from the plan, nevertheless, it still serves its purpose in providing direction.  In this work the 

guides or context-aware elements were less structured than would be seen in a plan.  The concept 
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still applies and becomes more relevant if complexity associated with objects in the scene is 

required.  

 

Domain of Interest 

     A series of drone racing scenarios, which occur within the synthetic environment, provided 

use cases for experimentation.   In the field of study for autonomous unmanned systems two 

common use cases are drones and self-driving cars, both of which are rich in terms of related 

research and development.  Drones provide an ideal use case for this work because of similar 

works (Loquericio et al., 2019; Polvara et al., 2018) and simulation environments (Shah, Dey, 

Lovett & Kapoor, 2017; DRLSIM, 2020; DroneSim Pro, 2020; Zephyr-Sim, 2020; Liftoff, 2020; 

Velocidrone, 2020; FPV FreeRider, 2020; Real Drone Simulator, 2020).  AirSim (Shah, Dey, 

Lovett & Kapoor, 2017), a Microsoft simulator used for drones and ground vehicles, was such an 

example.  AirSIM provides a capability very similar to the synthetic environment and for the 

domain for drones being flown within the environment.  It did lack the connection to AI based 

algorithms to drive drones within the environment and the fact that its purpose or usage for 

drones was open ended.  It served as an example for this work to follow and was recently 

modified to work with Unity.    

     Several drone racing simulators also served as examples for the methodology for this work.  

Key among these was the deep drone racing work (Loquercio et al., 2019).  The reason for this 

was because that work examined the use of drones in a synthetic environment with the intent 

generalize to actual drones in the real world.  That work claimed success in achieving this result 

which was supported by the DR methodology.  This work extended that work by using SDR+; 

however, it was not applied it to real-world drones.    
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     The work leveraged these existing research works which focus on the domain of drone racing.   

There are key elements to drone racing that make it well suited as the domain of interest for this 

work.  First, it is not a complicated nor a complex use case.  Drone racing is for the most part a 

drone flying through a prescribe path and along that path are a series of gates it must pass 

through.  Performance is based and accuracy of staying on the drone racing course path, passing 

successfully through the gates, not running into obstacles, the number of consecutive laps 

achieved successfully and the average speed for each lap and overall course time to completion.  

There are ample research works, games and simulations related to drone racing which serve as 

examples of the domain. 

 

Metrics 

     This work evaluated the effectiveness the SDR+ technique using the domain of drone racing.  

From this, domain metrics were used to determine its effectiveness.  The essential elements of 

drone racing were based on having a drone traverse through a course which includes a series of 

gates to pass through.  This was to be performed as quickly and accurately as possible noting that 

there exist tradeoffs in achieving both.  With consideration for the objectives of drone racing, the 

goals of this work, and the means to perform the following experimentation list of fundamental 

metrics: 

• The average precision in terms of distance error of a drone from the center of the gate. 
• The average precision in terms of distance error of a drone from its current path to that 

of the ground truth path of the drone racing course.  Specific points of interest were 
taken at the midpoints between gates. 

• The average speed of the drone traversing the course.  This pertains to successful 
completion of each lap and then averaged over all the laps taken in the course.  The 
number of crashes or failures to complete the course or lap were considered.   
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• The consecutive number of gates passed without missing a gate, hitting an obstacle.  
Limit of 4 laps and number of completed laps in that set including consecutive laps was 
the set measure of performance. 
 

     This list is associated with fundamental tasks the drone agent must complete.  This work 

examines variations in the drone racing course and its environment for training, testing, and 

validation of the learning process by the agent.  These fundamental tasks and associated metrics 

get repeated but under various circumstances and are measured for all these variations.  Such 

circumstances which provide variations within the synthetic environment while gathering metrics 

are listed below: 

• Modification of gate location provides a metric to determine the amount of gate 
displacement which was measured based percentage completion of the tasks of gate 
passage, to lap completions, to course completions.  This gate displacement provides 
another DR based metric. 

• SDR+ techniques are only utilized in the synthetic training environments.  The testing 
environments were equivalent to the training environments minus the application of 
SDR techniques.  This allows a baseline and a set of gathered metrics to be used for 
comparison to runs on the validation environment which is different from the training or 
testing environment.  This provides the actual metric of interest regarding the measure 
of generalization. 
 

     Ablation studies provided additional metrics with regards to both naturalistic domain 

randomizations and context-aware elements.  Comparison of final generalization metrics 

between non-ablation and ablation studies were collected as a measure of the influence of the 

given item that was extracted in the ablation study.  This also provides the ability to examine the 

influence of a given item on the performance of training for acceptance of variability. 

     Real-world training, tests and validations are beyond the scope of this research work.  The 

question does arise concerning the determination of the level of generalization when no 

comparisons were performed using real-world drones.  Even though such a comparison to real-
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world implementation and execution is the ideal, there are many issues related with a real-world 

application that are beyond the scope of this work.  There was a degree of difficulty in matching 

the simulated or synthetic environment to one in the real-world.  This comes down to both the 

creation of a drone racing course as well as the transfer from the synthetic based drone to the real 

drone in terms of behavior, physics, unknown differences and hard to model attributes.  This also 

applied to the transfer of the inference model from the synthetic to real drone agent.  The 

methodology used for this work assumes that a first order approximation to the degree of 

generalization can still be obtained totally within a synthetic environment experiment.  This was 

achieved by utilizing a completely different synthetic environment and drone racecourse in the 

evaluation phase from those used for training and testing.  This also assumes that the level of 

variation provided in just the difference of the validation synthetic environment still provided 

indications of how well generalization can be being achieved. 

 

Integrated Methodology 

The previous subsections provided pieces of the integrated methodology used in this research 

work.  Each subsection plays a critical part within the methodology.  It is noted that the next 

section contains information relative to instrumentation, ablation studies and baseline 

comparisons which were an integral part of the overall methodology.  These deal with the 

instrumentation of the framework to capture specific data.  In summary, the methodology is 

based on an experimental framework most of which was founded on Unity.  A module, ML-

Agents, provides the means to integrate the PPO-Based DRL algorithm to provide the 

intelligence to the agent which in this case is the simulated drone.  Unity itself provided the 

mechanisms to construct, import and utilize elements which make up the synthetic environment.  
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The Unity application and its use of a C# scripting tool allowed elements in the synthetic 

environment to be controlled, examined, and extended which allowed for the integration of both 

naturalistic domain randomization and context-aware objects.  A domain of drone racing 

provided the scenario and allowed for the specification of metrics which were utilized to validate 

the methodology.  This integrated methodology is illustrated in Figure 1. 

 

 

Figure 1: Methodology overview  

 

Validation and Instrument Development 

Instrumentation 

     This work required analysis and means to qualitatively and quantitatively measure the degree 

of generalization that occurs due to training with SDR+.  Benchmarks, metrics, and experimental 

protocols provided an important part in determining what to measure and how the framework 
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was to be instrumented to obtain data relevant for analysis.  A previous work in using DR for 

simulated robotics learning (Dai et al., 2020) provided great insights into analytics and metrics to 

understanding and measure the effects of DR.  These analytics and metrics, however, are more 

specific to a robotics use case and less useful for this study.  Another work (Packer et al., 2018) 

demonstrated a benchmark and experimental protocol with an empirical study for use in 

examining DRL algorithms.  This work included evaluation on DRL algorithms of the PPO type.  

This work divided generalization into two regimes: interpolation and extrapolation.  Interpolation 

was defined as how generalization is achieved for use in environments which are in line with 

aspects of the training environment.  Extrapolation was where generalization was achieved when 

parameters of the testing or validation environments differ from those seen in training.  Although 

this was relative to this research, the emphasis was not on the study of the algorithm rather how 

external methods can potentially provide better generalization without modification to the 

algorithm.  A work on deep drone racing (Loquercio et al., 2019) provided additional 

information on metrics and instrumentation required for a domain directly applied to this work.  

The three works mentioned here, even though there was not a direct correlation, they provide a 

structure for the metrics and instrumentation that were used for this experimental framework.  

With this inherited set of metrics and instrumentation concepts, the external validity of 

instrumentation extends in part to the internal validity of instrumenting the experimental 

framework.   

     The instrument implementation was made possible by the Unity API for C# scripting.  

Developing the code to control, sample and record data during training, testing and evaluation 

was achieved in similar fashion to how it is done for naturalistic randomization and embedding 

context-aware elements within the Unity application.  C# scripts for instrumentation were 
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integrated with objects in the scene.  For naturalistic randomization and context-aware elements, 

the object integration allowed for control or manipulation of the object.  In the case of 

instrumentation, it was used to collect data and performance metrics.   An example illustrates the 

point.  For a drone racing gate, a planar object embedded in the gate was instrumented for object 

collision.  When a drone successfully passes through the gate and this planar object, an event is 

fired which activates a C# script which can then record the event.  The code is activated by this 

collision event as the drone passes successfully through the gate.  There can exist additional 

criteria such as a minor collision against the gate during the passage which may negate the 

reward but, the reward is recorded by the script which was then revisited for results and analysis.  

For cases when the drone completely missed the gate, this missed gate was detected through an 

algorithm in the C# code which monitors previous and future sensed gates and can determine a 

missed gate based on the sequence of gates.  Most instrumentation followed this pattern. 

     Instrumentation through Unity provided a well-connected set of instruments for elements 

within the synthetic environment.  Since the experiments were all virtual in nature no real-world 

influences have impact upon the instrumentation.  Such conditions might be weather, power 

outages, faulty drone sensor and so on.  The chances of not providing valid data were greatly 

reduced. 

     One portion of the instrumentation not covered by Unity based methods is the inclusion of the 

DRL algorithm via the Python interface provided by ML-Agents.  The performance of the 

algorithm is output by ML-Agents much of which is contained within the console running ML-

Agents.  Loss or interruption of this connection can lose data and potentially invalidate the 

means of instrumentation and the trained model.  Since experiments are run virtually, they were 

easily repeated with minimal impact and allowed other attempts to provide valid data through 
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this instrumentation.  Tensorboard, an opensource based dashboard, provides a presentation of 

algorithmic statistics on the various measures of performance of the DRL algorithm.  This is an 

instrument well suited and robust for this study.  Tensorboard can plot cumulative reward, 

episodic length, policy loss and value loss, or other configured output during training.  It was 

used as the primary source of data coming out of ML-Agents.  

 

Ablation Studies  

     Ablations studies are important to the instrumentation and validation of these experiments.  

These studies were used to remove a component used within the methodology with the intent to 

understand its effect on the overall performance through determining how much degradation 

occurs because was not included as part of the solution.  This primarily provides insight to the 

contribution of a given element of the methodology.  For this work the two main considerations 

were the components that make up domain randomization and the context-aware elements.  

Experimentation occurred where one of either of these components was removed and then the 

AP of the new results compared to when all the components are present.  An example of 

potential ablated components are as follows: lighting, camera viewpoint, shading, positioning, 

size, shape, color, and texture.  In the DR work their ablation study noted that lighting was 

among the most prevalent sub-components with others having minimal effect.  The framework 

instrumentation being used with ablation studies did not require any modifications other than 

noting the removal the ablated component and providing the implementation that allowed this 

without generating errors. 

 

 



76 
 

Validation and Reliability 

     Obtaining valid and reliable results was important for any experimental based research.  

Several topics regarding validation were previously discussed such as leveraging and comparing 

instrumentation of other research works, utilizing a total synthetic approach to avoid any real-

world impacts and, reliance and validation through tools such as Unity, ML-Agents and 

TensorFlow with TensorBoard.  Additional issues with validity and reliability comes with the 

development of software code.  Specifically, the use of the Unity C# scripting API.  Software 

bugs and improper coding can play havoc on getting the software to function correctly.  If such 

an issue is introduced and goes undetected it can provide results good or bad which does not 

represent the intended application.  This research work leveraged commercial and opensource 

software which has a greater chance of providing valid working code and which is generally 

more reliable than starting from scratch especially if the commercial or opensource software 

provided documentation for known errors or issues.  The exception to this was with the C# 

scripting code which glues together much of the experimental framework.  This C# scripting 

code was reviewed and tested for correct and repeatable results for each script implemented both 

at the functional level of the script and the integration and interaction with other scripts or 

components.  There remain potential issues due to human errors being introduced but not 

discovered.  Commercial and opensource tools can also perform code checking and functional 

tests. 

      Reliability is an issue with AI based applications.  For certain types of applications, the AI 

based results are generally not repeatable and may not return the exact same results each time.  

Generally, the algorithm was considered reliable when repeated performance of the inferred 

model was within a small or designated amount of variance.  The AP values may not match each 
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time but if they are close in achieving similar values and acceptable tolerance, they were 

considered reliable.  For this work, an acceptable tolerance was defined given output from 

several runs of the same experimental setup.  Results became acceptable if within the tolerance, 

otherwise further investigation was required into the code for reasons for deviation outside the 

tolerance measures.  This tolerance was difficult to determine ahead of time and generally comes 

once the framework has been constructed and run enough times to analyze the results for validity 

and reliability.  In most cases validity and reliability were specified in commercial and 

opensource tools.  Knowing the advantages and shortcomings of these tools helps to determine 

where errors and non-repeatable processes may occur.  For specific code developed for this 

work, this was not the case.  Sufficient testing and code reviews must be performed to assure 

some measure of validity and reliability. 

 

Proposed Sample 

     This research work did not require any human subjects nor any participants.  This work was 

strictly an experiment to be run to collect data and analyze the results of the applied 

methodology.  For purposes of this research work the idea of a proposed sample was redefined to 

the quantity of certain components of the methodology used in the experimentation.  The 

proposed samples requirement was required to be is sufficient for the experiment, sufficient to 

obtain the needed data, and sufficient to provide measurable and meaningful results.  The 

proposed samples as components of the experimentation have been broken down into several 

categories which follow. 
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Synthetic Training Environments 

     The training environment was critical to the success of the experimentation to determine the 

degree of generalization to be achieved by the methodology.   This was the environment which 

contains the components to achieve the goal which allowed the agent to learn to generalize from 

exploration of the synthetic training environment.  Success for this work was only achieved 

within the use of synthetic environments.  This work considered two synthetic training 

environments.  Training took place but, at different levels of complexity.  A simple synthetic 

training environment served the purpose to iterate on and adjust the experimental setup to ensure 

the training worked as designed.  It was also determined if the instrumentation was adequate for 

recording the required data.  The simple training environment was the easiest to implement and 

to understand therefore, served as the iterative playground for refining the methodology.  A more 

complex environment had more detail to the environment and objects with more variations.  The 

level complexity was determined through results obtain with the less complex environment.    

The more complex experimental environment was used to determine the number of iterations 

required by the algorithm to arrive at the best performance as the degree of complexity of the 

environment increases when compared to the simpler environment.  The goal in developing the 

more complex environment was to achieve a level of richness in the synthetic training 

environment sufficient to match the goal of improved generalization.  The relative nature of the 

complexity of the environment was subjective.  A synthetic environment which was not too 

simple nor too complicated was selected and design via results from the development for the 

experiments for the simple case.  Although exact quantitative measure cannot be determined for 

the level of complexity given to such an environment, a standard was set and a relative measure 

of increased or decreased complexity was provided based on this standard.  For synthetic 
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environments there were a few quantitative measurements that are possible such as total number 

of polygons, total number of objects in the scene and resolution used. 

 

Synthetic Test Environments 

     Some of the synthetic test environments were identical to the synthetic training environments 

except for the controls used in the methodology to improve generalization.  This establishes a 

baseline to see how well the trained model performs in the same environment it was trained in.   

The other synthetic environment used served as a test of the effect of domain randomization.  

The assumption for these test environments was that they served as baseline environments to 

determine results. 

 

Synthetic Validation Environments 

     The synthetic validation environments were be used to determine the level of generalization 

obtained from the training environments.  These environments did match up with the two levels 

of environmental complexity applied to the synthetic training environments.  This allowed the 

same iterative development of a simple validation environment towards a more complex 

validation environment.  The complexity of the synthetic validation environment was more 

complex and different from the training and testing synthetic environments as a requirement to 

validate the degree of generalization achievable.  An interesting question to examine in 

consideration of the simple and more complex environments was if a model trained in a low 

complex environment can perform as well in as one trained in a more complex environment?  

Does the reverse examination have similar performance measures?  This helped to determine the 
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level of training required and if generalization learned applied between dissimilar training and 

validation environments. 

     There were differences between validation environment and those of the training and testing 

environments.  The objects, terrain and associated environmental effects are similar; however, 

the methodology of randomization and context-aware elements are not applied to the synthetic 

testing and validation environment.  Validation environments must differ from the training and 

test environments.  The reasoning behind this is to avoid the condition that trained models for 

DRL based algorithms often perform well within the same or vary similar environment such as 

the testing environment.  Another reason was that a naturalistic environment was required.  The 

training environment randomized and varied the environment during training.  For the validation 

environment only, naturalistic changes applied.  This application may vary from run to run.  An 

example might be the time of day, weather or other environmental factors which make the 

validation environment different from the training and testing environments.  This required that 

several validation experiments need to be run to allow for differences in support of validating 

generalization.  Ablation can also be performed within the validation environment to determine 

the effect a given change in the environment impact the generalization. 

 

Drone Racing Courses and Scenarios 

     Various drone racing courses were provided for cases of training, testing, and validation.  

