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RÉSUMÉ

Dans cette thèse, des contributions scientifiques sur la compréhension des auto-oscillations
dans le caloduc auto-oscillant mono-branche (SBPHP) et le moteur fluidique auto-oscillant
(SOFHE) sont présentées. Le SBPHP est un tube de faible diamètre fermé à l’une des
extrémités, dans lequel une bulle de vapeur est suivie d’une colonne de liquide. Éton-
namment, chauffer l’extrémité fermée au-delà d’un certain seuil mène à des oscillations
de la colonne de liquide qui peuvent être maintenues indéfiniment. Ces auto-oscillations
peuvent être utilisées pour refroidir, pomper ou pour récupérer de l’énergie lorsque cou-
plées à un transducteur électromécanique (SOFHE). Toutefois, parce que la dynamique est
mal comprise, il est difficile de contrôler les auto-oscillations et de comprendre comment
concevoir des dispositifs performants. Dans cette thèse, des réponses à des questions fon-
damentales sur la dynamique sont obtenues, par une approche théorique et des validations
expérimentales, pour mieux comprendre le phénomène et guider la conception. Nous nous
demandons d’abord d’où proviennent les oscillations et pourquoi leur amplitude augmente
durant le démarrage. Nous montrons que l’inertie de la colonne de liquide couplée à la com-
pression/dilatation de la vapeur produit un système masse-ressort. Nous révélons ensuite
l’existence d’un mécanisme d’instabilité, dû à l’interaction du changement de phase qui
agit comme force de rétroaction positive et à la friction visqueuse, qui dissipe de l’énergie.
Le démarrage se produit lorsque le coefficient du changement de phase est supérieur au
coefficient de friction. Le système masse-ressort et le mécanisme d’instabilité sont validés
expérimentalement. Nous nous demandons ensuite : pourquoi l’amplitude sature durant
le démarrage ? Nous montrons, à l’aide de techniques de dynamique non linéaire, que cela
s’explique par l’existence d’un mécanisme limitant produit par les non-linéarités. Le sys-
tème atteint un cycle limite, produit par une bifurcation de Poincaré-Andronov-Hopf. En
contrôlant le changement de phase et la friction, il est possible d’augmenter l’instabilité et
de réduire la limitation et ainsi, d’augmenter l’amplitude des oscillations. Nous poussons
l’étude de la dynamique plus loin, de faibles à grandes amplitudes. Pour ce faire, nous utili-
sons la continuation numérique d’abord, puis obtenons des solutions analytiques précises.
Nous nous intéressons ensuite au comportement du SOFHE. Nous montrons comment
la dynamique, la puissance et l’efficacité sont influencées par le transducteur électromé-
canique. Des récupérateurs auto-oscillants (comme SOFHE) diffèrent qualitativement de
récupérateurs forcés. Finalement, nous revisitons nos résultats selon une approche éner-
gétique générale. Nous montrons que le mécanisme d’instabilité et le mécanisme limitant
peuvent être expliqués en fonction du travail produit par le changement de phase et par
la friction. Il est possible d’augmenter significativement l’amplitude, la puissance ou l’effi-
cacité en augmentant le travail fait par le changement de phase ou en réduisant celui fait
par la friction. Nous concluons en suggérant que contrôler l’amplitude et le synchronisme
du changement de phase par des tubes modifiés semble être une avenue très prometteuse
pour améliorer la performance des dispositifs.

Mots-clés : dynamique nonlinéaire, cycle limite, bifurcation de Hopf, mécanique des
fluides, microfluidique, refroidissement, récupération d’énergie, transducteur





ABSTRACT

In this thesis, scientific contributions on the understanding of the self-oscillations in the
Single-Branch Pulsating Heat Pipe (SBPHP) and on the Self-Oscillating Heat Engine
(SOFHE) are presented. The SBPHP is a tube of small diameter closed at one end in
which a vapor bubble is followed by a liquid plug. Surprisingly, heating the closed end
over a threshold leads to oscillations of the liquid plug which can be maintained indefi-
nitely. Those self-oscillations can be used for cooling, pumping or energy harvesting when
coupled to an electromechanical transducer (SOFHE). However the lack of understand-
ing of the dynamics makes it difficult to control the self-oscillations and to understand
how to design good devices. In this thesis, some fundamental questions on the dynamics
are answered by a theoretical approach and experimental validation, in order to better
understand the phenomenon and to provide guidelines for the design of effective devices.
We first look at where the oscillations come from and why the amplitude grows during
the startup. We show that the compression and expansion of the vapor coupled with the
liquid plug inertia leads to a spring-mass system. We then uncover the existence of an in-
stability mechanism due to the interplay of phase-change which acts as a positive feedback
and viscous friction, which dissipates energy. The startup occurs when the phase-change
coefficient is greater than the friction coefficient. Both the spring-mass system and the
instability mechanism are validated experimentally. We then ask: why does the amplitude
saturate during the startup? We show, using nonlinear dynamical techniques, that this is
explained by a limiting mechanism produced by the nonlinearities . The system reaches
a limit cycle, created through a Poincaré-Andronov-Hopf bifurcation. By controlling the
phase-change and the friction, one can promote the instability mechanism and reduce the
limiting mechanism such that the oscillations amplitude increases. We also study the dy-
namics further, from small to large oscillations amplitude. To do so, we use numerical
continuation first, and then obtain accurate analytical solutions. We then consider the
behavior of a SOFHE. We show how the dynamics, the power output and the efficiency
are impacted by the electromechanical transducer. We find that self-oscillating harvesters
(as SOFHE) differs qualitatively from forced-oscillating harvesters. Finally, we review our
results from a general energy perspective. We show that the instability mechanism and
the limiting mechanism can be explained by the phase-change and the friction work rate.
One can increase the oscillations amplitude or the power output and the efficiency signif-
icantly by increasing the phase-change work rate or reducing the friction work rate. We
conclude by suggesting that controlling the magnitude and the timing of the phase-change
by engineered tubes seems a promising approach to increase the performance of devices.

Keywords: nonlinear dynamics, limit cycle, hopf bifurcation, fluid mechanics, microflu-
idic, cooling, energy harvesting, transducer
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CHAPTER 1

INTRODUCTION

1.1 Context
The Pulsating Heat Pipe (PHP) is a device in which a vapor-liquid plug system self-
oscillates. Various PHP configurations are possible. One such configuration is the Single-
Branch Pulsating Heat Pipe (fig. 1.1) which consists of one straight small tube (a diameter
of 1mm is typical), closed at one end and open at the other . First, the tube is partially
filled with liquid. The closed-end is then heated while a heat sink maintains the mid-
section at room temperature. A vapor bubble eventually appears at the closed-end and
expands until an equilibrium is reached. At this point, the volume of vapor is fixed and
the liquid plug does not move (t0 in fig. 1.1). If the temperature of the heat source is
further increased above some threshold, the liquid plug starts oscillating. The oscillation
amplitude increases and then stabilizes, the system reaching a steady-state oscillating
regime (see fig. 1.2). These oscillations can be maintained indefinitely.

heat source heat sink

liquid air

vapor liquid air

t−2

t−1

t0

t1

t2

t3

t4

ti
m

e
(t
)

0

tube filled with liquid

closed end heated, vapor bubble appears

system reaches an equilibrium

heat source temperature
increased above a threshold,
equilibrium becomes unstable
and self-oscillations start

Figure 1.1 Schematic of the Single-Branch Pulsating Heat Pipe (SBPHP), with
oscillations starting at t0. Figure adapted from [112], in accordance with the
APS copyright policy.
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Figure 1.2 Experimental measurement of the meniscus (at the vapor - liquid
plug interface) during the startup of the oscillations. The oscillation amplitude
grows and then saturates, as the system reaches a steady-state oscillating regime.
Figure adapted from [112], in accordance with the APS copyright policy.

This phenomenon has been considered for a number of applications, including cooling,
pumping and energy harvesting. The PHP considered as a cooling technology was first
described by Akachi [3]. The self-oscillations transfer heat from the heat source to the
heat sink by both evaporation and condensation (latent heat) and convection in the liquid
plug (sensible heat), effectively cooling down the heat source. For cooling purposes, the
device considered is usually a multi-branch Pulsating Heat Pipe (MBPHP) as shown in
fig. 1.3. In a MBPHP, the tube follows a closed serpentine path, and has multiple vapor
bubbles and liquid plugs. The term Pulsating Heat Pipe (PHP) describes a family of
devices, including both the SBPHP and the MBPHP.

There are numerous cooling applications where the PHP could be a relevant cooling solu-
tion [72, 48]. One major application is for electronics cooling [13]. Data centers represent
today 1% of the global electricity consumption, with approximately 50% of that consump-
tion used for cooling only [63, 54]. According to the International Technology Roadmap
for Semiconductors 2015 (ITRS) [49], the energy consumption is expected to increased
by a factor of 2.6 from 2015 to 2029. Improved cooling strategies would help to limit
the energy consumption. At the chip level, according to the ITRS, the current cooling
solutions will no longer meet the requirements by 2030: “The high junction-to-ambient
thermal resistance resulting from a thermal management device such as a heat sink pro-
vides inadequate heat removal capability at the necessary junction temperatures for ITRS
projections at the end of this roadmap” [49]. A major challenge for cooling technologies is
the presence of hot spots (high thermal flux on a small surface). Currently, the heat gen-
erated in the chip is transferred by heat conduction through several layers until it reaches
the fins of the heat sink and can be removed by air convection. Higher heat transfer rates
could be obtained by using either forced liquid convection or phase-change rather than
heat conduction. This is why, according to ITRS: “New passive and forced liquid and
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phase change (liquid to gas) active heat sinks [...] hold the promise of decreased thermal
resistance and improved heat spreading capability to address the effect of hot spots”[49].
The various heat pipes (either conventional, pulsating or as vapor chambers) are promis-
ing technologies that could address those issues. Because they are based on phase-change,
they allow for very small thermal resistances. Heat pipes are also passive: they do not
need an external source of energy to activate a pump.

Figure 1.3 Schematic of the multi-branch Pulsating Heat Pipe. Figure repro-
duced from [61], in accordance with the license CC BY 3.0 [19].

The PHP self-oscillations can also be used as a pump when combined with a valve [25, 26].
In a PHP, heat is converted into mechanical energy (liquid plug oscillations). Part of this
mechanical energy can thus be used to pump another fluid. A related application is for
propulsion. Indeed, the PHP self-oscillations are at the heart of a toy called the putt-putt
boat [32, 33, 52] (more details in section 2.4.1).

SOFHE

vapor liquid

Õ
sensor

heat source

ambient work

Figure 1.4 Schematic of energy harvesting from the SBPHP self-oscillations,
using a piezoelectric membrane as the electromechanical transducer.

Finally, another application of the PHP self-oscillations is for energy harvesting. By cou-
pling a SBPHP to an electromechanical transducer (see fig. 1.4), part of the mechanical
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energy can be converted into electrical energy. We coined this device the Self-Oscillating
Fluidic Heat Engine (SOFHE) [78, 111]. Others have studied energy harvesting by cou-
pling a MBPHP to an electromechanical transducer [79, 125, 80, 81, 104]. This technology
can harvest energy from a heat source, to power a wireless sensor for example.

Various energy harvesting approaches are expected to facilitate the deployment of the
Internet of Things (IOT). The Internet of Things consists in the idea of a network of
sensors distributed in the environment communicating through the internet. As a result
of the deployement of the IOT, the number of sensors in our environment is expected to
grow tremendously. These sensors would make it possible to gather much more information
from our surroundings, enabling new technologies, products and services. Applications
are envisioned for smart home, smart health, transportation, cities, energy production,
factories and other domains [76]. In some cases, the information would be gathered locally
and then transmitted to the cloud to be analyzed. In other cases, it might be preferable to
analyze the information and take decisions locally (the sensor + cloud approach might be
too slow, too energy-hungry or impossible due to internet connection issues). The sensor
would then be coupled to a microcontroller and possibly to an actuator. This would allow
for distributed intelligence in the environment. Within the IOT paradigm, the distributed
sensors must be supplied in energy in some way. They could be connected to the power
grid, but this would be impractical or too costly in many applications: there is a need for
autonomous sensors. Energy can be supplied by a battery, but this limits the lifetime of
the device as battery replacement is also impractical. With a battery, there is a tradeoff
between the capabilities of the sensor/actuator (more capabilities meaning higher power
consumption), the life time of the device and the size and cost of the battery. If however
energy can be harvested from the environment, the sensor can be made truly autonomous
and the battery size can be kept to a minimum.

1.2 Problem Statement
In the Micros research group, directed by Luc Fréchette, waste heat recovery approaches
based on phase-change have been studied for close to ten years. The first device built by
Léveillé et al. [68] was a chamber made of a silicon substrate and a piezoelectric membrane,
filled with water. The chamber was continuously supplied in water via an external pump.
The bottom of the chamber was heated, leading to repetitive explosive evaporation in
the chamber with corresponding pulses of voltage at the piezoelectric membrane. After
each pulse, the vapor exited the chamber via an outlet and the chamber was filled again
with liquid via the inlet so that the cycle could repeat. Later on, self-oscillations, as in
a SBPHP, were observed in one of the device. The group was unaware of the literature
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on PHP at that point. The main advantage of the self-oscillating mode of operation is
that no external pump is needed. The energy harvesting device based on self-oscillations
was dubbed the Self-Oscillating Fluidic Heat Engine (SOFHE) in subsequent publications
[78, 111]. At the start of my PhD in the Micros Group, we had difficulties reproducing
the self-oscillations experiment. We also had no idea what were the conditions required
to generate those self-oscillations and how to control them.

Given this starting point, it is useful to discuss what should we aim for in the long term:
what would be a good SOFHE? To power wireless sensors, the SOFHE must be able
to produce the required power output, be as small as possible, have a low cost, have a
predictable behavior and be reliable. The performance of the SOFHE can be quantified
by combining the power, volume and cost in two figures of merits, the power density 1 (in
W/m3) and the power divided by the cost (in W/$), to be maximized. There is a range
of environments offering low to large thermal gradients. There is also a range of sensors,
from low energy consumption to high energy consumption. Increasing the SOFHE power
density extends the range of sensors that can be used for a given thermal gradient and
extends the range of thermal gradients for which a given sensor can be used. The question
now becomes: What would be a good SOFHE design (geometry, surface treatments, wall
materials, working fluid, etc.) such that it can be controlled, works reliably and performs
well based on the metrics identified above?

1.3 Research Strategy
In this section, I will explain what my research strategy is. I will first describe my research
philosophy (section 1.3.1), describing the research process in engineering, discussing scien-
tific understanding as a key step in that process and finally discussing how I approached
my project as part of the engineering research process. I will then present my research
questions and objectives (section 1.3.2).

1.3.1 Research Philosophy
Given the starting point described in section 1.2, how can we develop a good SOFHE
design? We could do a parametric study experimentally: vary one parameter at a time
(e.g. length of the liquid plug) and see the effect on the behavior and the performance.
However, I think that taking this approach alone is shortsighted. There are too many
parameters and those might be interrelated. Also, we would like to control not just the
obvious parameters but the overall design (e.g. there is a very large number of ways to

1. In some applications where the height does not matter as much, the surface power density (in W/m2)
might be a better figure of merit. The height might be a constraint (e.g. less than 1 cm).
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modify the internal surface of the tube). In my opinion, it is not enough to simply shoot
in the dark. To reach the desired level of control, we need a theoretical framework to reach
a basic understanding of the self-oscillating phenomenon.
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Figure 1.5 Research from an engineering point of view, from the discovery of
a phenomenon to the control, leading to the design of a good configuration.

A Representation of Research in Engineering

My advisor, Luc Fréchette, suggested to me the structure shown in fig. 1.5 to describe the
research from an engineering point of view. Starting from a discovered phenomenon, the
engineer wants to control it in order to build a good configuration, from which a technol-
ogy or a product can be produced. First, in the discover step, one needs to sufficiently
observe and describe the phenomenon. Then, one must construct a theoretical framework,
expressed as a mathematical model, to explain what one observes. Explanations can be
defined as answers to qualitative questions about the observed phenomenon. In the ex-
planation step, one must also be able to carry out retrodictions, which are predictions
about already known events, behavior, data, etc. From that, one wishes to know how the
system would behave outside the known conditions. The model should allow to predict
that behavior by tuning its parameters. Those predictions can be tested experimentally,
which increases the confidence into the model. Once the model is validated, the engineer
can use the qualitative and quantitative predictive power to control the phenomenon. The
engineer can use the model as a guide towards a good design. For example, one might find
the set of parameters maximizing a given performance metric. As the research progress,
the theoretical framework gets refined, leading to an increase in the precision and the span
of the explanations, predictions and control. The research also progresses from qualitative
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to quantitative inquiries. Along the way, one might use not one, but various mathematical
models, each being adapted to the state of the research. For example, in the development
of the gas turbine, the Brayton thermodynamic cycle can be used to understand the main
processes occuring in the engine, to find a limit to the efficiency and to evaluate if there is
room for improvement in a given design. However, to predict the mechanical constraints
on the various parts accurately, highly detailed numerical simulations are needed.

Scientific Understanding

I would like to linger now on the explanation/understanding step, since it will occupy
most of my thesis. A major goal of the theoretical framework is to establish a scientific
understanding of the phenomenon. To reach that objective, proper choices must be made
in the research strategy, both in terms of modeling and in terms of experiments. So, what
exactly do we mean by scientific understanding? In my view, understanding is about
building intuitions about the physics. One must be able to make qualitative predictions
about the system without having to solve/simulate the equations each time. This point
of view has been expressed by several scientists in the past. Werner Heisenberg starts his
famous paper introducing the Heisenberg’s uncertainty principle in those terms:

We believe we understand the physical content of a theory when we can see its

qualitative experimental consequences in all simple cases and when at the same time

we have checked that the application of the theory never contains inner contradictions.

[53] (english translation of [44])

Richard Feynman describes what it means to understand in those terms, citing Dirac:

What it means really to understand an equation—that is, in more than a strictly

mathematical sense—was described by Dirac. He said: “I understand what an equa-

tion means if I have a way of figuring out the characteristics of its solution without

actually solving it.” So if we have a way of knowing what should happen in given

circumstances without actually solving the equations, then we “understand” the equa-

tions, as applied to these circumstances. A physical understanding is a completely

unmathematical, imprecise, and inexact thing, but absolutely necessary for a physi-

cist. [31]

John Hopfield notice the following about understanding in an discussion about artificial
intelligence:

There is the question of what do you mean by understand? When I taught freshman

physics, I used to say I wanted to get students to understand the subject, to understand

Newton’s laws. I didn’t want them to simply memorize a set of examples to which
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they knew the equations, to write down to generate the answers. I had this nebulous

idea of understanding so if you looked at a situation you can say: I expect the bowl to

make that trajectory for example. So, I mean an intuitive notion of understanding.

I do not know how to express that very well, I have never known how to express it

well and you run smack up against it when you choose these simple neural networks,

feed-forward neural networks, which do amazing things and yet you know contain

nothing of the essence of what I would have felt was understanding. Understanding

is more than just an enormous lookup table. [36] (adapted for writing)

Insights about the notion of understanding can be found in the philosophy of science.
De Regt and Dieks [21] studied what scientific understanding is in a very careful manner.
They proposed the following definition for scientific understanding in two criteria:

1) Criterion for Understanding Phenomena (CUP): A phenomenon P can be
understood if a theory T of P exists that is intelligible (and meets the usual
logical, methodological and empirical requirements)

2) Criterion for the Intelligibility of Theories (CIT): A scientific theory T
is intelligible for scientists (in context C) if they can recognise qualitatively
characteristic consequences of T without performing exact calculations [21].

Thus, there is a distinction between understanding a phenomenon and understanding a
theory 2. According to the CUP criterion, a theory is required to establish an understand-
ing of a phenomenon. This theory must be intelligible (one must be able to understand
it). A theory is intelligible if it meets the CIT. We see that the CIT shares similarities
with the definitions above, by putting emphasis on qualitative predictions and those being
possible without having to solve equations.

I would like to suggest a geometrical viewpoint of scientific understanding, by considering
the configuration space, the space of parameters required to described a phenomenon (the
following discussion is based on the generic example is shown in fig. 1.6). The phenomenon
may exhibit qualitatively different behavior within the configuration space (behavior 1,
2 and 3), each separated by frontiers. We may also be interested in some quantitative
property, function of those parameters (a performance metric for example). Let’s say the
system is at a point A, in a non-desirable behavior (behavior 1, performance=0). If we
possess scientific understanding, we can recognize that increasing the parameter p1 so that
the system moves to B will lead to a change of behavior. Furthermore, we recognize from
point B that a proper change in p1 and p2 will lead to an increase in the performance.

2. Insights on that subject can be found elsewhere in the philosophy of science [37, 14].
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More generally, if we possess scientific understanding, we would be aware of the possible
behaviors and that a positive performance is obtained in behavior 2. Ideally, we would
know that the performance has a single maximum value. Let’s give concrete examples.
Example 1: two-dimensional linear systems described by the equation ẋ = Ax, where A
is a 2 × 2 matrix, containing four parameters. Qualitatively different behaviors can be
classified according to the determinant and the trace of the matrix A as shown in fig. 1.7
(see [107, Chap.5] for the theory). There, scientific understanding of the mathematical
system is achieved, as we are able to 1) recognize the possible behaviors, 2) predict the
behavior based on two macro-parameters, 3) understand how the behavior can be modified
by tuning the properties of the system. Example 2: Mitcheson et al. [73] studied energy
harvesting for forced oscillators, for which they were able to obtain analytical solutions.
Figure 1.8 shows various behaviors and the dimensionless power output as a function of
dimensionless parameters. Here, scientific understanding is achieved because a theory of
the phenomenon exists and the theory enables us to 1) recognize the possible behaviors,
2) predict the behavior based on two macro-parameters, 3) qualitatively predict how the
performance behaves in terms of those parameters and 4) understand how the behavior
and the performance can be modified by tuning those parameters.
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Figure 1.6 Geometrical representation of scientific understanding; qualitative
properties (e.g. different behaviors) and quantitative properties (e.g. oscilla-
tions amplitude, oscillations frequency, a performance metric) can be shown as
functions of the position within the configuration space (only 2 parameters are
shown here, but the space could obviously have many more dimensions).
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TrA

detA
(TrA)2−4(detA)=0

saddle

center

sink source

line of stable fixed points line of unstable fixed points

spiral sink spiral source

degenerate sink degenerate source

Figure 1.7 Classification of two-dimensional systems described by the equation
ẋ = Ax; The figure is slightly modified from the original work of Gernot Salzer
(https://tex.stackexchange.com/a/347401) in accordance with the license
CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/).

(a) (b)

Figure 1.8 Energy harvesting for a specific configuration of a forced oscilla-
tor, called velocity-damped resonant-generator (VDRG), with a electromagnetic
transducer and where some practical constraints are considered; (a) operating
map with various behaviors (1. unable to operate, 2. operate at the displace-
ment limit, 3. optimal operation, 4. more power available if the damping factor
can be increased above ζmax), (b) normalized power (defined by a dimensionless
number). The axis are given by ωc = ω/ωn with ω the forcing angular frequency
and ωn the natural frequency, and Zl/Y0, with Zl the maximum possible am-
plitude (internal size of the device) and Y0 the amplitude of the motion of the
device (from an external excitation). Figure from Mitcheson et al. [73, Fig.8,9],
in accordance with IEEE license ©2004 IEEE.

A useful point to make is that it might be easier to understand a phenomenon within one
configuration space than in another, such that a change of basis might be useful. We see
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that in the two examples above. For the two-dimensional linear systems (fig. 1.7), there was
originally four parameters (the elements of the matrix A). The behavior of the system can
however be completely described by only two parameters, the determinant and the trace
of the matrix A. For the energy harvesting example (fig. 1.8), the oscillator is described
by numerous physical parameters (the mass, the stiffness, the friction coefficient, etc.).
However, the behavior and the dimensionless power output can be described as functions
of only two dimensionless numbers ωc and Zl/Y0. The change of basis reduces the number
of dimensions, making understanding easier to achieve but more abstract. An additional
step is required if one ask what is the effect of a single physical parameter (e.g. the mass
of the resonator). This especially occurs when nondimensionalizing a problem.

According to De Regt and Dieks [21], scientists use various toolkits to achieve scientific
understanding as defined by the CUP and CIT, such as: causality chain, visualization,
abstract reasoning (general behavior of solutions of mathematical equations). Such tools
make it possible to get the intuition required to predict the behavior of the system. De Regt
and Dieks also mention the importance of skills: understanding is available only if one
possesses the required skills to apply the toolkits adapted to the problem.

What it Means For my Project

I would like now to discuss how the desire to reach scientific understanding, with the
ultimate goal of guiding the design of devices, influenced my approach. First of all, I
identified early on fundamental research questions about the physics of the SBPHP, to
guide the modeling approach (see section 1.3.2). Answering those uncovers fundamental
causal mechanisms leading to the observed dynamics and thus enables scientific under-
standing. To find those answers, I made key choices in the modeling approach (ODEs,
continuously differentiable) such that classical mathematical approaches could be applied
(linear stability analysis, normal forms, averaging, numerical continuation).

Throughout the research, I insisted on taking analytical approaches as much as possible,
as opposed to numerical techniques. With an analytical solution, we see explicitly the
effects of the parameters in the solution, such that we can naturally see how the behavior
changes within the configuration space. The analytical solution makes it easy to build
intuitions about the physics, to internalize the dynamics. The analytical approaches are
especially useful to find frontiers delimiting qualitatively different behaviors (bifurcations).
They also make it possible to find the key parameters of the problem, defining the minimal
configuration space to study. In contrast, a numerical solution is much narrower, being
only valid for the specified values of the parameters; a large number of simulations might
be required to characterize the dynamics and definitive answers are more difficult to reach.
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Furthermore, it is (relatively) easy with an analytical solution to follow the impact of the
physics (at the differential equations level) on the solution’s characteristics (amplitude,
frequency, etc.). Numerical approaches on the other hand works more like black boxes,
we do not really know what happens between the differential equations and the final
solution. Of course, when highly accurate results are required, one typically has to resort
to numerical approaches, but this is usually beyond the understanding step.

The contrast between my vision and the literature is particularly apparent with regards
to the phase-change modeling. I restricted my analysis to a simple, but highly relevant
phase-change expression, whereas in the literature, there is a strong tendency towards more
and more sophisticated models to describe the phase-change as accurately as possible. I
personally do not care as much about making highly accurate predictions. Keeping in
mind that we might want to control the phase-change, those accurate models could quickly
become obsolete 3. I prefer to first understand clearly the role of the phase-change in the
dynamics. I want to know if we should tune the phase-change in order to improve the
performance, if the effect would be significative and if so, based on which principles the
phase-change should be tuned.

Finally, my experimental approach consisted mostly in targeted experiments, to validate
the theoretical model and our scientific understanding. I preferred that approach to a
large blind parametric study without any prior understanding of the dynamics. Of course,
this is not to say that exploratory experiments do not have their place.

1.3.2 The Research Questions and Objectives
Going back to the basic question (section 1.2):

Q0) What would be a good SOFHE design (geometry, surface treatments, wall materials,
working fluid, etc.) such that it can be controlled, works reliably and performs well in
terms of power density and power per cost?

I suggested above that, in order to reach the desired level of control, we must first establish
a theoretical framework to produce a basic understanding of the self-oscillations. To guide
the theoretical and experimental approaches, and to verify if scientific understanding is
achieved, I identify below key qualitative questions about the physics.

The oscillating phenomenon shown in fig. 1.2 is surprising because boundary conditions
are constant (heat source and heat sink temperatures, external pressure) but we obtain a
periodic motion nonetheless. One may thus ask:

3. Those models should remain useful though for the design of MBPHP, in the cases where one prefers
not to control the phase-change and prefer to stick to plain internal surfaces.
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Q1) Where do the oscillations come from?

A related question is what defines the oscillation frequency. From the small oscillations
at the early stage of the startup, one could expect that friction would introduce damping
in the system and that the oscillation amplitude would decrease. On the contrary, during
the SBPHP startup, the oscillation amplitude grows exponentially. One may then ask:

Q2) Why does the oscillations amplitude increase during the startup and what are the
required conditions for the startup to occur?

The oscillation amplitude eventually saturates at the end of the startup, the system reach-
ing a steady-state oscillating regime. One may ask:

Q3) Why does the oscillations amplitude saturate and what defines the oscillation ampli-
tude in the steady-state regime?

By answering these questions, a better scientific understanding of the SBPHP dynamics
should be achieved. Indeed, these questions are chosen to highlight the causal mechanisms
leading to the observed behavior (causal explanations being a key tool for scientific un-
derstanding as explained above). From the answers to these questions, we should better
understand how to control the self-oscillations (startup conditions, frequency, amplitude,
etc.). At this point, one may ask the following question regarding energy harvesting from
SBPHP self-oscillations:

Q4) How does an energy harvesting device based on SBPHP oscillations behave?

More specifically, one would like to understand how to maintain the self-oscillations despite
the dissipative effect of the electromechanical transducer, how the oscillation dynamics is
impacted by the transducer and how one can increase the power output or the efficiency.

This PhD project aims at answering these questions. The objectives can be directly
translated from the research questions above.

1.4 Thesis Plan and Original Contributions
Here, I briefly present the plan of the thesis. I will first review the state of the art
(chapter 2), ending with the current knowledge on the research questions identified above
(section 2.5). I will conclude that the current answers are incomplete which led me to
investigate these questions myself. In the following chapters (chapters 3 to 6), I present my
efforts at answering those questions, which constitute original contributions to scientific
knowledge. I present each chapters in more details below. This thesis is by article:
Chapters 3, 4 and 6 are based on articles published or submitted to scientific journals.
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Chapter 3. Why it oscillates and what leads to the startup. In this chapter, we
answer the questions of where the oscillations come from, why the oscillations increase
during the startup and what are the required conditions for the startup to occur. To do
so, a mathematical model is proposed, which is then linearized and solved. We show that
the oscillations are explained by the coupling of the spring effect of the vapor and the
inertia of the liquid, which leads to a spring-mass system. The startup is explained by
an instability mechanism: the phase-change acts as a positive feedback and the viscous
friction dissipates the energy. The startup occurs when the phase-change coefficient is
greater than friction coefficient. This understanding is validated experimentally.

Chapter 4. What leads to the steady-state regime. In this chapter, we answer
the question of why the oscillations amplitude saturates and what defines the oscillation
amplitude in the steady-state regime. We first show that, in the startup experiment, the
trajectory in phase-space converges towards a limit cycle (corresponding to the steady-
state). We obtain an analytical approximation of the dynamics (normal form) which
includes the effect of the nonlinearities. We show that the amplitude initially grows due
to the instability mechanism and then saturates due to a limiting mechanism, produced
by the nonlinearities. We then prove the existence of the limit cycle, which is created via
a Poincaré-Andronov-Hopf bifurcation. Finally, based on our mathematical results, we
explore how to increase the oscillations amplitude.

Chapter 5. Accurate solution for the steady-state. In this chapter, I first explore
the dynamics in more details (waveform, spectral analysis), over a large range of the
parameters, by numerical continuation. I then obtain precise analytical approximations
valid over that range, using averaging.

Chapter 6. How an energy harvesting device behaves. In this chapter, we answer
the question of how an energy harvesting device based on the SBPHP would behave. A
load (a dissipative force representing a velocity-damped transducer) is added to the model.
Based on the analytical expressions of chapter 5, we study the effect of the load on the
dynamics, the power output and the efficiency. We then discuss the design of SOFHE
based on our results. We highlight how energy harvesting from a self-oscillator differs
from a forced oscillator.

Chapter 7. Energy persective. In this chapter, I revisit the analysis of the dynamics
and the energy harvesting by taking an energy perspective. I show how we can analyze
the device by considering the energy stored in the resonator, the energy injected by the
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phase-change and the energy dissipated by friction. This description enables a general
understanding valid for most configurations and provide clear guidelines for the design.
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CHAPTER 2

STATE OF THE ART

In this state of the art, I will present important results and approaches in the PHP, focusing
mostly on the SBPHP. I will first present a very basic result for PHP, a criterion ensuring
the formation of liquid plugs in the PHP (as opposed to the liquid resting at the bottom
of the tube), based on the Bond number (section 2.1). I will then briefly summarize
the experimental results in MBPHP (section 2.2). The research on MBPHP aims mostly
at characterizing, predicting and improving the thermal performance, such that it can
be a reliable and performant technology for cooling applications. I will then focus on
the SBPHP dynamics. I will start by discussing detailed experimental observations in
the SBPHP (section 2.3). I will follow by discussing various approaches to model and
understand the dynamics (section 2.4). Finally, I will describe the state of the art on my
research questions (section 2.5).

2.1 Criterion for the Formation of Liquid Plugs
One important result in the PHP literature is the existence of a critical diameter to ensure
the formation of liquid plugs in the PHP [127, 39]. In the static case, a liquid plug is
subject to both gravitational force and surface tension on both ends (on the capillaries).
For a large enough tube, the gravitational force would dominates and the liquid would
simply rest to the bottom of the tube. For a small enough tube, the surface tension is
strong enough such that liquid plugs forms, as seen on fig. 1.1. The ratio between the
gravitational force and the surface tension is given by the dimensionless Bond number [72]
(often called the Eötvös number):

Bo =
g (ρℓ − ρg)D

2

γ
, (2.1)

where g is the gravitational acceleration, ρℓ and ρg are respectively the density of the
liquid and the surrounding gas (vapor here), D is the inner diameter and γ is the surface
tension. A generally accepted upper limit to ensure the formation of liquid plug is Bo = 4

[127, 39, 72]. Solving for D, we obtain a critical diameter:

Dcrit = 2

√︃
γ

g (ρℓ − ρg)
. (2.2)
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We must have D < Dcrit to ensure the formation of liquid plugs. For water at 20 ◦C, we
get Dcrit = 5.5mm.

2.2 Experimental Results for MBPHP
Since Akachi’s patent [3], most of the research on PHP has focused on Multi-branch Pul-
sating Heat Pipes (MBPHP, fig. 1.3), with cooling applications in mind. Two important
research themes in MBPHP are 1) the measurement of the thermal performance, as pa-
rameters of the system are varied and 2) the visualization and characterization of the flow
within the MBPHP. PHP with thermal conductivity of 10 to 15 times the conductivity
of pure copper have been measured [71]. It is found that, as the heat input at the evap-
orator is increased, the thermal resistance of the MBPHP generally decreases (meaning
the thermal performance increases) until the device reaches dry-out [60, 71, 106]. Experi-
mental evidence suggests that the thermal performance of MBPHP is related to the flow
regimes inside the MBPHP [59, 39, 71, 106]. Typically, as the heat input is increased,
one successively observe no oscillations (static regime), small amplitude oscillations, large
amplitude oscillations, circulation with flow reversal and, finally, stable circulation. Those
regimes are associated with a gradual increase in thermal performance. In the circulation
regime, the flow is annular (instead of vapor bubbles and liquid plugs) in some portions
of the tube. Beside the heat input, numerous parameters have been shown to impact the
flow regimes and the thermal performance of the MBPHP, including the filling ratio, the
inclination angle (relative to the gravitational field), the number of turns and the choice
of the working fluid. The effects of the parameters are complex and interrelated. It is gen-
erally accepted that there exist an optimal filling ratio (depending on the working fluid,
a ratio between 20% and 80% is recommended [127, 39]). MBPHP are found to perform
better in a vertical orientation than horizontal orientation. However, the effect of the
orientation reduces as the number of turns is increased [127, 39]. Various working fluids
have been used in MBPHP, including water, water with nano particles, acetone, ethanol,
methanol, FC-72, HFE-7000, R-245fa and R-134a [127]. Which working fluid performs
the best varies according to the device configuration.

2.3 Experimental Observations of the SBPHP
It is useful to first go back to the description of the oscillations in the SBPHP. On that
subject, important contributions were made by Das et al. [20] and Rao et al. [92, 93]. I will
briefly review only Rao et al. [93] here, since it builds upon the previous publications and
constitute the most refined experiment. The experimental setup is a glass tube oriented
vertically, heated at the top by a transparent evaporator and cooled at the bottom by a
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transparent condenser (see fig. 2.1). The working fluid is FC-72. The glass tube has an
internal diameter of 2mm and the evaporator and condenser lengths are both 20 cm. The
position of the meniscus is tracked by a high speed camera and synchronized with pressure
measurements of the vapor. In a similar setup, Das et al. [20] explain that there are no
oscillations for a low temperature of the evaporator. As the evaporator temperature is
increased above a threshold, self-oscillations start and are maintained over time.

It is observed in the experiment that the meniscus oscillates between the evaporator and
the condenser sections, as shown in fig. 2.2. A thin liquid film left on the wall is also
observed. This liquid film is believed to be responsible for a large part of the evaporation,
since it has a low thermal resistance. In the experiments of Rao et al. [93] measurements
were made at a fixed temperature of the evaporator of Te = 46 ◦C and at several temper-
ature of the condenser, Tc: 28 ◦C, 24 ◦C, 20 ◦C and 16 ◦C. For Tc = 28 ◦C, oscillations of
constant amplitude (approximately 10 cm peak-to-peak) with a frequency of 1.2Hz were
observed. For Tc = 24 ◦C, Tc = 20 ◦C and Tc = 16 ◦C, it was observed that the menis-
cus makes a large oscillation, going into the evaporator, followed by a smaller oscillation,
which remains in the condenser (as seen in fig. 2.2). This cycle then repeats itself. The
authors suggest that the meniscus is unable to go back into the evaporator during the
small oscillation because of the lasting presence of the liquid film into the evaporator,
which is still evaporating.

Rao et al. [93] also measured the temperature of the vapor during the oscillations, with
a small thermocouple located in the vapor. It was found that the vapor was superheated

Figure 2.1 Experimental setup in Rao et al. [93]. Figure reproduced with the
authorization of Elsevier.
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at all time and close to the evaporator temperature (between 44 ◦C and 46 ◦C). Further-
more, the temperature of the vapor does not vary much during the oscillations (although
variations could be underestimated due to the frequency response of the thermocouple).
Similar results were obtained by Gully et al. [41] where a SBPHP was tested in cryogenic
conditions to avoid radiation between the thermocouple and the environment, to obtain
precise measurements of the vapor temperature.

Rao et al. [93] explains that the pressure in the vapor varies due to both change of volume
and changes of mass (due to evaporation and condensation). Measurements shows that
the maximum peak of pressure does not occur at the upmost position of the meniscus,
but shortly after (during the downward motion). This is explained by the evaporation
of the liquid film. The mass of vapor can be obtained indirectly using the ideal gas law:
mv = PvVv/(RvTv), where Pv, Vv and Tv vary over time and are measured experimentally.

2.4 Modeling and Understanding in UPHP and SBPHP

In order to better understand the dynamics in the MBPHP, researchers have investigated
simpler devices which still exhibit the same basic phenomenon of self-oscillations (see
fig. 2.3). Those includes the U-shaped Pulsating Heat Pipe (UPHP) which is a MBPHP
with only two branches, with only two vapor bubbles and one liquid plug and the Single-
branch Pulsating heat pipe (SBPHP) which has only one branch open to the ambient,
with only one vapor bubble and one liquid plug. The UPHP and the SBPHP cannot
exhibit all the behaviors observes in the MBPHP (for example, no circulation is possible).
Nonetheless, they both exhibit self-oscillations.

2.4.1 Putt-Putt Boat

The putt-putt boat is a toy, with a propulsion mechanism based on the same principle as
the PHP (see fig. 2.4). A water circuit, comprising a chamber and a channel connected
to the surrounding water, is filled with water. The water in the chamber is heated by a
candle, vapor is generated and leads to pulsations of the water in the channel, producing
thrust. The physics of the PHP has been studied by Finnie and Curl [33, 32] in 1963
and revised later on by Jenkins [52] in 2013. There is no reference to those publications
in the PHP literature. I suspect that, if they have been known, they would have greatly
influenced the modeling of the PHP and the understanding of its physics.



2.4. MODELING AND UNDERSTANDING IN UPHP AND SBPHP 21

Figure 2.2 Schematic of the oscillations and measurements of the meniscus
position and pressure of the vapor, from Rao et al. [93]. Figure reproduced with
the authorization of Elsevier.
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Figure 2.3 Various types of PHP, of increasing complexity: Single-branch Pul-
sating Heat Pipe (SBPHP) on top, U-shaped Pulsating Heat Pipe (UPHP) in
the middle and Multi-branch Pulsating Heat Pipe (MBPHP) at the bottom.

Modeling

Jenkins explains the modeling approach as follow. The ideal gas law is applied to the
vapor, leading to:

P =
C (N0 + S)

V0 − Ay
, (2.3)

where P is the vapor pressure, C is a constant (C = RT with R the universal gas constant
and T the temperature), N0 + S is the total quantity of vapor (in moles) with N0 the
quantity at equilibrium and S the quantity generated by phase-change (S = 0 at equi-
librium), V0 is the volume of vapor at equilibrium, A in the cross-sectional area and y is
the displacement of liquid relative to the equilibrium. The temperature of the vapor is
assumed constant. To study the startup, one may consider small oscillations around the
equilibrium, and linearize the pressure 1using a Taylor expansion for both y and S close
to 0:

P ≈ P0 + (P0/N0)S + k1y , (2.4)
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Figure 2.4 Schematic of the putt-putt boat; figure inspired by [52, Fig.9].

where P0 = CN0/V0 and k1 = AP 2
0 /(CN0). The quantity of vapor S must now be found,

it varies according to the phase-change. It is assumed that there is a constant evaporation
rate in the reservoir. As the liquid moves in the chamber, condensation occurs on the
cold walls. The condensation is assumed proportional to the available surface, and is thus
proportionnal and opposite to y. Assuming that y = 0 corresponds to the equilibrium
where the evaporation and condensation balance, the net evaporation rate is:

Ṡ = k2 y , (2.5)

where k2 is a positive constant. Here, the dependency over the position y does not
come from the evaporation (which is constant) but from the condensation rate, which is
proportional to the position.

The (linearized) momentum balance is then applied to the liquid, considering the pressure
difference (with P0 the external pressure) and a friction force Ff :

∑︂
F = mℓ ÿ = (P0 − P )A+ Ff . (2.6)

Considering a friction force proportional to the velocity (with Ff = −cẏ and γ = c/mℓ)
and considering eqs. (2.4) and (2.5), we get:

ÿ + γẏ + ωn
2y = −

(︃
k2P0A

mℓN0

)︃∫︂ t

0

y dt . (2.7)

Jenkins explains that, for sinusoidal motion, the right-hand-side of eq. (2.7) is in phase with
the velocity ẏ and thus act as a positive feedback, injecting energy into the oscillations. The

1. I corrected a typographical mistake in the linearized pressure, [52, Eq.(102)].
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criterion for instability (for the startup of the oscillations) is given as (k2P0/mℓN0) > ωn
2γ.

If the criterion is met, the positive feedback term is greater that the friction force, leading
to oscillations growing over time after a perturbation of the equilibrium. It is understood
that the oscillations amplitude eventually saturates due to nonlinearities.

My Comments

This analysis by Finnie and Curl [33, 32] and Jenkins [52] is in my opinion one of the most
insightful on the physics of the self-oscillations. Of course, the model is a simplification
of the reality, but the necessary physics required to describe the dynamics are considered.
One insightful aspect in the modeling is that the linearization of the pressure, eq. (2.4),
allowed to separate the effect of the change of mass (second term) and the effect of a
change of volume (third term). In eq. (2.7), we can see that the change of mass leads
to the positive feedback while the change of volume produces a spring force. Also, the
instability is understood as a balance between the phase-change and the friction terms.
Unfortunately, those publications and the understanding of the physics derived from the
model do not seem to be known from the PHP community.

A number of modifications to the model and the analysis would be needed to describe
the SBPHP (instead of the putt-putt boat) and to reach a more complete understanding.
Here are a few:

1. The dynamical equations are not solved, so there is no description of the dynamics
over time. This could be useful in order to better understand the dynamics. A
sinusoidal motion is suggested by Jenkins, but eq. (2.7) is actually a third-order
differential equation, so the solution is more complicated.

2. The validity of the instability criteria is unclear, because it seems to assume sinu-
soidal motion in Jenkins [52].

3. The saturation of the oscillations amplitude is explained by the nonlinearities, but
there is no theoretical analysis of the amplitude of the oscillations (no study beyond
the linearized equations). How to controlled the oscillations amplitude thus remained
an open question.

4. There is typically no reservoir of liquid maintaining constant evaporation in a SBPHP,
so the phase-change expression should be modified.

5. The parameter for phase-change, k2, is not expressed in terms of physical quantities.
Introducing a more precise expression would make it easier to understand and predict
the behavior.
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6. The friction is not sufficiently described. The expression of γ is not given. The fact
that the flow is oscillating and how this impacts the expression of the friction force
is not investigated.

7. The evolution of the temperature of the vapor and the saturation temperature are
not included.

2.4.2 Zuo Model
Zuo et al. [129, 130] published one of the first attempt at understanding the dynamics of
a UPHP through modeling. Here, I first described their approach and then provide my
comments.

The Approach

Zuo et al. start by finding expressions for the various forces applied on the liquid plug
(pressure on both ends and viscous friction) and then apply momentum balance on the
liquid plug, to obtain a differential equation describing the dynamics. The geometry
considered is the one shown in fig. 2.5, with the line representing the tube with multiple
vapor bubbles and liquid plugs. In the explanations of the model below, we will consider
two vapor bubbles and one single liquid plug, for simplicity.

Figure 2.5 Geometry considered by Zuo et al. [129] for the modeling; figure
inspired by [129, Fig.6].

The pressure in the vapor in each branch is given by the ideal gas law, P = mRT/V . The
temperature of the vapor is assumed to always be at saturation, so T = Tsat. The position
of the liquid plug in the device is given by x, defined as the distance from the center of
the U-turn to the center of the liquid plug. In the following, A is the tube cross-sectional
area, L is the total length of the UPHP, ϕ0 is the working fluid ratio 2, R is the vapor gas
constant, and Qe is the heat transfer rate. The volume of vapor in the branch 1 is given

2. The filling ratio ϕ0 is not clearly defined by the authors. According to Ma [70, p.142], the filling ratio
is the volume of liquid (at equilibrium, before the oscillations) divided by the total volume, so ϕ0 = Vℓ/Vt.
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by:

Vv,1 = (L/2)Aρℓ(1− ϕ0)/ρv + Ax . (2.8)

Now, the mass of the vapor in the first branch at a time t is given by the mass at time
t = 0 plus the change of mass due to phase-change from t = 0 to t. The mass at time
t = 0 is given by mv,1(t = 0) = (L/2)Aρℓ(1−ϕ0). It is considered here that the heat input
Qe leads to phase-change, with ṁv,1 = Qe/hfg, so that the change of mass from t = 0 to
t is

∫︁ t

0
ṁv,1dt. This leads to:

mv,1 = (L/2)Aρℓ(1− ϕ0) +

∫︂ t

0

Qe

hfg
dt . (2.9)

We note that the heat input Qe in the model is fixed (considered positive and constant).
Zuo et al. [129] considered Qe = 30W in their simulations. The pressure in the vapor
bubble in the branch 1 is then:

Pv,1 =
mv,1RTsat

Vv,1
=

(L/2)Aρℓ(1− ϕ0) +
∫︁ t

0
Qe

hfg
dt

(L/2)Aρℓ(1− ϕ0)/ρv + Ax
RTsat . (2.10)

Quantities in the branch 2 can be obtained in a similar way, leading to a net force:

F = ∆PA =
−2A2RTsat

((L/2)Aρℓ(1− ϕ0)/ρv)
2

(︃
(L/2)Aρℓ(1− ϕ0) +

Qe

hfg
t

)︃
x . (2.11)

The friction force on the liquid plug is obtained by assuming a Poiseuille flow, leading to:

Ff = −8µℓϕ
2
0

Lp

D

dx

d t
, (2.12)

where p and D are the perimeter of the cross-section and the hydraulic diameter, respec-
tively. Note that, for a circular cross-section, p/D = πD/D = π. With ϕ2

0 = (Lℓ/L)
2, this

leads to (the following expression does not appear in the original paper):

Ff = −8πµℓ

(︃
Lℓ

L

)︃2

L
dx

d t
= − −8πµℓ Lℓ

2

L

dx

d t
. (2.13)

Given that the cross-section is constant, we have ϕ0 = Lℓ/L, with L the total length. We note that this
definition seems to be the one used by Zuo et al., based on the expression of the mass mℓ in eq. (2.14):
mℓ = LAρℓϕ0 = ρℓAL(Lℓ/L) = ρℓALℓ, which is indeed the mass of liquid.
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The momentum balance on the liquid plug becomes [129, Eq.(5)]:

d2 x

d t2
+

(︃
8µℓpϕ0

ρℓDA

)︃
d x

d t

+
2A2RTsat

(LAρℓϕ0) ((L/2)Aρℓ(1− ϕ0)/ρv)
2

(︃
(L/2)Aρℓ(1− ϕ0) +

Qe

hfg
t

)︃
x = 0, (2.14)

=0 missing ▶correctedwhich is a second-order differential equation with non-constant
coefficients (the stiffness k grows over time without bounds because of the term (Qe/hfg)t).

My Comments

The approach of Zuo et al. [129, 130] is the earliest I could find where the momentum
balance is applied to the liquid plug and where a differential system of equations is obtained
(besides the the putt-putt boat, section 2.4.1). The same basic approach (momentum
balance + ideal gas law + expression for phase-change + friction force expression) was
used later on by many researchers to model the SBPHP and the UPHP and is now generally
accepted as a valid approach by the community.

There is a number of difficulties I could not figure out regarding the model which are
worth mentioning. I would expect the volume of vapor at equilibrium (x = 0) to be given
by 3 Vv,1 = (1−ϕ0)(L/2)A but Zuo et al. find Vv,1 = (L/2)Aρℓ(1−ϕ0)/ρv. It is unclear why
the ratio ρℓ/ρv appears there. Similarly, the mass of vapor mv,1 at equilibrium should
be mv,1 = ρvVv,1 = ρv(1 − ϕ0)(L/2)A, but Zuo et al. find Vv,1 = (L/2)Aρℓ(1 − ϕ0). It is
again unclear why the mass of vapor would be proportional to ρℓ. This possible mistake
propagates to the final equation. Finally, the friction force Ff in Poiseuille flow is known
to be Ff = −(8πµℓLℓ)ẋ (see eq. (3.9a)). Yet, the expression of Zuo et al. for a circular
tube is Ff = −8πµℓ(Lℓ

2/L)ẋ.

Besides those minor points, I find the phase-change representation to be problematic. The
phase-change is given by ṁv,1 = Qe/hfg with Qe a positive constant. This means that
the phase-change only includes evaporation (there is no condensation) and the mass of
vapor keeps growing over time without bounds. On the contrary, we would expect to have
evaporation as well as condensation and the phase-change should not be constant but a
function of the dynamics (of the position of the liquid plug for example). Thus, I do not
expect the model, a linear second-order differential equation with a stiffness function of
time t, to be qualitatively representative of the dynamics in the UPHP. Consequently, I

3. If ϕ0 is given by ϕ0 = Vℓ/Vt, the volume of liquid at equilibrium (x = 0) should be Vℓ = ϕ0Vt = ϕ0LA
(with L the total length). The volume of vapor at equilibrium is then Vv = Vt − Vℓ = LA − ϕ0LA =
(1− ϕ0)LA. The volume of vapor in the branch 1 is thus Vv,1 = Vv/2 = (1− ϕ0)(L/2)A.
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do not expect the model to correctly predicts the oscillations frequency and the startup
behavior.

I conclude that the basic approach in Zuo et al. [129, 130] is useful as a starting point, but
there is room for improvement. Possibly because of the final resulting model (eq. (2.14)),
which does not seem correct, and maybe because of a lack of details in the model descrip-
tion, the approach by Zuo et al. [129, 130] is unfortunately not recognized as a precursor
of the modeling by momentum balance in the PHP litterature.

2.4.3 Ma Model
Here, I will briefly present the modeling approach of Ma et al. [69] (see also Ma [70,
Sec.4.4,p.149]). The PHP considered is a loop with multiple bubbles and liquid plugs as
shown in fig. 2.6. However, the analysis assumes that “all liquid plugs behave as one liquid
plug and all vapor bubbles as one vapor bubble” [70, p.149].

The Approach

Ma et al. assumes the liquid and the vapor to be at saturation at all time. Thus, the
pressure in the vapor in the evaporator section is obtained by the Clausius-Clapeyron
relation:

pe = p0 exp

[︃
hfg
R

Te − T0
TeT0

]︃
(2.15)

Figure 2.6 Schematic of the PHP model from Ma et al. [69]. Figure reproduced
with the authorization of Springer Nature.
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as a function of the temperature at the evaporator Te, assumed to be known. Also, T0
and p0 are some temperature and pressure of reference, respectively. The same approach
is applied in the condenser, such that a pressure difference between the evaporator and
the condenser is given by:

∆p = pe − pc = pc

(︃
exp

[︃
hfg
R

Te − Tc
TeTc

]︃
− 1

)︃
. (2.16)

This is linearized as:

∆p =

(︃
hfgρv,c
Te

)︃
∆T , (2.17)

with ∆T = Te − Tc.

Then, it is considered that the oscillations cause compression and expansion of the vapor
bubbles, leading to variations of the saturation temperatures in the evaporator and the
condenser. Therefore, it is assumed that ∆T oscillates between ∆Tmax and ∆Tmin in a
sinusoidal fashion:

∆T =
∆Tmax −∆Tmin

2
(1 + cos(ωτ)) , (2.18)

where ω is the angular frequency of the oscillations. Combining eq. (2.17) and eq. (2.18),
a driving force is found:

Fd = ∆pA =

(︃
hfgρv,c
Te

)︃
∆Tmax −∆Tmin

2
(1 + cos(ωτ)) . (2.19)

Starting from the ideal gas law at a time τ , the pressure in the vapor is:

pv,τ =
mvRT

LvA
, (2.20)

where LvA is the total volume occupied by the vapor. According to Ma et al., “At a time
τ+∆τ , after heat is added to the evaporating section and evaporation occurs, the increase
in pressure will result in a decrease in the vapor volume by −xA, and the pressure in the
vapor space yields”:

pv,τ+∆τ =
mvRT

(Lv − x)A
. (2.21)
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The resulting variation of pressure is linearized leading to:

∆pv =
ρvRT

Lv

x . (2.22)

Momentum balance is then applied (the mass considered combines the mass of both the
vapor bubbles and the liquid plugs) as:

m
d2 x

d τ 2
+ c

d x

d τ
+ kx = B (1 + cos (ωτ)) , (2.23a)

where c(dx/dτ) is the friction force (see Ma et al. [69] for details). The parameters are:

m = A (ρℓLℓ + ρvLv) , (2.23b)

k =
AρvRT

Lv

, (2.23c)

B =

(︃
hfgρv,c
Te

)︃
∆Tmax −∆Tmin

2
. (2.23d)

The resulting model is an ordinary, non-homogeneous second-order differential equation. It
represents a forced harmonic oscillator. Ma et al. concludes that the “model considers the
thermal energy from the temperature difference between the evaporator and condenser
as the driving force for the oscillating motion, which will overcome both the frictional
force and the force due to the deformation of compressible bubbles” [69]. In the model
it is assumed that the oscillating frequency corresponds to the natural frequency of the
system. It is suggested that, if the forcing frequency can be controlled independently, this
could impact the amplitude of the oscillations as well as the heat transfer performance. It is
suggested that maximum performance is obtained when the external excitation frequency
matches the natural frequency.

My Comments

The work of Ma et al. [69] represents a commendable effort to model a very complicated
system (PHP with multiple bubbles and liquid plugs). Combining all the vapor bubbles
as one vapor bubble and all the liquid plugs as one liquid plug is an interesting approach.
We note that the corresponding natural frequency matched well the observed frequency
by Spinato et al. [105, Sec.3.2].

There are a few elements I would like to point out:
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1. Saturation conditions are assumed. For the SBPHP, experimental evidences show
however that the vapor can be superheated. In that case, the pressure in the vapor
is best described by the ideal gas law.

2. Variations ∆T in eq. (2.18) are imposed. A better description would link the satu-
ration temperatures directly to the pressure which itself depends on the volume of
the vapor bubbles.

3. The model obtained is a forced system, in contrast with other approaches.

4. I could not understand how the variations of pressure in the vapor due to phase-
change is derived (eq. (2.20) to eq. (2.21)). Based on the description, it seems to me
that mv should be modified and the volume should be kept constant but the authors
do it the other way around.

5. In the model, it seems that phase-change is not really taken into account (mv is a
constant).

6. It seems like the force from the pressure difference is applied two times, one for Fd

due to variation of saturation temperature and one for the spring force. Of course,
the pressure force applies only one time. The analysis might still be correct, but the
derivation is not obvious. Ideally, a single expression for the pressure would then be
split into a number of components.

2.4.4 Film Evaporation-Condensation (FEC) Model
An influential modeling approach on the SBPHP was developed by Dobson and Harms
[27], Dobson [25, 26], followed by Zhang and Faghri [126] and Das et al. [20]. This model
was coined the Film Evaporation-Condensation (FEC) model by Das et al.. Here, I will
focus on the work of Das et al. [20] and then briefly compare the various approaches. I
will provide my comments at then end.

The Model

The experimental apparatus of Das et al. [20] is represented in fig. 2.7. The mathematical
model used to represent this experiment is shown in fig. 2.8. Momentum balance is applied
on the liquid plug as:

d (mℓẋ)

dt
= (pv − p0) S − sign [ẋ] · Ff , (2.24)
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Figure 2.7 Experimental setup from Das et al. [20]. Figure reproduced with
the authorization of Elsevier.

Figure 2.8 SBPHP model from Das et al. [20]. Figure reproduced with the
authorization of Elsevier.
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with mℓ the mass of liquid, x the position of the meniscus relative to the closed end, pv the
pressure in the vapor, p0 the pressure at the other end, S the cross-sectional area and Ff

the absolute value of the friction force. Because the liquid goes in and out of the reservoir
(fig. 2.7), the mass mℓ varies according to:

mℓ = ρ (Lt + Lr − x)S . (2.25)

The friction force is represented as:

Ff = 1
2
Cfdρπ (Lt + Lr − x) ẋ2 . (2.26)

Here, Das et al. consider Cf = 0 for Re = 0, Cf = 16 for Re < 1, Cf = 16/Re for
1 ⩽ Re < 1180 and Cf = 0.078Re−0.25 for Re ⩾ 1180, with Re = ρdẋ/µ the Reynolds
number. For Cf = 16/Re, the friction force corresponds to the Poiseuille flow:

Ff = 1
2

(︃
16

µ

���ρdẋ

)︃
◁◁d�ρπLℓẋ◁

2 = 8πµℓLℓẋ , (2.27)

with Lℓ = Lt+Lr−x the length of the liquid plug. We will find the same expression later
on in eq. (3.9a) (where we include the sign in the expression of Ff ).

In the momentum balance eq. (2.24), the pressure in the vapor must be described by an
equation. The ideal gas law is used:

pv =
mvRvTv
Sx

, (2.28)

where Rv is the specific gas constant. In the model of Das et al. [20], the temperature
of the vapor Tv is allowed to vary over time and is not required to be at saturation (the
vapor can be overheated or subcooled). To find Tv, an energy balance is applied to the
vapor, leading to an additional differential equation:

mvcv,vṪv = ṁvRvTv + qsens − pvS ẋ , (2.29)

where cv,v is the specific heat at constant volume. The sensible heat exchange between
the vapor and the walls is represented as:

qsens = Uv πd xf (Te − Tv) , (2.30)
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where the length xf is the length of the vapor exposed to the wall in the evaporator, given
by xf = x− Lf for x < Le (meniscus in the evaporator) and by xf = Le − Lℓf otherwise
(meniscus in the condenser).

Now, an important aspect of the model is to described how the mass of vapor mv varies.
For that, one needs a model of the phase-change. Various contributions to the phase-
change are considered. The phase-change from the liquid film is ṁf

e in the evaporator
and ṁf

c in the condenser. The phase-change at the meniscus is ṁm
e in the evaporator and

ṁf
e in the condenser. Those phase-change are expressed using simple thermal resistance

models and considering the liquid vapor interface at saturation, leading to:

hℓvṁ
f
e = Ue πdLℓf [Te − Tsat(pv)] , (2.31a)

hℓvṁ
f
c = Uc πdLvc [Tc − Tsat(pv)] , (2.31b)

hℓvṁ
m
e = Um

e πdLm
e [Te − Tsat(pv)] , (2.31c)

hℓvṁ
m
c = Um

c πdLm
c [Tc − Tsat(pv)] . (2.31d)

All those contributions are added up to obtain an expression for the net phase-change 4:

ṁv = ṁf
e + ṁf

c + ṁm
e + ṁm

c . (2.31e)

As can be seen from these expressions, a step profile is considered for the wall temperature:
the wall is at Tw = Te in the evaporator and at Tw = Tc in the condenser. The heat transfer
coefficient Ue is given by Ue = γkℓ/δℓf , a function of the liquid thermal conductivity kℓ, of
the liquid film thickness δℓf and of a correction factor γ. Also, Uc = Ue is considered in the
simulations. The other coefficients are fixed. The liquid film thickness δℓf is considered
constant and is not predicted by the model but fixed (free parameter).

In eq. (2.31a), the quantity Lℓf is the length of the liquid film in the evaporator only (the
name Lℓf is admittedly confusing). The length of the liquid film Lℓf varies based on the
phase-change and the motion of the meniscus. A differential equation describing the rate

4. Note that ṁv was expressed as: ṁv = ṁf
e + ṁf

ch+ ṁm
e + ṁm

c in [20]. I presume that the h in the
term ṁf

ch was a typographical mistake.
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of change of Lℓf is introduced:

dLℓf

dt
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if Lℓf = 0, ẋ < 0 and x ⩽ Le ,

−ṁf
e/ (ρπdδℓf ) if x > Le ,

ẋ− ṁf
e/ (ρπdδℓf ) otherwise.

(2.32)

The length Lvc is the length of the liquid film in the condenser. It is given by:

Lvc =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x < Le + La ,

x− (Le + La) if Le + La ⩽ x < Le + La + Lc ,

Lc otherwise.

(2.33)

Here, Lvc is defined in such a way that it assumes the condenser is covered by the liquid
film at all times. Also note that no condensation on the dry wall is allowed/considered.

