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A B S T R A C T

Deep spectral modelling for regression and classification is gaining popularity in the chemometrics domain. A
major topic in the deep learning (DL) modelling of spectral data is the choice and optimization of the deep neural
network architecture suitable for the specific task of spectral modelling. Although there are several recent
research articles already available in the chemometric domain showing advanced approaches to deep spectral
modelling, currently, there is a lack of hands-on tutorial articles in this space that supply the non-expert user with
practical tools to learn and implement advanced DL optimization methodologies aimed at spectral data. Hence,
this tutorial article aims at reducing the gap between the non-expert user of DL in the chemometric community
and the implementation of DL models for daily usage. This tutorial supplies a quick introduction to the state-of-
the-art deep spectral modelling and related DL concepts and presents a set of methodologies aimed at DL
hyperparameters’ optimization. To this end, this tutorial shows two practical examples on how to implement and
optimize two DL models for spectral regression and classification tasks. The models are implemented in python
and Tensorflow and the complete code is supplied in the form of two complementary notebooks.
1. Introduction

Optical spectroscopy in the visible and near-infrared (Vis-NIR) spec-
tral range is widely explored in the domain of analytical chemistry for
rapid and non-destructive assessment of sample's properties [1,2]. The
technique can be applied to the analysis of samples of a wide range of
physical forms, from gases to solids. Furthermore, its application spans
through several areas of scientific research that require non-destructive
rapid techniques for samples analysis such as foods [3], pharmaceutical
[4–6], agriculture [2,7], forensics [8], plastics [9], and many more [10,
11]. Vis-NIR spectroscopy allows the characterisation of physicochemical
properties of samples as it retrieves information from the light scattering
and absorption patterns; information which can be used to explain some
of the physical and chemical properties of the sample [1,12].

In recent decades, major advancements in technology enabled mini-
aturisation of optical spectroscopy sensors leading to an increased in-
terest and wider adoption of spectrometers, even outside the scientific
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community [13]. For example, as a consumer electronics tool, pocket
spectrometers are now easily available to buy through online platforms
[13–15]. Notwithstanding the modernization of this sensing technology,
a main core aspect of the success behind Vis-NIR spectroscopy is the
spectral data modelling process that allows mapping the spectral infor-
mation to the desired property of interest [3]. Spectral sensors working in
the Vis-NIR range requires an a priori calibration step as it is a
non-specific technique capturing overtones of fundamental chemical
bond vibrations which appear as highly overlapping signals in the
captured spectral data [3]. For most of the cases, separating these over-
lapping signals is not an easy task. In the spectral modelling domain,
chemometric and machine learning approaches are used for developing
spectral calibrations. Two of the most widely used techniques in this field
are principal component analysis (PCA) [16] and partial least-squares
regression (PLS) [17,18]. PCA works by projecting the original data
points into a newmathematical space defined by a new set of coordinates
called Principal Components (PCs). These PCs are defined by finding the
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orthogonal directions that maximize variance in the input data. A linear
regression model can then be build using these PCs, establishing the basis
of Principal Component Regression (PCR). One of the limitations of PCR
is that the PCs extracted do not use information about the target variable,
hence, the first few PCs used in PCR might not be the most informative
features for the prediction of the target. On the other hand, the PLS al-
gorithm considers the covariance between input variables and target
variables. Similarly to PCA, PLS also projects the data into a latent space,
but this time the components are defined along the direction of maximum
variance between input and target variables. These components are
called latent variables and are built to model the target variable. PLS can
also be paired with a linear discriminant model to perform classification
tasks. Beyond these two classical algorithms, basically every other ma-
chine learning (ML) algorithm can be, and has been, used to model
spectral data. A more modern modelling alternative is provided by deep
learning (DL) algorithms that, for many tasks, have recently out-
performed other machine learning and chemometric approaches in terms
of model performances [19–27]. Recent works in this field show that DL
has the potential to cut the need for pre-processing optimization and
variable selection [28,29], both key steps in any Vis-NIR spectral analysis
pipeline [30–32]. These algorithms are mainly based on artificial neural
networks (ANN) and allow for the automated transformation of data with
the help of specialized layers (e.g., convolutional layers) [28,29].
Moreover, they can take advantage of spectral data augmentation tech-
niques [33], such as using an ensemble of several pre-processing's as
direct input data to the DL models [19,22]. Furthermore, DL modelling
also encompasses techniques that allow to apply (or adjust) pre-trained
models to new data/conditions by using concepts such as transfer
learning [21,27].

Applications of ANN for spectral data analysis have come a long way
since [34] highlighted the general principles of classical ANN application
to chemical problems. In the current state-of-art, there are two main
types of DL methodologies being used for spectral modelling. The first
family of models follows the same philosophy as principal component
regression (PCR), where first, a smaller number of relevant features are
extracted from the spectra in an unsupervised way using Autoencoders
neural networks [35–37]. Autoencoders are a type of ANN architecture
whose layer structure resembles an hourglass, with the middle layers
having a smaller number of units than the input and output layers. As
information flows through the Autoencoder, this architecture encodes
the data into a highly compressed representation of the input data in the
middle layers. These compressed features (or lower dimension features)
are then extracted from the Autoencoder and fed into a fully connected
ANN architecture such as a multi-layer-perceptron (MLP) that can be
tailored for classification or regression tasks. The main point here is that
the compressed features extracted from the Autoencoder are not obtained
by showing the ANN any target data. The second family of models is
somewhat more like partial least-square regression (PLSR), where the
features are extracted in a supervised way using convolutional filters by
checking the improvement in the predictive ability for the property of
interest [19,22,23,28]. Just as PLSR has shown to be more powerful than
the PCR technique, the DL supervised method based in convolutional
neural networks (CNNs) can be presently considered as the most practical
choice over other ANN architectures [29]. Although DL models have
shown better performance than several modern machine learning and
chemometric approaches, there are some challenges in the deep spectral
modelling task mainly related to the ANN model architecture selection
and hyperparameter optimization [22,29]. For example, most (if not all)
of DL models used currently in spectral analysis use ANN architectures
imported from the field of computer vision or natural language pro-
cessing. There is little work published around the topic of ANN archi-
tectures specially tailored for the analysis of spectra. The details of the
model architecture tend to be somewhat random with the users selecting
the type and number of layers based on the small available literature
around this subject, their personal experience or trial and error methods.
Such an approach to design a model architecture and the associated lack
of model interpretability are sources of scepticism and may not attract
the interest of non-expert users, thus limiting a wider adoption of
powerful deep spectral modelling techniques. Furthermore, since DL
models have many hyperparameters, it is often also a challenge to opti-
mize all the key hyperparameters in an easy and efficient way to obtain
good deep spectral models. The wide range of domains where ML is
currently applicable spawned an increased demand for the automation of
the DL models optimization. In the chemometric and spectral analysis
domains, recent works (e.g., [22,38]), have shown how to take advantage
of the tools being developed by the ML community to simplify the task of
automatic optimization of DL spectral models. With the help of advanced
methods based in Bayesian Optimization (BO) and Automated Machine
Learning (Auto-ML) already implemented in software packages such as
“Optuna” [65], “auto-sklearn” [80] or “NASLib” [81], both the ANN
architecture as well as all the key hyperparameters can be optimized with
minimal user interference. One of the interesting results of such auto-
matic optimization is that the method is sometimes able to find ANN
architectures that outperform pre-existing, larger, and more complex
ANN architectures [22,38].

