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ABSTRACT

Optimization of operation of a system of flood-
control reservoirs is established by the application
of mathematical programming. The mathematical
procedure is applied to two different types of systems,
reservoirs in parallel and reservoirs in tandem.

The operational matrix to be optimized is made up
of the objective function and the constraining equa-
tions. The objective function that is to be maximized
is made up of the time sequence of releases from the
reservoirs. The physical, structural and hydrological
limitations are described by the constraint equations.
All equations in the operational matrix are linear.

Inflows to the reservoirs of the system and the
initial conditions are assumed to be known, as are the
reservoir capacities and downstream-channel maximum
and minimum capacities. The objective of the operational
matrix is to maximize the sum of releases thus
minimizing the storage occupied by flood water.

Set up of the operational matrix is carried out
using a digital computer program and the optimization is
carried out by applying the Linear-Programming algorithm

of MPS/360. Results of the procedures are shown for a



three reservoir system in the Kansas river basis (U.S.A.)

using actual data.

keywords ~ Flood Control, Probability, Linear Programming
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CHAPTER I

INTRODUCTION

1.1 INTRODUCTION TO THE PROBLEM AREA

1.1.1 General. A fléod is an overflow onto land which
although adjacent to water is not normally covered by it.
Flooding simply can be considered as an inverse pollution,
water "contaminating™ the land.

Flood-plain land, alongside rivers and streams has
always attracted man, because of the potential advantages
it offers to him. Flood-plain fertility encourages agri-
culture, flatness encourages urban development, railroad
and highway construction. Many other advaﬁtages are of-
fered by flood-plains that overshadow the disadvantages,
by which nature exacts a price for the advantages it
offers. The way that nature has found of exacting a price
for the advantages it offers is by infrequent flooding.

The flood control program in the United States
developed as the country grew., At first, individuals
struggled with the flood control problem, but as the pop-
ulation increased and flood damages became greater local
governments and ultimately the Federal Government became
involved. Today the flcod control program is a major
responsibility of the Corps of Engineers of the U.S. Army.

Floods are essentially caused by large volumes of




2
water in a short period of time, which arrive and occupy
the stream channel and its flood-plain, thus causing
damages to economic activities. Generally the essential
problem of flood control is;

a) To contain the flow within a designated damage
free area (Improve channel flow conditions).

b) To store the water until it can be safely re-
leased to the channel (Store the water in a reservoir and
operate the reservoir to get safe releases).

c) Do both (a and b).

1.1.2 Flood Control Measures. From probability theory

it is known that all rivers are subject to a non-zero
probability that any particular flow will be equalled or
exceeded. This means that for every flood-plain there is
a probability that the river or stream shall leave its
banks and flood the adjacent plains. S8Since each level

of flow can be exceeded it may be stated that "absolute
flood control" is rarely feésible.either physically or
economically.

Therefore, the purpose of a flood control measure
is to "reduce flood damages to the greatest extent pos-
sible". The widely accepted flood control measures are
classified into two categories.

a) Structural measures. These measures make the
use of structures (physical) which may,

l. Contain the flow within a designated area



free of damages (channel improvement.)

2. Store the flood water (behind dams) or
do both.
Common structural measures are the following:

1. Flood Control Reservoirs. The function of
a flood control reservoir is to store a portion of the
flood water to minimize the flood peak downstream. Of
great importance in operation of flood control reservoir
is the size of releases that must be made given the size
of the inflows.

2. Levees. Construction of levees is actually
a way of increasing the carrying capacity of the channel.
By this method thé flood is confined within predetermined
areas free of damage.

3. Channel Improvement Works. Achieve higher
velocities and lower stages for the same rate of flow.

4. Diversion Structures. Divert the flood
water through a bypasser of flood&ays.

b) Non-structural Measures. This type of measures
do not control or reduce the flood but reduce or avoid
flood damages. Some measures of this type are;

1. Temporary or permanent evacuation evacua-
tion of the flood-plain.
2. Flood proofing of specific properties.

Measures of type a and b are effective in cases of



emergencies such as when floods can be partly controlled
by structural measures until temporary evacuation of the
flood-plain is carried out.

1.1.3 Flood Control by Reservoirs & Reservoir Operation.

In a large river basin the primary line of defense
against flood damages is a system of flood control reser-
voirs. A flood control reservoir provides control for the
area downstream. Its effectiveness is reduced with in-
creasing distance downstream, due to the lack of control
over the local inflow between the dam and the area to be
protected. It is obvious that if the local area is big
enough it may be capable of producing a flood over which
the reservoir would have little or no control. From the
above it can be concluded that the relative positions of
flood control reservoir and the area to be protected are
major factors in the effectiveness of the reservoir to
reduce the flood peak. 8

Another factor determining the reservoir effective-
ness on flood reduction is the amount of storage allocated
for flood control. The potential of a reservoir in re-
ducing peak flows by reservoir operation increases as
flood control storage increases, because a greater por-
tion of the incoming flood water can be stored. However,
economic and topographic limitations control the maximum

feasible size of the reservoir.



Since the flood control storage i; limited, by econo-
mic and other physical factors, this volume has to be used
wisely to yield maximum effectiveness. For a one reservoir
system the operation is simple as is shown in section 1l.2.1
but for more than one reservoir the problem becomes more
involved. This report deals with the multiple reservoir
problem in detail.

The reservoir operation shall be optimized by mathe-
matical optimization procedures. Such procedures have
been applied on many aspects of water resources for several
years. They have not, however, been applied to flood con-

trol operations.

1.2 STATEMENT OF THE PROBLEM

1.2.1 General. The main objective of reservoir regulation,
for flood control, is to reduce downstream flood damages

to the greatest extent possible with available facilities.
Reduction of flood damages requires keeping the flows be-
low flood stage at all times, while excess flood waters

are stored in the flood control reservoir.

Consider a single reservoir located immediately up-
stream the area to be protected. The inflow hydrograph,
the reservoir capacity and initial condition, as well as
the channel safe capacities, are known. Given the above

determine the releases from the reservoir such that;



a) The reservoir is not spilling nor has a negative
volume in storage.

b) The channel safe capacities are not exceeded, nor
is the flow less than the minimum acceptable.

The release schedule from the reservoir should be the
one shown on Fig. 1. Pass all incoming inflow until the
outflow reaches the zero damage capacity of the channel
downstream. (Point A on Fig. 1) All flow above this safe
rate is stored until the inflow drops below the zero damage
capacity of the channel (Point C on Fig. 1) and the stored
water is released to recover storage for the next flood.
This schedule of release is possible provided that the
volume of water A, B, C (Fig. 1) does not exceed the flood
storage available by the reservoir. If that is not the
case then the release schedule shall be changed, according
to the reservoir initial conditions.

For a system of reservoirs mQre than one, the opti-
mum schedule of releases can be determined by trial and
exror. For a system of reservoirs with different initial
conditions, different inflow hydrographs, different capa-
cities, more than one flow to consider, and different
channels to consider, the problem becomes very involved.

2 trial and errxor method would be possible but the time
needed for such a solution would render the solution

trivial. Therefore a systematic solution to this problem
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is to be sought in this study by using mathematical opti-
mization procedures.

1.2.2 Objectives of the Project. The aim of this study

is to establish a procedure, using Linear Programming, for
the optimization of flood control operation of a system of
several reservoirs, operating in parallel, in tandem or of
mixed type systems.

The procedure is to employ a digital computer to
produce a program applicable to any river basin in which
the floods are controlled by a system of reservoirs, and
shall be applied to an actual river basin with actual
data.

1.2.3 Problem Statement. In a system of flood control

reservolirs, either multipurpose or single purpose, the por-
tion of storage allocated for flood control operations is
*limited, whereas the channel capacities are bounded above
and below by the maximum and minimum allowable flows.
The problem in final analysis redﬁées to the one of
limited resource allocation (flood storage allocation)
among different demands (flood watexs). This is to be
stated as follows.

Maximize the total sum of releases from a system of
reservoirs, thus maximizing the free flood control storage

volume, {(minimizing the volume occupied by flood water)

provided always that the physical and hydrological limita-
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tions of the system are satisfied.

The objective function to be maximizea shall be a
performance function and the optimal solution shall be the
one that maximizes the releases provided that it satisfies
the following limitations.

a) The reservoirs shall not have any uncontrolled
spilling. This means that the water level in every
reservoir in the system must be kept below crest level.

b) The volume in storage cannot take any negative
values. This limitation expresses the hydrology of the
system. The outflow cannot be more than the inflow plus
the water in storage.

c¢) The flows in the tertiary, secondary and main
channels must always be kept within the range of safe
capacities.

The objective function and the constraint equations
shall be linear or linearized by approximation to fit
Linear Programming requirements.

' The Linear Programming algorithm of the Mathematical
Programming System/360 shall be applied to carry out the
optimization.

1.2.4 Input Data. To formulate and process the mathemati-

cal model, to be developed, the following data must be known;
a) Reservoir capacities. Expressed in units of

volume the reservoir capacity or flood control storage for
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every reservoir in the system.

b) 1Initial conditions of reservoirs. The amount of
water in every reservoir at the beginning of the operations.

c¢) Maximum and minimum level of water in every reser-
voir (preferred, for any reason) must be decided in ad-
vance, expressed in units of volume.

d) Inflow to every reservoir for a certain time
to a certain accuracy must be known in advance, before
operation begins, expressed in units of volume per time
interval.

e) Acceptable channel flows. The minimum accept-
able flows in every channel in the system must be known.
Such flows are determined generally on the basis of:

1. Water quality criteria
2, Navigation, and
3. Other reasons.

"f) Acceptable, maximum channel flows. Engineering
economic techniques can be employved to derive the most
optimum stage of flow in a certain channel. However,
such methods become very involved and in many cases are
not the best to use.

Other methods, more empirical, as the one outlined
in paragraphs 4-2 and 4-6 [8], have been used to define

the upper limits of channel flows. This method being
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developed and in use by the U.S. Armykéorps of Engineers
for the regulation of flood control reservoirs, relates
individual reservoir storage space in use to normal
seasonal zones of demand. Each zone or "phase" is num-
bered phase I through phase IV in the increasing order of
the storage demand severity.

Operation of the reservoir can be carried out in any
of the four different phases according to the seasonal
evacuation demand.

Phase I: 2/3 channel capacity
Phase II: Channel capacity

Phase'III: Flow is such that it causes
appreciable damage

Phase IV: Flows are under no control.
A typical graph showing the guidelines is shown on
Fig. 2. For the purpose of this study it will be assumed
that such guideline graphs are available for defining the
maximum acceptable flows in the channel downstream the

dam.

1.3 DEFINITIONS AND BASIC ASSUMPTIONS

1l.3.1 Definitions. 1In what follows some of the many

terms to be used in this paper are to be defined.
a) Reservoirs in Parallel. A system of reservoirs

is defined as reservoirs in parallel when inflow to
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~

every reservoir in the system is independent of the out-
flows from other reservoirs in the system (See Fig. 3).

b) Reservoirs in Tandem. A system of reservoirs
is said to be in Tandem when the inflow to at least one
reservoir is a function of the outflows from the rest of
the reservoirs in the system. In Figure 4 inflow to
reservoir no. 4 is a function of outflows from reservoirs
no. 1, 2, and 3.

c) Reservoirs in Series. A system of reservoirs is
said to be operating in series when the inflow to every
reservoir is a function of the outflow of one reservoir
situated upstream. In Fig. 5 reservoir no. 2 is in series
with reservoir no. 1 and reservoir no. 3 is in series with
reservoir no. 2.

d) Mixed type reservoir system. A mixed type
reservoir system is made up of subsystems of reservoirs
in series, in parallel; and in Taﬁdem. In Fig. 6 reser-
voir no. 4 is in series with reservoir no. 2. Subsystem
of reservoirs no. 3, 6, and 5 is in tandem and subsystem
of reservoirs no. 1, 4, 6, and 7 is in parallel.