This concludes the presentation of the model. We omitted the expressions of the lengths
Lve and xf which can be deduced from the geometry (see [20] for details).

I would like to briefly discuss the phase-change from the liquid film described above. Let’s
first unpack how eq. (2.32) is obtained. The volume of the liquid film in the evaporator is:

Vℓf =
(︁
πr2 − π(r − δℓf )

2
)︁
· Lℓf .

We have that (r − δℓf )
2 = r2 − 2rδℓf + δ2ℓf . Assuming a thin liquid film, we may neglect

the term δ2ℓf , leading to (r − δℓf )
2 ≈ r2 − 2rδℓf and:

Vℓf =
(︁
πr2 − π(r − δℓf )

2
)︁
· Lℓf ≈ πdδℓfLℓf .

The change of volume Vℓf due to phase-change at the film in the evaporator, the component
ṁf

e . With m = ρV , we can write:

dVℓf = (1/ρ) (−ṁf
e )dt ,
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with ρ the liquid density. Now, from the expression of Vℓf above, the length of liquid Lℓf

is:

Lℓf ≈ Vℓf
πdδℓf

.

The rate of change of Lℓf due to phase-change is:

dLℓf

d t
≈ 1

πdδℓf

d Vℓf
d t

=
1

πdδℓf

(︃−ṁf
e

ρ

)︃
= − ṁf

e

πρdδℓf
.

This is the expression for x > Le (meniscus outside the evaporator) given by eq. (2.32).
Here, the change of length Lℓf is due to the motion of the triple line, at xf . Because the
thickness is fixed, the phase-change model here assumes that the evaporation implies the
motion of the triple line. Now, when the meniscus is inside the evaporator, the length Lℓf

also varies due to the motion of the meniscus (at x). Adding this component leads to:

dLℓf

d t
≈ − ṁf

e

πρdδℓf
+ ẋ ,

which is the “otherwise” case in eq. (2.32).

In this liquid film model, the condensation on the liquid film in the condenser does not
increase the length Lℓf and is instead assumed to increase the mass of the liquid plug.

The Results

Das et al. find an expression for the oscillations period frequency by assuming no phase-
change (so that the model can be linearized) [20, Eq.(18,21,25)]:

T = 2π
1√︁

1 +Rv/cvv

√︄
ρ (Lt + Lr − ⟨x⟩) ⟨x⟩

p0
, (2.34)

where ⟨x⟩ is the meniscus position at equilibrium (in fact, this is just the length of vapor
at equilibrium) and Lt = Le +La +Lc. Thus, Lt +Lr − ⟨x⟩ is simply the length of liquid.
The angular frequency is ω = 2π/T :

ω =

√︄
(1 +Rv/cvv) p0

ρ (Lt + Lr − ⟨x⟩) ⟨x⟩ . (2.35)
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Das et al. generated numerical simulations of the model above and showed that self-
oscillations are produced. The behavior of the model with phase-change and the model
without phase-change (called superheated) are compared. It is concluded that the model
without phase-change is inadequate because it is not able to reproduce the large oscillations
amplitude observed experimentally. Thus, the phase-change must be taken into account
in the modeling of the SBPHP. The authors find that the model exhibits an instability
threshold behavior: “One of the most important features of a PHP model is the existence of
the instability threshold. [...] It is sufficient to decrease Te or increase Tc by 1K to prevent
the oscillations”[20]. In order to compare the model to the experiments, several parameters
were fitted. It was found that the model reproduced the experimental measurements
qualitatively. They found that the amplitude increased by increasing the difference of
temperature Te − Tc. Also, the model was able to reproduce the intermittent behavior
(one large oscillation followed by one small oscillation) under some conditions while the
amplitude remained constant under some other conditions. Quantitatively, the model was
not able to reproduce both the spatial amplitude and the pressure amplitude. The authors
believed that the simplified friction expression was responsible for the discrepancy.

Comparison of the Various Approaches

From the original work of Dobson and Harms [27], Dobson [25, 26] to Zhang and Faghri
[126] and then Das et al. [20], the modeling approach has evolved. We will mention a few
key differences. In the work of Dobson and Harms [27], Dobson [25, 26], the vapor is allowed
to be superheated, but the saturation condition at the liquid-vapor interface is not taken
into account. In the work of Zhang and Faghri [126], the vapor is assumed to be saturated
everywhere [126, Hyp.1, p.757]. Das et al. [20] consider the saturation conditions at the
interface and allow the temperature of the bulk of the vapor to vary. The model for phase-
change in both Dobson and Harms [27], Dobson [25, 26] and Das et al. [20] is a simple
phenomenological model. It assumes a liquid film of constant thickness with a length
varying according to a simple expression. In Zhang and Faghri [126], the phase-change
model is quite complex. The geometry of the liquid film is derived from hydrodynamics
principles. The liquid film thickness varies in both time and space. However, a number of
assumptions are considered and there are no experimental validations.

My Comments

The FEC model constitutes a big step in the modeling approach for the SBPHP. It provides
a simple model (described by a few ordinary differential equations) that still preserve key
features of the physics. Numerical simulations allowed to explore the dynamics and reach
some understanding of the physics.
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However, no linear stability analysis was carried on because the model cannot be reduced
to continuous linearized equations close to the equilibrium. This is due to the modeling
approach for the phase-change. This made it impossible to carry on the same insightful
analysis used for the putt-putt boat (section 2.4.1). In consequence, the angular frequency
is predicted only in the absence of phase-change. It is unclear if the angular frequency
prediction still applies in the presence of phase-change. More importantly, the instability
mechanism cannot be studied analytically and there is no analytical formula to predict
the startup.

I would also like to point out a few minor points:

1. The wall temperature is represented by a step function. This is not physical (axial
conduction should smooth the transition between the evaporator and the condenser)
but may be considered an acceptable approximation.

2. Das et al. [20] adapted the phase-change expression to consider the saturation con-
dition at the liquid-vapor interface. However, the energy equation eq. (2.29) was
taken from Zhang and Faghri [126] and does not take into account the saturation
condition at the liquid-vapor interface. Thus, eq. (2.29) is incorrect. I will derived a
modified form in appendix A.1.1.

3. The model for phase-change includes a liquid film but still constitutes a simplified
approach. The thickness is constant and fixed. The hydrodynamics in the liquid
film is not modeled. The phase-change is considered to imply an instantaneous
motion of the triple line. The higher phase-change at the triple line is not included
(a modification has been proposed by Rao et al. [93]). Also, the thermal resistance
should increase for very small thicknesses due to the adhesion force [89], but this is
not included.

4. The frequency is obtained by assuming no phase-change. It is unclear if it still
applies in the presence of phase-change. There is no experimental validation over a
range of the involved parameters.

5. It is unclear why, in the friction force expression (2.26), Cf = 16 for Re < 1.
Poiseuille flow should still apply there. This condition was not included in the
original expression, in [25]. More generally, the friction expression does not include
the fact that the flow is oscillating.

2.4.5 Nikolayev’s Instability Analysis
Here, I will describe mostly the approach of Nikolayev [84], to study the instability mecha-
nism and the startup in the SBPHP. As stated by Nikolayev, “the simulations [of the FEC



2.4. MODELING AND UNDERSTANDING IN UPHP AND SBPHP 39

model] cannot give an understanding of the startup criteria for the oscillations or explain
the origin of the instability that causes them”. There is a need for a deeper understand-
ing of the instability mechanism. Nikolayev [84] tackled this challenge by an analytical
study of the FEC model (described in section 2.4.4) using the averaging method. I will
also mention the work of Nikolayev [85] who improved the approach by including an axial
temperature profile in the wall (instead of a step function). Both approaches were later
discussed in details in Nikolayev and Marengo [87] and Nikolayev [86].

The Approach

The model considered is the one described in section 2.4.4. Nikolayev finds the equilibrium
of the system, which corresponds to the meniscus located at the interface of the evaporator
and the condenser. Deviations from the equilibrium are then considered (e.g. ∆x for the
meniscus position). The equations are then made dimensionless using the natural angular
frequency (for the time) and vapor length at equilibrium (for the lengths) as well as other
values at equilibrium. Tilde quantities mean dimensionless deviations from the equilibrium
(e.g. x̃ = ∆x/x̄, with x̄ the length of the vapor bubble at equilibrium). Finally, the
equations are linearized to obtain ([84, Eq.(21)]):

̇̃x = ṽ , (2.36a)

γ ̇̃v = T̃ − x̃+ m̃ , (2.36b)
̇̃T = (γ − 1)

(︁
̇̃m− ṽ

)︁
− εT̃ , (2.36c)

̇̃m = β

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x̃ ⩽ L̃ ,

αe

(︂
x̃− L̃

)︂
if L̃ < x̃ < 0 ,

−αeL̃− αcx̃ if x̃ ⩾ 0 ,

(2.36d)

̇̃L =

⎧
⎨
⎩
ṽ if L̃ ⩾ x̃, ṽ < 0,

(1/β) ̇̃m|αc=0 otherwise.
(2.36e)

Equation (2.36a) and eq. (2.36b) are the momentum balance written as two first-order
differential equations. The friction force Ff was neglected here because it was thought
to be proportional to v2 and would thus be nonlinear (I will discuss this further in the
comments section). Equation (2.36c) is the energy balance on the vapor bubble required to
described the variations of temperature of the vapor. Equation (2.36d) is the phase-change
rate equation defined in a piece-wise fashion. Here, L̃ is the dimensionless deviation of Ld

e,
which is the distance between the closed end and the triple line (x − Ld

e is the length of
the liquid film). Finally, eq. (2.36e) is the rate of change of L̃, describing how the triple
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line moves according to phase-change and the motion of the meniscus. In the equations
above, four dimensionless numbers are introduced: ε, αc, αe and β. ε is given by:

ε =
UgπdLeτ

m̄cv
, (2.37a)

which is defined as “the ratio of [the natural period] τ and the time scale that corresponds
to the heat exchange of the tube with the gas” [84]. We see that ε is proportional to Ug, the
heat transfer coefficient between the vapor and the wall. We expect that for ε → ∞, the
heat transfer between the vapor and the walls ensures that the temperature of the vapor
equals the temperature of the walls (isothermal case). We can see that from eq. (2.36c),
where the term −εT̃ tends to stabilize T̃ close to T̃ = 0. For ε = 0, there is no heat
transfer between the walls and the vapor (adiabatic walls) so the temperature of the vapor
varies as a function of the phase-change and the motion of the liquid plug, according to
eq. (2.36c). The dimensionless parameter αc is given by:

αc =
Uτ (Tsat(pr)− Tc)

ρδfhlv
(2.37b)

and characterizes “the film condensation in the condenser” [84], while the parameter αe:

αe =
Uτ (Te − Tsat(pr))

ρδfhlv
(2.37c)

characterizes “the film evaporation in the evaporator” [84]. The dimensionless number β:

β =
πdδfLeρ

m̄
(2.37d)

is “the ratio of the film mass and the gas bubble mass provided they are the same length”
[84]. The reader is referred to the original publication [84] for all the definitions and
details.

Now, Nikolayev wishes to study the instability in the system analytically. Classical linear
stability analysis cannot be applied because the equations are piecewise (and not con-
tinuously differentiable). Nikolayev thus uses averaging instead to obtain an analytical
solution. The function:

(γ − 1) ε

β
=

1

π
[αe (ψ − ξ − sinψ cosψ + sin ξ cos ξ) + αc (ψ − sinψ cosψ)] (2.38)
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is obtained [84, Eq. B.5b] and provides an approximation for the instability threshold.
The quantities ψ and ξ are new quantities defined along the way [84, Eq. A.5,A.6,A.7].
The approximation is believed to be valid for small αe and αc.

The Analysis

The function eq. (2.38) is represented as a surface in fig. 2.9a. A set of parameters can
be represented as a point in that space. The system is stable above the surface and
unstable below. Nikolayev concludes that the system can be made unstable by increasing
the evaporation or the condensation, by increasing αe or αc, respectively. Also, increasing
the heat exchange between the walls and the vapor, by increasing ε tends to stabilize the
system. From this analysis, it seems that an isothermal vapor (with the vapor temperature
equal to the walls temperature) is necessary stable.

Finally, Nikolayev compares the analytical threshold formula to the threshold obtained
numerically, as show in fig. 2.9b. These curves are obtained for the special case of αc = αe

(it is a cross-section along the diagonal of the space in fig. 2.9a). One can clearly see
that the averaging solution does not match the numerical values exactly. The averaging
is believed to provide a lower bound for the instability threshold. The exact instability
threshold is a function of all the dimensionless parameters and cannot be represented as
a surface in a 3D space as in fig. 2.9a.

Based on the analysis, Nikolayev explains the self-oscillations as follows: “The origin of the
self-sustained oscillations is now evident. The evaporation in the evaporator causes the gas

(a) (b)

Figure 2.9 Instability threshold from Nikolayev [84]; (a) surface representing
eq. (2.38) (stable above the surface and unstable below), (b) instability thresh-
old obtained numerically versus the analytical formula eq. (2.38). Figures re-
produced with the authorization of Elsevier.
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pressure increase that propels the meniscus towards the condenser where the condensation
causes the pressure decrease and the meniscus returns back to the evaporator”. Also, the
heat exchange between the walls and the vapor is identified as the energy dissipation in
the system.

An Update - the Effect of Axial Heat Conduction in the Wall

Nikolayev [85] improves the approach above by including the axial heat conduction in the
wall. This results in a temperature profile in the wall, in the axial direction, that is not
a step profile but is instead continuous. The approach is also described by Nikolayev and
Marengo [87], Nikolayev [86].

A few results differ from the approach with a stepwise temperature profile. Nikolayev
finds that the thermal gradient at equilibrium is a key parameter affecting the instability.
Increasing it increases the instability. Also, he finds that the instability is independent of
the liquid film and depends only on the phase-change at the meniscus [85, p.479,482]. In
addition, in the new approach the friction force is included but expected to be negligible
except for tubes of very small diameter. A new instability threshold criterion is obtained
[87, Eq. 76]:

−d T̄w
d x

⃓⃓
⃓⃓
start-up

x=X̄m

=

(︃
X̄m

γpr

d p̄

d T

⃓⃓
⃓⃓
sat

)︃−1

+
Uvhlv

UmLmRv

(γ − 1)2

γ
+

8νprhlv
diT̄UmLmRv

, (2.39)

which gives the minimal value of the thermal gradient at equilibrium to start the oscilla-
tions. On the right-hand-side, the first term relates to the slope of the saturation curve,
the second term relates to energy dissipated by heat conduction between the walls and
the vapor and the third term relates to viscous friction losses.

My Comments

Nikolayev [84] is the first (and only, as far as I know, apart from the putt-putt boat
studies) to tackle the question of the instability in the SBPHP and to obtain an analytical
criterion. This is a very important question which has not received enough attention in
my opinion. The approach of Nikolayev is interesting but, because the model is piecewise,
no classical linear stability analysis could be applied. This made the instability analysis
quite complicated. In my opinion, a better understanding of the instability mechanism
could be reached with a simpler approach.

Here are a few elements I would like to point out:

1. The friction force is incorrectly neglected. Nikolayev [84] neglects the friction force,
given by Ff = 1

2
CfdρπLℓẋ

2, because it is thought to be nonlinear (because propor-
tional to ẋ2). However, if the force Ff is written explicitly, by taking Cf = 16/Re =
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16µ/(ρdẋ) as in eq. (2.27), then the friction force becomes proportional to veloc-
ity (Ff = 8πµℓLℓẋ) and is therefore linear. The friction force should be included
in the linearized equation and in the stability analysis. The improved approach of
Nikolayev [85] includes the friction force.

2. The comments on the FEC model (section 2.4.4) still applies here because the sta-
bility analysis is based on that model. In particular, the energy equation does not
take into account the fact that the liquid-vapor interface is at saturation.

3. Validity of the averaging method. The averaging technique is classically applied to
continuous systems. Within this constraint and the other requirements, the averag-
ing theorem guarantees that the solution found is asymptotically valid. It is unclear
to me if the averaging method can apply to the piecewise system described here and
if so, what is the impact on the validity of the solution. Those questions are not
addressed by Nikolayev [84].

4. Validity of the instability analysis. In a classical stability analysis, the criterion for
stability is exact. Here, because of the model or the approach, the criterion is only
an approximation. The range of validity of this approximation is unclear. The range
of validity for the predicted trends (effects of the parameters) is also unknown.

5. The instability threshold has a lower bound. The averaging approximation for the
instability threshold from averaging is considered to be a lower bound by Nikolayev
[84]. This is not rigorously demonstrated however. In fact, some numerical results
seem to be lower than the averaging results for low α in fig. 2.9b. The discrepancy
could be larger for other values of the parameters.

2.4.6 Comparison of the Models
It is useful at this point to highlight the mathematical properties of the different models
found in the state of the art.

The putt-putt boat model obtained by Finnie and Curl [33, 32], Jenkins [52] (section 2.4.1)
is a third-order ordinary linearized homogeneous differential equation. The mass is the
mass of liquid, the spring comes from compression and expansion of the vapor bubble,
friction leads to a damping term and the phase-change appears as a positive feedback
term.

The Zuo model ([129, 130], section 2.4.2) is an ordinary linearized second-order homoge-
neous differential equation, with one non-constant coefficient. The mass is the mass of
liquid, the spring comes from compression and expansion of the vapor bubble as well as
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phase-change (which leads to the non-constant coefficient, a stiffness varying over time).
Friction leads to a damping term and there is no positive feedback term.

The Ma model ([69, 70], section 2.4.3) is an ordinary linearized nonhomogeneous second-
order differential equation. The mass includes both the mass of vapor and the mass of
liquid, the spring comes from the compression and expansion of the vapor bubble and
friction leads to a damping term. The phase-change does not lead to a positive feedback
but to a forcing term, making the equation nonhomogeneous.

The FEC model ([20], section 2.4.4) is a system of five first-order ordinary homogeneous
differential equations (analogous to one fifth-order differential equation). Starting from
the basic second-order system described by the momentum balance, the system becomes
third-order by adding phase-change, fourth-order by adding varying liquid film length
and fifth order by adding varying vapor temperature. The system is piecewise and not
continuously differentiable. In the model, the mass is the mass of liquid and friction leads
to a damping force. There is a spring effect produced by compression and expansion of
the vapor bubble as can be seen from the linearized equations without phase-change. It
is difficult to deduce the role of the phase-change from the system of equations only.

The mass is the same in all models except for the Ma model where the vapor mass is
included. All models include a spring component due to compression and expansion of the
vapor bubble. The Zuo model includes another spring component due to phase-change
and, in the FEC model, phase-change might produce a spring component but this is not
obvious. In all models, the friction leads to a damping force proportional to velocity,
although the coefficients used differ. Models mostly differ by how the phase-change is
described. In the putt-putt boat model and in the FEC model, the phase-change is
described by a differential equation (increasing the order of the system) and leads to a
positive feedback (presumably, in the FEC model). By contrast, the phase-change leads to
a varying stiffness in the Zuo model, so that the differential equation has a non-constant
coefficient and still no positive feedback. In the Ma model, the phase-change leads to a
forcing term so that the differential equation is nonhomogeneous and still does not have
a positive feedback. How the behaviors of a forced system and a system with a positive
feedback differ will be discussed in section 3.6 and section 6.5.1.

2.5 State of the Art on my Research Questions
Based mostly on the literature described above, I will now briefly review the state of the
art on the research questions I identified in section 1.3.2. In short, I find that there has
been major progress in experimental measurements and in the theoretical modeling, but
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little progress on the understanding of the self-oscillations. The theoretical work focuses
today on models of increased complexity to make more accurate predictions, but the basic
behavior is not well understood yet.

Q1) Where do the oscillations come from?

On one hand, oscillations in the SBPHP are often explained by the coupling of the com-
pression and expansion of the vapor acting as a spring, to the mass of the liquid plug, thus
leading to a spring-mass system (or resonator). As described in section 2.4.4, Das et al.
[20] were able to find an expression for the oscillations frequency, where they assumed no
phase-change. The formula was found to match well the experiments, but not study over
a large range of the parameters has been carried on so far. On the other hand, one also
finds explanation for the oscillations in the literature based solely on the phase-change.
Those explanations take the following form:

The first question one can ask about the PHP is "why it oscillates?". One can explain

the functioning mechanism of the single branch PHP as follows. When the meniscus

situates in the evaporator, evaporation occurs. The vapor expands and the meniscus is

pushed into the condenser. The condensation occurs, and the vapor bubble contracts

so the meniscus returns back into evaporator. Nikolayev [86, p.20]

To definitively settle the question, we will improve upon the analysis of Das et al. by
including the phase-change, such that the role of each physical components in the system
can be clarified. We will also carry out an experimental validation over a large range of
the relevant parameters. Those results can be found in chapter 3.

Q2) Why does the oscillations amplitude increase during the startup and what are the
required conditions for the startup to occur?

It is often said that the phase-change acts as a driving force in the PHP, but there is
little theoretical or experimental work though to substantiate that claim and to make it
more precise. One important result is the work of Das et al. [20] with the FEC model,
that showed numerically that including phase-change allowed for large oscillations am-
plitudes (section 2.4.4). Nikolayev [84, 85] analyzed the instability mechanism in that
model analytically (section 2.4.5). Because the model is piecewise (and not continuously
differentiable), no classical linear stability analysis could however be used. This led to a
quite complicated approach to analyze the instability. Also, a number of questions can
be raised: friction is surprisingly neglected in [84], the validity of the approach is unclear,
the instability criterion is approximate but we do not know the range of validity, etc. (see
end of section 2.4.5).
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One consequence of the absence of a rigorous theoretical description of the instability
is that there is also no established knowledge on the effects of the parameters on the
startup. Also, there is no consensus on the type of mathematical system that correctly
describe the oscillations. The oscillations have been described mathematically by a second-
order differential equation with non-constant coefficients ([129, 130], section 2.4.2), by a
second-order differential equation with a forcing term ([69, 70], section 2.4.3) and by
differential equations without forcing (third-order [33, 32, 52], section 2.4.1 or fifth-order
[20], section 2.4.4). Identifying the correct type of mathematical system is important
as different types lead to different behaviors. Also, how to control the behavior differs,
according to which type the system belongs.

To address the question we will consider a continuously differentiable mathematical model
so that we can apply linear stability analysis. We will clarify the role of the different
physical components in the startup and clarify what is the correct mathematical system
to consider. We will also perform an experimental validation to verify our results. This is
described in chapter 3.

Q3) Why does the oscillations amplitude saturate and what defines the oscillation ampli-
tude in the steady-state regime?

This question has received very little interest so far. In fact, to my knowledge, it has not
even been asked. At most, the effect of some parameters on the amplitude are reported
(e.g. [20]). What leads to the steady-state is not however well understood. This situation
might be due to the fact that the PHP community is more interested about heat transfer
than by the oscillations amplitude per say. On the other hand, recent results show that
increasing the oscillations amplitude increases the heat transfer [56]. Another reason
might be that the circulation mode (possible only with MBPHP) is considered favorable
and there is no more amplitude in that case (section 2.2). We will address the question of
the amplitude in chapter 4.

Q4) How does an energy harvesting device based on SBPHP oscillations behave?

There has been several attempts to build an energy harvesting device based on the self-
oscillating behavior of the PHP, with various types of transducers to convert energy from
the PHP to electrical energy [79, 125, 80, 81, 104]. All these attempts are based on the
MBPHP, however. These devices are usually described as for cooling with energy har-
vesting capabilities, instead of being solely dedicated to energy harvesting. The question
remains open about how an energy harvester based on the SBPHP oscillations (such as
SOFHE) behaves. We will consider this question in chapter 6.
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For the research questions mentioned above, a number of intuitive explanations exist,
which turn out to be wrong upon close scrutiny. One may mention the oscillations ex-
plained solely by phase-change, incorrect expectations on the role of some parameters on
the startup ((dp/dT )sat, Lℓ), the idea that the phase-change should be in phase with the
velocity or assuming one should aim for impedance matching (between the electrome-
chanical transducer load and the thermofluid system) for the energy harvesting. These
explanations are based on limited analyses and analogies. They often do not work be-
cause the the physical mechanisms are very much interrelated in the SBPHP. A more
thorough theoretical approach is needed. The state of knowledge on the self-oscillations
is pre-paradigmatic (in the Kuhnian sense [65]). The goal here is to establish a paradigm.
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Titre anglais: How Evaporation and Condensation Lead to Self-Oscillations in the Single-
Branch Pulsating Heat Pipe.

Contribution au document: J’ai mené et réalisé l’ensemble des travaux expérimentaux
et théoriques présentés dans cet article à l’exception des mesures expérimentales présentées
à l’annexe A.2.2, réalisées par Thomas Monin. Aussi, Thomas Monin et Étienne Léveillé
ont fabriqué la majeure partie du montage expérimental. Les coauteurs ont contribués
par des conseils et suggestions lors de la recherche et lors de la rédaction du document.

Résumé français: Les auto-oscillations observées dans le caloduc pulsé mono-branche
(SBPHP) sont expliquées en démontrant l’existence d’un résonateur mécanique excité par
une force de rétroaction positive, par une analyse de stabilité linéaire et des validations
expérimentales. Le SBPHP est un tube fermé à l’une des extrémités qui est d’abord rem-
pli d’eau. L’extrémité fermée est ensuite chauffée et une bulle de vapeur s’y forme qui
augmente en longueur puis atteint un équilibre. Depuis cet équilibre, augmenter la tem-
pérature de la zone chaude au-delà d’un certain seuil mène à des oscillations de la colonne
de liquide qui se maintiennent dans le temps. Nous souhaiterions comprendre l’origine
de ces oscillations et pourquoi elles ne s’atténuent pas dans le temps dû à la présence de
friction. Un modèle mathématique est construit, puis linéarisé et résolu analytiquement.
La solution dans le temps montre que le couplage entre l’inertie de la colonne de liquide
et l’effet ressort de la vapeur produit un système masse-ressort, qui peut osciller après
une faible perturbation. L’évaporation et la condensation qui se produisent alors que la
colonne de liquide oscille mènent à des changements de pression dans la vapeur. La force
qui en résulte est une force de rétroaction positive, qui injecte de l’énergie dans le système
masse-ressort et rend le système instable, lorsque supérieure à la friction visqueuse. Un
critère pour le démarrage est obtenu, basé sur un nombre adimensionnel dérivé du mod-
èle. Un dispositif expérimental est ensuite utilisé pour valider les prédictions théoriques.
L’effet sur l’instabilité du gradient thermique axial dans les parois (déstabilisant), de la
résistance thermique liée au changement de phase (stabilisant) et de la pression externe
(stabilisant) sont validés. La masse de la vapeur et la force de friction sont mesurées
durant le démarrage et leurs rôles comme force de rétroaction positive et comme force
dissipative, respectivement, sont validés. En conclusion, le mécanisme physique respons-
able de l’instabilité dans le SBPHP est maintenant bien compris. Les travaux présentés
ici constituent des fondations théoriques solides qui contribueront au développement des
caloducs auto-oscillants, pour le refroidissement et la récupération d’énergie.

Résumé anglais: The self-oscillations observed in the single-branch pulsating heat pipe
(SBPHP) are explained by showing the existence of a mechanical resonator excited by a
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self-driving force (feedback) through linear stability analysis, with experimental validation.
The SBPHP is a tube closed at one end which is initially filled with water. The closed
end is heated and a vapor bubble forms and reaches an equilibrium size. From this stable
state, increasing the temperature of the heater temperature beyond a threshold leads to
oscillations of the liquid plug sustained over time. We would like to understand where these
oscillations come from and why they do not vanish over time due to the friction. A model
of this system is formulated such that it can then be linearized and solved analytically
for the motion over time. The solution shows that the coupling of the spring effect of
the vapor and the inertia of the liquid plug leads to a spring-mass system, which can
oscillate after a small perturbation. The evaporation and condensation taking place as
the oscillations occur produce a change of the vapor pressure. The resulting force on the
liquid plug is positive feedback; it injects energy into the spring-mass system and makes
the oscillations unstable (startup) if greater than the friction. A criterion for startup
is formally provided in the form of a dimensionless instability number derived from the
model. An experimental apparatus is used to validate the theoretical prediction. The
predicted effects of the tube’s axial temperature gradient (destabilizing), of a thin film
thermal resistance (stabilizing), and of the external pressure (stabilizing) are validated.
The mass of the vapor and the friction force are measured during the startup and are
shown to act as feedback and dissipation, respectively, as predicted by the theory. It is
concluded that the main physical mechanism behind the instability in the SBPHP is now
well understood. This provides a theoretical basis for the further development of pulsating
heat pipes increasingly used for thermal management of electronics and harvesting of waste
heat.

Note: pour satisfaire aux exigences de l’Université de Sherbrooke, la version de l’article
présentée dans cette thèse diffère de la version officielle.

3.1 Introduction
One major limitation in electronics is the capacity to reject heat produced by the com-
ponents [49]. Without enough heat dissipation, computation power must be limited to
prevent overheating. To operate at higher power and maintain the same reliability, vari-
ous cooling techniques have been studied, such as heat pipes. Due to phase change, the
heat pipe thermal conductivity can be up to 100 times the thermal conductivity of a same
size copper rod [30]. The pulsating heat pipe (PHP), proposed by Akachi [3], is a special
type of heat pipe consisting of a tube bent into a given number of turns with the two ends
connected to each other in the close-loop version, filled with vapor and liquid plugs. When
a thermal difference is imposed on the PHP, the fluid may start to oscillate, transferring
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heat from the hot section to the cold section by evaporation and condensation, and by
convection. The PHP could become an advantageous solution for thermal cooling appli-
cations but the limited understanding of its pulsating dynamics hinders proper design.
In an effort to understand the basic mechanism behind the oscillations, a simpler device,
called a single-branch PHP (SBPHP) has been studied (see fig. 3.1). The SBPHP can also
be used as a waste heat harvesting device called the Self-Oscillating Fluidic Heat Engine
(SOFHE) [78]. In this paper we focus on the physics of the SBPHP. The behavior in the
SBPHP is best described by the following experiment (see Das et al. [20]). A tube of
small diameter (∼1mm), sealed at one end and open at the other, is filled with a working
fluid. The tube is heated at the sealed end and cooled at the other. A single vapor bubble
(occupying the entire cross-section area) eventually forms at the sealed end, separated
from the liquid plug by a meniscus. The vapor bubble increases in size until the meniscus
reaches a stable equilibrium position between the hot and the cold end (t0 in fig. 3.1).
From this equilibrium, a small change of a parameter (such as an increase of the heat
source temperature) may lead to oscillations of the liquid plug at a given amplitude and
frequency for an indefinite amount of time.

Some fundamental questions naturally arise from the observations of the oscillations in
the SBPHP, about the frequency of the oscillations and the self-oscillating nature of the
system. Such questions have been answered for other self-oscillators by making use of
linear stability analysis [52, 107]. We may first ask why the system exhibits an oscillatory
behavior and what defines its frequency. Using linear stability analysis, assuming no phase

heat source heat sink

liquid air

t0 vapor liquid air

t1

t2

t3

t4

ti
m
e

(t
)

Figure 3.1 Schematic representation of the oscillations, starting at t0, in the
single-branch pulsating heat pipe (SBPHP).
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change, Das et al. [20] showed that the SBPHP behaves like a spring-mass system. The
process of compression and expansion of the vapor produces a spring effect which leads
to a resonator when coupled with the liquid plug’s inertia. A corresponding frequency
was predicted and matched well with experiments, leading to a well-accepted spring-mass
representation [69, 70, 105]. Experimental validation for a large range of gas spring and
liquid mass values was previously reported by Monin et al. [77] and is included herein for
completeness (see appendix A.2.2). Considering a damped harmonic oscillator, we might
expect the amplitude to decrease, following an initial perturbation. On the contrary,
experimental evidence shows that the amplitude of the oscillations can be self-sustained
[20, 92].

One may then ask why the meniscus does not stabilize at an equilibrium position. The
literature on this second question is more elusive. Several researchers believe that phase
change drives the oscillations in some way [127]. Das et al. [20] showed by numerical
simulations that including phase change can make the system unstable, leading to self-
oscillations. The startup conditions were further studied by Nikolayev [85]. It was found
that the startup depends heavily on the thermal gradient along the wall at the equilibrium
position. However, there is still no clear understanding to this day of how the phase change
sustains the oscillations.

Linear stability analysis applied to the complete system (including phase change) should
reveal the instability mechanism in the SBPHP, just like it revealed the resonator. How-
ever, this analysis has been impractical to use so far, because phase change has been
represented by noncontinuous functions (while continuously differentiable functions are
required). Finnie and Curl [32, 33] used linearization to achieve a good understanding of
a system similar to the PHP, the putt-putt boat (later reviewed by Jenkins [52]). Here
we modify their analysis to describe the SBPHP and extend their work both theoretically
and experimentally. In this paper we construct a continuously differentiable model de-
rived from conservation laws, which we then linearize and solve (section 3.3). The process
confirms the resonator representation. More importantly, the linearization allows us to
show that evaporation and condensation produce a positive feedback force, which makes
the system unstable and leads to self-sustained oscillations. We derive an analytical in-
stability (startup) criterion. This understanding of the SBPHP self-oscillations is then
validated experimentally (section 3.5). We measure the force from phase change and show
that it acts as positive feedback while the measured friction force acts as dissipation. In
section 3.6, we discuss how our results compare with the literature.
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3.2 Models
A model describing the SBPHP dynamics is obtained by first applying a momentum
balance on the liquid plug and energy conservation on the vapor bubble (see fig. 3.2),
similarly to the models in [126, 20]. The momentum balance on the liquid plug according
to fig. 3.2b results in

ẍi =
1

mℓ

(︂
Pg A− P̂eA+ Ff

)︂
, (3.1)

where xi refers to the position of the meniscus relative to the equilibrium (defined later
in fig. 3.3) and ẋi and ẍi are respectively the velocity and the acceleration of the liquid
plug. The mass of liquid mℓ is assumed constant, because the specific volume of vapor
is much larger that the one of liquid 1. The forces considered are those produced by
the vapor pressure Pg, the external pressure 2 Pe, and the friction force Ff between the
wall and the liquid plug. Gravity is included in the effective external pressure expression
P̂e ≡ Pe+ρℓ Lℓ g sin θ, following the notation of [123]. Capillary forces on each meniscus are
assumed to be equal and opposite, resulting in no net capillary force. Energy conservation
on the vapor bubble,

Ṫg =
1

cvmg

[︂
ṁg (cpTg,sat − cv Tg)− PgA ẋi + Q̇g

]︂
(3.2)

includes energy added by phase change (term in ṁg), the rate of mechanical work done
by the liquid plug (term in Pg) and heat transfer from the wall Q̇g. In this equation, Tg is
the averaged temperature of the vapor bubble, which is usually overheated (Tg > Tg,sat).
At the meniscus, conditions are at saturation, so the temperature is always Tg,sat. Also,
mg is the mass of vapor and ṁg is the net evaporation rate. The energy conservation is
used to describe the evolution in time of the temperature of the vapor. We will consider
two limiting cases: the isothermal case, where Q̇g is such that Ṫg = 0, and the adiabatic
case, where Q̇g = 0. This equation is similar to the literature [126, 20] but, instead of
assuming the temperature at the meniscus to be equal to the averaged vapor temperature
(which can be overheated), the meniscus is considered to be at saturation conditions (see
appendix A.1.1 for a derivation). The pressure of the vapor Pg in eqs. (3.1) and (3.2) is

1. A more detailed analysis shows that the resulting force due to change of the mass mℓ is many orders
of magnitude smaller than the other forces: for reasonable values of the parameters, we found the ratio
of the additional force to each one of the other forces to be about 0.0006%.

2. In the SBPHP, the pressure at the open end, Pe, is a constant. This is unlike the closed MBPHP
where for each liquid plugs, the pressures at both ends may vary. Also, the volume of the vapor bubble
and the liquid plug varies in the SBPHP whereas the total volume (of the vapor bubbles and the liquid
plugs) of the closed MBPHP is constant.
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described by the ideal gas law, where Lg,0 is the vapor bubble length at equilibrium,

Pg =
mg Rg Tg

Vg

=
mg Rg Tg

(xi + Lg,0) A
(3.3)

3.2.1 Phase Change Modeling
The mass of vapor mg changes due to evaporation or condensation, so we must include an
equation describing this process. Finding an expression for the net evaporation rate ṁg is
however a complex problem. A precise predictive model would have to take into account
the phase change from a thin liquid film laid on the wall by the oscillating liquid plug [92,
34]. To study the system dynamics, we instead adopt a global representation of the phase
change physics by representing it as a heat transfer mechanism defined from a thermal
resistance Rth, so the heat transfer rate producing evaporation and condensation can be
expressed as: Q̇ = [Tw(xi)− Tg,sat] /Rth (see fig. 3.3). We assume here that the meniscus is
maintained at saturation (so Tg = Tg,sat at the meniscus). This is a common approximation
in PHP modeling (see, for example, [20]), which assumes local thermodynamic equilibrium
at the interface [117]. The heat transfer Q̇ leads to a net evaporation rate ṁg, given by
the energy balance on the meniscus control volume

ṁg =
Q̇

Hv

=
Tw(xi)− Tg,sat

HvRth

. (3.4)

Although this approach might seem oversimplified, it will be shown to be insightful later
on. In section 3.6.3, we discuss how a more realistic phase change (from a liquid film
for example) would influence the dynamics. Here, we consider the thermal resistance Rth

as a single parameter, including the conduction resistance in the wall, the conduction
resistance through the liquid and the liquid-vapor interfacial resistance [89]. A more
detailed analysis could describe Rth in terms of the thermal conductivities, the meniscus

CV vapor CV Liquid

CV meniscus

(a)

x

θPg
A

PeA

Fg

Ff

(b)

Figure 3.2 (a) Control volumes and (b) forces (liquid control volume) applied.
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geometry and other parameters. Alternatively, Rth could be estimated experimentally, by
measuring the phase-change rate.

3.2.2 Wall Temperature Profile and Equilibrium
The wall temperature Tw decreases from the heat source to the heat sink because of the
axial heat transfer along the tube. We represent it qualitatively by an arctangent function

Tw(x) =
THL

π
arctan

[︃−π |T ′
wc|

THL

(x− xc)

]︃
+
TH + TL

2
(3.5a)

as shown in fig. 3.3. Axial heat conduction along the wall smooths the temperature
profile such that it must be continuous (and continuously differentiable) to be physically
possible. This arctangent profile is thus closer to reality than the step function often use
and, additionally, allows linearization. Also, such an S-shaped temperature profile was
observed experimentally [74]. The arctangent profile eq. (3.5a) is characterized by high
and low temperatures TH and TL, respectively,

THL ≡ TH − TL, (3.5b)

as well as the temperature gradient T ′
wc,

|T ′
wc| ≡

(︃−dTw
dx

)︃

x=xc

, (3.5c)

x = 0TL

1
2
(TH + TL)

Tg,sat,0

TH

x

Tw(x)

Tg,sat

Vapor Liquid

Wall, imposed Tw(x)

Rth

Tw(xi)

Thermal resistance model

inflection point(x = xc)

equilibrium point

Lg,0 xi

Figure 3.3 Wall temperature profile along the x axis and thermal resistance
model for the heat transfer leading to evaporation and condensation.



3.2. MODELS 57

at the inflection point xc,

xc ≡
THL

π |T ′
wc|

tan

[︄
π
[︁
Tg,sat,0 − 1

2
(TH + TL)

]︁

THL

]︄
, (3.5d)

which may differ from the equilibrium point, x = 0. One can easily deduce the absolute
value of the temperature gradient at the equilibrium point,

⃓⃓
T ′
w,0

⃓⃓
,

⃓⃓
T ′
w,0

⃓⃓
≡
(︃−dTw

dx

)︃

x=0

=
|T ′

wc|
1 + (xc π|T ′

wc|/THL)
2 , (3.6)

which will turn out to be an important parameter. The temperature profile eq. (3.5a) can
then be used in the ṁg expression eq. (3.4), leading to

ṁg(xi) =
THL

πHvRth

arctan

[︃−π |T ′
wc|

THL

(xi − xc)

]︃
+

1
2
(TH + TL)− Tg,sat

HvRth

, (3.7)

The saturation temperature Tg,sat in eq. (3.7) can be expressed as a function of the vapor
bubble pressure according to the Clausius-Clapeyron relation [15], as

Tg,sat =

[︃(︃
1

Tg,sat,0

)︃
− Rg

Hv

· ln
(︃
Pg

Pg,0

)︃]︃−1

. (3.8)

3.2.3 Friction Force
A viscous friction force is experienced by the liquid plug along the tube wall. To predict
that force, one must find the velocity profile in the liquid. For the idealized case of
an infinite liquid column in the laminar regime, subjected to sinusoidal oscillations of the
pressure gradient, the flow differs from the Poiseuille parabolic velocity profile but can still
be solved analytically [123]. The behavior of the flow depends on the kinetic Reynolds
number (Reω ≡ ωR2/ν), a ratio of the oscillating inertial force to the viscous force. For a
SBPHP filled with water, with a diameter of 1mm and for a frequency ranging between 1
and 25Hz, Reω is comprised between 1.6 and 40. Since Reω < 2000, the flow is considered
laminar [123]. For Reω ≪ 4, the quasistatic Poiseuille profile is a good approximation and
the friction is well described by

Ff = − 8π µLℓ ẋi = c ẋi, (3.9a)
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with c ≡ −8π µLℓ. This expression is the simplest form of a dissipative friction force,
completely opposed to velocity. It is also the expression commonly used in the PHP
literature to date. However, for a laminar flow with Reω > 4, inertial effects are important
and the Poiseuille parabolic velocity profile is not valid anymore. From the velocity profile
given by White [123], we derived an accurate expression for the friction force given by

Ff ≈ −
√︃

2

Reω
∆PgA+

(︃√︃
2

Reω
− 1

Reω

)︃
∆Ṗg A

ω
(3.9b)

valid for 4 < Reω < 2000 (see appendix A.1.2 for derivation). We will refer to this case as
the oscillating regime in opposition to the quasistatic (Poiseuille) case. In the oscillating
regime, the velocity gradient at the wall and the resulting friction force are in advance
relative to the average liquid plug velocity ẋi. As a result, the friction force will lead to
not only a dissipative effect, but also an inertial one. It should be noted that none of
these relations take into account the effect of the meniscus on the flow field. Nonetheless,
A. Nikkhah et al. [1] found those analytical expressions to be accurate when compared to
CFD as long as the liquid plug is long enough (A ratio L/D > 10 was recommended).
The experiment below also confirms their validity.

3.2.4 Equilibrium and Complete Dimensionless System of Equa-

tions

At equilibrium, the liquid plug is static (ẋi = ẍi = 0) so the friction force Ff (ẋi = 0) = 0

and therefore Pg = P̂e according to eq. (3.1). Also, the mass of vapor mg is constant
(ṁg = 0), so the equilibrium corresponds to the position where Tw = Tg,sat,0, according to
eq. (3.4), which is xi = 0, according to eq. (3.5a). The thermal gradient at the equilibrium
is given by eq. (3.6) for the arctangent profile. Equations (3.1) to (3.3) and (3.7) to (3.9)
can be solved for the position of the meniscus as a function of time. Since we care about
the dynamics about the equilibrium, we replace the quantities mg, Tg, Tg,sat and Pg by
their perturbations ∆mg, ∆Tg, ∆Tg,sat and ∆Pg (e.g., ∆Pg = Pg−Pg,0 where the 0 subscript
refers to the equilibrium value). The equations are then made dimensionless using the
quantities at equilibrium (e.g., ˜︃∆Pg = ∆Pg/Pg,0) and the natural angular frequency ωn

(eq. (3.15e), which will be derived in section 3.3). We present this full set of dimensionless
equations (eqs. (A.21) and (A.22)) in appendix A.1.3, and the associated dimensionless
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quantities eqs. (A.23) and (A.24). A simplified set of equations

˜̈︁xi = ˜︃∆Pg +˜︂Ff = −
(︃

1

1 + ˜︁xi

)︃
˜︁xi

⏞ ⏟⏟ ⏞
˜︂FV

+

(︃
1

1 + ˜︁xi

)︃
˜︃∆mg

⏞ ⏟⏟ ⏞
˜︃Fm

− 2 ζf ˜̇︁xi
⏞ ⏟⏟ ⏞

˜︂Ff

, (3.10a)

˜̇︃∆mg = ˜︃THL arctan
[︂
−
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ (˜︁xi − ˜︁xc)

]︂
+ ˜︂Cth, (3.10b)

is studied, considering the following assumptions: constant saturation temperature, con-
stant temperature of the vapor, and Poiseuille flow. This simpler case allows us to focus
on the primary physics responsible for self-oscillations. The momentum balance is given
by eq. (3.10a), where the dimensionless pressure ˜︃∆Pg can be split into two distinct com-
ponents: a change of volume of the vapor (compression-expansion) ˜︂FV and a change of
mass (evaporation and condensation) of vapor ˜︂Fm. It will later be shown that ˜︂FV acts as
a spring and is responsible for the oscillations, while ˜︂Fm is feedback, responsible for the
instability. The dimensionless friction force is ˜︂Ff , where ζf is the dimensionless friction
coefficient, based on Poiseuille flow (note that ζf > 0). The mass of vapor varies according
to the evaporation rate eq. (3.10b), with dimensionless time derivatives in τ and with the
definitions

τ ≡ ωn t, (3.11a)

ζf ≡ − c

2mℓ ωn

, (3.11b)

˜︃THL =

(︃
1

π mg,0 ωn Hv Rth

)︃
THL, (3.11c)

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ =

(︃
π Lg,0

THL

)︃
|T ′

wc|, (3.11d)

˜︁xc =
(︃

1

Lg,0

)︃
xc, (3.11e)

˜︂Cth ≡
1
2
(TH + TL)− Tg,sat,0

mg,0 ωn HvRth

. (3.11f)

In appendix A.1.3, we provide equations and solutions for the general case, which includes
non-Poiseuille friction (Reω > 4), variations of vapor temperature and variations of satura-
tion temperature. These effects were found to be secondary; they provide a more accurate
physical representation of the problem but are not required to produce self-oscillations.
In appendix A.1.3, we also discuss how these affect the dynamics and when they can be
neglected.
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3.3 Oscillations Startup - Linear Theory
The set of differential equations eq. (3.10) is nonlinear and is therefore difficult to solve
analytically. When studying nonlinear dynamical systems, it is common to look for insight
into the physics by studying the linearized equations [107]. The linearization of eq. (3.10)
leads to

˜̈︁xi ≈ −˜︁xi⏞ ⏟⏟ ⏞
˜︂FV

+ ˜︃∆mg⏞ ⏟⏟ ⏞
˜︃Fm

−2 ζf ˜̇︁xi⏞ ⏟⏟ ⏞
˜︂Ff

, (3.12a)

˜̇︃∆mg ≈ −2 ˜︁σ ˜︁xi, (3.12b)

where

˜︁σ ≡ 1

2

˜︃THL

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓

1 +
(︂
˜︁xc
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓
)︂2 =

Lg,0

⃓⃓
T ′
w,0

⃓⃓

2 mg,0 ωnHv Rth

. (3.13)

The coefficient ˜︁σ expresses the rate of phase change due to motion of the meniscus along
the wall temperature profile and is referred to as the phase-change coefficient (note that
˜︁σ ⩾ 0). The solution of eq. (3.12) is given by eq. (A.28). The system behavior, which
depends only on ˜︁σ and ζf , is shown in fig. 3.4.

Let us first consider the case where there is no phase change by taking the phase-change
coefficient ˜︁σ = 0. We get ˜̇︃∆mg = 0 and the mass of vapor is at equilibrium, so ˜︃∆mg = 0.
Equation (3.12a) becomes simply ˜̈︁xi = −˜︁xi − 2 ζf ˜̇︁xi which is the well-known universal
oscillator equation. For 0 < ζf < 1, the system is underdamped and the position ˜︁xi
oscillates after a perturbation due to the interplay of the inertial term ˜̈︁xi and the spring
term −˜︁xi, but the amplitude decreases over time due to the friction term −2 ζf ˜̇︁xi. For
ζf > 1, the system is overdamped and the position ˜︁xi decreases exponentially towards the
equilibrium without oscillating.

Now let us introduce the phase change by considering ˜︁σ > 0 and see how it affects the
dynamics. The mass of vapor ˜︃∆mg changes according to the phase change eq. (3.12b);
˜︃∆mg introduces a dimensionless force ˜︂Fm to the classical harmonic oscillator eq. (3.12a)
which can change the qualitative nature of the oscillations. Except for the overdamped
region (in the lower right corner of fig. 3.4), the solution for the position ˜︁xi reduces to
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sinusoidal motion (eq. (A.30a) also gives the velocity and the mass of vapor)

˜︁xi(τ) = a1 e
λ1τ

⏞ ⏟⏟ ⏞
mean value growth

+ a2 e
˜︁ατ sin (˜︁ωτ + φ)⏞ ⏟⏟ ⏞

oscillations growing or not

, (3.14)

where (approximations are given for small ˜︁σ and ζf )

λ1 ≈ −2 ˜︁σ, (3.15a)

˜︁ω ≈ 1 (3.15b)

˜︁α ≈ ˜︁σ − ζf = ζf (Π− 1) , (3.15c)

Π ≡ ˜︁σ
ζf

=
ρℓRg Tg,0

⃓⃓
T ′
w,0

⃓⃓

8π µHvRth P̂e

, (3.15d)

ωn =

√︃
k

mℓ

=

√︄
Pg,0

ρℓLℓLg,0

. (3.15e)

The constants a1, a2 and φ are defined by the initial conditions. The sinusoidal part in
eq. (3.14) produces oscillations. For small ˜︁σ and ζf , the dimensionless frequency ˜︁ω ap-
proaches 1, meaning that the dimensional frequency is ωn given by eq. (3.15e), as predicted
by Das et al. [20]. However, for larger values of ˜︁σ and ζf , ˜︁ω can differ significantly from
1(see fig. A.2d in the appendix and related text for more details).

The oscillations grow or decay due to the exponential e˜︁ατ . The growth rate ˜︁α approaches
˜︁σ − ζf for small ˜︁σ and ζf (eq. (3.15c)). Therefore, the friction ζf still tends to make
the equilibrium stable (damps the oscillations) as in the universal oscillator equation.
However, the phase change ˜︁σ has the opposite effect; it tends to make the equilibrium
unstable (leading to growing oscillations). Phase change can make the equilibrium unstable
(˜︁α > 0) when greater than friction (˜︁σ > ζf ), leading to the startup of the oscillations after
a small perturbation from the equilibrium (see fig. 3.4). The ratio ˜︁σ/ζf , defined here as the
dimensionless instability number Π (eq. (3.15d)), can thus be used to assess the system’s
linear stability (stable for Π < 1 and unstable for Π > 1). The Π number suggests that to
promote the instability, one may increase the thermal gradient at the equilibrium position⃓⃓
T ′
w,0

⃓⃓
, decrease the external pressure P̂e, or decrease the thermal resistance (by promoting

evaporation, for example). Changing the fluid also affects Π. For large value of ˜︁σ and
ζf , Π is still valid as a criterion for the startup. The growth rate ˜︁α can however change
significantly from the approximation (see gray isolines in fig. 3.4 or fig. A.2c for more
details).
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Figure 3.4 The equilibrium state of the SBPHP (based on eq. (3.12)) can be
stable (small perturbation leading to either overdamped or damped oscillation)
for Π < 1 or unstable (small perturbation leading to sustain oscillations) for
Π > 1, with the dimensionless number Π = ˜︁σ/ζf , where ˜︁σ is the phase-change
coefficient and ζf is the friction coefficient.

The first exponential in eq. (3.14) describes the oscillation mean value which decreases
in time toward 0 since λ1 ⩽ 0 (see fig. A.2b). The approximation of small ˜︁σ and ζf

mentioned in this section is usually valid. For example, for a SBPHP filled with water,
of a diameter of 1mm, at atmospheric pressure and with lengths of vapor and liquid of
10 cm, the friction coefficient is ζf = 0.16. For a system close to startup, ˜︁σ is close to ζf
and both values are therefore small; the system is in the lower left corner of fig. 3.4.

3.4 Understanding the Physics
To understand the physics leading to the solution eq. (3.14), let us analyze the forces
applied to the liquid plug, specifically the components of the pressure (˜︂FV and ˜︂Fm) and
the friction force (˜︂Ff) after a small perturbation of the equilibrium and for small ˜︁σ and
ζf at first for simplicity (see section 3.4.3 for more general considerations). Figure 3.5
shows the oscillating part of the meniscus position, of the forces and of other components
of interest. In the following, we will also make use of an energetic point of view, which is
especially useful to study the evolution of the system from one oscillation cycle to another.
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A single quantity (the work over a cycle) indicates if the net effect of a force is to increase
or decrease the energy (related to the oscillation amplitude) over a cycle. Importantly, this
framework remains valid when the dynamics becomes nonlinear. The energy framework
introduced here will also be used to analyze experimental data in section 3.5.4.

3.4.1 Resonator (Spring effect from the Vapor Coupled to the

Liquid Inertia)

Compression and expansion of the vapor bubble produce a restoring force ˜︂FV, which is
proportional and opposite to the position ˜︁xi (eq. (3.12a) and fig. 3.5b). It acts as a
spring and, coupled with the liquid plug inertia, produces a resonator which explains the
oscillations. This resonator representation was already described in the works of Das et al.
[20] and Ma et al. [69]. Here we confirm those findings (for small ˜︁σ and ζf ) by a more
general approach, without neglecting the phase change. We use ˜︁K to denote the kinetic
energy

˜︁K =
K

Pg,0ALg,0

=
1

2
˜̇︁xi

2
. (3.16a)

The force ˜︂FV is conservative, so the work it produces leads to potential energy ˜︁Ur,

˜︁Ur =
Ures

Pg,0ALg,0

= ˜︁xi − ln [1 + ˜︁xi] ≈
1

2
˜︁xi2. (3.16b)

The sum of ˜︁Ur and the kinetic energy ˜︁K of the liquid mass constitutes the energy of the
resonator ˜︁Er,

˜︁Er = ˜︁K + ˜︁Ur ≈ 1

2
r2(τi), (3.16c)

with r(τ) ≡ a2e
˜︁ατ . From an energetic viewpoint, the resonator stores energy. In the

absence of friction and phase change, ˜︁Er is conserved and the energy is exchanged between
the kinetic and the potential forms over a cycle. Considering the linear solution, we obtain
the approximation ˜︁Er ≈ 1

2
r2(τi), where the quantity r(τi) is the oscillation amplitude a2e˜︁ατ

in the linear solution, at the time τ = τi. We conclude from this expression that energy
and oscillation amplitude are linked: what leads to an increase (decrease) of energy ˜︁Er

also leads to an increase (decrease) in oscillation amplitude.
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3.4.2 Instability Mechanism (Mass of Vapor Versus Friction)
The friction force ˜︂Ff produces work ˜︂Wf ,

˜︂Wf =
Wf

Pg,0ALg,0

=

∫︂ τ1

τ0

˜︂Ff · ˜̇︁xidτ , (3.17a)

on the liquid plug, while the phase change produces a force ˜︂Fm, which in turn produces a
work ˜︂Wm,

˜︂Wm =
Wm

Pg,0ALg,0

=

∫︂ τ1

τ0

˜︂Fm · ˜̇︁xidτ , (3.17b)

on the liquid plug. The net work ˜︂Wm + ˜︂Wf corresponds to energy injected into (dissi-
pated from, if negative) the resonator, leading to an increase (decrease) in the oscillation
amplitude.

We obtain the works produced over a cycle at a time τi,

˜︂Wf,cycle =

∫︂ τi+π/˜︁ω

τi−π/˜︁ω
˜︂Ff · ˜̇︁xidτ ≈ −2π

˜︁ω ζf r
2(τi), (3.18a)

˜︂Wm,cycle =

∫︂ τi+π/˜︁ω

τi−π/˜︁ω
˜︂Fm · ˜̇︁xidτ ≈ +

2π

˜︁ω ˜︁σ r2(τi), (3.18b)

by integrating over a period around τi (a period being 2π/˜︁ω). The approximations in
eq. (3.18) are obtained by considering the expressions of the forces and using the linear
solution.

The friction force ˜︂Ff is opposite to the velocity and therefore acts as a damping force,
producing a negative work ˜︂Wf . Over a cycle, the friction dissipates the energy (2π/˜︁ω) ζf r2
from the resonator, which tends to stabilize the system. In the absence of phase change,
the energy of the resonator ˜︁Er and the oscillation amplitude decrease over time, so the
resonator settles to the equilibrium position after a while. With phase change however, the
system can become unstable. A phase change proportional and opposite to the position
(see eq. (3.12b) and fig. 3.5, evaporation (condensation) increases as the meniscus goes
in the heat source (sink)) produces a force ˜︂Fm on the liquid plug which is in phase with
the velocity and acts as positive feedback (also called negative damping). It produces a
positive work ˜︂Wm which injects the energy (2π/˜︁ω) ˜︁σ r2 into the resonator over a cycle and
tends to destabilize the system.
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We found in the linear solution that the system is unstable for Π > 1. Here, we see from

˜︂Wm,cycle +˜︂Wf,cycle ≈
2π

˜︁ω (˜︁σ − ζf ) r
2(τi) =

2π

˜︁ω ζf (Π− 1) r2(τi) (3.19)

that the net energy injected into the resonator over a cycle (˜︂Wm,cycle +˜︂Wf,cycle) is propor-
tional to Π − 1. When Π > 1 (corresponding to ˜︁σ > ζf ), the energy injected by phase
change is greater than the energy dissipated by friction. So, at each cycle, the net injected
energy in the resonator ˜︂Wm,cycle +˜︂Wf,cycle is positive. This is why the energy of the res-
onator, ˜︁Er as well as the oscillation amplitude, increase over time when Π > 1. In fact, we
have the ratio ˜︂Wm,cycle/˜︂Wf,cycle ≈ ˜︁σ/ζf = Π; one can understand the instability number
as the ratio of the injected energy to the dissipated energy.

From our model and under the limits mentioned above, we see that having an evaporation
rate ˜̇︃∆mg proportional and opposite to the meniscus position leads to a force completely in
phase with velocity, which solely injects energy in the system. It is the simplest expression
possible to produce self-oscillations. One notices that since the pressure ˜︃∆Pg is a function
of the mass of vapor (the integral of the phase change rate), ˜︂Fm and ˜̇︃∆mg are not in phase.
A delay is introduced by the integral (see the phasor representation in fig. 3.5c), so the
evaporation rate in phase with position leads to a force in phase with velocity.

3.4.3 Resonator Energy
The works inject (dissipate) energy into (from) the resonator; the energy of the resonator
˜︁Er is related to the work applied on it. This can be formally shown by converting the
momentum balance eq. (3.12a) into an energy equation(simply multiply by velocity and
integrate)

˜︁Er

⃓⃓τ1
τ0

= ˜︁K + ˜︁Ur

⃓⃓τ1
τ0

= ˜︂Wm +˜︂Wf

⃓⃓τ1
τ0

(3.20)

Equation (3.12a) shows that the energy gain of the resonator ˜︁Er |τ1τ0 between a time τ0
and a time τ1 is equal to the net work ˜︂Wm + ˜︂Wf done during that time interval. If at
τ0, the system is at equilibrium (where ˜︁Er = 0) and then the energy gain ˜︁Er |τ1τ0 simply
corresponds to the total resonator energy ˜︁Er(τ1).

Under the limits considered at the beginning of section 3.4, the phase change and the
friction are perfectly in phase with the velocity, they purely inject or dissipate energy, and
eq. (3.20) is enough. In a more general case however, phase change and friction could be
partially in phase with the position and thus store some potential energy. For example,
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Figure 3.5 The variables evolving over one oscillation period are shown as well as phasor representations
at τ = π/4 for ζf = 0.04 and Π = 1.01. The interest is in the phasing between variables, so only the sinusoidal
part of the solution is shown. (a) Evolution of meniscus position and velocity. (b) Components ˜︃∆Pg, the spring
force ˜︂FV , which is opposite to the meniscus position, and the feedback force ˜︃Fm, which is in phase with the
velocity. (c) Evaporation rate, opposite to the meniscus location, which produces the force ˜︃Fm; it can be seen
that ˜︃Fm is delayed by a quarter of a period compared to the evaporation rate.
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this happens for ˜︂Fm when ˜︁σ and ζf are not small and differ significantly from one another
(top left and bottom right corners in fig. 3.4); ˜︂Fm then contributes to the resonator and
affects the frequency (fig. A.2d). Potential energy can also be stored by ˜︂Fm when the
oscillation amplitude is large enough such that nonlinearities become significant. This can
also happen for ˜︂Ff when non-Poiseuille friction is taken into account (see section 3.2.3). To
take these effects into account, we can split the phase change force ˜︂Fm into a component
in phase with position ˜︁Fm,α and a component in phase with velocity ˜︁Fm,β such that ˜︂Fm =
˜︁Fm,α + ˜︁Fm,β. The friction force can be split in the same way. The works ˜︂Wm,α and ˜︂Wf,α

produce no net work on the resonator over a cycle and they conserve energy, so they can
be written as potentials ˜︁Um = −˜︂Wm,α and ˜︁Uf = −˜︂Wf,α. On the contrary, ˜︂Wm,β and ˜︂Wf,β

are purely injecting or dissipating energy. It now makes sense to define a total system
energy ˜︁Esys which includes the energy of the resonator ˜︁Er plus the potentials ˜︁Um and ˜︁Uf .
A conservation equation

˜︁Esys

⃓⃓τ1
τ0

= ˜︁K + ˜︁Ur + ˜︁Um + ˜︁Uf

⃓⃓τ1
τ0

= ˜︂Wm,β +˜︂Wf,β

⃓⃓τ1
τ0

(3.21)

relates the system energy ˜︁Esys to the works ˜︂Wm,β and ˜︂Wf,β.

3.5 Experimental Validation
In this section we validate experimentally the instability mechanism presented above. In
section 3.5.1 we described the setup and the basic behavior we observe. In section 3.5.2
we present an experiment where the startup of the oscillations is triggered. Sections 3.5.3
and 3.5.4 provide results based on this experiment. In section 3.5.3 we consider the early
stage of the startup where the motion is sinusoidal and we confirm that the mass of vapor
and friction force lead to positive feedback and a damping force, respectively. We also
compare the theoretical model to the experiment. In section 3.5.4 we confirm, well beyond
the linear regime, that phase change does positive work while friction does negative work
and we show that the net work leads to corresponding variations in oscillation amplitude.
This confirms that the positive feedback and the damping force are correctly identified.