Each course provided sufficient environmental randomization to meet the goals of the agent to 

learn variability in training courses, check the inferred models in test courses, and validating the 

agent’s ability to adjust to variability in validation courses.  Scenarios were be created to define 

the settings and arrangements for each given run of the drone with multiple laps.  The number of 
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laps for validation runs were specified where the number for training was based upon the 

maximization of performance achievable during training within a reasonable timeframe.  Course 

complexity correspond to the complexity of the environment in which it is placed.  Complexity 

of the course was also be defined in scenarios by: 

• Total number of gates 
• Distances between gates 
• Orientation and placement of gates 
• Size and shape of the gates 
• Color and/or texture of the gates 
• Number, size, placement and type of obstacles and distraction objects 
• Background and surrounds 
• Environmental effects 

 
     Scenarios were constructed to specify the parameters for each training run or continuation of 

a training run as a configuration guide to modify the synthetic environment.  Scenario files were 

used to specify randomizations, context-aware elements, and instrumentation applied to the 

environment and course.  Typically, context-aware elements and instrumentation remained 

paired with the same objects in the environment and did not vary from scenario to scenario.  

Randomizations varied and were outlined within the scenario file.  Scenarios defined the goals 

which equate to reward, or punishment values assigned for DRL based training.  Scenarios also 

defined the metrics to be obtained from the embedded instrumentation. 

 

Randomizations 

     Natural randomizations were changes in the environment which are naturally occurring such 

as time of day.  These were implemented in the scenario as time and event triggers.  These 

triggers were applied to objects or parameters within the synthetic environment.  The scenario 

supported the way they got modified.  Randomizations were defined to occur at configured 
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number of steps in the training process.  At each of these specified points in the training, ML-

Agents paused to write out data.  It was at this point in the training process where variations into 

the synthetic scene were made.  The follow changes were made during certain of the training: 

• Environment lighting with implied shading effects 
• Environment obscuration via fog, rain, and snow 
• Sky color and cloud density through skyboxes which are associated with weather, 

seasons, and obscurations. 
• Foliage and other object in the scene color changes.  This included vegetation coloration 

and coverage by snow 
• Drone racecourse gate modifications of location, number, size, shape, and coloring 

 
     Experimentation and analysis provided indicators on how randomizations occurred to achieve 

an optimal training effect.  Parameters to vary for the randomizations were the frequencies, 

durations, and locations for each of the randomized items.  Based upon initial analysis, the 

frequency, duration, and randomized locations were adjusted to optimize its effect upon 

generalization.   

 

Context-Aware Elements 

     The advantage of synthetic environments is the ability to have any part of the environment 

pre-defined with annotation.   This predefinition must be built into the environment and context-

aware elements to provide the guidance of agents during training.  This wa considered a form of 

annotation to the objects in the scene which in turn were discovered by the agent to help improve 

its learning.   A value of reward or punishment was assigned to any given object through context-

aware elements and the interaction an agent had with those elements.  For synthetic 

environments practically all objects became context aware.  In the SDR method, splines were 

used with control points to act as locations to insert objects with defined context.  The method of 

this work extended this concept to volumes and surfaces where larger objects were easier 
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encapsulated and annotated.  Analysis of results determined if the methodology regarding the 

number and type of context-aware elements provided effective results or impeded the agent.  As 

a minimum, each gate along the drone racing course was a context-aware element along with 

intermediary points which define the course path and direction.  Distractors were also included 

as context-aware elements.  The exact number and type of context-aware elements was 

determined through experimentation and analysis of the results during the development phase. 

 

Data Analysis 

Analysis for Research Questions 

     The first research question - what generalization improvements are realized when using a 

SDR+ - was the primary focus of this work.  This work’s goal was not to improve upon the 

algorithm itself, rather it was to leverage the use of synthetic training environments and perform 

research experiments to determine how modification to the training environment may allow the 

DRL algorithm to better generalize.  The data provided and associated with the performance of 

generalization of learning by the algorithm was based on average precision measurement of the 

drone agent performance to determine a baseline and, a test environment which was created from 

the training environment.  The test environment was void of the methodology to provided 

randomization and use of context-aware elements.  Runs of the test environment provided 

various naturalized environment settings without having them be randomized.  This data was 

analyzed and holds to the assumption that a similar average precision for the drone agent was 

achieved in both the training and test environments.  This allowed the test environment to be 

utilized as a baseline for comparison of the validation environments using the inferred model 

from the training environment.  The metrics from the validation environment experimentation 
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provided measures of average precision in an unseen environment from the viewpoint of the 

training environment.   Typically, such results are quite degraded when applied to environments 

which have such dissimilarities without any means to bridge the reality gap.  Analysis of average 

precision, which if found within acceptable range from the test environment results, provides 

indications of improved generalization.  The indications for generalization improvement from 

this baseline was better understood using ablation and sensitivity studies. What becomes more 

apparent here, were the ablation studies and sensitivity analysis as it applied to the specific and 

unique features of this work’s methodology.  Ablation and sensitivity studies pointed out 

whether these specific elements of the techniques had any impact on the average precision and 

how relative that impact was to other common factors observed in other research works (Tobin et 

al., 2017; Loquerico et al., 2019; Prakash et al., 2018; Tremblay et al., 2018). 

 

Analysis for Hypotheses 

     In similar form to the research questions, both hypotheses of this work were tested in the 

experimental framework and answered through ablation and sensitivity studies.  Naturalistic DR 

provided an easier implementation.  The qualitative measure for naturalistic randomization being 

an easier implementation was in part because it leverages from serious game frameworks.  This 

method took advantage of such frameworks, specifically built-in naturalistic features of the 

Unity application.  Implementation for this was built into Unity and only requires configuration 

according to the defined scenarios. 

     SDR+ with context-aware elements did support improved training through guidance for 

further exploration.  The ablation and sensitivity studies provided a quantitative measure with 

regards to average precision effect and influence on the results. 
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Analysis for Ablation and Sensitivity Studies 

     This work’s methodology was built into the series of scenarios a means to support ablation 

studies.  Ablation studies provided the means where a given parameter was excluded to see its 

effects on the results.  Sensitivity to the amount or type of a parameter utilized in the data 

analysis also provided metrics to indicate thresholds of performance.  Related research works in 

the areas of related studies (Tobin et al., 2017; Loquerico et al., 2019; Prakash et al., 2018; 

Tremblay et al., 2018) have performed ablation studies for similar cases.   

     The work on DR (Tobin et al., 2017) used ablation studies to examine the sensitivity of both 

the number of training samples used and for the number of unique textures used.  In both 

examples the sensitivity to the average error of distance to placement of the robotic grasper was 

measured.  The average error converged after about 5000 images were used in the training.  

Sensitivity towards the same distance error continued to improve even beyond 100,000 textures 

used.  Random noise was also examined but was least sensitive to improvement of the average 

distance error.   The DR ablations studies further indicated that texture randomization was seen 

as more important than in randomizing the position of objects in the scene. 

     The work on Deep Drone Racing (Loquerico et al., 2019) provided sensitivity on the 

percentage of tasks completed to maximum speed, number of successful laps and to amount of 

relative drone gate movement.  Low drone speeds up to about 6 meters per second performed 

100% of their tasks.  Achieving successful number of laps was near 100% up to about 3 laps and 

only reduced below 90% of lap completions for up to 5 laps. This performance quickly dropped 

to a rate of 30% task performance when the speed was doubled.  This work also examined the 

effect of moving the gates during the evaluation process.  Numbers fell to just under 90% of task 

completion when the relative movement was doubled.  It fell further to 50% task completion 



86 
 

when the relative movement was tripled.  Regarding ablation studies on factors of background, 

object shape and the amount of illumination, the work determined that all three factors 

contributed to the improved task completion.  Task completion was also compared to drone 

speed.  The inclusion of all three factors provided the best results with speeds up to 10 meters per 

second still achieving a 90% task completion but quickly falling thereafter.  Task completion 

when other elements were removed provided values between 50% and 40% at 4 meters per 

second continuing to drop between 30% and 20% at the 10 meters per second mark.  One 

interesting result was the fact when no background was used, the drone would fail to complete 

even a single pass through a gate.  The deep drone racing work also measured the sensitivity of 

re-running planning algorithms at different distances from the target.  The planning distance was 

a measure of how far out from a gate a plan needs be formulated to correct course.  Their results 

provided a large range which performed well but indicated that for both short and long planning 

lengths the performance dropped significantly.  Short planning length causes aggressive drone 

behaviors while long planning tended to degrade the agility of the drone.  Another analysis 

performed was the successful passes of gates based on the occlusion of the gate.  When the gate 

was occluded up to 45%, a 100% of gate passes were completed.  The successful gate passes 

dropped drastically to about 10% when 80% of the gate was occluded. 

    The SDR research work (Prakash et al., 2018) preceded its work with examination of DR.  

They performed an ablation study on their use of DR and determined that lighting proved to be 

the most important factor.  Upon extending the DR work to SDR, their ablation studies 

determined that factors of context, saturation and contrast exceeded the importance of 

randomizing lighting.  Their ablation studies examined full SDR, SDR without context, SDR 

without scene randomization, SDR with high contrast, SDR without random saturation, SDR 
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without random lighting and SDR without multiple postures.  As noted, contrast and random 

saturation had the highest effects in their ablation study but, the other factors were not too far off 

and provided a much higher resulting value using the full SDR technique.  This work assumes 

that context is an important feature of their method and saturation and contrast were determined 

as contributing factor over other lighting effects. 

    The final work (Tremblay et al., 2018) looked at synthetic training of deep neural networks for 

object detection using DR to bridge the reality gap.  Their ablation study looked at a fixed light 

on distractors, no textures, use of 4K textures, no augmentation (contrast, brightness, cropping, 

flipping, resizing and noise), no distractors and no light augmentation.  Average precision did not 

change drastically in any one category.  All factors seemed to contribute to the generalization as 

seen through just a small amount of degradation in average precision when the factor was not 

present in the ablation study.  Of interest from the study was the increased performance due to 

fixed light on distractor objects versus providing some randomized lighting.  This provides 

indications in the need to determine appropriate randomization added in the scene. 

 

Results Format 

     This research work followed the applicable formatting of results found in the literature 

research of existing works.  The results format commonly used was average precision.  Average 

precision, or sometimes called mean average precision, is used to average out all possible 

thresholds versus a particular threshold.  Average precision is also quantitatively related to the 

area under a precision-recall curve and its value is used to summarize the precision-recall curve.  

Essentially, precision-recall attempts to define what portion of the actual positives were 

identified correctly.  The average precision therefore defines a summarized view and is often 
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used in the comparison of how well models are making predictions without the reference to a 

specific threshold.  This fits the nature of DRL based agents with the exploration of their 

environment.       

     In the literature, especially with regards to domain randomization techniques, the use of 

ablation studies provided a useful insight into the various elements that get randomized.  

Ablation studies allow separating out one specific randomized element to examine the effect 

when that element is not present.  The results of a given ablation study can then be compared to 

results when all the elements are present to determine the degree of influence of that element.  In 

the extreme cases the affects can range from negligible where the inclusion of that factor may not 

matter, to substantial enough to be considered a key contributing factor. 

    The work on DR provided an interesting but basic metric in the study of robotics.   This was 

the measure of error in striving to obtain an exact position of the robotic arm.  For the case of 

this study the measurement of distance off the proposed target is of interest.  In this case the 

average precision was used in determination how far off the agent drone is from flying through 

each gate and its motion distances from the ground truth path along the drone racing course.  The 

DR work utilized heat maps to visualize these distance errors and to examine the sensitivity in 

the error.  This was similarly applied in a drone racing course given types, shapes and 

positioning of gates and the path the drone should follow.  The use of the error distance is useful 

in this work and where possible heat maps may provide insight especially when combined with 

drone speed values. 

     Tasks performed by the drones are also key factors in formatting the results and corresponds 

well with the selected domain.  These tasks relate to repeatable actions such as flying through the 

gates successfully, completing laps without incident, and the speeds which allow successful 
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transit through the course.  The other factor of interest was the distance offset from the ground 

truth location of gates and the drone course path.  Each of these has been illustrated in the 

literature reviewed and provides a model for formatting and presentation of the results for this 

work.   

     The work on Deep Drone Racing evaluated target trajectory to improve path correction 

performance which provided another useful metric for results.  A useful metric in evaluating the 

method was the outcome of specific tasks relative to the agent’s ability to perform to specified 

drone racing factors.  A task-based metric was formulated based on percentage of task 

completion.  These same tasks and presentation of their results apply directly to this work.  The 

first task was the measurement of the drone speed through the course and the point where 

performance in completion of the task degrades as the drone speed increases.  This is measure of 

the drone successfully navigating through the course.  For a given race there may be specified 

number of laps to complete.  If all laps for the specified race are completed, then the task is 

complete.  Crashes, misses, or failure to complete the track reduces task completion.  A 

percentage of completion is the metric to determine.  The second task-completion measure is 

with regards to the number of successful and consecutive individual laps being completed.  A 

maximum limit of laps was specified, and task completion utilizes similar factors such to the 

previous task which includes a series of runs which vary in speed through the course.  The last 

task-completion deals with the injection of variability into a scene.  The motion of gates in the 

drone racing course are dynamic.  Here the same metric for distance from center on hitting the 

targeted gate as well as the distance and orientation which the gates move during each lap are 

formulated as results.  This is measured and the distance error from target, including the total 
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number of gates successfully passed through consecutively.  These results are also based on 

average precision during task completion. 

 

Resource Requirements  

Hardware and Software Requirements 

     This work utilized a powerful desktop computer with a newer multi-core processor, a 

minimum of 16GB of RAM, SSD hard drive with at least 500GB of disk space and a high-end 

graphics card such as an NVIDIA GTX 1080 or GTX 2080 Ti.  The scope of the project allowed 

this work to be developed the intended framework, all running on the same machine.  The 

operating system was Windows 10.  A key element for the development was Unity, a 2D and 3D 

gaming engine.  ML-Agents, an add-on bundle to Unity, provides an integrated AI component 

which includes the use of DRLs.  Unity uses a scripting component to build code that connects to 

the 2D and 3D environment building tools.  This scripting component uses C# programming 

language and was connected to Microsoft Visual Studio for code development and compilation.  

The Unity Asset Store provides several assets and third-party tools which were utilized to build 

the environment but also to concentrate more on the experiment versus the development of 

various components.  Code development included the means to save data to disk from which 

other external tools for data analysis and presentation was used. 

 

Simulation Environment and Networks 

     This work incorporated simulation of entities and events from within the toolset of Unity and 

ML-Agents with the potential to use an integrated simulation tool such as AirSim, drone racing 

simulators or other suitable simulation environments.  The simulator provided an existing 
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synthetic environment and built-in drone dynamics which was immediately leveraged.  Unity 

provides the foundation for the synthetic environment which also allows application of DR and 

SDR and connection to DRL implementations through ML-Agents. 

     No network communications should be required but depends upon the simulation tool.  

Running both the simulation, DRL processes and the synthetic environment can run on the same 

machine.  Should such circumstances require use of a network connection there are several 

known third-party networking tools for Unity such as Photon Unity Networking (PUN, 2020).  

 

Data Collection, Metrics and Analysis 

     The framework for this research incorporated the collection of data for each of the scenarios 

that were run during experimentation as described in the approach section.  Data and metrics 

were captured through the experimental framework.  Data collected was run through external 

data analysis tools.  Data collected was correlated to the three types of conditions run and the 

metrics as outlined in the approach of this work for the determination of the validation of 

generalization techniques.  The existing hardware and commonly obtained software were 

adequate for this work other than any items required to be built into the framework. 

 

Summary 

     The methodology of this research work was founded on methodologies from other research 

works with the end goal of producing a methodology that added to the body of research.  This 

research leveraged related research and examined how DRL, or other AI algorithms were 

generalized.  More specifically the methodology leveraged two specific research works, DR 

(Tobin et al., 2017) and SDR (Prakash et al., 2018) to gain this generalization improvement 
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through modification of the training environment versus modification of the DRL algorithm 

itself.   

     An outline to the research methodology was formulated based on a variety of components 

which when put together provided the full capability to experiment, analyze and determined what 

this method achieved.  The first component consisted of the experimental framework built 

primarily upon Unity and its ability to incorporate synthetic environments and modules such as 

ML-Agents.  ML-Agents allowed a built-in agent to be created which can then explore the 

designed and developed synthetic environments.  The framework included development 

capability to construct the agent using a PPO-based DRL algorithm and run in several synthetic 

environment for learning via exploration and exploitation.  DR was embedded within the 

development API and built in Unity capabilities.  DR was then implemented in a naturalistic 

manner during training session to achieve the variability of the environment to be learned by the 

agent.  This included context-aware elements to support the agent’s exploration as a guide to 

environmental context.  A domain of drone racing was utilized to set the scenario and constraints 

of the agent to learn and then tested and validated with that experimental framework.   