This tutorial article is targets mainly non-expert users of DL in the
chemometric community (and related sub-fields) and aims at increasing
their tool set for DL modelling. The tutorial provides a practical intro-
duction on how to implement and, as importantly, how to optimize DL
models for spectral modelling in python using the Tensorflow API. After
the presentation of the main theoretical concepts behind the optimiza-
tion task and the used DL model, two examples are presented: a spectral
regression case (predict/quantify a certain quantity using spectral in-
formation) and a spectral classification case (classify different samples
using their spectra), along with how to implement an automatic opti-
mization pipeline to achieve models that performwell. Some specific tips
useful for DL modelling of spectral data are also presented, including data
augmentation techniques and the suggestion of tools and methods that
can help with the interpretability of the model results. This manuscript is
complemented by two “jupyter notebooks” [85] alongside with in-
structions on how to install the basic software needed to run them. It is
expected that non-expert users (but with some basic knowledge in python
and DL), can easily adapt the given examples/code to their own needs,
after completing the tutorials. Despite the present python framework
choice, the general principles presented can, in principle, be easily ported
to either Matlab or R.

2. Deep learning modelling

The first step for the whole modelling process is to choose the neural
network architecture that best suits the problem at hand (regression,
classification, etc.). In terms of DL models applied to spectroscopic and
chemometric tasks there are a few options to choose from the literature.
As it was mentioned earlier, the most encouraging results so far were
obtained with convolutional neural networks (CNNs) with one or more
convolutional layers [19,28,29,39–41] and with auto-encoders [35–37,
42]. For CNNs (the type of DL model used in this tutorial), [28,43] pre-
sented a detailed and useful description of how the several layers work
and what is the role for many of its hyperparameters, while [44,45]
presented a more general higher-level review on DL applied to spectral
analysis and chemometrics. These two last references provide a very
accessible and useful introduction about the basic concepts of DL relevant
for spectra analysis. There is also the possibility for the users to craft their
own ANN architecture manually or by automatically implement pipelines
that perform Neural Architecture Search (NAS) [46,87], i.e., that test
several ANN architectures built from a pool of predefined components
(types of layers, regularization methods, etc.) and identify interesting
candidate combinations for the target specific tasks. The present tutorial
touches just lightly on the topic of NAS but does not dwell on it. NAS is a
highly active and interesting research area [47,87] but a deep dive into it
lays beyond the scope of this work.

For this tutorial, the chosen DL architecture is a 1D-CNN (Fig. 1) [84]
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with one convolution layer followed by a block of dense (a.k.a. fully
connected, FC) layers. This model is similar to the usual CNNs used in
computer vision for image processing, is “1D” because the input is spectra
(vectors) and was chosen for its simplicity and its proven predictive
power when applied to several spectroscopic and chemometric problems
[19–23,26–28]. It is important to highlight that the level of complexity of
a DL model should be adapted to the task at hand. A very simple model
might not capture all the relevant information in the data, i.e., it will
underfit the training data and generalize poorly. On the opposite direc-
tion, a very complex model might “memorize” or overfit the training data
and generalize poorly also. The general rule of thumb for manually
tuning model's structures is to start with a simple model, optimize its
hyperparameters and check if it can obtain good metrics on the training
data. If the model is unable to get good training metrics, one should try to
add more layers to it (increase its complexity) and repeat the process.
Using NAS techniques might help alleviate this troubleshooting step at
the cost of more compute time.

A CNN is an ANN that usually aggregates three types of layers,
namely, convolution layers, pooling layers and fully connected (or dense)
layers (Fig. 1). The convolution layers are responsible for automatically
extracting feature maps from the input data. This operation is done by
convolving the input data, x, with learnable kernels (or filters), k, of fixed
length that slide over the input data with a predefined stride. These layers
compute the dot product of a portion of the input data with an over-
lapped kernel of the same size. The results of this convolution operation
are then passed through a non-linear activation function, a( ), to generate
the output feature map for that layer hk

hk ¼ a
�
wk * xþ bk

�
; (1)

where wk and bk are the layer's kernel weights and biases respectively
[48]. For image processing, it has been shown that different kernels learn
to extract different types of features (e.g. vertical and horizontal edges in
images, etc.). For spectral analysis, there are evidence that show that
these kernels can behave as Savitzky-Golay filters and pre-processing
filters [28,43]. In most CNN architectures, especially in the field of
computer vision, the convolutional layer is followed by a pooling layer
that acts as a selection filter extracting the maximum (or mean) values of
each kernel operation and effectively downsampling the feature maps.
CNNs can have multiple pairs of these convolutional and pooling layers
in the so called “feature extraction block”. As information passes forward
from one convolutional layer to the next, the low-level features in the
first layers aggregate into higher level (more complex) representations of
the data (a.k.a. abstractions). These features are then passed to a classi-
fication (or regression) block that contains one or several fully connected
(or dense) layers with different number of units each. For these types of
supervised tasks, the prediction made in the last layer of the CNN is
compared to the true value and a loss function is computed. The mini-
mization of this loss function using gradient descent algorithms or second
order methods (e.g., L-BFGS) and the subsequent readjustment of the
network parameters (the weights and biases of all units) in all the layers
by the back-propagation algorithm is what enables the learning process
for this type of model. For the interested reader, references [28,29,40,43,
48,83,84] provide further details, mathematical descriptions, and ap-
plications of CNN models.

For each of the mentioned layer types, the user must configure several
options that control the overall behaviour of the model, the so called
hyperparameters. The hyperparameters of the convolution layer are the
number of filters, the filters stride, the width of the filters and the acti-
vation function (e.g., ReLU, ELU, Leaky ReLU, Sigmoid, Tanh, Softmax,
etc). Note that sometimes, the activation function can also be coded as a
separated layer. The CNN model adopted in this tutorial does not include
pooling layers for simplification purposes. The hyperparameters for the
dense layers block on this architecture are the number of dense layers
and, the number of units (a.k.a. neurons) and activation function per
layer. To decrease the risk of overfitting, dropout layers can be used and
an L2 regularization penalty, β, to the weights of all layers is applied,
therefore introducing additional hyperparameters. Dropout layers sto-
chastically drop some of the connections between units in subsequent
layers during the training process [89]. This forces the network to learn
sparse representations of the data and acts as a weight regularization
mechanism. The use of these regularization techniques give rise to
models that tend to overfit less and are less sensitive to noise in the data.

2.1. Hyperparameters choices

Depending on the problem at hand (regression or classification) one
will further have to define the appropriate loss function (e.g., Mean
Squared Error, Binary Cross-entropy, Huber class, etc.), choose one of the
multiple options for the optimization gradient descent algorithm (e.g.
SGD, Adam, RMSprop, Adagrad, etc.) and choose the appropriate
initialization method for the CNN weights (e.g. Random Normal, He
Normal, Glorot Uniform, etc). Depending on the data set size and avail-
able computational resources one will further have to define the
maximum number of training epochs (where one epoch means that every
sample has been seen once) and the training batch size (i.e., the number
of samples to feed each time to the ANN) and deal with the fact that some
of these former options come with their own subset of hyperparameters.
Further details about all these options are available in introductory DL
books such as in Ref. [48]. Given this scenario, it is easy to understand
how overwhelmed non-DL-expert researchers can become with such a
high number of choices that have a direct impact on their model's per-
formance. This is especially true if they are used to deal with much
simpler algorithms such as PLS or PCA that possess only one
hyperparameter.