Any mixed type system can be broken down into a num-
ber of the basic subsystems, ie. into reservoirs in

tandem, in parallel, and in series.
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e) Channel Operating Phases. A tertiary, secondary
or main channel is to be allowed to operate at any moment
with a maximum flow defined by the guidelines for flood
control operations. The U.S. Army Corps of Engineers
breaks the flood control operations into four phases as
defined previously. So when it is stated that the channel
is operated under phase II it means that the maximum
allowable flow in that channel is the one defined by phase
II according to the U.S. Army Corps of Engineers. The
channel operating phase defines the upper limit of flow.

f) Channel Minimum Flows. The minimum flow in a
channel is established to a certain extent by requirements
of pollution control, municipal and industrial water supply,
navigation and other uses. This quantity may vary with the
season of the year and the quality of water.

g) Flood Storage Reservoirs. Reservoirs that are
equipped with outlet works which can be used to regulate
the outgoing flow, are referred té as flood storage reser-
voirs.

h) Tertiary Channel. Tertiary channel is defined
as the channel associated directly with the outflow from
only one reservoir. With reference to Fig. 6, channels
Tl' T2, T3, T4, T5, T6’ and T7 are tertiary channels.

i) Secondary Channel. A secondary channel is

defined as the channel that receives flows from more than
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one tertiary channel (or reservoir) but not from all the

reservoirs in the system. 1In Fig. 6 channels T8’ T and

9’

T10 are secondary channels.

j§) Main Channel. Main channel is defined as the
channel that receives flows from all of the reservoirs.
There is only one main channel in a system of reservoirs.

In Fig. 6 channel T is the main channel.

11
1.3.2 Assumptions. In the formulation of the mathematical

model for determining the optimal sequence of releases
from a system of reservoifs, the following assumptions
were made.

a) The inflow hydrograph to every reservoir in the
system is known in advance for a reasonable period of time.

b) The initial conditions for every reservoir are
known.

c) The operating guidelines for allowable flows in
every channel in the system are kqown.

d) Minimum and maximum allowable water levels of
every reservoir at the end of each time interval during
the operation period, under consideration, are known.

e) Minimum acceptable flows for every channel in
the system are known.

f) Local inflows to the river downstream the flood
control reservoir and upstream the damage center is

neglected or assumed to be considered in selecting the
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maximum safe capacity of the particular channel.

g) The outlet works of any dam are designed to
allow any discharge within the range of minimum to maxi-
mum safe capacities. By this it is assumed that the out-
let works do not restrain in any way the releases.
(Release is independent of the water level in the reser-
voir.)

h) The water travel time is not a function of the
discharge. This assumes that the water travel time from
any reservoir to the damage center is constant, whatever

the flow in the channel. (This is not absolutely true.)

l.4 RESUME OF REI_..ATED RESEARCH

The advantage and need of coordinated regulation of
a system of reservoirs in a river basin has been recog-
nized for years. Regulation experience of many years has
shown the importance of maintaining the available storage
space in the various reservoirs of the system in hydro-
logical and seasonal balance at all times in anticipation
of floods. Further, releases that could augment down-
stream flood damages should be avoided.

In 1958 the U.S. Army Corps of Engineers released a
report [1] on "Reservoir Regulation". This report, pre-
pared for use by district engineers and their technical

personnel, contains the results of many years of exper-
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ience.

In the report it is indicated that the method by
which a reservoir is regulated, to minimize flood damages,
is very important on the effectiveness of the reservoir.

A total of three methods are described which have
been successfully applied in many flood control projects.
These methods are:

a) Maximum beneficial use of available storage
during each flood event. The success of this method de-
pends on accurate forecast of the inflow.

b) Regulation is based on control of project design
flood, and

c) Combination of methods A and B. The general pro-
cedure for the derivation of releases for a system of
reservoirs by any method is as follows:

1. Develop first general schedules for the tributary
reservoirs operating as separate units.

2. Adjust the individual regulation schedule for
coordinated operation of the various tributary and main
river project, considering the analyvsis of the basin pro-
ject plan and design flood.

Leo Beard [2] gave a comprehensive description of
the problems involved in flood control operation and some

of the experiences in operating a system of flood control
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reservoirs in California. The practice used in California,
in multipurpose reservoirs, was to release water whenever
necessary at the highest practical rates, so that a mini-
mum space should be needed for flood control.

The operation of reservoirs in California is based on
flood control diagrams prepared for each reservoir in the
system. The flood control diagrams based on observations
and practical experience of operation of each reservoir
gives the flood storage requirement as a function of time
and antecedent precipitation.

Although mathematical optimization procedures have
been used in gene%al planning and operation of water re-
sources for several years, problems of flood control have
been studied only recently. A notable contribution was
made by William C. Hughes using methods [3] from calcu-
lus. Hughes [3] optimizes the releases from a system of
reservoirs using procedures based'upon the minimization
of a cost function that includes the future flood risk
cost, resulting from storage and direct downstream damage
cost associated with the magnitude of reservoir releases.

The mathematical model which consists of a cost func-
tion, relating outflow magnitude with both direct flood
damage cost and the cost of foregone flood control capa-

bility due to storage, is applied over discrete time
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periods. The schedule vhich minimizes the cost function
is defined as the optimum one.

The solution involves the application of the Lagrange
technique and involves the solution of a polynomial. 1In
case of n reservoirs in parallel the problem involves the

solution of n polynomials with n unknowns.
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CHAPTER II

MATHEMATICAL MODELS

2.1 INTRODUCTION

The general problem of water resources either water
conservation or flood control, is to transpose a matrix
describing the natural occurence of water and its pro-
perties, to another matrix, related to the objectives of
the project. [4]

The natural occurence of water can be described by
a matrix F consisting of three vectors: L (location),
T (guantitative distribution in time), and Q (quality) thus,

L

F= T (2.1.1)
Q

The location vector L has two kinds of components, x
and y, which determine the spatial extent of the waters.
In the flooding case x and y define the locations at which
flooding occurs and the locations of the various reservoirs
in the system. Thus,

L=(x1,x2, cee XD YaYor ees yn) (2.1.2)

The time vector T consists of parameters of the quan-
titative occurence of flood waters in time, ie. the flood
flow hydrographs at the reservoir sites and at the damage

center. The quantities are expressed as averages over some
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time period. 1In this case the period is expressed in hours.
Then,

T=(“1,l'“1,2'"“1,n;“2,1'"“2,n""“n,n) (2.1.3)

The quality vector Q, although of no great consid-
eration in this study, is considered to be made up of a
number of elements, such as biological quality, the mineral

quality, the caloric quality and so on. Then,

0= (gb,gm, ...qn) (2.1.4)
The construction of flood control reservoirs and the
mode of operation, amounts to the transformation of the ori-
ginal matrix F, into another matrix F* in which the ele-
ments of the vectors L,T, and Q assume desired values.
Thus,
L%
F¥=|T* (2.1.5)
Q*
The vector L* indicates the locations at which the

flood water must be controlled, by structural or non
structural measures. T* pertains to the time distribution
of thé gquantities of flood water; ie., the flows are to be
kept below flood damage stages. Q% represents the quality
standards at which the flowing water has to be maintained.

The transformation of matrix F to F* is to be achieved
by,

F*= (9, ©

1 2) F (2.1.6)
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where 61 is a submatrix which is composed of design para-
meters of the physical components of the system ("hard-
ware"), and 62 is a submatrix which contains the operational
aspects of the system ("software").

The analysis and solution of equation 2.1.6 is the
realm of water resources engineering. However, for flood
control operations where the system already exists ("hard-
ware") and the submatrix el is known, it remains to find
the operational aspects of the system (62) and to try to
optimize this matrix.

The objective of the problem at hand is to optimize

the operational matrix 62 given the matrices F, © and

1’
the desired values of the matrix F¥*,

The determination of matrix F involves investigation
in natural sciences; goelogy, hydrology, meteorology, and
others. On the other hand the matrix F* requires, for its
evaluation, investigations in econdﬁics, sociology and
other sciences.

In this study it is assumed that:

l. The matrix F is known in detail.

2. The submatrix el has been established.

3. That matrix F* is given values within
the desired range.
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2,2 LINEAR PROGRAMMING

The objective function and the constraint equations
shall be expressed in linear equations or inequalities and
the Linear Programming algorithm is to be applied to carry
out the optimization.

The mathematical statement of a generalized linear pro-
gramming problem (or model) [5] is the following. Find
the values of X)1Xo Xgyes Xy called the decision vari-
ables, which maximize or minimize the objective function;

Z=clx1+czx2+c3x3+ veeeaC X (2.2.1)

subject to the following relationships (called constraints)

a) 1 Xytay 5 Xt e..oag o oXy {>=<} b,

2,y 1 Xqtay 5 Xpteees @y o Xy {>=<} b, (2.2.2)
a1 X, + 2.2 Xo# ves 3,0 X, {2=§}bm
and x. > 0.
J-—
The decision variables, Xy rXgrXgee o X represent the

levels of n competing activities, where z is the overall
measure of effectiveness. 1In the flood control operational
matrix, the decision variables represent the magnitude

of the releases to be made during each discrete time inter-
val and z expresses the total release to be made from

all reservoirs during the total period of operation.
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cj is the increase in the objective function that would
result by an increase of one unit of Xj'

The first m linear inequalities correspond to a re-
striction to the availability of one of the resources,
where in this case resources are considered to be the
amount of flood water available at the various reservoirs.
bi is the amount of resource i available to the n activi-
ties, where ai,j is the amount of resource i consumed by
each unit of activity j. The last restriction ijO rules
out the possibility of negative activity levels.

A problem formulated by a set of linear inequalities
and made up of only two decision variables can be easily
solved, graphicaliy, provided that there are feasible so-
lutidns. For small problems with more than two variables
the simplex method can be employed, where for problems in-
volving a large number of decision variables and many con-
straint equations, optimization is most easily carried out
by applying an electronic data précessing Linear Program-
ming algorithm such as MPS/360. 1In this study optimiza-
tion of the operational matrix is carried out by the appli-

cation of the Linear Programming algorithm of MPS/360.

2.3 LINEAR MODEL OF OPERATIONAL MATRIX
In order to translate the physical system and its
operational limitations into a mathematical model the fol-

lowing notations are used. Xi,j; Ii,j; Ri; Ci°
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. .3 B, .: Bl.;
i,] i,] J

of these notations are given in Appendix I.

ci,j; di,j’ Di,j; Dljf The definitions
The mathematical model of the operation of a system of
reservoirs shall be made up of the objective function,
which is to be maximized, and the constraints, as follows.
1. Objective function: Maximize the
releases from the system of N reservoirs, for n time

intervals, n N

) ) ¢, . X, . =2 (2.3.1)
j=1 i=1
subject to the following physical and hydrological limita-
tions of the facilities of the system.

