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ABSTRACT

Monocular depth estimation and point cloud segmentation are essential tasks for 3D

scene understanding in computer vision.

Depth estimation for omnidirectional images is challenging due to the spherical dis-

tortion issue and the availability of large-scale labeled datasets. We propose two separate

works for 360 monocular depth estimation tasks. In the first work, we propose a novel,

model-agnostic, two-stage pipeline for omnidirectional monocular depth estimation. Our

proposed framework PanoDepth takes one 360 image as input, produces one or more syn-

thesized views in the first stage, and feeds the original image and the synthesized images

into the subsequent stereo matching stage. Utilizing the explicit stereo-based geometric

constraints, PanoDepth can generate dense high-quality depth. In the second work, we

propose a 360 monocular depth estimation pipeline, OmniFusion, to tackle the spheri-

cal distortion issue. Our pipeline transforms a 360 image into less-distorted perspective

patches (i.e. tangent images) to obtain patch-wise predictions via CNN, and then merge

the patch-wise results for final output. To handle the discrepancy between patch-wise pre-

dictions which is a major issue affecting the merging quality, we propose a new framework

with (i) a geometry-aware feature fusion mechanism that combines 3D geometric features

with 2D image features. (ii) the self-attention-based transformer architecture to conduct a

global aggregation of patch-wise information. (iii) an iterative depth refinement mechanism

to further refine the estimated depth based on the more accurate geometric features. Exper-

iments show that both PanoDepth and OmniFusion achieve state-of-the-art performances

on several 360 monocular depth estimation benchmark datasets.

For point cloud analysis, we mainly focus on defining effective local point convolution

xix



operators. We propose two approaches, SPNet and Point-Voxel CNN respectively. For

the former, we propose a novel point convolution operator named Shell Point Convolution

(SPConv) as the building block for shape encoding and local context learning. Specifically,

SPConv splits 3D neighborhood space into shells, aggregates local features on manually

designed kernel points, and performs convolution on the shells. For the latter, we present a

novel lightweight convolutional neural network which uses point voxel convolution (PVC)

layer as building block. Each PVC layer has two parallel branches, namely the voxel branch

and the point branch. For the voxel branch, we aggregate local features on non-empty voxel

centers to reduce geometric information loss caused by voxelization, then apply volumetric

convolutions to enhance local neighborhood geometry encoding. For the point branch, we

use Multi-Layer Perceptron (MLP) to extract fine-detailed point-wise features. Outputs

from these two branches are adaptively fused via a feature selection module. Experimental

results show that SPConv and PVC layers are effective in local shape encoding, and our

proposed networks perform well in semantic segmentation tasks.
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Chapter 1

Introduction

1.1 360 Monocular Depth estimation

Depth estimation has been extensively studied in computer vision, which is an essential

components for many applications such as autonomous driving, robot navigation, virtual

reality, etc. Upon the advances of deep learning technologies and the availability of large

scale datasets, deep learning-based monocular depth estimation shows great potential in

achieving efficiency and robustness. However, since monocular depth estimation is by

nature an ill-posed problem, how to better estimate the true scale of the depth in novel

scenes and how to recover the structural details are the major challenges.

360 images give a comprehensive view of the entire scene, which is of great advantage

in understanding the scene holistically. Particularly, due to a large Field of View (FoV), a

360 image-based method can rely on large context to infer depth, which is valuable when

estimating the true scale in the monocular depth estimation. Meanwhile, the 360 perception
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is free from the object truncation issue and independent of the intrinsic camera parameters,

which are both understood as major challenges towards learning a generalizable model of

the perspective image. However, 360 images projected in the equirectangular projection

(ERP) coordinate system introduces irregular distortion, which varies with latitude. Such

distortion issue significantly degrades the monocular depth estimation of 360 images if not

handled carefully. Moreover, inferring depth directly from the monocular RGB input is

to build a mapping from RGB pixel to real-valued depth. To build an accurate mapping

requires a large amount of training data with ground truth label [17]. For 360 vision, such

large-scale labeled dataset is difficult and expensive to acquire. To this end, we introduce

two frameworks, PanoDepth and OmniFusion, to address the distortion problem and to

improve depth estimation performance with limited training data.

We first propose a two-stage framework, PanoDepth, that takes one equirectangular

projection (ERP) image as input, produces one or more synthesized views in the first stage,

and feeds the original image and the synthesized images to the subsequent stereo matching

stage to predict the final depth map. In the stereo matching stage, we propose a novel dif-

ferentiable Spherical Warping Layer to handle omnidirectional stereo geometry efficiently

and effectively. We conducted extensive experiments and ablation studies to evaluate Pan-

oDepth with both the full pipeline and the individual networks in each stage on several

public benchmark datasets. Our results demonstrated that our model-agnostic approach

PanoDepth outperforms the one-stage method by a large margin despite the combinations

of coarse estimation and stereo matching networks. Moreover, by adjusting these networks,

PanoDepth can be adapted to the target computation constraints and performance require-

ments.

Second, we propose a 360 monocular depth estimation framework, OmniFusion, with
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geometry-aware fusion that uses tangent image representation. It is advantageous to use

tangent images [13] as it has less distortion, and can make good use of the large pool of

pre-trained CNNs developed for perspective imaging. However, the vanilla pipeline [13]

has some limitations. First, severe discrepancies occur between perspective views since

the same object may appear differently from multiple views. This issue is problematic

for the depth regression task, since the inconsistent depth scale estimated from individual

tangent images creates undesired artifacts during merging. Second, the advantage of esti-

mating depth from holistic 360 image is unfortunately lost, because of the decomposition

of the global scene into local tangent images. The predictions from the tangent images

are independent of each other and there is no information exchange between tangent im-

ages. We proposed the following three key components to solve the discrepancy issue and

merge the depth results of tangent images seamlessly. First, we use a geometric embed-

ding module to provide additional features to compensate for the discrepancy between 2D

features from patch to patch. For each patch, we calculate the 3D points located on the

spherical surface that correspond to the patch pixels, encode them and the patch center

coordinate through shared Multi-layer Perceptron (MLP), and add the geometric features

to the corresponding 2D features. Second, to regain the holistic power in understanding

the entire scene, we incorporate a self-attention-based transformer in our pipeline. With

the transformer, patch-wise information is globally aggregated to enhance the estimation

of the global scale of depth, and to improve the consistency between patch-wise results.

Third, we introduce an iterative refining mechanism, where more accurate 3D information

from the predicted depth maps is fed back to the geometric embedding module to further

improve the depth quality in an iterative manner. We test OmniFusion on three benchmark

datasets: Stanford2D3D [1], Matterport3D [9], and 360D [2]. Experimental results show
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that our method outperforms state-of-the-art methods by a significant margin on all of these

datasets.

1.2 Point Cloud Semantic Segmentation

Deep learning based point cloud analysis is appealing and challenging. Increasing interest

in applications such as robotics, autonomous driving, etc. has brought more attention to

3D point cloud learning. Point cloud segmentation involves dividing 3D point clouds into

homogeneous regions, such that points in the same isolated and meaningful region have

similar properties. 3D point cloud segmentation is a challenging task because of high re-

dundancy, non-uniform sampling density, and lack of explicit structure of point cloud data.

Segmenting objects in 3D point clouds is not a trivial task. The point cloud data is usually

noisy, sparse, and unordered. Apart from that, the sampling density of points is uneven and

the surface shape can be arbitrary with no statistical distribution pattern in data. Moreover,

due to limitations in 3D sensors, the background is entangled with the foreground. Addi-

tionally, it is difficult to have a deep learning model that is computationally efficient and has

a low memory footprint to perform segmentation. To effectively process the point cloud

data, encode shape and learn context information, we introduce two different approaches,

SPNet and Point-voxel CNN respectively, for point cloud semantic segmentation.

SPNet is inspired by the work KPConv [16], which manually designed a set of either

rigid or deformable kernel points and used them to aggregate local neighbor information.

Our SPConv operator partitions local 3D space into shells, each shell contains a set of rigid

kernel points which aggregate local supporting point features. We perform kernel point

convolution on each shell individually, then integrate the output features by an additional
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1D convolution operation. The last convolution learns the contributions from shells and

enhances shell correlation. Comparing to deformable KPConv [16], our method has an

enhanced structure learning module, and does not require additional regularization during

training. Furthermore, we find that incorporating low-level features such as color, normal,

etc. in all layers for local feature re-weighting can be very effective for improving network

performance. We propose two different approaches to accomplish the task, (1) Gaussian

function based and (2) learning based. The first approach is hand-crafted and does not

necessarily add GPU computation. The second approach has learnable weights and shows

more robustness. Using SPConv as our building block, we build a deep architecture SPNet.

Similar to standard CNNs which utilize downsampling and upsampling strategy to reduce

computation cost as well as to enlarge receptive field, we use Poisson disk sampling (PDS)

for downsampling, and feature propagation (FP) for upsampling.

The point-voxel CNN is constructed using point-voxel layer that takes advantages of

both sparse point representation and volumetric grid representation. Our point-voxel layer

consists of two parallel branches, a voxel-based branch which aggregates local neighbor-

ing features, and a point-based branch which maintains fine-grained point-wise features.

During discretization in voxel branch, we aggregate neighboring features on non-empty

voxel centers and use standard 3D convolutions to enhance local feature encoding. Voxel

features are propagated back to point domain through devoxelization. Outputs from point

and voxel branches are fused self-adaptively via a feature selection module(FSM), which

learns channel-wise attention for both branches.
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1.3 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we introduce the Pan-

oDepth framwork. Chapter 3 is the main body of OmniFusion. Both Chapter 2 and 3

focus on monocular depth estimation for 360 images. In Chapter 4 and Chapter 5, we

include SPNet and Point-voxel CNN respectively. SPNet and Point-voxel CNN are evalu-

ated for point cloud semantic segmentation task. In Chapter 6, we summarize our works

and conclude the remarks.
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Chapter 2

PanoDepth: A Two Stage Approach for
Monocular Omnidirectional Depth
Estimation

2.1 Introduction

Omnidirectional 3D information is essential for a wide range of applications (e.g. Vir-

tual Reality [18], Augmented Reality [19], Autonomous Driving [20], and Robotics [21]).

Quick and reliable acquisition of omnidirectional 3D data can facilitate many use cases,

such as user interaction with the digital environment, robot navigation, and object detection

for autonomous vehicles. Another relevant application is remote working/shopping/education

[22], which has become ubiquitous due to the pandemic. To obtain high-quality omnidi-

rectional 3D information, devices such as omnidirectional LiDARs are widely used in Au-

tonomous Driving and indoor 3D scans. However, LiDARs are either very expensive, or

can only produce sparse 3D scans. Compared with LiDARs, cameras are much cheaper
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Figure 2.1: (a) Illustration of our PanoDepth framework. PanoDepth takes one 360 image
as input to generate one or more novel views in the first view synthesis stage. The original
and synthesized 360 images are then fed into the second multi-view stereo matching stage
to predict final dense depth map. (b) Two examples (top and bottom row) of PanoDepth on
360D dataset [2] with 360 image (left) as input, and output depth (middle) and point cloud
(right).

and already frequently used for capturing the visual appearance of the scenes. The cost can

be significantly reduced if high-quality omnidirectional 3D can be generated directly from

camera images.

Deep learning techniques, coupled with a growing accessibility of large-scale datasets,

have largely improved the performance of many computer vision tasks including depth

estimation [23]. Depth estimation often uses either a monocular input or a stereo pair.

For the monocular methods, a common practice is to train a single network to map RGB

pixel to real-value depth [24, 25, 26, 27], mostly by learning from various monocular cues

such as shape, lighting, shading, object type, etc. Stereo matching methods [28, 29, 7], on

the other hand, learn the disparity by matching image patches from stereo pairs and later

convert disparity to depth. Despite the significant improvement in monocular estimation

methods, there is still a large gap between monocular and stereo depth accuracy [30].

To apply stereo matching for monocular depth estimation, Luo et al. [17] proposed

a two-stage pipeline that decomposes monocular depth estimation into two stages, view

synthesis and stereo matching respectively. In their approach, a second view is first syn-
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thesized and fed together with the original view to the stereo matching stage to compute

the disparity. Stereo matching can leverage more geometric constraints into the network

training, thus reducing the demand for ground truth depth. More recent studies [31, 32]

improved upon this idea and achieved promising performances. These two-stage methods

[17, 31, 32], are mainly designed for perspective images. In 360 domain, most of the recent

studies [2, 33, 34, 3, 35] still follow the same single-stage monocular estimation procedure

with adaptation to 360 1 geometry.

In this paper, we propose a novel, model-agnostic, two-stage pipeline (see Figure 3.2)

for solving the problem of 360 monocular depth estimation. Our proposed framework

PanoDepth takes one equirectangular projection (ERP) image as input, produces one or

more synthesized views in the first stage, and feeds the original image and the synthe-

sized images to the subsequent stereo matching stage to predict the final depth map. In

the stereo matching stage, we propose a novel differentiable Spherical Warping Layer to

handle omnidirectional stereo geometry efficiently and effectively. We conducted exten-

sive experiments and ablation studies to evaluate PanoDepth with both the full pipeline

and the individual networks in each stage on several public benchmark datasets. Our re-

sults demonstrated that our model-agnostic approach PanoDepth outperforms the one-stage

method by a large margin despite the combinations of coarse estimation and stereo match-

ing networks. Moreover, by adjusting these networks, PanoDepth can be adapted to the

target computation constraints and performance requirements.

Our contributions can be summarized as follows:

• We propose a novel, model-agnostic, two-stage framework PanoDepth, including

view synthesis and stereo matching, to fully exploit the synthesized 360 views and

1We use the terms 360, omnidirectional, equirectangular, spherical interchangeably in this paper
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spherical stereo constraints.

• PanoDepth outperforms the state-of-the-art monocular omnidirectional depth esti-

mation approaches by a large margin.

• We propose a novel differentiable Spherical Warping Layer (SWL) which adapts reg-

ular stereo matching networks to 360 stereo geometry, and enables advanced features

such as multi-view stereo and cascade mechanism for stereo performance boost.