     The Unity API allowed for the development of embedded environmental sensors to collect 

data during training, testing, and validation.  This instrumentation was essential to gather data 

based upon a set of metrics particular to the drone racing domain and the particulars of the 

methodology for context-aware elements and naturalistic domain randomization.  This supports 

the concepts of validation and reliability of the data being collected.  Ablation and sensitivity 

studies were integrated into the framework to determine the influence of certain factors of the 

methodology. 
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     Experiment samples were defined.  The results from running the experimental framework 

required a synthetic training environment where the agent learns.  Once it has performed the 

training, it needed to be tested in a similar environment to the training environment except for 

the applied methods for the agent to learn variability.  This excluded the naturalistic domain 

randomization and the embedded context-aware elements; however, elements of the environment 

were modified in similar fashion to the results of naturalistic domain randomization for a given 

type of item.  The instrumentation and data gathering capabilities were implemented in all 

synthetic environments so that the full set of data could be collected and analyzed.    The 

validation environments were required were sufficiently different from the training and testing 

environments such that it imposed variations in contrast to the training and testing environment 

that was then observed by the agent.  This environment specifically introduced variability to the 

agent.  The experimental samples included a variety of scenarios which accounted for the variety 

of experiments which cover ablation and sensitivity studies.  The randomizations incorporated as 

experimental samples were defined along with the context-aware elements. 

     The methodology outlined the way the data analysis occurred and how the results were 

formatted.  This was based on the proposed research questions as well as the hypotheses to be 

tested.  Average precision was determined as a primary result.  Ablation and sensitivity studies 

provided value in determining the relative importance of certain factors of the methodology.  

This applied to naturalistic domain randomizations and context-aware elements.  These were set 

against tasks associated with the drone racing domain.   Offset distances to targeted gates and 

ground truth drone racing course provided indicators of the utility of the methodology.  

Additionally, important were the precision in performing drone tasks of successfully completing 

gates, successfully completing laps without incident  The speed at which it can traverse the 
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course while maintaining high values of average precision during the tasks was also measured 

and increased in value to determine a limit on speed.  The results of the synthetic validation 

environment were essential in the comparison to the results from the synthetic test environment.  

The assumption of this work was that the comparison between these experiments would provide 

an indication of potential increase in generalization achieved via the methodology presented. 

     The resources required to construct the experimental framework and run the various 

experiments in differing synthetic environments under different conditions were outlined.  Both 

the hardware and software requirements were reviewed.  No specialized equipment other than a 

high-quality computer platform with the required software was necessary.  The resources to 

construct synthetic environments and provide the means to collect and analyze data for specified 

metrics was covered.  Existing resources have been deemed adequate to perform the research of 

this work. 
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Chapter 4 

Results 

 

 

Introduction 

     The preliminary research focused on leveraging and modifying existing research methods to 

overcome the reality gap when synthetic environments are used to train agents.  The result of this 

research presents a select research focus from among approaches to improve upon generalization 

while overcoming the reality gap.   The results obtained were leveraged by applying modified 

techniques of structured domain randomization (Prakash, et al., 2018).  The results were used to 

determine the effects of naturalistic domain randomization while using context-aware elements 

to support improved training.  This was performed in an experimental framework which 

consisted of an adaptable synthetic environment.  This chapter presented key points related to the 

results. 

     The initial data collection and results analysis were performed on a simplified agent with a 

simple goal of finding, approaching and then colliding with stationary target object.  This 

simplified approach was discussed in the methodology of Chapter 3.  The concept was to 

determine the configuration setting to be used in the DRL PPO-based agent.  An approach was 

taken to study the effects of the various configuration parameters and then select the best and 

most appropriate set of parameters.  The configuration deemed best was then used for the more 

complex drone racecourse experiments.  These results along with the analysis in the selection of 
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the configuration parameters was illustrated in the first subsection of this chapter entitled Data 

Collection and Analysis.   

     Attention was then turned to the primary focus of the data collected from the drone agent 

experiments along with analysis of that data.  The data collection and analysis for the drone 

agent experiments expanded due to issues and findings, resulting in additional subsections in the 

Data Collection and Analysis section.  These subsections describe the data and data analysis for a 

baseline drone agent and several other agents trained at various levels of naturalistic domain 

randomization.  Ablations studies required the training of several drone agents in various 

combinations of naturalistic domain randomization.  One agent contains the complete set of 

domain randomizations while a set of agents provided a subset or single domain randomization.  

This permitted the ablation study to take place and analyze the significance of each component in 

the training of the learning agents.  Analysis and findings are included in each of these 

subsections.  The final section presents a summary of the data results, analysis, and findings. 

     The results from metrics collected in the experimentation framework supported the means to 

evaluate the level of effectiveness using a modified structured domain randomization in the agent 

learning process.  The baseline agent data established metrics of comparison to the other learning 

agents with some type and degree of SDR+ applied.    This comparison of results between the 

baseline agent and various SDR+ agents provided the indicators in determining the value of the 

approach of this work. 

 

Data Collection and Analysis 

     The following sections provide the details of the data collection process, the metrics collected, 

and the analysis of that data.  Additional experimentation occurred along with the data collection 
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and analysis based on the output obtained and analysis of that data.  Each subsections provides 

details why this occurred.  A description of the methods used to collect the data in the framework 

are described and integrated into tables and graphs to presents the data in a form ready for 

analysis.  Initially, simplified training tests were performed to determine the best selection of 

DRL PPO-based parameters.  With these configurations applied, the primary experimentation 

began with data collected on the training of the agents.  This was followed by tests to evaluate 

the quality of the inference models running in the same environment in which they were trained.  

This was followed by evaluations of the inference models each from the various experiments.  

These experiments included how the agent performed within the environment in which it was 

trained plus its performance in the environment with variations added to that synthetic training 

environments.  This analysis provided an evaluation of how well the specific learning agent 

adapted to variations in the environment.  Inference models obtained for agents learning under 

the SDR+ training environments were then compared to the baseline agent finding. 

     The following subsections, with the data collected and analyzed, provide a glimpse into the 

workflow performed using the experimental framework.  The workflow demonstrated the 

determination of the DRL PPO-based learning algorithm configuration parameters via a 

simplified version of the experimental framework.  The data from the training, testing and 

evaluation of the baseline agent is then followed in similar fashion by the various agents trained, 

tested, and evaluated that had specific elements of the SDR+ technique applied.  Each subsection 

that follows provided the logical sequence to the experimental workflow.  It is noted that some 

additional experimentation was required due to some findings in the data collection and analysis.  

This followed a logical progression of the workflow while making adjusting where required 

either due to issues with the techniques used or computing logic errors. 
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Selection of DRL PPO-Based Configuration Parameters 

     This section covers the data gathered and analyzed for the selection of DRL PPO-based 

learning algorithm configurations.  A description of these tests was covered in Chapter 3.  The 

following table summarizes each of these tests along with key results.  

TEST CONFIGURATION REWARD  STEPS COMMENTS 

01 Env. Observations (O) 0.7 400 K Reward ended up below of 1.0 

07 Ray Cast Sensor (R) 0.14 2,000 K Poor performance over training 

08 Visual Sensor (V_S) 0.0 2,000 K Very poor training performance 

03 O + R 1.0 260 K Quick rise to consistent reward 

04 O + V_S 1.0 216 K Quickest rise to consistent reward 

06 R + V-S 0.53 2,000 K Poor to mediocre performance 

05 R + O + V-S 1.0 480 K Good smooth/constant reward value 

09 R + O + V-CNN 1.0 540 K Quick rise then dropped to 0 reward  

10 R + O + V-Resnet 1.0 530 K Quick rise then dropped to 0.8 

11 R + O + V-Make3 1.0 540 K Longer rise but reached reward 

 

Table 1: DRL PPO-Base Configuration Parameter Testing  

 

     The analysis of the results from these tests supported the selection of the best DRL PPO-base 

algorithm configuration.  Configuration settings for Test 05 provided the best results from the set 

of simple agent tests.  The graphs that follow along with comments on the analysis of each test, 

provided evidence to support the use of all three configurations of environmental observations, 
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ray cast sensor and a visual sensor set to the simple neural net configuration.  The data from each 

test was analyzed and commentary provided.  Test identification numbers may appear to be out 

of order; however, it was left that way to insure the correct correlation of the data.  Thus, no 

attempt was made to re-order them numerically.   

     For Test 01, environmental observations were the only means used for the agent to explore 

and exploit the synthetic environment to determine how to reach its goal.  The data results are 

illustrated in Figure 2.  The most important of the four graphs in Figure 2 is the cumulative 

reward achieved over the number of steps taken by the agent in exploring the environment.  In 

this graph it is apparent that the agent reached a steady state result of a 0.7 reward value.  For this 

set of tests, the goal was to reach a steady state value of 1.0.  A drop in the reward value occurred 

around 400K steps but was regained but only to the 0.7 reward level.  Unfortunately, the use of 

 

 

Figure 2: Environmental observations test results 
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environmental observations alone were insufficient to reach the targeted level of reward.  It was 

also observed that the episode length corresponded to the reward level achieve.   This means that 

as the agent learns, the episode length should be shortening.  The policy loss graph illustrates 

how much the policy or agent decisions but indicates that exploration was continuing as actions 

are changed.  In general, this was erratic over the course of the learning experience.  Value loss 

was the mean loss of the value function.  This relates to how well the model can predict the value 

at each state.  Value loss generally increases when the agent is learning and then decreases once 

the reward becomes stable.  For most  of the experiments these graphs correspond to how well 

the agent was learning.  For cases where this differs, it was noted. 

     For Test 07 the ray cast sensor was the only means used by the agent to explore and exploit 

the synthetic environment to determine how to reach its goal.  The data results are illustrated in 

Figure 3.  In this graph it is noted that the agent learning process was allowed to run to the 

maximum number of steps (set to two million).  The maximum cumulative reward achieved in 

this test was 0.14 which is indicative of a very poor learning for the agent.  This indicates that the 

use of the ray cast sensor alone is inadequate to achieve any reasonable results in the agent 

training process. 
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Figure 3: Ray cast sensor test results  

 

     For Test 08 the visual sensor with neural network setting of simple was the only means used 

by the agent to explore and exploit the synthetic environment to determine how to reach its goal.  

The data results are illustrated in Figure 4.  In this graph it is noted that the agent learning 

process was allowed to run to the maximum number of steps (two million).  The maximum 

cumulative reward achieved in this test was approximately zero aside from a small spike near the 

beginning.  This was indicative of a totally ineffective configuration for the learning agent by 

itself. 
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Figure 4: Visual sensor test results  

 

     For Test 03, both the environment observations and ray cast sensors were used as the means 

by the agent to explore and exploit the synthetic environment to determine how to reach its goal.  

The data results are illustrated in Figure 5.  In this graph it is noted that the agent learning 

process achieved its stated goal of cumulative reward of 1.0 in approximately 260,000 steps.  

This wass indicative of a quick learning agent which achieves a consistent full reward and stays 

at that level for the remainder of the steps in the learning process.   
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Figure 5: Combined environmental observations and ray cast sensor test  

 

     From this test several important items are noted about the learning algorithm configuration.  

First, all the graphs, cumulative reward, episode length, policy loss and value loss correspond 

with the observed behavior.  Second, the cumulative reward obtained a steady state at the desired 

reward value of 1.0 and does so quickly and consistently for the number of steps observed.  

Third, the agent’s learning capability was much better than the previous results.  It was assumed 

that the reason for this is that the environmental observations must be included in the 

configuration and must include at least one other configuration which explores the environment. 



104 
 

These results, because they obtained the expected results, were assumed to be a good choice for 

the configuration parameters.  Follow on experiments dealing with the more complex case of the 

drone agent, determined that these configuration settings should be used. 

     For Test 04, both the environment observations and visual sensor with a simple neural 

network configuration were used as the means by the agent to explore and exploit the synthetic 

environment to determine how to reach its goal.  The data results are illustrated in Figure 6.  In 

this graph it is noted that the agent learning process achieved its stated goal of cumulative reward 

of 1.0 in approximately 216,000 steps.  This was indicative of a quick learning agent which 

achieves a consistent full reward and stays at that level for the remainder of the steps in the 

learning process.  This test provided the quickest result in achieving the learning process.  It was 

a slight improvement over the results of Test 03.  These results also implied that similar 

assumptions made for Test 03 apply to Test 04.  Essentially, environmental observations are 

required with an additional algorithm configuration.  In this case the visual sensor was replaced 

by the ray cast sensor and similar results were achieved.  This validates the assumptions made by 

having the same situation repeated and seeing similar results.  This implies that the 

configurations used in this test would also serve well for training agents.  
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Figure 6: Combined environmental observations and visual sensor test  

 

     For Test 06, both the ray cast sensors and visual sensor with simple neural net configuration 

were used as the means by the agent to explore and exploit the synthetic environment to 

determine how to reach its goal.  The data results are illustrated in Figure 7.  In this graph it is 

noted that the agent learning process only achieves a maximum cumulative reward of 0.53 for a 

maximum of two million steps taken.  This is indicative of the implied assumption that 

environmental observations are a required part of learning algorithm configuration. 
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Figure 7: Combined ray cast sensors and visual sensor test  

 

    For Test 05, all three configurations, environmental observations, ray cast sensors and visual 

sensor with simple neural net configuration were used as the means by the agent to explore and 

exploit the synthetic environment to determine how to reach its goal.  The data results are 

illustrated in Figure 8.  In this graph it is noted that the agent learning process achieves the 

desired cumulative reward in 480,000 steps. This is indicative of  a good learning process with a 

good steady state at maximum reward.  This process may have taken a bit longer than Test 03 

and Test 04. 
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Figure 8: Combined environmental observations, ray cast sensors, and visual sensor test  

 

     For Test 05, it was observed that the learning process required more processing steps, but the 

response was still considered quick in reaching the desired reward level of 1.0.  It was assumed 

that in the early stages of the learning process that using all three primary configurations may 

require additional processing and thus longer to reach the desired state.  The other implied 

assumption is that using all three primary configurations provided a more robust learning process 

which would be more suitable for more complicated training environments. 
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    For Test 09, all three configurations, environmental observations, ray cast sensors and visual 

sensor with nature_cnn neural net configuration were used as the means by the agent to explore 

and exploit the synthetic environment to determine how to reach its goal.  The data results are 

illustrated in Figure 9.  In this graph it is noted that the agent learning process achieves the 

desired cumulative reward in 540,00 steps. It was observed that the cumulative reward of 1.0 was 

short lived.  At approximately 600,000 steps the cumulative reward drastically fell and achieved 

a cumulative reward of approximately 0 by 700,00 steps.  The learning process was terminated at 

this point.  This configuration only differs from test 05 in the use of the neural network 

configuration.  The nature CNN neural network configuration was used and appeared to achieve 

the same results as using the simple neural network configuration up until the drop in reward 

occurred a little while later.  An inference model obtained prior to the drop would provide a good 

learning model to use, however, the inference model must be saved prior to the drop in reward 

value.  This makes this configuration with natural CNN a bit more of a risk than with the simple 

neural network configuration seen in Test 05.  The conclusion here was to use Test 05 

configuration over that of this test configuration. 

 



109 
 

 

Figure 9: Combined sensors using nature CNN for visual sensors  

 

    For Test 10, all three configurations, environmental observations, ray cast sensors and visual 

sensor with Resnet neural net configuration were used as the means by the agent to explore and 

exploit the synthetic environment to determine how to reach its goal.  The data results are 

illustrated in Figure 10.  In this graph it is noted that the agent learning process achieves the 

desired cumulative reward in 530,00 steps. It was observed that the cumulative reward of 1.0 was 

short lived.  At approximately 850,000 steps the cumulative reward drastically fell and achieved 

a cumulative reward of approximately 0.8 by approximately 1 million steps.  The learning 
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process was allowed to run to 2 million steps.  This configuration is very close to the that of test 

09 however, the drop in cumulative reward leveled back out to a value of 0.8.  This implies this 

was a better choice that used in Test 09 but not as good as Test 05. 

 

 

Figure 10: Combined sensors using RESNET for visual sensors  

 

    For Test 11 all three configurations - environmental observations, ray cast sensors and visual 

sensor with make3 neural net configuration were used as the means by the agent to explore and 

exploit the synthetic environment to determine how to reach its goal.  The data results are 
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illustrated in Figure 11.  In this graph it is noted that the agent learning process achieves the 

desired cumulative reward in 540,000 steps. It was observed that the cumulative reward of 1.0 

was consistent and maintained for up to 1.5 million steps.  The learning process was excellent 

and on par with Test 05.   The only difference was the amount computation time the make3 

option uses over that of the simple neural network option.  Considering this computation time 

increase it was still assumed that the configuration of Test 05 would still be a better 

configuration than the configuration of Test 11.  The reasoning for this selection was based on 

ML-Agents’ recommendation as the de facto configuration. 

     Considering the analysis of the set of simple agent tests the conclusion initially made at the 

start of this sections still holds.  Configuration setting for Test 05 provide the best learning 

environment for the learning algorithm applied in this work. 

 

 

Figure 11: Combined sensors using Make3 for visual sensors  
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Learning Improvements with Context Aware Elements 

     Additional testing was performed on the simple agent testing framework.  The goal was to 

determine if the addition of certain types of context aware elements could aid in the learning 

process.  The concept was to improve learning performance as well as the rate at which the agent 

learned.  A description of each type of test, modifications made, and their results are presented in 

this section. 