3.5.1 Experimental Setup and Basic Experiment
We use the experimental setup shown in fig. 3.6, which is inspired by the work of Rao et al.
[92]. A glass tube is used as a single-branch PHP, with internal and external diameters
of 2.2 and 4.1mm respectively. The tube is closed at one end by an analog pressure
sensor (Omega PX-26-005DV) with a custom preamplifier board providing vapor pressure
measurements with a tolerance of ±0.07 kPa, while the other end is connected to a vacuum
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pump system with a PVC tube to control the external pressure, if needed. Motion of the
liquid plug is measured by recording the rear meniscus position with a high-speed camera
(PCO.1200hs) with a tolerance due to calibration of ±0.016%. Acquisition of pressure
measurements and synchronization with the meniscus position are made with a Keithley
KPCI-3110 data acquisition board. To ensure reliability of the results, the tube is cleaned
with an atmospheric corona discharge treatment before every experiment. The tube is
heated at the closed end by a heat source, a reservoir filled with glycerin maintained at a
temperature TH . This reservoir consists of a larger tube capped with polydimethylsiloxane
(PDMS) plugs at both ends, allowing the test tube to go through (the PDMS plug one
on the heat sink side has a length of 5mm). The temperature TH is measured by a
thermocouple (Omega 5TC-TT-K-30-36) and maintained by a heater (Omega Lux heater
CSH-1011001/120 with a controller RKC Instrument REX-C100, limited by a voltage
regulator). A pressure relief valve (not shown in the figure) prevents overpressurization of
the glycerin. Also, to keep the evaporator temperature uniform, a mixer spins a stir bar
in the glycerin. In the experiment, we assume Tg,0 = TH . The SBPHP tube is cooled on
the other side at a temperature TL (measured by a thermocouple Omega 5TC-TT-K-30-36
and an Agilent 34970A acquisition unit) by a reservoir filled with water circulating from
a thermostatic bath (Polyscience refrigerating circulator, 9506A11C). In order to observe
self-oscillations below the maximal evaporator temperature TH allowed by the setup, we
had to insert a capillary into the SBPHP tube (Polymicro, external diameter of 350µm).
A long thin film forms along the capillary, which effectively acts as a groove. This thin
film can evaporate much faster than the meniscus. We think that it enhances the phase
change and effectively reduces the thermal resistance Rth in Π, allowing oscillations to
occur at a lower evaporator temperature TH . The small liquid plug between the vapor
bubble and the pressure sensor has a constant volume at all times and does not influence
the oscillations, acting similarly to a dry closed end.

The first steps of the experiment are carried out as follows. The tube is filled with deionized
water. The temperature of the heater is increased progressively while the external pressure
is at atmospheric conditions (P̂e = Patm). Close to TH = 100 ◦C, a single vapor bubble
appears in the heat source section and increases in size until an equilibrium is reached,
with the vapor-liquid interface located at the PDMS plug. During the experiments, we
found that, from a stable state, increasing the thermal gradient (by increasing TH) above a
threshold leads to self-oscillations. From self-oscillations, decreasing the thermal gradient
below the threshold returns the system to a stable state. Likewise, decreasing (increasing)
the external pressure P̂e (with the vacuum pump) leads to self-oscillations (stability).
Finally, we were able to qualitatively control Rth by controlling the length of the capillary
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Figure 3.6 Schematic of the instrumented SBPHP experimental setup, not to
scale.

exposed in the vapor. From a stable state, pushing the capillary towards the vapor leads to
self-oscillations (length of the thin film is increased). On the contrary, pulling the capillary
out returns the system to a stable state. These results are in line with the predicted effects
of those parameters from the instability number Π.

3.5.2 Startup Experiment - Measurements
To validate the theoretical explanation further, we measured quantities during the startup
of the oscillations. Initial conditions for the experiments were TH = 103 ◦C, TL = 20 ◦C,
P̂e = Patm, Lℓ = 10 cm and Lg,0 = 8 cm. The temperature TH was then increased to 104 ◦C

which led to startup of the oscillations. Measurements are shown in fig. 3.7. Position
and pressure are extracted as discussed above. The mass of vapor can be derived from
position and pressure using the ideal gas law (3.3). Simple heat transfer estimations show
that the vapor is very much isothermal in our experiment, so Tg is taken as constant. The
friction force is derived from the momentum balance (3.1). More details on how quantities
are extracted from measurements are provided in appendix A.2.1. At the beginning of
the startup (see the close-up in graphs), the dynamics is linear and quantities vary in a
sinusoidal fashion. As the oscillation amplitude increases, the dynamics become nonlinear,
harmonics in the measurements start to appear, and the system eventually reaches a
steady-state regime. We must highlight that the quantities derived from the measurements
are independent of our theoretical model. Only the ideal gas law and momentum balance
are assumed, which are very reasonable hypotheses. In this experiment, the natural
frequency fn = ωn/(2π) = 17.9Hz. The measured frequency slightly varies in time: It
is 18.44Hz initially and 17.23Hz in the steady-state regime. During the startup, the
kinetic Reynolds number averages Reω = 133 (with a minimum of 130 and maximum of
140), so the condition Reω ≪ 4 required for Poiseuille flow is not met and we expect
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more of an oscillating velocity profile as described in section 3.2.3 and appendix A.1.2 (we
will compare friction force expressions in the next section). The friction coefficient (for
oscillating friction) is ζfω = 0.06. We can estimate the phase-change coefficient ˜︁σ from
the measurements (see appendix A.2.1 for details) and we get ˜︁σ = 0.104 ± 0.014. The
resulting instability number is Π = ˜︁σ/ζfω ≈ 1.73.
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Figure 3.7 Various quantities measured during the startup. The mass of the
vapor mg is in phase with the velocity, so it acts as feedback; the friction force
Ff is opposed to the velocity, so it acts as dissipation. The dotted lines in the
phasor graphs represent the directions of xi and ẋi.

3.5.3 Mass of Vapor as Positive Feedback and Friction as Damp-

ing Force
From our linearized theoretical model, we predicted (see section 3.4) that the mass of vapor
would be mostly in phase with the velocity, leading to a positive feedback force, while the
friction would be mostly in opposite phase with velocity, leading to a damping force. In
this section we verify if that is indeed what we observe in the experiment. Here we only
consider the early stage of the startup, where the motion is mostly sinusoidal, such that we
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can use the phase to compare quantities to one another. Experimental measurements and
theoretical curves corresponding to the experimental conditions are displayed in fig. 3.8.
On the left-hand side , we display the phasors for each quantities in the referential xi − ẋi

so that we can clearly see their phase (angle) relative to the position xi and the velocity
ẋi.
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Figure 3.8 Measured and theoretical position xi and mass of vapor mg in
the early stage of the startup, as well as friction force Ff , all showing close
agreement. The theoretical curves displayed are based on ζfω = 0.06 and
˜︁σ = 0.104 ± 0.014 (the uncertainty on ˜︁σ is shown by the gray, shaded area).
On the left-hand side, each quantity is represented as a phasor in the referential
xi − ẋi (only the angle is considered here, not the amplitude). The angles vary
only slightly over the duration 0.58-0.72 s. The averages are considered in the
phasor diagram.

Experimental Curves

In fig. 3.8 the measured mass of vapor follows a sinusoidal curve of growing amplitude and
is mostly in phase with the velocity, leading to a positive feedback force. It also leads to a
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small spring force. The measured friction also follows a sinusoidal curve growing in time 3.
The measured friction force is mostly in the opposite phase with velocity, so it mostly acts
as a damping force, but also has a small inertial component.

From our experimental measurements, we confirmed that the mass of vapor leads to pos-
itive feedback and the friction to a damping force, as we expected from our theoretical
analysis. Crucially, this conclusion is independent of our theoretical model; the only hy-
potheses considered are the ideal gas law and the momentum balance on the liquid plug.

Theory Versus Experiment

We now compare the theoretical solution to the experiment (see fig. 3.8). To produce
the theoretical curves for position xi and mass of vapor mg, we used the general solution
eq. (A.33) (but assuming an isothermal vapor) to take into account the effect of oscillating
friction. In the friction force graph of fig. 3.8, we included the curves from theoretical
friction force, both from Poiseuille and oscillating friction (3.9). In those expressions, we
used experimental velocity and pressure in order to verify the friction models alone.

First of all, we see that both theoretical and experimental curves have a sinusoidal profile
growing in amplitude at the early stage of the startup. Regarding the frequency, we observe
that the theoretical one (f = 17.18Hz) is close to but slightly lower than the experimental
one (which varies from 18.44Hz to 17.23Hz). Concerning the growth rate, we observe that
the experimental and theoretical ones are similar and inside the uncertainty bounds. In
the phasor diagram, we observe that the theoretical mg is perfectly in phase with velocity,
while the experimental one is mostly in phase with velocity but also has a small component
opposite to the position. Now considering friction, the Poiseuille and the oscillating friction
amplitudes average, respectively, 27% and 82% respectively of the experimental value in
the early stage of the startup (around t = 0.65 s) and 30% and 93% once the steady state
is reached. In terms of phase, the Poiseuille friction is purely dissipative (the angle relative
to −xi equals 0), while the oscillating friction (the relative angle averages 0.17π rad in the
early stage and 0.15π rad in the steady state) captures the inertial component observed
experimentally (the relative angle averages 0.05π rad in the early stage and 0.07π rad in
the steady state).

There is good qualitative and quantitative agreement between theory and experiment with
some errors in frequency prediction and in the angle shift for the mass of vapor and friction
force. We found that the oscillating friction closely matches the experimental friction force

3. Note that the friction curve is noisy initially (around t=0.4 s) because of the inaccuracy in the
motion detection which is significant at very small amplitude (friction force is highly sensitive to noise in
the position since it is obtained by the momentum balance, which involves a second derivative ẍi).
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and is more accurate than the Poiseuille model (keeping in mind the case studied was at
large Reω). Such slight differences are to be expected between theory and experiment:
the theoretical phase change model does not include a long thin film as produced by the
capillary in the experiment and the oscillating friction model does not include the effects
of the menisci on the flow field.

3.5.4 Energy analysis - Phase Change Injects Energy, Friction

Dissipates
So far, we only looked at the phase of the forces relative to position and velocity, but their
amplitude is also of crucial importance. One may be interested in confirming that the
amplitude of the positive feedback force from phase change is greater than the damping
force from the liquid viscous friction and that the net resulting force corresponds to the
amplitude growth observed experimentally. This would confirm that the phase change is
the only feedback, while viscous friction is the only damping force. Such analysis is made
complicated by the fact that the forces are not perfectly aligned with velocity and that, as
the amplitude grows, harmonics start to appear in the signal due to nonlinearities. Energy
analysis deals with those complications in a natural way: one simply has to compute the
work over a cycle to obtain the net effect of the related force during an oscillation’s cycle.
Here we experimentally demonstrate that phase change does positive work while friction
does negative work and that the energy Esys (related to the oscillation’s amplitude) varies
accordingly. We apply energy and work formulations from section 3.4.3 to the startup
measurements presented in the section 3.5.2.

We compute the non conservative work per cycle from phase changeWm,β,cycle (see fig. 3.9a)
which turns out to be positive from the beginning to the end of the measurements. This
confirms that phase change injects energy into the system. Likewise, the work done per
cycle by friction Wf,β,cycle is found to be negative (see fig. 3.9a ; the value −Wf,β,cycle is
displayed to make amplitude comparison to Wm,β,cycle easier). At each cycle, the net work
done is Wm,β,cycle+Wf,β,cycle, shown in fig. 3.9b. This net work increases the system energy
Esys, as shown in fig. 3.9c, computed from Esys = K+Ur+Um+Uf , eq. (3.21). In fig. 3.9
we can see at the beginning that phase change does more work than friction and the net
injected energy is positive, which is why the energy of the system Esys and the oscillation
amplitude increase. At 1.19 s, the net injected energy reaches a maximum corresponding
to the inflection point in Esys. Beyond 1.5 s, the net injected energy gets close to 0 and
the energy of the system saturates.

In this experiment we confirmed that the energy injected into the system (due to positive
feedback force) comes from phase change and that the dissipated energy (due to damping
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Figure 3.9 Energy analysis of the startup (same experiment as in fig. 3.7).
(a) Works from phase change (Wm,β,cycle) and friction (Wf,β,cycle) (the value
−Wf,β,cycle is displayed to make the comparision of the magnitude to Wm,β,cycle

easier). The work Wm,β,cycle is positive, so phase change is injecting energy
into the system; the work Wf,β,cycle is negative, so friction is dissipating energy
from the system into the environment. (b) Net work on the system per cycle:
Wm,β,cycle is initially greater than Wf,β,cycle, so the net work on the system is
positive; the net work eventually gets close to 0 around 1.5 s. (c) Total energy
of the system. The energy of the system (as well as the oscillation amplitude)
increases as long as the net work is positive and saturates around 1.5 s.
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force) is due to viscous friction. The energy findings further support the argumentation
that the self-oscillating behavior appears when the pressure force from phase change over-
comes the friction force. It also allows us to understand that the oscillation amplitude
varies according to the net injected energy into the system, beyond the linear regime.
Once again, this experimental validation is independent of our theoretical model; it only
assumes the ideal gas law and the momentum balance equation.

3.6 Perspectives on Related Work
In this section we discuss how our approach compares to the literature and extrapolate
from our results to reach more general conclusions about the SBPHP dynamics. We first
discuss the resonator representation and then the instability mechanism and finally expand
on how a more realistic phase change representation than the one used in our model would
influence the dynamics.

3.6.1 The Resonator
The existence of a spring-mass system in the SBPHP has been predicted by other authors
[69, 105]. Here we deduced its existence from the model, by linearization. A side benefit
of this approach is to clarify the fact that the pressure force can be separated into two
components and that it is the change of vapor volume which is responsible for the spring
effect. We clarified that this analysis is valid when ˜︁σ and ζf are small. Otherwise, more
precise expressions for the angular frequency and the growth rate are available (see A.1.3).

3.6.2 Instability Mechanism
Our analysis made it clear that the oscillations in the SBPHP come from a thermofluidic
instability. The SBPHP dynamics however has often been incorrectly described as a forced
harmonic oscillator [69, 70]. In a forced system, oscillations always occur (no threshold).
Furthermore, the oscillation amplitude depends on the amplitude and frequency of the
forcing. In sharp contrast, our results show that the oscillations in the SBPHP are self-
driven, under the condition that the instability number is greater than unity (threshold).
The frequency of the feedback force is not set externally but depends on the system itself.
Furthermore, the final amplitude of such an instability depends on the nonlinearities of
the system (the study of which is beyond the scope of this article).

In this paper we provide a conclusive explanation for the instability mechanism based on
linear stability analysis, a classical approach for instabilities. We found that the phase
change tends to make the system unstable, while the viscous friction (between the liquid
and the wall) tends to stabilize it. After a perturbation of the equilibrium, the oscillations
grow when the phase-change coefficient ˜︁σ is greater than the friction coefficient ζf . The
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instability in the SBPHP was studied before by other researchers, but it had remained not
well understood. Das et al. [20] showed numerically that including the phase change in
their model allowed self-oscillations to occur. In their model, phase change occurs at the
meniscus and on a thin liquid film. Inconveniently, their representation of the liquid film,
introduced to predict the phase-change more accurately, made it impossible to obtain
continuous linearized equations around the equilibrium. As a consequence, they were
unable to apply linear stability analysis. Without analytical results, they were unable to
explain how the phase change led to instability. Based on a similar model, Nikolayev [85]
studied the instability threshold further, using analytical techniques. He found the thermal
gradient of the wall at equilibrium to be a key factor promoting the instability, as we did.
However, the model retained the same liquid film representation as that of Das et al. [20], so
Nikolayev was still unable to apply linear stability analysis. This complicated the analysis,
such that a basic understanding of the instability mechanism remained out of reach. The
friction was assumed negligible in the instability analysis. We have shown here that, on the
contrary, the friction is essential to the description of the SBPHP instability mechanism,
since it is where the dissipation comes from. Also, the analytical results obtained were
only approximate and their range of validity was unknown. Besides, no expression for the
motion close to the equilibrium (like our linearized solution) was provided.

Finally, we remark that no experimental validation of the instability mechanism has been
carried on so far. Our experimental results (section 3.5) are therefore of prime importance.
They confirm the understanding of the instability mechanism we reached from the theory
and, crucially, do so with very few hypotheses. Only the momentum balance and the
perfect gas law are assumed; the experimental analysis does not rely on our simplified
model of the phase change. At the beginning of the startup, where the motion is mostly
sinusoidal, the mass of vapor was shown to be in phase with the velocity, leading to
positive feedback (negative damping) and the friction was shown to be opposite to velocity,
leading to a damping force. Well beyond the beginning of the startup, the energy analysis
confirmed that the injected energy came from the mass of vapor while the dissipated energy
came from the friction. We were able to conclude (beyond the validity of the linearization)
that the evolution of the amplitude depends on the net work injected (phase change
and friction doing positive and negative work respectively). The steady-state regime was
reached when the net injected energy was null. We think that our experimental results
definitively settle the question of the instability mechanism and shed some light on the
SBPHP physics beyond the startup.
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3.6.3 More Realistic Phase Change
The importance of the thin liquid film on phase change in the SBPHP is well known [20,
92, 34] and, consequently, substantial effort has been devoted to modeling it [126, 20, 85].
Such approaches are required to quantitatively predicts the evaporation rate. Here we used
a more simplistic approach with the aim of understanding the qualitative role of phase
change. We can extrapolate our results to more general phase change, whether it occurs
locally, from a liquid film on a plain surface, from a groove, or from other configurations.

In our model, phase change occurs locally at the meniscus and is a function of a thermal
resistance Rth. This led to a phase change proportional and opposite to the meniscus
position, in the linear approximation. We later found that such phase change produces a
force in phase with velocity (mg has a π/2 delay relative to ṁg in fig. 3.5), which injects
energy into the system. Importantly, this conclusion is more general than local phase
change at the meniscus; any phase change in antiphase with position (with a proportion-
ality constant ˜︁σ as in eq. (3.12b)) will lead to positive feedback. The instability criterion
remains Π > 1 with Π = ˜︁σ/ζf . A more general phase change waveform could be par-
tially in antiphase with the position and partially in phase with the velocity. In this case,
the resulting mass of vapor mg would produce a force having both a feedback component
which enhances the instability and a spring or inertial component which affects the oscilla-
tion frequency. However, for the phase change to make the system unstable, we still have
that the component in antiphase with position must be large enough so that it produce a
sufficiently large positive feedback force. In addition to the phase, we of course expect the
phase change from a liquid film to be significantly greater than the phase change from the
meniscus alone, leading to a greater coefficient ˜︁σ due to an overall lower thermal resistance
Rth (thin film and spread over a large area). This is what we observed in the experiment:
from a stable state, pushing the capillary towards the vapor increased the length of the
liquid film and led to self-oscillations (most likely by increasing ˜︁σ).

Our understanding was confirmed by the experiment: although the phase change configu-
ration tested here (capillary inserted in the tube) is relatively complex, the resulting mass
of vapor produces the desired positive feedback force which injects energy into the system.
The instability mechanism is the same as that predicted from the theory. Finally, it is
worth noting that a broader range of configurations (groove, microstructures, etc.) could
be imagined to control the phase change (in order to increase the amplitude, enhance
the heat transfer, etc.), but it must provide the antiphase evaporation and condensation
required for the instability mechanism.
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3.7 Conclusion
In this paper we provided a framework to understand and think about the physics in
the SBPHP. Careful modeling made it possible to study the SBPHP instability by linear
stability analysis, a classical approach for instabilities. An exact solution of the linearized
model was obtained, from which a clear understanding of the SBPHP dynamics was de-
rived. Experimental validation confirmed our conclusions.

In accordance with the literature, we found that the pressure variations of the vapor due
to a change of volume produce a spring force, which leads to a resonator when coupled
with the inertia of the liquid mass, explaining the oscillatory behavior. In the analytical
solution, the oscillation amplitude grows as e˜︁ατ , with ˜︁α ≈ ˜︁σ − ζf , where the coefficient ˜︁σ
comes from phase change and the coefficient ζf comes from viscous friction. As expected,
viscous friction acts as a damping force and tends to stabilize the oscillations by dissipating
the energy of the system. On the other hand, phase change leads to variations of the mass
of vapor, which changes the vapor pressure and ultimately produces a positive feedback
force (also called negative damping) on the liquid plug, destabilizing the oscillations by
injecting energy into the system. We provided an exact instability criterion, based on a
dimensionless instability number Π = ˜︁σ/ζf . The instability (oscillation’s startup) occurs
when the phase-change coefficient ˜︁σ is greater than the friction coefficient ζf , when Π > 1.

This understanding of the instability mechanism was then confirmed experimentally. Cru-
cially, our experimental validation is independent of the theoretical model. In the early
stage of the startup, measurements show that the mass of vapor is in phase with velocity,
leading to a positive feedback force, while the friction is opposite to velocity, leading to a
damping force. By energy analysis, we then showed for the full startup that phase change
injects energy into the system while friction dissipates it. We found that the net injected
energy led to a corresponding growth (and saturation when reaching steady state) in the
system’s energy and oscillation amplitude. This confirms that the feedback and damping
forces are correctly identified. Beyond the linear regime to which our analytical solution
was restricted, the energy analysis of the experimental data suggests that the amplitude
is controlled by the net injected energy into the system.

We conclude that this work has provided an experimentally validated explanation for
the self-oscillating behavior observed in pulsating heat pipes. At the end of the startup,
the oscillation amplitude saturates. This obviously limits the heat transfer capability of
the system. Future theoretical work should go beyond the startup and address the final
regime of the oscillations. This understanding could lead to a significant increase in the
heat transfer performance of pulsating heat pipes and self-oscillating heat engines.
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nonlinéarités. Le SBPHP est un tube de faible diamètre fermé à une extrémité (qui est
chauffée) et ouvert à l’autre extrémité, dans lequel une bulle de vapeur est suivie d’une
colonne de liquide. Augmenter la température de la zone chaude au-delà d’un seuil critique
mène à des oscillations de la colonne de liquide. L’amplitude des oscillations augmente
initialement, puis sature, alors que le système atteint un régime permanent. Pour décrire
cette dynamique, nous nous basons sur un modèle théorique connu du SBPHP. Ce modèle
est basé sur la somme des forces sur la colonne de liquide et inclut la différence de pression
entre la vapeur et l’environnement et la friction visqueuse entre le liquide et les parois.
La pression dans la vapeur varie en fonction de la compression/dilatation de la bulle de
vapeur, mais aussi en fonction de l’évaporation ou condensation, alors que la colonne de
liquide oscille entre la zone chaude et la zone froide. La pression (décrite par la loi des gaz
parfaits) et l’évaporation et la condensation (limitées dans les zones chaudes et froides)
rendent les équations différentielles du modèle nonlinéaires. En appliquant la réduction
par variété centrale, suivie de la réduction sous forme normale, nous trouvons une solution
analytique approximative (décrivant la position et la vitesse de la colonne de liquide, en
plus de la masse de vapeur, en fonction du temps). La solution analytique décrit bien le
démarrage et le régime permanent. À l’aide de notre solution analytique, nous montrons
que l’augmentation initiale en amplitude est due au mécanisme d’instabilité (produit par
l’interaction entre le changement de phase et la friction visqueuse) alors que la saturation
en amplitude est due aux nonlinéarités de pression et de changement de phase, le système
approchant un régime permanent correspondant à un cycle limite. Le cycle limite est créé
par une bifurcation de Poincaré-Andronov-Hopf. Nous montrons que l’amplitude dans
le régime permanent peut être grandement augmentée en augmentant l’instabilité ou en
réduisant les nonlinéarités. Cela peut être fait en augmentant le changement de phase ou
en réduisant la friction. En conclusion, la dynamique du SBPHP devrait être vue comme
la combinaison d’un mécanisme d’instabilité qui tend à faire croître l’amplitude et d’un
mécanisme limitant produit par les nonlinéarités, qui limite l’amplitude.

Résumé anglais: In this paper, we show that the oscillations amplitude increases and
then saturates during the startup in the Single-Branch Pulsating Heat Pipe (SBPHP) due
to the interplay between an instability mechanism and a limiting mechanism produced by
nonlinearities. The SBPHP is a small tube closed at one end (which is heated) and open
at the other, in which sits a single vapor bubble followed by a liquid plug. Increasing
the heater temperature above a critical value leads to oscillations of the liquid plug. The
oscillations amplitude initially increases over time and eventually saturates (the system
reaches a steady-state). To describe this dynamics, we start from a known theoretical
SBPHP model. The model is derived from the momentum balance on the liquid plug
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which includes both the pressure difference between the vapor and the environment and
the viscous friction between the liquid and the wall. Pressure in the vapor varies due to
compression and expansion of the vapor bubble, but also due to evaporation and conden-
sation as the liquid plug oscillates between the heat source and the heat sink. Both the
pressure (described by perfect gas law) and the evaporation and condensation (limited
in both the heat source and the heat sink) make the differential equations in the model
nonlinear. By applying the center manifold reduction technique followed by the normal
form reduction technique, we obtain an approximate analytical solution (describing the
position and velocity of the liquid plug, and the mass of vapor, as a function of time). The
analytical solution describes well the startup and the subsequent steady-state. Using this
solution, we show that the initial increase in oscillations amplitude is due to the instabil-
ity mechanism (produced by the interplay of phase-change and viscous friction) while the
following amplitude saturation is due to the pressure and phase-change nonlinearities, as
the system reaches a steady-state corresponding to a limit cycle. The limit cycle is created
through a Poincaré-Andronov-Hopf bifurcation. We find that one can greatly increase the
oscillations amplitude in the steady-state by increasing the equilibrium instability and by
decreasing these nonlinearities. This can be done by increasing the phase-change and by
decreasing the friction. We conclude that the SBPHP dynamics should be viewed as a
combination of an instability mechanism which tends to increase the oscillations amplitude
and a limiting mechanism produced by nonlinearities, which limits the amplitude.

Note: pour satisfaire aux exigences de l’Université de Sherbrooke, la version de l’article
présentée dans cette thèse diffère de la version officielle.

4.1 Introduction
In fluid dynamics, numerous interesting flows develop from instabilities such as viscous
fingering (Saffman-Taylor instability [100, 45]), the transition to turbulence of the flow in
a pipe [97, 28], the vortices arising from the flow within two rotating cylinders (Taylor-
Couette flow [110]) and the convection cells developing in a fluid heated from beneath
(Rayleigh-Bénard instability [11, 12, 96]). Some instabilities give rise to self-oscillations,
where the periodicity is generated not externally but from the phenomenon itself and
where the oscillations are sustained over time by a positive feedback mechanism [52]. This
is the case for the self-oscillations of an aeroelastic structure known as flutter [115, 116, 2]
and the thermoacoustic self-oscillations of the Rijke tube [98, 94, 95], for example. One
such instability giving rise to self-oscillations occur in devices called Pulsating Heat Pipes
(PHP). The heat pipe is a popular cooling solution (for electronic devices for example)
that uses evaporation and condensation to transfer heat very effectively [30]. The pulsat-
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ing heat pipe (PHP) is a special type of heat pipe, made of a meandering tube in which
multiple vapor bubbles and liquid plugs move, effectively transferring heat from the heat
source to the colder side [3, 30]. Yet, the dynamics inside the PHP is not well understood,
which makes it difficult to improve performance and reliability. As a first step towards a
better understanding, researchers have studied a simpler device, the Single-Branch Pul-
sating Heat Pipe (SBPHP). The SBPHP is a straight tube closed at one end and open
at the other which is filled with a liquid (fig. 4.1). The closed-end is heated and a vapor
bubble eventually forms. The system reaches an equilibrium, with a single vapor bubble,
followed by a single liquid plug and then air, all standing still. From this equilibrium
state, increasing the temperature of the heater above a threshold leads to oscillations of
the liquid plug, which can be self-sustained indefinitely.

heat source heat sink

vapor liquid air

liquid plug oscillations

Figure 4.1 Schematic of a Single-Branch Pulsating Heat Pipe (SBPHP); the
liquid plug may oscillate indefinitely under appropriate conditions.

In this paper, we focus on the SBPHP dynamics only, as opposed to the PHP with multiple
branches, vapor bubbles and liquid plugs, which we will refer to as a multi-branch pulsating
heat pipe (MBPHP). Although the research on SBPHP was initially justified as a first step
toward a better understanding of MBPHP, SBPHP are now considered as interesting for
applications in their own rights. First, they could be used as cooling devices themselves,
with little modifications (e.g. in a closed U-shaped configuration [128], where a vapor
bubble is followed by a liquid plug, followed by a second vapor bubble). They could
also be used as micro-pumps [26]. Finally, they are studied as energy harvesting devices,
to convert waste heat into electricity, in a device called a Self-Oscillating Fluidic Heat
Engine (SOFHE) [78]. SOFHE devices could be used to power wireless sensors, which
are expected to be more common in the future with the advancement of the Internet of
Things paradigm [108, 109].

To this day, developing a basic understanding of the SBPHP dynamics is the subject of
ongoing research. One may ask: why does the liquid plug exhibit an oscillatory behav-
ior? Das et al. [20] answered that question by considering a simple model, assuming no
phase-change. They found that the vapor in the SBPHP acts as a spring: compressing or
expanding the vapor leads to a force (approximately) proportional and opposite to the dis-
placement. This spring, coupled with the inertia of the liquid plug, leads to a spring-mass
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system (also called resonator) which is why oscillations are possible in the SBPHP. Due
to dissipation, from the viscous friction between the liquid and the wall, the oscillations
should decay after a small perturbation of the equilibrium. However, experiments show
that, by increasing the temperature of the heat source, it is possible to bring the equilib-
rium to an unstable state where oscillations spontaneously appear and grow over time (see
fig. 4.2a). One may then ask: what explains this oscillation startup? An important step
was made by Das et al. [20], who showed numerically that including the phase-change led
to sustained oscillations. Based on the same model, Nikolayev [85] studied the oscillation
startup analytically. He identified the temperature gradient at the equilibrium as a key
parameter. Later on, Tessier-Poirier et al. [112] showed, both theoretically and experi-
mentally, that the instability mechanism is due to the interplay between the phase-change
and the friction. The evaporation-condensation leads to a change of pressure which acts
as a positive feedback (also called negative damping, because it is opposed to the friction).
When the positive feedback is greater than the friction, a perturbation of the equilibrium
leads to oscillations growing exponentially, in the linear approximation. The instability
criterion is expressed by an instability number Π (unstable when Π > 1) analogous to
other instability numbers such as the Rayleigh or Taylor numbers for the Rayleigh-Bénard
and Taylor-Couette instabilities, respectively. Although we focus on the SBPHP here, we
note that Jun and Kim [55] found experimental evidence for such an instability mechanism
in the MBPHP.

In contrast to the linearized model, where the oscillations amplitude increases exponen-
tially forever, we observe experimentally that the oscillations amplitude eventually satu-
rates (fig. 4.2a). At that point, the SBPHP reaches a steady-state which can be maintained
indefinitely. One may then ask: what limits the oscillations amplitude? In other words,
we would like to know what defines the steady-state oscillating regime and how we can
control it. This question has received little attention so far [127]. Both theoretically and
experimentally, the oscillations amplitude is usually noticed but not explained. This is
partially due to the strong tendency to focus mainly on the heat transfer capabilities,
since the PHP is usually considered for cooling applications. Of course, in PHP, the heat
transfer capabilities very much depend on whether there are oscillations or not, and on
their amplitude and frequency (see [56]). The performance of energy harvesting applica-
tions (SOFHE) also depends on the oscillations amplitude and the frequency (there is no
power output in the absence of oscillations). Understanding why there is a steady-state
and how the oscillations amplitude and frequency in the steady-state can be controlled
is therefore of prime importance to increase the performance for cooling and for energy
harvesting.
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Some studies have evaluated the effect of parameters on the oscillations amplitude. Das
et al. [20] found experimentally that increasing the temperature of the heat source led
to an increase in amplitude. They also found by numerical simulations that decreasing
the thermal resistance associated with the phase-change led to an increase in amplitude.
Spinato et al. [105] studied a MBPHP where the power input of the heater was controlled.
Increasing it led to an increase in the oscillations amplitude. However, although the
effect of parameters is interesting, it does not constitute an explanation of the oscillating
steady-state. We would benefit from a theoretical framework that explains the mechanisms
leading to the steady-state, so that we can better control it. Such theoretical framework
would be helpful to guide the design of cooling, pumping and energy harvesting devices
based on the operating principle of PHP.

In this paper, we address the question of what limits the oscillations amplitude, using an-
alytical and numerical nonlinear dynamics techniques. Some insight on the question can
be gained by considering a phase-space representation: the state of the system is given
by a point moving in space over time, with the position and velocity of the liquid-vapor
meniscus as well as the mass of vapor as coordinates. We can see from experimental data
(fig. 4.2b) that the system, starting from the initial state, spirals toward a single closed
loop in phase-space. This corresponds to what is known in nonlinear dynamics as a stable
(meaning attractive) limit cycle 1. The dynamics on the limit cycle is periodic and cor-
responds to the oscillating steady-state regime. The geometry of the limit cycle dictates
the oscillating amplitude. Here, we use a nonlinear theoretical model of the SBPHP
to explain why such limit cycle exists and how one can control its size. We introduce
the model in section 4.2. We simulate numerically the startup and show that the system
approaches a steady-state corresponding to a limit cycle, just like in the experiment. We
show that the saturation of the amplitude and the limit cycle are caused by the non-
linearities. We then obtain an approximate analytical solution of the model’s nonlinear
dynamics using center manifold reduction and normal form techniques (section 4.3.1). Us-
ing those analytical results, we show how the oscillations amplitude grows over time during
the startup due to the instability mechanism (linear part) and then, how the instability
mechanism is counterbalanced by the limiting mechanism (nonlinear part) such that the
amplitude saturates and the system reaches an oscillating steady-state corresponding to
a limit cycle (section 4.3.2-4.3.3). We prove that both the pressure and the phase-change
nonlinearities included in the model are limiting mechanisms, meaning that they limit the

1. Experimental measurements over a longer time span show slight fluctuations of the limit cycle, but
those occur on a longer time scale and are likely due to undesirable fluctuations of the external parameters
such as the heat source temperature.
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Figure 4.2 Experimental data recorded during the startup of an SBPHP (data
available in supplementary materials, data from [112]); (a) position of the liquid-
vapor meniscus relative to the equilibrium, as a function of time, (b) state of
the system evolving over time in phase-space with the position of the meniscus,
velocity of the meniscus and mass of vapor as coordinates, the system approach-
ing a limit cycle.

oscillation amplitude and are responsible for the existence of the limit cycle / steady-state
(section 4.3.3). The limit cycle is created through a Poincaré-Andronov-Hopf bifurcation.
Finally, based on our analytical solution, we discuss how one can increase the oscillation
amplitude in the steady-state by controlling the instability mechanism and the limiting
mechanism (section 4.3.3). More specifically, we show how those mechanisms depend on
the phase-change and friction. This article extends and complements previous works on
the subject [113, 111] and provides a rigorous framework for devices based on the PHP
principle.
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4.2 Model and Numerical Results
In this section, we first describe the theoretical model (section 4.2.1). We then provide
its linear solution, useful to predict the startup, and introduce two key parameters: the
bifurcation parameter δ and the instability number Π (section 4.2.2). In section 4.2.3, we
introduce two parameters, cP and cT , to include or exclude the pressure and the phase-
change nonlinearities, respectively. Finally, we carry out numerical simulations of the
nonlinear differential equations (section 4.2.4). Contrary to the linear case, we do observe
saturation of the amplitude in the nonlinear case, as the system reaches an oscillating
steady-state regime. The effects of nonlinearities on the steady-state regime are explored
further.

4.2.1 Modeling
To describe the oscillations, we use a known model of the SBPHP [112] with some simpli-
fications, resulting in the system of equations (4.7). Here we provide an overview of the
derivation of this system of differential equations. The momentum balance is applied on
the liquid plug as

mℓẍi =
(︂
Pg − P̂e

)︂
A+ Ff , (4.1)

with xi the meniscus position (as defined in fig. 4.3a) and ẍi the liquid plug acceleration
(with mℓ the mass of liquid). The forces are due to the gas pressure of the vapor Pg, the
external pressure Pe, gravity if the tube is tilted and the friction force from the walls, Ff ,
with Ff ∝ ẋi. In eq. (4.1), the external pressure and the gravity are combined in a single
term, the augmented pressure P̂e, with P̂e = Pe + ρℓ g Lℓ sin θ, where ρℓ is the density of
liquid, g the gravitational acceleration, Lℓ the length of liquid and θ is the angle of the
tube relative to the horizontal. The vapor’s pressure can be described by the perfect gas
law: Pg = (mgRgTg) / (xi + Lg,0)A, where mg is the mass of vapor, Rg is the gas constant
for vapor, Tg is the vapor temperature (which we will assume constant [112]), Lg,0 is the
length of vapor at equilibrium (see fig. 4.3a) and A is the tube’s inner cross-section area.

The mass of vapor mg varies through phase-change (evaporation and condensation). The
phase-change in the PHP is quite complex. In addition to the phase-change at the menis-
cus, significative phase-change may come from a thin liquid film laid on the walls by the
meniscus ([92, 34]). The thickness of the liquid film may vary spatially. Both the thickness
and the length of the liquid film also vary over time. Moreover, the geometry of the liq-
uid film, the phase-change and the liquid plug dynamics are all dynamically coupled. To
model the phase-change, approaches of varying complexities have been considered, rang-
ing from local phase-change at the meniscus (assuming a short liquid film) [112], to liquid
film with a fixed thickness fully covering the internal walls [103], to liquid film of fixed
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thickness and varying length [20], to liquid film with varying thickness and varying length
[93, 22, 83, 7, 99] to full on CFD approaches [67, 118, 38] (see [86] for a comprehensive
litterature review). The choice of the modeling approach is a trade-off between simplicity
(better suited for analytical approaches and to build intuitions about the physics, allow
faster simulations) and accuracy (more detailed physics, higher quantitative prediction
power). From an engineering point of view, one might be interested into controlling the
phase-change to improve the performance. Beyond the plain surface usually considered
in PHP, the tube can be engineered in order to enhance the phase-change. Various ap-
proaches have been used including sintered powder wick [129], hydrophilic and hydrophobic
inner surfaces [43, 42], corrugations [119], microgrooves [90], reentrant cavities [62] and
the addition of a small glass fiber as a wicking structure [112]. Thus, there is not only one
phase-change physics to model but multiple ones, depending on the chosen design. The
modeling approaches mentioned above for plain surfaces do not directly apply to the engi-
neered tubes. In fact, no single model of the phase-change would be suited for all possible
cases. Here, our goal is to reach a qualitative understanding of the steady-state regime.
Thus, we choose a simple phase-change model, corresponding to local phase-change at the
meniscus, proportional to the temperature difference between the wall and meniscus and
with a continuous axial wall temperature profile (see [112] for a schematic of the thermal
resistance model). Once linearized, this phase-change produces a force in phase with ve-
locity [112] and thus constitutes the simplest phase-change possible to produce a positive
feedback force and the oscillations startup. Keeping in mind that one can control the
phase-change with engineered tubes, this phase-change profile could be used as a point of
reference, to which various engineering strategies could be compared. In our model, the
phase-change rate is given by:

ṁg =
Tw(xi)− Tg,sat

HvRth

. (4.2)

In this expression, Tw(xi) is the wall temperature at the meniscus position, Tg,sat is the
temperature of the meniscus (at saturation), Hv is the enthalpy of vaporization and Rth

is the phase-change thermal resistance. We assume the wall temperature Tw(x) to be set
by the thermal boundary conditions of the heat source and heat sink, such that it follows
an arctangent profile (fig. 4.3a).

In this system, there is only one equilibrium, corresponding to a static liquid plug and
constant mass of vapor. In the momentum balance, having ẍi = 0 leads to Pg − P̂e = 0

(Ff = 0 since ẋi = 0) so Pg = Pg,0 = P̂e (note that the 0 subscript refers to values at
equilibrium). Having no net phase-change, ṁg = 0, so Tw(xi) = Tg,sat. This last relation
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Figure 4.3 Nonlinearities in the system. (a) Nonlinear wall temperature profile
along the x axis, the xi location is defined as the meniscus position relative
to the equilibrium point, which corresponds to Tw = Tg,sat: This nonlinear
temperature profile leads to a nonlinear phase-change (ṁg being a function of
Tw, eq. (4.2)); figure adapted from [112]. (b) Pressure of the gas (Pg) is nonlinear
and proportional to 1/(Lg,0 + xi).

defines the physical location of the meniscus at equilibrium. The distance along the tube
from the closed end to that location is defined as Lg,0. The meniscus position xi is defined
relative to that equilibrium location. At equilibrium, the mass of vapor is defined as mg,0

and the meniscus position is xi = 0.

Dimensionless Variables

We now replace variables by their perturbations relative to the equilibrium and make them
dimensionless. We get

q1 ≡
xi
Lg,0

, q2 ≡
d q1
d τ

=

(︃
1

ωn Lg,0

)︃
d xi
d t

and q3 ≡
mg −mg,0

mg,0

, (4.3)

with the new variables q1, q2 and q3 being the dimensionless perturbations relative to the
equilibrium for the position, velocity and mass of vapor respectively 2. The introduction of
the variable q2 for the velocity might seems unnecessary, but it will be needed for the phase-
space representation, as seen later on. We also introduce a dimensionless time τ = ωn t,
with ωn =

√︁
Pg,0/ (ρℓLℓLg,0) being the natural angular frequency. Time derivatives (e.g.

q̇1) of dimensionless variables are made with respect to the dimensionless time τ .

2. We may omit to specify the dimensionless phase-space variables and parameters as dimensionless
in the following, for conciseness.
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Dimensionless Momentum Balance and Pressure Nonlinearity

We substitute the dimensionless variables in the momentum balance eq. (4.1) and obtain
q̇2 = ˜︃∆Pg +˜︂Ff , where q̇2 is the dimensionless acceleration, ˜︃∆Pg the dimensionless pressure
difference and ˜︂Ff the dimensionless friction. We have ˜︂Ff = Ff/(mℓLg,0ωn

2) which sim-
plifies to ˜︂Ff = Ff/(Pg,0A) after substitution of ωn. For Poiseuille flows, the friction force
is proportional to the velocity and we have ˜︂Ff = −2ζfq2, where ζf is the dimensionless
friction coefficient defined later on. Similarly, the dimensionless pressure difference given
by ˜︃∆Pg = (Pg − P̂e)A/(mℓLg,0ωn

2) simplifies to ˜︃∆Pg = (Pg − P̂e)/Pg,0. Using P̂e = Pg,0,
the ideal gas law and introducing the new variables, we obtain 3

˜︃∆Pg = −
(︃

1

1 + q1

)︃
q1

⏞ ⏟⏟ ⏞
˜︂FV

+

(︃
1

1 + q1

)︃
q3

⏞ ⏟⏟ ⏞
˜︃Fm

. (4.4)

Substitution in the momentum balance gives

q̇2 = ˜︃∆Pg +˜︂Ff = −
(︃

1

1 + q1

)︃
q1

⏞ ⏟⏟ ⏞
˜︂FV

+

(︃
1

1 + q1

)︃
q3

⏞ ⏟⏟ ⏞
˜︃Fm

− 2 ζf q2
⏞ ⏟⏟ ⏞

˜︂Ff

, (4.5)

where ˜︂FV is a dimensionless pressure force from compression and expansion of the vapor
bubble (corresponding to a displacement q1). ˜︂Fm is a dimensionless pressure force due
to a change of mass in the vapor bubble (q3). As discussed in section 4.1, Tessier-Poirier
et al. [112] found that ˜︂FV is a nonlinear spring while ˜︂Fm acts as a positive feedback, in
opposition to the damping force, ˜︂Ff . Note that the pressure components ˜︂FV and ˜︂Fm are
nonlinear (due to the coefficient 1/(1+ q1)) because the ideal gas law is nonlinear. We call
this the pressure nonlinearity. As displayed in fig. 4.3b, the pressure increases nonlinearly
as the meniscus moves toward the closed end and ultimately prevents the meniscus from
going beyond the closed end.

Dimensionless Phase-Change Rate and Corresponding Nonlinearity

We now substitute dimensionless variables in the phase-change equation eq. (4.2) with Tw
given by an arctangent profile and obtain 4

q̇3 = THL arctan

[︃
−
(︃

2σ

THL cos2[ψ/2]

)︃
q1 − tan

[︃
ψ

2

]︃]︃
+
ψ

2
THL. (4.6)

3. We assumed Tg constant, see [112] for the general case.
4. This equation was first obtained in Tessier-Poirier et al. [112]. Here, we made some change of

variables to reach a more useful form (see App. B.2.1).
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where q̇3 is the dimensionless evaporation rate described as a function of the position q1

and where σ, THL and ψ are dimensionless parameters defined later on. The arctangent
wall temperature profile leads to a nonlinear phase-change, saturating in both the heat
source and the heat sink. We call this the phase-change nonlinearity. By controlling the
parameters, the profile can look mostly linear (large THL) or more like constant evaporation
in the heat source and constant condensation in the heat sink with a sharp transition in
between (large σ and low THL).

System of Equations

We now combine the dimensionless momentum balance and evaporation rate in a set of
first order differential equations , given by

q̇1 = q2, (4.7a)

q̇2 = −
(︃

1

1 + q1

)︃
q1

⏞ ⏟⏟ ⏞
˜︂FV

+

(︃
1

1 + q1

)︃
q3

⏞ ⏟⏟ ⏞
˜︃Fm

− 2 ζf q2
⏞ ⏟⏟ ⏞

˜︂Ff

, (4.7b)

q̇3 = THL arctan

[︃
−
(︃

2σ

THL cos2[ψ/2]

)︃
q1 − tan

[︃
ψ

2

]︃]︃
+
ψ

2
THL. (4.7c)

This system has only one equilibrium (q̇1 = q̇2 = q̇3 = 0) at q1 = q2 = q3 = 0. The
dimensionless parameters are given by

σ =
Lg,0

2mg,0ωnHvRth

(︃−dTw
dx

)︃

x=0

, (4.8a)

ζf =
8πµLℓ

2mℓωn

, (4.8b)

ψ = π

(︃
1 + TL/TH
1− TL/TH

− 2Tg,sat,0/TH
1− TL/TH

)︃
, (4.8c)

THL =
TH − TL

πmg,0ωnHvRth

. (4.8d)

The parameters σ and ζf are the phase-change coefficient and the friction coefficient,
respectively. Note that dTw/dx is the axial wall thermal gradient and µ is the dynamic
viscosity. The parameter THL is simply the dimensionless temperature difference between
the heat source (at temperature TH) and the heat sink (at temperature TL). The impact
of THL on the dynamics is to limit the phase-change in both the heat source and the heat
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sink, so we call it the phase-change limit. The fact that the equilibrium point does not
necessarily coincide with the inflexion point of the wall temperature profile (see fig. 4.3a)
is taken into account by the parameter ψ. The parameter ψ is an indirect measure of
the distance between these two points 5. The equilibrium is located where Tw(x) = Tg,sat,0

while the inflexion point is located where Tw(x) = 1
2
(TH + TL) (see fig. 4.3a). When

the equilibrium is exactly at the inflexion point, Tg,sat,0 = 1
2
(TH + TL), we have ψ = 0.

The deviation ψ ranges between −π (for Tg,sat,0 = TH , the equilibrium is far into the
heat source) and +π (for Tg,sat,0 = TL, the equilibrium is far into the heat sink). The ψ
expression is shown graphically in fig. B.1. Finally, note that we dropped the tildes used
by Tessier-Poirier et al. [112] to highlight dimensionless quantities.

4.2.2 Linear Solution
As we will show later on, it turns out that the saturation of the amplitude is due to
nonlinearities. To highlight this, we show in this section that the oscillations amplitude
from linear equations does not saturate and we will show later on that the oscillations
amplitude from nonlinear equations does. The linear analysis provided here is based on
Tessier-Poirier et al. [112]. Linearization of eq. (4.7) around the equilibrium q1 = q2 =

q3 = 0 gives

q̇1 = q2, (4.9a)

q̇2 = −q1 + q3 − 2 ζf q2, (4.9b)

q̇3 = −2σ q1. (4.9c)

In the following discussion, we will assume small σ and ζf (but exact expressions are also
available [112]). Equations (4.9) have the following solution [112, Eq.(A30a)]

qn = an,1 e
λ1τ + an,2 e

δτ sin (ωτ + φn), (4.10)

with n = 1, 2, 3 and an,1, an,2 and φn being constants fixed by initial conditions.

5. Tessier-Poirier et al. [112] used a parameter ˜︃Cth. Here, we use ψ instead, based on the relation
ψ = 2˜︃Cth/THL. We use ψ because ˜︃Cth only appears in the ratio 2˜︃Cth/THL in the normal form solution.
Also ψ has some nice properties such as being bounded between −π and +π and being a function of only
TH , TL and Tg,sat,0. See App. B.2 for details.
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We have λ1 = −2σ, so the first exponential in eq. (4.10) vanishes over time. The param-
eter ω is the dimensionless angular frequency, given by ω = 1. The parameter δ is the
dimensionless growth rate (also called bifurcation parameter later on) given by

δ ≡ σ − ζf . (4.11)

After a small perturbation of the equilibrium, the oscillations grow (startup) when δ > 0,
when the phase-change coefficient σ is greater than the friction coefficient ζf . Instead
of δ, we can also use the ratio σ/ζf as an instability criterion, which leads to a simpler
expression. We define

Π ≡ σ

ζf
=
ρℓRg Tg,0

⃓⃓
T ′
w,0

⃓⃓

8π µHvRth P̂e

, (4.12)

as the instability number. Note that δ and Π are related by the equation δ = ζf (Π − 1).
The equilibrium is stable (unstable) for Π < 1 (Π > 1). Also, note that either δ or Π as
instability criteria are exact (they are valid beyond the approximations of small σ and ζf ,
which we mentioned above).

Importantly, in the unstable case, we see that the amplitude an,2 eδτ from the linear solution
eq. (4.10) grows without bounds, contrary to experimental results. This is because the
linear solution is only valid at small amplitude. As the amplitude grows, nonlinearities are
not negligible anymore and must be taken into account to accurately predict the dynamics.
In section 4.2.4, we will see from numerical resolution of the nonlinear differential equation
that, indeed, including the nonlinearities does lead to a saturation of the oscillations
amplitude.

4.2.3 Modified Equations - Introducing Nonlinearity Coefficients
In the following, we would like to study each nonlinearity separately. To do so, we in-
troduce coefficients in the system of equations, such that we can include or exclude each
nonlinearity. The technique works as follows: for some nonlinear function f , and its
linearization fL, we define a new function g as

g = fL + cfNL = (1− c)fL + cf, with fNL ≡ f − fL, (4.13)

where the nonlinearity is controlled by the parameter c. Having c = 0 gives g = fL (g is
then linear) and c = 1 gives g = f (g is now nonlinear). We now use this approach for the
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system eq. (4.7), considering its linearization eq. (4.9), leading to

q̇1 = q2, (4.14a)

q̇2 =

[︃
1− cP

(︃
q1

1 + q1

)︃]︃
(−q1 + q3)− 2 ζf q2, (4.14b)

q̇3 = −2σ (1− cT ) q1 + cT ˜︃THL

(︄
arctan

[︄
−
(︄

2σ

˜︃THL cos2[ψ/2]

)︄
q1 − tan

[︃
ψ

2

]︃]︄
+
ψ

2

)︄
,

(4.14c)

where cP controls the pressure nonlinearity and cT controls the phase-change nonlinearity.
The system is completely linear for cP = cT = 0, includes only the pressure nonlinearity
for cP = 1 and cT = 0, includes only the phase-change nonlinearity for cP = 0 and cT = 1

and includes both nonlinearities for cP = cT = 1.

4.2.4 Numerical Simulations and Limit Cycle
Here, we use numerical simulations 6 to better understand the dynamics of eq. (4.14),
including the nonlinearities. We will show that including nonlinearities leads to the satu-
ration of the amplitude (section 4.2.4). The system reaches a steady-state after a while,
corresponding to a limit cycle. Finally, we will study how the nonlinearities influence the
steady-state.

Evolution in Time, Phase-Space and Limit Cycle

In fig. 4.4a, the position q1 is shown as a function of time from numerical simulation,
after a small perturbation of the equilibrium and for an unstable equilibrium (Π = 1.25).
We observe that the amplitude of the oscillations grows and then saturates. The system
reaches an oscillating steady-state. Clearly, including the nonlinearities leads to the
saturation of the amplitude since, in the linear case, the amplitude grows without bounds
(envelope shown in fig. 4.4a).

In fig. 4.4b, we show the evolution of the system in phase-space for the same conditions as
fig. 4.4a (see Strogatz [107] for an introduction to phase-space). The system starts from
the initial coordinates, spirals downward and reaches a steady-state (thick black line).
This behavior suggests the existence of a limit cycle, just like observed experimentally
(fig. 4.2b). A limit cycle is an isolated closed trajectory in phase-space, where isolated
means neighboring trajectories are not closed (they are either attracted to or repelled

6. We used the ODE45 numerical solver from Matlab unless specified otherwise.
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by the limit cycle) [107, chapter 7]. Besides the fact that the limit cycle is an elegant
representation of the steady-state, it is also a useful concept. A system starting from any
initial conditions (a point in phase-space) in the basin of attraction of a stable limit cycle
(stable here means attractive) will be attracted to the limit cycle. Thus, the system will
reach the same limit cycle, with the same amplitude, whatever the initial conditions are.
Predicting the geometry of the limit cycle is the equivalent of predicting the motion in
the steady-state regime. The analytical approach presented in section 4.3 will prove the
existence of the limit cycle and its stability.
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Figure 4.4 (Color online). Numerical simulation of eq. (4.14), for cP = cT = 1,
ζf = 0.05, σ = 0.0625 (so Π = 1.25), THL = 0.1 and ψ = 0 and from a
small perturbation of the equilibrium (initial conditions: q1(0) = 0.0025 and
q2(0) = q3(0) = 0). (a) Dimensionless position q1 as a function of dimensionless
time τ , (b) evolution of the system in phase-space: we observe that the system
approaches a closed trajectory, which we expect is a limit cycle.
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Effect of Nonlinearities on the Steady-State

The identified nonlinearities affect the steady-state reached by the system. In this section,
we will show the effects on the steady-state of each of the nonlinearities, which differ from
one another. In fig. 4.5, we show steady-states from numerical simulations, for various
instability number Π values, for the pressure nonlinearity only (cP = 1, cT = 0) on the left
and for the phase-change nonlinearity only on the right (cP = 0, cT = 1).

Let’s first consider the pressure nonlinearity. Figure 4.5a shows limit cycles in the plane
q1 − q2. We see that increasing the instability number Π leads to an increase in the size
of the limit cycle. The limit cycle looks very much circular at low Π but then deforms
as Π is increased, due to the pressure nonlinearity. The dimensionless pressure difference
˜︃∆Pg, given by eq. (4.4), is shown in fig. 4.5c as a function of the position q1. We see that
the pressure increases drastically as the liquid plug approaches the closed end at q1 = −1

(the meniscus is at the closed end when xi = −Lg,0 corresponding to q1 = −1, since
q1 = xi/Lg,0). This drastic increase is due to the pressure nonlinearity: as q1 → −1, the
factor 1/(1 + q1) tends to +∞ so ˜︃∆Pg tends to +∞ as well. The pressure nonlinearity
is what prevents the liquid plug from going beyond the closed end. See the contrast
with fig. 4.5d where the pressure is linearized, there is no sharp increase in pressure for
q1 negative. The pressure nonlinearity leads to a flattening of the limit cycle at high Π

(see fig. 4.5a): the system (a point on the limit cycle moving in the clockwise direction)
approaches the closed end at great negative velocity (lower left) but suddenly bounces
back on the closed end due to the sharp rise in pressure, and moves back toward the
open end at the same velocity but now positive (upper left). The pressure nonlinearity
ultimately limits the oscillations amplitude as we will see later on.

Let’s now look at the effects of the phase-change nonlinearity. Again, increasing Π leads
to an increase of the limit cycle’s size (see fig. 4.5b), but the limit cycles remain very much
circular, in contrast to the pressure nonlinearity. The phase-change nonlinearity appears
as a limiting mechanism (an arctangent) in the evaporation rate equation eq. (4.7c). By
plotting q̇3(q1) in fig. 4.5f, we see that indeed, the evaporation rate saturates, following
an arctangent. This effect is more apparent for larger Π (and larger amplitude). The
nonlinearity leads to a smaller evaporation rate q̇3 than if it was linear (see dashed lines
for references). This ultimately limits the oscillations amplitude as we will see later on.
Note that in contrast, q̇3 is linear in fig. 4.5e.
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Figure 4.5 (Color online). Steady-state regimes for various instability number
Π values and for the pressure nonlinearity (a,c,e) and or the phase-change non-
linearity (b,d,f). The effect of each of the nonlinearities on the dynamics can
be observed. Parameters are ζf = 0.05, THL = 0.1, ψ = 0 and σ is given by
σ = ζf Π.

4.3 Analytical Solution Based on Normal Form Approach
In this section, we obtain an approximate analytical solution of the system of differential
equations (4.14). We use it to better understand the dynamics, how the oscillations
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amplitude evolves over time and what controls the steady-state regime. Numerical results
as presented in section 4.2.4 are useful, but limited, since they are only valid for the
considered parameters and initial conditions. In contrast, the analytical approach followed
in this section will lead to a simple and compact expression for the oscillations amplitude,
valid for a range of parameters and initial conditions. Thus, from the analytical results,
one can qualitatively predict the behavior of the system without having to perform new
calculations, leading to a better understanding of the dynamics 7. Another benefit of
the analytical approach is that we identify key groups of parameters that control the
dynamics of system. Lastly, the analytical approach allows us to obtain rigorous results
such as proving the existence of the limit cycle.

In section 4.3.1, we apply the center manifold reduction and the normal form techniques to
obtain the approximate analytical solution. We then show how the oscillation amplitude
evolves after a perturbation of the equilibrium (section 4.3.2). We show that the saturation
of the amplitude is due to nonlinearities. Finally, we analyze the steady-state regime
reached by the system and prove the existence of the limit cycle (section 4.3.3).

4.3.1 Normal Form Expression and Approximate Analytical So-

lution
We now apply successive nonlinear techniques to simplify the equations. The detailed
procedure, based on well established theory [124, 91, 82], is given in appendix B.1. First,
we reduce the three dimensional system to only two, using the center manifold reduction
technique. In the process, we have to introduce the quantity δ = σ−ζf , which is called the
bifurcation parameter. We will describe its role in more details later on. We then make
the equations simpler by transforming them into their normal form. The full procedure
transforms eq. (4.14) into the two-dimensional normal form system of equations

ż1 = αz1 − ωz2 + (az1 − bz2)
(︁
z21 + z22

)︁
+O(|z1|5, |z2|5), (4.15a)

ż2 = ωz1 + αz2 + (bz1 + az2)
(︁
z21 + z22

)︁
+O(|z1|5, |z2|5), (4.15b)

where z1(τ) and z2(τ) are the new phase-space variables, related to q1, q2 and q3. The new
parameters α, ω, a and b are functions of δ and the other original parameters. This new
system of equations is topologically equivalent to the original one (conserves the qualitative

7. See De Regt and Dieks [21, p.150,151] for a description of what understanding is. A key point is that
understanding of a phenomenon is achieved when the scientist can “recognize qualitatively characteristic
consequences of [the theory] without performing exact calculations”.
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features), near the point q1 = q2 = q3 = δ = 0. Equation (4.15) has the solutions

z1 = r(τ) cos [θ(τ)] , (4.16a)

z2 = r(τ) sin [θ(τ)] , (4.16b)

where the amplitude r and the phase θ are functions of time τ and are described by the
uncoupled differential equations (App. B.1.2)

ṙ = dδr + a0r
3 +O(δ2r, δr3, r5), (4.17a)

θ̇ = ω0 + cδ + b0r
2 +O(δ2, δr2, r4), (4.17b)

with the following expressions for d, ω0 and c

d ≡ 1

1 + 4ζf
2 , (4.18a)

ω0 ≡ 1, (4.18b)

c =
2ζf

1 + 4ζf
2 . (4.18c)

The expression for b0 will not be given here since it is not needed for the analysis (it does
not affect the amplitude r and only slightly affects the angular frequency), but it can be
obtained by the normal form procedure [40]. The parameter a0 is much more important,
it expresses the effect of the phase-change and pressure nonlinearities on the amplitude
vector field ṙ. It is given by

a0 = a0,T + a0,PT + a0,P , (4.19a)
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where we split a0 into three components, a0,T , a0,PT and a0,P which are non-zero if cT = 1,
cT = cP = 1 and cP = 1, respectively. The quantity a0,T is the contribution to a0 of the
phase-change nonlinearity solely and a0,P , the contribution of the pressure nonlinearity
solely, while a0,PT appears when both nonlinearities are active. These are defined as

a0,T ≡
(︄

−2ζf
3
(︁
1 + ζf

2 cos [ψ]
)︁

THL
2(1 + cos [ψ])

(︁
1 + ζf

2
)︁ (︁

1 + 4ζf
2
)︁
)︄
cT , (4.19b)

a0,PT ≡
(︄

ζf
2 sin [ψ]

(︁
3 + 4ζf

2
)︁

4THL (1 + cos [ψ])
(︁
1 + ζf

2
)︁ (︁

1 + 4ζf
2
)︁
)︄
cP cT , (4.19c)

a0,P ≡
(︄

−ζf
8
(︁
1 + ζf

2
)︁
)︄

cP . (4.19d)

The expression for a0 will be studied in more detail in section 4.3.3. We will also discuss
what the amplitude r(τ) actually looks like in a moment. At this point however, the
reader might rightfully wonder how r is related to the amplitude in the original variables
qi, the ones we really care about. Performing the inverse transformations (as detailed in
appendix B.1.3), we obtain an approximate solution for the original phase-space variables
qi

qi =
1
2
Ai0 + Ai1 sin (θ + φi1) + Ai2 sin (2θ + φi2) , (4.20a)

where the coefficients for the dimensionless position q1 can be approximated as

A10 ≈ cP r(τ)
2, (4.20b)

A11 ≈ r(τ), (4.20c)

A12 ≈ 1
2
cPσ r(τ)

2, (4.20d)

assuming small δ, small ζf and ψ = 0. We see from those approximations that the
fundamental A11 sin (θ + φ11) is the dominant oscillating term (at small amplitude r, the
quantity r2 is very small), and that r(τ) is a good approximation for the oscillations
amplitude in q1.