2.2 Motivation

In this section, we explain the motivation of formulating the 360 monocular depth estima-

tion problem as two separate stages, namely, a view synthesis stage based on coarse depth

estimation, and a multi-view stereo matching stage for final depth output.

2.2.1 Why Two-Stage?

One main advantage of monocular depth estimation is its potential in dramatically reduc-

ing the hardware cost for 3D depth acquisition. Motivated by this, many studies have been

proposed to solve this problem. The basic idea of supervised monocular estimation meth-

ods is to train a network that directly learns the mapping from the input RGB pixels to the

real-value output depth in a single stage. For example, Laina et al. [36] proposed FCRN

which uses ResNet-50 [37] as backbone, followed by multiple up-projection modules. Hu

et al. [26] leveraged SENet-154 [38] as encoder together with multi-scale fusion module.

On the other hand, deep learning based stereo matching networks [7, 29, 39] utilize the

stereo constraints to improve efficiency and the output depth quality. These methods sim-
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ulate the traditional stereo matching process by learning and optimizing the matching cost

across the input image pairs in a deterministic manner. Unlike monocular depth methods

which directly map RGB into depth by considering all the monocular cues, stereo match-

ing methods focus on estimating disparity by developing image patch correspondence [24].

Given the predefined baseline and 1D search space along the epipolar line for image patch

matching [40], stereo matching produces more accurate depth maps in comparison with

monocular methods in general [30].

A typical stereo matching network requires at least two images as input, which is not

directly applicable for a monocular input setting. However, if one or more novel views can

be synthesized with high quality, these additional views can be utilized to train a stereo

matching network. Luo et al. [17] first proposed the two-stage pipeline for perspective

images where a novel right view is synthesized at the first stage and paired with the original

view to the second stereo stage. Later, two-stage approaches [31] mostly followed this work

to generate a coarse disparity/depth, and to synthesize novel views via image warping or

Depth-Image-Based Rendering (DIBR). Taking the original and the synthesized views as

input, the final depth generated from the later stereo matching stage of these approaches

shows a significant improvement over the one-stage counterparts.

2.2.2 Can we successfully synthesize novel view 360 images?

Recent two-stage approaches [17, 31] have shown promising capabilities in improving

depth quality on perspective images. However, it remains unclear whether the two-stage

approach will be applicable for 360 images, as there are many fundamental differences

between the perspective images and 360 images, such as camera projection model, image

distortion, and field of view (FoV).
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The difference in camera projection model, equirectangular projection (see Figure 2.3(a))

vs. perspective projection, can be resolved by integrating spherical geometry into the dis-

parity calculation and cost volume fusion procedure. In this paper, we propose a novel

Spherical Warping Layer specifically designed for spherical geometry as a solution (Sec-

tion 2.4.2). Moreover, the distortion issue can be addressed by applying distortion-aware

convolutions [34, 41, 42, 33, 43, 44, 45]. Hence, in this section we will mainly discuss the

difference in FoV settings. Comparing with perspective images, 360 images have much

larger FoVs (360◦ horizontally, 180◦ vertically). A 360 image encodes almost every piece

of visual information of the scene except occluded areas, while perspective images suffer

from information loss near the image boundaries in addition to occlusions. This could be a

great advantage for novel view synthesis of 360 images.

To validate this observation, we conducted various experiments regarding the corre-

lations between image FoV, baseline and synthesized view quality (more details in the

Appendix). Our experiment confirms that i) with greater FoV, the synthesized views are

less sensitive to large baselines, and ii) synthesized 360 images have the least error and ar-

tifacts. According to Gallup et al. [46], depth error of stereo matching comes from both the

disparity error (proportional) and the baseline (inversely proportional). Thus, with higher

quality synthesized novel views and larger baselines, we expect less error in the final depth

output from stereo matching. This also indicates that the two-stage pipeline is well-suited

for 360 monocular depth estimation.
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Figure 2.2: Illustration of our PanoDepth framework which consists of a view synthesis
stage and a multi-view stereo matching stage. In the view synthesis stage, a total of M
synthesized views are generated. In the multi-view stereo matching stage, the synthesized
360 views together with the original input view, are sent to the multi-view stereo matching
network to produce the final depth estimation. To better adapt to 360 stereo geometry, we
directly sample hypothesis plane on the inverse depth, and use a Spherical Warping Layer
(SWL) to warp reference views to the target view (Section 2.4.2).

2.3 Related Work

2.3.1 Monocular Depth Estimation

Monocular depth estimation [47] has seen significant improvements [36, 26] since the first

adoption of deep learning by Eigen et al. [24]. To further improve the performance,

researchers explored many strategies such as multi-task learning with normal estimation

[48] and semantic segmentation [49, 50] along with depth estimation, incorporating CRF

[51, 52], integrating attention modules [27, 53], utilizing planar constraints [54, 27], con-

ducting unsupervised learning using constrainsts such as left-right consistency [55, 56, 57],

as well as two-stage approaches where stereo constraints are leveraged [17, 31, 32].

As 360 cameras become more affordable, researchers start to explore the possibility to

use 360 images for depth estimation [34, 58, 4, 2, 8, 6, 5]. To advance the performance of
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360 monocular depth estimation, Eder et al. [35] proposed joint training of surface normal,

boundary, and depth. Zeng et al. [5] trained a network which combines 3D layout and

depth. Jin et al. [59] took advantage of the correlation between depth map and geomet-

ric structure of 360 indoor images. Cheng et al. [4] proposed a low-cost sensing system

which combines an omnidirectional camera with a calibrated projective depth camera. The

360 image and the limited FoV depth are used together as input to a CNN. Meanwhile,

distortion-aware convolution filters [58, 44, 34, 45] are designed to handle spherical geo-

metric distortion.

2.3.2 Multi-View Stereo Matching

Besides monocular depth estimation, Multi-View Stereo (MVS) is another group of meth-

ods for predicting depth. Given a set of images with known camera poses, MVS ap-

proaches [60, 61] can produce highly accurate depth estimates with multi-view geomet-

ric constraints. One example is MVSNet [61], in which the variance-based cost volume

is presented to fuse multiple features maps from source images into one unified cost vol-

ume. Stereo matching can be treated as a special case of MVS. Conventionally, stereo-

based depth estimation methods [28, 62] relied on matching pixels across stereo images.

Many recent stereo matching approaches [29, 7] leveraged CNNs for feature extraction,

cost matching, and aggregation. For example, PSMNet [7] incorporated spatial pyramid

pooling (SPP) module and multi-scale 3D hourglass modules to further boost the perfor-

mance. To improve the efficiency and accelerate training on high-resolution images, Gu et

al. [39] presented a cascade cost volume design to gradually retrieve finer hypothesis plane

ranging over multiple steps.

In 360 stereo domain, SweepNet [63] and OmniMVS [64] estimated depth from multi-
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ple wide-baseline fisheye cameras. Another recent work is 360SD-Net [8] which predicted

disparity/depth from a pair of ERP images that are taken by a top-bottom camera pair. They

[8] incorporated polar angles to solve distortions and proposed learnable shifting filters to

adjust the step size in disparity cost volume construction. However, the learnable shifting

filters create extra overhead during training. In this paper, we propose a closed-form solu-

tion, Spherical Warping Layer (SWL), that does not require additional training overhead.

Our experiments (Table 2.2) show that SWL can significantly improve the performance of

360 stereo matching.

2.4 Approach

We propose an end-to-end framework, PanoDepth, that takes a single ERP image as in-

put and produces a high-quality omnidirectional depth map. PanoDepth consists of two

stages: i) a view synthesis stage that conducts coarse depth estimation followed by a dif-

ferentiable DIBR module for novel view synthesis, and ii) a stereo matching stage with a

customized Spherical Warping Layer for efficient and high-quality 360 depth estimation.

A full framework of PanoDepth is illustrated in Figure 3.2.

2.4.1 View Synthesis Stage

To synthesize high-quality novel views, the coarse depth map is usually estimated first

followed by a Depth-Image-Based Rendering (DIBR) module [17, 65]. Based on our

empirical observations (see the Appendix for details), such a procedure also works well

for 360 novel view synthesis with different configurations of coarse depth estimation net-

works. Considering both performance and computation cost, in this paper we suggest using
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a lightweight network: CoordNet [6] for doing the task. CoordNet utilizes coordinate con-

volution [66] to enforce 360 awareness. We append an atrous spatial pyramid pooling

module (ASPP) [67] to the end of the encoder to better aggregate multi-scale context infor-

mation. Note that PanoDepth is model-agnostic, thus any depth estimation network can be

used here to fulfill specific requirement. The estimated coarse depth map and the original

ERP image are then used to render multiple synthesized views of predefined baselines via

a differentiable DIBR operation [68]. In this paper, we choose to use vertical baselines

instead of horizontal ones. The analysis of this choice can be found in the Appendix.

2.4.2 Stereo Matching Stage

The second stage of our PanoDepth framework is stereo matching. Again, as PanoDepth is

model-agnostic, any stereo matching network can be plugged in here. Experimental results

that show the performance of different stereo matching network settings is discussed in

Section 2.5.4.

The stereo matching network we used in this paper follows a similar pipeline as PSM-

Net [7], with several key modifications. The network consists of five main modules: feature

extraction, spherical warping layer, cost volume construction, cost aggregation, and depth

prediction. Comparing with the original PSMNet [7], our unique contribution is the Spher-

ical Warping Layer (SWL) which is specifically designed for the 360 stereo geometry.

Feature Extraction After the view synthesis stage, the input image along with all the

M synthesized novel views will be passed to a weight-sharing neural network to extract

features. We use the same layer setting and keep the SPP module as the original PSMNet

[7].

Spherical Warping Layer (SWL) The extracted feature maps of all views are then
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used to build a cost volume at multiple depth hypothesis planes for cost matching. An

essential step of cost volume construction is to determine the coordinate mapping, which

is reflected as disparity, that warps reference view to the target view. Unlike perspective

images where the disparity is proportional to the inverse depth [69, 7, 70], disparity of

360 stereo pairs is related to both inverse depth and spherical latitudes. Our SWL performs

direct depth sampling instead of disparity sampling which is commonly used in perspective

image pair stereo matching. Compared with the learnable shifting filters proposed in [8],

our SWL makes the disparity computation adjustable to the pixel latitudinal value, without

introducing additional computation overhead in training. Moreover, SWL directly samples

on the absolute depth domain, thereby enabling horizontal 360 stereo (which has both

horizontal and vertical disparity, more details in the Appendix), the adaptation of 360 multi-

view, and the usage of cascade mechanism.

Figure 2.3 shows an illustration of the Spherical Warping Layer. We first sample the

inverse depth to cover the whole depth range:

1

dj
=

1

dmax

+ (
1

dmin

− 1

dmax

)
v × j

D − 1
, j = 0, 1, ..., D − 1 (2.1)

where D is the total number of hypothesis planes, dj is the jth depth plane, dmin and dmax

are the minimum and maximum of the depth image, v is the plane interval. The Spherical

Warping Layer then transforms depth hypothesis dj to displacement in spherical domain

Cj , to map pixels from the reference synthesized view to the target view. The displacement

Cj is defined as:

Cx,j = 0, Cy,j =
cos(θ)× b

dj
× Hf

π
(2.2)

where θ refers to the pixel-wise latitudinal values, b represents the baseline, and Hf is the
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height of the feature map.

Cost Volume Construction The SWL transforms reference view feature maps into the

target view domain at the individual hypothesis plane, and then a total of M + 1 feature

volumes are generated. The variance-based cost volume formation method from MVSNet

[61] is used for the fusion of these feature volumes into a compact one. Moreover, we adopt

a cascade design from Gu et al. [39] to further improve the final depth quality. Specifically,

at level l(l > 1), dmin and dmax is recalculated based on the prediction of level l − 1,

then the new depth range and the new number of planes Dl is used to determine the new

intervals. Depth hypothesis for level l is then updated using equ (2.1). The corresponding

displacements are calculated via the same spherical coordinate mapping procedure.

Figure 2.3: Visualization of our spherical warping method. (a) Vertical 360 stereo model.
b is the baseline displacement of two cameras. P is a real-world point. The projection of
P on two camera space is represented as p(ϕ1, θ1) and q(ϕ2, θ2). (b) Spherical epipolar
geometry. Pi is the points sampled at different depths. (c) Projection of sampled inverse
depth on the ERP image. pi is the projection of P on the top view at sampled points Pi. Ci

is the vertical disparity, it equals to Cy in Equ (2.2). (d) Projection on the reference image.
q is the projection of P at bottom view.

Cost Aggregation and Depth Prediction After the construction of the cost volume,

multi-scale 3D CNN is used to aggregate different levels of spatial context information

through the hourglass-shape encoding and decoding network. It has been shown this kind
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of cost aggregation module helps to regularize noises in ambiguous regions caused by

occlusions, textureless surfaces, and to improve final prediction quality [29, 7, 71]. Finally,

we regress the depth value at each level l:

1

dpred,l
=

1

dmin,l

+ (
1

dmin,l

− 1

dmax,l

)
kl

Dl − 1
(2.3)

kl =

Dl−1∑
j=0

σ(pj)× (vl × j) (2.4)

where kl is the sum of each plane level weighted by its normalized probability, σ(·) repre-

sents softmax function, pj denotes the probability of jth plane value, vl is the interval for

level l.

2.4.3 Loss Function

PanoDepth is trained in an end-to-end fashion, supervision is applied on both stages. The

final loss function is defined as follows,

Ltotal = ω1Lcoarse + ω2Lstereo (2.5)

where ω1 and ω2 are the weights of coarse depth estimation loss and stereo matching loss

respectively. For the optimization on the first stage coarse estimation, we use inverse Huber

(berHu) loss as proposed in [36]:

Lcoarse =
1

Ω

∑
i∈Ω

LberHu(di, d∗i ) (2.6)
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where Ω is a binary mask that is used to mask out missing regions (pixels that have depth

values smaller than dmin or greater than dmax), di and d∗i are the ground truth and the

predicted depth value of a valid pixel i respectively. For stereo matching, we calculate

berHu loss [36] on all outputs from each level l and then compute the weighted summation.