     One form of a context aware element used was the distances from the learning agent to the 

target.  As the agent approached the target a distance measurement was made to determine if the 

proximity to the target was improving.  In this test four distance measurements were used.  These 

distance measurements were based on a straight line from the agent to the target.  Each distance 

to the target was scored with a small reward which varied based upon the magnitude of the 

distance.  The four distances measurement were spread evenly between the initial position of the 

learning agent to that of the target position.  The trigger at the largest distance provided a reward 

value of 0.1.  Each consecutive distance trigger location was increased by a reward of 0.1 giving 

the four reward values based on distance as 0.1, 0.2, 0.3 and 0.4.  In ML-Agents, the 

documentation for the type of agents used suggests using total reward values between positive 

1.0 and  negative 1.0.  Negative reward values were considered a value of punishment to the 

learning agent.  In this test a negative reward of -1.0 was given when the agent fell off the 

platform.  A positive reward of 1.0 was given when the agent reached the target.  For this test 

with the added distance reward values, the suggested range became larger than the suggested 1.0 

max reward value.  The concept was that the agent would learn through incremental small 

rewards which increased as the agent continued to approach towards the target versus some other 

direction. 
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     Figure 12 provides the results of Test 12-03.  A quick evaluation of this test was performed 

and was terminated once a reward value of 2.0 was reached with just over 444000 steps taken in 

the learning process.  Figure 12 illustrates this fact along with slight indications at the point of 

termination that the final reward value may even be higher.  It is noted that episode length and 

value loss plots provide these same indications. 

 

 

Figure 12: Results of distance-based reward learning  
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     The rate at which the agent learned indicated that it was much quicker than Test05 by 

incorporating the intermediate distance rewards.  The reward also flattened out for over 200,000 

steps.  The total reward, however, reached a value just over 2.0 before termination.  This is 

indicative of adding more reward-based context-aware elements which build up the total reward 

value.  An important indicator was seen in the data collected from Test 12-03-3 which was not 

captured in Figure 12-03-3.  The reward continued to increase to a value of over 8.0 after 432000 

steps.  A testing practice was to capture videos of the agents as they explored the synthetic 

environment.  A video capture for Test 12-03-3 showed behaviors beyond the 300,000 plus steps 

seen in Figure 12-03-3.  The data in 400,000 step range, and as seen in the video of the test, 

indicate that the agent learned to rock back and forth across the distance reward boundaries.  

This action caused the reward to continue to increase without continuing to get closer to the 

reward.  This provides an explanation for the much higher reward value of over 8.0 at about 

432000 steps in the learning process. 

     The next few tests were attempts to overcome this learning behavior of the agent.  Methods 

were used to avoid the situation where the agent vacillates over the reward boundary because it is 

learning it gets rewarded to perform this action.  This behavior does not align with the desired 

goal of simply moving towards the target.  The first correction used was to modify this behavior 

was demonstrated in Test 12-04.  The premise considered was to drop the reward value given in 

the distance reward method.  The distance reward was dropped from 0.1 to 0.001.  The effect of 

making the distance reward much smaller proved somewhat useful as seen in Figure 13. 
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Figure 13: Reduction in reward using distance-based reward learning  

 

     In Test 12-04 the reduction in size of the reward made for a more stable reaction by the 

learning agent.  In Figure 13 the reward of 1.0 was reach quickly within approximately 200,000 

steps which lasted until about the 420,000-step range.  At this point, the reward began to 

decrease to a value of around 0.8 and stayed there until completion of test at two million steps.  

The reduction in distance reward size proved valuable, however, the overall reward value 

dropped from the idea 1.0 to a 0.8 reward level. 

     Different approaches were taken for Test 12-05 through Test 12-30.  Rather than apply a 

distance reward, a reward portal was positioned at givens distance and sufficient size for the 
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agent to pass through.  The learning agent was rewarded as it passed through these portals.   A 

Unity box collier object with a trigger provided the structure of the reward portal.  A reward was 

provided to the agent once it entered the box collider.  Unity objects and scripts were utilized to 

provide this context-aware element.  Initially, a single box collier object was used with the idea 

to expand it to several of portals along the path to the target.  The concept was to provide 

additional guides to the agent to keep moving toward the target.  Several modifications were 

made to this type of context-aware element along with changing the size and positions of the box 

collider.  Over twenty-five attempts yielded no worthwhile results.  It became apparent that the 

box collider was also interfering with the Unity 3D Ray Perception Sensor.  It was blocking the 

rays from reaching the target by colliding with the box collider and never reaching the target 

until the agent had passed through the portal.  Attempts were made to rectify this condition by 

examining various parameters and settings for box collider objects, but none yielded a solution. 

     The next context-aware element modification made was to switch from using box colliders to 

rectangular plane colliders.  Plane colliers have a normal directional face which is the side that 

the agent must pass through to be detected.   Unfortunately, the plane collider did not behave as 

declared and entrance on either side of the plane collider would activate the trigger.  For the 

simple agent test it became easier to just determine which side of the plane the agent was 

positioned when the intersection triggered.  This allowed a positive reward to be given when the 

agent passed through the plane in the correct direction.  If the agent came back through the other 

direction, then a negative reward equal to the positive reward in the other direction would be 

applied.  This allowed a positive reward to be taken away if the agent was going to vacillate over 

a reward boundary.  This was used to prevent the agent’s overfitting behavior by controlling the 
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reward at the portal plane boundaries.  A onetime reward for the context-aware element would 

not work within a DRL explore and exploit approach. 

     Test 12-31 was used as the test to explore the plane object as a reward portal.  Like Test 12-

04, Test 12-31 provided a more stable result than the distance reward concept however it 

exhibited the same if not worse behavior as Test 12-04 as shown in Figure 14. 

 

 

Figure 14: Controlled plane portal using distance-based reward learning  
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     In Figure 14 a quick rise to a reward value of 1.0 was achieved at about 200,000 steps and ran 

to just over 400,000 steps.  At this point a much larger drop in the reward occurred in 

comparison to Test 12-04.  It did, however, regain back to a reward of 0.8 at about 900,000 steps 

and remained steady through the two million max steps in the configuration. 

 

Overfitting of DRL PPO-Based Learning Agents 

     In the tests results stated in the previous section a potential problem of overfitting occurred in 

the DRL PPO-based learning algorithm.  Overfitting is a known behavior for machine learning 

algorithms and not that well known for DRL algorithms.  Research literature (Zhang, Vinyals, 

Munos & Bengio, 2018; Song, Jiang, Tu, Du & Neyshabur, 2019)) has provided research which 

indicates that such a phenomenon does occur in DRL algorithms.  The most common reason for 

DRL overfitting occurs because the agent tends to correlate the reward it collects with spurious 

features it observes in the synthetic environment.  This tends to cause problems in the Markov 

Decision Process (MDP) which is an integral part of DRL algorithms.  The tests results of the 

previous section seem to indicate this behavior.  One conclusion is that the attention given by the 

agent to the additional distance or portal reward mechanisms thus throwing off the true reward of 

reaching the target. 

     This was exhibited first by the continued increase in reward seen in the data of Test 12-03-3.  

In that test, an adjustment to the reward value size provided improvement, however, results for 

the follow-on test, Test 12-04, and Test 12-31, demonstrated a similar drop in the reward value 

after additional learning was processed.  This is illustrated in Figures 13 and 14 respectively. 

     When determining the DRL PPO-based configuration parameters, Test05 results indicated the 

best set of configurations to be used.  This test, however, was terminated early or just before the 
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signs of DRL overfitting might have occurred.   Test05 was re-run as Test13-02 to see if 

overfitting did occur in this test.  The results are shown in Figure 15. 

 

 

Figure 15: DRL overfitting  

 

     This check for overfitting indicated two more problematic effects on agent learning.  As seen 

in Figure 13-02, overfitting began just over the 500,000 steps in the learning process. It stabilized 

between reward values of 0.8 and 0.7, however, this dropped the reward to a value of zero very 

quickly just after 1,200,000 learning steps in the process.  This could be indicative of two things.  
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First, overfitting can occur even without the use of added reward-based context aware elements.  

Second, the addition of reward-based context-aware elements provided an  increase in the rate at 

which the desired reward was achieved during learning and provided a more stabilizing effect 

when overfitting did occur.  From this discovery of DRL overfitting, some type of overwatch or 

alerting mechanism must take place to terminate the learning to obtain the best reward value for 

the inference model.  For the follow-on SDR+ tests, this was achieved through monitoring the 

reward response during training and cutting off the learning process before or just as overfitting 

occurs.  The addition of reward-based context-aware elements was also used to reduce the 

training time for the inferred model.  In the configuration settings, an additional method was 

used by saving inferred models at shorter intervals during the learning process.  This provided 

better assurance of obtaining an inferred model with the best reward values prior to overfitting 

taking place. 

 

Learning Improvement with Semi-Reward-Based Context Aware Elements 

     In the previous sections the results for learning improvement through context aware elements 

was illustrated.  These results provided indications of overfitting of the DRL algorithms during 

the learning process.  This section discusses the results obtained by moving the context aware 

elements away from being solely reward-based and used more to provide guidance.  This would 

also be accomplished without the injection of reward along with a means to control cumulative 

penalties through the context-aware elements.  The objective was to avoid or limit the overfitting 

of DRL PPO-based algorithm used in this study. 

     Test 14-29 was formulated to explore the semi-reward-based context-aware elements.  

Previously reward-based the context-aware elements were set up to provide a small addition of a 
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reward or punishment based on how the agent interacted with the elements.  Test 14-29 was a 

test of the simple agent with a single target as its goal.  In the case of Test 14-29, the agent 

movement was three dimensional versus a two-dimensional movement in previous tests.  This 

modification provided a closer approximation to the drone use case and was performed to help 

solve training problems observed in the drone use case.   For the semi-reward-based approach the 

objective was twofold.  First, to provide guidance to the agent without reward.  An example of 

this was to continually provide direction to the agent in terms of the direction of the next reward.  

Second, this approach needed to enclose the volume of exploration with the addition of walls and 

ceilings due to the extension of three-dimensional movement.  These served as collision surfaces 

in the testing environment and provided negative reward for collisions that occurred.  This 

approach used a controlled cumulative reward on the DRL algorithm.  A small negative reward 

was applied for each collision; however, the agent was not reset for each collision.  The agent 

continued to explore the space instead of ending the episode.  The monitoring of the cumulative 

reward provided a threshold to the cumulative reward which when exceeded would end that 

episode and start the process again.  This avoided the repeated reset of the agent for each 

collision but limited the amount of negative reward that could be accumulated, thus modifying, 

and reducing the effect of negative rewards provide in the context-aware elements. 

     Figure 16 illustrates the results of Test 14-29.  The graphs for cumulative reward, episode 

length and value loss all demonstrated the expected behavior of the agent during the training 

process.  The data collected indicated a quick rise to the expected 1.0 maximum reward value at 

about  350,000 steps into the learning process.  The learning process was executed to the 

maximum steps limit set of two million steps.  As illustrated in Figure 16 for the cumulative 

reward, the maximum reward of 1.0 was obtained for the remainder of the learning process.  
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Noise in the values was approximately no more than a difference of 0.02 in reward value.  This 

noise was not considered to be associated with overfitting. 

 

 

Figure 16: DRL overfitting correction  

 

     Analysis indicated that Test 14-29 provided improvement over the previously applied reward-

based context-aware elements.  This result was for a single result, however, for purpose of this 

work it was be used for the drone racecourse scenario.  Although a single result is in general 
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insufficient., there was a trend in improvement indicating value in their use for the drone use 

case. 

 

City Scene Baseline Agent Metrics 

     This section describes the training of an agent that was used as the baseline for comparison 

against agents trained under the  SDR+ technique.  The baseline agent was founded on the test 

results discussed in the previous subsections.  The configuration parameters were set to use a 

combination of environment observations, ray cast sensing, and visual sensing.  Lessons learned 

from the use of context-aware elements were used to guide and improve the learning process.  

The shortcoming of DRL overfitting was addressed and implemented into the baseline agent 

through semi-reward-based context-aware elements.  These provided the foundations for the 

configuration and structure of the baseline agent.  The city scene environment was then utilized 

as the staging for the drone use case to be applied to the baseline agent. 

     The initial test for the baseline agent in the city scene, Test 16-1, indicated that further 

understanding of the DRL algorithm and use of context-aware elements was required for further 

training of the baseline agent.  This occurred prior to the previous few subsections, which in turn 

led to those investigations.  These indications are shown in Figure 17.  In this case, the 

cumulative reward , episode length and value loss graphs were as expected.  The cumulative 

reward rose quickly at the start, however, that rise leveled off and fell short of reaching an 

expected reward value of 1.0.  As seen in Figure 17 the cumulative reward value only reached to 

a value of just over 0.1.  This was a clear indication that the steps provided in the previous 

subsections were necessary to determine the necessary changes to the training methods to 

achieve a better trained baseline agent.   
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Figure 17: Repeat test to verify DRL overfitting problem  

 

     Several additional training tests were performed under Test 17, none of which led to a better 

training solution.  Discovery during Test 17 led to the conclusion that proper settings are 

required for environmental observations, ray cast sensing, and visual sensing to make training 

work correctly.  Test 17 results led to revisiting the simplified learning sessions previously 

examined.  These simplified training tests were expanded to simulate a structure much closer to 

the drone use case.  These discoveries were then applied and reconfigured in training of agent 

baseline in Test 18.  The results from Test 18 are shown in Figure 18. 
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Figure 18: Baseline agent training results  

 

     Results for cumulative reward, episode length, policy loss and value loss were well 

correlated.  The cumulative reward followed an overall pattern of effective training.  The 

duration of training took a much longer time on the order of about 2.5 million training steps 

before reaching the desired goal.  The overall curve of the cumulative reward was also very 

unsteady at times, dropping at two or more distinctive points in the process.  This was assumed 

to be noise throughout the entire training process.  The result  from Test 18-01 however, did 

provide what appeared to be a good inference model to work with for testing the baseline agent. 
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     The inference model for Test 18-01 was integrated into Test 19-01.  Test 19-01 was used to 

test the inference model within the same synthetic environment in which training occurred.  In 

ML-Agents, a ONNX file is created at various points during training.  These ONNX files 

represent the saved inference models during training of the agent.  They are then used within the 

agent framework for further testing and validation.   Modifications to the Unity application were 

made to transition from training to testing and evaluation of the inference model.  During Test 

19-01, the instrumentation for successful gate passages was used as a quick metric to evaluate 

the inference model.  This test allowed the drone to try to run through the racecourse at least four 

times.  Of interest was the number of consecutive gates passed through, the number of 

consecutive laps achieved, and how many restarts were required during the journey to pass 

through 109 gates in total.  The total number of successful gate passes corresponds to an 

equivalent of four laps of the racecourse.  Note, there were a total of 27 gates for each lap in the 

racecourse.  The list below illustrated these results. 

• Number of complete laps: 0 
• Number of consecutive laps: 0  
• Maximum number of consecutive gates: 19 
• Minimum number of consecutive gates: 12 (at termination – could be higher) 
• Total number of restarts during inferred model evaluation: 6 

      

     These results indicated that no single completion of the racecourse, totaling 27 gates, was 

ever accomplished by this inference model.  At best, the agent could successfully go through 

three quarters of the course before crashing.  It was also noted that for the specified duration of 

109 successful gate pass throughs there was 6 restarts that occurred.   The expectation for the 

baseline agent was to achieve at least two consecutive laps.  These findings fall short of this 

expectation.  
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     Another test, Test 20-06 was run to train the agent to be used as the baseline.  The concept 

was to improve upon the inference model if possible.  The approach taken was to provide a 

smaller ratio of penalty to reward during the learning process before resetting to the next episode.  

For Test 18-01, a very small penalty of -0.002 was given for each crash of the drone and the size 

for the reward value was +0.1.  For Test 20-01 the values were adjusted to -0.1 for the penalty 

and +0.3 for the reward.  The general idea was for the agent to learn to keep from crashing into 

other objects including the structure of the gates.  The agent was also to learn to go through at 

least three or more gates successfully before an episode reset. 

     The results for Test 20-06 are shown in Figure 19.  Here the data correlates for the behaviors 

seen in the graphs for cumulative reward, episode length, policy loss, and value loss.  For 

cumulative reward the rise to a desired reward value of 1.2 occurred just over one million steps 

in the learning process.  This was three times faster than that of Test 18-01.  There were no major 

fluctuations in the reward values over the training.  Noise levels seemed to be minimal and 

insignificant overall.  This result provides good indications for the learning process without any 

indications of overfitting of the DRL algorithm.  The next step taken was to validate the 

inference model created in Test 20-06. 
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Figure 19: Improved baseline agent training results  

 

     The inference model for Test 20-06 was integrated into Test 21-01, which was used to test the 

inference model within the same synthetic environment for which training occurred.  The same 

modifications were applied to transition from training to testing and evaluation of the inferred 

model.  During Test 21-01, the instrumentation for successful gate passes was used as a quick 

metric to evaluate the inferred model.  This test allowed the drone to try to run through the 

racecourse at least four times.  Of interest was the number of consecutive gates passed through, 
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the number of consecutive laps achieved, and how many restarts were required during a selection 

of 109 gate passages.  The total number of successful gate passes corresponds to an equivalent of 

four laps of the racecourse  Note, there were a total of 27 gates for each lap in the course.  The 

list below illustrated these metrics. 

• Number of complete laps: 0 
• Number of consecutive laps: 0  
• Maximum number of consecutive gates: 21 
• Minimum number of consecutive gates: 13 (at termination – could be higher) 
• Total number of restarts during inferred model evaluation: 5 
 

     These results indicated that no single completion of the course, being 27 gates, was ever 

completed by this inferred model.  At best 78% of the course was successfully completed by the 

agent passing through the gates.  The lowest percentage of course completion was 59%.  It was 

also noted that for the specified duration of 109 successful gate passages, there were 5 restarts 

that occurred.   The expectation for the baseline agent was to achieve at least two consecutive 

laps.  These findings fall short of this expectation; however, they are slight improvements over 

those obtained in the similar test of Test 19-01. 