Now, to find the amplitude r(τ) from the normal form, one can solve the truncated (ne-
glecting the higher order terms) eq. (4.17a), by separation of variables and partial fraction
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decomposition. We get

r(t) = rLC ·
√︄

1

1 + (rLC2/r02 − 1) e−2dδ t
, (4.21)

where the quantity rLC is the limit cycle amplitude (we will show that and define what it
means later on) and is given by

rLC ≡
√︃

−dδ
a0

. (4.22)

4.3.2 How the Amplitude Evolves During Startup: Normal Form

Vector Field
We will now discuss how the amplitude r(τ) evolves over time after a perturbation of the
equilibrium, based on the vector field ṙ = dδr + a0r

3 (eq. (4.17a)). We will discuss the
following four cases: 1a) stable equilibrium (dδ < 0) and linear dynamics (a0 = 0), 1b)
unstable equilibrium (dδ > 0) and linear dynamics (a0 = 0), 2a) unstable equilibrium
(dδ > 0) and nonlinear dynamics (a0 < 0) and 2b) unstable equilibrium (dδ > 0) and
nonlinear dynamics (a0 < 0). The vector field ṙ(r) for all four cases is shown in fig. 4.6a.
How the amplitude r(τ) evolves over time is shown in fig. 4.6b. Finally, keeping in mind
that r(τ) is the amplitude of the oscillations in z1(τ) and z2(τ), the corresponding motion
in z1(τ) is shown in fig. 4.6c and fig. 4.6d.

Linearized Vector Field

Let’s consider the linearized system first 8, by taking a0 = 0 in eq. (4.17a). We get
ṙ(τ) = dδ r which are straight lines in the graph ṙ(r) (fig. 4.6a). Solving ṙ(τ) = 0 for
r, we find that there is only one equilibrium at r = 0 (fixed point in nonlinear dynamics
terms). The stability of the fixed point is given by the derivative dṙ/dr at that point, we
have dṙ/dr(r = 0) = dδ. The quantity dδ corresponds to the slope of the straight lines in
fig. 4.6a. Given that d > 0 is always true (this is obvious from eq. (4.18a), given ζf > 0),
the stability of the equilibrium depends on the bifurcation parameter δ only.

For δ < 0 (negative slope), the equilibrium is stable: a small perturbation in r leads to a
negative ṙ, meaning that r decreases in time, so the amplitude r decreases back to r = 0.
For δ > 0 (positive slope), the equilibrium is unstable: a small perturbation in r leads to a

8. Note that we already obtained the linear solution in section 4.2.2. The normal form’s results pre-
sented here are equivalent, within the approximation of small δ and from a perturbation of the equilibrium.
Looking at the linear case again, but from the normal form’s perspective, allows to better understand the
normal form’s differential equation (4.17a) and serve as a reference for the nonlinear case.
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Figure 4.6 (Color online). Behavior of the normal form eq. (4.17). (a)Vector
field ṙ(r) from eq. (4.17a). The amplitude r increases (decreases) over time
for ṙ > 0 (ṙ < 0). Here, the equilibrium r = 0 is stable (unstable) for dδ <
0 (dδ > 0) and a steady-state oscillating regime (stable limit cycle) exists at
r = rLC for dδ > 0 and a0 < 0. (b) Evolution of the amplitude r(τ) after a
small perturbation r0 of the equilibrium r = 0 ; the unstable nonlinear solution
saturates at the amplitude rLC . (c) Typical linear and nonlinear solutions z1(τ)
for a stable equilibrium (dδ < 0). (d) Typical linear and nonlinear solutions
z1(τ) for an unstable equilibrium (dδ < 0).

positive ṙ, meaning that r increases in time, so the amplitude r increases without bounds.
The analysis above is confirmed by solving ṙ(τ) = dδ r, leading to r(τ) = r0 e

dδ τ . After a
perturbation of the equilibrium, the amplitude r decreases exponentially for dδ < 0 and
increases exponentially for dδ > 0 (see fig. 4.6b).
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The stability criterion is the same as the one obtained from the linearized equations (sec-
tion 4.2.2). The stability analysis of the equilibrium r = 0 remains valid when nonlinear
terms are taken into account, according to the Hartman-Grobman theorem [107, 124]
(except for the borderline case where δ = 0 exactly, the stability then depends on a0).

Nonlinear Vector Field

Let’s now consider the full vector field ṙ = dδr+a0r
3 (eq. (4.17a)) with a0 ̸= 0. Note that

for cP = cT = 0, we have a0 = 0, confirming that the a0 term expresses the effect of the
pressure and wall phase-change nonlinearities. We will consider a0 ⩽ 0 in the following (we
show that this is the case when ψ = 0 in section 4.3.3, the more general case is analyzed in
App. B.2). Because of the a0 term, the function ṙ(r) is no longer a straight line in fig. 4.6a,
but curves downwards. The quantity dδ still controls the slope of the curve ṙ(r) at r = 0,
hence the stability of the equilibrium. When δ < 0, the slope at r = 0 is negative so
the equilibrium is stable and, because of nonlinearities, the decrease in amplitude occurs
faster than the linear case (stable nonlinear case in fig. 4.6c and fig. 4.6a).

By increasing δ above 0, the slope at r = 0 is now positive so the equilibrium becomes
unstable. The function ṙ(r) now corresponds to the unstable nonlinear case in fig. 4.6a.
Following this curve helps understand how the amplitude evolves over time. After a
perturbation of the equilibrium r = 0 (a small increase in r), ṙ is positive so r keeps
increasing over time. As r grows (we move to the right on the graph), the nonlinear term
−a0r3 becomes significant relative to the term dδ r, and the amplitude rate of change
ṙ eventually decreases until it reaches 0, whereupon r then reaches a constant value r =

rLC .The point r = rLC is stable (attractive): for r < rLC , the amplitude r increases toward
rLC and for r > rLC , r decreases toward rLC .

Figure 4.6b shows the corresponding evolution of r as a function of time. Remember that
r is the amplitude of the oscillating motion in z1 and z2 (eq. (4.16)). The corresponding
oscillations in z1 are shown in fig. 4.6d. We clearly see the saturation of the amplitude.
The fixed point r = rLC in fig. 4.6a corresponds to oscillating motion of constant amplitude
r (a steady-state). Because it is attractive, it is called a stable limit cycle in nonlinear
dynamics: it corresponds to a closed, attractive curve in phase-space (as represented in
fig. 4.7).

4.3.3 The Steady-State Regime: Limit Cycle
In the previous section, we established how the amplitude evolves over time, and explained
how it can reach a steady-state, which corresponds to a limit cycle. Here, we focus on the
steady-state, on the limit cycle. We show that, as the bifurcation parameter δ crosses 0,
the limit cycle is created through a Poincaré-Andronov-Hopf bifurcation (section 4.3.3).
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In section 4.3.3, we then discuss necessary conditions for the bifurcation. We find that
nonlinearities are responsible for the limit cycle existence. Finally, we provide an ex-
pression for oscillation amplitude on the limit cycle (rLC) and discuss how to increase it
(section 4.3.3). To do so, we will find that one may increase the instability or reduce the
nonlinearities.

Bifurcation: What happens When δ Is Progressively Increased Above 0

As shown in fig. 4.6a, the stable nonlinear case has only one stable fixed point at r = 0

while the unstable nonlinear case has one unstable fixed point at r = 0 and one stable fixed
point at r = rLC . Here, we discuss how we go from one case to the other by progressively
increasing the bifurcation parameter δ while other parameters are held constant, using
what is known as a bifurcation diagram (fig. 4.7, top). We also display motion in phase-
space for various δ values (bottom).

For δ < 0, there is only one stable fixed point at the equilibrium r = 0, shown by the solid
line at r = 0. Trajectories in the z1 − z2 phase-space are stable spirals. As δ is increased
above 0, the solid line at r = 0 bifurcates into a dashed line corresponding to the now
unstable equilibrium at r = 0 and a solid line (upper branch) corresponding to a second
(stable) fixed point at r = rLC . This new fixed point corresponds to a limit cycle in the
phase-space z1 − z2, with a radius of rLC .

The creation of the limit cycle as the bifurcation parameter δ is increased above 0 is
called 9a supercritical Poincaré-Andronov-Hopf bifurcation (conditions and proof will be
given in section 4.3.3). Because the limit cycle is stable, any initial conditions close
enough to the limit cycle lead to motion in phase-space tending toward that steady-state
(see how the spirals tend toward the limit cycle). Notice that, as δ is increased further,
the limit cycle’s radius rLC keeps increasing (upper branch). For the z1 and z2 variables,
the limit cycle corresponds to periodic oscillations of a constant amplitude rLC , a steady-
state (given by eq. (4.24)). The saturation of the amplitude in time shown in fig. 4.6d is
explained by the existence of the limit cycle in phase-space.

Nonlinearities As the Limiting Mechanism and Limit Cycle Existence

In this section, we discuss why we must have a0 < 0 for a stable limit cycle to be created
and we show that this is the case, due to the nonlinearities. We show that both the
pressure and the phase-change nonlinearities contribute to a negative a0, meaning that
both nonlinearities are limiting mechanisms.

9. This bifurcation is commonly called a Hopf bifurcation but we use the longer denomination,
Poincaré-Andronov-Hopf bifurcation, to acknowledge the contributions of Poincaré and Andronov, as
recommended by Wiggins [124, p.385].
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Figure 4.7 (Color online). Bifurcation diagram (a0 < 0) on top and trajecto-
ries in the z phase-space at different δ values. The bifurcation diagram shows
solutions of ṙ = 0 as a function of the bifurcation parameter δ (other parameters
are held constant). For δ < 0, there is only a stable fixed point at the equilib-
rium r = 0. At δ = 0, the equilibrium becomes unstable and a second fixed
point at r = rLC is created, corresponding to a stable limit cycle (Poincaré-
Andronov-Hopf bifurcation). In the z phase-space, the limit cycle is the circular
trajectory; other trajectories are attracted by the limit cycle.

In section 4.3.2 we discussed how the term a0 is responsible for the curvature of ṙ(r). For
a0 < 0, ṙ(r) curves downward, so that the amplitude r eventually saturates at the limit
cycle amplitude rLC . For a0 > 0, ṙ(r) would curve upward, so that there would not be any
saturation of the amplitude, the amplitude would keep growing forever (given the normal
form approximation). Thus, we check to see if we indeed have a0 < 0. Finally, recall that
a0 expresses the effect of phase-change and pressure nonlinearities on the vector field ṙ

(see section 4.3.1). When looking for a0 < 0, we thus check to see if the nonlinearities are
limiting mechanisms.
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Examining eq. (4.19), we see that we have a0,P < 0 always (keeping in mind 0 < ζf < +∞).
The pressure nonlinearity alone therefore tends to saturate the amplitude. The phase-
change is more complicated because of the deviation ψ. Let’s consider ψ = 0 first, meaning
that the equilibrium is located exactly at the inflexion point (Tg,sat,0 = 1

2
(TH + TL)). The

quantities a0,T and a0,PT become:

a0,T =

(︄
−ζf 3

THL
2
(︁
1 + 4ζf

2
)︁
)︄
cT , (4.23a)

a0,PT = 0. (4.23b)

In that case, we clearly have a0,T < 0 (keeping in mind that THL > 0 and 0 < ζf <

+∞) and the phase-change nonlinearity thus also tends to saturate the amplitude. Both
nonlinearities put together lead to a0 < 0 (there is no combined effect since a0,PT = 0).
In the App. B.2, we verify that those conclusions also hold for small deviations ψ. For
larger deviations we find that, under some conditions, the phase-change nonlinearity can
be temporarily non-saturating such that a0 > 0. A steady-state regime still exists but is
not produced by a Poincaré-Andronov-Hopf bifurcation.

So far, our analysis only considered the truncated form of eq. (4.17). But what about
the higher order terms we neglected, do they affect our conclusions? The short answer
is no. The Poincaré-Andronov-Hopf bifurcation theorem [124, sec.20.2] ensures that for
δ sufficiently small, the following two cases hold: 1) a0 < 0, dδ < 0: the origin is an
asymptotically stable fixed point, 2) a0 < 0, dδ > 0: the origin is an unstable fixed point
and there exists an asymptotically stable limit cycle. This theorem enables us to prove the
existence of the limit cycle born from a supercritical Poincaré-Andronov-Hopf bifurcation
and to prove that the pressure and phase-change (for ψ small enough) nonlinearities are
both limiting mechanisms in our model.

Analyzing the Limit Cycle Amplitude

The steady-state amplitude is given by rLC (in the z variables as well as in the q′s variables,
see eq. (4.20)). We can obtain the solution for the limit cycle by solving eq. (4.17a) with
ṙ = 0. The limit cycle solution is, for −∞ < dδ

a0
< 0 and δ sufficiently small

z1 = rLC cos(θ), (4.24a)

z2 = rLC sin(θ), (4.24b)
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where rLC and θ(τ) are respectively the limit cycle amplitude and the phase, and are given
by

rLC =

√︃
−dδ
a0

, (as given earlier in eq. (4.22)) , (4.24c)

θ(τ) = Ω τ + θ0 with : Ω ≡ ω0 +

(︃
c− b0 d

a0

)︃
δ. (4.24d)

In order to find the limit cycle solution in the original variables qi, we can simply substitute
the expressions of the amplitude rLC and of the angular frequency Ω in eq. (4.20).

In applications, one is usually interested in increasing the oscillations amplitude in the
steady-state. We will first discuss how the amplitude is affected by the macro parameters
dδ (instability) and a0 (nonlinearities). We will then discuss how the physics, the phase-
change and the friction, affect both dδ and a0 and thus control the amplitude. Analyzing
rLC expression eq. (4.24c), we clearly see that one may increase the amplitude by increasing
the instability dδ or by decreasing the nonlinearities through a0. The rLC expression is
displayed in fig. 4.8a. To analyze the effect of parameters dδ and a0 on rLC further, it
is useful to look at partial derivatives (see fig. 4.8b, based on expressions derived below).
Partial derivatives provide a measure of sensitivity. Starting with dδ we have

∂ rLC
∂ (dδ)

=
1

2
√︁
dδ (−a0)

. (4.25)

Keeping in mind that dδ > 0 and a0 < 0 (for a stable limit cycle to exist in the normal
form equations), we have ∂ rLC/∂ (dδ) > 0: increasing dδ always increases the amplitude.
Also, close to the bifurcation (for dδ → 0+ from the right), we have ∂ rLC/∂ (dδ) →
+∞, so changing only slightly dδ has a huge impact on the amplitude. As dδ increases,
the amplitude of the derivatives decreases toward 0: the impact of dδ on the amplitude
decreases. The partial derivative for a0 is

∂ rLC
∂a0

=

√
dδ

2 (−a0)3/2
. (4.26)

Keeping in mind that dδ > 0 and a0 < 0, we have ∂ rLC/∂a0 > 0, so increasing a0

increases the amplitude. Because a0 is negative, this means that bringing a0 closer to 0,
reducing the nonlinearities, increases the amplitude. We note that close to the bifurcation
(for dδ → 0+ from the right), the derivative tends toward 0: the oscillation amplitude is
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barely affected by the nonlinear term a0 (as long as a0 < 0). However, as dδ increases, the
derivative increases and a0 becomes more and more important. We find that, in order to
increase the oscillation amplitude, one has to first increase the linear (instability) term dδ.
As the amplitude increases, the effect of the linear term decreases and it becomes more
and more useful to reduce the nonlinearity by bringing a0 closer to 0. The threshold at
which both derivatives are equal is given by: dδ = −a0.

0
0
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|a0| ↘

0
dδ

Limit cycle’s
radius rLC

0
0

dδ = −a0

∂ rLC

∂ (dδ)
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∂a0

0 dδ

Sensitivity

(a)
0

0
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|a0| ↘

0
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0
0

dδ = −a0

∂ rLC

∂ (dδ)

∂ rLC

∂a0

0 dδ

Sensitivity
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Figure 4.8 (Color online). (a) Limit cycle’s radius rLC (and oscillations ampli-
tude) as function of the instability measure dδ. One can increase the amplitude
by increasing the instability (dδ) or by decreasing the nonlinear parameter a0.
(b) Sensitivity measures given by the derivatives eq. (4.25) and eq. (4.26). We
see that the amplitude rLC mostly depends on the linear quantity dδ at small
dδ, which corresponds to small amplitude rLC . As dδ (and the amplitude rLC)
increases, the importance of dδ decreases and the importance of the nonlinear
parameter a0 increases.

Now that we know the amplitude can be increased by increasing dδ and bringing a0

closer to zero, let’s discuss how the physics impacts both dδ and a0. The instability
dδ = (σ − ζf )/(1 + 4ζf

2) can be increased by increasing either the phase-change (σ) or
by decreasing the friction (ζf ). The nonlinear parameter a0 is affected by both the phase-
change nonlinearity and by the pressure nonlinearity. For the phase-change nonlinearity
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only, we have a0 = a0,T = −ζf 3/
(︁
THL

2(1 + 4ζf
2)
)︁

(eq. (4.23a)). We can bring a0 closer
to 0 and increase the amplitude by increasing the phase-change limit THL (this makes the
phase-change profile more linear) or by decreasing ζf . For the pressure nonlinearity only,
a0 = a0,P = −ζf/

(︁
8(1 + ζf

2)
)︁

(eq. (4.19d)). We can bring a0 closer to 0 and increase the
amplitude by decreasing ζf .

To better understand how the physics impact the amplitude, let’s look at explicit expres-
sions of rLC for each nonlinearities individually while assuming ψ = 0 for simplicity. The
amplitude for the phase-change nonlinearity only is given by:

rLC(cP = 0, cT = 1) =

√︄
−dδ
a0,T

=
THL

ζf

√
Π− 1, (4.27a)

while for the pressure nonlinearity only, we have:

rLC(cP = 1, cT = 0) =

√︄
−dδ
a0,P

= (2− 3ζf
2)
√︁
2 (Π− 1) + O(ζf

4), (4.27b)

where we considered a series in terms of ζf to get a simpler expression (given that
ζf is typically small in experiments). In the expressions above, we used the instability
number Π = σ/ζf (with δ = ζf (Π− 1)). Using Π leads to simpler rLC expressions and is
nicely expressed in terms of the physical parameters (eq. (4.12)). The amplitude for the
phase-change nonlinearity only can be increased by increasing the phase-change (either
by increasing σ which increases Π or by increasing the phase-change limit THL) and by
decreasing the friction (ζf decreases and Π = σ/ζf increases). For the pressure nonlinearity
only, the amplitude can be increased by increasing the phase-change (increasing σ increases
Π) and by decreasing the friction (ζf decreases and Π = σ/ζf increases). One could expect
the length Lg,0 to appear in the pressure nonlinearity (by reducing Lg,0, the liquid plug
should get closer to the closed end and the pressure should be more nonlinear), but Π is
independent of Lg,0 (eq. (4.12)) so rLC(cP = 1, cT = 0) is not a function of Lg,0. This is
because we used Lg,0 to make the equations dimensionless. The dimensional amplitude
is Lg,0 · rLC and is now proportional to Lg,0. Consequently, for the pressure nonlinearity
case, increasing Lg,0 reduces the nonlinearity and increases the amplitude. For the phase-
change nonlinearity, we have that THL/ζf ∝ 1/Lg,0 (because THL ∝ 1/mg,0, eq. (4.8)) so
the dimensional amplitude does not depend on Lg,0.

The normal form solution is only valid close to the instability threshold. So, to study the
effect of the parameters further, we study the amplitude numerically. To that end, we use
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the continuation Matlab package MatCont 7.2 [23]. The Hopf bifurcation is first detected,
from which a limit cycle is continued. The limit cycle is detected by orthogonal collocation,
which is considered the most reliable numerical approach for limit cycle detection [66]. We
first study the effect of the phase-change in fig. 4.9a. Here, we keep ζf constant so the
instability number Π shows the effect of σ only. We see that increasing the phase-change
coefficient σ (by increasing Π) leads to a strong increase in the amplitude close to the
instability threshold (Π close to 1). The amplitude is less sensitive to σ for large Π.
Increasing the phase-change limit THL also increases the amplitude. The amplitude is less
sensitive to THL for Π close to 1 and more sensitive for large Π. These confirm our normal
form results. We conclude that we can increase the oscillations amplitude significantly
by controlling the phase-change (in fig. 4.9a, the dimensional amplitude ranges from 0

to close to 0.8Lg,0). Here however, there is a limit at which point increasing the phase-
change further has no more impact on the amplitude: for both large Π and large THL, the
amplitude reaches a plateau (this was not captured by the normal form). We then study
the effect of the friction in fig. 4.9b. Here, we keep σ constant so the instability number
Π shows the effect of ζf only. We see that increasing Π by decreasing the friction leads to
an increase in amplitude.
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Figure 4.9 Semi-amplitude in q1 (half the peak-to-peak amplitude) obtained
by numerical continuation of eq. (4.14) using MatCont 7.2 [23]. (a) Effect of
phase-change, through Π (shows the effect of σ since ζf is fixed) and phase-
change limit THL, with: cP = cT = 1 and ζf = 0.01. (b) Effect of friction
through Π (shows the effect of σ since σ is fixed), with: cP = cT = 1, σ = 0.01
and THL = 0.001.
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4.4 Discussion
In this section, we first describe a general approach to increase the amplitude and the
performance in real devices. Then, we discuss simplifications considered in our model and
how the neglected physics could quantitatively affect the dynamics in the SBPHP.

4.4.1 General Approach to Increase Amplitude and Performance
From our approach, we can provide general guidelines to maximize the (steady-state)
amplitude and, to some extent, the performance (heat transfer capabilities for PHP, power
output for SOFHE, etc.).

One should first make sure the oscillations start by promoting the instability mechanism
either by increasing the phase-change (σ) or by decreasing the friction (ζf ), to ensure
Π > 1. Once this is done, what matters to increase the amplitude is still to increase
the instability, as discussed in section 4.3.3. From our thermal resistance model for phase-
change, we found that a phase-change in anti-phase with the position led to a force purely
in phase with velocity, purely injecting energy into the system (see [112, Sec. VI.C] for more
details). For more general phase-change mechanisms than the one we consider, we thus
still have to increase the phase-change component in anti-phase with the position in order
to increase the amplitude. As one increases the steady-state amplitude by increasing
the instability, one should consider reducing the limiting mechanism (nonlinearities) to
increase the amplitude further. In our model, the effect of the phase-change nonlinearity
could be reduced by increasing the phase-change limit (THL) and by reducing the friction
(ζf ) while the effect of the pressure nonlinearity could be reduced by reducing the friction
(ζf ) and increasing the length of vapor at equilibrium (Lg,0).

From our model, we find that the amplitude can be greatly increased by increasing the
phase-change (either by increasing σ or THL). This supports the idea that engineered tubes
(using sintered powder wick, surface treatments, cavities, glass fiber, groove, microstruc-
tures, etc.) to control the phase-change can have a massive impact on the amplitude and
the performance. It is important to point out that it is not only the magnitude of the
phase-change but also the timing of it, relative to the position, that matter. It would be
interesting to further study, both theoretically and experimentally, how controlling the
magnitude and the timing of the phase change could impact the amplitude. This could
help the design of engineered tubes and allow to increase the performance beyond what is
currently achieved.
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4.4.2 Simplifications and Perspective on More Accurate Models
Our work here is based on several simplifications. The goal of this paper was not to
consider a quantitatively accurate model valid in all circumstances. Rather, we wanted to
analyze a simplified model which captures the most relevant characteristics observed in
the experiment, while still being amenable to relatively simple mathematical techniques.
By doing so, we were able to highlight interesting properties, such as the limit cycle
and how it is controlled by an instability mechanism (linear) and a limiting mechanism
(nonlinearities).

One major hypothesis in our model concerns the phase-change. It is known in the lit-
erature that significant phase-change may come from a thin liquid film left on the wall
(on the vapor side) by the movement on the liquid plug [92, 34]. In our model, we chose
not to include the liquid film explicitly (all the phase-change is represented as a thermal
resistance, proportional to wall temperature at the meniscus). We did so for a few rea-
sons. First, a simple thermal resistance makes it much easier to apply our mathematical
techniques. Second, a simple thermal resistance captures the basic linear role of the phase-
change (including from a thin-film) which is to produce a positive feedback force. Third,
the thin-film modeling is not necessarily more accurate nor more general than our model
since, in applications, the phase-change could be controlled to increase the performance
by various means, such that it differs significantly from a thin liquid film. For all these
reasons, our basic model provides a good basis for an initial study and for further inves-
tigations. With that said, we note that a different phase-change (from a thin-liquid film,
a groove, microstructures, etc.) could affect the instability mechanism and also introduce
new nonlinearities.

Let’s now mention a few additional physics which could be added to our model (last two
were included in [112]). Those physics will be negligible or not depending on the parame-
ters of the system. First, we could allow the wall temperature Tw to vary over time (e.g.
imposed heat flux instead). We could also consider the variations of saturation tempera-
ture Tg,sat when variations of pressure are large enough ( Clausius-Clapeyron relation, see
[112, Sec. IIB]). Finally, we could assume the temperature of vapor Tg to vary over time
(see [112, Sec. II]).

4.5 Conclusion
In this paper, we answered the question of what limits the oscillations amplitude by
uncovering a limiting mechanism, produced by nonlinearities. To do so, we first found
an approximate analytical solution of the nonlinear differential equations describing the
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SBPHP dynamics, based on center manifold reduction and normal form techniques. We
described how, during startup, the oscillations amplitude first increases but then saturates
at a given value, reaching a steady-state regime corresponding to a stable (attractive) limit
cycle. We also showed that the limiting mechanism is due to nonlinearities. Our model
includes two nonlinearities, the pressure and the phase-change nonlinearities. We showed
that the pressure nonlinearity always contributes to the saturation of the amplitude while
the phase-change nonlinearity contributes to the saturation of the amplitude under some
conditions. We then analyzed how to control the oscillations amplitude. We found
that one can increase the amplitude by increasing the instability mechanism and reducing
the limiting mechanism (nonlinearities). The SBPHP dynamics is best understood as the
interplay of an instability mechanism which pushes for an increase of the oscillations ampli-
tude and a limiting mechanism produced by nonlinearities, which limits it. We found that
increasing the instability is more effective close to the instability threshold while reducing
the nonlinearities is more effective far from it (at large amplitude). By either increasing
the phase-change or decreasing the friction, the instability mechanism is increased and
the limiting mechanism is reduced, such that the oscillations amplitude can be greatly
increased. Our approach also highlights some new and promising research paths. One
would be to investigate methods to better control the phase-change, to increase the oscil-
lations amplitude. Future research could also be undertaken on specific devices to explore
if other nonlinearities are present, beyond the phase-change and pressure nonlinearities
studied herein.
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CHAPTER 5

ACCURATE SOLUTION FOR THE STEADY-
STATE

5.1 Introduction
In this chapter, I investigate the dynamics of the system in the steady-state (limit cycle),
from low to large oscillation amplitudes using numerical continuation and I obtain accurate
expressions for the dynamics, using analytical and semi-analytical approaches, for each
nonlinearities individually and valid for a large range of the parameters. So far, we have the
normal form approximation as an analytical solution describing the dynamics (chapter 4).
However, this approximation is only valid close to the instability threshold (for small
enough instability number Π). We would like to know what happens has we go further
beyond the instability threshold, how the dynamics looks like as we increase Π and how
it can be controlled. We answer these questions here, by a combination of numerical,
analytical and semi-analytical techniques. Understanding how to control the dynamics
is interesting in itself. The analytical approximations we obtain will also be useful to
evaluate the performance for energy harvesting applications (chapter 6).

So, we may first ask: why is the normal form not valid anymore for a large enough
instability number Π? One important approximation in the normal form approach is to
consider not the full vector field, but its Taylor expansion (Order 3). One can see in
fig. 5.1 how the Taylor expansion of the two main functions in the vector field is quite a
poor approximation for a large enough amplitude. Thus, one cannot expect the normal
form to perform well far from the instability threshold. In this chapter, we will use the
averaging technique instead of the normal form. Averaging is typically applied to the
Taylor expanded vector field, but doing so would not lead to more accurate results than
the normal form. Here, we apply averaging to the full vector field. By doing so, we will
obtain a very accurate, as well as compact, solution for the phase-change nonlinearity. For
the pressure nonlinearity, averaging does not work as well. In order to still obtain a useful
expression of the dynamics, I build a Fourier series expression inspired by the averaging
approximation, with parameters fitted from the numerical results. The expression obtained
is very accurate for a large range of Π values and within an acceptable range of ζf values.

115
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This chapter is structured as follows. I will first briefly present the model and the general
form of the solution on the limit cycle (section 5.2) and then study the phase-change
nonlinearity alone (section 5.3) and the pressure nonlinearity alone (section 5.4). For each
nonlinearity, we will first study the dynamics numerically, using numerical continuation.
We will look at the waveforms, perform a spectral analysis over the numerical continuation
and look at the overall oscillations amplitude. We will then apply averaging. We will
compare to the numerical continuation the normal form, the averaging and the fit (for the
pressure nonlinearity). Finally, we will discuss our understanding of the dynamics in the
light of our results. In section 5.5, we will discuss why the averaging performed as well for
the phase-change nonlinearity and not as well for the pressure nonlinearity. The work here
preceded the numerical study of the amplitude in chapter 4. It was actually informative
into the choice of how to study and present the amplitude there.

(a) (b)

Figure 5.1 Functions appearing in the vector field and their order three Tay-
lor expansion: a) THL arctan [−2(σ/THL)q1] (phase-change nonlinearity) and b)
−1/(1 + q1).



5.2. THE MODEL 117

5.2 The Model
The system of differential equations is given by eq. (4.14), repeated here for convenience:

q̇1 = q2, (5.1a)

q̇2 =

[︃
1− cP

(︃
q1

1 + q1

)︃]︃
(−q1 + q3)− 2 ζf q2, (5.1b)

q̇3 = −2σ (1− cT ) q1 + cT THL

(︃
arctan

[︃
−
(︃

2σ

THL cos2[ψ/2]

)︃
q1 − tan

[︃
ψ

2

]︃]︃
+
ψ

2

)︃
,

(5.1c)

with q1, q2 and q3 the dimensionless perturbations relative to the equilibrium for the
meniscus position, the liquid plug velocity and the mass of vapor, respectively. Also, σ is
the phase-change coefficient, ζf is the friction coefficient and THL is a parameter related
to the temperature difference between the heat source and the heat sink (see eq. (4.8)).
One can study only the phase-change nonlinearity by considering cT = 1 and cP = 0 or
only the pressure nonlinearity, by considering cT = 0 and cP = 1. This system has one
equilibrium at q1 = q2 = q3 = 0. For Π = σ/ζf > 1, the equilibrium is unstable and the
system eventually settles on a limit cycle. On the limit cycle, the dynamics is periodic. It
can therefore be represented by a Fourier series. The position q1 is given by:

q1 =
1
2
A0 +

k=∞∑︂

k=1

Ak sin (kθ + φk) with: θ(τ) = Ωτ . (5.2)

The amplitudes Ak and the angular frequency Ω vary in terms of the parameters σ, ζf
and THL.

5.3 Phase-change Nonlinearity

5.3.1 Numerical
To study the limit cycle, we use numerical continuation (using the Matlab package Mat-
Cont [23]). We make a first continuation along Π and detect the Hopf bifurcation from
which the limit cycle is detected. We then make a continuation of the limit cycle, meaning
that, as we increase Π, we follow the limit cycle. Within the continuation, the limit cycle
is detected by orthogonal collocation. Figure 5.2 shows the limit cycles detected during
the continuation.



118 CHAPTER 5. ACCURATE SOLUTION FOR THE STEADY-STATE

(a) 3D view (b) 2D view

Figure 5.2 continuation of the limit cycle (two views are displayed) . In this
run, 400 limit cycles were generated (each closed line is a limit cycle).

We now look at the waveforms. In fig. 5.3, the evolution of the phase-space variables q1, q2
and q3 on the limit cycle, over time (for one period) and for various Π values is displayed.
We can make a few observations. First, we clearly see that the amplitude increases as a
function of Π. Second, both the position q1 and the velocity q2 seem close to sinusoidal
even for large Π values. However, the mass of vapor q3 approaches a triangular profile.

The phase-change nonlinearity leads to a saturation of the phase-change rate q̇3, which
is a function of the position q1, exclusively. We can see that clearly by comparing the
nonlinear phase-change rate q̇3 to the linearized one, as a function of time (fig. 5.4a) and
as a function of q1 (fig. 5.4b, which reproduce the atan function eq. (5.1c)).

In order to characterize the limit cycle solution, it is useful to look at the amplitudes Ak

in the Fourier series (eq. (5.2)). The first few Ak are shown in fig. 5.5, as a function of
Π. First, we see that A1 is much larger than the other components, even for large Π.
Thus, the solution q1 remains almost perfectly sinusoidal. Looking at the amplitude A1

(the fundamental), we see that it increases sharply as a function of Π close to Π = 1 and
then saturates for Π going to infinity. We will study how the amplitude varies as function
of the other parameters (ζf and THL) in the analytical solution section.
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(a)

(b)

(c)

Figure 5.3 Phase-space variables q1, q2 and q3, as a function of time, over one
limit cycle, for various Π values, with ζf = 0.10 and THL = 0.01.
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(a) (b)

Figure 5.4 linear and nonlinear phase-change rate as function of time (a) or
position q1 (b).

(a) (b)

Figure 5.5 Amplitude Ak of the Fourier series for q1, as a function of Π, ob-
tained by numerical continuation,, in linear scale (a) and logarithmic scale (b),
to highlight the amplitudes of the harmonics; A2 and A4 are too small to be
accurately represented here.
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5.3.2 Analytical Solution
We now proceed to apply the averaging technique to the system of equations (see ap-
pendix C for details). The approach initially follows the same procedure as the normal
form: we consider δ as a variable and add the vector field equation δ̇ = 0, we align the
system along its eigenbasis (standard form) and apply the center manifold reduction. We
then proceed with the averaging steps. The system is transformed into polar coordinates,
a small parameter ε is introduced and the variables are scaled. We then average the polar
vector field. We first consider the asymptotic expansion, compare with normal forms and
verify that the topological equivalence is preserved within the flat center manifold approx-
imation. We then average the full vector field and solve for the amplitude and angular
frequency of the limit cycle. We finally obtain the following approximation on the limit
cycle:

⎡
⎢⎣
q1

q2

q3

⎤
⎥⎦ =

⎡
⎢⎣

−rLC cos(θ)

+rLC sin(θ)

+2ζf rLC sin(θ)

⎤
⎥⎦ , (5.3)

where rLC is the amplitude and where θ = Ωτ + φ, with Ω the angular frequency. We
have that rLC and Ω are given by the following:

rLC =
THL

ζf

√︃
Π− 1

Π
, (5.4a)

Ω = 1 , (5.4b)

which differs from normal form (eq. (4.27a)).

Let’s now compare with numerical results, starting by the amplitude as a function of the
instability number Π and for various THL/ζf values. For the amplitude, we consider the
radius of the limit cycle (rLC), given directly by the analytical formula and which can be
easily computed from the numerical data. Numerical values for the amplitude, along Π

are shown by the thick solid lines in fig. 5.6. The amplitudes from normal form are shown
by the dotted lines. Although the normal form predictions are valid for Π close to 1, they
quickly diverge from the numerical results as Π increases. Averaging results are shown by
the solid black lines. They match the numerical results almost perfectly, and are valid for
all Π values. For the angular frequency Ω, we find that it is indeed always equal to 1, as
predicted by averaging (fig. 5.7).
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Figure 5.6 Oscillations amplitude (given by the limit cycle radius rLC) as a
function of Π and for various ζf given by numerical continuation, normal form
and averaging.

Figure 5.7 Angular frequency Ω as a function of Π and for various ζf given by
numerical continuation, and averaging.

Let’s now compare the waveform for a large instability number Π (fig. 5.8). We see that
averaging reproduces almost perfectly the position q1 and velocity q2. The harmonics are
more significant in the numerical solution for the mass of vapor q3, and there is thus a small
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discrepancy with the averaging result (which is purely sinusoidal). The harmonics are even
more important in the evaporation rate q̇3 and merely deriving in time the averaging solu-
tion for q3 leads to a poor approximation of the waveform (fig. 5.8d). However, substitution
of the averaging solution for q1 into the differential equation for q̇3 (eq. (5.1c))leads to an
almost perfect representation of the phase-change rate. The differential equation produces
the required harmonics with the nonlinearity (arctan function). Thus, we conclude that
we obtained expressions able to reproduce very accurately the waveforms, using averaging.

(a) (b)

(c) (d)

Figure 5.8 Comparison of the waveforms obtained numerically and from av-
eraging, for the position (q1), the velocity (q2), the mass of vapor (q3) and the
phase-change rate (q̇3).
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5.3.3 Analysis of the Solution
We now analyze the amplitude, based on the averaging result. First note that rLC can
be written as: rLC = THL/ζf

√︁
1− 1/Π. Clearly, rLC is purely imaginary for Π < 1 (real

part equal zero). At Π = 1, rLC is 0. Then, rLC increases sharply and finally tends to
an asymptote at THL/ζf for Π → ∞. We can see that in fig. 5.6. We see that rLC is
very sensitive to Π for Π close to 1. There, increasing Π = σ/ζf by either increasing σ or
decreasing ζf leads to a sharp increase in amplitude but rLC is barely affected by a change
in THL. By contrast, for large Π, rLC is barely sensitive to Π and increasing the phase-
change slope σ has almost no impact on the amplitude. One can however increase rLC
by either increasing the phase-change limits THL or by decreasing the friction coefficient
ζf . We conclude that close to the instability threshold (Π close to one), the system is
dominated by the linear terms while, far from the instability threshold, the system is
dominated by the nonlinearity (the factor THL/ζf ).

5.4 Pressure Nonlinearity
For the pressure nonlinearity, we proceed similarly than for the phase-change nonlinearity.

5.4.1 Numerical
Numerical continuation of the limit cycle is shown in fig. 5.9. Let’s now look at the
waveforms. In fig. 5.10, the evolution of the phase-space variables q1, q2 and q3 on the
limit cycle, over time (for one period) and for various Π values is displayed. We can see a
general trend: the amplitude for the position q1 and for the velocity q2 increases with Π.
For q1, for large Π (from 1.5 to 2), q1 does not go as far in the positive direction but goes
further in the negative direction. Importantly, contrary to the phase-change nonlinearity,
the dynamics evolves from purely sinusoidal to not purely sinusoidal as Π is increased.

We can see that more clearly by a spectral analysis (fig. 5.11). We see that although A1

is the large component, the other components becomes significative for a large enough Π.
This is why the solution is not purely sinusoidal. As for the phase-change nonlinearity, we
see that the fundamental (A1) increases sharply as function of Π close to Π = 1 and then
saturates for Π going to infinity. Interestingly, we see that the maximum value of A1 is
reached at a finite Π. This is not the full amplitude of q1 however, which also depends on
the other Ak.

For the pressure nonlinearity, there are only two parameters in the system, Π and ζf . In
fig. 5.12, we display the fundamental A1 for various ζf . For ζf < 0.25, A1 is barely affected
by ζf (for a fixed Π). We see some effect for very large ζf , but only for 1 < Π < 1.8.
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At large enough Π, all the curves converge and the effect of ζf alone is not noticeable
anymore.

Finally, it is interesting to not only look at the components of the Fourier series but at
the overall size of the limit cycle. We look at the semi-amplitude (peak-to-peak amplitude
divided by two) for q1, q2 and q3 in fig. 5.13. We find that the semi-amplitude in q1

saturates while the semi-amplitude in the velocity q2 does not (at least within the range
studied). The averaged radius of the limit cycle rLC falls between the semi-amplitude in
q1 and q2.



126 CHAPTER 5. ACCURATE SOLUTION FOR THE STEADY-STATE

(a) 3D view

(b) 3D view

(c) 2D view

Figure 5.9 Continuation of the limit cycle (with different views displayed). In
this run, 540 limit cycles were generated (each closed line is a limit cycle).
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(a)

(b)

(c)

Figure 5.10 Phase-space variables q1, q2 and q3, as a function of time, over one
limit cycle, for various Π values, with ζf = 0.10.
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Figure 5.11 Amplitude Ak of the Fourier series for q1, as a function of Π,
obtained by numerical continuation.

Figure 5.12 Amplitude A1 of the Fourier series for q1, as a function of Π for
various ζf , obtained by numerical continuation.
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Figure 5.13 Semi-amplitude for q1, q2 and q3, as a function of Π, for ζf = 0.01,
obtained by numerical continuation.
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5.4.2 Analytical Solution
We perform averaging for the pressure nonlinearity as we did with the phase-change non-
linearity 1. However, the test to validate the flat center manifold assumption turns out
negative, which is the first sign of trouble. Proceeding nonetheless, we find:

⎡
⎢⎣
q1

q2

q3

⎤
⎥⎦ =

⎡
⎢⎣

−rLC cos(θ)

+rLC sin(θ)

+2σ rLC sin(θ)

⎤
⎥⎦ , (5.5)

where again, rLC is the amplitude, θ = Ωτ + φ, with Ω the angular frequency and where
we have that rLC and Ω are given by the following:

rLC =

√︃
Π2 − 1

Π2
, (5.6a)

Ω =
Π2 + 1/2Π+ 1/2

Π+ 1
, (5.6b)

which differs from normal form (eq. (4.27b)). In fig. 5.14, we can compare the amplitude
rLC from numerical continuation, normal form, and averaging, as a function of Π and
for various ζf . We see that rLC from numerical continuation increases sharply from the
instability threshold Π = 0 and keeps increasing afterwards. We see that changing ζf

does change rLC , for sufficiently large Π. Here, however we consider a very large range for
ζf (which is typically below 0.10). The normal form solution works well for small Π, but
quickly diverges as Π increases. It however captures the effect of various ζf . The averaging
solution works fine for large ζf (and does not increase excessively as the normal form) but
does not perform as well for small ζf . In contrast with the normal form solution, the
averaging solution does not capture the explicit dependency over ζf (there is only one line
for averaging in fig. 5.14). It turns out that this is because we made the approximation of
a flat center manifold to get the averaging solution 2.

I tried various approaches to get a more accurate analytical solution than normal form
and the averaging (when compared to numerical continuation) . These included averaging
coupled with linear and nonlinear transformations, perturbation of the nonlinear conser-
vative oscillator, harmonic balance and matched asymptotics (for a distinct solution at

1. With a few exceptions: for the pressure nonlinearity, one can get better averaging results by a pre-
liminary transformation (introducing q⋆3 = q3/(−2σ)) and with an appropriate scaling of the eigenvectors.

2. If we perform averaging with a Taylor expansion of the vector field without this assumption, we get
a solution which depends on ζf explicitly, just like the normal form.
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large Π). I was not successful with these approaches however and had to eventually give
up. I still wonder if there is a way one could get a accurate solution for the limit cycle an-
alytically. In general, finding accurate analytical solutions for limit cycle is an uncharted
territory in applied mathematics, which makes progress difficult for any specific applica-
tions. Mathematical approaches to obtain accurate analytical solutions for limit cycles
would be extremely useful in engineering, since limit cycles appears in many applications.

Figure 5.14 Oscillations amplitude (given by the limit cycle radius rLC) as a
function of Π and for various ζf given by numerical continuation, by normal
form, by averaging and by a modified expression (see text).

Given the relative unsuccess of the analytical approaches, I looked for semi-analytical
solutions, meaning solutions based on the analytical solution but improved by the in-
troduction of some parameters, which are fitted using numerical results. For example,
would it be possible to improve the expression of rLC given by averaging? We can add
a few parameters in the rLC approximation to make it work better. I ended up with
rLC = L

√︁
(Πka+kb − 1)/Πka . Fitting the parameters L, ka and kb to the numerical curves

gives the fit lines in fig. 5.14. We see that they match rLC almost perfectly. Thus, if
we could obtain expressions for those parameters in terms of ζf , we could get a accurate
expression for rLC . In this approach however, the solution remains purely sinusoidal and
will necessarily fail to reproduce the harmonics seen in the waveforms. To get a accurate
expression for the dynamics including the harmonics, I decided to develop an expression
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for each components of the Fourier series solution eq. (5.2). I ended up with:

A0 = 0 , (5.7a)

Ak = ak
(︁
1 + bke

−τkΠ
)︁(︃Πnk − 1

Πnk

)︃ k
2

for k ̸= 0 , (5.7b)

Ω =
p1Π

2 + p2Π+ p3
Π+ p1 + p2 + p3 − 1

, (5.7c)

φk =

⎧
⎨
⎩

π(1−k)
2

+ kφs for k odd,
π(1−k)

2
− π + kφs for k even.

(5.7d)

In Ak, the parameters ak, τk and nk are fitted for each harmonics. To take into account
the dependency in ζf , we express bk as a function of ζf , also fitted. The expression for Ak

is a generalization of eq. (5.6a). To construct the Ak expression, I started from the form√︁
(Π2 − 1)/Π2 and generalized it by allowing the exponent to vary, added a prefactor, etc.

In Ω, the parameters pi are themselves expressed as functions of ζf , obtained by fitting.
The expression for Ω is a generalization of eq. (5.6b). In φk, the parameter φs is the shift
of the fundamental and can be chosen as desired (because the time reference is arbitrary).
Thus, this solution is not purely sinusoidal, but includes harmonics.

In fig. 5.15, I compare the semi-analytical solution to the results obtained by numerical
continuation. We see that they match perfectly, for all the harmonics. Our solution is
able to produce the quasi-sinusoidal oscillations at low Π (where A1 dominates) all the
way to the dynamics with additional harmonics at higher Π. Our solution also predicts
the angular frequency quite well (fig. 5.16). We can see how the solution matches the
dynamics in fig. 5.17 where we compare the waveforms for Π = 2. The prediction for the
position q1 is very accurate, the prediction for the velocity q2 is quite good (although we
see the oscillations from the Fourier series) and the prediction for the mass of vapor q3
is quite good as well 3. The prediction for the phase-change rate q̇3 is very accurate (just
like the position, given that q̇3 = −2σq1). Even more accurate results could be obtained
by considering more harmonics. Relative to the fit, the averaging performs poorly.

3. Note that, for q3 I used in the fit the mean value obtained from the numerical continuation (I did
not fit that value, since it is rarely useful, we usually care about the phase-change rate).
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(a) (b)

Figure 5.15 Amplitude Ak of the Fourier series for q1 for ζf = 0.10 as a function
of Π (b is a zoom in to show the higher order harmonics), obtained by numerical
continuation (thick colored lines) and by the semi-analytical approach (thin
black line).

Figure 5.16 Angular frequency Ω, as a function of Π for various ζf ,from nu-
merical continuation (thick colored lines), averaging (red dotted line) and the
semi-analytical approach (thin black line).
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(a) (b)

(c) (d)

Figure 5.17 Comparison of the waveforms obtained numerically and from av-
eraging, for the position (q1), the velocity (q2), the mass of vapor (q3) and the
phase-change rate (q̇3), with Π = 2 and ζf = 0.01.
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5.4.3 Analysis of the Solution
We now analyze the amplitude based on the averaging, the fit and the numerical results
obtained above. For the pressure nonlinearity, there are only two parameters in the differ-
ential equations, the instability number Π (defined as Π = σ/ζf ) and the friction coefficient
ζf . First, we note that, at Π = 0, the limit cycle radius rLC is 0 but increases sharply
as Π is increased further (the derivative drLC/dΠ is actually infinite for Π → 0+). The
instability number Π can be increased by either increasing the phase-change coefficient σ
or by decreasing the friction coefficient ζf . The amplitude is very sensitive to Π for Π close
to 1. The effect of ζf alone (for a fixed Π) is not significative on the amplitude (see A1

fig. 5.12). Large ζf are required to see an effect, and the change in amplitude only occurs
within a range of Π (1 < Π < 1.8), the value at large Π is unaffected. This is to say that
the effect of σ and ζf mostly comes from Π.

The amplitude in q1 saturates as Π is increased at large values (see fig. 5.13). The ampli-
tude in q1 is constrained by the closed end in the negative direction (q1 cannot go beyond
−1) and it seems this also constrain the motion in the positive direction (possibly because
the evaporation can only occur between −1 < q1 < 0 and the evaporation and condensa-
tion must balance out on the limit cycle). Interestingly, the amplitude in the velocity q2
keeps increasing.

For the pressure nonlinearity, there is no nonlinear parameter such as the phase-change
limits THL for the phase-change nonlinearity. The pressure nonlinearity comes from the
fact that the pressure rises nonlinearly as the liquid plug approaches the closed end.
We could thus expect that the length of the liquid plug at the equilibrium Lg,0 would
come into play: for very large Lg,0, the pressure nonlinearity effect should be felt only at
large amplitudes. However, we found that the amplitude depends mostly on Π and Π is
independent of Lg,0. So, why does not Lg,0 affect the amplitude? It turns out this is because
we considered the dimensionless amplitude so far. We made the position dimensionless
in terms of Lg,0. To get the dimensional amplitude, we must multiply the dimensionless
one by Lg,0. One can expect that the dimensional amplitude for the pressure nonlinearity
alone is roughly proportional to Lg,0.

5.5 Discussion
One might be surprised by how good the solution for averaging is for the phase-change
nonlinearity, even far from the instability threshold. One may also wonder why the aver-
aging does not work as well for the pressure nonlinearity. I would like to briefly provide
my thoughts on the subject, even though I have not reached a definitive answer. I will
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show below that the conservative system remains linear even for large amplitude, for the
phase-change nonlinearity alone, while it becomes strongly nonlinear if the pressure non-
linearity is included. The averaging approach I considered is based on the solution of the
linear conservative system and is thus unable to correctly predict the dynamics when the
pressure nonlinearity is included.

Starting from the system of differential equations eq. (5.1), we have q̇1 = q2 and the
momentum balance given by:

q̇2 = −
(︃
1 + (1− cP ) q1

1 + q1

)︃
q1

⏞ ⏟⏟ ⏞
Conservative system

+

(︃
1 + (1− cP ) q1

1 + q1

)︃
q3 − 2 ζf q2

⏞ ⏟⏟ ⏞
injects/dissipates energy

. (5.8)

If we include the pressure nonlinearity, we have cP = 1, so:

q̇2 = −
(︃

1

1 + q1

)︃
q1

⏞ ⏟⏟ ⏞
Conservative system

+

(︃
1

1 + q1

)︃
q3 − 2 ζf q2

⏞ ⏟⏟ ⏞
injects/dissipates energy

(5.9)

and if we exclude the pressure nonlinearity (e.g. we wish to study the phase-change
nonlinearity alone), we have cP = 0, so:

q̇2 = −q1⏞ ⏟⏟ ⏞
Conservative system

+q3 − 2 ζf q2⏞ ⏟⏟ ⏞
injects/dissipates energy

. (5.10)

We will now apply a technique for conservative system which relates to an energy point of
view, often described as vector field possessing an integral (see [124, chap.5, p.77]). This
will enable us to find the closed trajectories in phase-space for the conservative system.
We look at the conservative system alone in eq. (5.8), we assume there is no phase-change
and no friction:

q̇2⏞ ⏟⏟ ⏞
inertial term

= −
(︃
1 + (1− cP ) q1

1 + q1

)︃
q1

⏞ ⏟⏟ ⏞
nonlinear restoring force⏞ ⏟⏟ ⏞

Conservative system

. (5.11)

The conservative system is composed of the inertial term q̇2 and the nonlinear restoring
force. We can multiply both sides of this equation by q2dτ and integrate over time between
τ0 and τ1, which leads to:

∆ ˜︁K = −∆˜︁Ur (5.12)
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with ∆ ˜︁K = ˜︁K(τ1)− ˜︁K(τ0) and ∆˜︁Ur = ˜︁Ur(τi)− ˜︁Ur(τ0) and where ˜︁K and ˜︁Ur are the kinetic
and potential energy respectively, defined as:

˜︁K(τi) =
1
2
q̇22 , (5.13)

˜︁Ur(τi) =
1
2
q1

2 + cP
(︁
q1 − ln [1 + q1]− 1

2
q1

2
)︁
. (5.14)

We may define ˜︁Er = ˜︁K + ˜︁Ur as the energy of the resonator, leading to:

˜︁Er = ˜︁K + ˜︁Ur =
1
2
q2

2 + 1
2
q1

2 + cP
(︁
q1 − ln [1 + q1]− 1

2
q1

2
)︁
. (5.15)

so that the equation ∆ ˜︁K = −∆˜︁Ur above becomes ∆ ˜︁Er = 0; the energy of the resonator
does not change over time, because the system is conservative. Assuming we fix the energy
level ˜︁Er (initial conditions), we may solve eq. (5.15) for q2:

q2 = ±
√︂

2 ˜︁Er − q12 − cP (2q1 − 2 ln [1 + q1]− q12) . (5.16)

For the phase-change nonlinearity only, we have cP = 0 and:

q2 = ±
√︂

2 ˜︁Er − q12 . (5.17)

while, if we include the pressure nonlinearity, we have cP = 1 and:

q2 = ±
√︂

2 ˜︁Er − 2q1 − 2 ln [1 + q1] . (5.18)

Equations (5.16) to (5.18) describe the orbits the system follows in the phase-space (q1, q2).
This is shown in fig. 5.18, where the solid lines and dashed lines include and exclude the
pressure nonlinearity, respectively. Various orbits, corresponding to various energy level
˜︁Er are shown. If the pressure nonlinearity is excluded, the orbits are circles (eq. (5.17) is

the equation of a circle, with a radius r =
√︂

2 ˜︁Er). If the pressure nonlinearity is included,
the orbits given by eq. (5.18) look like circles for small ˜︁Er, but look much different as ˜︁Er

is increased. We remark that these orbits look remarkably similar to the limit cycles with
or without the pressure nonlinearity (see figs. 4.5a and 4.5b).

Now, we may see the complete system described by eq. (5.8) as a conservative system
plus a perturbation which consists in injection/dissipation of energy. We may view the
injection/dissipation of energy as making the system slowly move from one energy level
˜︁Er to another, with the dynamics on one energy level ˜︁Er being well described by the
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Figure 5.18 Orbits in phase-space for the conservative system with pressure
nonlinearity (dashed lines) or phase-change nonlinearity (solid lines).

conservative system. For large instability numbers Π = σ/ζf , this might not be true during
the startup, but might still be true on the limit cycle itself, if we simply assume that the
injection and the dissipation of energy cancel out on the limit cycle (and, additionally,
do not produce a significant change of energy within one cycle). If this is correct, the
dynamics on the limit cycle is well described by the conservative system (by eq. (5.15)).
This is reminiscent of the approach taken by averaging where one considers the linear
solution of the conservative system, but then allows the amplitude to vary slowly, based
on the perturbation. Importantly, in averaging, a further assumption is usually 4 taken:
one considers the solution of the linearized conservative system, with q1 = r cos(θ) and
q2 = −r sin(θ) for example. This solution corresponds to circles in the phase-space.

Now, if we look at the system without the pressure nonlinearity (cP = 0), the momentum
balance is given by eq. (5.10). If the injection/dissipation of energy can be neglected on
the limit cycle, than the momentum balance is linear. The solution is thus sinusoidal
and corresponds to circles in phase-plane (q1, q2). We found numerically that, indeed,
the limit cycles look like circles even for large Π (fig. 4.5b). This is why I believe the
averaging solution works so well. By contrast, the momentum balance with the pressure
nonlinearity (cP = 1), given by eq. (5.9), is nonlinear even if the injection/dissipation

4. Coppola and Rand [18] were able to study the nonlinear system ẍ+αx+βx3+εg(x, ẋ) = 0 without
assuming β small. They did so by applying the variations of parameters to the solution of the nonlinear
system with ε = 0, which is given by elliptic functions.
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of energy can be neglected. The solution is therefore not sinusoidal if the amplitude
is large enough. The orbits are not circular, but given by eq. (5.18). This is why I
believe the averaging solution does not work as well. In a weakly nonlinear regime (small
Π) the averaging will perform correctly, but as Π is increased, the sinusoidal solution
leading to circular orbits does not match the conservative system dynamics anymore. So,
to summarize, the averaging solution is the correct solution of the conservative system
without the pressure nonlinearity, even at large amplitude, while the averaging solution
is not the correct solution of the conservative system when the pressure nonlinearity is
included, if the amplitude is large. In this explanation, I assume that the injection and
dissipation of energy can be neglected on the limit cycle. This would have to be verified
to validate the explanation.

5.6 Conclusion
In this chapter, I investigated the dynamics of the system on the steady-state using nu-
merical continuation over a large range of the parameters involved, studying small to large
oscillations amplitudes. I also obtained accurate analytical and semi-analytical formulas
describing the dynamics. I studied each nonlinearities individually.

Phase-change nonlinearity alone. The position and the velocity remained quite sinu-
soidal but harmonics were more important in the mass of vapor q3 and in the evaporation
rate q̇3. I used averaging to obtain a accurate analytical formula describing the dynam-
ics. I found that one can increase the oscillations amplitude by increasing the instability
number, either by increasing the phase-change coefficient σ or decreasing the friction co-
efficient ζf . For large Π, the amplitude can be increased furthermore by decreasing ζf or
by increasing the phase-change limit THL. The dimensionless angular frequency Ω is a
constant (meaning the dimensional angular frequency is unaffected by the nonlinearity).

Pressure nonlinearity alone. The dynamics transitions from sinusoidal to not sinu-
soidal (bouncing regime, significative harmonics) as Π is increased. I generalized the aver-
aging solution into a Fourier series approximation where the parameters were fitted using
the numerical continuation, leading to a accurate approximation fo the dynamics including
the harmonics. I found that one can increase the oscillations amplitude by increasing the
Π, either by increasing the phase-change coefficient σ or decreasing the friction coefficient
ζf . When considering the dimensional amplitude, one finds that it can also be increased
by increasing the length of vapor Lg,0. The dimensionless angular frequency Ω grows with
Π (meaning the dimensional angular frequency would be higher at higher amplitude).

The solution obtained here will be used to study the power output in SOFHE in chapter 6.
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Résumé français: Nous démontrons comment augmenter la puissance produite par le
moteur fluidique auto-oscillant (SOFHE), un dispositif conçu pour la production d’énergie
électrique à partir de chaleur perdue et basé sur le fonctionnement du caloduc pulsé mono-
branche (SBPHP). Comme pour le SBPHP, on retrouve dans le SOFHE un tube fermé
à une extrémité, qui comprend une bulle de vapeur suivie d’une colonne de liquide, qui
oscille lorsque l’extrémité fermée est chauffée. On retrouve aussi dans le SOFHE un trans-
ducteur électromécanique qui transforme une partie de l’énergie cinétique de la colonne
de liquide en énergie électrique. Pour permettre la conception de dispositifs SOFHE,
il est utile de comprendre ce qui influence la puissance et comment l’augmenter. Pour
établir cette compréhension, nous proposons un modèle théorique du SOFHE qui inclut
un transducteur purement dissipatif et nous obtenons une solution analytique précise
décrivant la dynamique des oscillations ainsi que la puissance produite. Nous montrons
que l’amplitude des oscillations décroît lorsque la charge (du transducteur) est augmentée.
La charge doit être maintenue en dessous d’une certaine valeur maximale pour maintenir
les auto-oscillations. La puissance atteint un maximum pour une valeur optimale de la
charge. Nous montrons également comment la puissance peut être augmentée en aug-
mentant l’instabilité, ce qui peut être fait en augmentant le changement de phase ou en
réduisant la friction. L’efficacité atteint également un maximum pour une valeur optimale
de la charge. Finalement nous montrons comment la récupération d’énergie basée sur des
auto-oscillateurs (tel que SOFHE) diffère significativement de la récupération d’énergie
basée sur des oscillateurs forcés.

Résumé anglais: We theoretically show how to increase the power output of the Self-
Oscillating Fluidic Heat Engine (SOFHE), a device intended to generate electric power
from waste heat and based on the Single-Branch Pulsating Heat Pipe (SBPHP) working
principle. As a SBPHP, SOFHE includes a tube closed at one end containing a vapor
bubble followed by a liquid plug, which oscillates as the closed end is heated. In addi-
tion, SOFHE includes an electromechanical transducer to transform some of the liquid
plug’s kinetic energy into electrical energy. To allow the design of SOFHE devices, an
understanding of what influences its power output and how one can increase it is re-
quired. To establish this understanding, we formulate a theoretical model of SOFHE with
a damping-based transducer and obtain a precise analytical solution describing the oscil-
lation’s dynamics as well as the power output. We show that the oscillation’s amplitude
decreases as the transducer’s damping coefficient increases. We find that the coefficient
must be kept below a maximum value to maintain the self-oscillations. We then show that
the power reaches a maximum for an optimal value of the transducer’s damping coefficient.
We also find that one can increase the power by increasing the instability, by increasing
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the phase-change or reducing the friction. The efficiency also has a maximum at an opti-
mal value of the transducer’s damping coefficient. Finally, we use the SOFHE description
to show how energy harvesting based on self-oscillators differs significantly from energy
harvesting based on forced-oscillators.

Note: pour satisfaire aux exigences de l’Université de Sherbrooke, la version de l’article
présentée dans cette thèse diffère de la version soumise.

6.1 Introduction
A Pulsating heat pipe (PHP) is a cooling device, made of a meandering tube in which
vapor bubbles and liquid plugs coexist. Self-oscillations of the vapor bubbles and liquid
plugs allow for heat transfer from the heat source to a colder region, called the heat sink,
through both latent heat (evaporation and condensation) and sensible heat. These self-
oscillations can also be observed in a simpler device, called the Single-Branch Pulsating
Heat Pipe, which is a small tube closed at one end and open at the other, in which a single
vapor bubble coexists with a single liquid plug (see tube in fig. 6.1).

vapor liquid air

Fire-altFire-altFire-alt

heat source
CUBESCUBESCUBES

heat sink

transducer
Qin

Qout

Wout

Figure 6.1 Schematic of the Self-Oscillating Fluidic Heat Engine (SOFHE)
based on the self-oscillating phenomenon of the Single-Branch Pulsating Heat
Pipe (SBPHP).