The stereo matching loss is defined as:

Lstereo =
1

Ω

∑
i∈Ω

N∑
l=1

λlLberHu(di, d∗i ) (2.7)

where λl is the level l stereo loss weight.

2.5 Experiments

2.5.1 Datasets

We train and evaluate our network on three panorama RGBD benchmark datasets including,

Stanford2D3D [1], 360D [2] and the omnidirectional stereo dataset [6].

Stanford2D3D Stanford2D3D [1] dataset consists of 1413 real-world panorama images

from six large-scale indoor areas. We follow the official train-test split which uses the fifth

area for testing, and other areas for training. We resize the images to 256 × 512 to reduce

computation time.

360D 360D [2] is a RGBD panorama benchmark provided by Zioulis et al. [2]. It is com-

posed of two other synthetic datasets (SunCG and SceneNet), and two real-world datasets

(Stanford2D3D and Matterport3D). There are 35,977 panorama RGBD images in the 360D

that are rendered from the aforementioned four datasets. We again follow the default train-

test splits.
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Omnidirectional Stereo Dataset. The omnidirectional stereo dataset [6] consists of 7964

stereo pairs of panorama RGBD images rendered from two real-world datasets, Matter-

port3D [9] and Stanford2D3D [1]. We use the train-test split that removes 3 complete

buildings from Matterport3D [9] and 1 complete area from Stanford2D3D [1] for test.

Each set of data consists of left-down, right, and up view 360 RGBD images in a triangular

fashion with size 256 × 512. We only use images from the left-down view in our single

view depth estimation experiments. Up-down stereo pairs are only used for the ablation

study of the stereo matching network.

To investigate the impact of baselines and FoV on the quality of view synthesis, we

create a new dataset that is rendered from the mesh of Stanford2D3D [1]. More details

of this new dataset as well as the experiments with various baseline configurations are

included in the Appendix.

2.5.2 Implementation Details and Metrics

For parameter settings, we use a default of N = 2 levels, with D1 = 48 and D2 = 24

hypothesis planes respectively. The minimum and maximum depth dmin and dmax for

the first level is set to be 0.2m and 8m. We use a default of M = 3 synthesized views

rendered at vertical baseline placements −0.24m,+0.24m,+0.4m. The loss weights ω1

and ω2 are set to 1 and 0.02. We train our framework from scratch using Adam optimizer

(β1 = 0.9, β2 = 0.999) with a batch size of 8. Initial learning rates for the first and

the second stage are set to 0.0002 and 0.0005. We separately train the coarse network

for 10 epochs and then train the entire framework end-to-end for 200 epochs. Both of

the learning rates decay by a factor of 0.5 every 30 epochs. Performances are evaluated

based on commonly used depth quality measures [24]: absolute relative error (Abs Rel),
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square relative error (Sq Rel), linear root mean square error(RMSE) and its natural log

scale (RMSE log) and inlier ratios (δi < 1.25i, i ∈ {1, 2, 3}).

2.5.3 Overall Performance Comparison with the State-of-the-art Al-
gorithms

Table 3.1 lists quantitative comparison between PanoDepth and other state-of-the-art om-

nidirectional monocular depth estimation methods [36, 2, 3, 4] on both Stanford2D3D [1]

and 360D [2] datasets. As shown in Table 3.1, our method is able to reduce Abs Rel error by

19.60% on Stanford2D3D and 25.85% on 360D compare to the current leading 360 monoc-

ular depth estimation approach BiFuse [3]. Note that BiFuse [3] uses a network architec-

ture with more than 200M parameters and has a large computation complexity for sharing

information between CubeMap [72] and ERP formats. The framework with distortion-

aware module proposed in [45] outperforms ours but it has more than 60M parameters.

Our framework has only around 16M parameters with a smaller computation overhead.

Comparing the performance with ODE-CNN [4] on 360D, our approach achieves compa-

rable results while ODE-CNN requires additional depth sensor input. Figure 2.4 shows the

qualitative comparison with the state-of-the-art approaches. As we can see, our method

generates high-quality depth with a detailed surface, sharp edges, and precise range.

2.5.4 Ablation Studies

Spherical Warping Layer In order to evaluate the performance of the PanoDepth stereo

matching module with the novel Spherical Warping Layer (SWL), we compare it to the

state-of-the-art stereo matching approaches, PSMNet [7] and 360-SD Net [8], with ground

truth up-down 360 stereo pair as input on the Omnidirectional Stereo Dataset [6]. In the
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Datasets Methods Abs Rel↓ RMSE↓ δ1 ↑ δ2 ↑ δ3 ↑

Stanford2D3D [1]

FCRN [36] 0.1837 0.5774 0.7230 0.9207 0.9731
RectNet [2] 0.1409 0.4568 0.8326 0.9518 0.9822
BiFuse with fusion [3] 0.1209 0.4142 0.8660 0.9580 0.9860
Joint wth layout and semantics [5] 0.0680 0.2640 0.9540 0.9920 0.9980
PanoDepth(Ours) 0.0972 0.3747 0.9001 0.9701 0.9900

360D [2]

FCRN [36] 0.0699 0.2833 0.9532 0.9905 0.9966
RectNet [2] 0.0702 0.2911 0.9574 0.9933 0.9979
Mapped Convolution [34] 0.0965 0.2966 0.9068 0.9854 0.9967
Distortion-aware [45] 0.0406 0.1769 0.9865 0.9966 0.9987
BiFuse with fusion [3] 0.0615 0.2440 0.9699 0.9927 0.9969
ODE-CNN [4] 0.0467 0.1728 0.9814 0.9967 0.9989
PanoDepth(Ours) 0.0456 0.1955 0.9830 0.9957 0.9984

Table 2.1: A quantitative comparison with the state-of-the-art approaches on Stanford2D3D
[1] dataset and 360D [2] dataset (↓ represents lower the better, ↑ represents higher the
better). We report the results based on the original papers [2, 3, 4] using the same evaluation
metrics. Note that ODE-CNN [4] requires additional depth sensor input besides the 360
image used by other methods listed in the table. Additional supervision signals including
layout and semantics are used in [5]. For our PanoDepth, we use the default stereo network
setting with three synthesized views and a two-level cascade design.

Methods Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ1 ↑ δ2 ↑ δ3 ↑
(1) PSMNet [7], sample on dispar-
ity, D = 64

0.0433 0.0252 0.2541 0.1340 0.9722 0.9833 0.9900

(2) 360SD-Net [8], sample on dis-
parity, D = 64

0.0387 0.0198 0.2286 0.0955 0.9776 0.9900 0.9940

(3) PanoDepth (ours), one-level,
D = 32

0.0253 0.0222 0.2268 0.0686 0.9756 0.9874 0.9976

(4) PanoDepth (ours), one-level,
D = 64

0.0229 0.0087 0.1731 0.0606 0.9900 0.9969 0.9987

(5) PanoDepth (ours), two-level,
D1 = 48, D2 = 24

0.0178 0.0064 0.1415 0.0519 0.9928 0.9976 0.9990

Table 2.2: A quantitative comparison between the PanoDepth stereo matching and existing
stereo matching networks on the Omnidirectional stereo dataset [6] where up-down stereo
pairs are used as input and output the depth of bottom view. Our proposed stereo matching
module (3,4,5) outperforms both (1) PSMNet [7] and (2) 360SD-Net [8]. The two cascade
level setting achieves the best performance.

experiment, we use the officially released code of both approaches, and convert the output

disparity into depth for evaluation. We set the number of depth hypothesis planes to 64 to

ensure fair and consistent comparison. We can see from Table 2.2 that our proposed stereo

matching method with SWL outperforms PSMNet [7] and 360-SD Net [8], even with one-
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1st Stage 2nd Stage w/ 1 syn-
thesize view #params Abs Rel↓ Sq Rel↓ RMSE↓ RMSElog↓ δ1 ↑ δ2 ↑ δ3 ↑

(1) CoordNet N/A 6.1M 0.1264 0.0888 0.4456 0.2084 0.8533 0.9588 0.9813
(2) RectNet N/A 10.8M 0.1409 0.0859 0.4568 0.2124 0.8326 0.9518 0.9822
(3) CoordNet PSMNet [7], D=32 13.0M 0.1206 0.0833 0.4293 0.2150 0.8671 0.9548 0.9790

(4) CoordNet w/ SWL, one-level,
D=32 13.0M 0.1132 0.0686 0.4077 0.1869 0.8757 0.9652 0.9863

(5) RectNet w/ SWL, one-level,
D=32 17.6M 0.1192 0.0775 0.4202 0.1960 0.8655 0.9607 0.9846

(6) CoordNet w/ SWL, two-level,
D1=32, D2=16 16.6M 0.1040 0.0645 0.3918 0.1827 0.8865 0.9676 0.9875

(7) RectNet w/ SWL, two-level,
D1=32, D2=16 21.3M 0.1138 0.0761 0.4274 0.1961 0.8711 0.9577 0.9837

Table 2.3: An ablation study of the impact of various combinations of coarse estimation net-
work and stereo matching network on the final performance. The experiments are trained
on Stanford2D3D [1]. We use two types of coarse estimation networks, (1) CoordNet, and
(2) RectNet [2]. We can see that even with one synthesize view, our proposed two-stage
PanoDepth pipeline (3,4,5,6,7) is able to outperform the one-stage-only methods (1,2).
Adding Spherical Warping Layer (SWL) (4,5,6,7) and two cascade levels (6,7) further im-
proves the performance. The experimental results indicate that our two-stage pipeline is
model-agnostic under various network settings.

Figure 2.4: A qualitative comparison between RectNet [2] (3rd column), BiFuse [3] (4th
column), and our method (5th column) on 360D [2]. We highlight and zoom in some areas
that distinguish the performance of three methods. We can see that our PanoDepth is able
to produce sharp edges, predict depth range accurately, and recover surface detail.
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Figure 2.5: A qualitative comparison to show the effectiveness of SWL in the PanoDepth
stereo matching module. We compare between one-level stereo matching method with-
out SWL(4th column), one-level with SWL (5th column), and two-level with SWL (last
column). The experiments are trained on Omnidirectional Stereo Dataset [6]. Our stereo
matching module with SWL recovers clear details and shows fewer artifacts than the one
without SWL (see highlighted areas).

level setting. Moreover, by adding SWL, our one-level setting outperforms the one without

SWL (identical to PSMNet[7]) by 47% in terms of Abs Rel. with the same 64 sampling

planes.

Qualitative illustrations of the effectiveness of SWL is shown in Figure 2.5.

Model-agnostic Evaluations In Table 2.3, we further test the performance of the full

PanoDepth pipeline given different variations of stereo matching networks on Stanford2D3D

dataset [1]. Comparing with the single-stage coarse depth estimation, all two-stage config-

urations show better performances. By adding a light-weight one-level stereo matching

network with 32 depth plane in the second stage, PanoDepth can already reach comparable

performance to BiFuse [3]. The performance can be further improved by introducing SWL,

adding more cascade levels, and using more sophisticated coarse depth estimation.

In addition, by comparing the performance of two-stage approaches with two different

backbones, CoordNet and RectNet, we can also postulate that coarse depth, which has an

impact on the synthetic image quality, is positively correlated with the final depth predic-
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tion.

More ablation studies regarding the number of synthesized views, the number of hy-

pothesis depth planes, and the comparison between one-stage alternatives (e.g., multi-

tasking and adding depth refinement) and our two-stage method can be found in the Ap-

pendix.

2.6 Conclusion and Future Work

In this paper, we demonstrate a technique that leverages view synthesis and stereo con-

straints to advance monocular depth estimation performance that can be applied on 360

images. We propose a novel model agnostic two-stage framework PanoDepth for generat-

ing dense high-quality depth from a monocular 360 input. Extensive experiments show that

PanoDepth outperforms state-of-the-art approaches by a large margin. Our stereo matching

sub-network in the later stage adapts to the 360 geometry and achieves top-ranking perfor-

mance in 360 stereo matching. We believe the good performance of PanoDepth could

draw more interests from both the industry and academia to 360 images for its still under-

explored capability in tasks such as depth estimation. We hope our work can motivate more

research and applications in 360 images. There are several research venues we would like

to further explore in the future, such as alternative view synthesis methods like [73, 74],

and 360 depth estimation in outdoor scenarios for applications like autonomous driving.
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Chapter 3

OmniFusion: 360 Monocular Depth
Estimation via Geometry-Aware Fusion

3.1 Introduction

A 360 image provides a comprehensive view of the scene with its wide field of view (FoV),

which is beneficial in understanding the scene holistically. However, commonly used 360

image representation format such as the equirectangular projection (ERP) image can intro-

duce geometric distortions. The distortion factor varies in the vertical direction and may de-

grade the performance of regular convolutional layers designed for non-distorted perspec-

tive images. Many studies have been proposed to address the distortion issue. [42, 45, 44]

proposed distortion-aware convolutions or spherical customized kernels. However, it re-

mains unclear how effective such spherical convolutions are, especially in deeper layers

[3, 42]. Some spherical CNNs [75, 76] defined convolution in the spectral domain, with

potentially heavier computation overhead. Attempts have also been made to tackle the
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Figure 3.1: Our method, Omnifusion, produces high-quality dense depth (shown as the
image on the right) from a monocular ERP input (shown as an image wrapped on a unit
sphere on the left). Our method uses a set of N perspective patches (i.e. tangent images)
to represent the ERP image (top branch), and fuse the image features with 3D geometric
features (bottom branch) to improve the estimation of the merged depth map. The corre-
sponding camera poses of the tangent images are shown in the middle row.