Before continuing, here is just an added note of caution about the
technical jargon used in Machine Learning, and more specifically around
neural networks. Hyperparameters are model's variables that control the
behaviour of the model and the overall ANN architecture. These are
specified by the user before the training process and are in most cases
static (do not change during training). On the other hand, ANN param-
eters (weights and biases) are model variables that are estimated/learned
during the training process and are directly tied to the data being ana-
lysed. The optimization techniques presented in this tutorial are aimed at
model's hyperparameters, while the model's parameters themselves will
always be optimized by a classical gradient descent algorithm.

There are many general-purpose tutorials about DL online that are a
particularly good starting point for curious minded researchers. They
offer simple rules of thumb that ease some of these choices, helping to
develop an intuition about what to choose and when to choose it.
Depending on the chosen ANN architecture and data type, some hyper-
parameters have a much higher impact on the performance of the model
than others [49]. The correct choice of values is perhaps one of the things
that are still considered as the “black magic” of DL practitioners, maybe
not so different in essence to the choice of thresholds and number of
latent variables for some more classical chemometric techniques. How-
ever, to demystify this procedure, one can implement hyperparameter
optimization strategies (also called hyperparameter-tuning) [86] that
automatically help the user to assess the best values to squeeze every
single drop of performance of their models. In the next section, three
examples of such optimization strategies are highlighted.

2.2. Grid search and randomized grid search optimizations

For the task of hyperparameter optimization, one tries many sets of
model hyperparameters, θ, and chooses the one, θ*, that provide the best
model performance on a specific data set, i.e.

θ* ¼ arg minθ L ðf ðxÞ; θÞ (2)

where L ðf ðxÞ; θÞ is a predefined loss function built from a mapping
function or model f ðxÞ and its hyperparameters. The number of hyper-



Fig. 1. Typical representation of a 1D convolutional neural network architecture. The feature extraction block is composed by convolutional and pooling layers and
the classification/regression block is composed by dense layers. In the 1D-CNN model used in this tutorial, no pooling layer is considered.
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parameters that needs to be optimized is often defined by the model
choice and constrained by the computational resources available and
allocated research time. In theory, one can optimize all hyperparameters
of a complex model, but in practice, given the combinatorial dependence
of hyperparameters, this situation easily becomes impractical for most
academic researchers that have limited computational resources, espe-
cially when dealing with ANNs architectures that can be computationally
expensive to train. Therefore, the widespread practice is to fix some of
the less impactful hyperparameters and probe multiple combinations of
the most relevant ones. This distinction can be achieved by experience
(trial and error), by earlier practical knowledge of the model's behaviour
or by theoretical constraints. Consult [50] for a more formal introduction
to the importance of ANN's most common hyperparameter.

In terms of systematic approaches (i.e., discarding the usual manual
trial-and-error optimization), Grid Search (GS) and Randomized Grid-
Search (RGS) are the two most used methods for hyperparameter opti-
mization in ML. For the sake of simplicity, let's assume as an example an
ANN for regression purposes where just one hyperparameter, θ, needs to
be optimized. In GS, one pre-defines a vector of θ values and, for each
value, trains the ANN model and registers the corresponding perfor-
mance (e.g., MSE) on a validation set (a subset of the training data also
sometimes called tuning set). Alternatively, the user can choose to go
with a cross-validation strategy and use the full training set (more
computationally costly for large models and large data sets). After
probing all the pre-defined values of θ, the value that supplies the best
model performance, i.e., the one that satisfies Eq. (2), is chosen. One
disadvantage of this method is that many values of θ might have to be
probed before finding a value that leads to improved model performance
and, besides that, one does not know for sure if the optimal θ was
included in the pre-defined search vector. Moreover, if instead of one
hyperparameter, the ANN needed ten instead, then the number of com-
binations grows exponentially and so does the GS time. Instead of
probing all possible combinations, RGS probes a fixed number of com-
binations by randomly selecting sets of hyperparameters θ from target
distributions,Θk. For the example defined previously, one might define a
search over one hundred trials, where θ is randomly sampled from a
normal or uniform distribution between θmin and θmax. Even if the model
depends on more hyperparameters, RGS allows the user to better control
the number of optimization rounds needed by adapting this number to
the available computational resources. It has been shown that, in general,
RGS tends to provide better and faster results than GS [51] because it is
more efficient in the exploration of the hyperparameter space.

This kind of optimization strategy is sometimes referred to as
“uninformed search” because, for each optimization round, the process
does not take into consideration the model's performance extracted from
earlier iterations. Sophisticated methodologies that take advantage of
previously probed values, i.e., that can “learn” how to best approximate a
“good” hyperparameter value have also been developed for DL models
over the last years [86]. Some examples are reinforcement learning [52,
53], Genetic Algorithms [54–56] and Bayesian Optimization (BO)
[57–62]. This tutorial focuses on hyperparameters optimization using BO
techniques. Fig. 2 shows a schematic representation of the different
hyperparameter search strategies mentioned.
2.3. Bayesian Optimization: tree-structured Parzen Estimators (TPE) and
hyperband

In this section, the basic principles of BO and how to apply it to solve
hyperparameter optimization is laid out in broad strokes. Commonly the
problem of neural architecture search (NAS) and hyperparameter opti-
mization is done separately but in Ref. [60], the authors showed that
performing joint NAS and hyperparameter optimization can lead to
better model performance when compared to the case where both op-
erations are done separately. This tutorial is based on [22], follows the
procedure described in Refs. [61,62] and implements a combination of
Bayesian Optimization and Hyperband methods to perform joint auto-
mated optimization of a DL model architecture and its hyperparameters.
The type of NAS shown in this tutorial can be considered as a low-level or
constrained approximation to the full problem since the target archi-
tecture is pre-chosen (CNN). In a full NAS problem, as it is usually pre-
sented in ML research, multiple types of layers and their combinations
are tested. The NAS result for a given problem can be a very complex
architecture. The procedure proposed in this tutorial involves choosing a
base architecture (e.g., a CNN), tweaking its structure slightly and opti-
mize its hyperparameters in an automated way.