Although the PHP was initially designed for cooling purposes, there is now an increased
interest in energy harvesting applications [79, 78, 111, 125, 80, 75, 104]. Indeed, in a PHP,
part of the heat absorbed is converted into mechanical energy (the oscillations of the liquid
plug). By adding an electromechanical transducer to the PHP, part of this mechanical
energy can be converted into electrical energy. One ends up with a device capable of
harvesting waste heat from the environment and converting it into electricity. A major
application for such devices is to power wireless sensors. In the context of the “Internet
of Things” (IoT) paradigm, one envisions a network of wireless sensors embedded into
the environment (home, car, airplanes, etc.) for enhanced functionalities. This includes
temperature sensors, pressure sensors, accelerometers, etc. However, the development of
the IoT depends on technical innovations in a number of important fields, particularly
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wireless sensors reliability and lifetime [4, 109]. A wireless sensor networks powered solely
by batteries requires battery changes, which is impractical, especially for a large number of
nodes or when the nodes are located in remote areas. A solution to this problem is to couple
the sensor to an energy harvester, which will harness nearby energy sources (vibration,
thermal gradient, light, etc.) to power the sensor and make it truly autonomous [108].
In this context, energy harvesting based on PHPs could come into play as an interesting
solution.

Many energy harvesters are based on oscillating phenomena. It is useful to distinguish
between harvesting from forced oscillators, where the periodicity comes from an external
source and self-oscillators, where the periodicity is generated by the oscillator itself [52].
Forced-oscillating harvesters include the popular approach of coupling a mechanical spring-
mass system to a piezoelectric, to harvest energy from vibrating structures [9]. Also
falling in that category is the P 3 heat engine and relatives [122, 16, 8], where an external
mechanism drives periodic injection of heat into a two-phase working fluid, coupled to
a buckling piezoelectric membrane. Self-oscillating harvesters includes harvesting from
flutter and other aeroelastic instabilities [29, 5, 24, 10, 6]. Some heat engines also fall
into that latter category such as the heat engine from IMTEK [46, 47] which is similar
to the P 3 engine, but where the periodic heat injection is self-driven by the oscillations.
Let’s also mention the demonstration of energy harvesting from periodic, self-sustained,
explosive evaporation in a chamber coupled to a piezoelectric membrane [68].

Energy harvesting based on PHPs is also part of the self-oscillating harvester category.
Energy harvesting from multi-branch PHP coupled to various types of transducers has
been demonstrated, including electromagnetic [79], piezoelectric [80], interfacial electrical
double layer [104] and pyroelectric [125]. Energy harvesting based on a single-branch
PHP as shown in fig. 6.1 has also been demonstrated, a concept coined Self-Oscillating
Fluidic Heat Engine (SOFHE) [78, 111, 75]. However, beside these experimental results,
there is no theoretical framework yet to describe energy harvesting based on PHPs. A
qualitative understanding of how the PHP energy harvesters behave is needed. There
is a number of questions that should be addressed regarding energy harvesting based on
the PHP principle. By adding the transducer to the SBPHP as in fig. 6.1, an additional
force, called a load, is applied to the liquid plug. Since the goal of the device is to harvest
energy, this force should be dissipative and will likely affects the SBPHP dynamics. It is
of prime importance for the design of SBPHP harvesting devices to understand the impact
of the load on the oscillation dynamics. Will the self-oscillations stop when the load is
applied? If not, how the oscillation amplitude will varies as function of the load? How



6.2. MODEL AND BASIC RESULTS 145

much load can one apply before the self-oscillations die out? Moreover, we would like to
understand how to increase the power output of the device. We would like to know how
the power output vary as a function of the load. Does it reach a maximum and if so,
at which load value? Finally, we would like to understand how the characteristics of the
internal dynamics in the SBPHP (rate of evaporation and condensation, viscous friction,
etc.) impact the power output. What should one aim for when controlling the internal
dynamics in the SBPHP, in order to maximize the power output?

Here, we tackle those questions for SOFHE, aiming at a qualitative understanding of en-
ergy harvesting based on SBPHPs. We start from an existing SBPHP model [112, 114]
and add an electromechanical transducer, represented by an additional damping force
(section 6.2.1). We then derive some general results (section 6.2.2), first showing how
the transducer impacts the SBPHP thermofluidic instability, required to maintain the
self-oscillations. This gives bounds to the transducer force. We then derive general ex-
pressions for the power output and the efficiency. Finally, we study the power and the
efficiency in two distinct cases, when the dynamics is dominated by 1) the temperature
nonlinearity (section 6.3) and 2) the pressure nonlinearity (section 6.4). In the discussion
(section 6.5), we highlight some general results for self-oscillating harvesters and show
how they qualitatively differ from forced-oscillating harvesters. To that end, an appendix
describing the energy harvesting from a linear forced oscillator is included (D.1).

6.2 Model and Basic Results

6.2.1 Model
In order to build a model for SOFHE’s dynamics, we proceed as for the SBPHP [112, 114],
with some simplifications described in the discussion. First, the momentum balance is
applied to the liquid plug, as:

mℓẍi =
(︂
Pg − P̂e

)︂
A+ Ff + FL, (6.1)

with xi the position of the vapor-liquid interface (refered to as the meniscus from now
on), relative to an equilibrium to be found later on. Thus, ẋi and ẍi are the velocity and
the acceleration of the liquid plug, respectively. PgA is the force applied by the vapor’s
pressure on the liquid plug. The force P̂eA combines the force PeA, due to the pressure of
the air, and the gravitational force if the tube is tilted, with P̂e = Pe + ρℓgLℓ sin θ, where
Pe is the external pressure, ρℓ the liquid density, g the gravitational acceleration, Lℓ the
length of the liquid plug and θ the angle of the tube relative to the horizontal.
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The term Ff is the friction force between the liquid plug and the wall. Assuming Poiseuille
flow, with cf = 8πµLℓ, we can write:

Ff = −cf ẋi . (6.2)

The term FL is the load, the force exerted by the transducer on the liquid plug, to harvest
energy from the oscillations (the L subscript standing for Load). We consider a basic
type of transducer called velocity-damped, which produce a force FL proportional and
opposite to velocity, meaning it is a purely dissipative force (just like Ff ). So, the im-
pact of the velocity-damped transducer on the dynamics can be simply understood has
increased friction. With cL a proportionality constant (to be defined by the transducer’s
characteristics), we have:

FL = −cL ẋi . (6.3)

The pressure in the vapor, Pg, can be described by the perfect gas law:

Pg =
mgRgTg

(xi + Lg,0)A
. (6.4)

where (xi +Lg,0)A is the volume of vapor. We will assume Tg constant here. The mass of
vapor varies due to evaporation and condensation, as the liquid plug oscillates between the
heat source and the heat sink. We consider a simple thermal resistance model for the heat
transfer between the walls and the vapor, through the liquid and close to the meniscus,
leading to:

ṁg =
Q̇

Hv

=
Tw(xi)− Tg,sat

HvRth

, (6.5)

with mg the mass of vapor and ṁg the phase-change rate (ṁg positive or negative for
evaporation or condensation, respectively), Q̇ the heat transfer responsible for the phase-
change, Hv the enthalpy of vaporization, Tw(xi) the temperature of the wall close to the
meniscus, Tg,sat the temperature of the meniscus (at saturation conditions) and Rth the
thermal resistance. The temperature of the wall varies between the heat source and the
heat sink. We assume Tw = TH in the heat source, Tw = TL in the heat sink and assume
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a smooth transition between the two. Such profile is well described by an arctangent, as:

Tw(x) =
TH − TL

π
arctan

[︄
−
(︄
π
⃓⃓
T ′
w,0

⃓⃓

TH − TL

)︄
x

]︄
+
TH + TL

2
, (6.6)

where
⃓⃓
T ′
w,0

⃓⃓
is the thermal gradient in the axial direction, at x = 0.

Equations (6.1) to (6.6) constitute a complete set of nonlinear differential equations, which
can be solved for the position xi. This system has one equilibrium, where the liquid plug
does not move and the mass of vapor is constant, which can be obtained by solving for
ẋi = ẍi = ṁg = 0. We will denote quantities at equilibrium by the 0 subscript (e.g.
Pg = Pg,0, mg = mg,0 and so on). At equilibrium, we find that Pg = Pg,0 = P̂e (eq. (6.1)).
Also, no net phase-change at the equilibrium implies Tw(xi) = Tg,sat, corresponding to the
position xi = 0 (from eqs. (6.5) and (6.6)). The equilibrium is located at a distance Lg,0

of the wall at the closed end.

To study the dynamics, it is useful to use variables relative to this equilibrium. We also
make the variables dimensionless, using mg,0, Lg,0, 1/ωn, Tg,0 as the characteristics mass,
length, time and temperature, where ωn =

√︁
Pg,0/(ρℓLg,0Lℓ) is the natural frequency. We

thus have:

q1 =
xi
Lg,0

, (6.7a)

q2 =
dq1
dτ

=
1

ωnLg,0

dxi
dt

, (6.7b)

q3 =
mg −mg,0

mg,0

, (6.7c)

as the dimensionless position, velocity and mass of vapor. The dynamics is now described
in terms of the dimensionless time τ = ωnt. We note that substitution of q1 and q2 in the
momentum balance shows that forces can be made dimensionless by a characteristic force
mℓLg,0ωn

2 = Pg,0A. Substitution of eq. (6.7) into eqs. (6.1) to (6.6), yields the following
system of dimensionless differential equations (in a phase-space representation):

q̇1 = q2 , (6.8a)

q̇2 = −
(︃

1

1 + q1

)︃
q1 +

(︃
1

1 + q1

)︃
q3 − 2 ζ q2 , (6.8b)

q̇3 = THL arctan

[︃
−
(︃

2σ

THL

)︃
q1

]︃
. (6.8c)
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The dimensionless parameters σ, ζ and THL are defined as:

σ =
Lg,0

2mg,0ωnHvRth

⃓⃓
T ′
w,0

⃓⃓
, (6.9a)

ζ = ζf + ζL , (6.9b)

ζf =
8πµLℓ

2mℓωn

, (6.9c)

ζL =
cL

2mℓωn

, (6.9d)

THL =
TH − TL

πmg,0ωnHvRth

. (6.9e)

The quantity σ is called the phase-change coefficient. The quantity ζ, called the combined
dissipative coefficient, includes the friction coefficient ζf and the harvester coefficient ζL.
THL is the difference of temperature TH − TL, made dimensionless.

Equation (6.8b) is simply the momentum balance, with the acceleration q̇2 on one side
and the forces on the other. The first two terms on the right-hand side come from the
pressure difference applied on the liquid plug. The term −(1/(1 + q1))q1 comes from
variations of pressure due to a change of volume and acts as a nonlinear restoring force.
This term coupled with the dimensionless inertial term (q̇2) leads to a spring-mass system.
The term −(1/(1 + q1))q3 comes from variations of pressure due to variations of the mass
of vapor. It can be shown that the resulting force is in phase with velocity, thus acting
as a positive feedback, which tends to increase the oscillation’s amplitude [112]. The
prefactor 1/(1+ q1) makes the momentum balance nonlinear and comes from the pressure
nonlinearity. As shown in fig. 6.2, the nonlinearity makes the restoring force rise to infinity
when the vapor bubble is compressed significantly (for q1 approaching −1), preventing the
liquid plug from going through the closed end. The last term, − 2 ζ q2 is a dissipative
force, which includes both the friction and the transducer.

Finally, eq. (6.8c) is the phase-change rate. It is also nonlinear, it saturates in both the heat
source and the heat sink as shown in fig. 6.3, due to the nonlinear wall temperature profile.
Although our model was constructed by assuming phase-change close to the meniscus
with a simple thermal resistance model, the resulting phase-change expression, eq. (6.8c),
is more general than this. It simply represents a linear phase-change rate close to the
equilibrium (optimal, because it leads to a force perfectly in phase with velocity [112]),
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Figure 6.2 Effect of the pressure nonlinearity on the restoring force.

which saturates in both the heat source and the heat sink. Thus the nonlinearity studied
here is really a limitation of the phase-change rate. We will also draw more general
conclusions valid for other phase-change profiles in section 6.5.
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Figure 6.3 Nonlinear phase-change profile, due to the wall temperature non-
linearity.

Which nonlinearity dominates depends on which effect, the nonlinear pressure or the
saturation of the phase-change, is seen first during the startup. This is controlled in
eq. (6.8) by THL. The pressure nonlinearity dominates for THL large, while the temperature
nonlinearity dominates for small THL (see Tessier-Poirier et al. [114] for details).

6.2.2 Basic Results and Understanding, Oscillations’ Dynamics
The dynamics of eq. (6.8) has been studied before for the SBPHP, so without harvesting,
with ζL = 0 and ζ = ζf (see [112, 114] and chapter 5). Those results can still be used
here, by simply adding ζL to ζf (the model is the same, we simply change a parameter).
Equation (6.8) has one equilibrium at q1 = q2 = q3 = 0. Numerical simulations show that
this system may exhibit self-oscillations.

Linear Stability Analysis with Harvesting

Tessier-Poirier et al. [112] performed a linear stability analysis of eq. (6.8). They showed
that, after a small perturbation of the equilibrium, the position q1 oscillates with an am-
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plitude increasing over time if the phase-change coefficient (σ) which produce the positive
feedback is greater than the dissipation (ζ). This occurs when the instability number Π

is greater than one, with:

Π =
σ

ζ
=

Π0

1 + (ζL/ζf )
, Π0 =

σ

ζf
=
ρℓRg Tg,0

⃓⃓
T ′
w,0

⃓⃓

8π µHvRth P̂e

. (6.10)

When there is no harvesting, ζL = 0, we simply have Π = Π0, Π0 is the instability number
without harvesting. Let’s assume now that SOFHE is first started without harvesting from
equilibrium, by increasing Π0 above one 1. The oscillations first increase in amplitude and
eventually settle down in a steady-state (limit cycle) due to the nonlinearities [113, 114].
We then progressively increase ζL to harvest some energy. As a consequence, Π will
progressively decrease. Ultimately, ζL will reach a maximum value ζL,max where Π will
reach 1, the total damping being large enough to kill the self-oscillations. At this point,
for ζL ⩾ ζL,max, there is no more limit cycle, the equilibrium is stable, and we cannot
extract energy. Solving eq. (6.10) for ζL = ζL,max with Π = 1, we get:

ζL,max = ζf (Π0 − 1) . (6.11)

In order to extract energy, we must keep 0 < ζL < ζL,max, so it makes sense to consider
the ratio:

ZL ≡ ζL
ζL,max

=
ζL

ζf (Π0 − 1)
. (6.12)

The harvesting ratio ZL must be kept between 0 and 1 to harvest energy while maintaining
the oscillations. We can redefine the parameters of the system in terms of ZL instead of
ζL, leading to:

ζL = ζf (Π0 − 1)ZL , (6.13a)

ζ = ζf + ζL = ζf (1 + (Π0 − 1)ZL) , (6.13b)

Π =
σ

ζ
=

Π0

1 + (Π0 − 1)ZL
. (6.13c)

1. Typically, by increasing the temperature of the heat source, which increases the thermal gradient
at the equilibrium

⃓⃓
T ′
w,0

⃓⃓
, which in turns increases the phase-change coefficient σ, finally leading to an

increase in Π0.
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We clearly see from eq. (6.13c) that we have Π = Π0 for ZL = 0 (unstable equilibrium if
Π0 > 1) and Π = 1 (stable equilibrium and no limit cycle) for ZL = 1.

Dynamics on the Limit Cycle (in the Steady-State)

Now, on the limit cycle (steady-state), the solution is periodic and can thus be represented
by Fourier series. The position is given by the following Fourier series in amplitude-phase
form :

q1 =
1
2
A0 +

k=∞∑︂

k=1

Ak sin (kθ + φk) , with: θ(τ) = Ωτ . (6.14a)

The velocity q2 = q̇1 is then simply obtained by applying the derivative in time:

q2 = 0 +
k=∞∑︂

k=1

kΩAk cos (kθ + φk) . (6.14b)

Of course, the amplitudes Ak and the angular frequency Ω are functions of the parameters
of the system. Because the amplitudes and the frequency are affected differently by each
nonlinearities, we study each of them individually in sections 6.3 and 6.4.

6.2.3 General Power Output Expression
We now wish to compute the averaged power generated by the velocity-damped harvester.
To do so, we will first consider the work done by the load. The (dimensionless) infinitesimal
work done by the load ˜︂FL over the displacement of the liquid plug dq1 is given by d˜︂WL =
˜︂FL dq1. We make the substitution dq1 = q̇1dτ = q2dτ , so that d˜︂WL = ˜︂FL q2dτ . Because
˜︂WL is the work done by the load ˜︂FL on the liquid plug, we have ˜︂WL < 0 when the load is
dissipative (the load is extracting energy from the liquid plug). In that case, the energy
harvested is positive and given by −˜︂WL. We may define ˜︂Wh = −˜︂WL as the harvested
energy, with ˜︂Wh > 0 when the load is extracting energy. Integrating d˜︂Wh = −˜︂FL q2dτ

over a cycle leads to the energy harvested over a cycle:

˜︂Wh,Cycle =

∫︂

Cycle
d˜︂Wh = −

∫︂

Cycle

˜︂FL q2dτ . (6.15)

Given a velocity-damped harvester force ˜︂FL = −2ζLq2 and with the substitution ζL =

ζf (Π0 − 1)ZL (eq. (6.13a)):

˜︂Wh,Cycle = 2ζf (Π0 − 1)ZL

∫︂

Cycle
q2

2dτ . (6.16)
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Substitution of the solution for q2, eq. (6.14b), and performing the integration leads to:

˜︂Wh,Cycle = 2πΩ ζf (Π0 − 1)ZL

+∞∑︂

k=1

k2Ak
2 . (6.17)

The dimensionless power averaged over a cycle, defined as Ẇ h, is obtained by simply
dividing ˜︂Wh,Cycle by the period ˜︁T = 2π/Ω, leading to:

Ẇ h =
Ω

2π
˜︂Wh,Cycle = ζf (Π0 − 1)ZL Ω2

+∞∑︂

k=1

k2Ak
2 (6.18)

If there is only the fundamental (as it is the case for averaging), then we simply have
Ẇ h = ζf (Π0 − 1)ZL Ω

2A1
2. The power output will be studied in more details for each

nonlinearities in sections 6.3 and 6.4.

Carrying the analysis above in terms of dimensional quantities (dimensional force, dis-
placement and so on), and then making the conversion to dimensionless quantities, we
find that the dimensional work can be obtained by multiplying ˜︂Wh,Cycle by Lg,0Pg,0A while
the dimensional power can be obtained by multiplying Ẇ h by ωnLg,0Pg,0A.

6.2.4 General Efficiency Expression
SOFHE’s efficiency is given by the ratio of the harvested work to the energy injected in
the system, over a cycle. To estimate the energy injected into the system, we consider the
heat transfer leading to phase-change. We obtain the dimensionless energy injected into
the system over a cycle ˜︁Qin,cycle given by:

˜︁Qin,cycle =

∫︂

Cycle, q̇3 > 0

q̇3 dτ , (6.19)

which can be made dimensional simply by multiplying by mg,0Hv. The efficiency, given
by the ratio of the dimensional work over the cycle (Lg,0Pg,0A)˜︂Wh,Cycle, to the dimensional
energy injected into the system over a cycle, (mg,0Hv) ˜︁Qin,cycle, leading to the following
after simplifications:

η =

(︃
RgTg,0
Hv

)︃ ˜︂Wh,Cycle

˜︁Qin,cycle
, (6.20)
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where ˜︂Wh,Cycle and ˜︁Qin,cycle can be obtained from eqs. (6.17) and (6.19), respectively. We
will pursue the analysis for each nonlinearities individually. To estimate the energy injected
into the system, we considered two hypotheses: 1) sensible heat is negligible compared
to latent heat 2, 2) enthalpy of vaporization is constant. Based on typical experimental
results and using the Rankine Cycle as a benchmark, those two hypotheses yield negligible
error [58]. For very large pressure variations though, beyond what is currently observed
experimentally, those hypotheses may not hold. We will take this limitation into consid-
eration in our estimations below. In any case, the efficiency must be below the Carnot
efficiency η = 1− TL/TH .

6.3 Wall Temperature Nonlinearity
As mentioned before, the steady-state (limit cycle) is due to the nonlinearities. The be-
havior of the system differs, whether the pressure nonlinearity or the wall temperature
nonlinearity dominates, so we choose to study the harvesting for each nonlinearity indi-
vidually. We will first consider the temperature nonlinearity only, so that we linearize the
momentum balance and eq. (6.8) becomes:

q̇1 = q2 , (6.21a)

q̇2 = −q1 + q3 − 2 ζ q2 , (6.21b)

q̇3 = THL arctan

[︃
−
(︃
2 ζ Π

THL

)︃
q1

]︃
, (6.21c)

where we made the substitution σ = ζ Π and where ζ and Π given by eq. (6.13). For such
a system, a very precise analytical solution can be found using averaging (see chapter 5),
given by eq. (6.14) with:

A1 =
THL

ζ

√︃
Π− 1

Π
=

√
1− ZL

1 + (Π0 − 1)ZL

THL

ζf

√︃
Π0 − 1

Π0

, (6.22a)

Ω = 1 , (6.22b)

2. We do not take into account the heat transfer not leading to phase-change (heat conduction through
the walls in the axial direction and heat convection between the walls and the liquid plug) in the engine’s
efficiency considered here. Including these would lead to an overall efficiency lower than the engine’s
efficiency.
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where the second part in eq. (6.22a) was obtained by substitution of ζ and Π with
eqs. (6.13b) and (6.13c). All the other Ak equal to 0. Thus, the solution is purely si-
nusoidal.

The amplitude A, given by eq. (6.22a), is displayed in fig. 6.4a as a function of the har-
vesting coefficient ratio ZL. At ZL = 0, there is no harvesting, the amplitude is maximal.
As ZL increases, the amplitude progressively decreases, because there is more and more
damping (harvesting is just damping for the system). At ZL = 1, ζL is large enough such
that Π = 1, the amplitude reaches 0, the limit cycle collapses on the equilibrium which
becomes stable.

6.3.1 Power
The power output for the temperature nonlinearity only is given by substitution of eq. (6.22)
into eq. (6.18), leading to:

Ẇ h =
ZL (1− ZL)

(1 + (Π0 − 1)ZL)
2

THL
2

ζf

(Π0 − 1)2

Π0

. (6.23)

The power Ẇ h as a function of ZL is shown in fig. 6.4b. At ZL = 0, there is no power, since
there is no harvesting force applied on the system (ζL = 0). As ZL increases, the power
Ẇ h increases, reaches a maximum and then decreases, to finally reach 0 again. This is
because, at that point, the dissipative force is so great that there are no more oscillations
(A = 0).

One can easily find the two zeroes by inspection of eq. (6.23):

Ẇ h = 0 ⇒ ZL = 0 or ZL = 1 . (6.24)

The power Ẇ h reaches a maximum at an optimum value of ZL = ZL,opt. It can be easily
obtained by setting the derivative d(Ẇ h)/dZL = 0. We obtain:

ZL,opt =
1

1 + Π0

. (6.25)

The maximum power is obtained by taking ZL = ZL,opt in eq. (6.23), leading to:

Ẇ h,max =
1

4

THL
2

ζf

(︃
Π0 − 1

Π0

)︃2

. (6.26a)
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Figure 6.4 Curves evaluated for Π0 = 5, ζf = 0.10 and THL = 0.01. (a)
Amplitude A as a function of the harvesting coefficient ratio ZL = ζL/ζL,max,
the amplitude progressively decrease towards 0 as ZL goes from 0 to 1. (b)
Power curve; As the harvesting coefficient ratio ZL is progressively increased, the
power Ẇ h first increase, then reaches a maximum and then decreases, eventually
reaching 0 at ZL = 1.

Effect of Π0

A key parameter in eqs. (6.23) and (6.26a) is Π0. In fig. 6.5, several curves for various Π0

are displayed. Π0 is the parameter that defines the instability threshold in the absence
of harvesting force. By increasing Π0, we increase the instability (Π increases as well,
eq. (6.13c)) and the oscillation’s amplitude as well as the power output. One can increase
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Π0 = σ/ζf by increasing the phase-change coefficient σ, through an increase of the heat
source temperature TH for example. Also note that, as we increase Π0 and the power
increases, the maximum point shifts to the left (Zopt decreases) and the curves become
more asymmetric.
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Figure 6.5 Effect of Π0 on the power curves ; curves for ζf = 0.10 and THL =
0.01.

How the maximum power evolves as a function of Π0 is shown in fig. 6.5 by the dashed
curve. To obtain such a curve, we first solved eq. (6.25) for Π0 and substitute the result
in eq. (6.26a), leading to:

Ẇ h,max =
THL

2

4ζf

(︃
1− 2ZL,opt

1− ZL,opt

)︃2

. (6.26b)

Equation (6.26a) and eq. (6.26b) are equivalent formulas, they both show how Ẇ h,max

evolves, but the former in terms of Π0 and the latter in terms of ZL,opt.

Studying ZL,opt and Ẇ h,max in detail

In fig. 6.6, we show ZL,opt evolves in terms of Π0. For Π0 → 1 (the system is close to the
instability threshold), we have ZL,opt → 1/2, meaning the optimal ζL is equal to 1

2
ζL,max,

the ζL that kills the oscillations (also, the optimal ζL must be very small given that ζL,max

approaches 0, eq. (6.11)). As Π0 increases, ZL,opt decreases. For Π0 → +∞, ZL,opt → 0.
In that limit, we have that the optimal ζL approaches ζf (this can be shown by equating
eq. (6.12) to eq. (6.25) and solving for ζL).
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Figure 6.6 Optimal harvesting coefficient ratio ZL,opt (ZL where Ẇ h = Ẇ h,max)
as a function of Π0 ; for ζf = 0.10 and THL = 0.01.

The maximum power Ẇ h,max (obtained at ZL = ZL,opt) evolves in terms of Π0 following
eq. (6.26a) and as displayed in fig. 6.7. Initially 0 at the instability threshold Π0 = 1, it
gradually increases and eventually saturates at THL

2/4ζf . This can be shown by taking
the limit of eq. (6.26a):

lim
Π0→+∞

Ẇ h,max(Π0) =
THL

2

4ζf
. (6.27)

Looking at fig. 6.7 one finds that increasing the instability number Π0 above 1 leads to a
slowly increasing power first (the curve is flat at Π0 = 1). During this stage, increasing
the instability serves mostly to increase the oscillation’s amplitude. As Π0 is increased
furthermore, the power starts to increase rapidly. At this stage, the power is dominated
by Π0, a linear property, and depends only slightly on the other parameters. We conclude
that the instability number Π0 is a key parameter to increase the power output, especially
close to the instability threshold. One must increase it to increase the amplitude first and
then to increase the power. As Π0 is increased even more, the power eventually saturates.
In this latter stage, the power depends less on the instability number Π0 and more on
THL

2/4ζf , which can be seen as a nonlinear characteristic.

6.3.2 Efficiency
To compute the efficiency based on eq. (6.20) for the temperature nonlinearity alone, we
need˜︂Wh,Cycle and ˜︁Qin,cycle. The work˜︂Wh,Cycle, after substitution of eq. (6.22) into eq. (6.17),
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Figure 6.7 Effect of Π0 on the power curves; curves for ζf = 0.10 and THL =
0.01.

is given by:

˜︂Wh,Cycle = 2π
ZL (1− ZL)

(1 + (Π0 − 1)ZL)
2

THL
2

ζf

(Π0 − 1)2

Π0

. (6.28)

The work in terms of ZL follows an asymmetrical bell shaped curve just like the power
output (the power is just the work divided by 2π, since Ω = 1 eq. (6.18)).

The energy injected in the system over a cycle, ˜︁Qin,cycle, can be obtained by substitution
of eq. (6.22) into eq. (6.19). Given the analytical solution for the temperature nonlinearity
alone, we get:

˜︁Qin,cycle = −THL

∫︂ 3π
2

π
2

arctan
[︂(︂

2
√︁
Π(Π− 1)

)︂
cos(θ)

]︂
dθ , (6.29)

with Π given by eq. (6.13c). This integral is difficult to perform analytically, so we do it
numerically. As a function of ZL, ˜︁Qin,cycle is maximal at ZL = 0 (where the amplitude is
maximal) and decreases monotonically to 0 at ZL = 1 (where the amplitude is 0).

Given˜︂Wh,Cycle and ˜︁Qin,cycle, the efficiency can then be evaluated using eq. (6.20). In fig. 6.8,
various curves are displayed for various Π0 numbers. The efficiency is 0 at ZL = 0 and
ZL = 1 and reaches a maximum value in between. Increasing Π0 leads to an increase in
the efficiency (the maximum value in particular). Close to the instability threshold (close
to Π0 = 1), the optimal ZL value is 2/3, which is different than the one for maximum
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power output (at 1/2). As Π0 increases, the optimal ZL decreases and gets closer and
closer to the one corresponding to the maximum power.
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Figure 6.8 Harvesting efficiency along ZL and for various Π0 ; curves for ζf =
0.10 and THL = 0.01 and RgTg,0/Hv = 0.09 (for water vapor at 170 ◦C).

6.4 Pressure Nonlinearity
We now consider only the pressure nonlinearity, so that we linearize the phase-change rate
and eq. (6.8) becomes:

q̇1 = q2 , (6.30a)

q̇2 = −
(︃

1

1 + q1

)︃
q1 +

(︃
1

1 + q1

)︃
q3 − 2 ζ q2 , (6.30b)

q̇3 = −2 ζ Π q1 , (6.30c)

where we made the substitution σ = ζ Π and where ζ and Π given by eq. (6.13). For this
system, a good expression for the dynamics can be found by fitting the Fourier components
obtained by numerical resolution with expressions based on averaging results (chapter 5).
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The dynamics is thus well described 3by eq. (6.14) with:

A0 = 0 , (6.31a)

Ak = ak
(︁
1 + bke

−τkΠ
)︁(︃Πnk − 1

Πnk

)︃ k
2

, (6.31b)

Ω =
p1Π

2 + p2Π+ p3
Π+ p1 + p2 + p3 − 1

, (6.31c)

φk =

⎧
⎨
⎩

π(1−k)
2

+ kφs for k odd,
π(1−k)

2
− π + kφs for k even.

(6.31d)

The parameters are obtained by fitting each harmonics except for φs which can be chosen
as desired (allows for time shift, time reference is arbitrary), see chapter 5 for details.

Thus, with the pressure nonlinearity, the solution is not purely sinusoidal, but exhibits
harmonics. Close to the instability threshold (Π0 close to 1), the motion is very much
sinusoidal with the Ak for k > 1 negligible compared to A1. For larger Π0 however, the
harmonics become more and more important (although A1 remains the dominant term).
We note that the solution only depends on the dimensionless parameters Π0, ζf and ZL.

In fig. 6.9, we display the amplitude in q1 as a function of ZL
4. We see that the amplitude

progressively decreases to 0 at ZL = 1.

6.4.1 Power
The power output Ẇ h for the pressure nonlinearity only is given by substitution of
eq. (6.31) into eq. (6.18). It is displayed as a function of ZL in fig. 6.10. Just like for
the temperature nonlinearity, there is no power at ZL = 0, because there is no harvesting
force and no power at ZL = 1, where the dissipative force is too large and kills the oscil-
lations. The power reaches a maximum value in between. A key parameter to increase
the power output is the instability number Π0. Increasing Π0 increases the power output
significantly.

The power output is maximal at ZL = ZL,opt. For Π0 close to 1, ZL,opt = 0.5, meaning that
the optimal ζL is given by ζL = 1

2
ζL,max. As Π0 is increased, ZL,opt increases, as displayed

3. The expression is more precise for Π close to 1 and low ζ. It is optimized for 1 < Π < 1.18 and
ζf < 0.05 but still provide a good approximation in the range 1 < Π < 2 and 0 < ζ < 0.15.

4. To represent the amplitude by a single term in fig. 6.9, instead of the Ak, we consider the semi-
amplitude in q1 (max of q1 minus min of q1, divided by two). However, for low Π0 such as in fig. 6.9,
simply taking A1 would be very precise also, the other Ak being negligible there.
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Figure 6.9 Amplitude as a function of the harvesting coefficient ratio ZL =
ζL/ζL,max, the amplitude progressively decrease towards 0 as ZL goes from 0 to
1; curves obtained for Π0 = 1.05 and ζf = 0.10.
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Figure 6.10 Effect of Π0 on the power curves ; curves obtained for ζf = 0.10.

in fig. 6.11. This behavior is different than the temperature nonlinearity, where ZL,opt was
decreasing with Π0.

The maximum power output Ẇ h,max (Ẇ h at ZL = ZL,opt) only depends on the dimension-
less parameters Π0 and ζf . We display Ẇ h,max as a function of Π0 in fig. 6.12. We again
see that increasing Π0 increases Ẇ h,max significantly. For Π0 close to one, Ẇ h,max only de-
pends on the linear quantity Π0. As Π0 increases, Ẇ h,max also depends on ζf (at fixed Π0).
We do not observe a saturation of the power as for the temperature nonlinearity fig. 6.7.
However, we did not push Π0 as far. We limited the Π0 value because the dynamics there
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Figure 6.11 Optimal harvesting coefficient ratio ZL,opt (ZL where Ẇ h =

Ẇ h,max) as a function of Π0 ; for ζf = 0.10.

is already quite extreme (large amplitude in q1 and possibly large variations of pressure)
which is probably not reachable experimentally and where some of our hypotheses would
no longer be valid anyway.

6.4.2 Efficiency
To compute the efficiency based on eq. (6.20) for the pressure nonlinearity alone, we need
˜︂Wh,Cycle and ˜︁Qin,cycle. The work ˜︂Wh,Cycle, is obtained by substitution of eq. (6.31) into
eq. (6.17). It follows an asymmetrical bell shaped curve just like the power output. The
energy injected in the system over a cycle, ˜︁Qin,cycle, is obtained by substitution of eq. (6.22)
into eq. (6.19). The resulting efficiency is displayed in fig. 6.13 for various Π0 numbers.
Just like for the temperature nonlinearity, the efficiency is 0 at ZL = 0 and ZL = 1 and
reaches a maximum in between. Increasing Π0 significantly increases the efficiency. For Π0

close to 1, the optimal value ZL is 2/3, while the one for Ẇ h,max is 1/2. As Π0 increases,
the optimal value ZL for maximum efficiency approaches the one for maximum power.

6.5 Discussion

6.5.1 Energy harvesting from Self-Oscillators Compared to Forced-

Oscillators
Self-oscillators and forced oscillators have some important differences (see [52, sec.3.2]
and [112, sec.VIB]). Because of that, energy harvesting principles differ. Here, we clarify
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Figure 6.12 Maximum harvesting power Ẇ h,max as a function of Π0, for various
ζf .

these differences, considering the SOFHE model above as a prototypical self-oscillating
harvester 5 and a spring-mass system (D.1) as a prototypical forced-oscillating harvester.

First, in a forced-oscillator, the forcing frequency ω can be controlled. The maximum
power is obtained when ω = ωn. By contrast, in a self-oscillator, the positive feedback is
at the same frequency as the oscillations automatically (being expressed in terms of the
phase-space variables qi).

Then, in a forced-oscillator, the oscillation’s amplitude progressively decreases as the har-
vesting coefficient ζL is increased, but small oscillations are always maintained. The power
is maximized when the harvesting coefficient ζL is made equal to the friction coefficient ζf .
This is known as impedance matching. The power curve tails off as ζL is increased beyond
that, but never reaches 0 completely because the oscillation’s amplitude is never 0.

The impedance matching principle does not apply to self-oscillating harvesters in general.
In a self-oscillator, the instability has to be maintained to maintain the self-oscillations
(one as to maintain Π above 1, section 6.2.2). As ζL is increased, the oscillation’s amplitude
progressively decreases and reaches 0 at ζL = ζL,max = ζf (Π0 − 1) (eq. (6.11)), where the
damping is large enough to kill the instability. Also, as ζL is increased, the power increases,
reaches a maximum and then reaches 0 at ζL = ζL,max as well. This threshold behavior

5. Note that some of the results we present here may not apply to all types of self-oscillators (e.g. in
a subcritical Hopf bifurcation, a limit cycle may exist despite a stable equilibrium).
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Figure 6.13 Harvesting efficiency along ZL and for various Π0 ; curves for
ζf = 0.10 and RgTg,0/Hv = 0.09 (for water vapor at 170 ◦C).

does not exist in the forced-oscillator. Close to the instability threshold, ζL,max is close
to 0, because adding just a little more damping kills the oscillations. The optimal ζL,
where the power is maximized, is equal to ZLζL,max with ZL = 1/2 for Π0 close to 1, and
is thus also close to 0. This is far from impedance matching, which would impose ζL = ζf ,
where ζf could be large. Also, in the self-oscillating harvester, the optimal ζL given by
ZL,optζL,max = ZL,optζf (Π0 − 1) is not just a function of the friction coefficient, but also
the instability number Π0. As Π0 is increased, the optimal ζL drifts due to nonlinearities.

Finally, the efficiency in the forced-oscillations harvester increases monotonically as ζL is
increased. Thus, one has to make a trade-off between maximum power and maximum
efficiency. By contrast, in a self-oscillating harvester, the efficiency is 0 at both ζL = 0

and ζL = ζL,max, reaching a maximum between those two values, at ζL = 2
3
ζL,max for Π0

close to 1. For the two nonlinearities studied, the ζL for maximum power and the ζL for
maximum efficiency get closer and closer as we increased the instability number Π0. Thus,
there is less of a trade-off for maximum power and maximum efficiency in a self-oscillating
harvester.

6.5.2 Design Considerations
We would like here to identify design considerations derived from our analysis.

6.5.3 Limitations
We made a few hypotheses when building the model, in order to simplified the analysis.
The friction expression assumes Poiseuille flow, which is quite precise for a long enough
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liquid plug relative to the diameter and for low value of dynamic Reynolds numbers,
(see [112, 1] for details and more sophisticated expressions). We also assumed the vapor
isothermal, the saturation temperature constant and physical parameters to be constant
(liquid density, viscosity, enthalpy of vaporization, etc.). Finally, we assumed Tg,sat =

(TH + TL)/2 so that the equilibrium is located perfectly at the inflexion point of the
phase-change profile. More complete models are available ([112, 114]).

One major hypothesis in our model is the phase-change representation. Our expression
is valid for phase-change local to the meniscus. It can also represent a “good" phase-
change profile to aim for experimentally because it produces a force perfectly in phase
with velocity close to the equilibrium. More importantly though, our results close to the
instability threshold barely depends on the nonlinearities and so they should be applicable
to various phase-change profile different than the one considered. In particular, we expect
the results discussed in section 6.5.1 to hold independently of the phase-change expressions.

6.6 Conclusion
In this paper, we studied energy harvesting for a Single-Branch Pulsating Heat Pipe
coupled to an electromechanical transducer, a device coined Self-Oscillating Fluidic Heat
Engine (SOFHE). We showed that the harvesting coefficient must be kept between 0 and a
maximum value to maintain the thermofluidic instability driving the self-oscillations. We
studied SOFHE’s dynamics further when the temperature nonlinearity dominates first,
and then when the pressure nonlinearity dominates. Some characteristics are shared by
both cases. The power as a function of the harvesting coefficient follows an asymmetrical
bell shaped curve. Close to the instability threshold, the maximum power output is
obtained by tuning the harvesting coefficient to half its maximum value (the one killing the
oscillations). Given the harvesting coefficient at its optimal value, we obtained curves for
the maximum power as a function of the instability number Π0 and other parameters. For
both nonlinearities, increasing the instability number leads to an increase in oscillations
amplitude first, followed by a rapid increased in the power output. The efficiency also
follows an asymmetrical bell shaped curve but, close to the instability threshold, the
maximum is obtained by tuning the harvesting coefficient to two thirds of its maximum
value.

For the power output, we found that, close to the instability threshold, the most relevant
parameter is the instability number. One straightforward way to increase the instability is
to increase the phase-change rate . Given our results, it seems promising to study ways to
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improve evaporation and condensation. For example, adding microstructures in SOFHE
might be a great way to improve the power output and the efficiency.

Finally, we note that studying the power output for SOFHE allowed for an interesting
comparison between energy harvesting from self-oscillators and energy harvesting from
forced oscillators. We draw some general distinctions in the discussion which allows for a
better understanding of energy harvesting from oscillators.
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CHAPTER 7

ENERGY PERSPECTIVE

7.1 Introduction
In chapter 6, we studied energy harvesting based on our mathematical model. One may
argue that we considered a very specific phase-change profile and wonder if the analysis
remains valid for a different profile. To address this, we adopt here an energy point of
view, to describe SBPHP and SOFHE devices. The content presented here is a preliminary
version of a new manuscript .

We will see that this energy perspective is very general: it can be used to analyze the
dynamics for more or less any phase-change profiles, either theoretical or experimental.
Also, it offers a simple explanation for the evolution of the oscillations amplitude over time:
1) the resonator stores energy, 2) the various forces produce work that injects energy into
the resonator or dissipates energy from it and 3) the energy of the resonator as well as
the oscillations amplitude increase when the net energy injected into the resonator is
positive. The energy perspective enables an intuitive understanding of the dynamics. By
computing the work done over each cycles, all the complicated details of the phase-change
is reduced to a single number per cycle(and similarly for friction). We get the overall
effect of the phase-change and the friction over each cycles, which is what matter when
we are interested in controlling the oscillations amplitude or the power output of SOFHE.
One can then study how to control the phase-change and the friction to change the work
per cycle they produce. Below, we will first present the model, derive the expressions for
the energy quantities and derive some basic general results (section 7.2). We will then
consider a simple theoretical model (section 7.3), revisiting the questions of what leads to
the startup and what leads to a steady-state regime (section 7.3.3). We will also show how
the oscillations amplitude can be increased by increasing the phase-change work rate and
reducing the friction work rate. The effect of the linear and nonlinear components will be
made obvious. We will then investigate the effect of the load on the dynamics and the
power output (sections 7.3.4 and 7.3.5). Finally, we will show how the same strategy used
to increase the oscillations amplitude also leads to more power output (section 7.3.6). In
section 7.4, we will show how our energy perspective can also be applied to experimental
measurements, for the startup as well as the energy harvesting. The energy perspective
provides guidelines to the design of better SOFHE devices.

167
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7.2 General model and Basic Results
We now build a theoretical framework describing the SBPHP dynamics. We include a
load, so that the framework also applies to the SOFHE device, for energy harvesting. Our
goal is to reach a description of the SBPHP dynamics in terms of energy and work, with
as few hypotheses as possible. The approach here will be very general. It applies to our
more precise theoretical model (section 7.3) as well as the experimental data presented in
section 7.4.

7.2.1 Basic Equations
We consider the geometry presented in fig. 7.1. Before the self-oscillations starts, the
vapor bubble has a fixed length Lg,0. Once the self-oscillations starts, the vapor bubble
length is Lg and varies over time. We define xi as the position of the meniscus relative
to the equilibrium (xi = Lg(t) − Lg,0). The vapor has a pressure Pg, a mass mg and a
temperature Tg 1. The liquid plug has a mass mℓ. The tube being open, the pressure on
the external side is Pe.

xi = 0
(equilibrium)

0 x

ṁg

heat source (TH) heat sink (TL)

vapor (Pg,mg, Tg) liquid (m`) air (Pe)

L`

Lg(t)

Lg,0 xi(t)

Figure 7.1 SBPHP model.

First, the momentum balance is applied to the liquid plug, as:

mℓẍi =
(︂
Pg − P̂e

)︂
A+ Ff + FL , (7.1)

with ẍi the acceleration of the liquid plug. PgA is the force applied by the vapor pressure
on the liquid plug. The force P̂eA combines the force PeA, due to the pressure of the air,
and the gravitational force if the tube is tilted, with P̂e = Pe + ρℓgLℓ sin θ, where ρℓ is the
liquid density, g the gravitational acceleration, Lℓ the length of the liquid plug and θ the
angle of the tube relative to the horizontal. The force Ff is the friction force due to the
interaction between the liquid and the walls and the force FL is the load, the force that

1. The temperature of the vapor is equal to saturation at the liquid vapor interface but may differ sig-
nificantly from saturation condition in the heat source (usually overheated, given TH above the saturation
temperature). Thus, we consider Tg as the spatial average of the vapor temperature here.
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the transducer applies to the liquid plug. We expect both Ff and FL to be dissipative
force (we will consider specific expressions later on). The pressure in the vapor, Pg, can
be described by the ideal gas law:

Pg =
mgRgTg

(xi + Lg,0)A
, (7.2)

where (xi + Lg,0)A is the volume of vapor. The eqs. (7.1) and (7.2) (except for the load
FL) to describe the SBPHP dynamics are well-established [86]. In eq. (7.2), both the mass
of vapor mg and the temperature of vapor Tg may vary, and must therefore be described
by additional equations.

The mass of vapor mg varies due to evaporation and condensation, as the liquid plug
oscillates between the heat source and the heat sink. Phase-change can occur on the
meniscus but also on a liquid film left on wall by the liquid plug, during the oscillations.
The latter is usually consider to be dominant, since the thermal resistance across the
(thin) liquid film is much lower. A great deal of research has been carried on modeling
the formation of this liquid film on the plain internal surface of the tube [20, 93, 22,
83, 7, 99, 67, 118, 38]. However, in an effort to enhance the phase-change, engineered
tubes are also studied experimentally, where the surface of the tube is modified to create
wicking structures [129, 43, 42, 119, 90, 62, 112]. It is not possible to express all possible
configurations in a single phase-change expression. We will therefore not fix the phase-
change expression right away to remain as general as possible. For the moment, we simply
consider that the mass of vapor varies according to an overall phase-change expression,
function of the position and possibly other variables:

ṁg = f(xi, . . . ) , (7.3)

with mg the mass of vapor and ṁg the phase-change rate (ṁg positive or negative for
evaporation or condensation, respectively). The temperature of vapor Tg can be described
by applying the energy conservation on the vapor bubble [112]:

Ṫg =
1

cvmg

[︂
ṁg (cpTg,sat − cv Tg)− PgA ẋi + Q̇g

]︂
, (7.4)

where Tg is considered as the spatially averaged temperature of the vapor. Two interesting
cases are worth considering: the isothermal case where the heat transfer between the walls
and the vapor, Q̇g, is such that Ṫg = 0 and the temperature of the vapor is constant and
the adiabatic case, where Q̇g = 0.
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Equations (7.1) to (7.4), plus the expressions for Ff and FL, constitute a set of nonlinear
differential equations, which can be solved for the position xi, the mass of vapor mg and
the temperature of vapor Tg.

7.2.2 Equilibrium and Dimensionless Equations

Experiments show that the SBPHP has one equilibrium (the liquid plug does not move)
that becomes unstable when the heat source temperature is increased. We will denote
quantities at equilibrium by the 0 subscript (e.g. Pg = Pg,0, mg = mg,0 and so on). The
equilibrium in the system of equations eqs. (7.1) and (7.3) can be obtained by solving
for ẋi = ẍi = ṁg = Ṫg = 0 (liquid plug does not move, the mass and the temperature
of vapor are constant). Doing so, we find from the momentum balance (eq. (7.1)) that
Pg = Pg,0 = P̂e. Now looking at the phase-change, we should have one length of the
vapor bubble Lg where the net phase-change is 0, where ṁg = 0. This vapor bubble
length is defined as Lg,0 and corresponds to xi = 0 (given xi = Lg(t) − Lg,0). From
eq. (7.4), one expects that the temperature of the vapor at equilibrium Tg,0 approaches the
temperature of the heat source, given the heat transfer between the walls and the vapor
Q̇g. We now make the variables relative to their equilibrium values and dimensionless,
using 1/ωn, Lg,0, mg,0, Tg,0 as the characteristics time, length, mass, and temperature,
where ωn =

√︁
Pg,0/(ρℓLg,0Lℓ) is the natural frequency. We get:

τ = ωnt with: ωn =
√︂
Pg,0 / (ρℓLg,0Lℓ) , (7.5a)

q1 =
xi
Lg,0

, (7.5b)

q2 =
dq1
dτ

=
1

ωnLg,0

dxi
dt

, (7.5c)

q3 =
mg −mg,0

mg,0

, (7.5d)

q4 =
Tg − Tg,0
Tg,0

, (7.5e)

as the dimensionless time, position, velocity, mass of vapor and spatially averaged tem-
perature of the vapor. Let’s now rewrite the momentum balance eq. (7.1) in terms of
dimensionless quantities eq. (7.5). The left-hand-side of the momentum balance becomes
mℓẍi = (mℓω

2
nLg,0) q̇2. Given the expression for ωn, we have that mℓω

2
nLg,0 = Pg,0A. The

quantity Pg,0A is the characteristic force in the system. Dividing both the left-hand-side
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and the right-hand-side of the momentum balance by Pg,0A, we get:

q̇2 =
(Pg − Pg,0)A

Pg,0A⏞ ⏟⏟ ⏞
˜︃∆Pg

+
Ff

Pg,0A⏞ ⏟⏟ ⏞
˜︂Ff

+
FL

Pg,0A⏞ ⏟⏟ ⏞
˜︂FL

, (7.6)

as a dimensionless momentum balance equation. We used here the fact that P̂e = Pg,0

from the equilibrium conditions described above. The quantities ˜︃∆Pg, ˜︂Ff and ˜︂FL are
dimensionless forces from the pressure difference on the liquid plug, the friction due to the
liquid-wall interaction and the load, respectively.

Substitution of the ideal gas law eq. (7.2) into ˜︃∆Pg, and substitution of the dimensionless
quantities eq. (7.5), leads to the following expression for ˜︃∆Pg:

˜︃∆Pg = − q1
1 + q1⏞ ⏟⏟ ⏞
˜︂FV

+
q3

1 + q1⏞ ⏟⏟ ⏞
˜︃Fm

+
q4

1 + q1⏞ ⏟⏟ ⏞
˜︂FT

+
q3 q4
1 + q1⏞ ⏟⏟ ⏞

˜︃FmT

. (7.7)

The pressure in the vapor can vary due to changes of volume (compression/expansion of
the vapor bubble), changes of mass (dues to phase-change) and changes of temperature. In
eq. (7.7), these effects are neatly expressed as individual dimensionless forces applying to
the liquid plug (substitution in the momentum balance leads to q̇2 = ˜︂FV+˜︂Fm+˜︂FT +˜︃FmT +
˜︂Ff+˜︂FL). The term ˜︂FV expresses the force due to changes of volume (given a dimensionless
displacement q1). It acts as a nonlinear restoring force (as −kq1, where k = 1/(1 + q1))
and is equal to zero for q1 = 0. This term coupled with the dimensionless inertial term (q̇2)
leads to a resonator (spring-mass system). As shown in fig. 7.2, the nonlinearity makes
the restoring force rise to infinity when the vapor bubble is compressed significantly (for
q1 approaching −1), preventing the liquid plug from going through the closed end. The
term ˜︂Fm expresses the primary force due to changes of mass of vapor q3. It is zero in
the absence of phase-change since we then have q3 = 0. Experimentally, ˜︂Fm was found to
be in phase with velocity, thus acting as a positive feedback, which tends to increase the
oscillation’s amplitude [112]. The term ˜︂FT expresses the primary force dues to changes
of temperature of vapor q4. It is zero for an isothermal vapor since we then have q4 = 0.
The term ˜︃FmT is a combined nonlinear force due to variations of mass of vapor and of
temperature of vapor. It is zero if there is no phase-change or if the vapor is isothermal.
The variations of temperature of the vapor are typically small in which case both ˜︂FT and
˜︃FmT are can be neglected. All forces are nonlinear because of the 1/(1 + q1) prefactor.
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Figure 7.2 Effect of the pressure nonlinearity on the restoring force.

In addition to the momentum balance, both the phase-change equation (7.3) and the
vapor energy equation (7.4) can be turned in dimensionless form, leading to differential
equations for q̇3 and q̇4 (we will be more specific in section 7.3).

7.2.3 Energy Perspective
The momentum balance eq. (7.6) can be turned into an energy equation. We will find
this energy perspective insightful. We start by providing definitions. We then obtain the
energy balance equation in rate form (Momentum Balance as an Energy Balance).
Finally, we use the energy balance to show that, for an isothermal vapor, the startup is
explained by the interplay between the energy injected into the system by the phase-change
and the energy dissipated by the friction (Energy Perspective on the Startup).

Definitions

The kinetic energy of the liquid plug is K = 1
2
mℓẋ

2. We can express it in terms of
dimensionless quantities, given mℓ = ρℓLℓA and ẋi = ωnLg,0 q2 (eq. (7.5c)), leading to
K = 1

2
(Lg,0Pg,0A) q

2
2. The quantity Lg,0Pg,0A is the characteristic energy (or characteristic

work). We may define a dimensionless kinetic energy as:

˜︁K =
K

Lg,0Pg,0A
= 1

2
q22 . (7.8)

The dimensionless force ˜︂FV , which acts as a restoring force, is conservative. It has a
corresponding dimensionless potential energy ˜︁Ur defined as ˜︁Ur = −∫ ˜︂FV dq1. Given ˜︂FV =

−q1/(1 + q1), we get:

˜︁Ur =
Ur

Lg,0Pg,0A
= q1 − ln [1 + q1] . (7.9)
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We note that a Taylor expansion gives ˜︁Ur =
1
2
q21 +O(q31), so the potential energy is close

to the one of a linear spring for q1 small enough. In the momentum balance equation, the
coupling of the dimensionless inertial term q̇2 and restoring force ˜︂FV led to a resonator, a
spring-mass system. The dimensionless energy of the resonator is given by ˜︁Er = ˜︁Ur + ˜︁K:

˜︁Er =
Er

Lg,0Pg,0A
= q1 − ln [1 + q1]⏞ ⏟⏟ ⏞

˜︁Ur

+ 1
2
q22⏞⏟⏟⏞
˜︁K

. (7.10)

The energy of the resonator is related to the oscillations amplitude. We will find it useful
to consider the energy averaged over one oscillation cycle. the averaged energy of the
resonator is:

Er(τi) =
1

T̃

∫︂ τi+T̃ /2

τi−T̃ /2

˜︁Er(τ)dτ , (7.11)

with T̃ the dimensionless oscillation period. Averaged kinetic energy K and potential
energy Ur can be defined similarly. Later on, we will consider derivatives over time of
energy quantities. The derivatives over time of ˜︁K, ˜︁Ur and ˜︁Er:

˜̇︁K = q̇2 q2 , (7.12)

˜̇︁Ur =
∂ ˜︁Ur

∂q1

d q1
d τ

= −˜︂FV q2 , (7.13)

˜̇︁Er = ˜̇︁K + ˜̇︁Ur . (7.14)

We may also consider the derivative of the averaged resonator energy as (note that aver-
aging and differentiation are interchangeable, Leibniz integral rule):

Ėr(τi) =
1

T̃

∫︂ τi+T̃ /2

τi−T̃ /2

˜̇︁Er(τ) dτ . (7.15)

The averaged rates of change for the kinetic energy and for potential energy, K̇ and U̇r,
can be defined similarly. We will also consider work quantities done by the forces. The
dimensionless 2 infinitesimal work done by a force ˜︂Fx over a displacement of the liquid
plug dq1 is d˜︂Wx = ˜︂Fx dq1. With q2 the velocity, we can also write d˜︂Wx = ˜︂Fx dq1 = ˜︂Fx q2 dτ .
Thus, the dimensionless work rate is:

˜̇︂Wx(τi) = ˜︂Fx(τi) q2(τi) . (7.16)
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This is in fact instantaneous dimensionless power. We will also use averaged quantities
in the following. Averaging the work rate gives:

Ẇ x(τi) =
1

T̃

∫︂ τi+T̃ /2

τi−T̃ /2

˜̇︂Wx dτ =
1

T̃

∫︂ τi+T̃ /2

τi−T̃ /2

(︂
˜︂Fx q2

)︂
dτ , (7.17)

with the dimensional form given by (ωn Lg,0Pg,0A) Ẇ x.

Momentum Balance as an Energy Balance

Let’s now consider the momentum balance, q̇2 = ˜︂FV + ˜︂Fm+˜︂FT + ˜︃FmT +˜︂Ff +˜︂FL. We may
turn it into an energy balance equation in rate form by multiplying by the velocity q2:

q̇2q2 =
(︂
˜︂FV + ˜︂Fm + ˜︂FT + ˜︃FmT +˜︂Ff + ˜︂FL

)︂
q2 .

The left-hand side is in fact the kinetic energy rate ˜̇︁K, the term ˜︂FV q2 is − ˜̇︁Ur and the other
terms are dimensionless work rate. Rearranging, we thus get:

˜̇︁Er = ˜̇︁K + ˜̇︁Ur = ˜̇︂Wm + ˜̇︂W T + ˜̇︂WmT + ˜̇︂W f + ˜̇︂WL .

Instead of studying the fast fluctuations of the energy within one cycle, we wish to study
the slow variations from one cycle to the other, so we need an equation for the averaged
rate of change of the energy, Ėr. We average both sides (by multiplying by (1/T̃ )dτ and
integrating over a period) and obtain and energy balance in rate form, averaged over a
cycle:

Ėr(τi) = Ẇm(τi) + Ẇ T (τi) + ẆmT (τi) + Ẇ f (τi) + ẆL(τi) . (7.18)

This equation tells us that the energy of the resonator increases from one cycle to the
other when the total averaged work rate done by the forces is positive. In the isothermal
case, we simply have:

Ėr(τi) = Ẇm(τi) + Ẇ f (τi) + ẆL(τi) . (7.19)

2. We may define dimensional and dimensionless works produced by a given force as follow. The
dimensional work W done by a dimensional force F between time t0 and ti is W = ∫ tit0 F ẋ dt. Substitution
of dimensionless velocity, time and force using eq. (7.5) and the characteristic force Pg,0A, we get W =

Lg,0Pg,0A ∫ τiτ0 ˜︁F q2 dτ . The quantity Lg,0Pg,0A is the characteristic work (or characteristic energy). We
define a dimensionless work as ˜︂W =W/(Lg,0Pg,0A) = ∫ τiτ0 ˜︁F q2 dτ .
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Energy Perspective on the Startup

Let’s consider the SBPHP dynamics during the startup, with no load and in the isothermal
case. The energy balance eq. (7.18) simplifies to:

Ėr(τi) = Ẇm(τi) + Ẇ f (τi) . (7.20)

For the startup to occur, we should have Ėr > 0 at first, so that the energy grows over
time. The steady-state regime is reached when Ėr = 0. Because the friction dissipates
energy, Ẇ f , is negative. Thus, for the energy as well as the oscillation amplitude to grow,
the work rate done by phase-change Ẇm must be greater than the work done by friction,
we must have Ẇm > −Ẇ f . Let’s consider the equilibrium position (at xi = 0, described
in section 7.2.1). If, after a small perturbation Ẇm < −Ẇ f , then the equilibrium is stable
and the oscillations will die out. However, if Ẇm > −Ẇ f , the oscillations will grow, until
Ẇm = −Ẇ f , where the system will settle in a steady-state. We will show that both
numerically and experimentally in the following. Our description here was based on very
few hypotheses and our conclusions are therefore general.

Energy Harvesting, Power Output

Let’s now consider the energy harvested by the load. The dimensionless averaged work
rate (or power) done over a cycle by the load is ẆL given by eq. (7.17) with the force FL,
leading to:

ẆL =
1

T̃

∫︂

cycle

(︂
˜︂FL q2

)︂
dτ . (7.21)

For a dissipative load, ẆL < 0, meaning the energy quantity −ẆL is extracted by the
transducer from the resonator. We define:

Ẇ h ≡ −ẆL = − 1

T̃

∫︂

cycle

(︂
˜︂FL q2

)︂
dτ (7.22)

as the power output extracted by the transducer. When Ẇ h > 0, the transducer is
extracting energy for the resonator and the SOFHE device is harvesting energy from the
heat source. The dimensional power output harvested is simply (ωn Lg,0Pg,0A) Ẇ h. The
power output Ẇ h can be computed given the load eq. (7.22) if we know ζL. It can also be
computed given the energy balance. Assuming the system is in steady-state (on the limit
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cycle), we have Ėr = 0. Solving eq. (7.18) for ẆL and considering Ẇ h = −ẆL leads to:

Ẇ h = Ẇm + Ẇ T + ẆmT + Ẇ f (7.23a)

as the dimensionless average power output. In the isothermal case, this equation simplifies
to:

Ẇ h = Ẇm + Ẇ f , (7.23b)

with Ẇm > 0 and Ẇ f < 0. We can use this expression to deduce the power output from
Ẇm and Ẇ f .

7.3 Simple Theoretical Model
The equations presented in section 7.2 are general, but not sufficient to perform numerical
simulations. One still needs expressions for the friction force Ff , for the load FL, as well
as the differential equation for the phase-change rate ṁg. Here, we will choose specific
expressions for those, in order to obtain an simplified but complete model that we can
study. We use the model to build our energy analysis approach, which we will then apply
to experimental data in section 7.4. We will find from the experimental measurements that
the behavior of the system is qualitatively similar than our simplified theoretical model.