2. Constraints: Each set of constraints
is to be made up of n constraints, each constraint equation
expressing the limitationsfar one time interval only.

a) Minimum cumulative release constraints.
Mathematically this constraint is given by,
k k
J X, .2 ) I, .+R,-C.+Z, . (2.3.2)
i,] i,J 1 1 1,]
j:l j:l
where i= the reservoir call number and j= time interval
j=1,2,3...k...n. For each reservoir in the system there
will be one such set of constraints made up of n inequal-
ities. )
Inequality 2.3.2 states that the cumulative release,

from the time operation of reservoir i has started (j=1)

to any time interval j, after, (js<n), cannot be less than the
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sum of inflows during that period of time, plus the initial
storage plus a certain volume (2) minus the capacity of the
reservoir. Simply this equation avoids the uncontrolled
spilling from the reservoir.

b) Maximum cululative release constraints. Hy-
drological limitations of the basin and initial conditions
of the reservoir are also to be considered in the mathema-
tical model. It is true that it is not possible to get more
water from the reservoir than was initially put in. So
this set of constraints states that the maximum cumulative
release from reservoir i, shall be equal or less, than the

cumulative inflow plus the initial storage minus a value Y.

Mathematically,
k k
Y X, . < ) I, .+ R,;-Y, . (2.3.3)
i,]) -~ i,J - 1 1,]
j:l j=l

where i= the reservoir call number and j= the time interval,
j= 1,2, ... k ...n. There will be one set of such con-
straints for each reservoir, made up of n time sequence in-
equalities.

c) Tertiary channel flow constraints. This set
of "Bounds" (according to section 2.10.4) states that the flow
in the tertiary channels cannot be less than a minimum accep-
table value neither can it be more than a maximum accep-
table value. The minimum and maximum acceptable values for

each channel are known. Mathematically this set of Bounds
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is given by, A

d, . < X. . < b, . (2.3.4)

Each reservoir having a release to a tertiary channel
will be associated with one set of Bounds each set to be
made up of n inequalities.

d) Secondary channel flow constraints; Maximum.
By definition a secondary channel is the one whose flow is
made up of releases from two or more reservoirs. Mathema-
tically this set of constraint equations is generally ex-
pressed by,

1,9 TRy F o Xy-1,m S Bi,j (2.3.5)

where: 3Jj,k, and m represent the time interval the releases
are to be made from reservoirs 1,2,...N-1. The releases
are not made at the same time interval but reach the secon-
dary channel at the same time. To avoid complications the
starting time for each reservoir in the system shall be ad-

-

justed so

. + » + o & @ L] B. L] [ ] L]
xlrj lej xN_ll] 2 i,] 208067

is possible. This is to be explained at a later section
titled, "Commencement and Termination of Reservoir Opera-
tions".

e) Secondary channel flow constraints; Minimum.
Flows in the secondary channels must be kept above a certain

minimum. Mathematically,
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.+ '+ L + LI I ) . > 0 N . o
xl,3 X2,J x3,J xN—l,j\* Dl'j (2.3.7)

In the formulation of 2.3.7 it has been assumed that
each reservoir has its own starting time, as is explained
in section 2.9.3.

Each constraint equation expresses the total release
from certain reservoirs to the secondary channel during
the time interval j for each reservoir. Time interval j
for reservoir i might occur at a different time than the
time interval j of reservoir k.

f) Main channel flow constraints:; Maximum. By
definition there is only one main channel (or none) in a
system of reservoirs. The damage center to be protected
is usually located somewhere along this channel. Therefore
the flow should be kept below fléod stéges as long as poss-—
ible to reduce flood damages.

Mathematically,

N

X, . < BIj ° .3.
I X;,5 < BI] (2.3.8)
i=1

where i represents_the reservoir call number (1,2,...N)

and j is the time interval under consideration or time inter-
val during which the release x is made. Reference time

for the different reservoirs in the system is assumed
different. In a system of N reservoirs there will be only

one (or none) set of constraint equations made up of n in--
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equalities of the form 2.3.8. ~
g) Main channel flow constraint; Minimum. For
water quality control and other criteria the flow in the
main channel cannot be less than the minimum acceptable.
This set of constraints is to be made up of n in-

equalities expressed as follows,

X
1

. * > DI. L] L)
8,9 2 (2.3.9)

I =~

i

where the notations are the same as explained in Appendix I.

2.4 NOTATIONS OF SYSTEM FACILITIES

In the mathematical model given in a general way in
section 2.3 the releases and the input data were defined
by referring to a certain structure or facility (reservoir
or channel) and to a certain time interval. The reservoir
or channel number has been given by i, where i= 1,2,3, ...N
and the time interval by j where j= 1,2,3, ...n.

In this section a procedure is’to be given for assig-
ning call numbers to the different reservoirs and channels
of the system.

a) Reservoir notation. Arrange the reservoirs
in order, in terms of the size of their water travel time
to the damage center, assigning call number 1 the one with

the longest water travel time and reservoir no. N to the

one with the shortest water travel time, where N is the
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number of reservoirs in the system. This method of assig-
ning call numbers indicates the order of water travel time
from each reservoir and the order of commencement of oper-
ations.

b) Channel notation. Tertiary channel: Each
tertiary channel is assigned the same call number as the
reservoir upstream. Secondary and main channel: Any
suitable notation will do, provided that it does not cause

confusion with the reservoir and tertiary channel notation.

2.5 TIME INTERVALS

In the mathematical model, the decision variables and
the inflows are expressed in units of volume per time inter-
val. 2Also, the model describes the operation over a number
of discrete time intervals. The sum of all discrete time
intervals equals the period for which operation of reser-
voirs is planned.

The number of time intervals in" a finite period can
range from 1 to an unlimited number. For practical and
other reasons it is proposed that a time interval of 6-48
hours be used depending on;

a) The size of the problem. Small size inter-
vals may generate a large size problem.
b) The period of time for which operation is

planned.
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c) The efficiency desired.

d) The shape of the Inflow Hydrograph. A
fair size time interval would be the one that allows the
approximation of a smooth curve hydrograph, by a histogram

without distorting the actual graph considerably.

2.6 WATER TRAVEL TIME

In section 2.4 it was stated that the reservoirs are
assigned call numbers according to the order of their water
travel time. Further, as will be shown later, the value
of the water travel time for each reservoir must be known
for the determination of the commencement and termination
of operations of eaéh reservoir.

From hydraulics the water travel time is dependent on:

a) The distance of travel.
b) The flow velocity which velocity depends on
the stage of flow.

It is realized that for a specific channei the water
travel time is not constant but varies with the gquantity
of flow in the river. Schematic illustration of variation
in travel time, depending on the flow stage is given in
reference [8], plate no. 2 .

In this study, to avoid additional complications, it

will be assumed that the water travel time is constant. For

the formulation of the mathematical model the water travel
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time is to be subdivided into a number of equal time inter-

vals.

2.7 FORECAST OF INFLOW

The optimization of the operational matrix requires
the prior knowledge of the inflow to every reservoir in
the system. The inflow should be forecast with a certain
acceptable accuracy for the flood period.

Forecasting of inflows is to be derived from the fore-
casted precipitation, in the basin, by hydrological methods.
In the United States forecasting of flood flows is spon-
sored cooperatively by the Weather Bureau and the Corps
of Engineers. The forecasts are issued daily for a period
of 48-72 hours, which breaks down into individual periods of

6, 12, or 24 hours, as required.

2.8 UNITS OF MEASURE OF PARAMETERS
For homogenuity of units in the objective function

and the constraint equations, the parameters appearing in
the mathematical model shall be expressed in the following
units.,

a) Decision variables. These are to be ex-
pressed in units of volume per time interval.

b) Reservoir storage and initial conditions.
Reservoir volumes shall be expressed in units of volume.

c) Inflows, upper and lower channel flows. It




35

is obvious that the units must be the same as those of the
decision variables. Since the inflows and the other flow
parameters are usually expressed in units of volume per
second (c¢.f.s. cum./sec.) the following equation can be
used to make the transformation to units of volume per time
interval,

Q= 3600 x DIP x Q (2.8.1)

where Q= the flow rate parameter expressed in units of
volume per time interval. Qo = the flow rate parameter ex-
pressed in units of volume per second. DIP= the time in-

terval expressed in hours.

2.9 TIME RELATIONSHIPS
2.9.1 General. In section 2.3d it was mentioned that in
order for controlled releases to be additive, in a secondary
channel, they should be made at different time intervals
(not simultaneously) from the reserypirs upstream. For
example consider the system of two reservoirs on Fig. 7.

A release made at time period 1 from reservoir No.l
is scheduled to reach point A after 5 time intervals, where-
as a release from reservoir No.2 needs only two time inter-
vals. From section 2.3b equation 2.3.5, the set of con-

straints for the secondary channel shall be;
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5 time intervals

Fig. 7 System of Reservoirs

which means that the release made at time.intervals No.1l
and No.4 are additives. All releases, from reservoir No.
2, made earlier are not considered.

This simple example shows that the geometry of the
system complicates the model when no adjustments are made
to avoid the time factor being directly involved in the
mathematical model.

The rest of this section discusses the time relation-
ships connected with the geometry of the system and equations
are developed, the results of which will bring the necessary
adjustments to the model. The equations to be developed
deal with discrete time intervals, and for this purpose

it is assumed that:
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a) The water travel time from the different re-
servoirs is expressed in discrete time intervals.

b) The forecasting period is also expressed in
discrete time intervals.

2.9.2 Number of Time Intervals for Which Operation is

Determined. n is defined as the number of discrete time

intervals over which the mathematical equations shall be
applied, to optimize the releases from a system of re-
servoirs.

The number "n" is a function of:

a) The number of time intervals for which inflow
is forecasted and,

b) The water travel time difference (number of
time intervals) between reservoir No.l and reservoir No.N
for reservoirs in parallel, and reservoir No.l and reservoir
No. (N-1) for reservoirs in tandemn. Matheﬁatically for a
system of N reservoirs the number of time intervals for
which operation can be formulated iﬁ%o a mathematical model
is given by;

For reservoirs in parallel,
n, = TF + T =Ty (2.9.1)

and for reservoirs in tandem

n, = TF + T(N—l)_ Tl (2.9.2)

where np = the number of time intervals for reservoirs in
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parallel; n, = the number of time intervals for reservoirs
in tandem; TF = the forecast period expressed by a number of
discrete time intervals; Tl = the water travel time of re-
servoir No.l expressed in discrete time intervals; TN =
the water travel time of reservoir No. N (last reservoir)
expressed in discrete time intervals. Ty-1= the water
travel time of reservoir No. (N-1) (last but one reservoir)
expressed in discrete time intervals.

Equations 2.9.1 and 2.9.2 require the reservoirs be
given call numbers according to the procedure outlined in

section 2.4. Further, equations 2.9.1 and 2.9.2 should

give posgitive results, for the model to be applied, ie.,

n >1
p_
n, 21
or [TF - (Tl—TN) ]l >1 (2.9.3)
[TF - (Tl-TN_l) 1 > 1 (2.9.4)

If np or n, are found to be negative then the system
must be solved by the methods of decomposition. (Break the
system into a number of subsystems).