The procedure relies on the Hyperband [63] algorithm that optimizes
hyperparameter search by considering a certain predefined computa-
tional budget B (e.g., CPU time, number of training epochs, number of
iterations, etc.) and by dynamically allocating more resources to the most
promising candidates. These candidates are picked by iteratively moni-
toring a predefined objective function f . This algorithm extends the
capability of the Successive-Halving method [64]. For a CNN model
optimization, the computational budget can be the training time, or the
maximum number of training epochs, while the target objective function
can be the model's validation loss (e.g., cross entropy loss in case of
classification, or mean squared error for regression problems). This



Fig. 2. Illustration of how hyperparameter space (over two hyperparameters) is populated by different search schemes. The colour gradient of the points, from black
to “yellowish” to orange indicates the order of the search. In Grid Search, hyperparameters values are systematically predefined. In Random Grid Search, the
hyperparameter space is randomly populated. In BO, the chosen hyperparameters values are progressively optimized to approximate a minimum. In this pictorial
example, hyperparameter 1 has a larger influence in this “toy model” than hyperparameter 2, a fact that is reflected by the depth of the minima of the loss function.
Image inspired by Ref. [51]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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algorithm works similarly to a dynamic Early Stopping strategy that in-
terrupts training if the model (generated using a certain subset of
hyperparameters) converges to a bad solution (low accuracy or high
RMSE) and extends training if the model's performance improves (high
accuracy or low RMSE). The default Hyperband algorithm uses some-
thing like a random search to select the hyperparameters configurations,
therefore the process, like in RGS is also uninformed, i.e., there is no
information passed from trial to trial. To focus the optimization process
on areas of the hyperparameter space that show most promising, a
Bayesian Optimization (BO) technique can be implemented in substitu-
tion of the random process that Hyperband uses.

BO is useful in the case where evaluating f is a very expensive task
because it uses a “cheaper” probabilistic surrogate model, pðf jHÞ, to
model the objective function f given a vector of observed points H ¼
fðθ0;y0Þ;…; ðθi�1;yi�1Þg, whereH is a history vector composed by pairs of
hyperparameters θ and objective evaluations y. It is generally assumed
that the evaluation of f ðθÞ is subjected to some noise/uncertainty ε and
therefore the actual evaluation is yðθÞ ¼ f ðθÞ þ ε: Based on the history of
the probed values, H, and an acquisition function, aðθÞ, a function that
balances exploration and exploitation of the hyperparameter space to
choose what values will be selected/“acquired” next, BO estimates the
probability where good values might be for future searches. BO works
iteratively by 1) sampling the next trial point that maximizes the acqui-
sition function, θiþ1 ¼ argmaxθ aðθÞ, 2) evaluate f ðθiþ1Þ and 3) append
the new ðθiþ1; yiþ1Þ pair into H and update pðf jHÞ accordingly. The ex-
pected improvement (EI) [82] over the previously best observation α ¼
minfy0; …; yng, is a common choice for the acquisition function, aðθÞ, in
BO algorithms

aðθÞ¼
Z

maxð0; α� f ðθÞÞdpðf jDÞ: (3)

In [61,62] the authors propose the use of a Tree-structured Parzen
Estimator (TPE) [57], a BO method that uses kernel density estimators to
estimate the probability densities associated with "good" and "bad"
hyperparameter configurations

lðθÞ ¼ pðy < αjθ; HÞ
gðθÞ ¼ pðy > αjθ; HÞ ; (4)

over the input configuration space instead of modelling the objective
function f directly by implementing pðf jHÞ. To select the next hyper-
parameters θiþ1 for evaluation, TPE maximizes the density ratio lðθÞ= gðθÞ
which is equivalent to maximizing the EI [57]. For example, considering
that the objective function is the model's validation loss (e.g. mean
squared error), for each trial, TPE looks for the hyperparameters that
provide an evaluated y, lower than the best previously found value α, i.e.,
it works towards maximizing lðθÞ and towards minimizing gðθÞ:
2.4. Learning rate range test

Learning rate (LR) in considered by many DL practitioners as one of
the most important hyperparameter in a DL model. The LR can be
interpreted as the size of the step that the gradient descent algorithm
takes towards a loss function minimum during training, i.e., the guiding
process for the optimization of the model's weights and biases. If the LR is
two low, then the model will need many epochs to converge towards a
loss function minimum, but if the LR is two high, the algorithm will
overshoot the minimum and bounce chaotically around. A good LR is a
compromise between allowing the model to converge fast (effectively
needing less training epochs to reach a minimum) and to get as close as
possible to the minimum value of the loss function. For this reason, it is
sometimes useful to implement methods that allow for the LR to adapt
during training, also called LR schedulers. In this section, a couple of
these LR scheduler methods are used for both model training and for
initial LR optimization. As a hyperparameter, LR can be optimized by any
of the GS, RGS or BOmethods mentioned earlier, however, to provide the
reader with a wider range of optimization techniques, in this tutorial the
LR is optimized separately from the other hyperparameters by a specific
method. To form an idea about what is a good LR value for our model, the
LR range test proposed in Ref. [49] was used. The LR range test imple-
ments a LR scheduler that dynamically adapts the LR during training and
can find the LR interval where the model converges to a stable solution.
The application of this method at the beginning of the optimization
pipeline assumes that the LR is associated with the data and the overall
architecture of the model, i.e., that LR range for a base CNN architecture
behaves similarly to the final optimized one. This assumption might not
hold true if the optimization process encompasses methods that allow for
many changes in the architecture of the model (e.g. add layers itera-
tively). If the optimized architecture is very different from the architec-
ture used for performing the LR range test, then one might need to revisit
this point.

The interval where the validation loss decreases steadily with LR is
the region of interest for this kind of test. This allows to find the mini-
mum and maximum LR that produce stable solutions, i.e., LRs that allow
the model to converge (see Fig. 6 in Section 3.1). One trick that some-
times helps speedup the optimization process is to use LRmax from the
range test as the initial LR for the stochastic gradient optimization al-
gorithm (e.g., Adam). By choosing the largest reasonably stable LR, the
model converges faster. Another technique that is employed extensively



Fig. 3. Schematic representation of the optimization pipeline used in this tutorial. As usual, it starts with the “data acquisition” step, goes to optimization loops and
ends with the optimized model prediction. Optimal hyperparameters are passed from the two loops on the right into the optimized model.
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in DL model training and that allows models to converge better is to use a
LR scheduler that modifies LR iteratively over the training process. The
technique called “Reduce LR on Plateau” consists in monitoring the
validation loss during training and, if after a predefined number of
epochs, the validation loss doesn't improve by a certain predefined
amount, the LR is automatically decreased by a fraction to help gradient
descent approximate the minima. One can use the LR range test LRmin as
the minimum value of the “Reduce LR On Plateau” scheduler. By using
LRmin in this scheduler, the gradient descent algorithm doesn't waste time
trying to optimize the CNN by using a LR too small (with which themodel
doesn't learn).

2.5. General rules and recommendations for model implementation and
optimization

In the examples presented in this tutorial, NAS is restricted to the
optimization of the number of FC layers, the number of units per FC layer
and the addition (or not) of weights L2 regularization and dropout layers
to the pre-chosen CNN base architecture. Also, for simplicity and to ac-
count for the efficient use of computational resources, some hyper-
parameters are pre-selected and others are subjected to optimization. The
proposed optimization pipeline uses the TPE and Hyperband imple-
mentations available in the Optuna v.2.9.1 [65] package which is an
open-source software library for hyperparameter optimization in ma-
chine learning. Other examples of popular libraries developed for the
same purpose are Hyperopt [66] and GPyOpt [67]. The CNN models are
implemented in python (3.6) using the TensorFlow/Keras (2.5.0) frame-
work [68].