     Upon consideration of the outcome for both Test 19-01 and 21-01, several more tests within 

the test Framework 21 were made.  These additional tests were performed to determine if there 

were other reasons that better results were not observed.  This series of tests examined potential 

areas that might affect the length of an episode which might have terminated a given drone 

navigation through the racecourse earlier than expected.  The result led to a conclusion that there 

was a logic error, which was difficult to discover.  In ML-Agents, the parameter called MaxSteps 

gets set to allow the maximum steps that any training or execution of an inferred model would 

take.  In the previous processes, the MaxSteps was set to 0.  This, per ML-Agent documentation, 

was considered to allow the inference model to keep running forever.  The problem that was 
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discovered was that the ML-Agents user interface program was overriding this value and setting 

it back to 5000 steps.  This would be enough training steps to run through 16 to 20 gates before 

calling an end to the episode.   This was seen in the results of both Test 19-01 and 21-01.  This 

change in logic by the application interface was corrected and Test 21-08 was performed. 

     Test 21-08 provided the expected results based on the cumulative reward results of inference 

model of Test 20-06.  This was the same conditions for the model formulated in Test 18-01 and 

evaluated in Test 19-01 respectively.  Since Test 20-06 provided a better cumulative reward 

performance than Test 18-01, its configuration was used in Test 21-08 to validate the inferred 

model of Test 20-06.  The list below illustrated these metrics. 

• Number of complete laps: 4 
• Number of consecutive laps: 4  
• Maximum number of consecutive gates: 109 
• Minimum number of consecutive gates: 109 
• Total number of restarts during inferred model evaluation: 0 

 
     The results of this test, based on corrections made to faulty logic in the framework, achieved a 

100% performance in each of the categories.  These results indicate that the inference model of 

Test 20-06 was the best inferred model to apply to the baseline agent in this study.   

 

City Scene with SDR+ Environment Tests on Baseline Agent 

     The next series of steps in the experimentation workflow evaluated the trained baseline agent 

in the city scene environment to evaluate if variance to the environment would affect the 

performance of the baseline agent.  These tests were run using the inference model obtained from 

Test 20-06.  Each test used a different environmental setting but having the same structure of city 

scene environment.  The lighting test, Test 22-01, provided a significant change in the lighting of 

the scene.  The inference model scored equivalent to Test 21-08 results.  The agent passed 
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through all gates over four laps without crashing.  The modified environmental setting changes 

for the autumn test (Test 22-02), rain test (Test 22-03) and snow test (Test 22-04) all obtained 

equivalent performance to the lighting test.  No degradation in the agent’s performance was 

observed for all cases of environmental change.  These changes were representative of the 

changes associated with naturalistic domain randomizations.  Analysis of the setup for the 

baseline agent appeared to indicate an assumption that certain embedded training elements in the 

agent provided greater influence than the learned visual sensor training element.  Two factors 

support this assumption.  First, environmental observations and ray casting sensors are learned 

observations early in the training process and reach their full potential early in the training 

process.  It was assumed that they provided a much stronger influence on the agents learned 

inference model. The visual sensor requires more compute power and speed and requires a much 

longer training cycle.  There was insufficient training to allow the model to evolve to a 

functional state for visual sensing.  This assumption corresponded to the environmental change 

results for the Test 22 series where visual based domain randomization had no impact upon the 

agent’s performance.  Because this is directly related to the use of naturalistic domain 

randomization,  additional examination of the use of the visual sensor during training was 

deemed necessary.  Additional experiments were performed to validate these assumptions of the 

visual sensor as well as the overpowering influence of  the ray casting sensor and environmental 

observations.  

     The next experiments were designed to strengthen the influence of the visual sensor.  The set 

of tests that followed were attempts to train an agent solely on the use of the visual camera 

sensor provided in Unity’s ML-Agents.  The separation of the visual sensor from environmental 

observations and ray casting sensing provided the best means to understand the influence of the 
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visual sensor.  It is often difficult to formulate what actions an agent should take based on the 

results of the visual sensor feedback.  Typically, a CNN based visual model trains from the set of 

spatial regularities that occur within the learning process.  The difficult part was to determine 

how the agent was to be rewarded or punished based upon the actions taken.  Several tests were 

performed to arrive at an acceptable training process for just the visual sensor.  Tests were 

performed and modifications made based on lessons learned during training along with applying 

the specification provided by ML-Agents for visual sensors.  Once a good balance in visual 

sensor parameters and associated actions were determined and training in Test 27-14 was run. 

     The results of visual sensor Test 27-14, at 700,000 steps during the training process, provided 

insight to the compute time required for training via the visual sensor.  Early in the training 

process it was clear that the visual sensor-based agent was having difficulty and was learning 

very slow.  The agent’s behavior was more erratic and less effective in locating and passing 

through the gates.  Analysis indicated that the training process for the visual sensor was more 

intensive than initially considered.   

     This intense increase in training was based partially on the added number of observations 

required for the visual sensor.  For a typical environment observation technique, this is usually 

based on the requirement to have one to several vectors of data of size 3 or 4 with a common 

number of observations ranging from  2 to 12 observations.  Similarly, ray cast sensing can 

provide one to many ray casts.  Each ray cast provides a result of intersection testing with some 

object in the environment.  This typically involves a vector of size of 3 values for each ray that is 

cast with typical range of rays being used from 1 to 32.  This constituted a range between 3 and 

96 values for ray casting data.  The ML-Agents recommendation for the visual sensor was the 

use of images of size 84x84 pixels. If the gray scale option is selected this results in an 84x84x1 



133 
 

resolution which is equivalent to 7,056 observations.  If RGB values are used, then the number 

of observations becomes an 84x84x3 resolution equivalent 21,168 observations.  Simple visual 

sensor cases can use a resolution as low as 32x32 or 8x8 and still perform adequately if they are 

used for simple visual use cases.  Complexity grows as the scene becomes more complex which 

is the case for this study.   Considering that these observations are made frequently during the 

learning process, a significant increase in computation time for the learning process became 

evident. 

     The computation cost of using a visual sensor in Unity was lacking or inadequate in 

expressing these costs.  Initial research suggested that the use of the visual sensor appeared to be 

a promising approach.  In most cases the tutorials and online documentation led to the 

assumption that visual sensors could be extended to more complicated use cases.  Only very 

simple examples were used in these examples and tutorials or in the reference materials.  Several 

more recent tutorial references (Kelly, 2021; Schreurs, 2019) had mentioned that the cumulative 

reward results for a simple ML-Agent  tutorial had not even come out of the negative results 

until after some eight million steps had occurred.  They referenced training that ran for 21 days 

and had not even finished.  The results were shown to be improving but at a very slow rate.  It 

was estimated that it might take three hundred million or more steps to achieve the desired 

training.  It was further considered that for some more complex examples it could run into the 

billions of steps required to achieve a desired level of inference model behavior.  The analysis of 

Test 27-14 agreed with these estimates and concludes that an extensive amount of compute time 

and computer resources would be required to continue to use the visual sensor in this work. 

     The following time resource estimates, based on computational resources, are provided as 

linear extrapolations from the findings of Test 27-14: 
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• Actual: 700,000 steps took 14.5 hours to run. 
• Estimate: 1,000,000 steps = 20.7 hours 
• Estimate: 5,000,000 steps (expected number of steps to run) = 130.6 hours (4.3 days) 
• Estimate: 100,000,000 steps = 2,070 hours (86 days, minimum limit) 
• Estimate: 1,000,000,000 steps = 20,799 hours (862.5 days) (2.36 years, maximum limit) 

      

     Analysis of the estimates from the results at 700,000 steps, assuming a linear relationship, 

clearly indicated a very expensive compute time for using the visual sensor.   The addition of 

expensive compute intensive hardware with parallel processing would be required to reduce the 

compute time to generate satisfactory results from a visual sensor.  This assumes an equivalent 

experimental framework similar in nature to one used in this work.  Based on the estimated 

extreme compute times when using visual sensors versus when a full training cycle runs without 

using a visual sensor, it was considered to take too long to run and thus out of scope for this 

work.  Use of Unity’s ML-Agents, as stated, had never provided any known examples in 

research literature or from internet-based tutorials which only used very simple tests.  The few 

simple cases that did exist only provided minimal insight into the degree of computation required 

for the visual sensor.  The internet tutorials references provided (Kelly, 2021; Schreurs, 2019), 

were recent additions and were not available at the decision time to move forward with Unity’s 

ML-Agents as the backbone for this work’s experimental framework. 

     The implication from these results indicated that the visual sensor for the given drone 

racecourse use case would provide no benefit.  This implied that without the use of the visual 

sensor, the naturalistic domain randomizations would not provide any valid experiments since no 

visual metric was measured.  It is worth noting that the experimental framework for the city 

scene did provide the means to explore the path which led to this finding of these results.  From a 

non-visual standpoint, the SDR+ technique still holds value for exploration for more physical-
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based domain randomizations such as the movement, placement, shape, size, and partial 

obscuration of the elements in the scene.  Primary physical element considered were the gates, 

race path and any path obscurations along with methods to modify these within the synthetic 

environment.   

     This course of action, the use of physical-based domain randomizations, was planned for the 

remaining experiments.  The city scene was reset to provide an initial level of racecourse 

modifications to be used in this manner.  The original approach of this work planned for 

physical-based domain randomizations, therefore the city scene environment could be reused and 

reconfigured for these changes.  The initial set of experiments were performed to validate the 

effect of physical domain randomization modifications on the baseline agent.    The second set of 

experiments were performed in the city scene with the goal to explore the physical-based domain 

randomizations applied during the training of a SDR+ agent and to then to compare its trained 

results to those of the baseline agent results.  

 

City Scene Physical DR Modifications Effects Applied to Baseline Agent 

         The city scene environment was utilized again to test the baseline agent with the inferred 

model.  The purpose for that test was to evaluate the baseline agent performance for physically 

based variations in the environment.  Several more experiments were performed to evaluate if 

this physical-based variance to the environment had any degradation effect on the baseline 

agent’s performance. The premise was that if some degree of degradation to the baseline agent is 

seen under these conditions with the baseline agent, a comparison could then be made to agents 

trained using the physically based SDR+ to validate both the methodology and assumptions. 
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     The first test, Test 31-07, made adjustment to the framework to remove 12 of the 27 gates 

from the racecourse.  Each of the remaining gates was placed in the same location  for 15 of the 

gates used during training.  The objective was to see if variance through fewer gates caused 

degradation.  Several preceding tests were performed until the logic of the framework performed 

correctly when moving from a training environment to the validation environment.  An inferred 

model was developed in Framework 29-15.  The results for this training session are seen in 

Figure 20. 

 

 

Figure 20: Additional training of baseline agent 
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     Some additional measures to improve upon the inferred model were attempted but did not 

produce results better than in Framework 20-6.  The trained model, however, reached a 

cumulative reward of 1.0 at several points but took much longer to get to the point and a lot of 

noise was observed as the model continued to train.  This was then used in Test 31-07 to 

determine how well the baseline agent performed with the variance of changing the number of 

gates in lap as well as the spacing between those gates.   A larger spacing was always applied 

because it increased the level of difficultly to reach and pass through the gates.  The inference 

model of Test 29-15 was used in this case, and it did not really differ that significantly even if 

Test 20-06 was used.  It is noted that baseline inference model from Test 20-06 was used in the 

remainder of the tests for the influence of environmental variation on the baseline agent’s 

performance. 

     The results from Test 31-7 are listed in the table below: 

• Consecutive completed laps: 0 
• Completed laps of 15 gates: 2 times 
• Maximum number of consecutive gates: 15, occurred 2 times 
• Minimum number of gates entries:  1 which occurred 11 times 
• Two consecutive gates passed: 13 times 
• Fourteen consecutive gates passed: 3 times 
• Total number of crashes occurring before 108 gates completed: 272 
• Distribution of consecutive crashes (number of consecutive crashes): 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 11, 12, 14, 15, 16, 17, 29 and 41  
 

     Analysis of these results indicate a definite degradation in performance.  The baseline agent 

ran 109 consecutive gate passes without a single crash.  In this case, 272 crashes occurred with 

near even distribution for the consecutive number of crashes that occurred up to about 17 

crashes.  Two outlier cases were for 29 and 41 consecutive crashes.  There were two cases of full 

laps completed and three cases short of one gate from being a full lap. 
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     The next test, Test 32-2, examined the effect of relocating the same gates used in the training 

to slightly new locations.  Each gate in the racecourse was relocated either further down or up the 

racecourse path along with movement to the left or right and some rotations of gates.  The 

premise was that this change in gate positions would provide location-based variance to that of 

the baseline agent training environment.  This test, like all tests in this section, were performed 

under the condition of isolating types of variations.  This was done to provide a better 

understanding each type of physical domain randomization that was applied. 

     The results for Test 32-2 are better in terms of agent performance than the results for Test 31-

07, however, still fall short when compared to the baseline agent running the same course it was 

trained in.  The results of Test 32-2 are shown in the following list: 

• Consecutive completed laps: 0 
• Completed laps of 27 gates: 0 
• Maximum number of consecutive gates: 22, occurred 1 time 
• Minimum number of gates passed through 1, occurred 2 times 
• The number of consecutive gates ranged from 1 to 22 which a even distribution for 

consecutive gate passages (1, 3, 7, 10, 14, 16, 21, 22) 
• Total number of crashes occurring before 108 gates completed: 23 
• Distribution of consecutive crashes had a maximum of 5 and minimum of 1.  70% of 

consecutive crashes came in pairs. 
 

        Analysis of these results indicated a definite degradation in performance, however, better 

than the performance of Test 31-7.  A 91.54% improvement in crashes over Test 31-7 occurred 

with total of 23 versus 272 crashes.   The agent in this test did not complete even one lap but was 

close to doing so twice.  It is also noted there were 27 gates per lap.  Fewer crashes occurred but 

less in number of consecutive gate pass throughs happened.  These results indicate that the 

relocations of gates also provided degradation to the agent’s performance.  Given these results, it 
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was not necessary to test for dynamic movement of the gates since this case would provide worse 

results. 

     Test 33-3 provided the test for the effects of physical-based domain randomizations.  The 

tests in this subsection are solely to evaluate if an agent is affected by these randomizations. This 

sets the case for the reality gap also being illustrated within a synthetic environment.  Test 33-3 

adjusted the synthetic environment by changing out the shape of the gates.  A total of three new 

shapes were utilized; a hexagon, a rectangle, and a rectangle with a 45 degrees rotation or 

diamond shaped.  Each of these gates maintained an equivalent entrance area for the drone to 

pass through the portal of the gate.  An assumption was made, for this gate shape variation, that 

its effect would be the least of all the degradation tests.  It was clear that this affect would be 

more impactful if the visual sensor was being used.  The change in shape and color and size of 

the gate is more applicable in the visual range versus ray casting. The results of Test 33-3 are 

listed below: 

• Consecutive completed laps: 4 
• Completed laps of 27 gates: 4 
• Maximum number of consecutive gates: 108 
• Minimum number of gates passed through:108 
• Total number of crashes occurring before 108 gates completed: 0 

 

     These results indicated that no changes occurred in the baseline agent’s performance when the 

shape of the gates were modified as described.  There is no impact for just changing the shape of 

the gate unless it causes a change it the actual passage causing the drone to learn to find the spot 

in the portal were no collisions with the edges of gates occur.    

    The next baseline agent validation test, Test 35-01, was to examine if the size of the pass-

through portal of the racecourse gates may make some difference in performance. The 
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assumption was made that larger portal sizing would not provide any potential degradation since 

the inference model performed at 100% at the current portal size.  A decrease in portal size while 

still allowing room for passage of the drone agent was used as a basis.  Three different portal size 

reductions were performed: at 75%, 60%, and 50%.  Test 35-01 was run three times for each 

change in size to the portal.  A good balance at the degree of performance degradations was 

observed within the three size reductions.  Table 2 provides the data results from these tests.  For 

a 75% reduction in gate or portal entry size resulted in a performance of 100%.  This is 

equivalent to the baseline agent performance in the original synthetic environment.  At 60% size 

reduction in the portal the degradation in performance became apparent although in the 

beginning state.  A total of 5 collisions occurred with 4 of them being just past the first gate and 

the other just after completing just over one lap through all gates in the lap plus one.  One more 

crash occurred then it ran through almost 3 full laps.  The data indicates that run performed just 

below 100%.  This indicated the beginning of degradation.  A repeat of the test at 50% size 

reduction in the gate portal provided worse performance results.  A total of 94 crashes occurred, 

most of which occurred after only one portal pass through occurred.  No laps were completed  

There were a series of 3, 8 and 8 consecutive portals pass throughs that occurred during the test.  

The size reduction of 50% was indicative of the lower bound limit while slightly higher that 60% 

was the upper limit on performance. 
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Percent Gate Reduction Full Laps Completed Consecutive Gates (>1) 

50% 0 3, 8, 8 

60% 2 (1 gate short of 3) 28, 80 

75% 4 109 

 

Table 2: Gate size reduction metrics for baseline agent 

 

    The next test to validate degradation due to variation in the synthetic environment was Test 

36-01.  In this test path-blocking objects or hinderances were placed in or near the expected 

drone path.  The concept was to place objects in the scene that covered a portion of the ground 

truth path while still allowing room for the drone agent to navigate around the object.  In this test 

the goal was to determine if adding these path blocking objects into the scene would change the 

performance of the baseline agent.  Two tests were run to verify the results.  Each test indicated 

failure of the baseline agent to avoid the obstacles if the obstacles were placed closer to the 

trained flight path of the agent.  The second run was performed to help verify this assumption.  