2.9.3 Commencement & Termination of Operations. The time

at which operations of the different reservoirs commences
and terminates is another time relationship arising from
the general geometry of the system. Commencement of oper-

ation of reservoirs, with different water travel times,
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occurs at different times.

Assuming that operation of reservoir No.l commences
at time interval one, then the time interval at which oper-
ation of the rest of the reservoirs will commence is given
by,

CT, =T -T.+1 (2.9.5)
1 1

1
where termination occurs at,

TTi = CTi+n—l (2.9.6)

where CTi = the time interval at the beginning of which
operation of reservoir i shall commence. TTi = the time
interval at the end of which operation of reservoir i shall
terminate. Other symbols are explained in Appendix I..

2.9.4 Inflow Data. (Forecast Hydrograph) . The hydrographs

calculated from the precipitation data give the inflow

to the reservoirs in the system for a fixed time period (or

for a number of time intervals). However, due to the geometry

of the system, as was shown in section 2.9.2, the humber of
time intervals (time period) over which the mathematical
model can be formulated might be less. (As given by eqg-
ations 2.9.1 and 2.9.2). The next thing related directly
to the system geometry is the time of commencement and
termination of operations of the reservoirs given by equa-
tions 2.9.5 and 2.9.6. It is therefore necessary to

know during which time intervals each reservoir.is opera-
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tive so it can be decided which parts of the given inflow
hydrographs can be used as input data.

Given the water travel time of each reservoir in the
system, in time intervals, the time intervals during which

each reservoir is operative are given by,

j(i,k) = T,-T; + k (2.92.7)
k=1
k=2
k=3
k=n
where j(i,k) = the time interval at which the reservoir i

is operated. Range of j(i,k) is 1 to n.

Using the results of 2.9.7 the input data hydrographs
can be derived and the necessary time corrections be made
by,
| Ti,k = I'i, j(i,k) (2.9.8)
where I' = the given hydrograph, I= the derived hydrograph,
and k= the time interval index (time interval). Appli-
cations of equations 2.9.1 to 2.9.8 are to be shown in

section 2.11.

2.10 PROBLEM SIZE

2.10.1 General. The problem size which MPS/360 solves,

depends on the amount of core storage available for data.
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Given a computer, the total amount of core storage to be
used by MPS/360 is divided into two parts,

a) Program storage whose size is approximately
29800 bytes, and

b) Data storage, the amount of which is avail-
able, depends on many factors.

IBM Application Program GH20-0156-1 shows the maximum
and design norm problem size which may be solved with the
indicated number of data bytes available.

The purpose of the following discussion is to esta-
blish the size of the problem and indicate the computer
size necessary to solve the problem. The discussion shall
be concentrated on reservoirs in parallel but equations for
reservoirs in tandem are also given.

2.10.2 Decision Variables. The objective function is made

up of the decision variables. For any system of reservoirs
the number of decision variables is- given by,

N.D.V. = N x n (2.10.1)
where N= the number of reservoirs and n= the number of time
intervals over which the model is formulated.

2.10.3 Constraint Equations. Constraint equations are

defined as those equations that express a relationship be-
tween two or more decision variables. The number of con-
straint equations depends on:

a) The number of reservoirs in the system.
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b) The general geometry of the system.
c) The number of time intervals over which the
mathematical model is to be formulated.

Assuming that geometry is not considered and that no
more than two channels meet at any confluent point in the
system, the number of constraint equations can be expressed
by the number of time intervals and the number of reservoirs
in the system. Thus, for reservoirs in parallel;

NP = (4N-2)n (2.10.2)
For reservoirs in tandem;

NT = (4N-4)n (2.10.3)
where NP = the number of constraint equations for reservoirs
in parallel. NT= the number of constraint equations for
reservoirs in tandem. N= the number of resefvoirs in the
system. n= the number of time intervals.

It must be realized that the constraint equations de-
scribe the operational limitations pof the reservoirs, sec-
ondary and main channels. So any variation of the number
of secondary channels in a system due to the geometrical
set up will change the number of constraint equations. For
example consider the two systems of reservoirs shown on Fig.
8. Although the number of reservoirs in both systems is
the same and the reservoirs are in parallel, the number of
secondary channels is different, and as a result the number

of constraint equations is different.
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N =4
Second Ch.=2

System A

N =4
Second Ch.= 1

System B

Fig. 8 Systems of Reservoirs
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In system A there are 2 secondary channels, Sl and

S2 where in system B there is only one secondary channel,
Sl‘ In such cases equation 2.10.2 and 2.10.3 can be corrected
by subtracting a quantify 2n from the above equations for
each node where more than two channels meet.

2,10.4 Bounds. Bounds constitute a part of the con-
straints and actually they put limits on the values of the
decision variables. In this case, there will be only one
set of bounds which define upper and lower values for

each reservoir. Therefore the number of bounds for a pro-
blem of N reservoirs and n time intervals there will be

a total of N x n bounds.

2.10.5 Problem Size. The problem size is defined by the

number of rows in the problem, where the number of rows
consists of;
a) The objective function plus the constraint

equations and the bounds.

2.11 EXAMPLES OF MATHEMATICAL MODELS

2.11.1 General. The procedures developed in sections 2.3-
2.10 shall now be applied to formulate the mathematical
models of two different systems of reservoirs. The problems
shall be presented in such a way, with all data given as

in actual cases.

Following are given the mathematical models of reser-
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voirs in parallel, section 2.11.2 and reservoirs in tandem,
section 2.11.3.

2.11.2 Mathematical Model of Reservoirs in Parallel. By

definition a system of reservoirs is operating in parallel
when the inflow to each reservoir in the system, is inde-
pendent of the outflows from any other reservoir in the
system.

Formulation of the mathematical model of a system of
reservoirs operating in parallel is most clear if done by
example. General presentation of the matrices involved
is given in Appendix II.

For our purpose consider that a system of reservoirs,
as shown in Fig. 9, is to be operated for flood control.
Given the data shown on Tables 2.1 and 2.2 as well as the
inflow hydrographs presented on Fig. 10, optimize the oper-
ation of the system.

The approach to the above problem shall be as follows.

a) Decide the size of the time interval.

b) Calculate the number of time intervals for
which operation can be planned.

c) Calculate the commencement and termination time
of operations of the reservoirs.

d) Derive from the data given and the inflow
hydrographs I', the new hydrographs I to be used as input

data.



Figure 9 Reservoir System

e) Calculate the problem size.

Table 2.1 Reservoir Data.

46

Reservoir Capacity Initial | Water Travel Time

No. Condition Days

Time Int.

1 C1 Ry 2.5
2 C2 R2 2.0
3 C3 R3 1.0
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Table 2.2 Channel Data.

Channel Minimum Maximum Remarks

No. Flow?* Flow

1 dl,j bl,j Tertiary Ch.

2 d, . b, . i h.
2,3 2,3 Tertiary C

3 d b. . T i .
3,3 3,3 ertiary Ch

4 Dj Bj Secondary Ch.

5 DIj BIj Main Channel

a) Size of Time Interval. Considering the inflow

hydrograph shape and the forecast period, it is decided
‘to select a time in£erval of 12 hours. Using this time
interval the histogram hydrographs are derived from the
smooth curve hydrographs as shown on Figure 10. Note that
each of the areas under the smooth curve hydrographs is
closely equal to that under each of the histograms.

b) Number of Time Intervéls n. Inflow to

the reservoir is forecasted for a period of 5 days or 10
time intervals. Applying the relationship 2.9.1 the number
of time intervals for which operation can be programmed is

equal to:

*Minimum and maximum flows are expressed in units of volume
per time interval.
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n="17TF + TN-T1 where TF = 10
n=10+2 -5 TN = T3 = 2
n=>7 _

T1 =5

c) Commencement & Termination of Operations.

Commencement time of operation of reservoirs is given by
equation 2.9.5 where the termination time is given by
equation 2.9.6. Substituting the known values into the

above equations, the following results are given;

Commencement Termination
CTl = 1 TTl = 7
CT2 = 2 | | TT2 = 8
CT, = 4 TT, = 10

The figures given above represent the time intervals.
Commencement occurs at the ﬁery beginning of the time in-
terval, where termination occurs at.the very end of the
time interval. A chart on Figure 11 shows graphically the
commencement and termination times of operations.

It is clear that, if the model is to be applied re-
peatedly, the next time period commencement of operation of
the reservoir occurs at the time it terminated before. For
the above example for the next application of the procedure,
the commencement of operation of reservoirs No. 1, 2, and 3

will occur at the very beginning of the time intervals
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Legend P.... Commencement
——] Termination

P‘f Reservoir No.3 i

T ] T T ] j 1

*3,1 *¥3,2 ¥3,3 ¥3,4 ¥3,5 ¥3,6 ¥3,7

Reservoir No. 2
b‘ 1 | ] I

1
2,1 *2,2 *2,3 ¥2,4 ¥2,5 ¥,

Reservoir 1o. 1 '
P e iy ] ] 1 1

¥1,1 *1,2 *1,3 *1,4 *1,5 *1,6 *1,7

1l 2 3 4 5 6 7 8 9 10
Time Intervals
Fig. 11 Commencement & Termination of Operation of Reservoirs

8, 9, and 11, respectively.

d) 1Inflow Hydrographs for Input Data. It has

been shown in paragraph b that the inflow hydrographs are
known for 10 time intervals and that due to the geometry

of the system the operationél matrix shall be derived for
only 7 time intervals. This paragraph answers the question
which inflows are to be considered as input data and at
what time interval.

Direct substitution into equations 2.9.7 and 2.9.8
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give the results shown in Table 2.3.

Table 2.3 Inflow Hydrographs I

Reservolr | Ty,n [Ti,2 | Ti,3 | Ti,4 |Ti,5 [Ti,6 [T4,7
1 T, | T2 T3 Ta,e | T, | 21,6 |17
2 T2 | T2,3) T'a,a| Tl2,5 | T2,6 [1'2,7 |T2,8
& T5,4 | T'3,50 T'3,6| T'3,7 | 3,8 |T"3,0 |1'3, 10

Ii,k represents the inflow to reservoir i during time
interval k to be used in the mathematical programming as
input data, where I'i,j represents the forecasted inflow
to reservoir i during time interval j. The table shows
the derivation of inflow hydrographs I from hydrographs I'.