One way of improving the odds that the implemented DL model takes
full advantage of the spectral data consists in performing a “data
augmentation” in the variable space (similar to a specific type of “feature
engineering”). This process takes advantage of chemometric methodol-
ogies that have already proven that certain types of spectra pre-
processing methods help to remove redundant or noisy information
from the data [30], e.g., derivatives [69], standard normal variate [70]
correction or multiplicative scattering correction [71,72]. The process of
finding the best type of pre-processing is time consuming but is a stan-
dard in almost all spectral modelling tasks. A strategy to overcome this
step is to concatenate all the desired spectra pre-processed types into a
single vector and feed that directly to the CNN [19,22]. This is possible
because these models are not very affected by collinearity problems, and
this also offsets the responsibility of picking the most key features from
each pre-processing type from the input vector to the optimization al-
gorithm. In principle, one could think that the model automatically
performs the selection of the variables of the input spectra that best help
solve the problem at hand. Although this type of data augmentation still
needs further evidence to find how generalizable (to other data sets) the
gains are, in both examples of this tutorial, this augmentation procedure
is useful. There is also evidence in the literature [28,29] that the
convolution layers in CNNs can perform automatic pre-processing tasks,
therefore, in some cases, data augmentation in the variable space might
not even be needed to achieve good results. In the case of small data sets,
there are other types of data augmentation in the sample space that might
help improve the stability of the training process [39] and even maybe
the model's performance by using the novel method presented in
Ref. [33]. The applicability of DL models to small data sets and their
inherent advantages and disadvantages still needs further investigation.

After the input data is settled, the next step is to define a base CNN
and run the LR range test. The proposed base CNN follows the following
basic structure: 1 convolutional layer (with 1 filter and stride 1) and a
flatten layer followed by 3 hidden dense layers and an output dense layer.
The number of units of the hidden layers follow the empirical rule of
thumb that the first layer of the dense block should have a units number
between 1/2 and 1/5 of the output of the convolution block and that
from dense layer to the next, this number should decrease by a factor of 2
or 3. This creates a funnel effect that forces the CNN to synthesize the
information that is passed from layer to layer into higher abstraction
levels [48]. The final layer configuration depends on the task at hand
(regression or classification). By construction choice, all layers, with
exception of the output ones, use L2 regularization and ELU activations
functions. The optimizer algorithm chosen is Adam [73] and the weights
in all layers are initialized using the “He normal” initialization [74] with
a fixed seed (for reproducibility purposes). The train of all models use the
“Reduce LR On Plateau” scheduler for improved stability and the “Early
Stopping” method for decreasing problems related to overfitting and to
speed up the training process. The latter method stops training if the
performance of the model in the validation set, starts to degrade. These
“training control techniques” are implemented as callback functions that
the training algorithm “calls” while it runs. These choices are based on
previous experience of the authors with this type of model, but, if the
reader wants to adapt the tutorial models to their own needs/data, the
modification of these choices are straightforward.

In the next section, these common CNN principles are extended to two
practical examples of how to apply the proposed optimization pipeline
depicted in Fig. 3. For each example, the practical problem and objective
is initially described and then the optimization steps are presented. In the
first example (a regression task), a pre-defined CNN is implemented and,
for instructive purposes, 4 of its hyperparameters are optimized. In the



Fig. 4. (A) 50 samples of the augmented spectra of the tuning set composed by the original spectra concatenated with its SNV, 1st derivative, 2nd derivative, SNV þ
1st derivative and SNV þ 2nd derivative preprocessed versions. (B) The same spectra after column-wise standardization.
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second example (a classification task), the level of complexity increases a
bit and the optimization includes hyperparameters and CNN's architec-
ture. These descriptive sections are complemented by additional tech-
nical notes and implementation code shared in the form “jupyter
notebooks” [85], a web-based interactive computing platform, very
common in Data Science and ML that combines live code, equations,
narrative text, visualizations, etc. All code presented is commented for an
easier understanding of the underlying details and includes some extra
technical notes.

3. Tutorial examples

3.1. Regression problem: predicting mango dry matter content

The first problem consists in optimizing a CNN to predict the dry
matter (DM) content in mango using Vis-NIR spectra. The original mango
data set is composed of 4 harvest seasons 2015, 2016, 2017 and 2018
[75], and further detailed in Refs. [76,77]. The data set has Vis-NIR
spectra (with 103 features per spectrum) of mango (the input vari-
ables, x) and corresponding dry matter content (DM in percentage units,
%) measured in laboratory (target variables, y). The data set provided for
this example was further pre-processed by performing an additional
outlier removal and by doing data augmentation in the variable space by
concatenating spectra, SNV, 1st derivative, 2nd derivative, SNV þ1st
derivative and SNVþ2nd derivative as explained in Ref. [19]. The data is
separated into train (first three seasons) and test (n ¼ 1448, the last
season) sets. The initial training set is further split into calibration (n ¼
6642) and validation/tuning (n ¼ 3272) sets. The remaining of the
manuscript follows the typical chemometric nomenclature where model
training is done using the calibration set and the validation set is
renamed as tuning set to emphasize the fact that, in the context of this
tutorial, the validation data is used for tuning the model's hyper-
parameters. As usual the test set is used only after model optimization to
access the model's final performance. The data partition used here is the
same as [19,76,77] to facilitate the comparison of results. For this spe-
cific chemometric problem related with fruit spectra, one of the main
objectives is to produce models that are robust across harvest seasons. In
this context, robustness is used as a measure of reproducibility, i.e., a
robust model is a model that maintains its performance in new datasets of
the same type. That is why the test set used here corresponds to the last
harvest season (2018).

Before feeding these spectral samples to the CNN it is convenient to
standardize them column-wise (zero mean and unit standard deviation).
The standardization of the tuning and test sets are done using the mean
and standard deviation of the calibration set. By doing this the input data,
Fig. 4A, takes the form presented in Fig. 4B.

The following step is to define the CNN model by applying and
expanding the general rules defined in Section 2.4 and 2.5. The used CNN
has one convolution layer (1 filter, stride ¼ 1), followed by three hidden
dense layers having a corresponding number of units (128, 64, 16)],
respectively. Since this is a regression problem, the output layer has a
single unit that will represent the value of the DM the model is trying to
predict. To this end the linear activation function is used in the last layer.
L2 regularization and weights initialization is done as defined in Section
2.5. In this example, the architecture of the CNN is fixed and the only two
model's hyperparameters that will be optimized in a further step are the
width of the conv. filter (FILTER_SIZE) and β, the strength of the L2
regularization (L2_BETA). Two other hyperparameters related to the
training process, namely the training batch size (BATCH, how many
samples are used in each training epoch) and the Adam optimizer
learning rate (LR), will also be object of optimization. Since this is a
regression problem, the chosen loss function is the Mean Squared Error
(MSE)

MSE
�
ytrue; ypred

�¼ 1
nsamples

Xnsamples�1

i¼0

�
ytrue � ypred

�2
; (5)

and the metric to monitor during training is the tuning (or validation)
MSE. To have an idea about the performance of the unoptimized model
on the data set, a baseline train over 450 epochs is done by choosing some
common values for these hyperparameters. For this first run, the
following values are used: FILTER_SIZE ¼ 5 (small conv. filter as in
Ref. [28]), L2_BETA ¼ 0.0006 (weak regularization), BATCH ¼ 256, LR
¼ 0.01*BATCH/256 (heuristic proposed in Ref. [28]). After the model
train is complete (see Fig. 5), one can use it to compute some usual
baseline metrics on the data using the Root Mean Squared Error (RMSE):
calibration RMSE ¼ 0.259%, tuning RMSE ¼ 0.572% and test RMSE ¼
1.068%. Error metrics are presented in the units of the DM target vari-
able, in this case %.