Placements of the obstacles which caused crashes were placed more directly in the path the 

agent.  The second attempt moved these obstacles further out of the way.  These results 

confirmed that the agent would pass by all objects which were sufficiently offset from the 

ground truth path while those placed directly in the path caused the baseline agent to crash.  The 

analysis confirms that the baseline agent did not learn to avoid obstacles that were not originally 

in the training environment and place directly in the path. 

     In summary, this section covered several tests to verify that variations to the trained 

environment caused a baseline agent to degrade in its performances.  This provided the values to 
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compare against when the SDR+ techniques are applied during training to an equivalent agent.  

This section covered tests, results, and analysis for the baseline agent as follows: 

• Modifying the number of gates and spacing between gates: degraded behavior 
• Modifying the locations/path static: degraded behavior (extends to dynamic case) 
• Modifying gate shape: no degradation of behavior (considered for visual sensors) 
• Modifying gate entry size: degraded behavior 
• Adding obstacles in flight path:  degraded behavior 

 

City Scene Physical DR Modifications Training of SDR+ Agents 

    This section covers the training, testing, and comparison of results for the SDR+ trained 

agents.  Comparisons were made against the baseline agent of the previous sections.  The focus 

was applied to physical-based variations within the city scene synthetic environment.  These 

physical-based variation were applied to vary five elements: 1) gate size, 2) placement of 

obstacle in the flight path of the drone, 3) number of gates for a single lap, 4) spacing between 

the gates, and 5) location of the gates and paths. 

     Framework 20-06 was modified to allow variance in the gate portal size during training. This 

was retitled as Framework 38 which was a common practice to preserve a working copy for each 

modification or test applied in this work.  The original gate portal size was at 100%.  The gate 

portal reduction was evaluated in reductions of 10% from the original size.  The number of gates 

in the drone racecourse remained the same at 27 gates.  During the training the sizing of the 

portal was modified between 100% down to 50%.  This range was selected based upon the 

performance seen in the baseline agent.  The results of the training for Framework 38 are 

illustrated in Figure 38-02.  The training initially started out with high reward values but dropped 

by more than 30%.  This was followed by a quick rise and achieve a steady state reward of 1.15 

at about 800,000 steps.  The training was run to about 2.4 million steps to verify.  Episode 
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length, policy loss and value loss plots were all in accordance with the results observed.  The 

training was a bit more extensive by covering the range of gate portal size reduction from 100% 

to 50%.  The baseline agent was examined only at 100%, 60% and 50%.  No further data would 

be required for the baseline agent since the point of degradations only occurred in the 60% and 

lower range.  Training for Framework 38 was modified to be able to run the 10% increments in 

reduction automatically during training and the results are shown in Figure 21. 

 

 

Figure 21: SDR+ agent training for gate portal reduction 
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     Test 38-02 provided results of 100% performance, all gates passed through for entire test, for 

portal sizes ranging from 100% down to 60%.  At 60% size reduction the SDR+ agent ran 

through all 108 gates, or 4 laps, without a single crash.  The baseline was below this level as 

illustrated in Table 3. 

 

Consecutive 
Gate Passes 28 80 109 Laps 

Baseline 1 1 N/A 2 

SDR+ N/A N/A 1 4 
 

Table 3: Comparison of baseline to SDR+ agents at 60% gate reduction 

 

     From Test 38-02 for 60% gate portal reduction, the number of consecutive laps was half as 

much for the baseline agent.  The baseline agent performance did have 80 consecutive laps along 

with one set of 28 consecutive gate passages.   Test 38-02 also included a test for 50% gate portal 

reduction.  For this case, degradation in the SDR+ agent was obtained in the results.  These 

results are illustrated in Table 4. 

 

Consecutive 
Gate Passes 1 2 3 4 5 7 8 9 Laps 

Baseline 88 1 1 0 0 1 1 0 0 

SDR+ 17 1 4 2 4 1 3 2 0 

 

Table 4: Comparison of baseline to SDR+ agents at 50% gate reduction 
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     The SDR+ agent for the 50% reduction in portal size test failed to achieve any complete laps 

of the drone racecourse.  In Table 38-02-50 the SDR+ agent achieved a better distribution for 

consecutive gate passages than that seen by the baseline agent under the same conditions.  Figure 

22 illustrates this distribution. 

 

 

Figure 22: Comparison of SDR+ and baseline agents for 50% gate portal reduction 

 

     The baseline agent had 88 single gate passages.  This data value demonstrates a crash after 

going through only one gate.  This was reduced by 80.68% by the SDR+ agent  which had only 

17 occurrences of a single gate passage.  That factor of roughly a 3.38 times improvement along 

with a better distribution at higher numbers of consecutive gate passages provides insight into the 

improved performance achieved training variance is applied. 
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     The next physical-based DR variation was the placement of obstacles in the path of the drone 

agent.  Framework 40-02 was used to train the SDR+ agent with variation based on obstacles.  

The training at approximately 500,000 steps reached a fluctuating plateau around a cumulative 

reward of 0.75.  For this case, the accumulative reward for peak performance was expected to 

reach a cumulative reward of 1.2.  As the training approached 4 million steps the cumulative 

reward had still maintained a cumulative reward of 0.75.  Inspection of the visual representation 

of the virtual environment provided the indicators for the lower reward level.  The drone agent 

would continually crash into certain gates which were directly in the path of the agent.  This was 

confirmed during Test 40-02 by moving said obstacles off to one side or the other or less directly 

in the path between gates. Once this live training action took place the cumulative reward 

quickly increased to the expected reward level of 1.2.  This is shown in Figure 23. 

 

 

Figure 23: SDR+ agent training with obstacles and live training adjustments 
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    The results of Test 40-02 were similar in nature to Test 36-01 for the baseline agent under the 

same use of obstacles.  The data prior to the live training adjustments did show improvement 

over the performance of the baseline agent for the same conditions.  There was a total of 8 

obstacles placed in the agent’s path.  Under certain circumstances these obstacles were directly 

in the path and in other instances partially in the path or just an edge covering the ground truth 

path.  The results for the baseline agent had 5 of the 8 obstacles that prohibited the agent from 

further advancement.  For the case of the SDR+ agent only 3 of the 8 obstacles provided the 

same behavior.  Examination of the visual representation of the virtual environment, it was seen 

that obstacles on the edge of the primary path caused problems for the baseline agent, however, 

the same was not true for the SDR+ agent.  The SDR+ agent was able to navigate around 

obstacles these edge cases, thus the improvement seen in the results.      

     The next training, testing, and validation in the series of physical-based domain 

randomization was for the case of reduction of the number of gates used in each lap and 

corresponding changes in separation in the spacing between gates.  Training was run on 

Framework 42-13 and tested and evaluated with Test 43-01.  The results of the training are 

shown in Figure 42-13.  The cumulative reward graph was very similar in response to the case 

for obstacles placed into the path of the drone agent.  The reward reached steady state at about 

1.2 million steps.  This training took longer to reach a steady state than other training cases.  The 

results also indicated a small dip in the reward just before 2 million steps, however, it recovered 

and returned to the approximate cumulative reward of 1.2.  Episode length illustrated this slight 

change in reward value, but it did not provide any indications of degradation of reward during 

training rather more of a small perturbation in the data most likely due to stained or overtaxed 

compute resources. 
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Figure 24: SDR+ agent training with reduced number of gates and spacing changes 

 

     Test 43-01 was run to validate the training for reduction in gates and changing of their 

spacing.  The performance for the SDR+ agent was at 100%.  It completed all 4 laps 

consecutively which included 109 consecutive passages through the gates.  This was one of the 

expected results when running a trained agent within the same environment and conditions in 

which it was trained.  In comparison, the results for the baseline agent did not perform as well.  It 
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is noted that with gate reduction a single lap consisted of 15 gates versus the 27 gates used in the 

other evaluations.  Figure 25 shows the comparison between the baseline and SDR+ agents. 

 

 

Figure 25: Comparison of SDR+ and baseline agents for gate reduction and spacing 

 

     Figure 25 illustrates an improved performance for the SDR+ agent because of the variance of 

gate reduction and increasing gate spacing during training.  For this case the improvement was 

significant compared to the other physical-based DR tests. 

     The final physical-based DR training and evaluation experiment was for the movement of 

gates which also changed the path of the drone racecourse.  Framework 44-16 was constructed 

for this experiment along with Test 45-01 to test and validate the experiment.  Gate movement 

was controlled and reset at each episode.  To maintain consistency and prevent the movement of 

gates into non-assessable locations the experiment moved each gate to one of four different gate 
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positions.  Each movement was then followed by a movement back to the original gate locations 

and path.  This was repeated for a total of four new positions represented by changing the 

physical location either up or down, to the left or right, and then forward or backward along the 

course.  Testing required changing from every episode to once every 100 updates during the 

simulation.  Figure 26 illustrates the training of the SDR+ agent for gate and path movement. 

 

 

Figure 26: SDR+ agent training with gate and path movement 
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     The cumulative reward for this training resulted in a plateau reward value around 1.2.  The 

training rate to reach this plateau took approximately 1 million steps.  The training for 

cumulative reward was consistent with just some noise related changes in the values which were 

also seen in the episode length graph.  The value loss graph also indicated one jump in response 

just before the main increase in reward values during training.  Test 45-01 was used to test and 

validate the training under similar conditions in which the agent was trained.  The SDR+ agent 

performance was slightly degraded in the evaluation of the inference model in the same training 

environment.  Three laps were completed along with two large consecutive gate passages of 58 

and 39.  Total number of collisions during Test 45-01 was 8 with 6 of those occurring at the first 

gate at the beginning of the test. 

     A comparison of the baseline agent to the SDR+ agent was conclusive that adding gate/path 

movement variations in training improved the performance.  From Figure 45-01 the training for 

gate movement was improved by achieving a higher number of consecutive gates along with 

completion of 3 consecutive laps.  Analysis further indicated that a higher number of collisions 

for a single gate occurred at the beginning gate at the start of the test for both the baseline and the 

SDR+ agents.  The baseline agent did not complete any successful laps and had a widespread 

distribution seen in the number of consecutive gates passages in Figure 27.  The number of 

collisions for both were approximately equal at the starting of the test providing further 

indication of a problem when initiating the test. 
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Figure 27: Comparison of SDR+ and baseline agents for gate and path movement 

 

     The findings for gate and path movement training indicated improvement in performance for 

training with this type of variation.  The analysis of the data did show some degradation of the 

SDR+ agent during the test in the same training environment.  One factor that may explain the 

difference was the problem at the start of the test at the first gate.  If this is discounted, then only 

three collisions occurred which kept the SDR+ agent achieving 100% performance.  All the 

SDR+ agent tests were run only once if it was a successful run.  Multiple runs and averaging out 

the data may provide slightly different results, but it was assumed the same general pattern 

would be followed.  With this assumption, no repeated tests were performed in this work. 

     The next section examines if this can be generalized from one environment to another.  

Results showed that the experiments provide positive results when it was tested within the same 
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environment in which was trained.  The experiment of the next section explores whether this 

generalizes, or the agent only performs well under conditions for which it was trained. 

 

Non-City Scene Combined Physical DR Modifications Generalization Comparison 

     This section discusses the results, analysis and findings of experiments leading toward testing 

for indications of generalization through use of the SDR+ technique.  Prior sections in this 

chapter covered the results, analysis and findings of the experiments that could now be combined 

and then test in a different environment.  Prior experiments provided the foundation for this 

experiment.  The original argument for this work included naturalistic domain randomization.  It 

is still assumed to play a significant part in the SDR+ methodology, however as stated, 

insufficient computing resources to overcome the amount of processing for visual based sensing 

would not allow further investigations down the naturalistic domain randomization path. 

     Based on the finding of the previous experiments for physical-based domain randomization, 

another set of experiments were also run in the city scene virtual environment to provide a SDR+ 

training baseline.  This was then tested and validated for some portion of generalization in a new 

and different synthetic environment.  First the new training framework was created which 

combined the effects of environment variation for: 1) gate portal resizing, 2) gate and path 

relocations and 3) number of gates used and changed spacing between gates.  The obstacle 

blocking experiment was not included based on the findings.  The modification of gate 

appearance and shape was also excluded because of a previous conclusion that it was tied closer 

to naturalistic domain randomization than to physical-based domain randomization. 

     Framework 46-03 was used to train a SDR+ agent in the city scene virtual environment.  

Dynamic gate portal resizing, dynamic gate and path placement, along with a reduced number of 
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gates which were spaced at various distances were used as the physical-based domain 

randomization parameters.  The results for this training are shown in Figure 28. 

 

 

Figure 28: Combined physical domain randomization training in the city scene 

 

     The training did not require much more in terms of training steps to achieve a plateau of near 

constant cumulative reward value of 1.18.  The training was allowed to train to the pre-defined  

termination point at 5 million steps.   A steady state reward value was achieved approximately 

after 1.2 million training steps.  The episode length, policy loss and value loss graphs also 
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corresponding to the expected training pattern. Overall, the training for the combined variance 

effects ran better than expected when it was a combination of dynamic physical-based domain 

randomizations. 

     The trained combined inference model was tested and validated first in the same city scene 

training environment under the same conditions.  Framework 47 and Test 47-09 was used to 

perform the testing and validation of the combined environmental changes in the city scene using 

the same conditions in training.  Prior attempts at the validation of inference model 46-03 

indicated some results did not appear to provide the expected performance.  Upon analysis of the 

testing and validation it was discovered that the rate of the changes in the physical-based domain 

randomizations was occurring at too fast a rate.  In training the rate of change was based upon 

episode length, however, during training and validation the rate is determined by updates to the 

simulation.  Several runs of Framework 47 were attempted, each had an increasing number of 

updates prior to domain randomization until an acceptable amount of time passed before the 

combined domain randomizations occurred.   

     Figure 29 illustrates the results of the testing and validation of inferred model for both SDR+ 

training test 47-09 and baseline training test 20-06 in the city scene environment.  Analysis of 

these results indicate that the trained SDR+ model did not provide the perfect performance of 

100% through the course.  A total of 4 laps of a 20 consecutive gate racecourse were achieved 

with an occurrence of 60 consecutive gate passages and then 20 consecutive gates passages.   

Analysis and an understanding of the training explained the amount of degradation in 

performance as shown from the data in Figure 47-09.  When a test or validation is running it 

assumes the entire course continues to run without stopping.  During training an episode is reset 

when it has achieved a certain level of reward and then it resets to a new location in the course 
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with the intent to provide training over the entire racecourse.  This means that during training the 

same behavior could have been happening but not exhibited because of the need to reset episodes 

periodically during training.  The analysis also shows the SDR+ agent outperformed the base line 

agents for 4 completed laps versus 1 as well as a distribution of consecutive gate passages at the 

higher end of the scale, especially for the case of 60 consecutive gate passages. 

 

 

Figure 29: SDR+ and baseline agent test and validation for combined randomizations 

 

     The next experiment performed took the inference models of the baseline and SDR+ agents 

and inserted them into an entirely new synthetic environment.  The same modified physical-

based domain randomizations were used; however, some were modified from domain 

randomizations that existed in the city scene environment.  The first change was the overall 

synthetic environment, which was changed from a city scene to a small mountainous island.  
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Images of these are provided in Appendix A.  Boundaries were maintained as a rectangular cube 

around the island sides, bottom and top.  The racecourse path was much longer and increased and 

decreased in elevation along the slopes of the island mountain much more than with the city 

scene.  This added a new physical-based domain randomization to the course not used 

previously.  This change was due to increased positive and negative slope changes in the 

racecourse, but also due to the gate orientations.  The gates were reoriented to align with the new 

three-dimensional space in the mountainous island scene.  This varied the city scene where gate 

placement and orientation were planar and only rotating around one axis as in the city scene.  

The same number of gates were used with the same gate portal size changes, gate location and 

path movement.  The spacing of the gates were spaced further apart across the new mountainous 

island scene. 

     The trained baseline inference model from Framework 20-06 and the trained SDR+ inference 

model from Framework 46-03 were tested and validated in this new synthetic environment.  The 

results are shown in both Table 5 and  Figure 30. 