The hydrographs I for each of the three reservoirs
in the system are shown on Figure 12.

e) Problem Size. By inspection of the physical

system of Fig. 9, it is seen that the result of equation
2.10.2 can be used to define the problem size. Therefore
by applying equations

NP = (4N-2)n

N.D.V. = n x N

Bounds = N x n
by direct substitution, it is calculated that the problem

is made up of:




No.l

Inflow to Res. No.2 Inflow to Res.
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l. One objective function.-
2. 70 constraint equations.
3. 21 bounds.
a total of 92 rows and 21 decision variables.
Now that all necessary parameters have been calculated,
the operation of the physical system shall be formulated
to a mathematical model.
The mathematical model shall be expressed as follows.
Maximize the function

7 3
) ) Ci,5 %i,5 = 2 (2.11.1)

j=1 i=1
subject to the constraints.

a) Minimum cumulative release,
Reservoir No.l

X3,0 2 I1,1tRyCy + 2y 4 (2.11.2)

2 7
) Xy, 2 ) Iy, * Ry=Cp + 7y, (2.11.3)
=1 . j=1 . -
7 7 .
) Xp,5 2 ) I3, ¥ RyCp+ %y 4 (2.11.8)
j=1 j=1
Reservoir No.2




Reservoir

Reservoir

2
X, . > . B
2,5 2 ) 12’J + Ry=C, + 22’2
=1 .
L ] 7 L]
X, . > . -
2,3 = 2 IZ,] u R2 c2 + ZZ,?
j=1
3
X -
3,12 T3,1 % Ry=C3 + %5 4
2
X ., > i -
3,5 2 ) I3,9 ¥ Ry=C3 + Z5
L ] j=l -
7 -
X > I . -
3,3 _'21 3,5 T R37C3 * 25 4
J:
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(2.11.10)

L] L] L] L] »

(2.11.15)

(2.11.16)

(2.11.17)

L L . . L]

(2.11,22)

(2.11.23)

(2.11.24)

(2.11.29)
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Reservoir No. 2

X3,1 £ Tx,1 F Ry (2.11.30)
2 2
I X310 51 I 5+ Ry ¥y, (2.11.31)
j=1 . =1 . ;
7 * 7 . .
I X, 551 Ip4% Ry¥y g (2.11.36)
j=1 j=1
Reservoir No. 3
X3,1 £ 13,10 + RT3 (2.11.37)
2 2
I X3,53 81 Iy,5*+ Ry¥3 (2.11.38)
j=1 . 3=l . :
7 7 . -
I %3 551 I35+ Ry¥5, (2.11.43)
j=1 j=1

Values of Y and Z may range between-O and Ci'

c) Secondary channel flow. In the system of
reservoirs on Figure 9, there is only one secondary channel,
channel No.4 to which channels No. 1 and No. 2 flow.

Therefore, for maximum flows constraints,

1,17 %,1 581 (2.11.44)
X1,2 % %3,2 2 By (2.11.45)
X,3 F %3,3 5 By,3 (2.11.46)
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(2.11.47)

(2.11.48)

(2.11.49)

(2.11.50)

(2.11.51)

(2.11.52)

(2.11.53)

(2.11.54)

(2.11.55)

(2.11.56)

(2.11.57)

In a system of reser-

voirs by definition there is only one main channel. In

Fig. 9 the main channel is channel No. 5, and channel

No. 1, No. 2, and No. 3 discharge their flows into this

channel.

For maximum flows,

X

1,1

+ X

+

X

A IA

IN

Bl

Bl

Bl

(2.11.58)
(2.11.59)

(2.11.60)



X1’4 + X2'4 + X3'4 < Bl4
X, g+ Xy 5+ X3 5 < Blg
Xl,6 + X2,6 + X3,6 < B16
xl,7 + X2,7 + x3'7 < Bl,
For minimum flows,
Xy g+ Xy o + Xy p 2Dl
3
I %5 20Dl
i=1
3
) x1,3 2 Bltg
i=1
3
I Xj,4 20
i=1
3
I %;,52Dly
i=1
3
¥ %i,6 2 Plg
i=1
3
I %3, 2Dl
i=1

e) Tertiary channel flow bounds.

57

(2.11.61)
(2.11.62)
(2.11.63)

(2.11.64)

(2.11.65)

(2.11.66)

(2.11.67)

(2.11.68)

(2.11.69)

(2.11.70)

(2.11.71)

The flow in

the tertiary channels, like that in the secondary and main

channels, is bounded above and below. Due to the fact that

the expression contains only one decision variable, this



part of the input data can be expressed as follows.

fore for,

Reservoir No.

Reservoir No.

Reservoir No.

1

IA IA IA IA IA IA

A

IA IA A IA IA IA

IA

IA

1A

IA IA IA 1A A IA

IN

IA IA IA 1A IA IA

1A

A

IA
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There-

(2.11.72)
(2.11.73)
(2.11.74)
(2.11.75)
(2.11.76)
(2.11.77)

(2.11.78)

(2.11.79)
(2.11.80)
(2.11.81)
(2.11.82)
(2.11.83)

(2.11.84)

(2.11.85)

(2.11.86)

(2.11.87)
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d3 3 S %3 3 S by 5 (2.11.88)
d3 4 £ %3,4 S b3 4 (2.11.89)
dy 5 S %35 S b3 g (2.11.90)
dy,6 S %3,6 < b3y g (2.11.91)
dj,7 S %39 S b3 4 (2.11.92)

In this problem is was assumed that the inflow from
the local areas, downétream between the dam and the damage
center, was neglected. The capacities of the outlet works
of any reservoir in the system do not offer any limitation.
All notations are given in Appendix I.

2.,11.3 Mathematical Model of Reservoirs in Tandem. By

definition a system of reservoirs is operating in tandem
when inflow to one of the reservoirs is a function of the
releases from all other reservoirs.

Section 2.11.2 has dealt with the mathematical model
of reservoirs in parallel. To see the differences in the
mathematical models of the two systems, this section deals
with reservoirs in Tandem.

Suppose that the system of reservoirs shown on Figure
13 is to be operated for flood control purposes. The
reservoir and channel data are given on Tables 2.4 and 2.5,
where the inflow hydrographs given on Figure 14 are known

for a period of 5 days.




Fig. 13 Reservoirs in Tandemn
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Table 2.4 Reservoir Data
Reserv.| Capacity Initial Water Travel Time .
No. Cond. Days 12 Hr.
Interv.
1 Cy Ry 3.5 7
2
C, R, 3.0 6
3 C3 R3 1.0 2
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Formulate the physical system as a mathematical model
(in linear programming) so that the operation of the reser-
voir can be optimized.

Table 2.5 Channel Data

Channel Minimum Maximum Remarks
No. Flow* Flow*
1 d. . b, . Tertia Ch.
1,5 1,3 ry
2 d2,j bz,j Tertiary Ch.
3 D3,j B3,j Secondary Ch.
4 Dj Bj Tertiary Ch.

To be able to derive the mathematical model of the-

system the following additional information must be known.

a) The size of the time intervals.

b) The number of time intervals over which the
operational matrix can be applied. .

c) Commencement and termination time of operations
of reservoirs.

d) The inflow hydrographs to be used as input data.

e) The problem size. |

The above data shall be calculated by using the equations

developed in sections 2.9 and 2.10.

*Minimum and maximum flows are expressed in units of volume
per time interval.
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Reservoir No.

Reservoir No.2
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2 3 4 5 6 7 8 9 10
Time Interval
Fig. 14 Inflow Hydrographs I'
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a) Size of Time Interval. By considering the

inflow hydrographs and the period for which the inflows
are given it is decided to select a time interval of 12
hours. Based on this, the water travel time of reservoirs
No.l, No.2, and No.3 are calculated to be equal to 7,6, and
2 time intervals.

b) n. Number of time intervals for which op-
eration can be programmed.

Given that TF=10 and T T,, and T, shown in Table 2.4,

1’ 72 3
by substitution into equation 2.9.2

n= TF + Tz—Tl

n= 10 + 6-7
n= 9
The model shall be applied over nine time intervals.

c) Commencement and Termination of Reservoir

Operations. By direct substitution of known data into

equations 2.9.5 and 2.9.6 the following results are given:

Commencement Termination
CTl=l TT1=9
CT2=2 TT2=10
CT3=6 TT3=14

Note that operation of reservoir No. 3 extends four
time intervals beyond the forecast period. Figure 15 shows

the operation chart for the reservoirs in the system.
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It must be realized that commencement of operation
occurs at the very beginning of the time interval calcu-
lated and termination occurs at the very end of the time
interval calculated.

d) Derivation of Inflow Hydrographs for Data

Input. Given on Figure 14 are the inflow hydrographs, in
continuous and histogram form, for reservoirs No. 1 and
No. 2, for 10 time intervals. According to (b) the number
of time intervals over which the mathematical model shall
be formulated is nine (9). The question asked is, which
9 out of the 10 flows given in Figure 14 shall be used as
input data.

By direct application of equations 2.9.7 and 2.9.8

on reservoir No. 1 data, the following results are given:

J(1,1) = 777+l =1
j(llz) B 2 -
Reservoir No.l
J(1,3) = 3
I(1,9) =9
and

I = T!
1,1 1,1 Reservoir No.1l

. L
11'2 =TI |
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- '
Il,9 I
Direct application of the equations for both reservoirs in
the system, the results shown on Table 2.6 are taken.

Table 2.6 Derived Inflow Hydrographs I

Re;sr"' Ti,1 | T1,2 [Fi,3 %5, |Tis Tie [Ti,7 |Ti,8 |Ti,9
1 1 T [ ] 1 1 ¥ 1

1 Ta,1|T 12| 1,3 T 1,4, 5|1 1,6/ '1,7(*"'1,8[%"1,0
1 1 1 1 [ ] 1 1] [ ] : 1

2 T'2,2|172,3(% 2,42, 51" 6|1 2,711 2,81 '2,9(%2,10

I'i,j represents the inflow to reservoir i, during time
interval j as given by hydrograph on Figure 14. Ii,k re-
presents the derived hydrograph to be used as input data.
The results of Table 2.6 are plotted on Figure 16.

e) Problem Size. By inspection of the physical

model, equation 2.10.3 applies for the determination of the

number of the constraint equations,

-«

NT= (4N-4) n

NT= (4x3-4) 9
NT= 72
The bounds equal to nxN = 27.
In summary the problem is made up of:
72 Constraint equations
1 Objective function

27 Bounds and 27 decision variables
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Now that the necessary parameters are known we can

proceed with the mathematical formulation of the problem.

Generally the problem shall be stated as follows.