In this case the RMSE on the calibration set is much smaller than the
RMSE on the two other sets. This is indicating that this model might be
suffering from overfitting. This kind of intermediate check-up can help
decide what type of objective function will be useful to implement during
the optimization process (more on this later).

By construction, the optimization of the LR is done first and sepa-
rately from the other hyperparameters using the LR range test to find the
appropriate LR interval where the model converges. The CNN architec-
ture defined earlier is used to run the LR range test (for 450 epochs), and
the analysis of the test helps set LRmin and LRmax. Those values will be
later used in “Reduce LR on Plateau” and in the Adam optimizer,
respectively. This LR range test gives us an idea how the model "learns" or
performs as a function of LR. In Fig. 6 the result of the test and the LR
interval chosen are presented.

In the beginning of the test (lower LR) the model has a high validation
loss, meaning that during the 450 epochs used the model is unable to
learn anything. The larger the LR gets, the better is the improvement and
the validation loss starts to decrease around LR ¼ 1 � 10�6 until it rea-
ches a valley from LR � 1 � 10�4 to LR ¼ 0.3. For values a bit above this
last value, the model becomes unstable and the error shoots up. The main
aim of the test is to find the initial value used by the Adam optimizer. The
choice is done by selecting a large LR (that makes training faster) but that
still ensures stability, i.e. where the model converges toward low error
solutions. In this case the chosen value is LRmax¼ 2.5� 10�3. As a bonus,
the test also helps define LRmin ¼ 1 � 10�6 that will be used to define the
smallest LR that “Reduce LR on Plateau” will allow.

With the LR settled, the other three hyperparameters will be opti-



Fig. 5. (A) Train history depicting how the MSE is dropping during a training session, for the calibration data (blue) and for the tuning data (orange). The red dashed
stepwise line shows how the LR is being dynamically decreased during training by the “Reduce LR on Plateau” callback. (B) the base line prediction for the test set.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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mized by BO. The following step consists in defining a function “objec-
tive()” that has information about what hyperparameters are going to be
optimized, the search interval for each of them and the target objective
function that will be monitored. Since this is a regression problem, a
standard option for the target objective function would be the RMSE on
the tuning set (i.e. the validation loss). However, based on the observa-
tion done earlier that the base CNN model might be suffering from a
slight overfitting, a more suited optimization strategy involves choosing a
target objective function that helps decrease this problem. The motiva-
tion is that models that overfit less, usually generalize better. Therefore,
the target objective function of the optimization loop can be “engi-
neered” towards low error in the tuning set and smaller overfit (differ-
ence between calibration and tuning errors/losses). A possible solution is
implemented in the form

target objective function¼w1 RMSEtuning þ w2

��MSEtuning � MSEcal

�� ;
(6)

i.e., a weighted sum of tuning error and overfitting. For simplification
purposes w1 ¼ w2 ¼ 0.5 is adopted, but other combinations could be
defined depending on an acceptable compromise between both factors.
Moreover, the w1 and w2 factors could also be included in the optimi-
zation pipeline. The optimization loop is implemented in Optuna under
the form of a “study()” object where the optimization method (TPE and
Hyperband), the direction of optimization of the function “objective()”
(minimization in this case) and further storage and logging options are
defined. The optimization of the “study()” can then begin for a pre-
defined number of trials (number of sets of different hyperparameters).
During this process, the optimization pipeline will test different sets of
hyperparameters and choose those that work towards minimizing the
target objective function.

One of the things to have in mind is that the TPE algorithm imple-
mented in the Optuna library is initialized by randomly probing the
hyperparameters space for a predefined number of trials (50 start-up
trials in this case), (effectively equivalent to a random grid search) to
ensure hyperparameter space exploration and, only after that number of
trials is completed, it starts to effectively use the TPE method to exploit
the most promising corners of the hyperparameter space. It is therefore
recommended to start the optimization with a large enough number of
start-up trials (e.g., from 10–15 per hyperparameter, to ensure good
exploration) and use a much larger number of trials to improve exploi-
tation (450 additional trials in this example). A good exploratory start
might help avoiding local minima. During the optimization process, the
user has the option to save all tested models. The tutorial notebook in-
cludes additional technical notes on how this is implemented. After the
optimization is finished, one can query the optimized “study()” and check
what trial/hyperparameters provided the best results. If each tested
model was saved, the user just needs to instantiate the CNN using the
optimal hyperparameters, load the weights from the best trial into the
CNN and apply it to the test set for a final evaluation of its performance. If
the models were not saved during the optimization, the user will first
need to instantiate the CNN with the optimized hyperparameters and
then re-train themodel from scratch before applying it to the test data set.
Code for both options is provided in the regression tutorial notebook.

The implementation of this optimization in the companion tutorial
notebook, runs for 500 trials (by default). Depending on the computa-
tional resources available, this can take a long time to compute (a couple
of days in a modern workstation). For practical purposes, the outputs of
this optimization (the optimized “study()” and pre-trained models) are
also shared with the notebook files. Information on how to load the
optimized “study()” and how to access the pre-trained models is included
in the tutorial notebook.

The optimization found that the best trial was number 156, achieving
a target objective value of 0.348 obtained using FILTER_SIZE ¼ 45,
L2_BETA ¼ 0.015, and BATCH ¼ 128. The optimized CNN metrics are
calibration RMSE ¼ 0.501%, tuning RMSE ¼ 0.588% and test RMSE ¼
0.853%. The main objective of the optimization was successfully
accomplished, i.e., to lower tuning RMSE and avoid overfitting (the
difference between calibration and tuning errors decreased substan-
tially). Because of this, the model generalizes better and achieves a lower
RMSE on the test set. The fact that the tuning RMSE is still a bit higher
than the calibration RMSE indicates that one might get even better per-
formance by changing a bit the weight factors (w1 and w2) of the target
objective function towards more overfitting correction. In most cases it is
beneficial to aggregate back the calibration and tuning sets into a single
training set and retrain the model one last time using all the available
training data and the optimized hyperparameters. An implementation of
this final step and accompanying technical details are presented in the
end of the complementary notebook. By retraining the optimized model
on the full training set (calibration þ tuning) the performance improved
further achieving a test RMSE ¼ 0.838%.

As a final remark, it might be useful to remember that this problem
deals with inter-seasonal predictions of fruit properties, which makes it a
hard problem to solve due to the biological variability of fruit. None-
theless, the results obtained here using a simple CNN architecture and the
proposed optimization of only 4 hyperparameters (for 500 trials) led to
results on par with the best result presented in the broad machine
learning benchmark of [77] obtained using an ensemble of models (see
their Table 3). For this specific type of problem, a much more laborious
optimization strategy that involves a more complex target objective
function like the one presented in Ref. [19] can lead to even better
results.