ERP distortion via other less-distorted formats. BiFuse [3] and UniFuse [15] took comple-

mentary properties from ERP and cubemap. Several works [77, 78] applied regular CNNs

repeatedly to multiple perspective projections of the 360 image. Recently, Eder et al. [13]

proposed to use a set of subdivided icosahedron tangent images, and demonstrated that

using tangent image representation can facilitate the network transfer between perspective

and 360 images.

It is advantageous to use tangent images [13] as it has less distortion, and can make

good use of the large pool of pre-trained CNNs developed for perspective imaging. Addi-

tionally, the tangent image representation even inherit a superior scalability to handle high

resolution inputs compared to those holistically method. However, the vanilla pipeline [13]

has some limitations. First, severe discrepancies occur between perspective views since the

same object may appear differently from multiple views (an example is shown in Figure

3.3). This issue is especially problematic for the depth regression task, since the inconsis-

tent depth scale estimated from individual tangent images creates undesired artifacts during

merging. Second, the advantage of estimating depth from holistic 360 image is unfortu-
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nately lost, because of the decomposition of the global scene into local tangent images.

The predictions from the tangent images are independent of each other and there is no

information exchange between tangent images.

In this paper, we present OmniFusion, a 360 monocular depth estimation framework

with geometry-aware fusion (see Figure 3.1). We proposed the following three key compo-

nents to solve the aforementioned discrepancy issue and merge the depth results of tangent

images seamlessly. First, we use a geometric embedding module to provide additional

features to compensate for the discrepancy between 2D features from patch to patch. For

each patch, we calculate the 3D points located on the spherical surface that correspond

to the patch pixels, encode them and the patch center coordinate through shared Multi-

layer Perceptron (MLP), and add the geometric features to the corresponding 2D features.

Second, to regain the holistic power in understanding the entire scene, we incorporate a

self-attention-based transformer in our pipeline. With the transformer, patch-wise infor-

mation is globally aggregated to enhance the estimation of the global scale of depth, and

to improve the consistency between patch-wise results. Third, we introduce an iterative

refining mechanism, where more accurate 3D information from the predicted depth maps

is fed back to the geometric embedding module to further improve the depth quality in an

iterative manner.

We test OmniFusion on three benchmark datasets: Stanford2D3D [1], Matterport3D

[9], and 360D [2]. Experimental results show that our method outperforms state-of-the-art

methods by a significant margin on all of these datasets.

Our contributions can be summarized as follows:

• We present a 360 monocular depth prediction pipeline that addresses the distortion

issue via geometry-aware fusion and achieves the state-of-the-art performance.
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• We introduce a geometric embedding network to provide 3D geometric features to

mitigate the discrepancy in patch-wise image features.

• We incorporate a self-attention-based transformer to globally aggregate patch-wise

information which enhances the estimation of the physical scale of depth.

• We propose an iterative mechanism to further improve the depth estimation with

structural details.

3.2 Related Works

3.2.1 Monocular depth estimation

Monocular depth estimation, which takes a single RGB image as input to predict pixel-wise

depth value, has been extensively investigated due to its broad applications. Early works

mainly focused on network architecture and supervision [24, 36, 37]. Recently, researchers

has been investigating the use of unsupervised learning on stereo pairs [79, 80, 55] or

monocular video streams [81, 82] to expand training data to unlabelled image sequences

for broader applications. However, such approaches are still sensitive to many factors (e.g.

camera intrinsic changes), and very challenging to be generalizable to new scenes. To

improve the robustness and scalability, some methods utilize additional sensor input such as

LiDAR and RGBD camera [83, 4]. However, the extra computation or power consumption

are not welcomed in many practical scenarios.
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3.2.2 360 depth estimation

Monocular depth estimation from 360 images has been investigated from a variety of per-

spectives. Zioulis et al. [6] explored the spherical stereo geometry and estimated depth

from monocular ERP input via spherical view synthesis. Eder et al.[35] and Zeng et al.[5]

explored joint learning from different modalities (e.g. layout, normal, semantics, etc.).

HoHoNet [14] proposed to utilize latent horizontal feature representation to encode ERP

image features. To handle the irregular distortion of ERP images, several distortion-aware

convolutions [33, 84, 45, 44, 42] have been proposed. For example, Fernandez et al. [84]

introduced EquiConv which applied deformable convolution to accommodate spherical ge-

ometry.

Tateno et al.[58] proposed to apply regular CNN to perspective images during training,

and distortion-aware convolution during testing. Instead of directly tackling the distortion

of ERP, several approaches proposed to use other representations with less distortion, such

as cubemap [85, 86], fusion between ERP and cubemap [3, 15], and multiple perspective

projections of 360 images[77, 78]. A recent work by Eder et al. [13] proposed to use

tangent images, a set of oriented, low-distortion images rendered tangent to faces of the

icosahedron, to represent a 360 image. It is advantageous to use tangent images since

it has less distortion and can effectively leverage pre-trained CNN models developed for

perspective imaging.

However, discrepancies between tangent images are not addressed in [13], which leads

to a downgrade of the final merged result. In this work, we follows the paradigm proposed

in [13] of using tangent images, but simplified and adapted it for depth estimation. In

addition, we successfully address the discrepancy issue by incorporating geometry-aware

fusion and the transformer.
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3.2.3 Transformer

Originally proposed in natural language processing [87], the transformer architecture has

since been widely used in computer vision tasks such as image classification [88], depth

estimation [89], object detection [90], and semantic segmentation [91, 92]. The visual

transformer has a natural fit with monocular depth estimation as long-range context can

be explicitly exploited by the self-attention module. When applying transformer to 360

images, the distortion however, can decrease the power of the transformer in exploiting the

pairwise correlation between patches. In this work, we feed the transformer with distortion-

free, and geometry-aware input, so that the transformer can focus on the global aggregation

of patch-wise information.

3.3 Method

Figure 3.2 shows an overview of the full pipeline of the proposed OmniFusion framework.

First, an ERP input image is transformed into a set of tangent images via gnomonic projec-

tion (Figure 3.3). The projected distortion-free tangent images are then passed through an

encoder-decoder network to produce patch-wise depth estimations, which are later fused

into an ERP depth output. To ease the patch-wise discrepancy, we introduce a novel geo-

metric embedding module that encodes the spherical coordinate associated with each tan-

gent image pixel, providing additional geometric features to facilitate the integration of

patch image features. To further improve the consistency between patch-wise predictions

and to better estimate the global depth scale, the features from the deepest level of the

encoder are globally aggregated through a self-attention-based transformer. Finally, an it-

erative refining mechanism is adopted to further improve the depth quality. We update the
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Figure 3.2: An overview of our proposed OmniFusion. Our method takes a monocular
RGB image in ERP format as input, projects it onto multiple patches at multiple view-
points, and processed each distortion-free patch with an encoder-decoder network to pro-
duce patch-wise depth maps (top-stream). The patch-wise outputs are merged into a final
ERP depth map in the end. Meanwhile, the corresponding points located on the spherical
surface are sampled and passed through a geometric embedding network to produce geo-
metric features (bottom-stream). The geometric features are fused into the image encoder
to compensate for the patch-wise discrepancy and to improve the quality of the merged
result. For each sampled point, we use its spherical coordinates (λ, ϕ, ρ), together with the
tangent plane center coordinates (λc, ϕc) as input attributes to the geometric embedding
network which provides the necessary information to align 2D features. A transformer ar-
chitecture is integrated to conduct global aggregation of the deep patch-wise feature which
further improves the consistency of patch-wise outputs. Moreover, we incorporate an iter-
ative refining mechanism (visualized in dashes), to further improve the depth recovery. In
particular, ρ value is updated according to the depth estimated from the previous iteration.

spherical coordinates iteratively based on the more accurate estimation obtained from the

previous iteration. We train our network in an end-to-end fashion, with the only supervision

being the final merged depth compared to the ground truth.

3.3.1 Depth estimation from tangent images

We use the distortion-free tangent image representation to address the irregular 360 im-

age distortion. Tangent image is the gnomonic projection of a sphere surface onto a flat,

rectangular plane surface. The gnomonic projection [93] (Figure 3.3) is a map projection

obtained by projecting points Ps on the surface of sphere from a sphere’s center O to point
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Figure 3.3: (a) An example of tangent image projection. Two tangent images are projected
from two different viewpoints. The corresponding areas are highlighted with the same
color in both ERP and tangent patches. As illustrated, there usually exist overlapping areas
between two neighboring patches, and the same object may appear differently in different
patches. (b) The illustration of the gnomonic projection. A point Ps(λ, ϕ) located on the
spherical sphere is projected onto a point Pt(xt, yt) on the flat plane which is tangent to a
point Pc(λc, ϕc).

Pt in a plane that is tangent to a point Pc.

For a pixel on the ERP image Pe(xe, ye), we first find its corresponding point Ps(λ, ϕ)

locating on the unit sphere.

λ =
2πxe

W
, ϕ =

πye
H

(3.1)

where H and W are height and width of the ERP image. The projection from Ps(λ, ϕ) to

Pt(xt, yt) is defined as:

xt =
cos(ϕ)sin(λ− λc)

cos(c)

yt =
cos(ϕc)sin(ϕ)− sin(ϕc)cos(ϕ)cos(λ− λc)

cos(c)

cos(c) = sin(ϕc)sin(ϕ) + cos(ϕc)cos(ϕ)cos(λ− λc)

(3.2)

where (λc, ϕc) are the spherical coordinates of the tangent plane center Ps.
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Figure 3.4: Visualization of representations involved in different pipeline components.
First row: (a) An example of an RGB input image in ERP, (b) the final merged predicted
depth map in ERP, (c) the ground truth depth map in ERP used for training. Second row:
(d) RGB tangent image patches generated from the ERP input, (e) the patch-wise estimated
depth maps, (f) the patch-wise estimated confidence maps that facilitates the depth merging
where the final depth map (b) is calculated as the weighted average of all patches (e) given
the confidence maps (f) as weights.

The inverse gnomonic transformations are:

λ = λc + tan−1(
xt sin(c)

γ cos(ϕ1)cos(c)− yt sin(ϕc)sin(c)
)

ϕ = sin−1(cos(c)sin(ϕc) +
1

γ
ytsin(c)cos(ϕc))

(3.3)

where γ =
√

x2
t + y2t and c = tan−1γ.

With Equation 3.2 and 3.3, we can build one-to-one forward and inverse mapping func-

tions between pixels on the ERP image and pixels on the tangent image.

In our experiments, we use a set of N = 18 tangent images for a balance of speed

and performance (A related ablation study can be found in Section 3.4.4). Tangent im-

ages are sampled at four different latitudes: −67.5◦,−22.5◦, 22.5◦, 67.5◦, and we sample

3, 6, 6, 3 patches on each of these latitudes, respectively (Figure 3.4). All tangent images
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share the same resolution and FoV. We chose this non-uniform sampling based on the fact

that tangent images of the same resolution can cover different ranges of longitude when

the centered at different latitudes. To ensure the sampled patches near the poles do not

overlap to an extreme extent, we take fewer samples to cover the near-pole area in the ERP

space. Since the generated tangent images are distortion-free, we can easily apply regu-

lar encoder-decoder CNN architectures to predict a depth map from each tangent image.

For better convergence and accuracy, we leverage high-performance pre-trained networks

(e.g., ResNet [37]) when initializing our encoder. We pass all N tangent images simulta-

neously through the encoder, and obtain N feature maps that will be used as tokens later

in the transformer. For the decoder, we use a stack of upsampling layers followed by 3× 3

convolutions, with skip-connections from the encoder.

Without introducing additional modules, the baseline presented so far can be considered

as a customized version of [13]. Specifically, we introduce a simplified paradigm in gener-

ating tangent images, and adopt a basic encoder-decoder network for the depth estimation

task.

3.3.2 Geometry-aware feature fusion

The simplicity of predicting depth maps from tangent images nonetheless comes with a

cost. As the depth estimation is now conducted independently, a globally consistent depth

scale is no longer guaranteed. Furthermore, as shown in Figure 3.3 (a) and Figure 3.4 (d),

an object (e.g. the painting on the wall in Figure 3.3 (a)) will be projected onto multiple

tangent images from various angles and therefore will be encoded differently in different

tangent images. Discrepancies between patch depth estimations, especially in overlapping

areas, can result in significant artifacts in the final merged ERP depth map (Figure 3.5 (e)).
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Figure 3.5: An illustration of the effectiveness of geometry-aware feature fusion. An ERP
RGB image is shown in (a), the ground truth depth is shown in (b). Visualizations of the
feature map and the final depth map from the baseline are shown in (c) and (e) respectively.
For comparison, (d) and (f) show the feature map and the final depth map out of the pro-
posed OmniFusion, where the image features are fused with geometric features. Observe
that our method yields a more self-consistent feature map and a more structural depth map
compared to the baseline, especially in regions highlighted in rectangles.

To compensate for the differences between patch-wise image features, we introduce a

geometric embedding network (see Figure 3.2) to provide additional geometric informa-

tion. For a pixel Pt(xt, yt) located on a tangent image, we use its corresponding spherical

coordinates located on the unit sphere, Ps(λ, ϕ, ρ), together with the center of the tangent

image Pc(λc, ϕc), as the input attributes of the geometric embedding network. Ps makes

the embedding aware of the global position, e.g., to tell whether two image pixels from two

patches relate to the same spherical coordinates. However, geometric features out of Ps

alone can not align different 2D features. To this end, Pc is taken as additional attributes to
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make the embedding able to differentiate from patch to patch, such that the learned geomet-

ric features can make the patch features tend to be consistent. Through the combination of

the tangent image features and the geometric features as well as an end-to-end learned net-

work, the adjusted features lead to a much cleaner merged depth. As observed in Figure 3.5

(d), the extracted image features with geometric embedding show much better consistency

in the feature map merged in the ERP space, compared to features without geometric em-

bedding as shown in Figure 3.5 (c). Consequently, the final depth map out of OmniFusion

shown in Figure 3.5 (f) appears to be much cleaner compared to the baseline depth map

shown in Figure 3.5 (e).