 

Consecutive 
Gate Passes 1 2 3 4 5 6 7 8 9 18 laps 

Baseline 82 8 2 0 1 0 0 0 0 0 0 

SDR+ 13 5 4 1 3 1 2 1 1 1 0 

 

Table 5: Data result for generalization test of baseline and SDR+ agents 
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Figure 30: Generalization test of SDR+ and baseline inference models 

 

     The total number of a single gate passage occurring in the baseline inference model was an 

order of magnitude greater than any of the other occurrences.  Analysis indicated this was due to 

the greater difficulty that the baseline agent had in getting through most of the gates.  The 

baseline agent did not get beyond 5 consecutive gate passages.  The distribution for the SDR+ 

inference model was much better and extended up to 18 consecutive gate passages.  Neither 

inference model was able to complete one or more laps of the course.  Table 49-10 was presented 

alongside of Figure 30 for clarity on the results.  For this case Figure 31, shown below, was 

created to better illustrate the difference in findings between the SDR+ and baseline agents.   
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Figure 31: Generalization test of SDR+ and baseline inference models based on percentage 

 

     Figure 31 illustrates a higher and better distribution of consecutive gate passages for the 

SDR+ inference model when view as a total percentage of the gate passages that occurred in the 

test.  A very high percentage of just single gate passages occurred for the baseline inference 

model.  Analysis indicates that the baseline agent performed poorly in the new synthetic 

environment with the physical-based domain randomizations used.  Analysis for the SDR+ 

inference model illustrated a better performance over the baseline inference model; however, 

consecutive gate passages were only at 66.7% of completing even one successful lap of the 

racecourse.  Improvement was seen by training for some of the variations presented in the 

environment, but that data is in a range between being inconclusive to almost no findings which 

could verify that some form of generalization occurred when using the SDR+ technique.  
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Summary of Results 

     The results of this work provided some interesting insights about the constitution of DRL 

PPO-based algorithms, the integrations of ML-Agents with Unity’s application with regards to 

synthetic training environments, and the SDR+ technique to support the hypothesis of bridging 

the reality gap and improving generalization for synthetically trained agents.  An experimental 

workflow followed a path in the development of a series of frameworks that permitted the 

training, testing, and validation of a SDR+ agent.  The workflow began with the experiments of a 

simple example of an agent trying to reach a target in constrained space.  The experiments 

supported which set of configurations would be used in this work.  A set of synthetic 

environments were constructed which allowed elements of the environment to be varied for 

training, testing, validation, and comparison purposes.  A generic synthetic environment 

constructed from a city scene was used to provide a baseline for comparison of the variational 

effects on both an agent trained in such an environment and a series of agent trained with these 

variations.  The workflow proceeded to develop, test, refine and modify both the baseline and 

SDR+ agents as part of the process to determine if the hypothesis of the SDR+ techniques was 

supported or lacked the support to validate the hypothesis.  The results obtained through this 

experimental workflow constitutes the remainder of this section. 

     The experimental workflow started with the simple example of the agent locating an object 

and moving to where the object was located.  The purpose was to determine the configuration to 

use for the DRL PPO-based agents.  It was determined from these experiments that the best 

options were a combination of the environment observations, ray cast sensing and visual sensing 

as inputs into the agents learning.   It was determined that use of ML-Agents does require 

environment observations at a minimum to work properly.  Various forms of neural networks 
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were available for the visual sensor, but the ML-Agents recommended simple neural network 

was selected because it performed as well as the other types of versions of neural networks and 

was the recommended configuration. 

     The simple example framework was also used to determine if context-aware elements could 

add to the agent’s learning ability.  An experiment based on the level of reward by the distance to 

the target had an unexpected result of the agent learning to move back and forth across the 

distance boundary to gain more reward.  The agent learned to vacillate on the reward boundary 

to get reward versus moving closer to the target.  Adjustments were made to use Unity’s box 

collider which made no difference.  The box collider became a blocker between the agent and the 

target.  Ray cast sensing failed because of these objects.  Plane colliders were also tried with the 

same results. 

     A re-examination of the simple example framework was performed and allowed to run for a 

longer period.  The previous results and the extended period unveiled another anomaly of 

overfitting.  Overfitting is a problem with machine learning and is less common for DRL agents.  

Additional literature research revealed that DRL overfitting does occur, and this fact matched up 

to the data.  The modification to the context-aware elements did help to stabilize the overfitting 

but still provided lower cumulative reward values. 

     Further experiments were formulated to determine if a new approach to using the context-

aware element could limit overfitting while achieving a better performance of the training.  This 

methodology moved part of the reward received by the agent away from the context-aware 

elements and changed them to provide just direction information for the agent.  The simple 

example experiment was also extended by moving from two-dimensional to three-dimensional 

space.  This provided a closer simulated movement with regards to the use case of the drone 
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racecourse.  Additionally, the reward and penalty values were adjusted to finally arrive at more 

consistent and acceptable results for the trained agent. 

     With a better configuration for the agent, the experimental workflow moved to the synthetic 

environment of interest called the city scene.  The city scene was set up to adjust the 

environment for several naturalistic domain randomization settings along with a few physical-

based domain randomization methods.  In porting the agent to this new synthetic environment, 

several conditions prohibited better training, testing, and evaluation of the learning agent.  These 

conditions were: improper configuration settings, programing logic errors, and overriding of the 

number of steps to take before resetting an episode.   

     With a valid baseline agent, further experimentation was performed to determine the effect of 

environment domain randomizations on agents.  The baseline agent was trained in the springtime 

city scene environment which provided good lighting with minimal naturalistic domain 

randomization effects.  The baseline agent was then subjected to an autumntime season which 

included changes in coloring, sky type, falling leaves and different lighting in the scene.  A rain-

based environment provided obscuration of rain with dark cloud cover and different lighting in 

the scene.  A snow environment provided the obscuration of snow, a change in lighting and the 

larger visual effect of scene objects covered in snow.  The final environment change was to a 

night scene with city lights turned on providing a very contrasting lighting in the scene.  Each of 

these conditions were run and the baseline agent had a 100% performance rating for passing 

through all gates over the course of four laps.  These results did not align with the hypothesized 

outcome.  No degradation in the agent was observed.  The analysis determined that the visual 

sensor used was not sufficiently trained and thus did not provide the behavioral influence upon 

the agent.  Essentially all the training influence was due to the environment observations and the 
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ray cast sensor.  Further analysis and more current literature research revealed that the ML-

Agents visual sensing capability would require resources and training times that would far 

exceed the scope of this work.  The visual sensing capability was deemed ineffective and 

unusable for this work.  Naturalistic domain randomization relies heavily upon the visual 

component of the agent.  Given this finding, the use of naturalistic domain randomizations was 

dropped from this work along with the use of the ML-Agents visual sensor.  Further examination 

did reveal that the work could effectively continue with just the use of physical-based domain 

randomizations such as changing the gate size area where the agent must pass through, the 

location and orientation of the gates, a change in the path, a change in the number of gates, 

spacing of the gates, and adding obstacles in the flight path. 

     With these experimental changes the workflow was adjusted for the use of just physical-based 

domain randomizations.  The baseline agent was then tested in the same city scene synthetic 

environment with the specified variations.  Each of these physical-based domain randomizations 

provided degradation in the performance of the baseline agent.  This aligned with the 

hypothesized outcome for applying environmental variations to an agent not trained for those 

variations.  It was noted that the experiment for obstacles placed in the flight path failed for the 

baseline agent.  This trained agent was unable to navigate around the obstacles.  It was assumed 

this was partly due to the lack of ability given to the agent to perform better navigation.  

Navigational capabilities of better adjustment to speed, ability to reverse direction and the ability 

to move away from objects and then return to the computed path could have supported better 

results.  Such navigational adjustments were inhibited by the black box nature of the ML-Agents 

DRL algorithm.  The data feedback required to adjust the navigation was inaccessible. 
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     The experimental workflow then moved to the training of agents where they were subjected 

to various forms of physical-based domain randomizations during training.  This SDR+ agent 

was first trained in the city scene environment to establish an inference model.  The physical-

based domain randomization incorporated dynamic gate opening resizing, relocation of gates and 

paths, and changing the number of gates used in a lap as well as their spacing.  All these effects 

were used simultaneously during training.  Good training results were obtained which then 

allowed the inference model to be tested and validated in this same training environment.  It was 

determined from the results for testing and validation of the SDR+ agent, that it had a lower 

performance than expected as was seen in the case when testing and validating the baseline 

agent.  Analysis indicated a portion of the degradations was due to the difference between the 

episodic training of the agent and the simulation updates for testing and validation under the 

physical-based domain randomization settings.  In training, episodes are reset once the agent 

reaches a certain cumulative reward or penalty value during that episode.  It then resets and 

moves the agent to a new location on the racecourse and continues with the same training to 

gather experience over the entire racecourse.  During testing and validation, the use of episodes 

is replaced by the agent running all the time and not being reset.  The agent when learning would 

pass through several gates and when successfully achieved the proper reward value it would 

reset.  The agent was learning the racecourse in a piecewise fashion.  When testing or evaluation 

the agent, the agent must continue to fly through all the gates without any resetting.  An 

assumption was made that these two distinct behaviors caused the fault of the agent to pass 

through as many consecutive gates.  It had not learned to traverse the entire course rather just 

portions of it at a time.  This same condition was also seen in the baseline agent. 
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     The final step in the experimental workflow was to move the SDR+ agent with its inference 

model into a totally new synthetic environment.  A mountainous island was used for the 

synthetic environment.  Testing and validation of the SDR+ agent was performed in this new 

environment.  The steeper slopes of the island’s mountains provided an additional physical-based 

domain randomization not applied in the city scene.  The environment required the gates to be 

oriented in a three-dimensional fashion versus the more two-dimensional orientation in the city 

scene.  The agent was made to navigate over steeper uphill and downhill slopes.  The gate 

spacing was also rearranged with a longer path and longer and shorter spacing of the gates.  Both 

the baseline agent and the SDR+ agent was tested and validated in this dynamically varied 

environment.  The results of the baseline agent indicated a poor performance.  A large portion of 

the gate passages occurred for only one gate and the highest number of consecutive gates passed 

through was just five.  The SDR+ agent also performed relatively poor, however, much better 

than the baseline agent. There was a better distribution of consecutive gate passages and at 

higher levels of consecutive gate passages.  The performance was below the performance seen in 

the city scene where it was trained.  The attributed reason for the SDR+ agent performing better 

than the baseline agent was due to the additional training of physical-based domain 

randomizations.  It is inconclusive and more likely doubtful that an improvement in 

generalization of the agent’s behavior occurred.  The training helped the SDR+ agent’s 

performance in the new environment but there was no way to determine if even a small 

incremental improvement in generalization occurred based on the outcome of the results. 
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

 

Conclusions 

    The results and analysis of this work provide several conclusions regarding the use of the 

SDR+ technique to further bridge the reality gap.  The reality gap which occurs when AI agents 

are trained in a synthetic environment.  Several conclusions are presented.   

     The use of synthetic environments to train agents provides an innovative method to apply 

modifications to the environment and explore the agent’s reaction to these variations.  A good 

number of  synthetic environments were explored in this work.  The city scene environment 

provided an encapsulated area for a DRL agent to explore and exploit which is a common 

behavior of DRL algorithms.  Use of synthetic environments made it easier to modify for a new 

set of conditions than would be possible if limited to real-world environments.  This was 

illustrated in the city scene environment.  In this environment, five naturalistic environments 

were established which include visual changes to the racecourse gates.  There were four 

physical-based items which were also easily modified in a dynamic fashion during training, 

testing, and evaluation.   Switching between such variations in the environment was readily 

supported by to the Unity application and its C# scripting API.  The ability to provide these 

variations in the environment was critical to this work because of its dependencies upon domain 

randomization to achieve the desired outcome. 
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     The use of the existing DRL PPO-based algorithm, which was not modified to achieve 

results, provided a stable baseline for the agent’s capabilities.  It was determined that the 

configuration parameters associated with the algorithm needed to be determined.  This was 

successfully accomplished through a series of experiments on a simplified example.  In the 

experiments of the simplified example, it became clear that  environment observations were an 

essential element in the configuration.  Including ray cast sensors and a visual sensor with the 

environment observations provided the best overall results.  These configuration parameters were 

successfully transferred to the full model of the simulated drone racecourse. 

     Context-aware elements were proven to be successful when used as guides and for the 

improvement in the rate of training for the agents.  Complications with their use was discovered 

during experimentation.  A common phenomenon seen in DRL-based agents occurs when the 

agent learns to gain reward in a manner that does not contribute to the objective.  This was 

exhibited in the simple example where the agent learned to vacillate over reward boundaries to 

increase its cumulative reward.  Generally, this behavior would prohibit the agent from 

performing the intended goal.  This work explored the ability to modify the context-aware 

elements by removing a good portion of the reward it provided and instead providing guidance 

or direction for the agent’s next action.  Guidance came in the form of providing a corrective 

direction towards the next target which was the gate or path in the racecourse.  Guidance was 

also used in the ray casting sensor to determine if certain objects in the environment would cause 

a penalty rather than a reward to the agent.  This change in the structure of the context-aware 

elements proved to be successful and the erroneous training behavior ceased to be observed.  

Another problem discovered with context-aware elements was their effect on DRL agents 

leading to overfitting.  When rewards were provided to the agent via the context-aware elements 
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and the training was allowed to run sufficiently long, a drop in the performance was observed.  

The added reward by the context-aware elements were generating the case for overfitting.  

Overfitting was not observed after the  change in both the guidance and the adjustment to values 

for rewards and punishments  were made to the context-aware elements.   

     The validation of the experiments of this work relied upon the development of a baseline 

agent.  It was hypothesized that the baseline agent, when trained in a generic synthetic 

environment, it could reach the same performance level achieved during training.  This was 

accomplished by using its inference model in the same training environment.  The baseline agent 

successfully achieved equivalent behavior when re-run in the same environment using the 

inference model.  This met the criteria of establishing a baseline metric so that experiments 

which incorporated domain randomization could verify their performance relative to that of the 

baseline agent.  The baseline agent’s performance in a domain randomized experiment exhibited 

degraded performance. The performance exhibited by the baseline agent aligns effects 

commonly seen in the reality gap problem for synthetically trained agents.  The type of behavior 

by the baseline agent supports the concept that it was used as a metric to when compared to the 

performance of the SDR+ agent.  It also supports the concept of being able to verify these results 

all within a synthetic environment and  avoid porting it to real world experiments for validation. 

     The Unity applications along with its programing interface successfully allowed the 

development of experimental frameworks which were able to inject variations into the 

environment consistent with the domain randomization principle. This allowed training of SDR+ 

agents using one or more types of domain randomizations.  This work examined both single and 

combined applications of domain randomization during experimentation to examine the effect of 

each and in combination.  The results demonstrated that the domain randomization training 
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improved performance of the SDR+ agent over the baseline agent.  In some experiments some 

degradation in performance of the SDR+ agent was observed.  Analysis indicated that the 

differences were due to problems with the agent behavior at the beginning of the simulation as 

well as the navigation capabilities of the agent.  The problem associated with the beginning of 

the simulation was determined to be caused by the initial placement and orientation of the agent.  

There existed several layers of transforms within the agent and all its components including the 

camera object which was attached to provide a view of the agent moving through the course.  An 

initial setting of the transforms for position and orientation provided an initial disorientation 

behavior in the agent.  This effect only applied behavior at the start and the first gate in the 

course.  Proper adjustments to the initial position and orientation transforms removed this 

problem.  Regarding the navigational issues it was determined ML-Agents is considered a “black 

box” in terms of getting feedback from its sensors to better control the agent’s navigational 

capabilities.   This prohibited changing the agent navigation capabilities to adjust for finer 

movements such as learning when to slow down or speed up, when to turn sharply or not so 

sharply, and the ability to stop and reverse the motion to avoid some obstacles.  Such 

navigational abilities are left to future work albeit an important capability based on the outcome 

of the results of this work. 

     There were two main conclusions to this work.  First, that a synthetic environment can be 

constructed which allows the successful training of agents when domain randomization and 

context-aware elements are used.  Second, which was unsuccessful, was the attempt to determine 

if an agent could generalize by learning to accept and adapt to variability not seen in the training.  

This implies that it was trained with various forms of domain randomization but learned from 

that to accept and adapt to others via that training.  These conclusions are interdependent in the 
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sense that one builds upon the other.  Each of these conclusions were be addressed individually, 

however, what constitutes the makeup of these conclusions is addressed first.   

     Both conclusions are derived from the experiments performed.  There were four primary 

types of experiments.  The first experiment type was for training.  A baseline for training an 

agent was established with the springtime city scene environment which provided the most basic 

environment.  The performance of the trained baseline agent was then subjected to the second 

type of experiment.  This second type took the inference model obtain in the first type and tested 

it in the same training environment.  This determined the performance level achieved by the 

baseline agent during the training process.  This same process was repeated for the SDR+ agent 

with the addition domain randomizations and context aware element guidance used during the 

training.  The test and evaluation experiments for the SDR+ agent was performed under the same 

training conditions which included the domain randomization.  The third type of experiment 

tested the baseline agent in the test and evaluation environment of the SDR+ agent.  The purpose 

was to determine if the baseline agent’s performance did degrade under the influence of domain 

randomization.  The final type of experiment provided a new and different synthetic environment 

for testing and evaluation of both the baseline and SDR+ agent.  This environment combined and 

added more domain randomization effects to arrive at the second conclusion.  The inference 

models form the city scene training environment were used in this new environment. 

     The first conclusion was shown in the results and analysis that a synthetic environment can be 

constructed which allows the successful training of agents when domain randomization and 

context-aware elements are used.  Building the framework on Unity and its ML-Agents module 

provided most of the heavy lift which permitted not only the construction of the virtual 

environment but the ability to manipulate the environment with domain randomizations and 
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context-aware elements capabilities.  ML-Agents along with C# scripting allowed the integration 

of a DRL PPO-based algorithm to successfully interface to a drone agent and allowed that agent 

to interact with the environment.  Result data was analyzed proven to show that framework 

worked for each of the experiment types stated.  It also showed the training worked under normal 

conditions and when conditions were modified via domain randomizations.  The baseline agent 

performed well in its own training environment.  It performed worse when run in the same 

environment with domain randomization applied.  The SDR+ agent performed well within its 

own training environment.  These results the successful construction use for experimentation of 

the framework. 