Maximize the function:

9 3
Yy ) ¢, . X, .=12

j=1 i=1
Subject to the following constraints,
a) Minimum cumulative release;

Reservoir No.l

(2.11.93)

(2.11.94)

(2.11.95)

(2.11.102)

(2.11.103)

(2.11.104)

(2.11.111)
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Reservoir No. 3 Inflow to this reservoir is not known
until the problem is solved, since the inflow to reser-
voir No. 3 is the sum of the outflows from reservoirs No.l
and No.2. The general form of this set of constraint equ-

ations is as follows:

- Xy 3 " Xy,p * Xy 2RyCy Iy, (2.11.112)
2 2 2
SI Xy g =D Xy v I ¥y 5 2 Ry=Cy+ Zg (2.11.113)
j=l j=l » j=l . -
9 9 . ' 9 . .
_z Xl,j_z 2,3 + z X3,j > R3--C3 + Z3’9 (2.11.120)
j=1 =1 =1
b) Maximum cumulative release,
Reservoir No.l
Xp 121 YRy (2.11.121)
2 2
) Xi,3 S ) I;,3 ¥ R %,2 (2.11.122)
j=l L j=l . .
9 . 9 .
I Xy,5 81 Tp,9%+ R7Yy 49 (2.11.129)
j=1 j=1
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(2.11.130)

2.2 (2.11.131)
14

2,9 (2.11.138)

Inflow to this reservoir is the outflow

from reservoirs No.l and No.2. Therefore, the constraint
equations shall be:
_xl,l —Xz;l + X3,1 < R3_Y3,1 (2.11.139)
2 2 2
- Xy & - X, . + X, . < -Y 2.11.140
) 1.3 ) 2,] ) 3,5 = R37¥3,2 ( )
j=1 . j=1 j=1 . .
9 - 9 9 L] = -
- X, .- X, . + . < R,~ 2.11.147
) 1,] ! 2,7 ! x3.3 = R3™¥3,9 ( )
j=1 j=1 J=1
c) Secondary channel flow. Figure 13 shows that

there is only one secondary channel (channel No.4) which

receives flows from reservoirs No.l and No.2.

for maximum flows constraints,

X + X <

1,1 2,1 -

B

4,1

Therefore,

(2.11,148)
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xl'2 + X2’2 < B4'2 (2.11.149)
X1'3 + X2’3 < B4'3 (2.11.150)
X1'9 + le9 < B4,9 (2.11.156)
where for minimum flow constraints
Xl,l + x2,l > D4,1 (2.11.157)
Xl,2 + x2'2 > D4'2 (2.11.158)
X),3 ¥ %5,32 Dy ,3 (2.11.159)
X)'g ¥ X379 2 Dy,9 (2.11.165)

d) Main channel Constraints: Considering the
definition of the main channel it is concluded that the be-
havior of channel No.3 is actually not that of a main
channel. The release to channel No.3 is controlled by
one reservoir only. Therefore, channel No.3 shall be
treated as a tertiary channel. )

e) Tertiary channel flow bounds: The bounds
section of the input data, of the MPS/360 algorithm,
expresses the upper and lower limits of the values that
a decision variable can obtain. Since the flow in tertiary
channels is expressed by only one decision variable, then

this set of constraints must come under the bounds section,

and the equations are expressed as follows:
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72

(2.11.166)

(2.11.167)

(2.11.174)

(2.11.175)
(2.11.176)

(2.11.177)

(2.11.184)

(2.11.185)
(2.11.186)

(2.11.187)

(2.11.194)
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CHAPTER ITI

COMPUTER PROGRAMMING

3.1 INTRODUCTION

Optimizétion of the operational matrix (mathematical
model) is to be carried out by the Linear Programming al-
gorithm of MPS/360.

The mathematical model discussed in Chapter II in-
volves linear inequalities which can be expressed generally
in a matrix form as shown on Appendix 2. The L.H.S.l
matrices include invariants (or data) which do not change
for a specific system of reservoirs, provided that the oper-
ation is always planned for the same number of time inter-
vals. The R.H.S.2 matrices in contrast to the L.H.S.'s
contain invariants (or data) that change each time the
program is used., (New time period)

Before discussing the individual program in detail,
it is necessary to define several terms used throughout
the discussion. The term "job" constitutes a submission
of the entire program and associated input data to the com-
puter. Every time the program and data decks are deposited

on the computer console, another job is initiated. Each

1l . s,
Left Hand Side Matrices See Appendix II

2Right Hand Side Matrices
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job includes certain invariants, as discussed abqve which
might change or not, according to the specific job.

Each job in turn consists of one or more studies,
where each study is dealing with a particular part of the
mathematical model. Each study may be carried out sepa-
rately and have its results stored on a magnetic tape to

be used by another study at a later stage of the job.

3.2 GENERAL FLOW CHART OF THE PROGRAM

The general flow chart of the program for the set
up and optimization of the operational matrix is shown on
Figure 17.

The left hand side matrix data (transition matrix
data associated with the size and geometry of the system
as well as the number of time intervals for which operation
is to be programmed) are read at the start of the job. In
the next step the program proceeds with the generation of
the L.H.S. transition submatrices to form one big matrix
as shown on Figure 18. Once the L.H.S. transition matrix
has been generated it is stored by column order on a
sequential file, in a format complying with the MPS/360
input data format. Before the columns are stored, the
rows section generated by the same program is stored on
the same sequential file. A sample of the stored data is

shown on Figure 19. For more details regarding the format
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of the MPS/360 input data refer to "MPS/360 Version 2,
Linear and Separable Programming User's Manual" IBM
Application Program GH20-0476-2. It is clear that to study
a different system of reservoirs, a different program must
be prepared to generate the L.H.S. transition matrix.
However, if it is desired to investigate the same system
many times, each time for the same number of time inter-
vals, the generated matrix can be used repeatedly, which
means that the program need not start from the very be-
ginning. Therefore, program A-B (see Fig. 17) can be put
to run once, generate the transition matrix (L.H.S.) and
then start the reét of the jobs from step B. Avoiding
repetition of this step shall save computing time. The
data stored on a magnetic tape can be used repeatedly.
The next step calls for the invariants associated
with the R.H.S. matrices (inflow to reservoirs, reservoir
capacity, reservoir initial condiéions, channel maximum
and minimum acceptable flows, and other general data) to
be read to the program. The program proceeds with the
processingvof the input data and the generation of the
R.H.S. matrices. The resulting matrices are then stored
on a direct access file for later use by the Linear
Programming of MPS/360. A sample of the R.H.S. matrix

data, stored on a disk is shown on Figure 20.
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~

Since the input data to this study program is always
different, this program must be included in every job.

After the input data to MPS/360 is stored, the Linear
Programming algorithm of MPS/360 is called to read the
data and proceed with the optimization. If there is a
feasible optimum solution the program proceeds to give a
printout of the results through the Readcom subroutine.
If however, there are infeasibilities the program is di-
verted to print out a table (trace) which includes all
vectors that are infeasible. The "trace" helps the pro-
grammer to identify the infeasible vectors and any other
constraints invol&ed in the infeasibilities, which, by

relaxation might give a feasible solution.

3.3 INPUT DATA

Three classes of input data are required for the
execution of each job; (1) Hydrolagic data, (2) System
parameters data, and (3) Miscellaneous data.

The hydrologic data constitutes the derived inflow
hydrographs, I, from the forecasted inflow hydrographs I'.
The inflows are expressed in units of volume per time in-
terval. The system parameter data comprise the sizes and
capacities of the structures, (reservoirs and channels)
and other data expressing the geometry of the system

(water travel time). The miscellaneous data comprise the
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time interval size, the number of time intervals for which
the analysis shall last, and other general data necessary
to process the hydrologic and system parameter data.

All data is to be provided to the programs on punched
cards. The hydrologic data will be different for different
jobs, whereas the system parameters stay the same for the
same system. Miscellaneous data is generally varied
according to the conditions imposed on the system by each

specific job.

3.4 EXTENSIONS & LIMITATIONS OF COMPUTER PROGRAMS

The general flow chart given in section 3.2 can be
translated into a computer program for the processing of
the data given and optimization of the operation of any
system of reservoirs. Each program has to be written to
fit a specific system. Generalized programs cannot be
developed because of the geometrical dissimilarities be-
tween systems. For this study two -programs were written
for two specific systems of flood control reservoirs. One
of the programs is dealing with reservoirs in parallel and

the other with reservoirs in tandem.
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Figure 17 General Flow Chart of the Program
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Fig. 17 Continued
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NAME PROB2

ROWS

G CON1OL

CONIC2

coN103

CON1G4

CCON10S

CON10Q6

CON107

CGNLO3

CON109

CON110

CON11L

CON112

CCNI113

CONL1l4

CON11S

CONl16

CCON11T

CONL1L3

CUN119

CON120

COANL21

CON122

CON123

CON124

CON125

CON126 ’

cuNt27

CONLl28

CON123

CON130

CONl3l

CON132

COLUMNS
X101 FX C.90
X101 CUN1CL l1.C0 cOoN102 1.32
X101 CCNLG3 1.00 CON104 1.00
Xiol CON105 0.0 ctN106 0.9
X101 coN107 0.0 CON10S 0.0
X101 CcCN1Q9 -1.00 CON110 -1.00
X101 CCN111 -1.C0 CCN12 -1.C0
X101 CUN113 1.06C CONll4 1.00
X101 CCN115 1.00C CONLle 1.00
X101 CONLLT J.0 CON1l8 0.0
X101l CuNl19 0.¢C CON12C a.n
X101 coN121l -1.00 CNN122 -1.0C
X101 CON123 =1.02 CCN124 -1.60
X161 coN125 1.00 CCN126 0.0
X161 CCwl27 0.0 COoNl123 6.2
X101 CCN129 1.02 CCnllo 0.C
X101 CuN13l 0.0 CCn132 0.0

7

oo rTrerrrerPreErErrFEO0CO000000

Figure 19 Rows & Columns Input To MPS/360



RHS

RHS L cuN101 C.®
RHS 1 CLv102 (N
RHSi CCNLC3 0.C
RHS1 CLV104 0.0
RHS1 CGN165 C.G
RHS1 CCNLUG 0.2
RHS1 CLN107 o0
RHS1 CON1GB 0.0
RHS1 CONLGY 0.0
RHS1 CONL10 0.0
RHS 1 conlll 0.
RHS1 CONL12 0.6
RHS1 CONI13 0.0
RHS1 CUNL14 0.0
RHS1 CCNL1S 0.¢
RHS1 CON116 0.0
RHS1 CON117 ~146.75343323
RHS1 CLN118 -146.75343323
RHS1 CCN119 -146.75343323
RHS1 CGN120 -146. 15344323
RHS1 conl2l -146.75343323
RHSL con122 ~146.75343323
RHSL CoN123 -146.75343323
RHS ) CoNl24 -146.75343323
RHS1 CCN125 54.87335647
RHS1 CON126 66.28795471
RHS1 cuNL27 70.08474 131
RHS1 Cinl28 T1.54490662
RHS1 CeN129 72.495 30029
RHS1 CUN130 73.92G39846
RHS1 CONL3L 77.98164945
RHS1 CENL32 80.206961G6
RHS1 CUN133 59.71699663
RHS 1 CUN134 66.84217643
RHSL CUNL135 70.04443359
RHS1 CUN136 71.9625C916
RHS1 CGNL37 . 72.636429483
RhS1 CN138 73.10211182
RHS1 ClN139 73.43474316
RHS1 CONL4C 73.50451965
RHS1 CINL4L 174.23997493
RHS1 CoNl42 174.23997498
RHS1 CON143 174,23997498
RHS1 CGiNl44 174.23937498
RHS1 CUNL45 174.23997439
RHS1 CON146 174.23697498
RHS1 CCN14T 174.23997439
RHS1 CCN148 174.23997492

BOUNDS

u? p123 X191 1.21439972

uP p122 X102 1.21439972

ur P123 X103 1.814 39972

uP P123 X124 1.81439972

uP P123 X105 1.81439972

UP P123 X106 1.61439972

ur P12 X137 1.81439972

UP P123 x108 1.81433972

uP P123 X109 1.64159966

uv P123 X110 1.64153966

Figure 20 RHS & Bounds Input to MPS/360
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CHAPTER IV
APPLICATIONS
(Mathematical Model Validation)

4.1 INTRODUCTION

Having devised the mathematical models in the appro-
priate form and having settled upon the strategy for op-
timizing the operation of a system, (chapters 2 and 3),
the validity of both the mathematical model and computer
procedure can be explored. They can be checked by applyving
the procedure to the optimization of operation of actual
systems, already operating, in the Kansas river basin.