The geometric embedding network consists of two layers of MLPs, and encodes the

5-channel spherical attributes into 64-channel feature maps. We fuse this geometric em-

bedding with image features at the same pixel location in the encoder via element-wise

summation. In order to maintain more structural details, early fusion is adopted. Geo-

metric features are added to the layer1 of the ResNet encoder where we experimentally

achieved the best performance. It is worth noting that the additional computational cost

associated with the geometric embedding module is minimal compared to the original

encoder-decoder (Table 3.2). The geometric features for the first iteration are even fixed

once learned, since they are independent from image inputs. Only the second iteration

requires to re-compute the geometric features.

3.3.3 Global aggregation with transformer

When decomposing the ERP into a sequence of tangent images, we no longer have the

holistic view of the 3D environment. To make up for this loss, we leverage the transformer

architecture to aggregate information from the patches in a global fashion. The global
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aggregation is expected to improve the consistency of depth estimations from patches, and

to better regress the global scale of depth out of a larger FoV.

Using the feature maps extracted from the encoder, we first apply a 1 × 1 convolution

layer to reduce channel dimensions for better efficiency. Then we flatten the feature maps

into N 1-D feature vectors X0 = [x1, x2, ..., xN ] ∈ RN×d which will be used as tokens in

the transformer. The learnable positional embedding Epos ∈ RN×d are added to the fea-

ture tokens to retain positional information in a similar way as proposed in [88]. Through

the self-attention architecture, the transformer learns to globally aggregate the information

from all the patches to adjust the features from each patch, where the aggregation weights

account for the pairwise correlation both from the visual features and the positional fea-

tures. The architecture of the multi-head attention transformer follows [87].

3.3.4 Depth merging with learnable confidence map

The aforementioned geometric embedding and transformer modules significantly reduce

discrepancies among different patch-wise depth estimations. Yet, the depth merging does

not achieve a pixel-level seamless fusion. To further improve the merging (Figure 3.4 (b)),

we ask the network to simultaneously predict a confidence map for each patch besides

depth regression. The merged depth is then computed as a weighted average of all patch

depth predictions with confidence scores used as weights. In detail, two separate regression

layers are appended to the decoder, one for depth regression, the other for confidence score

regression. Both the depth maps (Figure 3.4 (e)) and confidence maps (Figure 3.4 (f)) are

mapped to ERP domain following the inverse gnomonic transformation before merging.

(More details are included in the Appendix.)
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3.3.5 Iterative depth refinement

The geometric embedding utilizes the spherical coordinates (λ, ϕ, ρ) corresponding to tan-

gent image pixels for geometry-aware fusion. ρ is initially fixed as no depth information

is available. The depth information will be available after one iteration, which can be used

to update ρ and provide more accurate geometry information for the geometric embedding

module. Based on this observation, we propose an iterative depth refinement scheme (see

Figure 3.2).

In the first iteration (Section 3.3.2), the spherical coordinates (λ, ϕ, ρ) of points located

on the unit sphere are used for geometric embedding. For the subsequent iterations, we

update ρ → ρ′, using the new depth value estimated from the previous iteration (the depth

of ERP image is defined as the distance from the real-world point to the camera center).

The updated attributes with more accurate geometry will be passed into the geometric em-

bedding network in the next iteration. An ablation study is presented in section 3.4 to

demonstrate the effectiveness of more accurate geometric embedding.

3.4 Experiments

3.4.1 Datasets

OmniFusion is tested on three well-known benchmark datasets: Stanford2D3D [1], Mat-

terport3D [9], 360D [2].

Stanford2D3D [1] dataset consists of 1,413 real world panorama images from six large-

scale indoor areas. We follow the official train-test split which uses the fifth area for testing,

and others for training. We use resolution 512× 1024.
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Matterport3D [9] contains a total of 10,800 indoor panorama RGBD images. We follow

the official split which takes 61 rooms for training and the rest for testing. We use resolution

512× 1024 in our experiments.

360D [2] is a RGBD panorama benchmark provided by Zioulis et al. [2]. It is composed

of two other synthetic datasets (SunCG and SceneNet), and two real world datasets (Stan-

ford2D3D and Matterport3D). There are 35,977 photo-realistic panorama RGBD images

in the 360D that are rendered from the aforementioned four datasets. We follow the default

train-test splits and use resolution 256× 512.

3.4.2 Implementation details

We adopt the same quantitative evaluation metrics as used in [36, 2], including Abso-

lute Relative Error (Abs Rel), Root Mean Squared Error (RMSE), Root Mean Squared

Error in logarithmic space (RMSE(log)) and accuracy with a threshold δt, where t ∈

1.25, 1.252, 1.253. Arrows next to the metric indicate the direction of better performance in

all tables. We implement our network using PyTorch and train it on two Nvidia RTX GPUs.

We use the default setting of Adam optimizer [94] and a initial learning rate of 0.0001 with

cosine annealing [95] learning rate policy. We train Stanford2D3D [1] for 80 epochs, and

60 epochs for Matterport3D [9] and 360D [2]. The default number of patches we use is 18.

The default patch size we use for Stanford2D3D [1] and matterport [9] is 256 × 256, the

patch FoV is 80◦. For 360D [2], we use 128 × 128 as patch size. We leverage pre-trained

ResNet [37] as image encoder in these experiments. The network is trained end-to-end,

the same model is used for all iterations. For the loss function, following [58, 3], we adopt

BerHu loss [36] for depth supervision. The final loss is the summation of depth losses from

all iterations.
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Figure 3.6: Qualitative results on Stanford2D3D [1], Matterport3D [9] and 360D [2]. From
left to right: ERP image input, ground truth depth, depth output from the baseline, depth
output from our method (1-iter), and our method (2-iter). In comparison to the baseline,
which is directly tailored from [13], our method (1-iter, 2-iter) leads to more structural
depth maps, which appear sharp along those object boundaries and smooth within surfaces.

3.4.3 Overall performance

We present our model performances and compare it to the existing methods in Table 3.1.

We omit the methods that use supervision signals other than depth [35, 5] and the self-

supervised approaches [6] for fair comparison. For all datasets, we show our results with 1-

iteration (1-iter) and 2-iterations (2-iter). We demonstrate in Table 3.1 that even with 1-iter

setting, our method is able to outperform all the existing methods on Matterport3D [9], and

achieve on par performance with current state-of-the-arts on 360D. With 2-iter setting, our

method outperforms BiFuse [3] by 21.4% (Abs Rel) on Stanford2D3D, 56.1% (Abs Rel) on

Matterport3D, 30% (Abs Rel) on 360D. Comparing to UniFuse [15], our method improves

by 6.3% (Abs Rel) on Stanford2D3D, 15.3% (Abs Rel) on Matterport3D, 7.7%(Abs Rel)

on 360D. Note that compared to ODE-CNN [4] which used additional sensor input, our

method reduces Abs Rel by 7.9%. Qualitative results of our method can be visualized

in Figure 3.6. As observed, our method (1-iter and 2-iter) improves the baseline, a direct

customization from [13], significantly in producing less erroneous depth maps with sharper
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boundaries and smoother surfaces recovered.

Moreover, we compare our method with UniFuse [15] and HohoNet [14] qualitatively

in Figure 3.7, 3.8, 3.9. We use the pretrained models downloaded from their official GitHub

repositories, respectively. 1 2

Datasets Methods Abs Rel↓ Sq Rel ↓ RMSE↓ RMSE(log)↓ δ1δ1δ1 ↑ δ2δ2δ2 ↑ δ3δ3δ3 ↑

Stanford2D3D [1]

FCRN [36] 0.1837 - 0.5774 - 0.7230 0.9207 0.9731
RectNet [2] 0.1996 - 0.6152 - 0.6877 0.8891 0.9578
BiFuse with fusion [3] 0.1209 - 0.4142 0.8660 0.9580 0.9860
UniFuse with fusion [15] 0.1114 - 0.3691 - 0.8711 0.9664 0.9882
HoHoNet [14] 0.1014 - 0.3834 - 0.9054 0.9693 0.9886
OmniFusion, Ours (1-iter) 0.0961 0.0543 0.3715 0.1699 0.8940 0.9714 0.9900
OmniFusion, Ours (2-iter) 0.0950 0.0491 0.3474 0.1599 0.8988 0.9769 0.9924

Matterport3D [9]

FCRN [36] 0.2409 - 0.6704 - 0.7703 0.9714 0.9617
RectNet [2] 0.2901 - 0.7643 - 0.6830 0.8794 0.9429
BiFuse with fusion [3] 0.2048 - 0.6259 - 0.8452 0.9319 0.9632
UniFuse with fusion [3] 0.1063 - 0.4941 - 0.8897 0.9623 0.9831
HoHoNet [14] 0.1488 - 0.5138 - 0.8786 0.9519 0.9771
OmniFusion, Ours (1-iter) 0.0980 0.0611 0.4536 0.1587 0.9040 0.9757 0.9919
OmniFusion, Ours (2-iter) 0.0900 0.0552 0.4261 0.1483 0.9189 0.9797 0.9931

360D [2]

FCRN [36] 0.0699 0.2833 0.9532 0.9905 0.9966
RectNet [2] 0.0702 0.0297 0.2911 0.1017 0.9574 0.9933 0.9979
Mapped Convolution [34] 0.0965 0.0371 0.2966 0.1413 0.9068 0.9854 0.9967
BiFuse with fusion [3] 0.0615 - 0.2440 - 0.9699 0.9927 0.9969
UniFuse with fusion [3] 0.0466 - 0.1968 - 0.9835 0.9965 0.9987
ODE-CNN [4] 0.0467 0.0124 0.1728 0.0793 0.9814 0.9967 0.9989
OmniFusion, Ours (1-iter) 0.0469 0.0127 0.1880 0.0792 0.9827 0.9963 0.9988
OmniFusion, Ours (2-iter) 0.0430 0.0114 0.1808 0.0735 0.9859 0.9969 0.9989

Table 3.1: Quantitative Results for depth estimation on Stanford2D3d [1], Matterport3D
[9], 360D [2] datasets. Notably, our method OmniFusion achieves state-of-the-art perfor-
mances in all datasets, outperforming the existing works by a significant margin.

3.4.4 Ablation studies

Individual component study. We investigate the effectiveness of our method by adding

one key component at a time (Table 3.2 and Figure 3.10). We form our baseline experiment

with ResNet34 as encoder without the transformer or the geometric fusion. We experiment

on Stanford2D3D, using the configuration of 18 patches, 256 × 256 patch size, 80◦ FoV.

As observed from Table 3.2, the geometry-aware fusion, which only adds less than 2K

parameters, is able to improve Abs Rel significantly by 9.7%. While being extremely light-
1https://github.com/sunset1995/HoHoNet
2https://github.com/alibaba/UniFuse-Unidirectional-Fusion
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Figure 3.7: The qualitative comparisons with the current state-of-the-art works on the
dataset Stanford2D3D [1]. We show the results of HoHoNet [14] (second column), Uni-
Fuse [15] (third column), and ours (last column). Both the depth maps and the error maps
against the ground-truth are included for comparison. See the zoomed-in areas for detailed
comparisons.

Figure 3.8: The qualitative comparisons with current state-of-the-art works on the dataset
Matterport3D [9]. We show the results of HoHoNet [14] (second column), UniFuse [15]
(third column), and ours (last column). Both the depth maps and the error maps against the
ground-truth are included for comparison. See the zoomed-in areas for detailed compar-
isons.
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Figure 3.9: The qualitative comparisons with current state-of-the-art works on the dataset
360D [2], We show the results of UniFuse [15] (second column), and ours (last column).
Both the depth maps and the error maps against the ground-truth are included for compari-
son. See the zoomed-in areas for detailed comparisons.

Methods #Params FPS↑ Abs Rel↓ Sq Rel↓ RMSE↓
Baseline 23.5M 9.4 0.1136 0.0638 0.3894
Baseline + geometric fusion
(1-iter) 23.5M (+1.3K) 9.3 0.1026 0.5880 0.3812
Baseline + geometric fusion +
transformer (1-iter) 42.3M (+18.8M) 9.2 0.0961 0.0543 0.3715
Baseline + geometric fusion
+ transformer (2-iter) 42.3M (+18.8M) 4.6 0.0950 0.0491 0.3474

Table 3.2: The ablation study for individual components. Starting from a baseline method
with no geometric fusion or transformer, we add each component one at a time. We use
ResNet34 for all the experiments.

weighted, the geometric fusion part proves to be quite beneficial. The incorporation of

the transformer, which increases around 19M parameters, leads to another boost of perfor-

mance by 5.7% (Abs Rel). Together with transformer and geometric fusion, the perfor-

mance is significantly improved by 15.4% (Abs Rel) with 1-iter setting, and 16.4% (Abs

Rel) with 2-iter setting. Qualitative results are shown in Figure 3.10. As observed, as we
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Figure 3.10: Qualitative comparisons regarding individual components. The top row shows
the visual comparisons in depth maps with the ground truth depth maps shown in the left-
most column, and the bottom row shows the visual comparisons of the corresponding error
maps between the predicted depth maps and ground truth with the RGB input images shown
in the leftmost column. The middle two rows show the close-up views of the highlighted
areas in the top and bottom rows, respectively. As can be seen clearly (from left to right),
as we add more modules into the pipeline (Figure 3.2), the depth estimation becomes more
accurate with lower errors, sharper object boundaries and smoother surfaces. The trend of
the change in errors can be directly observed from the error maps.

add more modules into our pipeline, the output depth map appears to show fewer artifacts

and more structural details. In the meantime, the visualized error maps clearly show the

decreasing trend of estimation errors.

Patch size and number of patches. Patch size and the number of patches affect both

the accuracy and the efficiency of the method. In this study, we aim to find an optimal

balance between efficiency and performance. Theoretically, neither a large patch size nor a

large number of patches is desired since they both lead to higher computational complexity.

However, table 3.3 also indicates the patch size can not be too small, since the monocular

depth estimation requires large-enough FoV to hypothesis the depth scale. We also observe

that keep increasing the number of patches (e.g., >= 26) can degrade the performance,
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since a larger number of patches also increases the overlapping area, which in turn may

intensify the discrepancy problem. As a result, we choose to use a relatively small number

of patches N = 18 with a relatively large resolution 256×256 to balance between efficiency

and performance.