7.3.1 Model
For the friction force Ff , we assume a Poiseuille flow. With cf = 8πµLℓ, we can write:
Ff = −cf ẋi. We defined dimensionless friction as ˜︂Ff = Ff/(mℓω

2
nLg,0) = Ff/(Pg,0A) in

eq. (7.6) so:

˜︂Ff = −2 ζf q2 , with: ζf =
cf

2mℓωn

=
8πµLℓ

2mℓωn

, (7.24)

with q2 the dimensionless velocity and ζf the dimensionless friction coefficient. For the
load FL, we consider a basic type of transducer called velocity-damped. It produces a force
FL proportional and opposite to velocity, meaning it is a purely dissipative force (just like
Ff ). So, the impact of the velocity-damped transducer on the dynamics can be simply
understood has increased friction. With cL a proportionality constant (to be defined by
the transducer’s characteristics), we have: FL = −cL ẋi. The dimensionless load force is
given by:

˜︂FL = −2 ζL q2 , with: ζL =
cL

2mℓωn

. (7.25)



7.3. SIMPLE THEORETICAL MODEL 177

For the temperature of vapor, we will consider the isothermal case: the heat transfer Q̇
maintains Ṫg = 0, leading to q̇4 = 0. We now need to find the dimensionless phase-change
rate q̇3. We first consider a linear profile given by q̇3 = −2σq1. This means that there is
evaporation when the meniscus is in the heat source and condensation when the meniscus
is in the condenser. Moreover, the phase-change rate is higher (linearly) as the meniscus
goes deeper in the heat source or heat sink. Tessier-Poirier et al. [112] found that this
profile matched well the experimental phase-change rate in the early stage of the startup
(when the dynamics is linear). This profile is also the one that produces a force perfectly
in phase with velocity (linearly), so it is the simpler one to consider to produce a feedback
force. We will also consider a limiting mechanism to limit the phase-change rate (neither
evaporation nor condensation can go to infinity), making it nonlinear. The final profile
is shown in fig. 7.3. Tuning σ and THL allows to obtain a profile between a linear profile
(large THL) or a step profile with constant evaporation and constant condensation (large
σ and finite THL). We finally get the following system of differential equations:

q̇1 = q2 , (7.26a)

q̇2 = −
(︃

1

1 + q1

)︃
q1 +

(︃
1

1 + q1

)︃
q3 − 2 ζ q2 , (7.26b)

q̇3 = THL arctan

[︃
−
(︃

2σ

THL

)︃
q1

]︃
, (7.26c)

with ζ = ζf + ζL. Equation (7.26) has one equilibrium at q1 = q2 = q3 = 0.
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Figure 7.3 Phase-change profile limited by a nonlinearity.

7.3.2 Basic Results
The dynamics of eq. (7.26) has been studied before for the SBPHP, so without harvesting,
with ζh = 0 and ζ = ζf [112, 114]. Those results can still be used here, by simply adding
ζh to ζf (the model is the same, we simply change a parameter).
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Instability Threshold and Maximum Load

Tessier-Poirier et al. [112] performed a linear stability analysis of eq. (7.26). They showed
that, after a small perturbation of the equilibrium, the position q1 oscillates with an
amplitude increasing over time if the phase-change coefficient (σ) which produced the
positive feedback is greater than the dissipation (ζ). This occurs when the instability
number Π is greater than one, with:

Π =
σ

ζ
=

Π0

1 + (ζL/ζf )
, Π0 =

σ

ζf
=
ρℓRg Tg,0

⃓⃓
T ′
w,0

⃓⃓

8π µHvRth P̂e

. (7.27)

When there is no harvesting, ζL = 0, we simply have Π = Π0, Π0 being the instability num-
ber without harvesting. Let’s assume now that SOFHE is first started without harvesting
from equilibrium, by increasing Π0 above one 3. The oscillations first increase in ampli-
tude and eventually settle down in a steady-state (limit cycle) due to the nonlinearities
[113, 114]. We then progressively increase ζL to harvest some energy. As a consequence, Π
will progressively decrease. Ultimately, ζL will reach a maximum value ζL,max where Π will
reach 1, the total damping being large enough to kill the self-oscillations. At this point,
for ζL ⩾ ζL,max, there is no more limit cycle, the equilibrium is stable, and we cannot
extract energy. Solving eq. (7.27) for ζL = ζL,max with Π = 1, we get:

ζL,max = ζf (Π0 − 1) . (7.28)

In order to extract energy, we must keep 0 < ζL < ζL,max, so it makes sense to consider
the ratio:

ZL ≡ ζL
ζL,max

=
ζL

ζf (Π0 − 1)
. (7.29)

The harvesting ratio ZL must be kept between 0 and 1 to harvest energy while maintaining
the oscillations. We can redefine the parameters of the system in terms of ZL instead of

3. Typically, by increasing the temperature of the heat source, which increases the thermal gradient
at the equilibrium

⃓⃓
T ′
w,0

⃓⃓
, which in turns increases the phase-change coefficient σ, finally leading to an

increase in Π0.
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ζL, leading to:

ζL = ζf (Π0 − 1)ZL , (7.30a)

ζ = ζf + ζL = ζf (1 + (Π0 − 1)ZL) , (7.30b)

Π =
σ

ζ
=

Π0

1 + (Π0 − 1)ZL
. (7.30c)

We clearly see from eq. (7.30c) that we have Π = Π0 for ZL = 0 (unstable equilibrium if
Π0 > 1) and Π = 1 (stable equilibrium and no limit cycle) for ZL = 1.

Energy Perspective in the Linear Approximation

We would like to look at the work and energy based on the solution for q1, q2 and q3 in the
linear approximation. Here, we further assume that δ = ζ(Π− 1) is small. Doing so, and
based on the definitions given in section 7.2.3, we find that the energy of the resonator is:

˜︁Er = ˜︁K + ˜︁Ur ≈ 1

2
r2(τi) , (7.31a)

where r is the oscillations amplitude in q1, averaged over a cycle (because the amplitude
slowly grows during the startup). Thus, the energy and the amplitude are related. The
average work rates are:

Ẇm(τi) ≈ +σ r2(τi) = +2σ ˜︁Er(τi) , (7.31b)

Ẇ f (τi) ≈ −ζf r2(τi) = −2ζf ˜︁Er(τi) , (7.31c)

ẆL(τi) ≈ −ζL r2(τi) = −2ζL ˜︁Er(τi) . (7.31d)

On the right-hand side, we used the fact that r2 = 2 ˜︁Er from eq. (7.31a). With these
expressions, we see that Ẇm, Ẇ f and ẆL produce straight lines when displayed as function
of ˜︁Er. We will use that in the following, to compare to the work done in the nonlinear
case. We also note that eq. (7.18) becomes:

Ėr(τi) = Ẇm(τi) + Ẇ f (τi) + ẆL(τi) = 2 (σ − ζ) ˜︁Er , (7.32)

which is to say that the energy grows when σ > ζ, when Π = σ/ζ > 1. In fact, we have
that Ẇm/(Ẇ f + ẆL) = σ/ζ = Π, the instability number can be thought of as the ratio
of the work done by phase change (energy injected into the resonator) to the work done
by viscous friction and by the load (energy dissipated).
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Power Output for the Simple Theoretical Model

Finally, let’s evaluate the average work rate of the load ẆL and the harvesting power
output Ẇ h for our simplified model. Here, we do not consider the linear approximation
anymore. We substitute eq. (7.25) into eqs. (7.21) and (7.22) leading to:

ẆL =
1

T̃

∫︂

cycle

(︂
˜︂FL q2

)︂
dτ =

1

T̃

∫︂

cycle

(︁
−2 ζL q2

2
)︁
dτ , (7.33)

Ẇ h = −ẆL =
1

T̃

∫︂

cycle

(︁
+2 ζL q2

2
)︁
dτ . (7.34)

The expression of Ẇ h above means that, in order to produce power, we need both a non-
zero load (ζL > 0) and non-zero oscillations amplitude such that q22 > 0 on some part of
the cycle. As ζL is increased, the amplitude in q2 decreases, so ζL must not neither too
small nor to large, there is an optimum value for ζL as we will show later on. Alternatively,
Ẇ h can be deduced from eq. (7.23b).

7.3.3 System Without Load (Startup of the Oscillations)
We start by analyzing the system without the load, from an energy perspective. We will
see what leads to the system growing in energy and then reaching a limit cycle, during
the startup. We will also see how we can control the energy level ˜︁Er on the limit cycle
using various strategies. This will be insightful later on when looking to increase the
power output of the harvester. We first perform a numerical simulation of the startup.
Starting from a small perturbation of the equilibrium, the oscillations grow in amplitude
and eventually settle in a steady-state (fig. 7.4). Similarly, the energy of the resonator
grows and reaches a constant value on the steady-state. During the startup, the phase-
change does positive work while the friction does negative work. The net work is positive,
grows and then decreases towards 0. This is why the resonator’s energy grows and then
saturates.

It is useful to plot works as function of ˜︁Er, as in fig. 7.5. In the linear case, works follow
straight lines. In the unstable case (σ > ζf ), the work done by phase-change is greater
than the work done by friction, so that the energy keeps growing forever. In the nonlinear
case, the works follows the straight lines at low ˜︁Er, but then deviates due to nonlinearities.
At some point, Ẇm and Ẇ f meet: the work done by phase-change is equal to the work
done by friction so that the net injected energy (black line) reaches 0 and the energy of
the resonator reaches a constant value. The system has reached a limit cycle (indicated
by the red point).
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Ẇ

m
+

Ẇ
f

Figure 7.4 Dimensionless position, averaged energy and averaged work rate
over time, during the startup; parameters are: σ = 0.015, ζf = 0.01 and THL =
0.002.

Now, let’s assume we wish to increase oscillations amplitude in the steady-state, meaning
increasing the energy ˜︁Er on the limit cycle. To do so, we want Ẇm and Ẇ f to meet at
a larger ˜︁Er. A few strategies come to mind. One could increase the slope of the phase-
change or decrease the slope of the friction (those would be linear strategies). One could
also try to control nonlinearities such that the phase-change drops from the linear line at
a larger ˜︁Er (nonlinear strategies). Let’s see how the graph is modified when using these
strategies. In fig. 7.6, we increase the phase-change coefficient σ, leading to an increase
in the slope of the phase-change Ẇm. The nonlinear work done by phase-change follows
the greater slope and remains larger than the work for the smaller σ. The work done by
friction Ẇ f remains on the same line. The net work is greater. We have that Ẇm and
Ẇ f meet at a greater ˜︁Er, corresponding to larger oscillations amplitude. In fig. 7.7, we
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Figure 7.5 Work rate as function of the resonator’s energy; same parameters
as fig. 7.4.

increase the phase-change limit THL (nonlinear strategy). We see that both the slopes of
Ẇm and Ẇ f remain the same. However, as we increase THL the phase-change work Ẇm

remains linear a bit longer, and the drop from the linear line is delayed. This results in
a greater ˜︁Er. In fig. 7.8, we decrease the friction coefficient ζf . This leads to a decrease
in the slope of Ẇ f while the slope of Ẇm remains the same. The net work is greater and
the system reaches a greater ˜︁Er.
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Figure 7.6 Effect of increasing the phase-change; parameters are: σ =
0.015, 0.0175, 0.020, ζf = 0.01 and THL = 0.002, so Π0 = 1.5, 1.75, 2.
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Figure 7.7 Effect of decreasing the limitation of the phase-change; parameters
are: σ = 0.015, ζf = 0.01 and THL = 0.002, 0.0025, 0.0030, with Π0 = 1.5.
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+Ẇm

−Ẇ f
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Figure 7.8 Effect of decreasing the friction; parameters are: σ = 0.015, ζf =
0.0075, 0.0086, 0.01 and THL = 0.002, so Π0 = 1.5, 1.75, 2.
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7.3.4 Effect of the Load on the Dynamics
We now add a load to the system and see how this impacts the work rate as function of
the energy. We have Ėr = Ẇm + Ẇ f + ẆL (eq. (7.19)). Because both the friction term
Ẇ f and the load term ẆL are negative (they dissipate energy), we combined them in a
single dissipative term: Ẇ d ≡ Ẇ f + ẆL. In fig. 7.9, we show the startup for the system
without load (ζL = 0) and the system with a specific value of the load (ζL = 0.0013).
The system reaches a limit cycle when the curve Ẇm meets −Ẇ d, at which point Ėr = 0.
When we increase ζL from 0 to 0.0013, the slope of −Ẇ d increases such that the limit
cycle is reached at a lower energy ˜︁Er corresponding to a lower oscillations amplitude.
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Figure 7.9 Effect of adding a load (increased dissipation); parameters are σ =
0.015, ζf = 0.01 and THL = 0.002, so Π0 = 1.5, ζL = 0 and ζL = 0.0013.

Now, we would like to show how the limit cycle progressively varies as we increase the
load. We start from the steady-state without load (ζL = 0) and then, we progressively
increase the load until we reach ζL = ζL,max (see fig. 7.10). On each red dots of the curve,
the system is on a limit cycle, so Ėr = 0 and the work done by phase-change is equal to
the total dissipative work (Ẇm = −Ẇ d = −Ẇ f − ẆL). We also plot the corresponding
work done by basic friction (blue dots). Here, we see that the limit cycle decreases in
energy ˜︁Er as we increase the load. If we increase ζL too much, the energy ˜︁Er reaches 0,
we killed the self-oscillations (section 7.3.2).

7.3.5 Effect of the Load on the Power and Efficiency
In fig. 7.10, the harvesting power Ẇ h is displayed (black dots). It corresponds to the
difference 4between the energy injected into the system per cycle (red dots) and the energy
per cycle lost due to the viscous friction (blue dots). We see that Ẇ h is 0 at no load, 0 at
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Figure 7.10 Steady-state as the load is progressively increased; parameters are
σ = 0.015, ζf = 0.01 and THL = 0.002, so Π0 = 1.5, ζL varied between 0 and
ζL,max.

the maximum load and that it reaches a maximum value in between. There is an optimal
value for the load ζL in order to extract maximum power. This behavior can be explained
as follows. The power Ẇ h is given by eq. (7.34) and is proportional to the integral of ζLq22

over a cycle. In the right corner of fig. 7.10, there is no load, ζL = 0, so there is no power.
In the left corner, ζL = ζL,max, so there is no more self-oscillations and q2 = 0, so there is
no power. In between, we get both ζL > 0 and q2

2 > 0, so power is generated. There is
a point where the balance is just right, such that there is significant load and amplitude
and the power is maximized.

Let’s focus exclusively on the harvesting power Ẇ h and the efficiency η for a moment.
In fig. 7.11, both the harvesting power Ẇ h and the efficiency η are displayed as function
of the harvesting coefficient ratio ZL = ζL/ζL,max, for various Π0 values. There is no
power for no load on the left corner (ZL = 0) and for maximum load at the right corner
(ZL = 1), with maximum power in between. We see that the power increases as we
increase the instability number Π0. Close to the instability threshold (Π0 close to 1), the

4. we can write Ẇh = Ẇm + Ẇ f = Ẇm − (−Ẇ f ), from eq. (7.23b).
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maximum power is reached for ZL approaching 0.5, meaning that ζL must be half the
ζL,max to get maximum power. However, for Π0 close to 1, ζL,max actually approaches 0
because the system cannot handle more dissipation, increasing ζL just a little would kill
the self-oscillations (eq. (7.28)). So, for Π0 close to 1, the optimal ζL approaches 0. As
Π0 is increased, there is more room for larger ζL. We also see that the optimal ZL,opt

slightly shifts from 0.5 to the left. For the efficiency η, we also see that it is 0 for either
no load (ZL = 0) or maximum load (ZL = 1). The efficiency increases as we increase Π0.
Close to the instability threshold (Π0 close to 1), The maximum efficiency is reached at
ZL = 2/3. This point shifts as we increase Π0. Close to the instability threshold, the ZL

values for maximum power and maximum efficiency do not coincide. They get closer as
Π0 is increased.
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Figure 7.11 Power and efficiency as function of ZL; parameters are ζf = 0.01,
THL = 0.002 and σ is adjusted to produce the given Π0.
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7.3.6 Increasing the Power Output
In section 7.3.5, we showed that the power could be increased by increasing Π0. Here,
we will be more thorough, and look for strategies to increase the power output. We will
consider the same strategies we considered when looking at the startup with no load,
where the goal was to increase the limit cycle energy level (section 7.3.3).

In fig. 7.12, we increase the phase-change coefficient σ. We expect that greater energy
injected into the system would allow for more power output, and this is what we find
indeed. Increasing σ increases the slope of Ẇm. The limit cycle with no load is located
at a higher ˜︁Er value. As the load is increased, the curve Ẇm = −Ẇ d is higher, while the
friction curve −Ẇ f remains unchanged. The harvesting work Ẇ h being obtained by the
red dots minus the blue dots, the curves with larger σ leads to greater harvesting work.
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Figure 7.12 Effect of increasing the phase-change on the limit cycles for various
loads; parameters are: σ = 0.015, 0.0175, 0.020, ζf = 0.01 and THL = 0.002, so
Π0 = 1.5, 1.75, 2.

In fig. 7.13, we increase the phase-change limit THL. Again, we expect that this will lead
to more energy injected into the system and larger power outputs, and we find just that.
Increasing THL leads to a limit cycle with no load located at a higher ˜︁Er value. The slopes
of both curves remain unchanged (because we used a nonlinear strategy). Increasing THL

however keeps Ẇm = −Ẇ d closer to the linear line, such that the difference between the
red dots and the blue dots is larger, giving larger power output Ẇ h.

In fig. 7.14, we decrease the friction coefficient ζf . We would expect that this allows for a
greater load and greater power output, and this is confirmed. Decreasing ζf decreases the
slope of −Ẇ f , such that the difference between the red dots and the blue dots is larger,
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Figure 7.13 Effect of decreasing the limitation of the phase-change on the limit
cycles for various loads; parameters are: σ = 0.015, ζf = 0.01 and THL =
0.002, 0.0025, 0.0030, with Π0 = 1.5.

leading to greater Ẇ h. To conclude, we found here that increasing the work done by
phase-change (either by σ or THL) or decreasing the work done by friction both allowed
to increase the harvesting power.

Let’s now explore the power output over a larger range of the parameters. We first
study the phase-change parameters, σ and THL. We vary both parameters and, for each
(σ, THL), we perform a numerical continuation along ζL and find the maximum power
output Ẇ h,max. In fig. 7.15, Ẇ h,max is displayed along Π0 (increased by increasing σ) and
THL. Looking at the black line on the left (for low THL), we see that increasing Π0 allows
to increase the power output. The power eventually saturates there. For some positive Π0,
increasing the phase-change limit also allows to increase the power output. The power also
saturates for large enough THL. Overall, we find here that increasing the phase-change by
increasing either σ or THL leads to an increase in the power output. We now look at the
effect of friction coefficient ζf . We again find the maximum power output by numerical
continuation (fig. 7.16). We see that the power increases as we increase Π0 (by decreasing
ζf ). The power flattens out at large Π0. We find here that decreasing the friction increases
the power output. One cannot however increase the power to infinity simply by decreasing
the friction. If the energy injected into the system by the phase-change is not large enough
(controlled by σ or THL), the power output will remain small.
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Figure 7.14 Effect of decreasing the friction on the limit cycles for various
loads; parameters are: σ = 0.015, ζf = 0.0075, 0.0086, 0.01 and THL = 0.002,
so Π0 = 1.5, 1.75, 2.

Figure 7.15 Maximum power Ẇ h,max as a function of Π0 (by increasing σ) and
THL, with ζf = 0.01.
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Figure 7.16 Maximum power Ẇ h,max as a function of Π0 (by decreasing ζf ),
with σ = 0.015 and THL = 0.002.
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7.4 Experimental
In this section, we use experimental data from other publications [112, 58] to show that
experimental devices behave similarly than our simplified model. The experimental setup
is shown in fig. 7.17. There is a single tube in which sits a single vapor bubble and a
single liquid plug with the left-hand-side heated by the heat source (heated glycerin with
circulation) and the other side cooled by the heat sink (circulating cold water). A pressure
sensor measures the pressure in the vapor (the small liquid plug between the sensor and
the vapor is incompressible) and a camera records the position of the meniscus on the
right (both meniscus moves together, the liquid plug being incompressible). Both the
pressure and the position are synchronized, which allows to measure indirectly the friction
(momentum balance) and the mass of vapor (ideal gas law, assuming isothermal vapor).
The behavior of the experimental device differs from our model in at least two ways: 1) the
friction is in an oscillating regime (see [112] for details) and the phase-change, promoted
by a thin liquid film along the capillary, is more complicated than the one we modeled.
We will see however that our model allows to understand the behavior quite well.

Tessier-Poirier et al. [112] used the experimental setup shown in fig. 7.17 without the
plastic junction to study the oscillations startup whereas Karami et al. [58] used the setup
to study the potential of the device as a SOFHE. In a SOFHE, the self-oscillations convert
thermal energy into mechanical energy which is then converted into electrical energy by an
electromechanical transducer, to power a wireless sensor. Looking at the self-oscillations,
the transducer is seen as a load. Karami et al. [58] added to the setup the plastic tube
junction which could be pinched by a micrometer, as a proxy for the transducer’s load
effect. Pinching the tube produces additional friction and extracts mechanical energy from
the self-oscillations, acting as a load. Doing so, Karami et al. [58] were able to study the
impact of the load on the self-oscillations and to evaluate the mechanical work the device
could produce. It is useful to study the mechanical work first, so that the performance of
the self-oscillations and the efficiency of the electromechanical transducer can be studied
independently.

7.4.1 System Without Load (Startup of the Oscillations)
Here, we look at the oscillations startup from an energy point of view, based on the
experimental data from [112]. The position q1 and energy variables are shown in fig. 7.18.
The behavior is similar to the one described in section 7.3.3. As the oscillations amplitude
grows, the energy level Er grows as well. Here, the vapor is isothermal and there is no load,
so the equation (7.19), Ėr(τi) = Ẇm(τi) + Ẇ f (τi), applies. The phase-change produces
a positive average work rate Ẇm, while the friction produces a negative average work
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Figure 7.17 Experimental setup used in [112, 58]; figure adapted from [112].

rate Ẇ f . The net work rate Ẇm + Ẇ f is positive and explains the growth in energy Er

during the startup, as well as the subsequent saturation, as Ẇm + Ẇ f reaches 0 and the
system settles on the limit cycle. In fig. 7.19, we display the work rate as a function of
Er. The phase-change Ẇm is greater then the friction −Ẇ f initially, leading to a growth
in Er, but the two curves eventually meet at a point corresponding to the limit cycle.
We see that Ẇm follows a straight line from the linear approximation initially, but then
deviate from it due to the nonlinearity. The nonlinearity reduces the phase-change work
Ẇm. Interestingly, we observe that the friction −Ẇ f also deviates due to the nonlinearity.
The nonlinearity reduces −Ẇ f , which is beneficial (the limit cycle would be located at
Er ≈ 0.6 otherwise). The net effect of the nonlinearity is however detrimental, as Ẇm

eventually meet Ẇ f .

7.4.2 System With Load

Here, we look at the system with a load, based on the experimental data from [58]. In the
experiment, there is no direct measure of the load coefficient ζL. Based on our theoretical
approach, we propose a measure of ζL based on energetic quantities. For a velocity-damped
load, we have (from eq. (7.33)):

ẆL =
1

T̃

∫︂

cycle

(︂
˜︂FL q2

)︂
dτ =

1

T̃

∫︂

cycle

(︁
−2 ζL q2

2
)︁
dτ .

Given the kinetic energy ˜︁K = 1
2
q22 (eq. (7.8)), we can write q22 = 2 ˜︁K, leading to:

ẆL(τi) = −2ζL
1

T̃

∫︂ τi+T̃ /2

τi−T̃ /2

(︂
2 ˜︁K(τ)

)︂
dτ
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Ẇ
f

Figure 7.18 Position, averaged energy and averaged work rate over time; the
main parameters are TH = 104 ◦C,TL = 20 ◦C, D = 2.2mm, Pg,0 = 101.3 kPa,
Lg,0 = 8 cm, Lℓ = 10 cm, ωn = 112 rad/s (data from [112]).

and considering K as the averaged kinetic energy,

ẆL(τi) = −4ζLK with: K =
1

T̃

∫︂ τi+T̃ /2

τi−T̃ /2

˜︁K(τ) dτ .

We can use this expression as a definition for ζL, leading to:

ζL ≡ − ẆL

4K
. (7.35)
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limit
cycle

eq
ui

lib
ri

um

Amplitude grows

Energy of the resonator Er

W
or

k
ra

te

Figure 7.19 Work rate as a function of Er during the startup (data from [112].

In the experiment, we can calculate ẆL and K, so we can use eq. (7.35) to calculate ζL.
This measure was used in [58].

In fig. 7.20, we show the work rate Ẇm = −Ẇ d, the friction Ẇ f , the power output Ẇ h

and the load coefficient ζL. In this experiment, we start from the no load state at the
highest ˜︁Er value. The tube is then progressively pinched and we see that ζL increases. We
see that the system decreases in energy ˜︁Er as we increase the load. The phase-change work
Ẇm is greater than the friction Ẇ f which allows for positive power output Ẇ h produced
by the load. We see that the power reaches a maximum at some value of ζL.

Let’s now look at the power output Ẇ h and the efficiency in terms of ZL (see fig. 7.21).
There is some uncertainty here, because it is not so easy to estimate ζL,max (we use the
slope of Ẇm and Ẇ f to estimate σ and ζL and then estimate ζL,max). We see that the
power is 0 at no load, reaches a maximum and then decreases. The optimal value here
is ZL,opt ≈ 0.25. The efficiency follows the same trend. Those asymmetrical bell shape
curves, similar to our theoretical curves, are explained by the fact that we harvest energy
from a self-oscillating system rather that a forced oscillator. Most probably, the maximum
power and the maximum efficiency do not occur at ZL = 0.5 and ZL = 2/3 respectively,
because the system is too far away from Π0 = 1. We estimate that Π0 ≈ 3 here. As seen
in the theoretical model, the ZL for maximum power or maximum efficiency can shift as
Π0 is increased, due to the nonlinearity.
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Figure 7.20 Steady-state as the load is progressively increased by pinching
the tube; the main parameters are TH = 110 ◦C, TL = 20 ◦C, D = 2.2mm,
Pg,0 = 101.3 kPa, Lg,0 = 8.5 cm, Lℓ = 16 cm, ωn = 86 rad/s (data from [58]).

7.5 Discussion - How To Increase the Power Output
The obvious question now is how can we increase the power output Ẇ h in the device?
The power output can be obtained from eq. (7.23b): Ẇ h = Wm − (−Ẇ f ), with Ẇ f < 0.
One must optimize the load ζL, such that the difference between Wm and −Ẇ f is the
largest possible. One must also decrease the losses from the viscous friction, Ẇ f , and
increase the energy injected by the phase-change, Ẇm (at the value ZL,opt). This latter
point deserves more explanations. For a system without load on the limit cycle (with
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Figure 7.21 Power and efficiency as function of ZL, for the same experiment as
fig. 7.20.

Ėr = Ẇm + Ẇ f = 0), if we increase Ẇm or decrease Ẇ f by tuning some parameters, we
get that Ėr > 0 again, the system grows in energy Er until it reaches a new limit cycle
where we again have Ėr = Ẇm+Ẇ f = 0, but with a bigger energy Er level (corresponding
to larger oscillations amplitude). Increasing Ẇm or decreasing Ẇ f leads to a larger Er,
corresponding to larger amplitude. Now, for a system with load, with a positive ζL, if we
increase Ẇm or decrease Ẇ f and keep ζL constant, the system would also move to a larger
Er. On the other hand, we can also adjust ζL such that Er is constant, in which case the
extra energy will be consumed by the harvester, we will get a larger Ẇ h. Increasing Ẇm

or decreasing Ẇ f , while re-optimizing ζL, allows for greater power output. Looking back
at the system without load, increasing the energy level Er on the limit cycle without the
load should allow for larger power output once the load is applied.

For the friction, we have a pretty good description of the force Ff either based on the
Poiseuille flow as described in the model above, or by considering oscillating friction for
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high Reω ([112]). Restricting our analysis to the Poiseuille flow, we could look at the
dimensional parameters appearing in ζf (eq. (7.24)). However, we must be careful as
many of these dimensional parameters can also impact other dimensionless parameters
such as σ. If the oscillations amplitude depends mostly on Π0 = σ/ζf (expected close
to the instability threshold, Π0 given by eq. (7.27)), then the only parameters from the
friction coefficient that survive are ρℓ and µ. Those can be changed by changing the fluid,
but this will also affect Π0 by changing Rg, Hv and Rth and the angular frequency by
changing ρℓ. The overall effect of changing the fluid is not obvious. One might expect the
length of liquid Lℓ to be important, but it does not appear in Π0. We found experimentally
that changing Lℓ had no impact on the amplitude (for reasonable values of Lℓ of course).
There does not seem to be obvious ways to independently decrease the friction drastically.
Also, we note that we found that decreasing the friction had little impact on the power
output once large enough Π0 are reached (section 7.3.6). From an energy point of view,
Ẇ h = Ẇm+Ẇ f on the limit cycle at some value of the load ζL. For small enough Ẇ f , the
limit cycle will be mostly fixed by the interplay of the phase-change (energy injected into
the system) and the load (as the main dissipative term). Decreasing the friction even more
should have little impact on the power output. This is what we found from the theoretical
model. It was not possible to increase the power output to infinity just by decreasing the
friction.

For the phase-change, we do not have a precise description of the phase-change rate ṁg,
eq. (7.3), and of the resulting force ˜︂Fm. Our model should describe local phase-change
at the meniscus quite well, but, in the experiment presented here, the phase-change is
promoted by a liquid film along a capillary. Even without a capillary, it is found that, under
some conditions, a thin liquid film is laid on the surface and contributes significantly to
the overall phase-change. Nonetheless, given Ẇm = (1/T̃ )

∫︁
cycle(

˜︂Fmq2)dτ , we can conclude
that we want ˜︂Fm to be as large as possible and in phase with the velocity q2. One should
try to tune the phase-change to do so, in order to increase Ẇm. In our model, we found
that a phase-change in phase and opposite to velocity, with q̇3 = −2σq1, led to a force in
phase with velocity, in the linear regime [112]. This would be true for the experiment as
well. We also found that a phase-change where we evaporate a lot in the heat source and
condense a lot in the heat sink (eq. (7.26c) with large σ and large THL) performed very well.
Such a phase-change profile can serve as a reference for the experiment. For local phase-
change at the meniscus, a specific expression for the phase-change coefficient σ exists which
makes Π0 a function of Rg, Tg,0, P̂e,

⃓⃓
T ′
w,0

⃓⃓
, Hv and Rth. It has been found experimentally

that increasing the temperature of the heat source (which increases Tg,0
⃓⃓
T ′
w,0

⃓⃓
), decreasing

the external pressure P̂e and introducing a capillary (which decreases Rth most probably)
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allowed to make the oscillations unstable (startup). Further increasing (or decreasing)
those parameters allowed to increase the oscillations amplitude. We therefore expect
that those parameters would also increase the power output. Indeed, Karami et al. [58]
found that the power could be increased by increasing the temperature of the heat source
and by pushing the capillary further into the device. Increasing Ẇm seems a promising
approach to increase the power output. Experimentally, one can increase the phase-change
drastically. This was done with a capillary tube in [112, 58]. More generally, the tube can
be engineered to control the liquid film on the surface and thus control the phase-change.
One might be able to tune the magnitude and the timing of the phase-change in order to
maximize Ẇm.

Until now, we discussed how to increase the dimensionless average power output Ẇ h. Of
course, what we are really after is the dimensional one, given by (ωn Lg,0Pg,0A) Ẇ h. The
dimensional parameter Lg,0, Pg,0 and A, as well as the angular frequency ωn also come
into play. The power is not necessarily proportional to those parameters however, as they
can also affect Ẇ h through the dimensionless numbers σ, ζf and THL. We can expect
though that parameters which lead to an increase in ωn without leading to a decrease
in the oscillations amplitude should allow to increase the power output. Indeed Karami
et al. [58] found that decreasing the length of the liquid plug allowed to increase ωn and
the power output.

7.6 Conclusion
In this chapter, we adopted an energy perspective, to study the dynamics of the self-
oscillations and the energy harvesting capabilities of SOFHE. Based on very few hypothe-
ses, we derived an energy balance equation which describes the evolution of the resonator
energy Er in terms of the work done by phase-change Ẇm and by friction, Ẇ f (a more
general case with variations of vapor temperature was also discussed). We first considered
a simple theoretical model. We showed that the oscillations startup occurs when the work
done by phase-change is greater than the work done by friction. A net positive energy
is then injected at each cycles, leading to an increase of the energy of the resonator as
well as the amplitude. The steady-state regime occurs because of the nonlinearities. In
our model, the nonlinearities limit the work done by phase-change (it is less than if it
was linear) whereas the friction remains linear. This means that the work done by friction
eventually catches up with the phase-change, at which point no more energy is injected into
the resonator: the resonator energy as well as the oscillations amplitude reaches a constant
value. By increasing the slope of the phase-change work, reducing the slope of friction
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work (linear strategies) or by delaying the drop of the phase-change (nonlinear strategy),
we can increase the energy as well as the oscillations amplitude of the steady-state.

We then studied the effect of the load and showed that it has the same effect as increased
friction. Too much load makes the equilibrium stable and kills the self-oscillations. A
maximum power output is reached at an optimum value of the load. The same strategies
used to increase the oscillations amplitude also lead to an increased power output.

Finally, we looked at experimental data, for both the startup and energy harvesting (where
a load was applied) and showed that our energy perspective still applies. We used our
energy quantities to show how the load coefficient can be deduced from known quantities.

We then discussed how to increase the power output more generally. One must increase
the work done by phase-change and reduce the work done by friction. The former seems
more promising, especially considering how the tubes can be engineered to control the
magnitude and the timing of the phase-change. In those approaches, one should tune the
phase-change to maximize the average work rate it produces.



CHAPTER 8

CONCLUSION FRANÇAISE

8.1 Sommaire et contributions
Je vais ici résumer la thèse, décrire le processus en termes d’étapes d’ingénierie (fig. 9.1)
et identifier les publications scientifiques en cours de route.

Dans notre approche, nous avons construit un modèle mathématique principalement pour
atteindre une compréhension scientifique des auto-oscillations dans le SBPHP. La plu-
part des éléments du modèle décrivent bien les expériences: l’équilibre des forces sur la
colonne de liquide, la conservation de l’énergie sur la bulle de vapeur (condition isotherme
s’applique, typiquement), la loi des gaz parfaits et l’expression pour la friction visqueuse
(Poiseuille ou régime oscillant). En ce qui a trait au changement de phase toutefois, le mod-
èle ne correspond pas tout à fait à l’expérience. Pour obtenir le démarrage des oscillations
dans le SBPHP, nous avons dû introduire un tube capillaire. Cela signifie que l’hypothèse
d’un changement de phase local n’était pas valide pour l’expérience. En conséquence, le
modèle duquel nous avons dérivé nos résultats diffère du dispositif expérimental. Malgré
cela, notre modèle capture l’essentiel de la physique du phénomène, incluant des aspects
importants du changement de phase, nous permettant de comprendre le phénomène d’un
point de vue qualitatif. Certaines prédictions quantitatives sont toutefois hors de portée.
Dans l’espace des configurations possibles, le changement de phase peut être varié significa-
tivement en modifiant les parois internes du tube. Dans notre approche, l’objectif n’était
pas de produire des prédictions quantitatives pour une configuration spécifique, mais bien
d’atteindre une compréhension suffisamment générale pour nous guider dans l’exploration
de l’espace des configurations, de manière à trouver une configuration performante. Nous
avons fait ressortir l’importance du mécanisme d’instabilité et des nonlinéarités pour le
démarrage, l’amplitude des oscillations et la puissance produite par SOFHE. Nous avons
aussi proposé des lignes directrices pour contrôler ces éléments, en contrôlant le change-
ment de phase et la friction. Nos conclusions sont suffisamment générales pour s’appliquer
à la plupart des configurations possibles.

Chapitre 3. Ce qui explique les oscillations et le démarrage.
En partant de l’observation des oscillations de la colonne de liquide, nous nous sommes
demandé d’où les oscillations proviennent. Un modèle mathématique est construit, puis

201
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linéarisé et une solution analytique est obtenue. On trouve que la force produite par la
différence de pression sur la colonne de liquide inclut une force de rappel ˜︂FV , produite par
la dilatation et la compression de la bulle de vapeur (changement de volume). Nous avons
montré que les oscillations sont expliquées par l’interaction entre la compression-dilatation
de la bulle de vapeur qui agit comme un ressort et la masse de la colonne de liquide,
menant à un système masse-ressort (ou résonateur). Nous avons prédit la fréquence des
oscillations pour le démarrage. Notre approche complémente des travaux existants sur le
sujet: nous avons montré que l’analyse est valide en présence du changement de phase,
sous certaines conditions (changement de phase en anti-phase avec la position et faible
σ − ζf ). Par la suite, nous avons testé expérimentalement la prédiction de la fréquence
sur une plage des paramètres (expériences menées par Thomas Monin) et trouvé un bon
accord entre la théorie et l’expérience, ce qui valide le système masse-ressort. On peut
prédire la fréquence à la fois qualitativement et quantitativement et l’on peut contrôler la
fréquence aisément.

En partant de l’observation selon laquelle les oscillations augmentent en amplitude durant
le démarrage, nous nous sommes demandé ce qui explique le démarrage. Le modèle con-
struit inclut également le changement de phase. Nous avons trouvé que la force produite
par la différence de pression sur la colonne de liquide inclut aussi une force de rétroaction
positive ˜︂Fm, due aux variations de masse de vapeur. Ces variations de masse proviennent
de l’évaporation et de la condensation alors que la colonne de liquide oscille entre la zone
chaude et la zone froide. Le démarrage s’explique par l’interaction entre le changement de
phase menant à une force de rétroaction positive et la friction visqueuse entre le liquide et
les parois, qui agit comme une force dissipative. L’équilibre devient instable et le démar-
rage se produit lorsque le coefficient du changement de phase (σ) est augmenté au-delà
du coefficient de friction (ζf ). Cela peut être élégamment représenté par un nombre non-
dimensionne, Π = σ/ζf , avec le démarrage se produisant lorsque Π est augmenté au-delà
de 1. Le nombre Π est analogue à d’autres nombres liés à des instabilités, tels que le nom-
bre de Rayleigh (Ra) pour l’instabilité de Rayleigh-Bénard. Basé sur Π, on peut prédire
que le démarrage peut être provoqué par l’augmentation du gradient thermique axial, par
la réduction de la pression externe ou par la réduction de la résistance thermique (parmi
d’autres paramètres). Nous avons validé le mécanisme d’instabilité en confirmant que le
changement de phase produit un travail positive alors que la friction produit un travail né-
gatif et en confirmant l’effet sur le démarrage des paramètres mentionnés précédemment.
Nous avons atteint un bon contrôle pour le démarrage des oscillations. Bien que nous ne
comprenons pas totalement comment contrôler le changement de phase dans l’expérience,
nous savons maintenant que l’instabilité peut être contrôlée par l’intensité de la com-
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posante du changement de phase en anti-phase avec la position, qui produit une force de
rétroaction positive.

D’autres contributions originales sont incluses dans ce travail, dont 1) la première utilisa-
tion d’un tube capillaire comme structure mouillante que l’on peut contrôler (découverte),
qui permet d’augmenter l’amplitude des oscillations de manière importante, 2) des mesures
expérimentales lors du démarrage (position, pression, masse de vapeur, friction, etc.), 3)
une expression théorique pour la force de friction dans un régime oscillant, validée expéri-
mentalement et 4) une approche énergétique qui peut être utilisée pour étudier l’effet du
changement de phase et la friction de manière très générale, à la fois théoriquement et
expérimentalement.

Ce travail a fait l’objet d’une publication dans Physical Review Fluids [112].

Chapitre 4. Ce qui mène à un régime oscillant permanent.
Nous avons commencé par des observations expérimentales en réutilisant les mesures du
démarrage et en montrant comment l’amplitude augmente initialement puis sature, alors
que le système approche un régime permanent oscillant. Nous avons montré que, dans
l’espace des phases, le système approche une boucle fermée (un cycle limite, correspondant
au régime permanent oscillant). L’objectif ici était de considérer un modèle mathématique
simple décrivant le phénomène et de l’utiliser pour mieux comprendre ce qui mène à la sat-
uration de l’amplitude, ce qui explique l’existence du cycle limite et comment le contrôler.
Nous avons considéré le modèle présenté au chapitre 3. Nous avons montré, en comparant
la solution des équations linéarisées à la solution numérique des équations différentielles
nonlinéaires, que la saturation et le cycle limite sont dus aux nonlinéarités. Nous avons en-
suite obtenu une solution analytique approximative des équations nonlinéaires en utilisant
la réduction par variété centrale suivie de la réduction par forme normale. Cette solu-
tion montre que, durant le démarrage, l’augmentation puis la saturation de l’amplitude
est expliquée par l’interaction entre le mécanisme d’instabilité et un mécanisme limi-
tant, produit par les nonlinéarités. Nous avons par la suite prouvé mathématiquement
l’existence du cycle limite, créé par une bifurcation de Poincaré-Andronov-Hopf. Finale-
ment, nous avons prédit l’amplitude des oscillations. Nous avons étudié comment contrôler
l’amplitude des oscillations sur le cycle limite. L’amplitude peut être augmentée en aug-
mentant l’instabilité ou en réduisant les nonlinéarités. Plus spécifiquement, cela implique
que l’amplitude peut être augmentée en augmentant le changement de phase et en ré-
duisant la friction. Nous avons étudié l’impact du changement de phase et de la friction
sur l’amplitude quantitativement, par continuation numérique. Les conséquences sur la
conception de PHP et de SOFHE sont discutées.
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Ce travail complémente un article antérieur de conférence sur le rôle des nonlinéarités [111].
Une version préliminaire de ce travail a été publiée comme article de conférence [113], ce
qui a ensuite mené à un manuscrit (accepté, en production) dans Nonlinear Dynamics
Journal [114].

Chapitre 5. Solution analytique précise pour le régime permanent.
La solution analytique obtenue dans le chapitre 4 est seulement valide pour de faibles am-
plitudes d’oscillations. Ce chapitre porte sur une approche théorique pour mieux décrire
et comprendre l’amplitude des oscillations dans le modèle. J’ai obtenu des solutions an-
alytiques et semi-analytiques précises, valides pour toute la plage des paramètres. Pre-
mièrement, j’ai suivi le cycle limite par continuation numérique et examiné le diagramme
spectral de la solution sur une grande plage des paramètres. J’ai ensuite appliqué la tech-
nique de moyennisation pour chaque nonlinéarités individuellement, sans approximer le
champ vectoriel par sa série de Taylor. Cela m’a permis d’obtenir une solution extrême-
ment précise pour la dynamique, pour la nonlinéarité de changement de phase. Pour la
pression nonlinéaire, la solution obtenue par moyennisation est incapable de reproduire
les harmoniques dans la solution. J’ai donc proposé une solution modifiée, basée sur la
forme obtenue par moyennisation, mais écrite comme une série infinie, qui s’avère égale-
ment très précise. Les paramètres de cette solution modifiée sont obtenus à l’aide des
résultats numériques. Pour les deux nonlinéarités, j’ai observé que, quand l’amplitude
augmente, des harmoniques se développent dans la solution à cause des nonlinéarités. J’ai
aussi trouvé que, pour augmenter l’amplitude, il faut d’abord augmenter l’instabilité puis
réduire les nonlinéarités. Je m’attends à ce que principe soit valide pour n’importe quelles
nonlinéarités. Les deux solutions analytiques obtenues ici ont été utilisées pour étudier la
récupération énergétique dans le chapitre 6.

Chapitre 6. Comment se comporte un dispositif de récupération énergétique.
Dans ce chapitre, nous avons répondu à la question de comment se comporte un dispositif
de récupération énergétique (SOFHE). Nous avons ajouté une charge (force dissipative pro-
portionnelle à la vitesse représentant le transducteur électromécanique) au modèle décrit
au chapitre 3. Nous avons adapté la solution obtenue au chapitre chapter 5, et obtenu
une solution analytique très précise décrivant la dynamique (amplitude et fréquence) ainsi
que la puissance produite et l’efficacité. Nous avons montré comment la puissance évolue
en fonction de la charge: la puissance suit une courbe en cloche asymétrique, avec une
puissance nulle pour une charge nulle, une puissance maximale pour une charge optimale
et une puissance nulle pour une charge maximale. Pour cette charge maximale, la charge
crée suffisamment de dissipation pour étouffer complètement les auto-oscillations. Ces
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prédictions qualitatives ont été validés expérimentalement [58]. Notre modèle nous per-
met d’expliquer le comportement observé. Par la suite, nous avons montré comment la
puissance peut être augmentée en augmentant le changement de phase et en réduisant la
friction visqueuse (contrôle). Nous avons également étudié l’efficacité et montré qu’elle suit
une courbe en cloche asymétrique. Nous avons ensuite discuté des conséquences de notre
analyse pour la conception de SOFHE. Finalement, nous avons montré comment le com-
portement dans un récupérateur d’énergie auto-oscillant diffère de récupérateur d’énergie
forcé. Des travaux sur le sujet ont fait l’objet d’un article de conférence [111]. Ce travail
a par la suite été soumis au journal Applied Thermal Engineering.

Chapitre 7. Perspective énergétique.
Dans ce chapitre, nous avons revisité le démarrage, la saturation de l’amplitude et la puis-
sance produite, d’un point de vue énergétique. Nous nous sommes d’abord attardés sur
le modèle théorique. Nous avons montré que, durant le démarrage, le travail fait par le
changement de phase est supérieur au travail (négatif) fait par la friction, de telle sorte
qu’une énergie nette positive est injectée dans le système à chaque oscillation, menant à
l’augmentation en énergie du résonateur et en amplitude d’oscillations. On peut observer
visuellement que l’effet des nonlinéarités est de réduire le travail fait par le changement
de phase, par rapport à sa valeur linéaire. Cela à pour conséquence que le travail fait
par la friction rattrape éventuellement le changement de phase et que le système atteint
donc un régime permanent. Nous avons ensuite montré comment contrôler l’instabilité
(liée aux pentes à l’origine du travail fait par le changement de phase et la friction) et les
nonlinéarités (la déviation par rapport au travail linéaire) pouvait permettre d’augmenter
l’amplitude des oscillations. Quant à la puissance produite, les mêmes stratégies permet-
taient également de l’augmenter. Finalement, nous nous sommes attardés sur les données
expérimentales pour le démarrage et pour la puissance produite. Le comportement est
qualitativement le même que pour le modèle théorique. En se basant sur notre approche
théorique, nous avons obtenu une équation permettant une mesure indirecte du coefficient
de la charge, utile pour l’analyse des données expérimentales. De manière générale, on
obtient que pour augmenter l’amplitude des oscillations ou la puissance produite, il faut
augmenter le travail fait par le changement de phase et réduire le travail fait par la friction.

Notre approche permet de simplifier grandement le problème. On peut discuter du
phénomène simplement en termes d’énergie du résonateur moyennée Er, du taux de travail
moyenné fait par le changement de phase (Ẇm) et par la friction (Ẇ f ). Cette manière de
penser est très générale: peut importe à quel point le changement de phase est compliqué,
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ce qui compte est Ẇm, le taux du travail moyenné. Nos conclusions sur le rôle de Ẇm et
Ẇ f sont générales.

Ce chapitre est basé sur un manuscrit, pour une nouvelle soumission au journal Applied
Thermal Engineering.

Quelques éléments de réflexions sur la compréhension scientifique
Dans notre approche, la compréhension scientifique a été atteinte de plusieurs façons. Au-
tant que possible, des formules analytiques simples ont été obtenues à partir desquelles
l’effet des paramètres pouvait être déduit. Nous avons réduit le nombre important de
paramètres à seulement quelques macro-paramètres (ωn, σ, THL, ζf ), ayant une signi-
fication importante en termes de dynamique. En effet, ces macro-paramètres sont liés
à des concepts abstraits introduits pour décrire la dynamique (résonateur, mécanisme
d’instabilité, mécanisme limitant). Ces concepts capturent des aspects distincts de la dy-
namique (oscillations, démarrage, régime permanent). On peut penser à l’impact de la
configuration en fonction de ces concepts et des macro-paramètres, pour prédire le com-
portement du phénomène qualitativement. Dans la section 1.3.1, j’ai décrit la compréhen-
sion scientifique d’un point de vue géométrique (figure 1.6). Nous avons été en mesure
d’obtenir une telle représentation en fonction des macro-paramètres pour le comportement
(figure 3.4), l’amplitude des oscillations (figure 4.9) et la puissance produite (figures 7.15
and 7.16). Finalement, en adoptant un point de vue énergétique, nous avons été en mesure
de décrire la dynamique avec concision et de manière générale, en termes d’énergie du ré-
sonateur moyennée Er, du taux de travail moyenné produit par le changement de phase
(Ẇm) et par la friction (Ẇ f ).

8.2 Recherches futures
À partir du modèle, nous avons trouvé que le changement de phase a un impact important
sur l’amplitude des oscillations et sur la puissance produite. Cela est aussi appuyé par
l’expérimental, par l’utilisation d’un capillaire pour favoriser la formation d’un film liquide,
pour favoriser le changement de phase. Je soupçonne qu’il est possible d’aller beaucoup
plus loin en contrôlant mieux le changement de phase. Il faut contrôler à la fois l’intensité
du changement de phase et sa synchronisation avec la dynamique. Plus précisément, il faut
contrôler le profil du changement de phase en fonction du temps en tout point, n’étant
pas limités à une fonction sinusoïdale. Ce qui importe est de contrôler le changement
de phase de manière à maximiser le taux de travail moyenné fait par le changement de
phase sur un cycle, Ẇm. D’un point de vue théorique, une question intéressante est: quel
serait un changement de phase optimal? D’un point de vue expérimental, le niveau de
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contrôle requis sur le changement de phase pourrait être obtenu par microfabrication. Il
est possible d’utiliser une gaufre de silicium pour l’une des parois, sur laquelle seraient
gravés des micro-pilliers autour desquels se formeraient des films liquides, favorisant ainsi
un changement de phase beaucoup plus important. En ajustant la géométrie de ces piliers
(position, taille, densité, etc.), on pourrait contrôler le changement de phase en fonction
du temps, et l’ajuster de manière à maximiser le travail fait sur un cycle par le changement
de phase. Pour guider la conception, il serait utile de considérer le travail instantané fait
par le changement de phase à chaque point du cycle. Ma collègue Nooshin Karami étudie
en ce moment des approches de microfabrication pour contrôler le changement de phase.

Pour SOFHE, mon travail a surtout porté sur la partie moteur, mais une autre composante
importante est le transducteur électromécanique. Il y a beaucoup à faire pour la conception
du transducteur et son implémentation. Lorsque la partie moteur et le transducteur seront
jugés suffisamment bons, il sera temps de concevoir et fabriquer un SOFHE pour une
application spécifique.
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CHAPTER 9

ENGLISH CONCLUSION

9.1 Summary and Contributions
Here, I will summarize the thesis, describing the progress in terms of the engineering steps
(fig. 9.1) and identifying the scientific publications along the way.
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Figure 9.1 Research from an engineering point of view, from the discovery of a
phenomenon to the control, leading to the design of a good configuration (this
is fig. 1.5, repeated here for convenience).

In our approach, we constructed a mathematical model mainly to achieve scientific under-
standing of the self-oscillations in the SBPHP. We found that most aspects of the model
describe well the experiment: the momentum balance on the liquid plug, the energy bal-
ance on the vapor bubble (isothermal condition usually applies), the ideal gas law and the
friction expression (either Poiseuille or oscillating flow). With regards to the phase-change
however, the model does not fully match the experiment. In order to make the SBPHP
start, we had to introduce a capillary. This meant that the assumption of local phase-
change was not valid in our experiment. Thus, the model from which we derive our results
differs from the experimental device. Nonetheless, the model captures most of the physics
and important aspects of the phase-change, enabling us to understand the phenomenon
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very well at a qualitative level. Some quantitative prediction are however out of reach. In
the space of all configurations, the phase-change can be varied significantly by engineering
the internal walls. In our approach, the goal was not to produce quantitative predictions
for the specific configuration considered in the experiment but to reach an understanding
general enough to guide us in the exploration of the configuration space, in order to find
a configuration which leads to a good performance. We could highlight the importance of
the instability mechanism and of the nonlinearities on the startup, the amplitude and the
power output for SOFHE. We could also gave important guidelines on how to control those
by controlling the phase-change and the viscous friction. Those conclusions are general
enough to apply to most configurations.

Chapter 3. Why it oscillates and what leads to the startup.
Starting from the observation that the liquid plug can oscillate, we asked where those
oscillations comes from. A mathematical model was constructed, the model was linearized
and an analytical solution was found. We found that the force produced by the pressure
difference on the liquid plug includes a restoring force ˜︂FV , produced by the compression-
expansion of the vapor (change of volume). We showed that the oscillations are explained
by the interplay of the compression-expansion of the vapor acting as a spring and the
liquid plug acting as a mass, leading to a spring-mass system (resonator). We predicted
an oscillating frequency for the startup. Our approach complements existing work on
the subject in the literature: we show that this analysis is still valid in the presence
of phase-change, under some conditions (phase-change in anti-phase with position and
σ − ζf small). We then tested experimentally the frequency prediction for a range of
relevant parameters (those experiments were carried on by Thomas Monin) and found
good agreements between the theory and the experiment, which validated the spring-mass
system. We can predict the frequency both qualitatively and quantitatively. We find that
we can control the frequency very well.

Starting from the observation that oscillations can increase during the startup, we also
asked what explains the startup. The model constructed also includes the phase-change.
We found that the force produced by the pressure difference on the liquid plug also includes
a positive feedback force ˜︂Fm, due to the variations of mass of the vapor. Those variations
of mass come from the evaporation and condensation as the liquid plug oscillates between
the heat source and the heat sink. We explained the startup as produced by the interplay
of the phase-change leading to a positive feedback force and the viscous friction between
the liquid and the walls, acting as a dissipative force. The equilibrium becomes unsta-
ble and the startup occurs when the phase-change coefficient (σ) is increased above the
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friction coefficient (ζf ). This can be neatly expressed by a new dimensionless instability
number, Π = σ/ζf , with the startup occurring when Π is increased above 1. The number
Π is analogous to other instability numbers such as the Rayleigh number (Ra) for the
Rayleigh–Bénard instability. Based on Π, we predicted that the startup can be triggered
by increasing the axial thermal gradient, reducing the external pressure or decreasing the
phase-change thermal resistance (among other parameters). We validated the instability
mechanism by confirming that the phase-change does positive work while viscous fric-
tion does negative work and by confirming the effects on the startup of the parameters
mentioned above. We have reached a good level of control over the oscillation startup.
Although we do not fully understand how to control the phase-change in the experiment,
we now know that the instability can be controlled by controlling the magnitude of the
phase-change component in anti-phase with the position, producing a positive feedback
force.

Additional original contributions presented here include: 1) the first ever use of a capil-
lary as a controllable wicking structure (discovery), which allow to greatly increase the
oscillations amplitude, 2) experimental measurements during the startup (position, pres-
sure, mass of vapor, friction, etc.), 3) a theoretical expression of the friction force in an
oscillating regime which is validated experimentally and 4) an energy analysis approach
which can be used to study the effect of phase-change and friction in a very general way,
both theoretically and experimentally.

This work was published in Physical Review Fluids [112].

Chapter 4. What leads to the steady-state regime.
We started with experimental observations. We reused the experimental measurements
of the startup, showing the initial growth of amplitude and the subsequent saturation, as
the system reaches an oscillating steady-state regime. We showed that, in a phase-space
representation, the system approaches a closed loop (a limit cycle, corresponding to the
oscillating steady-state regime). The goal here was to consider a simple mathematical
model describing this phenomenon and to use it to better understand what leads to the
saturation of the amplitude, why there is such a limit cycle and how we can control it.
We considered the model presented in chapter 3. We showed by comparing the analytical
solution of the linearized equation and the numerical resolution of the nonlinear equations
that the saturation and the limit cycle are due to nonlinearities. We then proceeded to ob-
tain an approximate analytical solution of the nonlinear equations, using center manifold
reduction followed by the normal form reduction technique. This solution shows that, dur-
ing the startup, the growth and subsequent saturation of the amplitude is explained by the
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interplay of the instability mechanism and a limiting mechanism, due to the nonlinearities.
We then proved mathematically the existence of the limit cycle, created by a Poincaré-
Andronov-Hopf bifurcation. Finally, we predicted the oscillations amplitude. We studied
how to control the oscillations amplitude on the limit cycle. We showed that the ampli-
tude can be increased by increasing the instability and by decreasing the nonlinearities.
More specifically, this entails that the amplitude can be increased by increasing the phase-
change and decreasing the friction. We studied how phase-change and friction impact the
oscillations amplitude quantitatively, using numerical continuation. Consequences for the
design of PHP and SOFHE were discussed.

This work complements an earlier conference publication on the role of nonlinearities [111].
A preliminary version of this work was published as a conference paper [113] which led to
a manuscript now accepted by the Nonlinear Dynamics Journal [114].

Chapter 5. Accurate solution for the steady-state.
The approximate analytical solution obtained in chapter 4 is only valid for small oscilla-
tions amplitude. This chapter is about building better theoretical tools to describe and
understand the oscillations amplitude in the model. I obtained accurate analytical and
semi-analytical solutions, valid across the whole range of the parameters. First, I tracked
the limit cycle using numerical continuation and examined the spectral diagram of the
solution across a large range of the parameters. I then applied the averaging method, for
each nonlinearities individually, without approximating the vector field by a Taylor series.
Doing so, I was able to obtain an extremely accurate analytical solution for the dynamics,
for the phase-change nonlinearity. For the pressure nonlinearity, the averaging solution,
is unable to reproduce the harmonics in the solution. Thus, I suggested a modified so-
lution, based on the averaging form but written as an infinite series, which turns out to
be extremely accurate as well. The parameters of this modified solution are obtained by
fitting the solution to numerical continuation results. For both nonlinearities, I observed
that, as the amplitude increases, harmonics develop in the solution due to the nonlineari-
ties. I also found that to increase the amplitude, one should first increase the instability
and then decrease the nonlinearities. I expect this general statement to be valid for any
nonlinearities. The two analytical solutions obtained here were used to study the energy
harvesting in chapter 6.

Chapter 6. How an energy harvesting device behaves.
In this chapter, we answered the question of how an energy harvesting device (SOFHE)
would behave. We added a load (a dissipative force representing a velocity-damped trans-
ducer) to the model described in chapter 3. We adapted the solution obtained in chapter 5
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such that we get a very accurate analytical solution describing the dynamics (amplitude,
frequency) and the power output as well as the efficiency. We showed how the power out-
put behaves as a function of the load: the power follows an asymmetrical bell shape curve
with no power at no load, a maximum power at an optimal load value and no power again
at a maximum load value. At that maximum value, the load creates enough dissipation
to kill the self-oscillations. Those qualitative predictions were validated in experiments
[58]. Our model enables us to explain the behavior. We then show how the power output
can be increased by increasing the phase-change and by decreasing the viscous friction
(control). We also studied the efficiency and showed that it also follows an asymmetrical
bell shape curve. We discussed the consequences of our analysis with regards to the design
of SOFHE. We also discussed how the behavior we observe in this self-oscillating harvester
differs qualitatively from forced oscillating harvesters.

Early work on the subject led a to a conference paper [111]. This work was later on
submitted as a journal publication to Applied Thermal Engineering.

Chapter 7. Energy persective.
In this chapter, we revisited the startup, the saturation of the amplitude and the power
output from an energy viewpoint. We started with the theoretical model. We first showed
how, during the startup, the work done by phase-change is greater than the (negative)
work done by friction, such that a positive net energy is injected into the system at
each oscillations, leading to a growth in the energy of the resonator and in the oscillations
amplitude. We can visually see that the effect of the nonlinearity is to reduce the work done
by phase-change compared to its linear value. The consequence is that the friction work
eventually catches up with the phase-change and the system reaches a steady-state. We
then showed how controlling the instability (related to the slopes at the origin of the phase-
change and viscous friction works) and the nonlinearities (the deviation from the linear
work) could lead to greater oscillations amplitude. With regards to the power output,
we showed that the same strategies also led to greater power. We subsequently looked at
experimental data for the startup and the power output. We found qualitatively the same
behavior than in the theoretical model. Based on our model, we obtained an expression
allowing an indirect measure of the load coefficient, useful to analyze experimental data.
Overall, we find that one needs to increase the work done by phase-change and reduce the
work done by friction in order to increase the oscillations amplitude or the power output.

Our approach here enables great simplification of the problem. We can discuss the phe-
nomenon solely in terms of the average energy of the resonator Er, the average work rate
done by phase-change (Ẇm) and done by friction (Ẇ f ). This way of thinking is also
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very general: regardless of how complicated the phase-change is, what matters is Ẇm, the
average work rate over a cycle. Our conclusions on the role of Ẇm and Ẇ f are general.

This chapter was prepared as a manuscript for a new submission to Applied Thermal
Engineering.

Few notes on scientific understanding
In our approach, understanding was achieved by various means. Whenever possible, sim-
ple analytical formulas were obtained from which the effect of the parameters on the
dynamics could be deduced. We reduced the large number of parameters to only few
macro-parameters (ωn, σ, THL, ζf ) which have dynamical relevance. Indeed they are re-
lated to abstract concepts we introduced to describe the dynamics (resonator, instability
mechanism, limiting mechanism). Those concepts capture distinct aspects of the dynam-
ics (oscillation, startup, steady-state). One can think of the impact of the configuration
in terms of those concepts and of the macro-parameters to predict the behavior of the
phenomenon qualitatively. In section 1.3.1, I described scientific understanding from a
geometrical point of view fig. 1.6). We were able to obtain such a representation in terms
of the macro-parameters for the behavior (fig. 3.4), the oscillations amplitude (fig. 4.9) and
the maximum power output (figs. 7.15 and 7.16). Finally, by adopting an energy point
of view, we were able to describe the dynamics in a very concise and general manner,
in terms of the average energy of the resonator Er and the average work rate done by
phase-change (Ẇm) and by friction (Ẇ f ).

Other scientific contributions
In this thesis, I had the opportunity to contribute to other scientific publications on
the SBPHP self-oscillations, including the work of Thomas Monin to demonstrate energy
harvesting with SOFHE [78, 75], the work of Nooshin Karami to study the thermodynamic
cycle and the mechanical power output [57, 58] and the work of Alihossein Nikkhah on
testing the oscillating friction expression numerically [1].

9.2 Further Research
From our model, we find that the phase-change can have a significant impact on the
oscillations amplitude and the power output. This was also confirmed experimentally, by
using a capillary to promote the formation of a thin liquid film to enhance phase-change.
I suspect however that it should be possible to go much further by better controlling the
phase-change. One must control both the magnitude and the timing of the phase-change.
To be more accurate, we really want to control the overall waveform of the phase-change
since we should not be limited to sinusoidal behavior. What we need to do is to control the
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phase-change in order to maximize the overall average work rate done by phase-change,
Ẇm. From a theoretical point of view, an interesting question is: is there an optimal
phase-change profile? From an experimental point of view the required level of control
could be achieve using microfabrication. One can use a silicon wafer as one of the walls
and build on the surface an array of small pillars around which thin liquid films will form,
leading to much higher overall phase-change rate. By tuning the geometry of those pillars
(location, size, density, etc.), we may be able to control the phase-change waveform and
ajust it to maximize the average work rate done by phase-change. As a guiding tool, it
could be helpful to look at the instantaneous work done by phase-change at each point
of the cycle. My colleague Nooshin Karami is currently investigating microfabrication
approaches to control the phase-change.