3.2. Classification problem: classifying wheat kernel varieties

The second example in this tutorial deals with a classification prob-
lem. The aim was to use NIR spectra information to build a classifier
model capable of classify individual wheat kernels into one of 30



Fig. 6. Result of the LR range test and the picking of LRmin (blue dashed line)
and LRmax (red dash-dotted line). (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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different classes. The data set was first introduced in Ref. [78], is well
balanced with equal number of kernel varieties and includes a total of
147096 samples. The NIR data of the kernels were extracted from
hyperspectral (HS) images running in the spectral range of 874–1734 nm
(with 200 features). This classification example is based on Ref. [22] that
served as motivation for this tutorial and shares many common points. To
avoid overlapping of information, this tutorial touches more practical
aspects of the pipeline implementation.

Since the same method applied in the regression example is also
followed here, the emphasis will be on the differences between both
cases. After importing the original data set, data augmentation in the
variable space was performed using the method described earlier. The
same sequence of 6 pre-processing methods were used, increasing the
number of input features (per spectrum) from 200 to 1200. The spectra
were standardized column-wise and the target classes/labels were
encoded from its numerical values, [0, …, 29], to one-hot-encode rep-
resentation (e.g. class 0 is represented as [1,0,0,0,…], class 1 as [0,1,0,0,
…], etc.), more suited to classification problems. As usual, the data was
partitioned into calibration (n ¼ 72000), tuning (n ¼ 24000) and test (n
¼ 39096) sets. This data split is the same used in earlier publications
therefore allowing comparison between model results. Following the
established stream of optimization tasks, a base CNN architecture was
defined, and the LR range test finder was performed. This time, the
number of hyperparameters to be optimized is larger than the four used
in the previous example. The predefined hyperparameters used for the
base CNN architecture are presented in Table 1. These include hyper-
parameters specifically related to model's hidden layers, architecture
(NAS) and model training. As a clarification we note that the number of
Dropout layers as presented in Table 1 is not optimized directly. The NAS
part of the pipeline adds/tests pairs of FCþDropout layers simultaneously
and optimizes the number of units per FC layer and Dropout Rate (DR)
per Dropout layer. The number of Dropout layers is defined as the
number of Dropout layers whose DR 6¼ 0. The last layer of the CNN has 30
units to account for the 30 classes (wheat varieties) in the data set and
uses the ‘Softmax’ activation function.

“Softmax” is a generalization of the multi-class logistic regression
function and transforms a vector of k real values into a vector of k real
values between 0 and 1, whose sum is 1 and that can be effectively
interpreted as probabilities. This function can be represented by

σðzÞi ¼
eziPk
j¼1ezi

(7)
where k is the number of classes in the problem, z ¼ ðz0; z1;…; zkÞ is the
input vector to the function (the output of the preceding layer), zi are
elements of z, and the denominator acts as a normalization term. The
Adam optimizer was used once again and the chosen loss function was
the categorical cross entropy (which is a usual choice for multi-class
problems). Categorical cross-entropy is basically a Softmax activation
followed by a Cross-Entropy loss (CE)

CE¼ �
Xk
i¼1

yo;i log

 
σðzÞi

!
(8)

where k is as before the number of classes and, yo;i are elements the one-
hot-encode representation of the training labels. The metric being
monitored was the model's accuracy on the tuning set. The choice of
accuracy for this data set is possible because this is a well-balanced data
set. In the case of unbalanced data sets, other fairer metrics such as F1 or
ROC should be chosen instead. The results of the LR test range performed
for 400 epochs, using a predefined training batch size ¼ 512 allowed
once again to define LRmin and LRmax, for the base model. In this case the
values foundwere LRmin¼ 1� 10�7 and LRmax¼ 2.5� 10�3. With the LR
already optmized, a base model performance was tested by training the
CNN over a maximum of 550 epochs. Around epoch 420, the model's
accuracy stopped improving and the “Early Stopping” method termi-
nated the training. The metrics obtained for the base model were, train
set Accuracy¼ 0.930, tuning set Accuracy¼ 0.91 and test set Accuracy¼
0.909.

Next, the function “objective()” was defined considering the hyper-
parameters search intervals depicted in Table 1 and the target objective
function defined as the accuracy of the tuning set. A practical note on
how to expand the number of hyperparameter in the optimization,
including categorical ones, is also mentioned on the corresponding
accompanying notebook file. The objective function was incorporated
into a “study()” that Optuna optimized using TPE and Hyperband, to-
wards maximizing the target objective function, i.e., the accuracy. The
maximum number of training epochs allowed during the optimization
process was 450. The example shown in the accompanying tutorial
notebook performs an optimization over 500 trials, with a warm-up
phase (random search) of 50 trials. In practice, the implementation of a
larger warm-up phase and more optimization trials is advised to ensure a
good exploration of the hyperparameter space. The best model was found
at trial ¼ 454 for the hyperparameters presented in Table 2. The metrics
for this optimized CNN were calibration accuracy ¼ 0.990, tuning ac-
curacy¼ 0.949 and test accuracy¼ 0.949. The optimization pipeline was
able to find a suitable neural network architecture (subjected to the
imposed constraints) and optimized its hyperparameters to obtain a
state-of-the-art accuracy.

Just like in the previous tutorial example, the calibration and tuning
data are concatenated into a single train set and the optimized model is
trained using all that available data. The model with the optimized
hyperparameters is initialized by loading the weights of the best model
obtained in the optimization phase and trained for an additional 550
epochs. By doing this, the model starts from an already good set of
weights and uses the additional data available for training (the samples
previously use for tuning) to zoom in into a better minimum. After this
final training process, the accuracy on the test set improved to 0.952,
beating the 0.930 obtained by Ref. [78] and even improving the 0.949 of
[22].

If the user wants to reach a higher insight of how the model operates
and what is the role of each of the hyperparameters, an a posteriori
analysis of the optimization is recommended. To help in this task, Optuna
supplies several pre-conceived graphical tools that can be used to explore
the hyperparameter space that the optimization probed. A couple of
instructive types of plots that one can generate are presented in Fig. 7.