#patch Patch size Patch FoV Abs Rel↓ Sq Rel↓ RMSE↓
10 256x256 120 0.1067 0.0571 0.3788
18 128x128 80 0.1178 0.0666 0.4018
18 256x256 80 0.1037 0.0589 0.3686
26 256x256 60 0.1104 0.0679 0.3955
46 128x128 50 0.1181 0.0680 0.4101

Table 3.3: The ablation study for patch size and number of patches.

Image encoder and number of iterations. We compare the performance of leveraging

different image encoders. As listed in Table 3.4, ResNet34 [37] outperforms ResNet18

with more complexity. This indicates the potential of our method, as one can incorporate a

more sophisticated encoder network. We also study the influence of iterations.

We use the 2-iteration framework for the training since we expect the trained network

to handle different types of 3D coordinates. While for testing, we compare 1-4 iterations

respectively on the two backbones. As seen from Table 3.4, there is an evident improvement

from 1-iter to 2-iter, a slighter improvement from 2-iter to 3-iter, and no gain from 3-iter to

4-iter. Considering the trade-off in performance and the speed, we opt to choose 1-iter or

2-iter settings.

3.5 Conclusion

In this work, we propose a novel pipeline, OmniFusion, for 360 monocular depth estima-

tion. To address the spherical distortion presented in 360 images, as well as to improve
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Encoder #iters FPS↑ Abs Rel↓ Sq Rel↓ RMSE↓
ResNet18 1 9.8 0.1037 0.0589 0.3686
ResNet18 2 4.6 0.0979 0.0539 0.3702
ResNet18 3 3.1 0.0981 0.0521 0.3699
ResNet18 4 1.5 0.0983 0.0519 0.3700
ResNet34 1 9.2 0.0961 0.0543 0.3715
ResNet34 2 4.6 0.0950 0.0491 0.3474
ResNet34 3 2.9 0.0894 0.0482 0.3498
ResNet34 4 1.4 0.0899 0.0485 0.3491

Table 3.4: The ablation study for different encoder models and different number of itera-
tions.

the scalability to high-resolution inputs, we use gnomonic projection-based tangent im-

age presentation. To alleviate the discrepancy between patches, we introduce a geometry-

aware fusion mechanism which fuse 3D geometric features with the image features. A

self-attention transformer is integrated into our pipeline to globally aggregate information

from patches, which leads to more consistent patch-wise predictions. We further extend

the geometry-aware fusion with an iterative refining scheme which further improves the

depth estimation with more structural details. We show that using tangent images effec-

tively mitigates the distortion issue, and the incorporation of the geometric features as well

as transformer significantly improves the depth estimation performance. Our experiments

show that our method achieves state-of-the-art performances on several datasets.
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Chapter 4

SPNet: Multi-Shell Kernel Convolution
for Point Cloud Semantic Segmentation

Deep learning has achieved great success in image classification [96, 37, 97], semantic

segmentation [98, 99] and object detection [100, 101, 102]. However, deep learning based

point cloud analysis is still a challenging topic. One major reason is that point clouds are

non-uniformly sampled from a large, continuous 3D space, making them lack of regular

grid structure. To tackle this, one straightforward approach is to voxelize point cloud into

3D regular grids and utilize standard 3D Convolutions [103, 104]. But the voxelization

approach has a major limitation, the discretization step inevitably loses geometric infor-

mation. To address this problem, many researchers have proposed approaches to directly

process point clouds. One of the seminal works is PointNet proposed by Qi et al. [105].

It uses Multi Layer Perceptron (MLP) and global pooling to preserve permutation invari-

ance and gather a combination of local and global feature presentation. This work is fur-

ther improved in their follow-up work PointNet++ [106] which adds the local geometry
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pooling/sampling over local neighborhood. Later works seek other ways to enhance lo-

cal feature aggregation. For example, Pointweb [107] constructs a dense fully-linked web,

ShellNet [108] conducts convolution based on statistics from concentric spherical shells.

Besides point-based methods, several graph-based methods are proposed to capture 3D

shape and structures of point clouds. Methods such as [109, 110] treat point clouds as

nodes in a graph whose edges carry learnable affinitiy/similarity between adjacent points.

Recently, there has been another thread of research [111, 112, 113, 16, 114] that pro-

poses learnable kernel functions which define convolutional kernels on a continuous space.

One of these approaches is KPConv [16] introduced by Thomas et al. KPConv [16] pro-

poses kernel point operator that consists of a set of local point filters which simulate 2D

image convolution processes. Features from unordered point clouds are aggregated on ei-

ther rigid or deformable kernel points. Using structural kernel points makes convolution

feasible on a continuous space.

Following this line of work, we propose a novel multi-shell kernel point convolution

named SPConv. Our SPConv operator partitions local 3D space into shells, each shell con-

tains a set of rigid kernel points which aggregate local supporting point features. We per-

form kernel point convolution on each shell individually, then integrate the output features

by an additional 1D convolution operation. The last convolution learns the contributions

from shells and enhances shell correlation. An illustration of our SPConv is shown in Fig-

ure 4.1. Comparing to deformable KPConv [16], our method has an enhanced structure

learning module, and does not require additional regularization during training. Further-

more, we find that incorporating low-level features such as color, normal, etc. in all layers

for local feature re-weighting can be very effective for improving network performance.

We propose two different approaches to accomplish the task, (1)Gaussian function based
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and (2)learning based. The first approach is hand-crafted and does not necessarily add GPU

computation. The second approach has learnable weights and shows more robustness.

Using SPConv as our building block, we build a deep architecture SPNet. Similar to

standard CNNs which utilize downsampling and upsampling strategy to reduce compu-

tation cost as well as to enlarge receptive field, we use Poisson disk sampling (PDS) for

downsampling, and feature propagation (FP) for upsampling. In section 4, we evaluate

the effectiveness of our methods on the most competitive indoor segmentation datasets.

Notably, experimental results show that we achieve top-ranking performances. Our main

contribution is summarized as follows:

• We propose a multi-shell kernel convolution operator that shows powerful local shape

encoding ability.

• We introduce a simple yet effective attention mechanism for local neighbor feature

re-weighting. This attention module improves performance and speeds up conver-

gence.

• We present a comprehensive architecture design which outperforms stage-of-the-arts

on challenging large-scale indoor datasets.

4.1 Related Work

View-based and Voxel-based Methods. One classic category of point cloud represen-

tations is multi-view representation. MVCNN [115] renders 3D shape into images from

various viewpoints and combines features from CNNs to predict point labels. However,

these methods suffer from surface occlusion and density variation, which make it difficult
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Figure 4.1: Comparison between SPConv and KPConv. For a query point, a range search is
performed to locate supporting points. KPConv defines a set of kernel points to aggregate
local features and performs point convolution. Our SPConv has multiple shells, each shell
contains one set of kernel points. Point convolutions are conducted for shells individually
to encode distinctive geometric information. An additional convolution layer is used to
fuse shell outputs together, as an enhancement of structure correlation.

to capture the internal structure of the shape. Another strategy is to convert point cloud into

a 3D voxel structure which can be processed by standard 3D convolutions. VoxNet [116]

and subsequent work [11, 117] discretize point cloud into 3D volumetric grids. To improve

efficiency on processing high resolution 3D voxels, recent researches [118, 119] process

volumetric data only on non-empty voxels.

Point-wise MLP Methods. Point-based methods receive great attention since PointNet

[105] was proposed. In PointNet [105], points go through shared MLPs to obtain high

dimensional features followed by a global max-pooling layer. In order to capture local

neighborhood context, PointNet++ [106] is developed by hierarchically applying pointnet

in local regions. There are extensive works based on PointNet++. For example, PointWeb

[107] builds a dense fully connected web to explore local context, and uses an Adaptive

Feature Adjustment module for feature refinement. ShellNet [108] proposes a ShellConv
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operator with concentric spherical shells to capture representative features.

Graph-based Methods. Graph-based approaches treat point cloud as a graph. Point or

point sets formulate the vertex of the graph. The correlation between points or point sets

is defined as edges of the graph. [120] applies kd-tree which is a special graph structure to

represent the 3D scene and designs a Kd-network with learnable parameters to mimic CNN.

[121, 109] are based on the typical graph structure G = {V,E}. [121] proposes spectral

graph convolution. It follows the pointnet++ framework, while adopting a recursive cluster

pooling strategy. [109] is able to handle the whole point cloud by partitioning point cloud

into superpoints. Then the superpoints are fed to the graph convolution network proposed

in [122]. It is able to model long-range interaction between vertices.

Point Convolution Methods. Some recent works define explicit kernels for point con-

volution. KCNet [123] develops a kernel correlation layer to compute affinities between

each point’s K nearest neighbors and a predefined set of kernel points. Local features are

acquired by graph pooling layers. SpiderCNN [111] designs a family of Taylor polyno-

mial kernels to aggregate neighbor features. PointCNN [124] introduces X-transformation

to exploit the canonical order of points. PCNN [112] builds a network using paramet-

ric continuous convolutional layers. SPH3D [114] uses spherical harmonic kernels during

convolution on quantized space to identify distinctive geometric features. Our work is most

related to KPConv [16], which defines rigid and deformable kernel points for feature aggre-

gation. This convolution operator resolves point cloud ambiguity, alleviates varying den-

sity, and shows superior performances. Compared to KPConv [16], our SPConv enhances

local structure correlation by incorporating shell-structured kernel points and learning on a

larger neighborhood context.
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4.2 Method

4.2.1 Review on Kernel Point Convolution

KPConv [16] effectively resolves the point cloud ambiguity by placing manually designed

kernel points in a local neighborhood. This convolution simulates image-based convolu-

tions. A typical image based 2D convolution with a (2m+1)× (2m+1) kernel at location

i, j ∈ Z is defined as:

F ∗W =
m∑

x=−m

m∑
y=−m

F (i− x, j − y)W (i, j) (4.1)

where x, y ∈ {−m, ...,m}, W is the learnable weight, F (i, j) is the feature for pixel (i, j).

Image based convolution describes a one-to-one relationship between single kernel and

single image pixel. Similarly, for a 3D point p ∈ R3 with a local neighborhood of radius

R, point convolution can be defined as:

F ∗W =
K∑
k

F (pk, p)W (k) (4.2)

where F (pk, p) is the aggregated features on kernel point pk. pk carries learnable matrix

Wk ∈ RCin×Cout . Cin and Cout are input and output feature channels respectively. With

proper aggregation approach, the structure of supporting points can be well captured and

learned by weight W . There are two key components of this convolution, placements of

kernel points and aggregation function.

For a 3D point x ∈ R3 surrounded by neighboring points xj ∈ R3 within a ball radius

R, kernel points are distributed on the surface of a sphere with radius r, plus one point
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Figure 4.2: A KPConv [16] operator is defined in (a) with kernel point radius r, neighbor-
hood size R, kernel influence radius v. Kernel points have overlapping influence regions.
When enlarging neighborhood size R to capture a larger context as shown in (b), kernel
points become sparse and this may cause a loss of information for complex scenes with
objects of different scales. Our SPConv (c) has multiple shells and keeps overlapping in-
fluence regions. r1 and r2 are kernel point radius for the second and third shell.

placed at center. Aggregated features F (pk, p) for kernel point pk are computed as the sum

of the features carried by neighboring points that fall into the influenced radius v. These

neighboring features are weighted based upon the Euclidean distance between pk and pj .

An illustration of KPConv is shown in Figure 4.1.

F (pk, p) =
∑

pj ,∥pj−p∥<R,∥pk−pj∥<v

Fpjd(pk, pj) (4.3)

where d(pk, pj) denotes the correlation of kernel point pk and a neighbor point pj . This

correlation can be calculated by a linear function:

d(pk, pj) = max(0, 1− ∥pk − pj∥
v

) (4.4)
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4.2.2 SPConv

We extend the work of KPConv and propose a new point convolution operator, SPConv.

SPConv divides the local 3D space into a total of N shells. Each shell has one set of kernel

points. Specifically, the innermost shell contains one central kernel point p0, for outter

nth(n > 1) shell, a set of kernel points p1,m,m ∈ Mn scatter on the surface of a sphere

with radius rn. Central kernel point impacts on a spherical region, and the nth shell forms

a ring-shaped influence area. As a result, all kernel points cover a spherical space of radius

(rN + v). We perform kernel point convolution on N shells respectively, then stack shell

features together along a new dimension. Finally, we use an additional convolution layer

to further correlate shell structure. This convolution operator can be defined as follows:

(F (x) ∗W1) ∗W2 = σ(
N∑
n

σ(F (x) ∗W1)W2,n) (4.5)

where σ refers to non-linear activation function. W1 ∈ RK×Cin×Cout/2 is the learnable

weight matrix for kernel point convolution, W2 ∈ RN×Cout/2×Cout is the weight matrix for

shell correlation. To balance off efficiency and accuracy, we choose to use a total of 3

shells and 14 kernel points for the second and third shell respectively. An illustration of our

SPConv is shown in Figure 4.1.

A detailed illustration of the influence area of SPConv kernel points is shown in Fig-

ure 4.2. The central kernel point encodes features from points that are spatially close to

the query point. Kernel points located far from the center tend to encode more contextual

information. Therefore, we learn the features by shells based on the distance from kernel

point to center such that the encoded features can be representative for each shell. Further-

more, the 1D convolution layer applies weight matrix on the fused shell features, which
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enhances structure learning across shells. Our method aims to improve descriptive power

of kernel points, so does KPConv [16] deformable version. Although deformable kernels

provide more flexibility, regularization imposed on offsets is mandatory to account for mis-

shifts. By contrast, our kernels are rigid and do no require regularization. In section 4.4,

we compare our evaluation results with deformable KPConv [16]. Our method outperforms

deformable KPConv with even less parameters.