For SOFHE, my work focused mostly on the engine, but another crucial component is the
electromechanical transducer. There is a lot to be done in the design of the transducer and
its implementation. Once we get a good enough engine and a good enough transducer,
one should build a SOFHE for an actual application.
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APPENDIX A

Appendix to Chapter 3

A.1 Theoretical Additional Informations and Results
A.1.1 Energy Conservation for the Vapor Bubble
In this section, we consider the vapor control volume (see fig. 3.2a) and derive its energy
conservation equation (3.2). While doing so, we will have to consider the distribution of
pressure Pg, temperature Tg, and vapor density ρg in the vapor. In fig. A.1 we show how
those should looks like qualitatively. Those quantities oscillates over time, but their profile
is qualitatively similar at each time. We now discuss how those profiles are obtained.
As discussed in section 3.2.1, it is appropriate to consider saturation conditions at the
meniscus. The pressure Pg is given as a function of the mass mg temperature Tg and
volume of vapor Vg by the ideal gas law (3.3). Since pressure information propagates
much faster than the liquid column oscillations, pressure will tend to be homogeneous,
so Pg,sat = Pg; the pressure dictates the saturation conditions. The temperature of the
vapor is Tg = Tg,sat at the meniscus (given as a function of Pg by the Clausius-Clapeyron
relation (3.8)). Away from the meniscus, heat exchange between the wall and the vapor
leads to Tg > Tg,sat; the vapor is superheated. In the isothermal hypothesis, we assume
that heat exchange between the wall and the vapor are fast enough such that Tg is kept
constant in time. In the adiabatic hypothesis, we assume this heat exchange to be slow
enough such that it can be neglected, so Tg will depend on the compression and expansion
of the vapor bubble during the oscillations. Finally, the vapor density ρg distribution is
given as a function of pressure and temperature by the ideal gas law.

We start with the energy conservation for a general control volume [35]

∑︂
Ė =

d

dt

(︃∫︂

CV
eρ dV

)︃
+

∫︂

CS

eρ(Vr · n)dA, (A.1)

where
∑︁
Ė is the total rate of energy transfer applied to the control volume, e is the

specific energy (energy per unit of mass), dV is an elemental volume, dA is an elemental
surface on the control surface, Vr is the velocity of the fluid relative to the control surface
(Vr = V − Vs, where V and Vs are the velocities relative to the referential of the fluid
and of the control surface, respectively) and n is a normal unit vector oriented outward
from the control surface.

We first expand the total rate of energy transfer
∑︁
Ė and obtain the expression below. The

total rate of energy transfer includes the effect of the pressure applied by the meniscus
control volume, the heat exchange rate between the vapor and the walls Q̇g, and the
volumic forces (gravity). We neglect the gravity on the vapor. We note that the pressure
applied by the meniscus (from the liquid plug) on the vapor is Pg,sat. Also, the velocity of
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Pg,sat
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vapor pressure Pg(x)

Tg,sat
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x

vapor density ρg(x)

vapor liquid air

Pressure fixed by ideal gas law
Pg = mgRgTg/((xi + Lg,0)A); homoge-
neous in space due to pressure waves.

Heat conduction from the walls leads
to superheated vapor (Tg > Tg,sat)
away from the meniscus.

Vapor density given by Pg and Tg
through ideal gas law
ρg = Pg/(Rg Tg).

Figure A.1 Qualitative representation of the pressure Pg, temperature Tg, and
density ρg distributions in the vapor bubble along x.

the vapor Vg at the meniscus can be rewritten as V̄r,g+Vs with the relative velocity related
to phase change: V̄r,g = −ṁg/(ρg,satA) and the velocity of the control surface being the
velocity of the meniscus Vs = ẋi. For

∑︁
Ė we obtain

∑︂
Ė = −Pg,satVgA+ Q̇g = −Pg,satA

(︃ −ṁg

ρg,satA
+ ẋi

)︃
+ Q̇g,

leading to

∑︂
Ė =

(︃
ṁg Pg,sat

ρg,sat

)︃
− (Pg,satA ẋi) + Q̇g. (A.2)

We then simplify the second term on the right-hand side of the energy conservation (A.1)
which represents the rate of energy exchange due to mass flow across the boundaries of the
control volume. The only transfer of mass occurs at the meniscus. We can integrate by
considering an average velocity V̄r,g where the subscript out means in the outward direction
(from the vapor toward the meniscus control volume). The velocity V̄r,g (positive in the
direction of the liquid plug) can be rewritten as a function of the mass flow rate leading
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to the evaporation (liquid to vapor) ṁg as V̄r,g = −ṁg/ρgA. We get that
∫︂

CS

eρ(Vr · n)dA =

∫︂

meniscus

ρgeg(Vr · n)dA =
(︁
ρgegAV̄r,g

)︁
out

= −ṁg eg,out. (A.3)

The energy conservation can be rewritten as
(︃
ṁg Pg,sat

ρg,sat

)︃
− (Pg,satA ẋi) + Q̇g =

d

dt

(︃∫︂

CV

egρgdV
)︃
− ṁg eg,out. (A.4)

The specific energy e is the sum of the internal energy û, the kinetic energy 1
2
V 2, and the

potential energy gz. Here we neglect the gravitational potential energy of the vapor. We
can rewrite the energy conservation as
(︃
ṁg Pg,sat

ρg,sat

)︃
−(Pg,satA ẋi)+Q̇g =

d

dt

∫︂

CV

ρg

(︃
ûg +

1

2
Vg

2

)︃
dV−

(︃
ûg +

1

2
Vg

2

)︃

out

ṁg. (A.5)

The vapor kinetic energy has been previously neglected [126, 20]. We can justify this
assumption by an estimation of the magnitude of those terms. We would like to verify
that 1

2
Vg

2 ≪ ûg, and solving for Vg, we obtain Vg ≪
√︁

2 ûg. To compute ûg , we use the
constitutive relation dûg ≈ cv dTg. Assuming cv mostly constant on the desired range and
assuming that the vapor is an ideal gas, we have that ûg ≈ cv Tg. For the water vapor,
cv = 1.41 kJ/kgK. Considering Tg = 373K we get:

√︁
2 ûg ∼ 1026m/s. For oscillations

of an amplitude of 1 cm at 25Hz, the velocity is approximately 0.5m/s which is 0.05% of
1026m/s. Neglecting the kinetic energy is therefore justified. We obtain

(︃
ṁg Pg,sat

ρg,sat

)︃
− (Pg,satA ẋi) + Q̇g =

d

dt

∫︂

CV

ρg ûgdV − ûg,out ṁg. (A.6)

We can simplify this equation with some constitutive relations. We consider the vapor as
an ideal gas, Pg,sat = ρg Rg Tg,sat = ρg (cp − cv) Tg,sat, and also, as mentioned before, take
ûg = cv Tg. We get

ṁg (cp − cv) Tg,sat − Pg,satAẋi + Q̇g =
d

dt

∫︂

CV

ρg cv Tg dV − cv Tg,sat ṁg.

Let us now simplify the first term on the right-hand side, which represents the rate of
change of the energy in the vapor. We first perform the integral by considering the
averaged quantities ρ̄g, c̄v, and T g. We then assume c̄v constant and use the relation
Vg = mg/ρ̄g:

d

dt

∫︂

CV

ρg cv Tg dV =
d

dt

(︁
ρ̄g c̄v T g Vg

)︁
= c̄v

d

dt

(︁
mg T g

)︁
.
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We then distribute the derivative

d

dt

∫︂

CV

ρg cv Tg dV = c̄vmg Ṫ g + c̄v ṁg T g.

Substitution in the energy equation and rearranging gives

c̄vmg Ṫ g + c̄v ṁg T g −������
cv Tg,sat ṁg = ṁg cp Tg,sat −������ṁg cv Tg,sat − Pg,satAẋi + Q̇g

Finally, rearranging once again leads to the following equation, which describes the evo-
lution of the vapor temperature T g:

c̄vmg Ṫ g =
(︁
cp Tg,sat − c̄v T g

)︁
ṁg − Pg,satAẋi + Q̇g. (A.7)

Equation (3.2) in the main text corresponds to eq. (A.7) after solving for Ṫ g and dropping
the overbars. Note that taking Tg,sat = Tg and ρg = ρg,sat in eq. (A.7) leads to the expres-
sion commonly used in the literature. In contrast to [126, 20, 85], the above description
takes into account the fact that the meniscus is at saturation (Tg,sat ̸= Tg). We assume
that the meniscus remains at saturation due to the phase change but that the bulk of the
vapor may differ from the saturation condition (the vapor is typically superheated).

A.1.2 Friction in an Oscillating Regime
In this section we show how to derive the friction force for a fluid of infinite length subjected
to an oscillating pressure gradient in a circular pipe, given by eq. (3.9b). First, we briefly
explain how one can derive the velocity profile in appendix A.1.2, as described by White
[123]. We then show how to derive the friction force as a function of the pressure gradient
from the velocity profile in appendix A.1.2.
Oscillating Velocity Profile
In this section we show how to derive the velocity profile for the case of interest (see White
[123, sec.3-4.2 Pipe Flow Due to Oscillating Pressure Gradient, p.135] for more details).
Navier-Stokes equations reduce to the partial differential equation

ρ
∂u

∂t
= −dp

dx
+ µ

(︃
∂2u

∂r2
+

1

r

∂u

∂r

)︃
. (A.8)

We consider a sinusoidal pressure gradient written as a complex exponential

dp

dx
≡ −ρKeiωt, (A.9)

with eiωt = cos(ωt) + i sin(ωt). The solution of eq. (A.8) for the velocity profile is given
by the following, after substitution of the pressure gradient dp/dx, considering the no-slip
condition (u (r0, t) = 0, where r0 is the tube radius) and neglecting the transient behavior,
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with J0 a Bessel function of the first kind

u =
K

iω
eiωt

⎡
⎣1−

J0

(︂
r
√︁
−iω/ν

)︂

J0

(︂
r0
√︁

−iω/ν
)︂

⎤
⎦ . (A.10)

This solution was first found by Sexl [102]. Dimensionless quantities are now introduced 1:

˜︁r ≡ r

r0
, ˜︁u ≡ u

umax

with : umax =
Kr0

2

4ν
, Reω ≡ ωr0

2

ν
. (A.11)

The Bessel function makes the solution difficult to study, but it is possible to get simpler
expressions by considering series approximations. One reaches the two approximations for
low Reω and high Reω, respectively,

˜︁u ≈
(︁
1− ˜︁r2

)︁
cos(ωt) + 1

16
Reω

(︁
˜︁r4 + 4˜︁r2 − 5

)︁
sin(ωt) +O

(︁
Re2ω

)︁
forReω < 4, (A.12a)

˜︁u ≈ 4

Reω

[︃
sin(ωt)− e−B

√
˜︁r

sin(ωt−B)

]︃
+O

(︁
Re−2

ω

)︁
forReω > 4, (A.12b)

with B ≡ (1− ˜︁r)
√︁

Reω/2. The first term in eq. (A.12a) corresponds to a quasistatic
Poiseuille flow, with the velocity in phase with the pressure gradient. Poiseuille flow is
therefore a good approximation for Reω sufficiently small. The second term in eq. (A.12a)
adds a small delay and reduces the velocity at ˜︁r = 0. At higher Reω, the velocity profile
given by eq. (A.12b) exhibits Richardson’s annular effect, where the flow near the wall
moves at a certain velocity but the core moves at another velocity, possibly opposite.
Oscillating Friction Force
Given the velocity profiles we now want to derive the friction force. The shear stress at
the wall τrx|r=r0 , considering no velocity in the radial direction, is ([35, p.823])

τrx|r=r0 = µεrx|r=r0 = µ
∂u

∂r

⃓⃓
⃓⃓
r=r0

= µ
umax

r0

∂˜︁u
∂˜︁r

⃓⃓
⃓⃓
˜︁r=1

. (A.13)

The friction is then

Ff =

∫︂ L

0

2πr0 · τrx|r=r0 dx = 2πµLumax ·
∂˜︁u
∂˜︁r

⃓⃓
⃓⃓
r̃=1

. (A.14)

We now need to substitute the solution for the velocity profile ˜︁u in Ff . For Reω ≪ 4, the
velocity profile corresponds to a quasistatic Poiseuille flow, so the corresponding friction
force equation (3.9a) can be used. For Reω < 4, improvements to the Poiseuille friction

1. Note a small typographical error in umax = Kr0/4ν in [123]; it should read umax = Kr0
2/4ν (see

[123, Eq.(3-34), p.116])
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approximation could be obtain by considering eq. (A.12a). Here we will only derive Ff for
high Reω. We get the expression for the derivative of the velocity profile (A.12b) evaluated
at the wall

∂˜︁u
∂˜︁r

⃓⃓
⃓⃓
r̃=1

= − 1

Reω

[︂√︁
8Reω cos(ωt) +

(︂√︁
8Reω − 2

)︂
sin(ωt)

]︂
forReω > 4, (A.15)

leading to the expression for the friction force Ff ,

Ff = − 2πµLumax

Reω

[︂√︁
8Reω cos(ωt) +

(︂√︁
8Reω − 2

)︂
sin(ωt)

]︂
forReω > 4. (A.16)

Now, instead of assuming a pressure gradient of fixed amplitude expressed as an explicit
function of time, we would like to express it in terms of the state of the system, by the ideal
gas law (3.3). First, we express cos(ωt) in terms of dp/dx from eq. (A.9). Then, assuming
a sinusoidal pressure gradient of slowly varying amplitude (relative to the oscillation’s
period), we consider dp/dx = (P̂e − Pg)/Lℓ, with Pg given by the ideal gas law. We get
the following expression for cos(ωt), with ∆Pg ≡ Pg − Pg,0 = Pg − P̂e

cos(ωt) = − 1

ρK
ℜ
(︃
dp

dx

)︃
= − 1

ρK

P̂e − Pg

Lℓ

=
∆Pg

ρKLℓ

. (A.17)

We express sin(ωt) in terms of ∆Pg by using the time derivative of cos(ωt):

sin(ωt) = − 1

ω

d cos(ωt)

dt
= − 1

ω

d

dt

(︃
∆Pg

ρKLℓ

)︃
= − 1

ωρKLℓ

d∆Pg

dt
. (A.18)

Substitution of those expressions for cos(ωt) and sin(ωt) in Ff gives

Ff = −2πµLℓ umax

Reω

[︃√︁
8Reω

(︃
1

ρKLℓ

∆Pg

)︃
−
(︂√︁

8Reω − 2
)︂ 1

ωρKLℓ

d∆Pg

dt

]︃
.

With umax = Kr0
2/4ν we make the following simplifications

Ff = −2π�µ��Lℓ

Reω
�
�Kρ r0

2

4�µ

1

����ρKLℓ

[︃√︁
8Reω ∆Pg −

(︂√︁
8Reω − 2

)︂ 1

ω

d∆Pg

dt

]︃
,

Ff = − A

2Reω

[︃√︁
8Reω ∆Pg −

(︂√︁
8Reω − 2

)︂ 1

ω

d∆Pg

dt

]︃
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and finally get the expression for the friction force in terms of ∆Pg,

Ff = −
√︃

2

Reω
∆Pg A+

1

ω

(︃√︃
2

Reω
− 1

Reω

)︃
∆Ṗg A. (A.19)

In the linear solution (see appendix A.1.3), the dimensionless quantity ζfω =
√︁
1/(2Reω)

appears as a damping coefficient, analogous to ζf for the Poiseuille flow case. We can
choose to express Ff in terms of ζfω instead of Reω:

Ff = −ζfω ∆Pg A+
1

ω

(︁
ζfω − 2ζ2fω

)︁
∆Ṗg A. (A.20)

Note that we do not know the angular frequency ω in advance. Assuming ω ≈ ωn should
be a good first approximation.

A.1.3 Differential Equations and Linear Solution
The mechanical equilibrium (3.1), the evaporation rate (3.7) and the gas temperature rate
of change (3.2) are given in dimensionless form in, respectively,

˜̈︁xi = ˜︃∆Pg +˜︂Ff , (A.21a)

d ˜︃∆mg

dτ
= ˜̇︃∆mg = ˜︃THL arctan

[︂
−
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ (˜︁xi − ˜︁xc)

]︂
+ ˜︂Cth −

(︃
Tg,0

mg,0 ωn HvRth

)︃
˜︂∆T g,sat,

(A.21b)

d ˜︃∆Tg
dτ

= ˜̇︃∆Tg =
γth

(︂
˜︂∆T g,sat + ˜︁Tg,sat,0

)︂
−
(︂
1 +˜︃∆Tg

)︂

1 + ˜︃∆mg

˜̇︃∆mg

+
(1− γth)

(︂
1 + ˜︃∆Pg

)︂
˜̇︁xi

1 + ˜︃∆mg

+
˜̇︂Qg

1 + ˜︃∆mg

.

(A.21c)

Equation (A.21c) takes into account the heat transfer ˜̇︂Qg between the tube wall and the
vapor. However, instead of deriving an expression for ˜̇︂Qg, we only consider two special cases,
one where the vapor is isothermal (˜̇︂Qg compensates the other terms such that ˜̇︁Tg(τ) = 0)
and a second case where there is no heat exchange between the vapor and the surroundings
(˜̇︂Qg= 0). The dimensionless expression of the variation of pressure ˜︃∆Pg is given by

˜︃∆Pg = −
(︃

1

1 + ˜︁xi

)︃
˜︁xi

⏞ ⏟⏟ ⏞
˜︂FV

+

(︃
1 + ˜︃∆mg

1 + ˜︁xi

)︃
˜︃∆Tg

⏞ ⏟⏟ ⏞
˜︂FT

+

(︃
1

1 + ˜︁xi

)︃
˜︃∆mg

⏞ ⏟⏟ ⏞
˜︃Fm

. (A.22a)
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The dimensionless expressions of friction and variations of temperature saturation are
given by, respectively,

˜̇︃∆Pg = −

⎛
⎝
(︁
1 + ˜︃∆mg

)︁ (︂
1 +˜︃∆Tg

)︂

(1 + ˜︁xi)2

⎞
⎠ ˜̇︁xi +

(︃
1 + ˜︃∆mg

1 + ˜︁xi

)︃
˜̇︃∆Tg +

(︄
1 +˜︃∆Tg
1 + ˜︁xi

)︄
˜̇︃∆mg,

(A.22b)

˜︂Ff =

⎧
⎨
⎩
−2 ζf ˜̇︁xi (Poiseuille flow, Reω ≪ 4)

−
√︂

2
Reω

˜︃∆Pg +
1
˜︁ω

(︂√︂
2

Reω
− 1

Reω

)︂
˜̇︃∆Pg (oscillating flow, 4 < Reω < 2000),

(A.22c)

˜︂∆T g,sat =
Hv

˜︁Tg,sat,0
Hv −Rg Tg,0 ˜︁Tg,sat,0 ln

[︂
˜︃∆Pg + 1

]︂ − ˜︁Tg,sat,0. (A.22d)

The dimensionless variables and parameters are given by, respectively.

τ ≡ ωn t, (A.23a)

˜︁xi ≡
xi
Lg,0

, (A.23b)

˜︃∆mg ≡
∆mg

mg,0

, (A.23c)

˜︃∆Tg ≡
∆Tg
Tg,0

, (A.23d)

˜︃∆Tg,sat ≡
∆Tg,sat
Tg,0

, (A.23e)

˜︁Tg,sat,0 ≡
Tg,sat,0
Tg,0

, (A.23f)

˜︃∆Pg ≡
∆Pg

Pg,0

, (A.23g)

˜︂Ff ≡ Ff

Pg,0 A
; (A.23h)
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ζf ≡ − c

2mℓ ωn

, (A.24a)

ζfω ≡
√︃

1

2Reω
=

√︃
µ

2 ρℓ ωR2
=

1√
˜︁ω
ζfωn , (A.24b)

ζfωn ≡=

√︃
µ

2 ρℓ ωnR2
, (A.24c)

˜̇︂Qg ≡
Q̇g

cv ωnmg,0 Tg,0
, (A.24d)

˜︃THL ≡
(︃

1

π ωnmg,0Hv Rth

)︃
THL, (A.24e)

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ ≡

(︃
π Lg,0

THL

)︃
|T ′

wc|, (A.24f)

˜︁xc ≡
(︃

1

Lg,0

)︃
xc, (A.24g)

˜︂Cth ≡
1
2
(TH + TL)− Tg,sat,0

mg,0 ωn HvRth

, (A.24h)

˜︁ε ≡ Rg Tg,0
2 ˜︁T 2

g,sat,0

2 mg,0 ωn Hv
2Rth

. (A.24i)

Linearization of eq. (A.21) leads to the following equations written in matrix form:

q̇ = Aq with q =

⎛
⎜⎜⎝

˜︁xi
˜̇︁xi
˜︃∆mg

˜︃∆Tg

⎞
⎟⎟⎠ ; (A.25a)

A =

⎛
⎜⎜⎝

0 1 0 0
A21 A22 A23 A24

−2 (˜︁σ − ˜︁ε) 0 −2 ˜︁ε −2 ˜︁ε
−2CγT (˜︁σ − ˜︁ε) (1− γth) −2CγT ˜︁ε −2CγT ˜︁ε

⎞
⎟⎟⎠ ; (A.25b)

A21 = −1 + 2 ζfω − 4/˜︁ω (CγT + 1) (˜︁σ − ˜︁ε)
(︁
ζfω − ζfω

2
)︁
,

A22 = −2 γth/˜︁ω
(︁
ζfω − ζfω

2
)︁
,

A23 = 1− 2 ζfω − 4 ˜︁ε/˜︁ω (CγT + 1)
(︁
ζfω − ζfω

2
)︁
,

A24 = 1− 2 ζfω − 4 ˜︁ε/˜︁ω (CγT + 1)
(︁
ζfω − ζfω

2
)︁
;

(A.25c)

A21 = −1, A22 = −2 ζf , A23 = 1, A24 = 1. (A.25d)
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The variables which must be solved are the elements of a vector q. In the matrix A, the
second row is given by eq. (A.25c) in the case of the oscillating friction and by eq. (A.25d)
for the Poiseuille friction. The parameter CγT is used for compactness with the definition
CγT ≡ γth ˜︁Tg,sat,0−1. The coefficient ˜︁ε (eq. (A.24i)) expresses a rate of phase change due to
variations of saturation temperature (only appears because ˜︂∆T g,sat is taken into account)
and is therefore referred to as the dynamic saturation temperature coefficient.

The basic case assumes constant saturation temperature and constant vapor temperature,
so ˜︂∆T g,sat = ˜︁ε = ˜︃∆Tg = 0 and friction from the Poiseuille flow is taken into account. We
get q̇ = Aq, with q and A defined by

q =

⎛
⎝
˜︁xi
˜̇︁xi
˜︃∆mg

⎞
⎠ , A =

⎛
⎝

0 1 0
−1 −2 ζf 1
−2 ˜︁σ 0 0

⎞
⎠ . (A.26)

The basic case is solved first. Then the general case is solved.
Solution of the Basic Case
In order to solve eq. (A.26), we must find the eigenvalues and eigenvectors of the matrix
A. The eigenvalues λ must satisfy the condition det (A− λI), where I is the identify
matrix. This condition leads to a characteristic cubic polynomial which is solved [50, 120]
for λ (eq. (A.27a)). Here w is a primitive cube root of unity, p and b are the coefficients
of the depressed cubic, d is the discriminant, and Cλ is a cubic root:

λn = −2

3
ζf + wn−1Cλ −

p

3wn−1Cλ

with n = 1, 2, 3, (A.27a)

w ≡ e2πi/3 = −1
2
+ 1

2

√
−3, (A.27b)

p ≡ 1− 4
3
ζf

2, (A.27c)
b ≡ 2˜︁σ − 2

3
ζf +

16
27
ζf

3, (A.27d)
d = −4p3 − 27b2, (A.27e)

Cλ ≡ 3

√︃
−1

2
b+ 1

2

√︂
− 1

27
d. (A.27f)

Depending on the sign of the discriminant d, there are either three distinct real roots
(d > 0), multiple real roots (d = 0), or one real root and two complex conjugate roots
(d < 0). Oscillations occur only when d < 0. Provided all roots are distinct (d ̸= 0), the
general solution for the cubic is given by

q = c1v1 e
λ1τ + c2v2 e

λ2τ + c3v3 e
λ3τ , (A.28)

where the λ are given by eq. (A.27a) and the v are eigenvectors. The eigenvectors can be
found by the condition (A− λI)v = 0. The eigenvectors can be written as functions of
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the eigenvalues as given by

vn =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1

2 ˜︁σ λn

− 1

2 ˜︁σ (λn)
2

1

⎞
⎟⎟⎟⎟⎟⎟⎠

with n = 1, 2, 3. (A.29)

We now need to find the constants c. These constants are fixed by the initial conditions.
They can be found by setting τ = 0 in the solution (A.28) and solving for the c. We do not
provide the result explicitly here because of the length of the expressions. The solution
(A.28) is now completed.

In the case where there are oscillations (d < 0), the solution eq. (A.28) can be rewritten
in a more meaningful way. If we ensure that the real root of Cλ is taken, λ1 is the real
root and λ2,3 are the complex conjugates. The solution can then be written as

qn = an,1 e
λ1τ + an,2 sin (˜︁ωτ + φn) · e˜︁ατ , (A.30a)

where n = 1, 2, 3 and an,1, an,2 and φn are constants fixed by the initial conditions. The
growth rate ˜︁α and the dimensionless angular frequency ˜︁ω are defined as the real part and
the imaginary part of the complex conjugate, such that λ2,3 = ˜︁α± i˜︁ω:

˜︁ω = ∥ℑ[λ2,3]∥ =
√
3
2

⃓⃓
⃓Cλ +

p

3Cλ

⃓⃓
⃓, (A.30b)

˜︁α = ℜ[λ2,3] = −2

3
ζf − 1

2
Cλ +

p

6Cλ

, (A.30c)

an,1 = c1 vn,1, (A.30d)

an,2 =
√︁

4 c2 c3 vn,2 vn,3, (A.30e)

tan (φn) =
c2 vn,2 + c3 vn,3

i (c2 vn,2 − c3 vn,3)
. (A.30f)

Note that one must be careful when computing the phase φ by making sure that the
arctangent function covers 0 : 2π (by using the function atan2 on usual software).

Once substitutions are made, the discriminant d , the growth rate of the real root λ1, the
growth rate of the oscillations ˜︁α, and the angular frequency ˜︁ω are functions of ˜︁σ and ζf
only. They can be represented by surfaces as shown in fig. A.2. There are no oscillations in
the lower right corner, since the discriminant is positive as shown in fig. A.2a. Oscillations
of qn grow if ˜︁α > 0, the stability threshold occuring at ˜︁α = 0. As one can anticipate from
fig. A.2c, solving ˜︁α = 0 for ˜︁σ gives ˜︁σ = ζf ; the system is unstable when ˜︁σ > ζf . The
instability number Π is defined as the ratio between the phase-change coefficient and the
dissipation coefficient Π = ˜︁σ/ζf . The system is unstable when the phase change is greater
than the dissipation, when Π > 1. Considering the dimensionless angular frequency,
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eq. (A.30b) gives ˜︁ω = 1 (the dimensional frequency is ωn) for the line ˜︁σ = ζf . In the upper
part for ˜︁σ > ζf , however, the frequency increases.

Although exact, the expressions for the eigenvalues and for ˜︁α and ˜︁ω are difficult to ana-
lyze. Those are all nonlinear algebraic functions of ˜︁σ and ζf . Since ˜︁σ and ζf are usually
small, it is useful to linearize the eigenvalues around ˜︁σ = ζf = 0. We get the following
approximations for the roots:

λ1 ≈ −2 ˜︁σ, (A.31a)
λ2,3 ≈ (˜︁σ − ζf )± i. (A.31b)

The growth rate and the dimensionless angular frequency can be approximated as

˜︁α ≈ ˜︁σ − ζf = ζf (Π− 1) , (A.32a)
˜︁ω ≈ 1. (A.32b)

These expressions are much simpler. The phase change ˜︁σ acts as feedback and the friction
ζf acts as dissipation. The solution in the main text (3.14) is based on eqs. (A.30a)
and (A.32). The linearized expressions of ˜︁α and ˜︁ω are good approximations in the lower
left corner of fig. A.2c and fig. A.2d and exact on the line ˜︁σ = ζf . We can see the deviations
from the linearized formulas in these figures. Beyond the linearized approximation, we
see that actually the friction ζf influences the growth rate and that the phase change
˜︁σ influences the frequency. These effects are significant only for high values of ˜︁σ or ζf
however.
Solution of the General Case
The general case includes secondary effects which are not required to produce self-oscillations,
but provide a more accurate physical representation of the problem. Variation of satura-
tion temperature ˜︂∆T g,sat, variation of vapor temperature ˜︃∆Tg, and friction in an oscillating
regime (expressed by the coefficient ζfω) are taken into account. The solution of eq. (A.25)
is given by

q = c0v0 e
λ0τ + c1v1 e

λ1τ + c2v2 e
λ2τ + c3v3 e

λ3τ , (A.33)

in the case where all eigenvalues are distinct.

The eigenvalues can be found similarly to the basic case. Here, however, a quartic char-
acteristic polynomial must be solved [50, 121]. The first eigenvalue is null λ0 = 0 and the
first term in the solution of q is therefore a constant. For λ1,2,3, we only give the linearized
values (for small ˜︁σ, ˜︁ε, and ζfω),

λ0 =0, (A.34a)

λ1 ≈− 2 ˜︁Tg,sat,0 ˜︁σ, (A.34b)

λ2,3 ≈˜︁Tg,sat,0 (˜︁σ − γth ˜︁ε)−
√
γth ζfω ± i

√
γth (1− ζfω) . (A.34c)
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Figure A.2 (a) discriminant d (with d < 0 required for complex conjugate
roots), (b) dimensionless growth of the real root λ1, (eq. (A.27a)), (c) growth
rate of the oscillations ˜︁α (eq. (A.30c)), and (d) dimensionless angular frequency
˜︁ω (eq. (A.30b)) as surfaces, along ˜︁σ and ζf .
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In the case where there are oscillations (such as when ˜︁σ, ˜︁ε, and ζfω are small), the solution
can be rewritten as

qn = an,0 + an,1 e
λ1τ + an,2 sin (˜︁ωτ + φn) · e˜︁ατ . (A.35)

The roots λ2,3 are the complex conjugates and are responsible for the oscillations (growing
or not). The real part ˜︁α is the growth rate and the imaginary part ˜︁ω is the angular
frequency. Their linearized expressions are given by

λ1 ≈ −2 ˜︁Tg,sat,0 ˜︁σ, (A.36a)
λ2,3 ≈ ˜︁α ± i ˜︁ω, (A.36b)
˜︁ω ≈ √

γth (1− ζfω) , (A.36c)

˜︁α = ˜︁Tg,sat,0 (˜︁σ − γth ˜︁ε)−
√
γth ζfω (A.36d)

=
√
γth ζfω (Π− 1) , (A.36e)

Π ≡
˜︁Tg,sat,0 (˜︁σ − γth ˜︁ε)√

γth ζfω
=

(︃
1− γth ˜︁ε

˜︁σ

)︃
Πσ, (A.36f)

Πσ ≡
˜︁Tg,sat,0 ˜︁σ√
γth ζfω

≈ 4

√︄
ρℓ3 LℓLg,0

4µ2 γth2
Rg Tg,sat,0

⃓⃓
T ′
w,0

⃓⃓

π RHv Rth P̂
5/4

e

, (A.36g)

γth ˜︁ε
˜︁σ =

γth Rg Tg,sat,0
2

Lg,0Hv

⃓⃓
T ′
w,0

⃓⃓ . (A.36h)

It is worth mentioning that eq. (A.36c) is actually not an explicit equation for ˜︁ω. Indeed,
ζfω is itself a function of ˜︁ω as given by eq. (A.24b). For ζfω small, however, we can assume
that ζfω ∼ ζfωn , where ζfωn (eq. (A.24c)) is based on ωn and is thus known.

Similarly to the basic case, the system oscillates at a dimensionless frequency ˜︁ω with an
instability threshold depending on a new formulation of the number Π given by eq. (A.36f).
The importance of the variations of saturation temperature can be evaluated by the ratio
γth ˜︁ε/˜︁σ. The effect is negligible if γth ˜︁ε/˜︁σ ≪ 1 and Π then reduces to Πσ. The oscillating
friction is proportional to ζfω. Increasing ζfω decreases Πσ and stabilizes the system, just
like for the Poiseuille friction. For the case studied in section 3.5, Reω ≈ 133 so oscillating
friction applies, ζf ≈ 0.03, ζfω ≈ 0.06, and ζfω/ζf ≈ 2. In this case, the oscillating friction
is greater than the Poiseuille friction. The oscillating friction, contrary to the Poiseuille
friction, also reduces the frequency of the oscillations. In the case studied, this is a small
effect.

In the case where there is no direct heat transfer between the wall and the vapor (˜̇︂Qg= 0),
referred to as adiabatic, the temperature of vapor varies according to the pressure. This
introduces the heat capacity ratio γth and the dimensionless saturation temperature at
equilibrium ˜︁Tg,sat,0 (˜︁Tg,sat,0 = Tg,sat,0/Tg,0 < 1) in the solution and in Π. The variations of
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Tg produce a change of pressure resulting in the force component ˜︂FT . This force is partly
opposite to the position, stiffening the spring and increasing the frequency by a factor √γth,
and partly opposite to the velocity, stabilizing the oscillations as seen in Π. For a heat
source at 150 ◦C and the system at atmospheric pressure, the factor ˜︁Tg,sat,0/

√
γth = 0.76

and Πσ is reduced by 25%. The γth factor appears in γth ˜︁ε/˜︁σ and in Πσ because both the
saturation temperature and the oscillating friction are functions of the pressure difference
which is a function of the temperature. For the given solution, the isothermal case can be
found by setting γth = ˜︁Tg,sat,0 = 1.

Variations of saturation temperature during the oscillations (dynamic effect) affects the
phase change by the dynamic saturation temperature coefficient ˜︁ε as seen in the third
row of eq. (A.25b). Increasing ˜︁ε increases the ratio γth ˜︁ε/˜︁σ, which in turns decreases Π.
The variations of saturation temperature therefore have a stabilizing effect. This is be-
cause those variations decrease the absolute temperature difference ∥Tw − Tg,sat∥ and thus
decrease the phase change (see eqs. (3.4) and (A.25b)).Also, a change of the saturation
temperature at equilibrium ˜︁Tg,sat,0 (static effect) changes the thermal gradient at equilib-
rium in Πσ, according to eq. (3.6) for our assumed arctangent wall temperature profile.
This can increase or decrease the instability depending on the value of ˜︁Tg,sat,0 and on the
wall temperature profile.

Gravity changes P̂e in Π and has the same effect as the external pressure Pe on the
instability. An angle θ of 90◦ increases P̂e and stabilizes the system. An angle θ of −90◦,
on the contrary, decreases P̂e and destabilizes the system. This analysis does not consider
the effect of gravity on the thermal resistance. A secondary effect of P̂e is to change Tg,sat,0
(eq. (3.8)), thus possibly changing the thermal gradient at equilibrium.

A.2 Experimental Additional Informations and Results
A.2.1 Details on the Instability Experiment
In this section we provide more details to section 3.5 on how quantities are derived from
the position and pressure measurements. The position of the meniscus xi is measured
via a high-speed camera. We use an in-house code to detect the meniscus edge from the
video. The motion has small discretization steps (20 µm) due to the pixels in the frames.
This only represents around 0.1% of the final amplitude. However, when computing the
derivatives ẋi and ẍi, those small steps lead to noise (high-frequency noise is amplified
by the derivatives). To avoid this problem, we use a fit (smoothing splines) to obtain a
position signal xi identical to the original one, except for the steps which are averaged out.
Deriving this signal gives velocity ẋi and acceleration ẍi signals with very little noise. We
also use a fit for the pressure, although the original signal is extremely accurate.

To extract the mass of vapor mg, we simply solve the ideal gas law (3.3) for the mass of
vapor, obtaining

mg =
Pg Vg

Rg Tg
=
Pg · (xi + Lg,0) A

Rg Tg
. (A.37)
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In this equation, the position xi and the pressure Pg are directly measured (importantly,
measurements are synchronized in time). As discussed in section 3.5.2, simple heat trans-
fer estimation shows that Tg is very much constant, so we assume that Tg equals the
temperature of the evaporator, which is measured by a thermocouple. All quantities in
eq. (A.37) are known, so the mass of vapor can be obtained. The evaporation rate ṁg is
obtained simply by deriving in time.

The friction force ˜︂Ff is obtained by solving the momentum balance (3.1) for Ff , leading
to

Ff = mℓ ẍi −
(︂
Pg − P̂e

)︂
A (A.38)

All quantities are known in this equation, so the friction force can be obtained. The signal
has some noise at very small amplitude (see fig. 3.8) since it is very sensitive to the noise
in xi (because it involves the second derivative ẍi), which is more significant at very small
amplitude.

In section 3.5.2, we provided an approximate value for ˜︁σ. It was obtained from the linear
equation ˜̇︃∆mg ≈ −2 ˜︁σ ˜︁xi (eq. (3.12b)). We consider the first harmonics of ˜̇︃∆mg and ˜︁xi. The
ratio of the harmonics amplitudes, divided by −2, gives ˜︁σ. The relation ˜̇︃∆mg ≈ −2 ˜︁σ ˜︁xi
assumes that ˜̇︃∆mg and ˜︁xi are in phase, but there actually is a small phase shift in the
experiment. To take this into account, we actually only take the component in phase with
the position of the first harmonic of ˜̇︃∆mg and not the full ˜̇︃∆mg. The small component in
phase with the velocity does not contribute to the positive feedback (it leads to an inertial
force). Said differently, the coefficient ˜︁σ defines the proportionality of the component of
˜̇︃∆mg in phase with the position and not the velocity. The method is only valid when
the dynamics is linear, so ˜︁σ must be extracted early enough in the startup so that the
oscillation amplitude is small enough that nonlinearities are negligible. This leads to some
uncertainty in the extracted value of ˜︁σ. We note that another technique to extract ˜︁σ
would be to fit an exponential to the amplitude growth (at the beginning of the startup,
where nonlinearities are not yet taking place so the growth has not yet saturated). From
the exponential, ˜︁α can be extracted (see eq. (3.14)).Then ˜︁σ is found given ˜︁α ≈ ˜︁σ − ζf .
Both techniques gives similar results in our experiment.

A.2.2 Validation of the Mechanical Resonator Representation
The experimental setup for the validation of the mechanical resonator is shown in fig. A.3.
A glass tube open on one side is used as a SBPHP. Sliding the tube in or out of the heat
source changes Lg,0, the size of the vapor bubble at equilibrium. The tube is heated at the
closed end by an evaporator, a reservoir filled with glycerin maintained at a temperature
TH . The two ends of the evaporator are closed with PDMS plugs. A capillary is inserted
in the SBPHP tube to enhance the phase change and reduce the threshold temperature
TH for self-oscillations. The temperature TH is measured by a thermocouple (Omega 5TC-
TT-K-30-36) and the heater (Omega Lux heater CSH-1011001/120) is driven by a heater
controller (RKC Instrument REX-C100), limited by a voltage regulator. A pressure relief
valve, not shown in the figure, prevents overpressurization of the glycerin. Outside the
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evaporator, the tube is connected to a pressure sensor (Omega PX26-005DV), for frequency
measurements. The resonator is characterized by a natural frequency. To validate that
the oscillations in the SBPHP are explained by the coupling of a gas spring and the liquid
column mass, we can test the angular frequency ωn prediction (3.15e). In eq. (3.15e), two
parameters Lℓ and Lg,0 can be easily controlled. We measured the frequency for a range
of those two parameters.

The predicted frequency matches well with the experimental results for the range of lengths
tested, as shown in figs. A.4a and A.4b. These results are considered to be strong evidence
of the existence of a mechanical resonator due to the coupling between the liquid mass and
FV , the spring effect due to a change of pressure from a change of volume of the vapor. Still,
the theory slightly underpredicts the frequency in figure A.4a. The theoretical expression
considered is based on several hypotheses such as small ˜︁σ and ζf (Poiseuille flow) and does
not take into account the nonlinearities of eq. (A.21).

heat source

heated glycerin

PDMS plug

thermocouple

heater

Capillary

pressure
sensor

Figure A.3 Schematic of the experimental setup for variations of Lg,0, not to
scale.
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Figure A.4 Experimental validation of the frequency for ranges of (a) vapor
length Lg,0 (fixed liquid length Lℓ = 14 cm) and (b) liquid length Lℓ (fixed vapor
length Lg,0 = 7 cm).
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Appendix to Chapter 4

B.1 Detailed Procedure to Derive the Normal Form
In this appendix, we show how to derive the normal form vector field for r and θ (eq. (4.17))
from the vector field for q1, q2 and q3 (eq. (4.14)). We first use the center manifold reduction
to reduce the three-dimensional system to a two-dimensional one (appendix B.1.1). We
then reduce the two-dimensional system to its normal form, which we can solve analytically
(appendix B.1.2). The solution is provided for new phase-space variables z1 and z2, related
to the original one (q1, q2 and q3) through a series of transformations. In appendix B.1.3,
we make the inverse transformation and provide the analytical solution for q1, q2 and q3.
Our procedure is mainly based on Wiggins [124]. See Rand [91] for an introduction and
Moon and Rand [82] for an example of the technique. Because the procedure involves
lengthy manipulations, it is best handled using an analytical software. The Matlab code
used for this purpose is made available in supplementary materials in the article. In the
following, we will not include the full explicit expressions of some of the quantities in the
intermediary steps, please refer to the code for those.

B.1.1 Center Manifold Reduction
We start from eq. (4.14), but replace σ by the bifurcation parameter δ, using σ = δ + ζf
and resulting in

q̇1 = q2, (B.1a)

q̇2 =

[︃
1− cP

(︃
q1

1 + q1

)︃]︃
(−q1 + q3)− 2 ζf q2, (B.1b)

q̇3 = −2 (δ + ζf ) (1− cT ) q1

+ cT THL

(︃
arctan

[︃
−
(︃

2 (δ + ζf )

THL cos2[ψ/2]

)︃
q1 − tan

[︃
ψ

2

]︃]︃
+
ψ

2

)︃
.

(B.1c)

To apply the center manifold reduction technique, we need the real part of the complex
conjugate eigenvalues to be 0. Here however, the real part of the complex conjugate
eigenvalues can be positive or negative, if δ ̸= 0 (see section 4.2.2). Fortunately, we
can transform the system to satisfy the center manifold requirement by a clever trick
[124, p.251]: we define δ as a new phase-space variable and add the following differential
equation to the system,

δ̇ = 0, (B.1d)

which defines δ as a constant. Because δ is a phase-space variable, the quantities δq1
are now nonlinear. Thus, δ will not appear in the linear part and will not contribute

235
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to the eigenvalues anymore. The real part of the complex-conjugate eigenvalues will be
0 (we will show that in the following). The new phase-space given by eq. (B.1) is four-
dimensional. As a compact notation, we define the vector of phase-space variables x as
x ≡ [q1, q2, q3, δ]

T and eq. (B.1) becomes ẋ = f(x), where f is the vector field.
Standard Form
Before making the reduction, we must transform the system into a standard form. To do
so, we first split the vector field as

ẋ = f (x) = Ax+ F (x), (B.2)

where Ax is the linear part and F (x) is the nonlinear part. The matrix A is given by

A = Df(0) =

⎡
⎢⎢⎣

0 1 0 0
−1 −2ζf 1 0
−2ζf 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (B.3)

where Df(0) is the Jacobian of the vector field evaluated at the equilibrium x = 0 (this
is the linearization of the vector field). The nonlinear part is given by F (x) = f(x)−Ax.
We have that F (0) = 0 and DF (0) = 0. For small x, F (x) is small and the system is
weakly nonlinear.

The eigenvalues of A are: λ1 = 0, λ2 = −i, λ3 = i and λ4 = −2ζf . We see here that we
indeed have the real part of complex-conjugate eigenvalues λ2,3 being 0. The corresponding
eigenvectors are the columns of the matrix

V =

⎡
⎢⎢⎣

0 i −i 1
0 1 1 −2ζf
0 2ζf 2ζf 1
1 0 0 0

⎤
⎥⎥⎦ . (B.4)

The standard form we seek requires the linear part to be in a block diagonal form [124,
p.37], in the Jordan canonical form more specifically. To reach that form, we use a linear
transformation given by a matrix Ta. For A having distinct real eigenvalues λj with
corresponding eigenvectors vj and distinct complex eigenvalues λj = aj + i bj and λ̄j =
aj − i bj with corresponding complex eigenvectors wj = uj + ivj and w̄j = uj − ivj,
with j = k + 1, ..., n, the matrix Ta is given by Ta = [v1,u1, . . . ,vn,un] (see Perko [88,
p.39,28,154,108] for details). Given the eigenvectors eq. (B.4), we obtain, for Ta and its
inverse Ta−1 (with κ ≡ 1/(1 + 4ζf

2)),

Ta =

⎡
⎢⎢⎣

0 −1 0 1
0 0 1 −2ζf
0 0 2ζf 1
1 0 0 0

⎤
⎥⎥⎦ and Ta

−1 =

⎡
⎢⎢⎣

0 0 0 1
−1 −2κ ζf κ 0
0 κ 2κζf 0
0 −2κ ζf κ 0

⎤
⎥⎥⎦ . (B.5)
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We apply this transformation to the vector of phase-space variable x and obtain a trans-
formed vector of phase-space variables, we have

y = Ta
−1x =

⎡
⎢⎢⎣

y1
y2
y3
y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δ
κ
(︁
−q1 + q3 − 2ζfq2 − 4ζf

2q1
)︁

κ (q2 + 2ζfq3)
κ (q3 − 2ζfq2)

⎤
⎥⎥⎦ (B.6)

and

x = Tay =

⎡
⎢⎢⎣

q1
q2
q3
δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−y2 + y4
y3 − 2ζf y4
2ζf y3 + y4

y1

⎤
⎥⎥⎦ . (B.7)

Substitution of x = Tay into the system ẋ = Ax+ F (x) (eq. (B.2)) leads to

ẏ = g (y) = J y +G(y), (B.8)

where J is the matrix Ta−1ATa and G(y) = Ta
−1F (Tay). The matrix J is given by

J = Ta
−1ATa =

⎡
⎢⎢⎣

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 −2ζf

⎤
⎥⎥⎦ . (B.9)

We can split eq. (B.8) into three rows as

ẏ =

⎡
⎣
ẏp

ẏc

ẏs

⎤
⎦ =

⎡
⎣
0 0 0
0 Jc 0
0 0 Js

⎤
⎦
⎡
⎣
yp

yc

ys

⎤
⎦+

⎡
⎣

0
Gc(yc,yp,ys)
Gs(yc,yp,ys)

⎤
⎦ , (B.10)

where
Jc =

[︃
0 −1
1 0

]︃
and Js = −2ζf . (B.11)

In eq. (B.10), the first row having variable yp = δ, corresponds to a parameter subsystem,
the second row having variables yc = [y2, y3]

T corresponds to a center subsystem since its
eigenvalues are complex conjugate eigenvalues with 0 real parts and the third row having
variable ys = y4, corresponds to a stable subsystem since its eigenvalue is real and negative.
The parameter, center and stable directions are linearly uncoupled from one another. We
have that Gc = 0, Gs = 0, DGc = 0 and DGs = 0. eq. (B.10) is the standard form
required to apply the Center manifold theorem.
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Center Manifold Reduction
There exists a center manifold for the system eq. (B.10) defined locally by

W c
loc(0) = {(yc,yp,ys) ∈ Rc × Rp × Rs | ys = h (yc,yp) ,

|yc| < γc, |yp| < γp, h(0,0) = 0, Dh(0,0) = 0, } (B.12)

for γc and γp sufficiently small [124, Sec. 18.2, p.251]. The center manifold is a three-
dimensional surface in the four-dimensional phase-space. Sufficiently close to the origin
y = 0, “small amplitude periodic orbits are contained in the center manifold” [124, p.247].
Consequently, we will be able to consider only the dynamics in the center manifold and thus
reduce the dimensionality of the system. In eq. (B.12), we have that ys = y4 = h (yc,yp),
the stable direction is reduced to a function h of yc = [y2, y3]

T and yp = y1 = δ. It is
common to approximate h by a power expansion, we have

y4 ≈ h, with : h = c1 y
2
1 + c2 y1y2 + c3 y1y3 + c4 y

2
2 + c5 y2y3 + c6 y

2
3. (B.13)

We now must find the coefficients cj. For W c
loc(0) to be a center manifold, h must satisfy

the differential equations of the system. By substitution of y4 = h(δ, y2, y3) in eq. (B.8), we
find that h must satisfy the following quasilinear partial differential equation [124, p.252]

N (h(yc,yp)) ≡ Dych(yc,yp) · gc (yc, h(yc,yp),yp)− gs (yc, h(yc,yp),yp) = 0. (B.14)

Collecting terms of like powers, we obtain 6 algebraic equations which we solve for the 6
c’s, leading to

c1 = 0, (B.15a)

c2 =
4

(︁
1 + 4ζf

2
)︁2 , (B.15b)

c3 =
2

(︁
1 + 4ζf

2
)︁2 , (B.15c)

c4 =
−THL cP + 2ζf tan [ψ/2]

(︁
1 + 2ζf

2
)︁
cT

2THL

(︁
1 + 5ζf

2 + 4ζf
4
)︁ , (B.15d)

c5 =
−ζfTHL

(︁
1 + 2ζf

2
)︁
cP + 2ζf

2 tan [ψ/2] cT

THL

(︁
1 + 5ζf

2 + 4ζf
4
)︁ , (B.15e)

c6 =
−THL

(︁
1 + 2ζf

2
)︁
cP + 2ζf tan [ψ/2] cT

2THL

(︁
1 + 5ζf

2 + 4ζf
4
)︁ . (B.15f)
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By substitution of ys = y4 = h(δ, y2, y3) in system eq. (B.10), the center subsystem
becomes

ẏc = gc = Jcyc +Gc(yc,yp,h(yc,yp)) with: Jc =

[︃
0 −1
1 0

]︃
, (B.16a)

where yc = [y2, y3]
T and Gc is a complicated function of y2 y3 and δ. This system is

now completely decoupled from the stable subsystem (does not depend on ys at all). The
parameter subsystem equation is again

δ̇ = 0. (B.16b)

eq. (B.16) is a three-dimensional phase-space (with variables y2, y3 and δ). However, since
δ̇ = 0, the motion on the plane y2 − y3 is invariant (remains on the plane), so knowing
the value δ is enough to predict the motion on the plane y2 − y3. The dynamics is thus
effectively two-dimensional and is given by eq. (B.16a). Properties of the dynamics in
the plane y2 − y3 can change as the height δ changes. In fact, we will find that a Hopf
bifurcation occurs at δ = 0.

B.1.2 Normal Form
Now that we have a two-dimensional system eq. (B.16a), we can use the normal form
reduction technique to obtain an approximative solution for it. In normal form, we want
the instability to be captured in the linear part, we want δ to appear in the linear part
[124, Eq.(19.2.1,19.2.3), p.278,279]. Unfortunately, we purposefully removed δ from the
linear part to apply the center manifold reduction. We can bring δ back by splitting the
vector field gc in eq. (B.16) again, but without taking δ as a phase-space variable. Doing
so, we get

ẏc = gc(yc) = Byc +H(yc), (B.17)

where B = Dyc gc(0) is the Jacobian of gc evaluated at the fixed point yc = 0. Also,
H = gc −Byc, H ∈ C1(E), H(0) = 0 and DH(0) = 0. As desired, the eigenvalues of B
now depend on δ. However, B is not in the Jordan canonical form, so we must perform a
linear transformation again, similarly to what was done in appendix B.1.1.
Standard Form for Complex Conjugate Eigenvalues
Here, we transform eq. (B.17) in its standard form, such that the linear part is in a
Jordan canonical form. To do so, we must perform a linear transformation through the
multiplication of a matrix Tb. To find such matrix, we first Taylor expand B for small δ.
We find

B =

[︃
0 −1
1 0

]︃
+

2δ

1 + 4ζf
2

[︃
1 0
2ζf 0

]︃
+ O(δ2). (B.18)

Considering the truncated expression of B above, we compute the trace tr(B) and the
determinant det(B). Assuming the discriminant tr(B)2 − 4 det(B) < 0 (true for either
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small |δ| or δ > 0), the eigenvalues are complex conjugates given by λ = α + iω and λ̄ =
α − iω with the real part α = 1

2
tr(B) and the imaginary part ω = 1

2

√︁
tr(B)2 − 4 det(B).

Taylor expansion of α and ω in terms of δ leads to:

α =
δ

1 + 4ζf
2 +O(δ2), and ω = 1 +

(︃
2ζf

1 + 4ζf
2

)︃
δ +O(δ2). (B.19)

The eigenvectors corresponding to the eigenvalues λ and λ̄ are w = u+iv, and w̄ = u−iv
respectively, with

u =

⎡
⎢⎣
α− b22
b21

1

⎤
⎥⎦ and v =

⎡
⎣
ω

b21

0

⎤
⎦ , (B.20)

where the bij are the elements of the truncated matrix B (eq. (B.18)). From those, we
build the transformation matrix as:

Tb = [v,u] . (B.21)

Introducing a new phase-space vector of variables z with yc = Tbz, eq. (B.17) is trans-
formed into

ż = k (z) = JB z +K(z), (B.22)

where k(z) is a new vector field, JB = Tb
−1B Tb and K(z) = Tb

−1H(Tbz). eq. (B.22) is the
required form to apply normal form reduction (requirement specified in [124, 197/,148/]).
Indeed, we have that the linear part JB satisfies

JB =

[︃
α −ω
ω α

]︃
+O(δ2), (B.23)

so JB is in the Jordan canonical form at first order approximation. Also the vector field
k is Cr with r ⩾ 5, centered at the fixed point of interest such that k (z = 0, δ = 0) = 0
and finally, α(δ = 0) = 0 and ω(δ = 0) ̸= 0.
Normal Form Reduction
One can reduce eq. (B.22) to its normal form by third order Taylor expansion of the
vector field and successive transformations (see Wiggins [124, Eq.(20.2.7) p.379, p.279] for
details), leading to

ż1 = α(δ)z1 − ω(δ)z2 + (a(δ)z1 − b(δ)z2)
(︁
z21 + z22

)︁
+O(|z1|5, |z2|5), (B.24a)

ż2 = ω(δ)z1 + α(δ)z2 + (b(δ)z1 + a(δ)z2)
(︁
z21 + z22

)︁
+O(|z1|5, |z2|5), (B.24b)
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where a and b are given by the normal form procedure. eq. (B.24) correspond to eq. (4.15)
in the main text. We care especially about the amplitude of the oscillations, so it makes
sense to introduce polar coordinates with z1 = r cos(θ) and z2 = r sin(θ), where r is the
amplitude and θ is the phase. Introducing those into eq. (B.24) leads to

ṙ = α(δ)r + a(δ)r3 +O(r5), (B.25a)

θ̇ = ω(δ) + b(δ)r2 +O(r4), (B.25b)

which are differential equations for r and θ. Because we study this system close to the
bifurcation (close to δ = 0), it makes sense to simplify eq. (B.25) by Taylor expanding its
coefficients in terms of δ. We get

ṙ = dδr + a0r
3 +O(δ2r, δr3, r5), (B.26a)

θ̇ = ω0 + cδ + b0r
2 +O(δ2, δr2, r4), (B.26b)

which is the desired normal form (corresponds to eq. (4.17) in the main text). The pa-
rameters d, ω0 and c are given by (see supplementary material and Wiggins [124])

d ≡ 1

1 + 4ζf
2 , (B.27a)

ω0 ≡ 1, (B.27b)

c =
2ζf

1 + 4ζf
2 . (B.27c)

The expression of b0 will not be needed but can be found through the normal form proce-
dure [40]. Finally a0 is given by

a0 = a0,T + a0,PT + a0,P , (B.28a)

with

a0,T ≡
(︄

−2ζf
3
(︁
1 + ζf

2 cos [ψ]
)︁

THL
2(1 + cos [ψ])

(︁
1 + ζf

2
)︁ (︁

1 + 4ζf
2
)︁
)︄
cT , (B.28b)

a0,PT ≡
(︄

ζf
2 sin [ψ]

(︁
3 + 4ζf

2
)︁

4THL (1 + cos [ψ])
(︁
1 + ζf

2
)︁ (︁

1 + 4ζf
2
)︁
)︄
cP cT , (B.28c)

a0,P ≡
(︄

−ζf
8
(︁
1 + ζf

2
)︁
)︄

cP , (B.28d)

which corresponds to eq. (4.19) in the main text.
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B.1.3 Solution in the q Variables (Back Transformation)
We now would like to know what is the analytical solution for the original variables q1,
q2 and q3. To obtain it, we must make the inverse transformations, going from z to yc

(normal form) to y (center manifold reduction) to x (standard form) to q (which is easy).
Refer to previous sections to reproduce the following results.

First, we have that yc = Tbz. Then, we can obtain y from yc based on the following,
where we used row vectors [1, 0] and [0, 1] to select yc,1 and yc,2 respectively:

y =

⎡
⎢⎢⎣

y1
y2
y3
y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δ
yc,1
yc,2

h(δ, yc,1, yc,2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

δ
[1, 0] · Tbz
[0, 1] · Tbz

h(δ, [1, 0] · Tbz, [0, 1] · Tbz)

⎤
⎥⎥⎦ .

We then obtain x from y (based on eq. (B.7))

x = Tay =

⎡
⎢⎢⎣

−y2 + y4
y3 − 2ζf y4
2ζf y3 + y4

y1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−[1, 0] · Tbz + h(δ, z1, z2)
[0, 1] · Tbz − 2ζf h(δ, z1, z2)
2ζf [0, 1] · Tbz + h(δ, z1, z2)

δ

⎤
⎥⎥⎦ .

q simply corresponds to the first three elements of x, we have

q =

⎡
⎣
q1
q2
q3

⎤
⎦ =

⎡
⎣

−[1, 0] · Tbz + h(δ, z1, z2)
[0, 1] · Tbz − 2ζf h(δ, z1, z2)
2ζf [0, 1] · Tbz + h(δ, z1, z2)

⎤
⎦ , (B.29)

where h is given by the following (based on eq. (B.13) with y1 = δ)

h(δ, z1, z2) = c1 δ
2 + c2 δy2(z) + c3 δy3(z) + c4 y2(z)

2 + c5 y2(z)y3(z) + c6 y3(z)
2, (B.30)

with y2(z) = [1, 0] · Tbz and y3(z) = [0, 1] · Tbz.

Now, because the solutions are z1 = r cos(θ) and z2 = r sin(θ), the quantities [n,m] · Tbz
are linear combinations of sines and cosines. Thus, we can write each qi (with i = 1, 2, 3)
as Fourier series with terms up to second-order harmonics (these being produced by the
terms c4y22, c5y2y3 and c6y32). We have

qi =
1
2
ai0 + ai1 cos (θ) + bi1 sin (θ) + ai2 cos (2θ) + bi2 sin (2θ) , (B.31a)
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with the coefficients computed as usual when dealing with Fourier series:

ai0 =
1

π

∫︂ π

−π

qi(r̄, θ) dθ (B.31b)

aik =
1

π

∫︂ π

−π

qi(r̄, θ) cos(kθ) dθ (B.31c)

bik =
1

π

∫︂ π

−π

qi(r̄, θ) sin(kθ) dθ (B.31d)

Because we care mostly about the amplitude of each terms, it make sense to rewrite this
Fourier series in an amplitude-phase form as

qi =
Ai0

2
+

n∑︂

k=1

Aij sin (kθ + φik) (B.32a)

with the following coefficients:

Ai0 = ai0 (B.32b)

Aik =
√︁
aik2 + bik

2 (B.32c)
φik = atan2 (aik, bik) (B.32d)

Using Taylor expansions in terms of δ and ζf we obtain the following

A10 =

(︃
cPTHL − 2cT ζf tan [ψ/2]

THL

)︃
r2 +O(δ2, ζf

2, δζf ), (B.33a)

A11 = r +O(δ2, ζf
2, δζf ), (B.33b)

A12 =
(δ + ζf ) (cPTHL − 2cT ζf tan [ψ/2])

2THL

r2 +O(δ2, ζf
2, δζf ), (B.33c)

which led to the approximations given by eq. (4.20), where we also considered ψ = 0.
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B.2 Effect of Deviation of the Equilibrium from the In-
flexion Point (ψ)

In the main text, we discussed the dynamics based on the vector field ṙ = dδr + a0r
3

(eq. (4.17a)) for a0 < 0. In section 4.3.3, we showed that we indeed have a0 < 0, if we
assume ψ = 0. In this appendix, we investigate the general case, where ψ ̸= 0. We
first described how we obtained the evaporation rate equation and how we introduced
ψ (see appendix B.2.1). We then explain what ψ means (a measure of the deviation
of the equilibrium relative to the inflexion point of the wall temperature profile) and
evaluate what values it can take, depending on Tg,sat,0, TH and TL (appendix B.2.2). We
then evaluate the sign of a0, as a function of ψ and other parameters (appendix B.2.3).
Although we expect to have a0 < 0 in typical conditions, we find that we can indeed have
a0 > 0 for large enough ψ. Finally, we study what the dynamics looks like when a0 > 0
(appendix B.2.4).