     The second conclusion, which was unsuccessful, attempted to determine whether an agent 

could generalize by learning to accept and adapt to variability not seen in the training.  This 

conclusion was built upon the first conclusion and associated experiments.  In this case the 

experiment was used to determine if any form of generalization was achieved by training with 

domain randomizations but being tested with other domain randomization beyond the training 

environment.  The poor performance by the baseline agent was worse than seen in the city scene 

environment with domain randomizations applied.  This validated the new environment and the 

change in domain randomizations.  Basically, the baseline agent performance was further 

degraded to almost the point of being non-functional.  The SDR+ agent’s performance was also 

degraded but remained functional.  It was expected that the SDR+ agent’s performance would 

degrade in this new environment but not to the level indicated in the results.  It is noted that it 

was also inconclusive that some form of generalization did occur.  It was assumed than the agent 

performed well under the domain randomizations used in training in this new environment.  It is 

also unknown if disparities between the city scene and the new environment had effects that 
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degraded the agent’s behavior.  It is also uncertain if the episode resetting during training caused 

the agent to perform even worse when it only was training over small segments of the course 

during training.  The episodic reset during training was understood to be the proper form of 

training under ML-Agents.  Future work might study methods which increases training coverage 

to allow the agent to train over the entire course as well as multiple laps. 

 

Implications 

     The emphasis of this research work was to examine and leverage an existing work of SDR 

(Prakash et. al., 2019) with the goal to demonstrate some level of improvement in the 

generalization of DRL agents.  This work modified the SDR approach by adjusting the learning 

mechanism during training and provided another use case example of drone navigation.  The 

SDR and DR (Tobin et. al., 2017) works are recent research works and limited to the study of 

robotics and image recognition.  This work expanded upon this via the application for a drone 

agent navigation through a racecourse.  Adding additional use cases to the body of work supports 

the concept of domain randomization scalability to other applications. 

    This work was solely based on experiments performed in synthetic environments to support 

the validity of their use in training of agents.  The workflow process, the number of experiments 

performed, and the adjustments required demonstrated the utility of using synthetic training.  The 

ability to modify, adapt and perform a variety of features or functions was demonstrated in the 

development and use of the experimental frameworks in this work.  Such capabilities would 

either be too costly and difficult to perform in the real world. 

     This work added evidence that domain randomization use during training does allow an agent 

to learn behaviors and adapt to variations of the same kind.  In the DR work (Tobin et. al., 2017) 
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this was demonstrated by the improvement in a robotic arm to determine the location and 

manipulation of objects.  For the case of the SDR work (Prakash et. al., 2019), this same 

principle was applied to the identification of cars in videos.  This work demonstrated that using 

domain randomizations during training also provided conditions in improvement of a drone 

agent to navigate through a racecourse when such variations were present.  Again, this implies 

another addition to the body of work in demonstrating the effectiveness of using domain 

randomization in training. 

    This work demonstrated that the use of domain randomization during training could help the 

agent to learn to accept variability when the variability was trained via domain randomization 

methods.  The results did not indicate that a form of generalization occurred where the agent 

learns to adapt to variability in the environment for cases where no training was applied.  

     One problematic finding of this work was the inability to use a visual sensor.  The problem 

was exhibited during experimentation.   Analysis determined that the amount of computation 

time and resources required for visual sensing was too excessive.  It remains to be seen whether 

an agent’s ability to learn from and interact with its environment would improve when combined 

with ray cast sensors and environmental observations but permitted to complete the extra amount 

of training required for use with the visual sensor.  The primary implication is not just with the 

computational capability of the hardware but also lies with the structure and working of ML-

Agents.  In its current development state, ML-Agents is insufficient to meet these requirements.  

It is unclear if Unity will continue to improve ML-Agent in this regard or if some other tool 

would be required. 

     The findings of this work have several implications for future research.  First, improvement to 

the modeling for drone navigation and flight dynamics including sensor feedback from the DRL 
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algorithm would provide a richer set of actions the agent could use during training.  These 

navigational improvements would allow improvement in the agent’s ability to learn to redirect 

itself around obstacles, adjust speed to improve rate of traversing the course, slow down to pass 

through more difficult gates, and to reorient position and location with guidance from the 

context-aware elements.  Second, a different tool other than Unity and ML-Agents might prove 

more beneficial in the development the framework which supports all aspects of this work.  

Third, in this work no algorithm modifications were made.  The assumption was that some form 

of learned acceptance and adaption to environment variabilities could be achieve through just 

modifications to the environment during training.  A future effort could determine what 

modifications to the algorithm might lead to these intended results.  The final implication for 

future work would be the ability to successfully integrate the visual sensor either through the 

computing resources, improvement to the existing ML-Agents model, or finding other tools 

which are computationally efficient to reduce the computation costs to an acceptable level.  This 

work still considers the visual sensing for the DRP PPO-based agent to be an essential part of the 

work.  It is possible that some form of generalization can be found when this is included in the 

learning process of the agent.   

 

Recommendations 

    There are several recommendations for future research specific to this SDR+ technique.  

Better agent navigation capabilities are required.  The learning process should allow feedback 

from ML-Agents to permit the agent to perform more distinct and required movements in line 

with the agent’s state.  These improvements would include better control of the agent’s speed 

which includes the ability to stop and reverse direction.  The navigation also needs to apply to 
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finer control over side to side, up and down movement.  The assumption is that by having an 

improved feedback mechanism from ML-Agents would allow better navigation control during 

training which would then be instilled into the inference model.   

     It was shown that domain randomization does work, and the agent learns from training which 

incorporates domain randomization.  Further exploration could be made in the use of other types 

of domain randomizations.  The literature cites other application areas in which domain 

randomization is effective. 

     New research could determine improvements to the context-aware elements.  In this research 

an erroneous learning behavior and an overfitting problem were observed in conjunctions with 

context-aware elements.  This work’s results indicated that changes from a reward to guidance-

based application inhibited the learning problems previously observed.  Continued research in 

this area could prove useful in support of improved and more rapid training techniques.   

Additionally, if context-aware elements could be associated with visual sensing, it is assumed 

this might help reduce the computational costs associated with this sensing method.  The field of 

real time ray tracing provides some interesting techniques with regards to the use of machine 

learning to speed up the ray tracing process.  An extension of this concept could apply in 

speeding up the visual sensing learning rate. 

     One of the main hypotheses of this works was that an agent could also learn to understand and 

adapt to any type of variability seen in the environment.  This work barely breached this concept.  

It was inconclusive but doubtful from the results of this work that modifications to the synthetic 

environment alone could generate such a condition in the inference model.  This implies that 

additional research in this generalization technique is required to understand if it is possible, and 

if so, what would be required.  Many of these techniques might also be addressed by either using 
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tools other than Unity with its ML-Agents or, perform modifications to Unity’s ML-Agents if the 

code is accessible. 

 

Summary 

     The concept of training AI agents in synthetic environments becomes advantageous when 

considering the costs associated with real world training.   The advantages also include the 

flexibility and adjustments that can be obtained through synthetic training, testing, and validation 

in these environments.  There exists a reality gap between the synthetic training to that of 

training in a real-world environment.  This has been considered one of the main drawbacks to 

synthetic training, however, the costs associated with methods which can bridge this reality gap 

far out way the costs of doing so under real-world circumstances.  The goal of this research work 

was to address this issue. 

     The goal consisted of building a framework composed of synthetic environments with the 

ability to apply domain randomizations in both a naturalistic setting as well as physical-based 

modifications.   An application of context-aware elements was applied to the synthetic 

environment to provide guidance and improve training speed for the agent.  The framework 

incorporated an existing DRL PPO-based algorithm via a Python interface.  It also included a C# 

programming interface to allow control and configuration of both the synthetic environment, the 

control of the agent, an interface into ML-Agents, and the means to apply domain 

randomizations to the synthetic environment. 

     This work proposed two research questions.  The first was whether this methodology could 

improve upon the agent’s ability to better generalize to conditions unseen in the training.  The 

second research question was to determine if the first question could be answered without 
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modifying or adding to the DRL PPO-based algorithm.  Two hypotheses were established.  The 

first hypothesis stated that use of naturalistic and physical-based domain randomizations was just 

as effective as the more drastic effects used in other research works.  The second hypothesis 

stated that context-aware element was effective in providing guidance to the agent during 

training. 

     An extensive literature review was performed to better understand the various forms of 

existing research related to this work.  It also permitted the selections of specific research works 

and potential gaps which could then be extended for this work.  The seminal work of domain 

randomization (Tobin et al., 2018) with the follow-on research in structured domain 

randomization (Prakash et al., 2019) were selected.  This provide the foundation for this work; 

however, a more detailed literature review was examined to address the various components that 

constitute the concepts of this work.  The literature review covered works on generalization, 

DRL algorithms, synthetic-based training, the reality gap, domain randomization and works 

specific to using learning algorithms in the use case of drone racing.  A gap in the research 

literature was determined which specifically addressed the approach used in this work.  This 

work attempted to help fill that gap in the research literature. 

   A methodology was established to meet the stated gap and goals. Initially, the methodology 

addressed the selection of a DRL PPO-based algorithm with the constraint of not having to 

modify any part of the algorithm.  A framework of a simple example was selected as the means 

to explore the configuration settings of the DRL PPO-based algorithm.  This same framework 

was extended to several frameworks performing different studies.  Experiments were run for 

training, testing, and validation within the specified synthetic environment.  The synthetic 

environments, except for the simple example, were built around the use case of a drone flying 
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through a specified racecourse.  Unity, a 2D and 3D game development application, was used as 

the basis for the framework.  Unity provides a module called ML-Agents which incorporates 

machine learning agents into the synthetic environments.  ML-Agent came with a DRL PPO-

based algorithm built in and came with a C# scripting or programming interface.  ML-Agents 

provided three methods for the agent to sense the environment: environment observations, ray 

cast sensing and visual sensing.  The framework, based on Unity’s product, provided the means 

to build, generate or incorporate synthetic elements in a three-dimensional space which could be 

modified to meet the requirements of domain randomization and inclusion of context aware 

elements.  The C# scripting interface also allowed the integration of data collection elements 

based on the specified metrics for the experiments performed.  The analysis of the collected data 

specifically looked at the agent’s performance, but also examined through ablation studies the 

effect of each component had on the agent.   

     The methodology required the establishment of a baseline agent.  An agent was trained in a 

stable and common synthetic environment with the purpose using its performance as a baseline 

in comparison to agents trained under the SDR+ technique.  The training of the SDR+ agent 

required a scripted change in the synthetic environment to adjust both the naturalistic and 

physical-based domain randomizations.  The methodology required that both the baseline agent 

and the SDR+ agent were trained and then tested and validated in that same training 

environment.  The baseline agent was then tested an evaluated in the synthetic environment with 

the domain randomizations applied.  This was the method to determine the amount of 

performance degradation the baseline agent had when variance in the environment was 

introduced.  The final element of the of the methodology was to subject both the baseline and 

SDR+ agents to a completely different synthetic environment with all previous domain 
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randomization applied along with several new ones.  The purpose was to evaluate the 

generalization of the SDR+ agent.  An outline of this methodology is shown in Figure 32. 

 

 

Figure 32: Methodology overview for summary 

 

     Multiple experiments were performed for this work.  The first experiments involved a 

framework using a simple example of an agent detecting and then moving to where a target was 

located.  This framework was first used to determine the configuration settings for the DRL 

PPO-based algorithm.  Analysis indicated that all settings including environment observations, 

ray cast sensing and visual sensing, provided the best results for that agent.  It was observed that 

environment observations were required in ML-Agents otherwise it would not function properly.  

The length of training was also applied in the configuration settings.  Tensorboard, a utility to 

view the results, was used to examine the cumulative reward, episode length, policy loss and 

value loss.  All these graphs supported the analysis of the results for each experiment.  
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     The experiments with the simple example provided insight into two specific problems that 

can occur when training DRL agents.  Unexpected results indicated a drop off in cumulative 

reward values during training.  These training discrepancies were observed when the agents 

would vacillate on a reward boundary to gain reward.  The agent would ignore the true goal of 

reaching the target perform a greedy behavior in search of reward.  The second discrepancy was 

overfitting caused by context aware element providing too much reward.  Solutions to these 

problems involved using guidance for the context-aware elements versus some reward value and 

controlling the reward value provided to the agent at each reward or punishment trigger point.  

    The training environment for the baseline agent was a city scene synthetic environment.  This 

same environment was used to test and evaluate the inference model.  Five different naturalistic 

environments were built into the environment.  The springtime version of the environment 

provided the most generic environment to perform experiments for the baseline agent.  A valid 

inference model was obtained.  With the inference model integrated into the baseline agent, it 

performed as expected during training and evaluation experiments.  This same baseline agent 

inference model was then used in an experiment which modified the environment with the 

naturalistic domain randomizations one at a time.  The visual based domain randomization 

effects of these experiments had no effect on the trained baseline agent.  Upon further inspection, 

analysis, and additional research, it was discovered that the ML-Agents visual sensor was 

providing no value to the inference model.  The visual sensor requires more compute power and 

compute time at a level which became unusable for this work.  The visual sensor of ML-Agents 

was abandoned with that discovery.  This also implied that naturalistic domain randomization 

could not be evaluated.  Experimentation at this point turned to the use of just physical-based 
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domain randomizations.  The baseline agent was retested for the various physical-based domain 

randomizations and its performance degraded as expected. 

     The SDR+ agent was trained in the city scene with just physical-based domain 

randomizations which included gate size reduction, gate/path changes to position and orientation, 

and the number of gates used to include their spacing.  The training generated adequately 

performing inference models for each of the physical-based domain randomizations including 

when they were combined within the same experiment.  Some degradation in the performance 

was caused because the required resetting of episodes during training.  This caused the agent to 

train over small segments of the course and never learned to traverse the entire course. 

     A new and different synthetic environment was created for the final experiment.  The concept 

was to introduce the inference models for both the baseline and SDR+ agents into a new 

environment which not only contained the same domain randomizations applied during training 

but also combined and applied modifications to these domain randomizations.  New domain 

randomizations were also introduced.  This permitted an environment which differed and was 

dynamically modified in ways not seen during training.  The baseline agent was tested first, and 

the results showed a poor performance.  This was as expected since this experiment provided a 

greater amount of variation none of which the baseline agent had been trained.  The SDR+ agent 

was tested, and its performance was also degraded, but was much better than the baseline agent. 

Analysis revealed that any type of generalization most likely did not occur.  Improvement in 

performance of the SDR+ agent over the baseline agent was attributed to the training applied to 

the SDR+ agent.  This implies that the agent performs well when it is trained for the variations 

which might occur but, there is no clear indications it learns to adapt to variability in the 

environment for untrained variations. 



182 
 

    In summary, the framework and its use in associated experiments were successful in the 

training, testing, and evaluation of DRL PPO-based agents in synthetic environments.  The 

framework allowed the integration of not just the DRL PPO-based agent but allowed 

modification of the environment to support the successful use of domain randomization in 

various forms.  The environment was also modified with context-aware elements which 

successfully provide targeted guidance to the agent and supported the ability to increase the 

agent’s learning rate.  Initial experimentation with a simple example in the framework provided 

the means to determine optimized setting for the DRL PPO-based algorithm.  These simple 

example experiments were also used to find and then solve unexpected agent behaviors such as 

vacillating over a reward boundary and overfitting during training.  This provided a solid 

foundation which was ported to the drone use case.  Experiments were successfully performed to 

establish an agent to serve as a baseline.  Experimentation with the baseline agent generated the 

metric to use for a baseline performance.  This same baseline agent was used to validate that the 

effect of the reality gap was observed when it was tested under various forms of domain 

randomization.  The SDR+ technique of this work was successfully applied to an agent.  It was 

successfully trained and tested under various forms of domain randomization.  In all experiments 

the SDR+ agent performed better than the baseline agent proving the benefit of applying domain 

randomization during training.  Essentially, an agent trained with domain randomizations applied 

was able to adjust for the domain randomizations it experienced in training.   When the SDR+ 

agent was subjected to an environment which extended beyond its training environment it did not 

perform as expected.  This indicated that generalization in the form of the agent learning to 

generalize from a specific set of domain randomizations was not observed in the results.  Future 

work using other modifications or options which may provided better results for generalization.  
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Such modifications are better agent navigation capability, better integration with the DRL 

algorithm and the use of visual sensing. 
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Appendix A 

 

Images of Synthetic Training Environments 

 

 

Simple framework example agent getting to the target without falling off edges 

 

 

Simple framework example extending to three dimensions 
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Top-down view of city scene synthetic environment 

 

 

Angled view of city scene synthetic environment with limit boundaries and flight path 
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City scene synthetic environment showing springtime domain randomization (baseline) 

 

 

City scene synthetic environment showing winter domain randomization 
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Agent training in city scene synthetic environment – view from following camera 

 

 

Additional view of agent training in city scene environment 
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View of mountainous island with agent showing sensors during generalization test 

 

 

Top-down view of mountainous island showing racecourse and agent with sensors 
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View of agent generalization test in mountainous island synthetic environment 
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Appendix B 

 

Sample Data from Training Experiments 

 

 

Sample data output from during simple example training 
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Sample data output during baseline agent training 

 

 

Sample data output during SDR+ agent training 
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