4.2.3 Feature Attention

To further improve local feature encoding, we propose a feature attention module using low

level features such as RGB or surface normal.

We propose two approaches for local feature attention. First approach is to apply a

pre-defined Gaussian function:

ωk = exp(−∥f(p)− f(sk)∥
2σ2

) (4.6)

where σ is a parameter that needs to be manually set. The second approach is to use

sequential MLPs:

ωk = g(f(p)− f(sk)), (4.7)

where g is a sequence of MLPs activated by ReLU , except the last one which uses sigmoid.

The final updated feature f
′ for point sk can be calculated as follows with a residual con-

nection:

f
′
(sk) = ωkf(sk) + f(sk) (4.8)

Both of the approaches improve performances and accelerate convergence speed. One
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issue for the first approach is that it is manually designed and not flexible. The second

approach takes advantages of learnable weights and non-linear activations but adds more

computation costs.

4.2.4 Network Architecture

We build a deep encoder-decoding network with point downsampling and upsampling to

accomplish semantic segmentation task. A detailed SPNet architecture is shown in Figure

4.3(a).

Downsampling Strategy Similar to works [16, 106], we adopt downsampling to reduce

computation load as well as to increase receptive field. In our work, we favors Poisson

disk sampling (PDS) strategy to deal with the varying density. PDS controls spatial uni-

formity by Poisson disk radius rp, thus maintaining a minimal distance between points.

Unlike grid sampling as used in [16] in which downsampled location are interpolated as

the barycenter of a cell, PDS keeps the original locations of sub-sets and preserves shape

patterns. Comparing to farthest point sampling (FPS) [106], PDS is faster when sampling

large-scale points. A downsampling process by PDS is shown in Figure 4.3(b).

Upsampling Strategy With PDS, sampled points at each level are always a sub-set from

input point sets. Therefore, we can accurately recover the point sampling patterns and

gradually propagate features in decoder. We adopt feature propagation module proposed in

[106]. For a point pj at level j, its propagated features f are calculated as:

f =
K∑
k

wk ∗ fk, wk =
d2k∑K
k d2k

(4.9)

where dk is the inverse Euclidean Distance between pj and its kth nearest neighbor at level
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j − 1.

Figure 4.3: (a) Illustration of the network architecture. (b) Downsampling process by PDS
at each level.

4.3 Experiments

In this section, we evaluate the performance of our network on large-scale semantic seg-

mentation datasets. We provide extensive ablation studies to justify the effectiveness of our

proposed methods. A comparison of scene segmentation results between existing methods

and our is shown in Table 4.1.

4.3.1 Datasets

Stanford Large-Scale 3D Indoor Spaces (S3DIS) The S3DIS dataset [1] is a benchmark

for large-scale indoor scene semantic segmentation. It consists of point clouds of six floors

from three different buildings. Following the convention [105, 124], We perform experi-

ments on both 6-fold and Area 5 to evaluate our framework. For evaluation metrics, we use
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Overall point-wise accuracy (OA), and mean intersection over union (mIoU). The detailed

results for individual class are listed in Table 4.2 and Table 4.3. We can see that our method

has the highest scores for several challenging classes, such as door, wall and board.

Scannet The Scannet [10] dataset contains more than 1500 scanned scenes annotated with

20 valid semantic classes. It provides a 1,201/312 data split for training and testing. The

Scannet dataset is reconstructed from RGB-D scanner. We report the per-voxel accuracy

(OA) as evaluation metrics. As shown in Table 4.1, our framework achieves state-of-the-art

performance.

4.3.2 Overall Performance

4.3.3 Implementation Details

Parameter Setting SPNet uses residual block similar to [37]. Each block consists of one

MLP for feature dimension reduction, one SPConv, and another MLP to increase feature

dimension. SPNet consists of 5 encoding levels and 4 decoding levels, as shown in Figure

4.3. The kernel influence v0 for the first encoding level is set to 0.04m for both S3DIS [1]

and ScanNet [10]. For subsequent level l, kernel influence is increased to vl = 2lv0. The

rest of the parameters are adjusted according to vl. For SPConv operator, we use a total of

K = 3 shells. Kernel points of the second and the third shell are initialized on the surfaces

of spheres with radius r2 = 1.5vl, r3 = 3vl respectively. Query neighborhood radius Rl is

set to 4vl, PDS radius is set to 0.75v. For attention module, both color and normal are used

to compute the attentional scores. For the Gaussian function, we set σ = vl at each level.

Network Training Our network is implemented using PyTorch [125] on a single Nvidia

Titan RTX for all experiments. We use a batch size of 8, initial learning rate of 0.001.
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Figure 4.4: Qualitative results of semantic segmentation on S3DIS. Points above 2.5m are
removed for better visualization purpose.

Optimization is done with Adam optimizer (β1 = 0.9, β2 = 0.999) [126]. Learning rate

decays by a factor of 0.3 every 50 epoch for S3DIS [1], and every 30 epoch for ScanNet

[10].

4.3.4 Ablation Studies

To prove the effectiveness of our proposed method, we conduct a series of experiments on

S3DIS [1], evaluate on Area 5. Our baseline employs kernel point convolution with 15

kernel points. As shown in Table 4.4, each time we add or replace a module while keep-
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Table 4.1: Comparative 3D scene segmentation scores on S3DIS [1], ScanNet [10] datasets.
S3DIS [1] scores are reported in metric of mean Intersection over Union(mIoU) including
Area5 and 6-fold cross validation. ScanNet [10] scores are reported as Overall Accu-
racy(OA) and mIoU. The symbol ′−′ means the results are not available.

Methods S3DIS(mIoU) S3DIS(mIoU) ScanNet
Area5 6-fold (OA)

PointNet [105] 41.1 47.6 -
PointNet++ [106] - 54.5 84.5
DGCNN [122] - 56.1 -
SPGraph [109] 58.0 62.1 -
ShellNet [108] - 66.8 85.2
PointWeb [107] 60.3 66.7 85.9
GACNet [127] 62.9 - -
RandLA-Net [128] - 68.5 -
SPH3D-GCN [114] 59.5 68.9 -
Point2Node [129] 63.0 70.0 86.3
KPConv(R) [16] 65.4 69.6 -
KPConv(D) [16] 67.1 70.6 -
Minkowski [119] 65.4 - -
Ours 69.9 73.7 89.5

Table 4.2: Semantic segmentation mIoU and OA scores on S3DIS [1] Area 5.
Method mIoU OA ceil. floor wall beam col. wind. door chair table book. sofa board clut.
PointNet [105] 41.1 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
PointWeb [107] 60.3 87.0 91.9 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
Point2Node [129] 62.9 88.8 93.8 98.3 83.3 0.0 35.6 55.3 58.8 79.5 84.7 44.1 71.1 58.7 55.2
KPConv(R) [16] 65.4 - 92.6 97.3 81.4 0.0 16.5 54.5 69.5 90.1 80.2 74.6 66.4 63.7 58.1
KPConv(D) [16] 67.1 - 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9
Ours 69.9 90.3 94.5 98.3 84.0 0.0 24.0 59.7 79.8 89.6 81.0 75.2 82.4 80.4 60.4

Table 4.3: Semantic segmentation mIoU and OA scores on S3DIS [1] 6-fold.
Method mIoU OA ceil. floor wall beam col. wind. door chair table book. sofa board clut.
PointNet [105] 47.8 78.5 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
SPGraph [109] 62.1 85.5 89.9 95.1 76.4 62.8 47.1 55.3 68.4 69.2 73.5 45.9 63.2 8.7 52.9
PointCNN [124] 65.4 88.1 94.8 97.3 75.8 63.3 51.7 58.4 57.2 69.1 71.6 61.2 39.1 52.2 58.6
PointWeb [107] 66.7 87.3 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
KPConv(R) [16] 69.6 - 93.7 92.0 82.5 62.5 49.5 65.7 77.3 57.8 64.0 68.8 71.7 60.1 59.6
Point2Node [129] 70.0 89.0 94.1 97.3 83.4 62.7 52.3 72.3 64.3 75.8 70.8 65.7 49.8 60.3 60.9
KPConv(D) [16] 70.6 - 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
Ours 73.7 90.9 94.6 97.3 85.0 45.2 56.9 82.1 63.4 73.1 83.4 71.5 68.8 68.6 67.8
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Table 4.4: Ablation studies evaluated on Area 5 of S3DIS [1].
mIoU Gain∆

Baseline + grid sampling 65.4 -
Baseline + grid sampling + FP 65.4 -
Baseline + PDS 66.0 +0.6
Baseline + PDS + FP 67.7 +2.3
SPConv + PDS + FP 68.8 +3.4
Baseline + Attention + PDS + FP 68.3 +2.9
SPConv + Attention + PDS + FP 69.9 +4.5

ing the rest unchanged. First, combining feature propagation(FP) with PDS produces a

+2.3% boost. An explanation is that PDS preserves shape patterns in every downsampling

level, FP correctly retrieves the shape patterns by interpolating features from neighborhood

at upsampling level. Grid sampling loses geometric information, and this incorrectness

accumulates through multiple downsampling layers. Moreover, adding local feature atten-

tion module produces +2.9% gain. Finally, SPConv improves the performance by +3.4%,

showing its great capability of local feature encoding. Our full pipeline exceeds baseline

with grid sample by +4.5%, which has the state-of-the-art performance on S3DIS dataset

[1].

To illustrate the effectiveness of our proposed attention module, see Table 4.5. Learn-

able MLP-based method achieves better performance however it burdens the computation.

4.4 Conclusions

In this work, we propose an architecture named SPNet for 3D point cloud semantic seg-

mentation. We introduce a SPConv operator to effectively learn point cloud geometry. We

demonstrate that with Poisson disk sampling as well as feature propagation, our network
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Table 4.5: Ablation studies with the proposed feature attention.

Approach Input features mIoU
Inference
speed (iter/s)

Gaussian function color 68.0 4.3
Gaussian function normal 67.1 4.3
Gaussian function color+normal 68.3 4.3
2layer MLP color 68.7 4.1
2layer MLP normal 68.2 4.1
2layer MLP color+normal 68.7 3.0
3layer MLP color+normal 69.9 3.0

can go deep without losing much inherent shape patterns. Our framework outperforms

many competing approaches proved by experimental results on public large-scale datasets.

We will experiment our method on outdoor Lidar datasets and investigate more effective

attention methods.
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Chapter 5

Fast Point Voxel Convolution Neural
Network with Selective Feature Fusion
for Point Cloud Semantic Segmentation

5.1 Introduction

Deep learning in 3D point cloud analysis has received increasing attention with the rising

trend of Virtual Reality and 3D scene understanding applications, etc. Existing approaches

have made great progresses in tasks such as point cloud classification [11] and point cloud

semantic segmentation [12, 1]. One fundamental issue to be tackled with in point cloud

analysis is the representation of unstructured point clouds. Some early methods discretize

point clouds into regular volumetric grids which can be directly fed into standard 3D CNNs.

However, two main problems coupled with this volumetric representation are information

loss and huge memory consumption. A high resolution voxel grid leads to expensive com-

putation cost, while a low resolution inevitably suffers from information loss during vox-
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Figure 5.1: Illustration of our proposed network. For an input 3D data, we pass it through
a sequence of point-voxel convolution layers(PVC). G denotes grid resolution. Outputs
from each PVC layer are concatenated together to form a global feature. MLP is used for
feature dimension reduction. This global feature is concatenated with output from each
PVC layer and passed through a channel attention module, which re-weights the features
of all channels and increases feature disciminability. The final prediction is the average of
all auxiliary predictions.

elization procedure.

To address the problems mentioned above, another big stream is to directly consume

sparse point clouds. The pioneer work is PointNet proposed by Qi et al. [105]. PointNet

is able to process unordered point cloud inputs with permutation invariance using a se-

quence of multi-layer perceptron(MLP). The subsequent work PointNet++[106] achieves

better performance by proposing a hierarchical network that encodes local neighborhood

information. Based on PointNet++[106], a great number of networks[107, 108, 127] with

more advanced local feature aggregation techniques are introduced. Apart from MLP-

based methods, some recent works propose kernel-based approaches to mimic standard
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convolution[16, 112, 111, 130]. In general, point-based approaches suffer from point sam-

pling scalability, neighbor point searching efficiency, point density inconsistency issues.

Most recently, Liu et al. [131] attempt to design a point-voxel CNN that represents 3D data

as points to reduce memory footprint, and leverages voxel-based convolution to capture

neighborhood features. This network is able to achieve reasonable performance with low

memory usage and fast training/inference speed.

In this paper, we propose a novel CNN architecture that is well-balanced between effi-

ciency and accuracy. Inspired by point-voxel CNN[131], we construct our network using

point-voxel layer that takes advantages of both sparse point representation and volumet-

ric convolution. Our point-voxel layer consists of two parallel branches, a voxel-based

branch which aggregates local neighboring features, and a point-based branch which main-

tains fine-grained point-wise features. During discretization in voxel branch, we aggregate

neighboring features on non-empty voxel centers and use standard 3D convolutions to en-

hance local feature encoding. Voxel features are propagated back to point domain through

devoxelization. Outputs from point and voxel branches are fused self-adaptively via a fea-

ture selection module(FSM), which learns channel-wise attention for both branches.

Most of the existing studies rely heavily on point sampling strategy to avoid expensive

computation cost as network goes deeper. However, point sampling cannot always retain

the fine-detailed features for every point. Details of points are discarded as a trade-off for

larger receptive field and processing speed. In our network, we only use a small number

of point-voxel layers (default is 4 layers) that are carefully designed with effective feature

encoding modules to facilitate processing efficiency. Supervision is applied on outputs

from all layers to enforce semantic information learning. Though no point sampling is

conducted, our network is able to remain lightweight, and effective to process large-scale
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point clouds. A visualization of our proposed network is shown in Figure 5.1. We evaluate

the performance and efficiency of our proposed model for object classification, object part

segmentation and indoor scene semantic segmentation tasks (see Section 4).