B.2.1 Derivation of the Evaporation Rate Expression, With the
Deviation Parameter ψ

Here, we describe the original expression from the evaporation rate from Tessier-Poirier et
al. [112] (appendix B.2.1) and show how we obtain the new expression used here, which
introduce ψ (appendix B.2.1).
Expression of the Evaporation Rate
The dimensionless evaporation rate q̇3 was derived in Tessier-Poirier et al. [112, Eq.(10b)
p.10] as (we adapted the nomenclature to match the one used in the main text)

q̇3 = THL arctan
[︂
−
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ (q1 − ˜︁xc)

]︂
+ ˜︂Cth. (B.34)

In eq. (B.34), the parameters are the phase-change limit THL, the dimensionless wall ax-
ial temperature gradient at the inflexion point

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓, the dimensionless position of the

inflexion point relative to the equilibrium ˜︁xc and ˜︂Cth, a constant which represents the
evaporation rate when the meniscus is at the inflexion point, when q1 = ˜︁xc. Those param-
eters are defined as

THL ≡ TH − TL
π mg,0 ωn Hv Rth

, (B.35a)

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ ≡

(︃
π Lg,0

THL

)︃
|T ′

wc|, where |T ′
wc| =

−dTw
dx

⃓⃓
⃓⃓
x=xc

, (B.35b)

˜︁xc ≡
(︃

1

Lg,0

)︃
xc, where xc =

(︃
TH − TL
π |T ′

wc|

)︃
tan

[︄
π
(︁
Tg,sat,0 − 1

2
(TH + TL)

)︁

TH − TL

]︄
, (B.35c)

˜︂Cth ≡
1
2
(TH + TL)− Tg,sat,0

mg,0 ωn HvRth

. (B.35d)
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The dimensionless axial temperature gradient at the equilibrium
⃓⃓
T ′
w,0

⃓⃓
is an important

parameter, which can be expressed as a function of the gradient at the inflexion point as

⃓⃓
T ′
w,0

⃓⃓
≡ −dTw

dx

⃓⃓
⃓⃓
x=0

=
|T ′

wc|
1 + tan2 [π (Tg,sat,0 − Tw,avg) / (TH − TL)]

. (B.36)

Finally, note that linearization of eq. (B.34) leads to q̇3 = −2σ q1 (eq. (4.9c)) where

σ ≡ 1

2

THL

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓

1 +
(︂
˜︁xc
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓
)︂2 =

Lg,0

⃓⃓
T ′
w,0

⃓⃓

2 mg,0 ωnHv Rth

, (B.37)

the last equality involving dimensional quantities, obtained by substitution.
New Form for the Evaporation Rate
Here, we will show how to transform eq. (B.34) into the form given by eq. (4.7c). We
prefer this latter form because it involves less parameters and those are easier to study.
Setting q̇3 = 0, we find that

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ ˜︁xc = tan[−˜︂Cth/THL] (B.38)

Substitution of this into the equation for q̇3 eliminates the parameter ˜︁xc, we have

q̇3 = THL

(︄
arctan

[︄
−
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ q1 − tan

[︄
˜︂Cth

THL

]︄]︄
+
˜︂Cth

THL

)︄
.

In a0 (eq. (B.28)), the quantity ˜︂Cth only appears in the ratio 2˜︂Cth/THL, as argument of
cosine and sine functions. It therefore makes sense to define the quantity ψ ≡ 2˜︂Cth/THL,
which we use to eliminate ˜︂Cth, leading to

q̇3 = THL

(︃
arctan

[︃
−
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ q1 − tan

[︃
ψ

2

]︃]︃
+
ψ

2

)︃
.

Knowing that
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ is ultimately expressed in phase-change coefficient σ when the equation

is linearized to q̇3 = −2σ q1, it makes sense to replace it right away with σ. Substitution
of
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ ˜︁xc = − tan[ψ/2] in eq. (B.37) gives

σ =
1

2

THL

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓

1 + tan2[ψ/2]
= 1

2
cos2 [ψ/2] THL

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓, (B.39)

where we use the trigonometric identity 1+ tan2 θ = sec2 θ = 1/ cos2 θ. Solving eq. (B.39)
for
⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓, we get

⃓⃓
⃓˜︃T ′

wc

⃓⃓
⃓ = 2σ/THL (cos

2 [ψ/2]). Substitution of the results in the q̇3 equation
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above, we obtain

q̇3 = THL arctan

[︃
−
(︃

2σ

THL cos2 [ψ/2]

)︃
q1 − tan

[︃
ψ

2

]︃]︃
+
ψ

2
THL, (B.40)

which is eq. (4.7c) in the main text.

B.2.2 Studying the ψ Expression
In appendix B.2.2, we explain what ψ means physically. We also derive an expression of
ψ in terms of Tg,sat,0, TH and TL. In B.2.2, we evaluate what values ψ can take.
ψ as a Measure of the Deviation of the Equilibrium from the Inflexion Point
Both ˜︁xc and ˜︂Cth are dimensionless measures of the deviation of the equilibrium relative
to the inflexion point. This is obvious for ˜︁xc, since xc is directly the distance between the
equilibrium and the inflexion point. The quantity ˜︂Cth is also a measure of the deviation
since it is proportional to 1

2
(TH + TL)−Tg,sat,0, where 1

2
(TH + TL) is the temperature at the

inflexion point and where Tg,sat,0 is the saturation temperature, which is the temperature
at the equilibrium (where q̇3 = 0). Thus, ˜︂Cth ̸= 0 only when the equilibrium is away from
the inflexion point, when Tg,sat,0 ̸= 1

2
(TH + TL). In fact, we see from eq. (B.35c) that xc is

also expressed as a function of 1
2
(TH + TL)− Tg,sat,0. Now, the new quantity ψ, which we

use to eliminate both ˜︁xc and ˜︂Cth, also expresses the deviation of the equilibrium relative
to the inflexion point. Given ψ = 2˜︂Cth/THL, ψ is also proportional to 1

2
(TH + TL)−Tg,sat,0

and the conclusions for ˜︂Cth above also hold for ψ.

Let’s now express ψ as a function of the temperature TH , TL and Tg,sat,0. Starting from
ψ ≡ 2˜︂Cth/THL, after substitution of ˜︂Cth (eq. (B.35d)) and THL (eq. (B.35a)), we get

ψ =
2π

(TH − TL)

(︃
TH + TL

2
− Tg,sat,0

)︃
.

Additional manipulations leads to

ψ = π

(︃
TH + TL
TH − TL

− 2Tg,sat,0
TH − TL

)︃
,

where ψ depends on three parameters, TH , TL and Tg,sat,0. Dividing numerator and de-
nominator of each terms by TH , we obtain

ψ = π

(︃
1 + TL/TH
1− TL/TH

− 2Tg,sat,0/TH
1− TL/TH

)︃
with: 0 <

(︃
TL
TH

)︃
<

(︃
Tg,sat,0
TH

)︃
< 1 (B.41)

which now depends only on two groups of parameters, the ratios TL/TH and Tg,sat,0/TH .
The inequalities above are obtained by considering that 0 < TL < Tg,sat,0 < TH (and
temperature expressed in kelvin so always positive). The equation (B.41) for ψ corresponds
to eq. (4.8c) in the main text.
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Values ψ Takes, as Function of Tg,sat,0, TH and TL
We now want to investigate what values can ψ take. We will find that ψ ranges between
−π (when Tg,sat,0 = TH , the equilibrium is as far as possible in the heat source region) and
+π (when Tg,sat,0 = TL, the equilibrium is as far as possible in the heat sink region).

fig. B.1 shows ψ/π values as a surface along the ratios TL/TH and Tg,sat,0/TH . Given the
inequalities 0 < TL < Tg,sat,0 < TH , we have boundaries in fig. B.1. First, the condition
Tg,sat,0 = TH (the equilibrium is far into the heat source) gives the boundary Tg,sat,0/TH = 1
which is a straight horizontal line in fig. B.1, and we find that ψ = −1 (eq. (B.41)) there.
Second, the condition Tg,sat,0 = TL (the equilibrium is far into the heat sink) gives the
boundary Tg,sat,0/TH = TL/TH which gives the diagonal line in fig. B.1, and we find that
ψ = +1 (eq. (B.41)) there. The inequalities 0 < TL/TH < 1 and 0 < Tg,sat,0/TH < 1
(eq. (B.41)) close the surface in fig. B.1.

It is useful to define an additional line corresponding to the case where the equilibrium is
perfectly centered on the inflexion point (xc = 0). We then have Tg,sat,0 = (TH + TL)/2
and one can easily verify that ψ = 0 as expected, from eq. (B.41). Also, dividing Tg,sat,0 =
(TH + TL)/2 by TH , we find that

(Tg,sat,0/TH) =
1
2
(TL/TH) +

1
2

for ψ = +π/2, (B.42)

which corresponds to a function of the form y = mx + b in the graph fig. B.1. Addi-
tional isolines (for constant ψ values) can be added to the graph by solving eq. (4.8c) for
Tg,sat,0/TH , we obtain

Tg,sat,0
TH

=

(︃
1 + (ψ/π)

2

)︃
TL
TH

+
1− (ψ/π)

2
, (B.43)

which clearly produce isolines of the form y = mx+ b in fig. B.1. For ψ = ±π/2, we have

(Tg,sat,0/TH) =
3
4
(TL/TH) +

1
4

for ψ = +π/2, (B.44a)
(Tg,sat,0/TH) =

1
4
(TL/TH) +

3
4

for ψ = +π/2, (B.44b)

which are also shown in fig. B.1.

B.2.3 Sign of a0
Here, we evaluate the sign of a0 in the general case where ψ ̸= 0. First, consider the
phase-change nonlinearity only (appendix B.2.3). For the pressure nonlinearity only, a0
does not depend on ψ and we have a0 < 0 always. We then study the sign of a0 for both
nonlinearities (appendix B.2.3).
Phase-Change Nonlinearity
For the phase-change nonlinearity only (cP = 0, cT = 1) we have a0 = a0,T (eq. (B.28)).
We clearly have from eq. (B.28) that a0,T > 0 only if 1 + ζf

2 cos [ψ] < 0 1. Two necessary
conditions for having a0,T > 0 are having ζf > 1 (however, ζf is usually much smaller than

1. The 1 + cos [ψ] in the denominator does not change the sign of a0,T because cos [ψ] > −1, since
Tg,sat,0 < TH
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Figure B.1 (Color online). ψ/π as a surface function of parameters TL/TH
and Tg,sat,0/TH ; The lower right corner is not allowed because we must have
Tg,sat,0 > TL ; we find that −1 < (ψ/π) < +1.

one) and having either ψ < −π/2 or ψ > +π/2, so that the equilibrium is far enough
from the inflexion point. Solving 1 + ζf

2 cos [ψ] = 0 gives the curves 2 ζf = +
√︁
−1/ cos[ψ]

where a0,T = 0 and which delimits regions of different signs for a0,T . Those boundaries are
the same whatever the value of THL is.

We plot those curves in fig. B.2, with ζf and ψ as the axis. The region in the center
corresponds to a0,T < 0. There are two regions where a0,T > 0 in the top corners,
delimited by the curves ζf = +

√︁
−1/ cos[ψ].

Pressure and Phase-Change Nonlinearities
We now compute the boundaries a0 = 0 for both pressure and phase-change nonlinearities
(cP = 1, cT = 1) numerically. We find that they now depend on the value of THL (see
fig. B.3). From eq. (B.28), we see that a0,T ∝ 1/THL

2, aP,T ∝ 1/THL and a0,P is not a
function of THL. Thus, for very small THL, the term a0,T dominates and the boundaries
(fig. B.3a) look very much like the one for the phase-change only (fig. B.2). As we increase
THL, the boundaries move, the region for a0 > 0 in the left corner moves to the right, the
one on the right corner moves to the left and a new one appears in the bottom right (see
fig. B.3a to B.3c). The two regions for a0 > 0 in the right eventually merge (fig. B.3c to
B.3d). As THL is further increase, the a0,P terms starts to dominate, so the regions where
a0 > 0 must eventually disappear. This is what we observe as both regions for a0 > 0

2. the solution ζf = −
√︁
−1/ cos[ψ] is discarded, since ζf > 0.
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Figure B.2 (Color online). Boundaries for a0,T = 0 (eq. (B.28)); a0,T < 0 in
the blue region and a0,T > 0 in the orange region.

move out of the graph (fig. B.3d to B.3f). The region for a0 < 0 eventually takes all the
available space for large THL.

B.2.4 Dynamics for a0 > 0
Let’s now discuss how the dynamics is affected by having a positive term a0 in the vector
field ṙ = dδr + a0r

3 (eq. (4.17a)). For a0 < 0, the function ṙ(r) was bending downwards.
Now, for a0 > 0, the function ṙ(r) curves upwards (see fig. B.4a), the nonlinearities are
not saturating, but instead, tends to increase ṙ. The stability of the equilibrium point at
r = 0 is still controlled by δ. Although the slope at r = 0 is given by dδ, the sign of the
slope only depends on δ because d > 0 always (so dδ > 0 and δ > 0 means the same thing
as well as dδ < 0 and δ < 0). For dδ > 0, the amplitude grows faster than the linear
case (ṙ is larger for a0 > 0) and without bounds, the system never reaches a limit cycle.
For dδ < 0, the equilibrium is stable, but an unstable fixed point (corresponding to a
unstable limit cycle in either the zi or the qi variables) exists at r = rLC . For r < rLC , the
amplitude decreases toward r = 0 and for r > rLC , increases without bounds. As δ goes
from positive to negative, the unstable limit cycle is created, a process called a subcritical
Poincaré-Andronov-Hopf bifurcation.

Now, we have to keep in mind that the full vector field also includes higher order terms
(O(r5), see eq. (B.26)). The equilibrium stability is still controlled by δ. The truncated
form ṙ = dδr + a0r

3 is sufficient to predict the limit cycle bifurcation but higher order
terms are however required to predict the dynamics further. In fig. B.4b, we show how
the vector fields ṙ can look like when a negative quintic term is included. At small r, the
vector fields looks like fig. B.4a, but differs qualitatively for larger r. At dδ negative and
large enough, there is only a stable equilibrium (see ṙ = −3r + r3 − 0.2r5 curve). At dδ
negative but small enough, there is one unstable limit cycle but also one larger stable limit
cycle, due to the quintic term (see curve ṙ = −r+ r3−0.2r5). At positive dδ, there is now
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(a) THL = 1× 10−5 (b) THL = 1 (c) THL = 2

(d) THL = 3 (e) THL = 5
0

0
0

0

(f) THL = 50

Figure B.3 (Color online). Boundaries for a0 = 0 (eq. (B.28)), for both pressure
and phase-change nonlinearities (cP = 1, cT = 1), are computed numerically for
increasing THL for (a) to (f); a0 < 0 in the blue region and a0 > 0 in the orange
region.

only one large stable limit cycle (see curve ṙ = r + r3 − 0.2r5). Thus, adding a quintic
term may prevent the amplitude from growing without bounds, by creating a stable limit
cycle surrounding the unstable limit cycle. Let’s note that there is still the creation of an
unstable limit cycle as δ becomes negative, through a subcritical Poincaré-Andronov-Hopf
bifurcation. However there is an additional, global, bifurcation that can occur. For dδ
negative and sufficiently small (curve ṙ = −3r + r3 − 0.2r5), increasing dδ leads to the
creation of an unstable limit cycle and a larger stable limit cycle (curve ṙ = −r+r3−0.2r5).
This process is called a a saddle-node bifurcation of cycles (see Strogatz [107, Subcritical
Hopf Bifurcation p.251, Saddle-node Bifurcation of Cycles p.261]).

The behavior we observe numerically for a0 > 0 qualitatively corresponds to the behavior
with a negative quintic term described above. fig. B.5 shows numerical simulations of
eq. (4.14) for various initial conditions. In fig. B.5a, dδ is small and negative, the dynamics
suggest the existence of a stable equilibrium, an unstable limit cycle and a larger stable
limit cycle, just like the curve ṙ = −r+ r3 − 0.2r5 in fig. B.4b. In fig. B.5b, dδ is positive,
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the dynamics suggest the existence of a unstable equilibrium, and one large and stable
limit cycle, just like the curve ṙ = r + r3 − 0.2r5 in fig. B.4b.

Let’s now provide a few final remarks on the vector field with a negative quintic term as
shown in fig. B.4b. If the system behaves as the curve ṙ = −r+r3−0.2r5, the unstable limit
cycle acts as a barrier: self-oscillations are possible even though the equilibrium is stable,
but an initial push beyond the unstable limit cycle is needed. Also, the system described
by the vector field with a negative quintic term has an hysteresis: as dδ is increased above
0, large oscillations starts (given a small perturbation) but can only be turned off by
bringing dδ below some negative value. The described behavior with a negative quintic
term could be made possible by other nonlinearities than the one considered in this paper.
For example, having a phase-change which suddenly increases when the amplitude is large
enough could produce such behavior.

rLC√
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Figure B.4 (Color online). (a)Vector field ṙ(r) from ṙ = dδr+a0r
3 (eq. (4.17a)),

for a0 = 0 or a0 > 0. For dδ > 0 and a0 > 0, the amplitude grows faster than in
the linear case and do not saturate. For dδ < 0 and a0 > 0, an unstable fixed
point exists at r = rLC , which corresponds to an unstable (repulsive) limit cycle
in the z1 and z2 variables. (b) Vector fields ṙ(r) including a negative cubic term;
a stable limit cycle may exists.
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(a) Π = 0.95
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Figure B.5 (Color online). Oscillation amplitude r (based on the amplitude
in q1) from numerical simulations of eq. (4.14), for various initial conditions
and for cP = cT = 1, ζf = 1.5, THL = 0.1 and ψ = 0.9π. The results show
similar behavior as in fig. B.4b. (a) Π = 0.95 (so dδ = −0.0231), for r(τ = 0)
small enough r decreases toward 0, but for r(τ = 0) large enough, r increases
or decreases towards a constant value. This suggests the existence of a small
unstable limit cycle surrounded by a larger stable limit cycle. (b) Π = 1.05 (so
dδ = +0.0231), r increases or decreases towards a constant value. This suggests
the existence of a stable limit cycle.



APPENDIX C

Appendix to Chapter 5

Here, we perform averaging on the system of eq. (5.1), for the phase-change nonlinearity
only, so cP = 0 and cT = 1. The goal is to obtain a solution valid everywhere. The
following steps are carried on in a Matlab program. The averaging technique we used here
is mostly based on [51, 17, 91].

C.1 System of Equations
Starting with eq. (5.1), the system is in the form:

q̇1 = f1(q1, q2, q3),

q̇2 = f2(q1, q2, q3),

q̇3 = f3(q1, q2, q3),

In Matlab:

%% Variables and system of equations

...

f(1,:) = q2;
f(2,:) = ( 1−cP*(q1/(1+q1)) )*(−q1+q3) − 2*zf*q2;
f(3,:) = −2*s*(1−cT)*q1 +...

cT*Thl*( atan( −(2*s/(Thl*cos(psi/2)^2))*q1 − tan(psi/2) ) + psi/2);
f=subs(f,[q1,q2,q3],[x1,x2,x3]);

We then assume ψ = 0, and cP = 0, cT = 1 (phase-change nonlinearity only). We also
replace the parameter σ by δ and adds δ̇ = 0 as a 4th differential equation (δ now being
considered an additional phase-space variable; trick for center manifold reduction).

% psi=0 for now :
f=simplify(subs(f,psi,0));

% Set cp and ct as following, for now :
f=simplify(subs(f,[cP,cT],[0,1]));
warning('we fix cP and cT for now');input('')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% We add d as a new phase−space variable.

f=subs(f,s,d+zf);

253
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% We add d(d)/dt as new equation with the following new line in
% the vector field :

f(4,:) = 0;

C.2 Alignment Along the Eigenbasis
We perform a linear transformation such that we obtain a new system, aligned with the
eigenbasis.

%% Standard form

q = [q1;q2;q3];

% We first compute the Jacobian. The vector of phase−space variables is :
% xx = [q1;q2;q3;d] ;
xx = [x1;x2;x3;d] ;

% The jacobian is :
Df = simplify( jacobian(f,xx) )

% Evaluated at the equilibrium (which is 0) :
Df0 = simplify(subs(Df,xx,zeros(size(xx))))

% We have the system dx/dt = f(x) = Ax + F(x) with :
A = Df0;
F = simplify(f−A*xx);

% We verify that F(0)=0 and DF(0)=0 :
F0 = simplify(subs(F,xx,zeros(length(xx),1)));
DF = simplify( jacobian(F,xx) );
DF0 = simplify(subs(DF,xx,zeros(length(xx),1)));

% We now need to find the eigenvalues and eigenvectors of A. To this end,
% we use the built−in function eig.
syms L1 L2 L3
L = eig(A);

[eigvecA, eigvalA,eigindA] = eig(A)
eigvec = eigvecA;

% Scaling of the eigenvectors.
% Eigenvectors are defined up to a constant factor. We therefore have the
% freedom to multiply each eigenvectors by some non−zero constant.

bMat = diag([1,2*zf,2*zf,1]);% For Basic
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eigvec = eigvecA*bMat;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We find the eigenvector corresponding to positive imaginary part (this

is
% how the matrix P is defined, with L(j)=a(j)+ i b(j).

imagPosInd = find(simplify(sum(eigvalA,1)==1i));
if length(imagPosInd)~=1; error('assume one and only one +1i'); end

% Transformation T (Eq.2.21 p.17/124 and Eq.4.4 p.32/124)
assume([ 0 < zf, in(zf, 'real'), zf < 1, in(d, 'real')]);
Ta = [eigvec(:,1),imag(eigvec(:,imagPosInd)),real(eigvec(:,imagPosInd)),

eigvec(:,4)]
Tainv = inv(Ta);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Validation of the T transformation
J = simplify(Tainv*A*Ta)

% Validate eigenvalues and eigenvectors of J
[eigJvec, eigJval,eigJind] = eig(J)

% We now apply the T Transformation to F also.
syms y1 y2 y3 y4
yy = [y1;y2;y3;y4] ;
x_y = Ta*yy;

y_x = simplify(Tainv*xx)
G_x = simplify(Tainv*F)
G_y = simplify(subs(G_x,xx,x_y))
g = J*yy + G_y

% Inspection (J and eigJval) gives us the following :
pline = [1]; % parameters lines
cline = [2,3]; % center lines (excluding parameters lines)
sline = [4]; % stable lines

yp = yy(pline)

% rotational part :
yc = yy(cline)
yc_x = y_x(cline)
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Jc = J(cline,cline)
Gc = G_y(cline)
gc = Jc*yc + Gc;

% stable part :
ys = yy(sline)
ys_x = y_x(sline)
Js = J(sline,sline)
Gs = G_y(sline)
gs = Js*ys + Gs;

% Validate eigenvalues and eigenvectors of Jc
[eigJcvec, eigJcval,eigJcind] = eig(Jc)
% real parts of the eigenvalues effectively == 0.

% We verify that Gc(0)=0,Gs(0)=0, DGc(0)=0 and DGs(0)=0.

Gc0 = simplify(subs(Gc,yy,zeros(length(yy),1)));
Gs0 = simplify(subs(Gs,yy,zeros(length(yy),1)));
DGc = simplify( jacobian(Gc,yc) );
DGc0 = simplify(subs(DGc,yy,zeros(length(yy),1)));
DGs = simplify( jacobian(Gs,ys) );
DGs0 = simplify(subs(DGs,yy,zeros(length(yy),1)));

We get a system of the following form:

ẏc,1 = gc,1(δ = y1, yc,1 = y2, yc,2 = y3, ys = y4) (C.1)
ẏc,2 = gc,2(δ = y1, yc,1 = y2, yc,2 = y3, ys = y4) (C.2)
ẏs = gs(δ = y1, yc,1 = y2, yc,2 = y3, ys = y4) (C.3)

The third dimension ys is linearly stable (decreases towards 0 for the linearized system).
We cannot simply take ys = 0 for the nonlinear system, a priori, though.

C.3 Center Manifold Reduction
So, we use center manifold reduction here, to obtain an approximation h of ys, with h a
function of δ, yc,1 and yc,2. This allow to reduce the system to only two dimensions, while
ensuring that the topology is preserved. We must first obtain the expression for h.
% We must now find the values of the coefficient. For this, we can use
% Taylor expansions (see CenterManifold_NormalForm_PTNL_V2B). Here, we
% instead taylor expand N and use the function coeffs to solve for the
% prefactors of each powers.

cvec2 = [c1,c2,c3,c4,c5,c6];
N2tay = simplify(taylor(N2,[y1,y2,y3],[0,0,0],'Order',3));
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[N2prefactors,N2powers] = coeffs(N2tay,[y1,y2,y3]);
cStruct2S = solve(N2prefactors==0,cvec2);

% We now convert the structure cStruct2S into a vector cvec2S
names = fieldnames(cStruct2S);
for ii=1:length(names)
eval(['cvec2S(ii)=cStruct2S.' names{ii} ';']);
end

However, in order to apply averaging, we will prefer to avoid using this approximation and
simply take h = 0. As explained later one, we will find that taking h = 0 is simpler, more
accurate and preserves the topology of the system, for the specific case studied. So, in
order to control the value of h, we multiply each coefficients by a new parameter ch. For
ch = 1, h is given by the approximation obtained by the center manifold reduction while,
for ch = 0, we simply have h = 0.

% introducing a coefficient to control h or h=0. ch=1 or ch=0.
% We do it here instead of in h, because finding the c's would cancel ch
% (because the c's are found to match N...)
syms ch
cvec2S = ch*cvec2S;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Substitution in h gives hS :
% hS = simplify(subs(h,[c1,c2,c3,c4,c5,c6],[c1S,c2S,c3S,c4S,c5S,c6S]));
h2S = simplify(subs(h2,cvec2,cvec2S));

The next step is to substitute ys by h in the vector field.

%% 2D equations
% We can now obtain a reduced velocity−field. We substitute h in the first
% two equations of Dy. Those two equations a 2D velocity−field for y1 and
% y2.

% The center manifold definition gives ys = h(yc,yp). This can be used to
% in the vector field of yc which is now independent of the others. We

also
% replace yp=y1 by its expression, the parameter d.
Gc_h = simplify(subs(Gc,ys,h2));
Gc_h = simplify(subs(Gc_h,y1,y_x(1))); % y1−>d
Gc_h = simplify(subs(Gc_h,cvec2,cvec2S));

gc_h = simplify(subs(gc,ys,h2));
gc_h = simplify(subs(gc_h,y1,y_x(1))); % y1−>d
gc_h = simplify(subs(gc_h,cvec2,cvec2S));
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We get a now two-dimensional system of the following form:

ẏc,1 = gc,1(δ, yc,1, yc,2, ys = h(δ, yc,1, yc,2))

ẏc,2 = gc,2(δ, yc,1, yc,2, ys = h(δ, yc,1, yc,2))

C.4 Transformation into Polar Coordinates
We now introduce the following definitions:

[︃
yc,1
yc,2

]︃
=

[︃
r cos(θ)
r sin(θ)

]︃
(C.4)

Such that the variables yc,1 and yc,2 are replaced by the variables r and θ. There are two
ways to think about the above transformation, and both will be useful.

1) Solution of the linear system.
Equation (C.4), where θ = ωτ+φ, with r and φ constants defined by the initial conditions,
is actually the solution of ẏc = gc once linearized (Jordan form). Thus, simply taking r and
φ as now function of time as a solution of the nonlinear case is the method of variations of
parameters. One than have to solve for r(τ) and φ(τ) (one may consider θ as the variable
instead of φ and solve for θ(τ) first, then solve for φ(τ) given θ = ωτ + φ).

2) Change of coordinates, from cartesian to polar.
In our case, we care mostly about the oscillations amplitude. Thus, eq. (C.4) is simply
a transformation from cartesian coordinates (yc,1, yc,2) to polar coordinates (r, θ), where r
is the oscillations amplitude. Thus, we note that no approximations have been made yet.
The system is 2D and was defined by a point in phase-space given by cartesian coordinates
(x = yc,1, y = yc,2). We can define that point location exactly by polar coordinates instead.
Of course, since we have a dynamical system, that point will move in time. This means
that r and θ must be allowed to be functions of time τ in general. The movement of
the point is given by the differential equations. The differential equations in cartesian
coordinates can be transformed into polar coordinates leading to:

[︃
ṙ

θ̇

]︃
=

[︃
+cos(θ) + sin(θ)
−1

r
sin(θ) +1

r
cos(θ)

]︃ [︃
ẏc,1 (yc,1 = r cos(θ), yc,2 = r sin(θ))
ẏc,2 (yc,1 = r cos(θ), yc,2 = r sin(θ))

]︃
(C.5)

Those differential equations describes how the amplitude r and the angle θ vary over time.
One now wish to find the solution of the system, meaning expressions for r(τ) and θ(τ) in
terms of the parameters and the independent variable τ . We do not yet have this solution.

Those operations are carried on in the Matlab program:

%% Polar coordinates and epsilon scaling
% we have rdot = R(...), theta and ydot = Y(...).
syms r th

% substitution, which gc_h (from CM reduction)
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gr_rth = subs(gc_h,[yc(1),yc(2)],[r*cos(th),r*sin(th)]);

% Vector rdot; thetadot
rthdot = [cos(th) , sin(th) ; −1/r*sin(th) , +1/r*cos(th)] * gr_rth;

C.4.1 Introduction of a Small Parameter ε
Periodic averaging applies to system of the form ẋ = εf (x, t), for ε ≪ 1 and where f is
T-periodic in t. Averaging works well here because the variables x vary slowly compared
to the fast T time scale. Problems of the form ẋ = f 0 (x, t) + εf [1] (x, t) , x(t0) = a,
where f 0 is the linear part and the ε term is a perturbation can be brought in the required
form ẋ = εf (x, t) given the appropriate transformation.

In our case however, there is no parameter chosen as ε already, but we can introduce a ε
as done by Chow and Mallet-Paret [17, p.4,12]. To do so, for a given parameter or variable
x, we will make the substitution x = ε x⋆, so x can be considered small by assuming ε
small and x⋆ as O(1).

So, in our case, we recall that having r a constant and θ = ωτ + φ with ω a constant, so
ṙ = 0 and θ̇ = ω, means that the system is linear (see discussion above). So, we would
like to have ṙ = O(ε) and θ̇ = Ω(τ) = ω + O(ε) in which case we have a perturbation
of the linear case. Also, this means that r and Ω (and φ) vary slowly compared to the
oscillations time scale.

In order to have the amplitude varying slowly, it make sense to consider a small δ (recall
that the linear solution is proportional to eδτ , for δ small, so the amplitude vary slowly
for δ small), so we introduce δ = ε δ⋆, where ε is small and δ⋆ is O(1). Doing so, we get
ṙ = O(1) +O(ε), so ṙ ̸= 0 for ε = 0. Thus, assuming δ small is not enough.

% Only considering de small is not enough:
% simplify(taylor(subs(rthdot,[d],ep*de),ep,'Order',1))
% simplify(subs(subs(rthdot,[d],ep*de),ep,0))

We then also consider small amplitude r, so r = εr⋆. So, we have the following substitu-
tions:

δ = εδ⋆ (C.6a)
r = εr⋆ (C.6b)

which transforms the following differential equations (where R and Ω are the vector fields):
[︃
ṙ

θ̇

]︃
=

[︃
R(d, r, θ)
Ω(d, r, θ)

]︃
(C.7)
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into:
[︃
ṙ⋆

θ̇

]︃
=

[︃
R⋆(ε, δ⋆, r⋆, θ)
Ω⋆(ε, δ⋆, r⋆, θ)

]︃
, with:

[︃
R⋆

Ω⋆

]︃
=

[︃
1
ε
R(δ → εδ⋆, r → εr⋆, θ)
Ω(δ → εδ⋆, r → εr⋆, θ)

]︃
(C.8)

In Matlab:

% with r=ep*rS, d=ep*dS,
% and dr/dt= ep*drS/dt −> drS/dt=(1/ep)*dr/dt and....
% we have :
rthdote = diag([1/ep,1])*subs(rthdot,[r,d],ep*[rS,dS]);
rthdote = collect(rthdote,ep);% collect seems needed to cancel the

epsilons

% Verification for averaging:
% For small ep, we have rdot=O(ep) and thetadot=1+O(ep).
collect(simplify(taylor(rthdote,ep,'Order',2)),ep)
% gives:
% ((de*re*(cos(2*th) + 2*zf*sin(2*th) + 1))/(4*zf^2 + 1))*ep
% ((2*de*zf − de*sin(2*th) + 2*de*zf*cos(2*th))/(4*zf^2 + 1))*ep + 1

% for ep=0, we have rdot=0, thetadot=1.
simplify(limit(rthdote,ep,0,'right')) %gives [0;1]

We find that a Taylor expansion of the vector field in terms of ε (equivalent to considering
both δ and r small) leads to (following Chow and Mallet-Paret [17] notation):

[︃
ṙ⋆

θ̇

]︃
=

[︃
εR⋆

1(δ
⋆, r⋆, θ) +O(ε2)

ω + εΩ⋆
1(δ

⋆, r⋆, θ) +O(ε2)

]︃
, with: ω = Ω⋆(ε = 0) = 1. (C.9)

So ṙ⋆ is small, order ε, meaning r⋆ vary slowly. However, we have that θ̇ is not small
(unsurprisingly, because the angle θ should vary at a rate ω for ε = 0), so we do not
strictly speaking have a system ẋ = εf(x, t). One way to view this problem is as averaging
over angles 1, in which case the system as it is can be averaged without any modifications.
Another way is to consider that θ = ωτ + φ. We have that ω is the angular frequency
when ε = 0, so ω = Ω(ε = 0) which gives ω = 1 here. So, θ̇ = ω + φ̇, and:

φ̇ = θ̇ − ω = Ω⋆ − ω = Ω⋆ − 1 (C.10a)

leading to, after Taylor expansion,

φ̇ = εΩ⋆
1(δ

⋆, r⋆, θ) +O(ε2) (C.10b)

1. See Sanders [101] and Jan A. Sanders et al. [51, p.157]. Sanders [101] requires Ω bounded away from
zero, which makes total sense, T must be large enough so that r varies slowly compared to the oscillations
period.



C.5. CENTER MANIFOLD CORRECTION TO THE VECTOR FIELD 261

which means that φ does vary slowly. Thus, a simple change of variable from (r, θ) to
(r, φ) does lead to:

[︃
ṙ⋆

φ̇

]︃
=

[︃
R⋆(ε, δ⋆, r⋆, θ = ωτ + φ) +O(ε2)

−ω + Ω⋆(ε, δ⋆, r⋆, θ = ωτ + φ) +O(ε2)

]︃
(C.11a)

amenable to averaging, since it has the Taylor expansion:
[︃
ṙ⋆

φ̇

]︃
=

[︃
εR⋆

1(δ
⋆, r⋆, θ = ωτ + φ) +O(ε2)

εΩ⋆
1(δ

⋆, r⋆, θ = ωτ + φ) +O(ε2)

]︃
(C.11b)

Finally, note that the system [ṙ⋆; φ̇] = [0; 0] for ε = 0. The system is linear for ε = 0 and
eq. (C.4) is the solution.

C.5 Center Manifold Correction to the Vector Field
The center manifold reduction changes the vector field due to the h term. It will be helpful
to make that correction explicit. We can write:

ṙ⋆ = ṙ⋆(ch = 0)⏞ ⏟⏟ ⏞
full vector field, but with h = 0

+
[︁
ṙ⋆ − ṙ⋆(ch = 0)

]︁
⏞ ⏟⏟ ⏞

3D correction, to be Taylor expanded

Thus, eq. (C.8) is transformed into:
[︃
ṙ⋆

θ̇

]︃
=

[︃
R⋆(ε, δ⋆, r⋆, θ)
Ω⋆(ε, δ⋆, r⋆, θ)

]︃
=

[︃
R⋆

h=0(ε, δ
⋆, r⋆, θ)

Ω⋆
h=0(ε, δ

⋆, r⋆, θ)

]︃
+

[︃
R⋆

Corr(ε, δ
⋆, r⋆, θ)

Ω⋆
Corr(ε, δ

⋆, r⋆, θ)

]︃
(C.12a)

where:

R⋆
h=0(ε, δ

⋆, r⋆, θ) = R⋆(ε, δ⋆, r⋆, θ, ch → 0) (C.12b)
Ω⋆

h=0(ε, δ
⋆, r⋆, θ) = Ω⋆(ε, δ⋆, r⋆, θ, ch → 0) (C.12c)

R⋆
Corr(ε, δ

⋆, r⋆, θ) = R⋆(ε, δ⋆, r⋆, θ, ch)−R⋆(ε, δ⋆, r⋆, θ, ch → 0) (C.12d)
Ω⋆

Corr(ε, δ
⋆, r⋆, θ) = Ω⋆(ε, δ⋆, r⋆, θ, ch)− Ω⋆(ε, δ⋆, r⋆, θ, ch → 0) (C.12e)

The correction is what ensures topological equivalence of the vector field near the bifurca-
tion point δ = yc,1 = yc,2 = 0. By making the correction explicit, we will be able to study
how it impacts the vector field. We will find that, in our case, it can be neglected (this as
to be proven, in some case the correction changes the vector field qualitatively). We will
show how we use the correction more specifically in appendix C.7.

In Matlab:

%% Split for averaging (based on notes)

% based on rdot = rdot(h=0) + [rdot − rdot(h=0)].



262 APPENDIX C. APPENDIX TO CHAPTER 5

% the term in brackets is the 3D correction, which can safely be Taylor
% expanded without losing too much in accuracy.

% Vector field with h=0 (tangent approx):
rdote_h0 = simplify(subs(rthdote(1),ch,0),'Seconds',5);
% 3D correction (from CM reduction), to be Taylor expanded
warningi('Make sure the Taylor expansion order is sufficient');
% Should match normal form (we need r^3 at least)
rdote_Corr = subs(rthdote(1)−rdote_h0,ch,1);
rdote_Corr = simplify(taylor(rdote_Corr,ep,'Order',3),'Seconds',5) %

Taylor expansion in ep
% Vector field with 3D correction
rdote = rdote_h0 + rdote_Corr;

% Full vector field (3D correction not splitted and not Taylor expanded)
rdote_Full = subs(rthdote(1),ch,1); %no Taylor expansion of the correction

C.6 Averaging

We now wish to perform the averaging per se. First, note that for the following, averaging
a T-periodic function g(t) is defined as:

ḡ = ⟨g⟩ = 1

T

∫︂ T

0

g(s) ds (C.13)

Equation (C.12) is a system of two coupled, first-order, nonlinear differential equations.
These are still too complicated to be solved. The goal here is to decoupled those equations,
to make them easier to study (and solve, possibly). One way to do so is to restrict our
analysis to the amplitude averaged over a cycle, r̄. Starting from eq. (C.12),

ṙ⋆ = R⋆(ε, δ⋆, r⋆, θ) (C.14)

We average the left-hand side and the right-hand side, leading to:

ṙ⋆ =
1

2π

∫︂ 2π

0

R⋆(ε, δ⋆, r⋆, s) ds (C.15)
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given that derivative and averaging are commutative (See Strogatz). Once the integration
is made, we see that the vector field will no longer depends on θ explicitly (now decoupled
from θ̇). The equation above is exact, no approximations have been made so far (beside
CMR). However, in carrying the integration, we would need to take into account that r⋆
is actually a function of θ, which is problematic, since we do not have the solution for r⋆
yet. Fortunately, we know that R⋆ = O(ε), which means that r vary slowly compared to
the fast O(1) time scale of the oscillations and thus, should not vary too much over one
cycle. In fact, for ε = 0, we know that r⋆ is a constant. We can thus make the assumption
r⋆ = r⋆ +O(ε), so the variable r⋆ will be taken as constant over the integration. We get:

ṙ⋆ =
1

2π

∫︂ 2π

0

R⋆(ε, δ⋆, r⋆, s) ds +O(ε2) (C.16)

which can be integrated, leading to a first-order nonlinear differential equation for r⋆. The
error O(ε2) is obtained by an asymptotic analysis. The asymptotic analysis (averaging
theorem) uses a near-identity and applies to the Taylor expanded vector field (see ??). The
asymptotic analysis is valid for ε → 0, in which case R⋆ reduces to its Taylor expansion.
If the asymptotic analysis is useful to evaluate the error, we can apply the averaging to
the full R⋆ as above, and not just its Taylor expansion. We find that taking the full R⋆

produces a result valid for very large ε, which is not the case with the Taylor expansion.
The validity beyond ε small is not guaranteed by the averaging process, but it seems true
nonetheless.

Now, let’s consider the angular frequency. Starting from eq. (C.12), we have:

θ̇ = Ω⋆(ε, δ⋆, r⋆, θ) (C.17)

Or, alternatively, we can use the phase as described above with:

φ̇ = Ω⋆ − ω (C.18)

where ω = 1. Clearly, we cannot consider an averaged θ, because θ varies on the full
trigonometric circle on a given cycle. However, we can consider an averaged φ, since
φ̇ = Ω⋆ − ω = O(ε), so φ is relatively constant over one cycle. Thus, from

φ̇ = Ω⋆ − ω

We average the left-hand side and the right-hand side, leading to:

̇̄φ =
1

2π

∫︂ 2π

0

−ω + Ω⋆(ε, δ⋆, r⋆, θ → s) ds

where no approximations have been considered so far. Given that ω is a constant:

̇̄φ = −ω +
1

2π

∫︂ 2π

0

Ω⋆(ε, δ⋆, r⋆, θ → s) ds (C.19)
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We cannot carry the integration right away, because r⋆ is actually a function of the inde-
pendent variable. Fortunately, as for ṙ⋆, we can make the assumption r⋆ = r⋆ +O(ε), so
the variable r⋆ will be taken as constant over the integration. We get:

̇̄φ = −ω +
1

2π

∫︂ 2π

0

Ω⋆(ε, δ⋆, r⋆, θ → s) ds +O(ε2) (C.20)

Going back to θ̇, given θ̇ = Ω⋆ = ω + φ̇, we can write θ̇ = ω + ̇̄φ+O(ε2):

θ̇ =
1

2π

∫︂ 2π

0

Ω⋆(ε, δ⋆, r⋆, θ → s) ds +O(ε2) (C.21)

Thus, averaging gives us the following new system of equations:

[︄
ṙ⋆

θ̇

]︄
=

[︃
⟨R⋆(ε, δ⋆, r⋆, θ) ⟩θ
⟨Ω⋆(ε, δ⋆, r⋆, θ) ⟩θ

]︃
+

[︃
O(ε2)
O(ε2)

]︃
(C.22a)

which can be rewritten as follow, if we make the correction explicit as in eq. (C.12):
[︄
ṙ⋆

θ̇

]︄
=

[︃
⟨R⋆

h=0(ε, δ
⋆, r⋆, θ) ⟩θ

⟨Ω⋆
h=0(ε, δ

⋆, r⋆, θ) ⟩θ

]︃
+

[︃
⟨R⋆

Corr(ε, δ
⋆, r⋆, θ) ⟩θ

⟨Ω⋆
Corr(ε, δ

⋆, r⋆, θ) ⟩θ

]︃
+

[︃
O(ε2)
O(ε2)

]︃
(C.22b)

Thus, we can averaged the h = 0 term and the correction term separately.

In Matlab, we proceed as follow. A function avgmatch was built to apply integral results
from Mathematica.

%% Averaging with avgmatch
% We perform the integration with avgmatch. We will average rdote_h0 and
% rdote_Corr independently.

% Very importantly, we use expand 'sincos' to make trigonometric terms
% appear, which will be recognized by the function avgmatch.
rdote_h0 = combine(expand(rdote_h0),'sincos');
rdote_Corr = combine(expand(rdote_Corr),'sincos');

% We then use children to split in terms to be integrated.
rdote_h0_Childs = children(rdote_h0);
rdote_Corr_Childs = children(rdote_Corr);

whos rdote_h0_Childs rdote_Corr_Childs

% Averaging using avgmatch :
[rdote_h0_Avg, rdote_h0_Childs_Avg] = avgmatchSb(rdote_h0_Childs);%

avgmatchS
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[rdote_Corr_Avg, rdote_Corr_Childs_Avg] = avgmatchSb(rdote_Corr_Childs);%
avgmatchS

% Simplification
rdote_h0_Avg = simplify(rdote_h0_Avg);
rdote_Corr_Avg = simplify(rdote_Corr_Avg);
rdote_Avg = rdote_h0_Avg+rdote_Corr_Avg; %based on correction obviously

C.7 Asymptotic expansion and Testing Topological Equiv-
alence

Here, we consider a expansion of the vector field in terms of ε, valid for small enough ε.
We will find that we obtain the same vector field as from the normal form approach, which
is great.

We will also use the expansion in terms of ε to verify the effect of the correction for the 3D
vector field introduced in appendix C.5. Somewhat surprisingly, I found that the Taylored
Correction gets larger as r increases and actually decreases the quality of the prediction
(numerically). After all, the correction is only required to be accurate near the bifurcation
point. Also, I found that the vector field without the correction is actually extremely
accurate. So, it would be great if we could justify neglecting the correction. We will do
exactly that here using the ε expanded vector field. We will show here that the correction
can safely be neglected while preserving the topological equivalence.

We proceed in Matlab:

%% Asymptotic approximation and Verification of Topological Equivalence
% We consider expansions in terms of ep. We use that to test if we can
% neglect the 3D correction and also, to compare to normal form results.

% Taylor expansion
rdote_h0_AvgTay = simplify(taylor(rdote_h0_Avg,ep,'Order',3),'Seconds'

,5);
rdote_Corr_AvgTay = simplify(taylor(rdote_Corr_Avg,ep,'Order',3),'Seconds'

,5);

% Coefficients in terms of re (possibly do it in terms of ep)
[rdote_h0_AvgTay_co,rdote_h0_AvgTay_te]=coeffs(rdote_h0_AvgTay,rS,'All');
rdote_h0_AvgTay_co = simplify(fliplr(rdote_h0_AvgTay_co));

rdote_h0_AvgTay_te = fliplr(rdote_h0_AvgTay_te);
[rdote_Corr_AvgTay_co,rdote_Corr_AvgTay_te]=coeffs(rdote_Corr_AvgTay,rS,'

All');
rdote_Corr_AvgTay_co = simplify(fliplr(rdote_Corr_AvgTay_co));

rdote_Corr_AvgTay_te = fliplr(rdote_Corr_AvgTay_te);

% padding zeros so that length=4. e.g.:[x]−>[x,0,0,0]
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% e.g.: useful to access rdote_Corr_AvgTay_co(2), even if it is 0.
rdote_h0_AvgTay_co=[rdote_h0_AvgTay_co,zeros(1,4−length(rdote_h0_AvgTay_co

))];
rdote_Corr_AvgTay_co=[rdote_Corr_AvgTay_co,zeros(1,4−length(

rdote_Corr_AvgTay_co))];

% Check for the linear quantity (d*delta*rS):
% using <'Order',1,'OrderMode','relative'> allows to automatically select
% the leading order in epsilon (the others can be discarded).
taylor(rdote_h0_AvgTay_co(2), ep, 'Order', 1, 'OrderMode', 'relative')
taylor(rdote_Corr_AvgTay_co(2), ep, 'Order', 1, 'OrderMode', 'relative')
% We find that the h0 is O(ep) and the correction is O(ep^2), so the
% correction can safely be discarded for that term.
ddS = taylor(rdote_h0_AvgTay_co(2)+rdote_Corr_AvgTay_co(2), ep, 'Order',

1, 'OrderMode', 'relative')

% Check for the nonlinear term (a0*rS^3) :
taylor(rdote_h0_AvgTay_co(4), ep, 'Order', 1, 'OrderMode', 'relative')
taylor(rdote_Corr_AvgTay_co(4), ep, 'Order', 1, 'OrderMode', 'relative')
% We find that the correction term is 0, so it obviously has no effect.
a0S = taylor(rdote_h0_AvgTay_co(4)+rdote_Corr_AvgTay_co(4), ep, 'Order',

1, 'OrderMode', 'relative')

% Note that the analysis above is valid because the Taylor expansion for
% rdote_Corr was sufficient, see where we considered:
% rdote_Corr = simplify(taylor(rdote_Corr,ep,'Order',3),'Seconds',5) %

Taylor expansion in r
% So, having Order 3 expansion in ep is ok, it leads to term O(ep^2) which
% are smaller than the larger terms in rdote_h0_AvgTay_co.

% we have an equation of the following form:
% d(rS)/dt = ddS*rS + a0S*rS^3
% To compare to normal form, we must remove the epsilon scaling. We have:
% r=ep*rS => rS=r/ep,
% Substitution in the equation above gives:
% (1/ep) d(r)/dt = ddS*(1/ep)*r + a0S*(1/ep^3)*r^3
% d(r)/dt = ddS*r + (a0S/ep^2)*r^3
% Which is analog to (from normal form) :
% d(r)/dt = dd*r + a0*r^3
%
% We thus have:
% dd=ddS and a0= a0S/ep^2.
%
% Given those relations and given d=ep*dS => dS=d/ep, we have:
dd = simplify(subs(ddS,dS,d/ep)); % = d/(4*zf^2 + 1)
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a0 = simplify(subs(a0S/ep^2,dS,d/ep)); % = −zf^3/(Thl^2*(4*zf^2 + 1))

% which are exactly the same results as obtained from normal forms with
% psi=0.

We have that Taylor expansion of the averaged vector field ṙ⋆ from eq. (C.22) in terms of
ε, and ordering in terms of r⋆ is given by:

ṙ⋆ = ⟨R⋆
h=0(ε, δ

⋆, r⋆, θ) ⟩θ + ⟨R⋆
Corr(ε, δ

⋆, r⋆, θ) ⟩θ +O(ε2) (C.23a)

with the following results from Taylor expansion:

⟨R⋆
h=0(ε, δ

⋆, r⋆, θ) ⟩θ =
(︃

εδ⋆

1 + 4ζf
2

)︃
r⋆ +

(︄
− ε2ζf

3

THL
2
(︁
1 + 4ζf

2
)︁
)︄
r⋆3 +O(ε3)

(C.23b)

⟨R⋆
Corr(ε, δ

⋆, r⋆, θ) ⟩θ =
(︄

−8ε2ζfδ
⋆2

(︁
1 + 4ζf

2
)︁3

)︄
r⋆ +

(︃
0

)︃
r⋆3 +O(ε3)

(C.23c)

We do not care so much about θ̇, because we have the θ̇ = ω for ε = 0 and the correction
will not change that.

In order to make an analogy to the normal forms, we can rewrite this results as:

ṙ⋆ = dδ⋆ r⋆ + a⋆0 r
⋆3 (C.24a)

where dδ⋆ is:

dδ⋆ =
εδ⋆

1 + 4ζf
2

⏞ ⏟⏟ ⏞
from h = 0

+
−8ε2ζfδ

⋆2

(︁
1 + 4ζf

2
)︁3

⏞ ⏟⏟ ⏞
3D (CMR) correction

(C.24b)

Thus, given that the h = 0 term is O(ε) and that the correction is O(ε2), the correction
can be neglected in dδ⋆. a⋆0 is given by:

a⋆0 = − ε2ζf
3

THL
2
(︁
1 + 4ζf

2
)︁

⏞ ⏟⏟ ⏞
from h = 0

+ 0⏞⏟⏟⏞
3D (CMR) correction

(C.24c)

with no correction term on a⋆0 from CMR. We thus have that the CMR correction can be
neglected in the ṙ⋆ vector field, in the asymptotic expansion (ε→ 0). The topology of the
system is preserved even with h = 0.
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Let’s now compare our results to the normal form. Given that the normal form is expressed
as ṙ = dδr+a0r

3, we must remove the ε scaling in the averaging, with r = εr⋆ ⇒ r⋆ = r/ε,
leading to:

ṙ⋆ = dδ⋆ r⋆ + a⋆0 r
⋆3

(︃
1

ε

)︃
ṙ = dδ⋆

(︂r
ε

)︂
+ a⋆0

(︂r
ε

)︂3

ṙ = dδ⋆ r +

(︃
a⋆0
ε2

)︃
r3

which is analogous to the normal form vector field:

ṙ = dδ r + a0 r
3 (C.25a)

Equating the coefficients, we have dδ = dδ⋆ and a0 = a⋆0/ε
2. Given the leading order

definitions for dδ⋆ and a⋆0 above, and given δ = εδ⋆ ⇒ δ⋆ = δ/ε, we get:

dδ = dδ⋆ =
δ

1 + 4ζf
2 (C.25b)

a0 =
a⋆0
ε2

= − ζf
3

THL
2
(︁
1 + 4ζf

2
)︁ (C.25c)

which is exactly the result obtained in normal forms, for ψ = 0 (see chapter 4). Thus we
validated that we obtain the same ṙ vector field in the asymptotic expansion from normal
forms and averaging.

C.8 Solving for the Limit Cycle
Starting from the averaged, non-Taylor expanded, vector field eq. (C.22),

[︄
ṙ⋆

θ̇

]︄
=

[︃
⟨R⋆

h=0(ε, δ
⋆, r⋆, θ) ⟩θ

⟨Ω⋆
h=0(ε, δ

⋆, r⋆, θ) ⟩θ

]︃
+

[︃
⟨R⋆

Corr(ε, δ
⋆, r⋆, θ) ⟩θ

⟨Ω⋆
Corr(ε, δ

⋆, r⋆, θ) ⟩θ

]︃
+

[︃
O(ε2)
O(ε2)

]︃
(C.26a)

we found that the correction is negligible in the asymptotic limit and thus, the vector field
h = 0 preserves the topology of the full 3D system. We can safely neglect the correction,
leading to the simplified, approximate system:

[︄
ṙ⋆

θ̇

]︄
=

[︃
⟨R⋆

h=0(ε, δ
⋆, r⋆, θ) ⟩θ

⟨Ω⋆
h=0(ε, δ

⋆, r⋆, θ) ⟩θ

]︃
(C.27a)

where we also truncated the error term.
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C.8.1 Solving for the Limit Cycle Amplitude
Now, we are interested in solving for the limit cycle. On the limit cycle, we have ṙ⋆ = 0,
so we can solve:

⟨R⋆
h=0(ε, δ

⋆, r⋆, θ) ⟩θ = 0 (C.28)

for r⋆. We get the following three solutions:

r⋆ = {0 , +r⋆LC , −r⋆LC } with: r⋆LC ≡ 1

ε

THL

ζf

√︁
εδ⋆ (ζf + εδ⋆)

ζf (ζf + εδ⋆)
(C.29)

with r⋆ = 0 being the fixed point (equilibrium), the solution r⋆ = +r⋆LC > 0 being the
limit cycle amplitude and the solution r⋆ = −r⋆LC < 0 being a non-physical solution.

We used the ε scaling in the approach above to verify the order of various terms, but we
now would prefer to express the final result without it. From eq. (C.6), we have r̄ = εr⋆

and δ = εδ⋆ ⇒ δ⋆ = δ/ε, leading to:

rLC =
THL

ζf

√︁
δ (δ + ζf )

δ + ζf
(C.30)

We would also prefer to replace δ by Π, with δ = ζf (Π− 1), leading to:

rLC =
THL

ζf

√︃
Π− 1

Π
(C.31)

which is our final result. We prefer the Π form because it shows that the square root only
depends on a single parameter, the ratio σ/ζf .

in Matlab:

%% Solving the averaging vector field for the amplitude
% We now solve rdote_h0_Avg for the fixed points. We are especially
% interested in the limit cycle solution.

rSLC = simplify(solve(rdote_h0_Avg==0,rS)) % symvar(rdote_h0_Avg)

% The amplitude is expressed in the epsilon scaling. We would like to
% remove the epsilon scaling to go back to the original variables and
% parameters. We have:
%
% rLC =ep*rSLC and d=ep*dS=>dS=d/ep,
%
% leading to:

rLC = simplify(subs(ep*rSLC,dS,d/ep))
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% which gives:
% 0
% (Thl*(d*(d + zf))^(1/2))/(zf*(d + zf))
% −(Thl*(d*(d + zf))^(1/2))/(zf*(d + zf))

%Now, with the substitution d=zf*(Pi−1), we have:
rLC = simplify(subs(rLC,d,zf*(Pi−1)))
% rLC = simplify(subs(subs(ep*rSLC,[ep,dS],[d,1]),d,zf*(Pi−1)))

% which gives:
% 0
% (Thl*(Pi − 1)^(1/2))/(Pi^(1/2)*zf)
% −(Thl*(Pi − 1)^(1/2))/(Pi^(1/2)*zf)

C.8.2 Solving for the Limit Cycle Angular Frequency
Starting from eq. (C.27), we substitute r⋆ by rLC given above,

θ̇ = Ω̄⋆
h=0(ε, δ

⋆, r⋆ → r⋆LC)

leading to simply:

θ̇ = 1 on the limit cycle, for r⋆ → r⋆LC . (C.32)

in Matlab (where the averaging of Ω⋆
h=0 is included):

%% Solving the angular frequency

% Averaging the vector field
thdot_h0 = children(combine(expand( simplify(subs(rthdote(2),ch,0)) ),'

sincos'));
[thdot_h0_Avg, thdot_h0_Childs_Avg] = avgmatchSb(thdot_h0);

% Solving for the Limit Cycle
assumeAlso(d>0);
thdotLC_rS = simplify(subs(thdot_h0_Avg,rS,rSLC(2)))
thdotLC = simplify(subs(thdotLC_rS,dS,d/ep))

% which simplify gives: 1.



APPENDIX D

Appendix to Chapter 6

D.1 Energy Harvesting from the Linear Forced Oscilla-
tor

In this appendix, we analyze the energy harvesting from a linear forced oscillator, such
that it can be compared to energy harvesting from self-oscillations. The linear forced
oscillator is represented as:

mẍ+ cẋ+ kx = F0 cos(ωt) (D.1)

With c = cf + cL, where cf is the friction coefficient and cL the harvesting coefficient. We
now make this equation dimensionless, with a characteristic time 1/ωn, given ωn =

√︁
k/m

the angular frequency and with a characteristic length F0/k, leading to:

d2 q

d τ 2
+ 2ζ

d q

d τ
+ q = cos (Ω τ) (D.2)

Where q = x/(F0/k) is the dimensionless position, τ = ωnt is the dimensionless time, ζ =
c/(2

√
km) is the damping ratio and Ω = ω/ωn is the dimensionless forcing frequency. Also,

the damping coefficient ζ includes both the friction and the harvesting, with ζ = ζf + ζL,
where ζf and ζL are dimensionless coefficients for friction and harvesting, respectively.
Equation (D.2) is often called the universal oscillator equation. The steady-state solution
of eq. (D.2) is [64]:

q(τ) = a cos(Ωτ) + b sin(Ωτ) = A cos (Ωτ + φ) (D.3a)

with:

a =
1− Ω2

(1− Ω2)2 + 4Ω2ζ2
, b =

2ζΩ

(1− Ω2)2 + 4Ω2ζ2
(D.3b)

and the amplitude A =
√
a2 + b2 is:

A =
1√︂

(1− Ω2)2 + 4Ω2ζ2
(D.3c)
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The amplitude A is shown in fig. D.1a as a function of the dimensionless forcing frequency
Ω. The maximum occurs at Ω =

√︁
1− 2ζ2, so the dimensional forcing frequency at the

maximum amplitude is ω =
√︁

1− 2ζ2ωn. This is called practical resonance [64, p.90].

D.1.1 Power Output
The dimensionless 1 power is Ẇ h = ζL Ω

2A2, leading to:

Ẇ h =
ζL Ω

2

(1− Ω2)2 + 4Ω2 (ζf + ζL)
2 (D.4)

The power Ẇ h as a function of the dimensionless forcing frequency Ω is shown in fig. D.1b.
Using a derivative test, we find that the power reaches a maximum at Ω = ΩOpt, with:

ΩOpt = 1 (D.5a)

corresponding to ω = ωn. We note that Ω maximizing the power is not exactly the same
as the one maximizing the power. At Ω = ΩOpt = 1, the amplitude is:

A(Ω = ΩOpt) =
1

2 (ζf + ζL)
(D.5b)

and the maximum power is:

Ẇ h(Ω = ΩOpt) =
ζL

4 (ζf + ζL)
2 (D.5c)

The amplitude A and the power Ẇ h, at Ω = 1 (eq. (D.5)), are shown as function of the
harvesting coefficient in eq. (D.5). The amplitude decreases monotonically as a function
of ζL. On the other hand, the power reaches a maximum at ζL = ζf . This is known
as impedance matching, which is a result of the maximum power transfer theorem. The
maximum power there is:

Ẇ h,max =
1

16ζf
(D.6)

Thus, the power can be increased furthermore by decreasing the friction coefficient ζf .
Note that this latter expression does not hold for ζf = 0 however, so the power is not
infinite at ζf = 0.

D.1.2 Efficiency
In the linear forced oscillator, some energy is injected in the system by the forcing term.
Over a cycle the energy is the work WForcing,Cycle. The energy harvested over a cycle is the

1. The dimensional power is obtained by
(︁
ωnF0

2/k
)︁
Ẇh.
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Figure D.1 Curves evaluated for ζf = ζL = 0.10. (a) Amplitude A as a func-
tion of the dimensionless forcing frequency Ω; there is a maximum (practical
resonance) at Ω =

√︁
1− 2ζ2. (b) Power Ẇ h as a function of the dimensionless

forcing frequency Ω; there is a maximum at exactly Ω = 1.

work Wh,Cycle. The efficiency is, after simplifications:

η =
Wh,Cycle

WForcing,Cycle
=

ζL
ζL + ζf

=
1

1 + (ζf/ζL)
(D.7)

The efficiency η does not depend on the forcing frequency Ω. The efficiency increases as
ζf decreases and ζL increases. For either ζf → 0 or ζL → +∞, the efficiency approaches
1. In fig. D.3, we show both the efficiency and the power as a function of ζL. We see that
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Ẇh,max =
1

16ζf

ζ L
=

ζ f

Harvesting coefficient, ζL

H
ar

ve
st

in
g

Po
w

er
,Ẇ
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Figure D.2 Curves evaluated for ζf = ζL = 0.10. (a) Amplitude A at Ω = 1
as a function of the harvesting coefficient ζL; the amplitude is progressively
decreasing. (b) Power Ẇ h at Ω = 1 as a function of the harvesting coefficient
ζL; there is a maximum at ζL = ζf .

the power reaches a maximum value at ζL = ζf , but the efficiency keeps increasing as ζL
increase. Thus, the conditions for maximum power and maximum efficiency differ.



D.1. ENERGY HARVESTING FROM THE LINEAR FORCED OSCILLATOR 275

0
0

0.5

1 Power, Ẇh/Ẇh,max
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Figure D.3 Power and efficiency as a function of ζL; whereas the power is
maximal at ζL = ζf , the efficiency approaches a maximum for ζL → +∞.
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