From this type of plots/analysis, the user can learn valuable infor-
mation about the model such as what hyperparameters have a higher



Fig. 7. (A) the evolution of the accuracy on the tuning
set (the target objective function) during the optimi-
zation process. The red dashed vertical line represents
the optimal trial. (B) example of the spread of
hyperparameters values probed by the BO for the
batch size, filter size and regularization strength, β.
Trial number is encoded as colour intensity, from
lighter to darker blues. (For interpretation of the ref-
erences to colour in this figure legend, the reader is
referred to the Web version of this article.)
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influence in the error metric being monitored, what range of values seem
the most promising, etc. This post-optimization interaction is useful for
building up an intuition about the model's behaviour, an intuition that
will be very important for other future model applications.
3.3. Classification problem: gradCAM implementation and spectral bands
identification

Delving deeper into hyperparameter dynamics can give the user a
better insight about the model and how to optimize it further. None-
theless, for “Chemometricians” and researchers that use spectroscopy in
general, it might be more interesting to probe the model to extract in-
formation about what spectral bands contribute more to the distinction
between samples classes (wheat varieties in the example). Gaining
insight from DL models is not as straight forward as it is for simpler
models like PLS, where the user just must plot the VIP scores to find the
relevant spectral bands. The field of explainable AI (XAI) is filled with
challenges and opportunities and some tools/methods that allow us to
deal with DL models beyond a “black-box approach”, are currently being
developed. For spectral data specifically, model interpretability can also
be aided by plotting the “regression coefficients” of a CNN model as
proposed by Ref. [28] or using Class Activation Mapping (CAM) [88] as
exemplified in Ref. [29]. CAN techniques have been developed for the
“object identification” problem in computer vision. This is the case of
Gradient-weighted Class Activation Mapping (grad-CAM) [79], a tech-
nique that is usually used to infer what parts of an image contributed
most of the classification process. In what remaining of this tutorial, an
example is presented on how to apply a customized 1D version of the
grad-CAM method to the wheat CNN model to infer information about
the spectral bands that contributed the most to the classification. The
assumption here is that this can be useful for the used CNN architecture
because grad-CAM computes the gradient of the classification error
backwards from the output layer, all the way to the last convolution layer
and by that process, it traces back the importance of the most relevant
key features extracted by the conv. layer. For this specific CNN archi-
tecture, with a single conv. layer with 1 kernel and a stride of 1, the
output features of the conv. layer map the input values directly, and
because of that, a relationship with the wavelengths can be established
directly. For CNN architectures with two or more conv. layers, an input
spectrum is compacted into higher and higher abstractions from layer to
layer, and it might not be possible to trace back what features of the last
conv. layer map into what input wavelengths. This is still a subject for
further research in the deep learning spectral data domain. Also, it is
useful to remember that feature combination in CNN models is
non-linear, unlike e.g., PLS. The visualization of important spectral fea-
tures from a CNNmodel might not represent the same linear combination
of information that a classical PLS VIP score plot provides.

The grad-CAM function is implemented in the initial Help section of
the classification tutorial notebook. To exemplify the application of grad-
CAM, the first spectra of five different wheat classes were separated into a
small target subset. The grad-CAM function uses the optimized CNN
model for predicting the classes of the target spectra and, during the
process finds what output features of the conv. layer are more relevant.
The output of this process is a heat map for each of the tested spectra,
where higher scores correspond to greater feature's importance. These
scores are them encoded as colour and overlaid to the initial target
spectra for an easier visual perception. Fig. 8 shows the result of this
process. For example, this type of analysis may help to gain insight about
what type of pre-processed features the CNN relies on the most for the
classification process, or what kind of spectral bands are more useful to
distinguish between two different wheat varieties.

4. Final remarks

This work supplied a hands-on tutorial for implementing an optimi-
zation pipeline tailored to deal with DL models and spectral data. This
included suggestions on how to prepare the data and different hyper-
parameter optimization techniques distributed between two examples,
one for a regression problem and another for a classification problem.
Two real cases of modelling Vis-NIR spectral data were showed.
Furthermore, approaches to understand the learning of deep spectral
models by exploring feature importance was also showed. The optimi-
zation methodology presented is very general and can be easily adapted
to more complex CNN architectures and other types of DL models.

In the regression example, it was shown that automatically optimized
models can be simpler and generalize better when compared to models
trained with ad-hoc selected hyperparameters. When comparing un-
optimized and optimized models, in the regression case, the prediction
error was decreased by up to 25%. The same exercise for the classifica-
tion case showed that the classification accuracy was increased by ~5%
after optimization, obtaining a new state of the art classification score for
this data set. All of this was achieved using simple/shallow deep learning
models with only a one convolutional layer and a handful of dense layers.

All the analysis presented in this study is reproducible (assuming the
same software versions is used) and can be performed using the provided
python notebooks available at the author's GitHub repository: https
://github.com/dario-passos/DeepLearning_for_VIS-NIR_Spectra/tree/
master/notebooks/Tutorial_on_DL_optimization. Due to the randomness
inherent to the stochastic gradient descent algorithm during training, it is
expected that the results might vary slightly on different systems
specially if GPUs are used. To get reproducible results, it is necessary to
fix the numeric random seed values of the functions that use random
processes. This is of special importance in the initialization of the weights
of the CNN model. However, this means that model's hyperparameters
are optimized for a specific set of initial weights. Although this topic was
not covered in this tutorial, model robustness can be improved by
considering model different initialization weights during the optimiza-
tion process. By forcing the model to be optimized for many different sets
of initial weights, one might find solutions that generalize better at a cost
of having to explore a larger hyperparameter space [22,90].

Instructions on how to setup the python environment and what li-
braries need to be installed are available in the GitHub repository as well.
It is advised that the reader tries to reproduce the analysis presented in
this manuscript by running the notebooks in parallel with the reading, for
a more fruitful learning experience. Furthermore, after doing this tuto-
rial, the readers can change the scripts according to their needs to

https://github.com/dario-passos/DeepLearning_for_VIS-NIR_Spectra/tree/master/notebooks/Tutorial_on_DL_optimization
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Fig. 8. The output of the grad-CAM technique for five wheat classes. Scores are encoded as colour and overlaid on the original augmented spectra. The higher
(towards dark red) the grad-CAM scores the higher the importance of the spectral region. (For interpretation of the references to colour in this figure legend, the reader
is referred to the Web version of this article.)

Table 1
Intervals used in the optimization of hyperparameters related to neural archi-
tecture search (NAS), model layers (L) and model training (M). Learning rate was
the only hyperparameter optimized separately.

Name Type Interval/step Base CNN

Number of hidden FC layers NAS [1–5]/1 3
Number of units p/FC layer L [128–512]/2 [512, 256, 128]
Conv. filter size L [3–20]/1 5
Number of Dropout layers NAS [1–5]/1 0
Dropout rate p/Dropout layer L [0–1]/0.005 0
L2 regularization β L [0–0.003]/0.00001 0.003
Batch size M [128–1024]/64 512
Learning rate* M [1 � 10�9

– 0.1]

Table 2
Optimized neural architecture and hyperparameters obtained using the proposed
automated optimization.

NA/Hyperparameters Values for Optimized CNN

Number of hidden FC layers 5
Number of units p/hidden FC layer [360, 350, 132, 442, 334]
Conv. filter size 3
Number of Dropout layers 5
Dropout Rate p/Dropout layer [0.555, 0.165, 0.13, 0.46, 0.085 ]
L2 regularization β 1 � 10�5

Batch size 896
Learning rate in Adam LRmax ¼ 2.5 � 10�3, LRmin ¼ 1 � 10�7
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develop new applications of deep learning for spectral data modelling. In
case of difficulty in implementing scripts, the reader can contact the
authors.

As a final note, we would like to add that the area of deep learning
research is evolving at a vertiginous pace and even the experts on the
field have difficulties tagging along. That neck-breaking rhythm should
not discourage the exploration and adoption of these techniques into
other fields. Classical fields such as chemometrics and analytical chem-
istry can profit immensely from all these new technologies, if a few
curious researchers venture into porting the necessary DL knowledge into
their projects. This tutorial intends to be an incentive, a starting point,
and a small road map to those brave explorers.
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