Since two models have been developed (reservoirs in
Parallel and reservoirs in Tandem) both shall be applied
to two distinct systems, Reservoir and channel data are
taken from reference [8] and hydrologic data from reference
[91. Local inflows to channels downstream the reservoir

were neglected. -

4,2 APPLICATION: RESERVOIRS IN PARALLEIL

The first application was made to a system of reser-
voirs whose basic configuration is shown on Fig. 21. The
representation shows that the system is made up of three
reservoirs, three tertiary channels, one secondary channel,
and one main channel. The reservoirs and tertiary channels

are numbered as shown on Table 4.1. The difference in



Figure 21 Schematic of Reservoirs in Parallel

84



85

water travel time between reservoir No.l and the others
is shown on the same Table.

Table 4.1

Reserv. Reserv. Tertiary Chan.| DT.*

Name No. No. -

Days
Wilson 1 1 0
Kanopolis 2 2 1
Glen Elder 3 3 1

DTi shows the time at which operation of each reservoir
shall commence with relation to reservoir No. 1. Secondary
and main channels shall be referred to with their names.

l. Input data: The system's parameters and hydro-
logic data are shown on Figure 22. The data includes:

a) Reservoir capacities. (Actual flood control
capacities)

b) Reservoir initial conditions. The values
indicated have been assumed on the. basis of inflows and
permissible releases.

c) Allowable flows in tertiary channels. This
data has been taken from reference [8].

d) Allowable flows in secondary and main chan-

nels. This data has been taken from reference [8].

* See Appendix I for notations.
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RESERVOIR ANL CHANNEL DATA

A RESERVOIR CAPACITIES -

~

RESERVIOIR CAPACITY In CAPACITY 1IN CAPACITY [N
NU ACRE-FEET UNITS CFI

1 531000, 231.304 23130357760,

2 385600, 1671.967 16796173344C,

3 736900, 32C.993 3203936L76¢.

B RESERVGIR TIITIAL CONDITIONS
FLCCO STURAGE INITIALLY OCCUPIED

RESERVOIR  VOLUME IN VOLUME IN VOLUME IN
NG . ACRE-FEET UNITS CFT ;
1 318000, 138.521  13852078C80.
2 232000, 101.059 10105917440,
3 444030, 193.406 19340636160,
C ALLOWABLE FLOWS In TERTLARY CHANWMELS
CHANNEL MAXIMUM FLOW Ity TCRTLCHAN.IN CFS MINIMUM FLOWS IN CFS
NO PHASE 1 PHASE 2 PHASE 3
1 2400, 46JC. 5500, 100.
2 4800, 2000, 15000. 100.
3 3300, 550G, £0C0, 100,
D ALLGWABLE FLOWS IN SECONDARY & MAIN CHANNELS
CHANMEL MAXIMUM FLOW T4 SEC & MAIN IN CFS MINIMUM FLOW IN CFS
NO PHASE 1 PHASE 2 PHASE 3
(3} 4900, 9¢6C. 11500C. 1¢0.
s2 10000, 16700, 38000. 106,

£ INFLOWS TO THE RESERVDIRS IH CFS RECURDED EVERY 24. HOURS
RESERVGIR NC :

PERIOD 1 2 3
1 4070. 6980. 1040C.
2 768C. 11200, 25200,
3 15920, 192CC. ) 38290,
4 13200. 125CC, 27930,
5 7380, 1069, 14290,
6 3250, 4120, 9140,
7 44090, «i90. 7030,
2 548G, 7230, 7110,

Figure 22 Input Data - Reservoirs in Parallel



PERMISSIBLE FLUWS I[N TERTIARY CHANNELS

CHANNEL NO
PERIOD 1 2 3
1 2400, 43CGC. 3390,
2 2460, 4860, 3300,
3 2400, 4800, 332G,
4 2400, 4800, 3300,
5 2400, 48C0. 3300.
6 2400, 42060, 3300.
7 2400, 4330, 33C0.
8 2400, 4800, 3300,

PERMISSIBLE FLCAS IN SEC.& MAIN CHAM.

CHANNEL NO
PERIOD Si $2
1 4900, 106CC.
2 4900. 10000,
3 4900, 10c00.
4 4900, 10960,
5 4900. leccc.
6 4900, 1000C,
7 4900, 10503,
e 4900. 12000,

Figure 23 Input Data - Reservoirs in Parallel
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FLOW IN MAIN & SECUMDARY CHANNELS

PERIOD SEC.CHANNEL MATN CHANNFEL
- CFS CFS
1 4900, 8232,
-2 4900, 8z0C.
3 4900, 8200.
4 490C. 820C.,
5 4300, £230.
6 4900, -8200.
7 4900, B29).
8 | 4900. 8200,

Figure 28 oOutput Data - Reservoirs in Parallel

e) Hydrologic aata. Inflow to reservoirs in
c.f.s. recorded every 24 hours. The length of time inter-
val is 24 hours and a total of 8 time intervals are con-
sidered for optimization.

Figure 23 shows the pérmissible maximum flows in ter-
tiary, secondary, and main channels. These values are de-
rived from the operational guideline graphs, similar to the
one shown on Figure 2.

2. Output:

a) The first output from the pProgram is the
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transition matrix shown on Figure 24. The transition
matrix for the system under consideration for a period of
8 time intervals is made up of 81 rows and 24 columns.

b) Releases and reservoir status. The final
output from the computer program gives the optimum releases
and reservoir status for each reservoir in the system.

The results are shown on Figures 25, 26, and 27. The last
output, Figure 28, indicates the flows to be observed in
the secondary and main channels when the schedule of re-

leases is followed.

4.3 APPLICATIONS: RESERVOIRS IN TANDEM

This section deals with the application of the mathe-
matical model and computer program for the optimization of
operation of a system whoée basic configuration is shown on
Figure 29. The representation shows that the system is
made up of three reservoirs and three tertiary channels.
Secondary andrmain channels do not exist (by definition)
in the system.

The reservoirs and channels are numbered as shown on
columns 1, 2, and 3 of Table 4.2 where the difference in
water travel time, between reservoir No. 1 and the others,

is shown on column 4 of the same table.



Figure 29

. N .
Schematic of Reservoirs in Tandem
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RESERVOIR AL CHANNEL DATA

A

LM TERT JORANGIN TFS

95

CAPACITY 1IN
CFT

8433213440,
9557C¢le3z,

320933606762,

VGLUME IN
CFT

4355997696,
5227196416,

17423992497,

MINTIMUM FLOWS IN CFS

PHASE 3
509C. 130.
8CCC. " 1no,
8000, 1CG.

INFLOWS TO THE RESERVAIRS IN CFS RECORDED EVERY 24, MIURS

RESERVUIR CAPACITIES
RESERVUIR CAPACITY IN CAPACITY [N
NU ACRE-FEET UNITS

1 193600, 84.332
2 21943C. 95,571
3 736900, 320.993
RESERVOIR INITIAL CUNDITICNS
FLOOD STURAGZ INITIALLY CCCUPIED
RESERVOIR  VULUME [N VOLUME [%
NU ACRE~FEET UNITS
1 100G00. 43,560
2 122000, 52,272
3 406000, 174,240
ALLOWABLE FLOWS IN TERTIARY CHANNE
CHANNEL MAXIMUM FLOW
NO PHASE 1 PHASE 2
1 2130. 3500,
2 1800, 3cec.
3 3390, 556C,
RESCRVOIR N
PERIOD 1 2 .
1 13100, 8610,
2 13900, e3co.
3 3700. 3660,
4 1690, 2220.
5 1100. 780.
6 165G, 539,
7 4700, 355,
3 3270. 422,

Figure 30

Input Data- Reservoirs in Tandem



PERMISSIBLE FLUWS IN TFERTIAQY CHANXNELS
CHAMNNEL NQ

PERIQD
1

2

[¢-]

Figure 31

2100.
2100,
2160.
2100.
2100.
210G,
2100,

2100,

Input Data-~ Reservoirs in Tandem

2
1900,
1900,
1900,
1900.
1900.
1960,
1900,

1500,

W

(88
W
)
[ ]
[

3300.
330¢C.
330¢.
3300,
3300,
3300G.

3300.
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Table 4.2
Reserv. Reserv. Tertiary Ch. DTi*
Name No. No.
Days
Webster 1 1 0 J
Kirwin 2 2 0.5 l
Glen Elder 3 3 1.5 |

1. Input data: The input data to the program is
shown on Figure 30. The differences between Figure 22
and 30 are that inflow to reservoir No. 3 in the later
case is not given. Figure 31 lists the permissible maxi-
mum flows to be permitted in the tertiary channels at any
time during the 8 time intervals. (One time interval is
equal to 24 hours.)

2, Output:

a) Transition matrix. .The~transition matrix
(Figure 32) for this system is smaller (49x24) than the
one for the system in parallel. This is due to the fact
that no secondary or main channels exXist in the system.

b) Releases and reservoir status. The out-

put shown on Figure 33, 34, and 35 shows the optimal re-

leases and the reservoir status before and after each re-

* See Appendix I
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lease. On the same figure the inflows to the reservoirs are
shown, expressed in c.f.s. and acre-feet. Note that inflow
to Reservoir No. 3 is the sum of the outflows from Reser-

voirs No. 1 and No. 2.

4.4 DISCUSSION OF RESULTS

The results shown on Figures 25, 26, 27, 28, 33, 34,
and 35 indicate that the mathematical and computer pro-
cedures followed are valid. This conclusion is reached
after a careful consideration of the results and the input
data.

For example, it can be found that it is true that eéch
of the releases computed is witﬁin the preassigned range,
a well the reservoir's content at any time during the
operational period, under Study, are also within the pre-
assigned range.

Studying the releases to be made during each time
interval, it is noted that they vary according to the
coefficient of the respective decision variable. For
example, in Figure 25 the releases are.shown to alternate
between 100 c.f.s. and 2400 c.f.s. From Figure 24 it is
seen that the coefficients of the decision variables vary
alternatively as the releases computed. This indicates

that priorities of releases to be made from different
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reservoirs in the system can be established by assigning
the proper values to the decision variable coefficients.
In some cases it is necessary to assign special values to
the coefficients of the decision variables to avoid multi-
ple solution results. In such cases the algorithm picks
up only one solution which might be in favor of one of the

reservoirs. (Larger release)

4,5 LIMITATIONS & EXTENSIONS OF PROCEDURES

The procedures developed in Chapter 2 and Chapter 3
have been applied and found to be valid. However, the
procedure has certain limitations which have to be studied
carefully before it is applied to accomplish its objective.
The most important limitations are:

1) The procedure caﬁnot be applied in big systems
with considerable water travel time differences between
reservoirs. In mathematical terms, when the results of
equations 2.9.1 and 2.9.2 are not positive the model cannot
be applied to the total system. Such systems must be
studied by the decomposition method.

2) The measure of effectiveness of each release is
proportional to the level of the release, conducted in-
dividually. Thus, by considering the problem as a linear

one it is assumed that the marginal measure of effective-
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ness and the marginal usage of each release are constant
over the entire range of the permissible releases. This

is a disadvantage because releases at different stages

and from different levels from the reservoir have different
marginal values.

3) The model does not optimize the releases from
each reservoir from the economic point of view directly.
What it gives is the releases to be made from the different
reservoirs of the system, provided that the optimum range
of flows in the channels downstream is known.

The mathematical model has been applied successfully
to two discrete sygtems, though with small modifications
can be applied to more complicated systems. Extensions
of the models discussed can be made to consider the
following:

1) Mixed type systems: The mathematical model of a
mixed type system is constructed a}ter studying its geo-
metrical setup. For example, consider the system on
Figure 36. The system is made up of two subsystems such
as: Subsystem 1 is made up of reservoir No. l, No. 3, and
No. 5 operating in tandem and Subsystem 2 is made up of
reservoirs No. 2 and No. 4 operating in parallel.

In modifying the model to consider this system these

subsystems have to be considered, but in the final analysis
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Figure 36 Mixed Type System

Figure 37 Mixed Type System
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the system shall be treated as reservoirs in parallel.

A second example is the system shown on Figure 37
(quite different) which, in the final analysis shall be
treated as reservoirs in tandem.

2) ILocal inflows to channels: This concerns the
local inflows to channels downstream the flood control
reservoirs. The model can be extended to include these
flows by introducing them as another input to the channel
constraints or considering the flows when deciding the
maximum permissible flows in the channels of the system.

3) Local inflows to reservoir: In cases of reser-
voirs in tandem, it is assumed that the last reservoir in
the system (Figure 29 reservoirs) has an inflow which is
equal to the sum of releases from the reservoirs upstream.
However, this is not absolutely true. In most cases local
inflow does enter the reservoir. This can be included in
the mathematical model by considexring the inflow in the
mathematical model as another input.

4) Multiple purposes reservoirs: The model can be
extended to deal with multiple purpose reservoirs, taking
into consideration the demand of reservoir storage for
other uses. The parameters Y and Z in the constraint
-equation can be given values that include the demand of

storage for other uses.
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4.6 CONCLUSIONS & RECOMMENDATIONS

A mathematical model for the optimization of operation
of a system of flood control reservoirs has been presented.
All functions of the model have been expressed in linear
form, suitable for application of a Linear Programming
Algorithm,

The inflow to the reservoir has been assumed deter-
ministic and the range of flows in the system channels
known.

Application of the model on two different systems of
reservoirs (reservoirs in Parallel and reservoirs in Tandem)
by utilizing the Linear Programming Algorithm of MPS/360
has been successful. The result obtained indicate that
operation of a system of flood control reservoirs can be
optimized by the application of Linear Programming pro-
cedures.

Practical application of the model needs reasonable
knowledge of the hydrologic conditions of the system in
general and of every specific part of the system. Forecast
of inflows to reservoirs as well as good knowledge of the
capacities of the channels and reservoirs, must be known.

The procedure by itself does not provide the optimum
(from the economic point of view) release from a reservoir.

More studies must be carried out in establishing the opti-
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mum range of release from reservoirs -as a function of
inflow, reservoir level, and downstream stage. A study
incorporating economic values should help to define guide-
lines for establishing the maximum allowable flows in the
channel.

Further studies have to be carried on large scale sys-
tems where this model is difficult to apply. Methods of
decomposition or by part optimization can be developed to

deal with such systems.
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APPENDIX T

NOTATIONS

The following symbols and notations were used in this

report.
N =

n .

Number of reservoirs in the system.

Number of time intervals for which operation of
the system is to be optimized.

Flood storage capacity of reservoir i in units of
volume; i=1l, 2, ...N.

Flood storage capacity of reservoir i initially
occupied in units of volume.

Forecasted inflow to reservoir i during time inter-
val j in units of volume.

Decision variable (release) from reservoir i during
time interval j in units of volume.

Minimum acceptable flow in tertiary channel i
during time interval j in units of volume.

Minimum acceptable flow in secondary channel i
during time interval j in units of volume.

Minimum acceptable flow in main channel during
time interval j in units of volume.

Maximum acceptable flow in tertiary channel i
during time interval j in units of volume.

Maximum acceptable flow in secondary channel i
during time interval j in units of volume.

Maximum acceptable flow in main channel during
time interval j in units of volume.

Water travel time (expressed in time intervals)
from reservoir i to damage center. (Time interval
may be equal to 6, 12, 18, or 24 hours.)
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~
~

Difference of water travel time between reservoir
No. 1 and reservoir i in the system.

Forecast period expressed in time intervals.
Minimum predetermined level the reservoir i shall
be allowed to drop or rise at the end of period j

in units of volume.

Minimum storage volume that must be empty in reser-
voir i by the end of time interval j.
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APPENDIX II
MATRIX REPRESENTATION OF THE MODELS
II.1 GENERAL
The objective function and each set of time sequence
constraint equations shall be presented in their matrix

form, of the general form AX {< = >}H. For each set of

constraints one and only one of the signs < = 2 holds and
the sign shall vary from one set of constraints to another.

Matrices of type A shall present the operating char-
acteristics of the object or the system and shall be re-
ferred to as Transition Matrices.

Matrices of type X represent the decision variables,
one column matrix, where matrices of type H, a column
vector of constants express the lower or upper bounds of
the left hand side (LHS) matrix (product of AX).

Matrices of type A are of the order nxL, matrices of
type X are of the order Lxl and Aatrices of type H are of
the order nxl. (L=Nxn)

Following are general rules of how to develop the

transition submatrices of a transition matrix of a sys-

tenm.

II.2 RESERVOIRS IN PARALLEL
The following symbols and notations are to be used

in this section.
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Al. = Transition submatrix of the order nxL representing

the reservoir i operation requirements. (Minimum

or maximum cumulative flow constraints).

A2. = Transition submatrix of the order nxL representing

the secondary channel i operational requirements.

(Minimum or maximum flows).

A3 = Transition submatrix of the order nxL representing
the main channel operational requirements (minimum
or maximum releases).

Cc - Transition submatrix of the order 1xIL representing
the unit merit of the decision variables.

Hl = Column vector matrix of constants expresses the
minimum cumulative release constraint.

H2 = Column vector matrix of constants express the maxi-
mum cumulative release constraints.

D = Column vector matrix of constants, expresses the
minimum flow constraint for the secondary channels.

D1 = Column vector matrix of constants, expresses the
minimum flow constraint for the main channels.

B = Column vector matrix of constant, expresses the
maximum flow constraints for the secondary channels.

Bl = Column vector matrix of constant, expresses the
maximum flow constraint for the main channels.

Submatrices Al, A2, A3, and C make up the transition
matrix (left hand side: LHS input data) where column ma-
trices Hl, H2, D, D1, B, and Bl give the limiting values
upper or lower (Right Hand Side: RHS values input data).
Since we can reverse inequality signs by multiplying the
equation by -1, we can assume that this has been done
where necessary to get the < sign. Therefore, the general

form of the operational matrix of a system of reservoirs
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is as shown by Eg. 1.

-All —Hll
_Alz -H12
-AlN —HlN
All H21
A12 H22
Al X [XJ < H2 1)
—Azl —Bl
—A22 —B2
-A2M —BM
A21 Dl
A2M Dy
-A3 -B1l
A3 D1
; N _ .
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Number of Reservoirs o~

I

where N
M = Number of Secondary channels
The general form of the submatrices is given as
follows:

Submatrix type Al: This is an nxL matrix whose general

form is given by equation 2.

Submatrix type A2: This submatrix expresses the opera-

tional requirements of the secondary channel. Suppose that
the secondary channel K is fed by channels from reservoir

i and j. The general form of the transition submatrix
shall be as shown by equation 3 (i<j).

Submatrix type A3: According to the definition this sub-

matrix describes the operational requirement of the main
channel. TIn general this submatrix is a special form of
submatrix A2 where all reservoirs in the system discharge
in the channel. Since there is only one main channel in
the system (reservoirs in parallel) this submatrix shall
appear in the Transition matrix twice, one for upper

bounds and one for lower bounds. The general form of the

type A3 submatrix is shown by equation 4.
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A3=(I; I, I, I, ... I)) 4)
where Ii = unit matrix.
l o 0. ... .0 O

: . vt 43)

6o 0o 0. .. .01 0

0o 6 0....00 1

b —

It is seen that the submatrix type A3 is made up of

N, identity matrices.

C type matrix: This is a one row matrix which contains

the coefficients of the decision variables. This can be
included in the general transition as shown on Figure 23.
The submatrix type C is the first row on the Transition
Matrix on figure 23 (i time intervals, three reservoirs)
where the rest gives the other submatrices as described
above. The R.H.S. submatrices shall be discussed in

Section II-4.

II.3 RESERVOIRS IN TANDEM

The general form of the operational matrix of a sys-
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tem of reservoirs in tandem is as shown by equation 5.

qul | ‘-@1 i
“Alyo | “HL
24 ~H,

Al H24
Al M2
a4 H,
-22, -B,

M M
A2l D1
A2y | Pm

. e L— —

Submatrix type A3 does not appear in this transition ma-
trix because by definition there is not a main channel in
the system. Submatrices of type Al and A2 have already
been described by equations 2 and 3.

Submatrix type A4: This submatrix expresses the operational

requirements of the tandem reservoir to which inflows are
given by the outflows from the rest of the reservoirs up-

stream. The general mathematical form of this submatrix
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can be expressed as follows:

A, = [-E{-E,- =E; ... -Eg_, E/]

4 17E, 3 6)

1 2 3 4 ) . - . n_2 n—l n

1 0 0 O 0 0 0 1
1 1 1 o0 0 0 0 2
l1 1 1 1 0 0 0 3
where .
E-= - [ ] L 4 L d - - -
i

11 1 1 1 0 0 n-2
1 1 1 1 1 1 0 n-1
1 1 1 1 1 1 L n

i = Reservoir Number.

I1.4 R.H.S. SUBMATRICES

The right hand side matrices listed in equations 1
and 5 are fed into the computer as column vectors of con-
stant elements. This should be the final form of all
R.H.S. submatrices after carrying out the operations as
given in section 2.

For example, submatrix type H1l is given by the
equation 8,

H1 = [B] x [I] + [RI-IC] + [Z] 8)

where B is a lower triangular matrix, I is a column matrix

with constant elements, R is a column matrix with constant
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elements, and Z is a column matrix with constant elements.

1 2 3 . - - n-l n

(1 0 o o o] 12

1 1 0 0 0 2

1 1 1 0 0 3

g 9)
= _
B = . .
1 1 1 T 0| n-1
1 1l 1 1 1 n
I= [Il’ I2, I3, I4 i ® In] 10)
where [Il. s % & b In] represents column matrix, and

(Il . «. B F ® In) represents row matrix.

R = [Rl' R2, R3 o @ o e Rh] 11)
1l 2

C=[c ¢ ¢. .. .c] ' 12)

Z = 1%, 22 AR R B . Zn] 13)

Since all elements of the matrices 9, 10, 11, 12, and
13 are known by carrying out the indicated operations, the
equation results to one column matrix of constant elements.

Submatrix Hi is related with the minimum cumulative

release constraints.
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Submatrix type H2 is given by:

H2 = [b] x [I] + [R] - [Y] 14)
where B, I, and R have the same form as before.

Y = [Y,YZ..Yn] 15)

Submatrix type H2 is related with the maximum cumulative
release constraint.
Submatrix H3 is related to the minimum cumulative
release constraint for the reservoir in tandem and is |

given by equation 1l6.

Hy = [Rl - [C] + [2] 16) |

Subma trix type H4 given by equation 17
H4 = [R] - [C] - [¥] 17)

is related to the maximum cumulative release constraint
of reservoir No. N for the reservoir in tandem.
The rest of the R.H.S. submatrices B, Bl, D, D1

are also column vectors with constant elements.