5.2 Related Work

5.2.1 Volumentric Representation

Some early deep learning approaches transformed point clouds into 3D voxel structure and

convolve it with standard 3D kernels. VoxNet [116] and subsequent works [11, 132, 103]

discretized point cloud into a 3D binary occupancy grid. The occupancy grid is fed to a

CNN for object proposal and classification. These voxel-based methods suffered from high

memory consumption due to the waste of computation on empty spaces. OctNet[133, 134]

proposed adaptive representation using octree structure to reduce memory consumption.

Recent researches [118, 119] introduced approaches to process high dimensional data and

apply sparse convolution only on non-empty voxels. In general, volumetric methods pre-

serve neighborhood information of point clouds, enable regular 3D CNN applications, but

suffer from significant discretization artifacts.

5.2.2 Point-based Representation

Point-wise models such as PointNet [105] and PointNet++ [106] directly operates on point

clouds. The former used MLPs to extract point-wise features and permutation- invariant

max pooling operation to obtain a global feature. The latter built a hierarchical architecture

that incorporates point downsampling and local structure aggregation strategies. Inspired
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by PointNet [105] and PointNet++ [106], many recent works propose advanced local fea-

ture learning modules. For example, PointWeb [107] built a dense fully connected web

to explore local context, and used an Adaptive Feature Adjustment module for feature re-

finement. GACNet [127] proposed to selectively learn distinctive features by dynamically

assigning attention weights to neighbouring points based on spatial positions and feature

differences. ShellNet [108] built a model with several layers of ShellConv, and solved

point ambiguity by constructing concentric shells and applying 1D convolution on ordered

shells. Derived from point-based methods, some recent works define explicit kernels for

point convolution. KCNet [123] developed a kernel correlation layer to compute affini-

ties between each point’s K nearest neighbors and a predefined set of kernel points. Local

features are acquired by graph pooling layers. SpiderCNN [111] designed a family of

Taylor polynomial kernels to aggregate neighbor features. PointCNN [124] introduced χ-

transformation to exploit the canonical order of points. PCNN [112] built a network using

parametric continuous convolutional layers. SPH3D [114] used spherical harmonic kernels

during convolution on quantized space to identify distinctive geometric features. KPConv

[16] defined rigid and deformable kernel points for local geometry encoding based on the

Euclidean space relations between kernel point and neighborhood supporting points.

5.2.3 Efficiency of Current Models

When processing large-scale point clouds, efficiency is one of the fundamental measure-

ments to evaluate models. Most of the point-based methods utilized point sampling to im-

prove efficiency. However, it is non-trivial to choose an effective point sampling method.

For example, Farthest Point Sampling(FPS) which is widely adopted in [106, 107, 108],

has O(NlogN) computation complexity, meaning it does not have good scalability. Ran-
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dom point sampling as used in RandLA-Net[128], has O(1) time complexity, but random

point sampling cannot be invariant to point densities and key information might be dis-

carded. Other approaches manage to incorporate hybrid representations to avoid the redun-

dant computing and storing of more useful spatial information. A recent work Grid-GCN

[135] proposed a novel method which facilitates grid space structuring and provides more

complete coverage of the point cloud. This method is able to handle massive points with

fast speed and good scalability. Point-Voxel CNN [131] is most related to our method.

This work combines fine-grained point features with coarse-grained voxel features with

speedup and low memory consumption. Compared to their work, our method builds PVC

layers with multi-resolution voxels, and incorporates more accurate local feature aggrega-

tion which reduce information loss artifacts.

5.3 Method

We build a deep architecture with a sequence of point-voxel convolution(PVC) layers. In

this section, we introduce the details of our PVC layer, including voxelization, local feature

aggregation, devoxelization, selective feature fusion, and deep supervision.

5.3.1 Point Voxel Convolution

Voxelization and Local Aggregation The purpose of voxel branch is to encode contextual

information through volumetric convolution. As aforementioned, information loss from

the process of discretization is inevitable. Introducing large voxel grids reduces the loss,

but burdens the network with huge computation overhead. In our design, we opt to use

low-resolution volumetric grid, and mitigate information loss by effective local feature
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aggregation.

As the scale of point clouds varies, we first normalize the input data into a bounding

box. For voxelization, we quantize point cloud by calculating voxel coordinates (u, v, w) ∈

N from point coordinates(x, y, z) ∈ R.

u = floor((x−xmin)/gx), v = floor((y− ymin)/gy), w = floor((z− zmin)/gz) (5.1)

where gx, gy, gz is the grid length of x, y, z axis respectively:

gx = (xmax − xmin)/G, gy = (ymax − ymin)/G, gz = (zmax − zmin)/G (5.2)

where G ∈ N is the grid resolution of this PVC layer.

Given the voxelized point cloud, we calculate the center location Pc of every voxel.

To accelerate processing speed, we locate non-empty voxels and aggregates local features

only on these voxels. For a non-empty voxel (u, v, w), we use the cell center as query

position and gather K neighbors through K-nearest-neighbor(KNN). We adopt the dilated

point convolution strategy as proposed in [136], in which K ·n nearest neighbors and every

n − th neighbor is selected. The feature f for voxel (u, v, w) is the weighted summation

of all K neighbors.

fu,v,w =
K∑
k

lk ∗ fk (5.3)

where lk ∈ R1×C is the weight, fk ∈ R1×C is the feature of k-th neighbor. Inspired

by [127, 112], we use self-attention mechanism to learn weight of different neighboring

points:

lk = σ(G(∆Pk
, fk)) (5.4)
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where ∆Pk
is the normalized neighbor point coordinates, ∆Pk

= Pk − Pc. G(∗) takes

the concatenation of ∆Pk
and fk as input and models the attention weight. σ represents

ReLU activation function. Through neighbor feature aggregation, we collect useful infor-

mation and store it in the voxels. Next, we apply 3D convolutions on the voxel grid, as an

enhancement of local neighborhood learning.

Devoxelization To allow feature fusion from two branches, we propagate voxel features

back to point domain based on their voxel coordinates. Taking efficiency into account, we

assign voxel feature f(u, v, w) to all points that fall into this voxel. We observe that in our

experiment since point-wise features are carried all along by point branch, fusing voxel

feature with point feature would be effective to discriminate individual point.

Point and Voxel Feature Fusion As illustrated in Figure 5.2, for point branch, we use

MLPs to extract point-wise features. While voxel features encode local neighborhood,

point branch is able to carry fine-detailed per-point features. Next, we incorporate a fea-

ture selection module to correlate features. First, we use element-wise summation to fuse

features from point and voxel branches:

f ′ = fp + fv (5.5)

where fp ∈ RN×C and fv ∈ RN×C are features from point and voxel branch respectively.

Then a global average pooling is applied to squeeze N point to one compact point feature.

Fully connected layer with non-linearity is used to provide guidance for feature selection:

S = σ(Fgp(f
′) ·Wfc) (5.6)

where σ is the ReLU activation function, Fgp is the global average pooling, Wfc ∈ RC×d(d =
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C/4) is the learnable weight for fully connected layer. Two separate fully connected lay-

ers are applied to increase channel dimensions for S and produce soft attention vector

Sp ∈ R1×C and Sv ∈ R1×C .

Sp = S ·W1, Sv = S ·W2 (5.7)

where W1 ∈ Rd×C and W2 ∈ Rd×C are learnable weights. We adopt the softmax mecha-

nism on Sp and Sv to adaptively select features.

Sp,c =
eSp,c

eSp,c + eSv ,c
, Sv,c =

eSv ,c

eSp,c + eSv ,c
(5.8)

where Sp,c and Sv,c are soft attention vector for point and voxel feature at cth channel. The

fused feature at cth channel can be calculated as follows:

Ffused,c = Sp,c ⊙ Fp,c + Sv,c ⊙ Fv,c (5.9)

Therefore, FSM adjusts channel-wise weight for different branches, and outputs the fused

feature adaptively.

5.3.2 Deep Supervision

As shown in Figure 5.1, we build our network with several PVC layers sequentially. Grid

resolution decreases while output feature channel increases from shallow to deep. Different

PVC layers extract different levels of semantic information. We add supervision on each

PVC layer output to enforce different levels of semantic feature learning. Similar strategy

is adopted by [137] for multi-scale medical image segmentation. In detail, we concatenate
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Figure 5.2: Illustration of our PVC layer (top) and Feature Selection Module (bottom).

outputs from all PVC layers and use MLPs to produce a compact feature. Serving as

a global guidance, this feature map is concatenated with the output of each PVC layer,

then pass through a channel attention module to enhance feature representation of specific

semantics. This attention module, inspired by [138], aggregates weighted features of all

the channels into the original features, and models discriminability between channels. The

output from channel attention module produce an auxiliary loss. We add up all the losses

and average the prediction probabilities for the final prediction. We show that incorporating

channel attention module in our network boosts performances and not necessarily slow

down inference speed(see Section 4.4).

74



Figure 5.3: Channel attention module

5.4 Experiment

In this section, we evaluate the performance of our method in point cloud learning tasks

including object classification, object part segmentation, and indoor scene segmentation.

For parameter settings, our network has a total of four PVC layers. From the first to the

last layer, grid size is set to G0 = 32, G1 = 16, G2 = 8, G3 = 4 respectively. Number of

neighbors for KNN search is 32. Dilation step is n0 = 1, n1 = 2, n2 = 4, n3 = 8. Our

method is implemented with PyTorch [125] and run on a Nvidia TitanXP GPU. Batch size

for training is set to be 16. We use the Adam optimizer [126] with default settings. The

learning rate is initialized as 0.001 and decays by a rate of 0.5 every 20 epochs. Object

classification converges around 100 epochs, part segmentation converges at 80 epochs, and

indoor scene segmentation converges at 120 epochs. The full version of our network has

C = 64 feature channels for the first PVC layer. Feature channel for l-th layer is C × 2l−1.
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5.4.1 Object Classification

Datasets and Implementation Details We evaluate our network on ModelNet40 [11] for

3D object classification task. ModelNet40 contains 12311 meshed CAD models from 40

categories. The dataset has 9843 objects for training and 2468 objects for testing. We

prepare the dataset following PointNet [105] conventions. We random sample N points

and only use normal as input feature. As illustrated in Figure 5.1, the output from all

PVC layers are concatenated to form a global feature. Max pooling followed by a fully

connected layer are then used to produce a classification score.

Evaluation We train three versions of classification network with variance on number of

points and number of feature channels. Shown in Table 5.1, our method has a good balance

between performance and efficiency.

Table 5.1: Results of ModelNet40 [11] classification. 1×C represents our full size model.
Method Input Data OA Latency(ms)
PointNet [105] 8× 1024 89.2 15
Ours(0.5× C) 8× 1024 91.7 20
PointNet++ [106] 8× 1024 91.9 27
DGCNN [139] 8× 1024 91.9 27
Ours(0.75× C) 8× 1024 92.3 26
Grid-GCN(full) [135] 16× 1024 93.1 42
Ours(1× C) 8× 2048 92.5 35

5.4.2 Shape Segmentation

Data and Implementation Details We conduct experiment on ShapeNetPart[12] for shape

segmentation. ShapeNetPart is a collection of 16681 point clouds (14006 for training, 2874

for testing) from 16 categories, each annotated with 2-6 labels. Input features are normals

only, while point coordinates (x, y, z) are incorporated in the network for voxelization and

local aggregation. We random sample 2048 points for training and use the original points
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for testing.

Evaluation A comparison of our method and previous approaches is listed in Table 5.2.

We report our result with mean instance IoU. We train three versions of our method, a

compact network with 0.5 × C feature channels, a medium size network with 0.75 × C

feature channels, and a full size network. Our compact network is able to achieve the

same results as PointNet++[106], with 2× speedup, and 0.7G less memory consumption.

Comparing with DGCNN our compact method is 2× faster and only half of its memory

usage. Comparing with PV CNN[131], our method achieves comparable results.

Table 5.2: Results of object part segmentation on ShapeNetPart [12]. Our method achieves
comparable performance with fast inference speed, and low GPU consumption.

Method Input Data InstanceIoU Latency (ms) GPU usage (G)
PointNet [105] 8× 2048 83.7 22 1.5
3D-Unet [140] Volume(8× 963) 84.6 682 8.8
PointNet++ [106] 8× 2048 85.1 78 2.0
DGCNN [139] 8× 2048 85.1 88 2.4
PV CNN(0.5× C) [131] 8× 2048 85.5 22 1.0
Ours(0.5× C) 8× 2048 85.5 32 1.3
PointCNN [124] 8× 2048 86.1 136 2.5
PV CNN(1× C) [131] 8× 2048 86.2 51 1.6
Ours(1× C) 8× 2048 86.3 68 2.3

5.4.3 Indoor Scene Segmentation

Data and Implementation Details We conduct experiments on S3DIS [1] for large-scale

indoor scene segmentation. S3DIS [1] is a challenging dataset which consists of point

clouds collected from six areas. Following the convention [105, 124], we leave out area

5 for testing purpose. For data preparation, we split rooms into 2m × 2m blocks, with

0.5m padding along each side (x, y). These context points do not involve in neither loss

computation nor prediction during testing. We use color as input feature, point coordinates
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Table 5.3: Results of indoor scene segmentation on S3DIS[1], evaluated on Area 5. We
report the result using mean Intersection-Over-Union(mIoU) metric. Compared with pre-
vious methods, our method is able to achieve top-ranking results while being lightweight
and fast.

Method Input Data mIoU Latency (ms) GPU usage (G)
PointNet [105] 8× 4096 43.0 21 1.0
PointNet++ [106] 8× 4096 52.3 - -
3D-Unet [140] Volume(8× 963) 55.0 575 6.8
DGCNN [139] 8× 4096 48.0 178 2.4
PointCNN [124] 16× 2048 57.3 282 4.6
PV CNN++(0.5× C) [131] 4× 8192 57.6 41 0.7
PV CNN++(1× C) [131] 4× 8192 59.0 70 0.8
Grid-GCN(full) [135] 8× 4096 57.8 26 -
Ours(0.5× C) 4× 8192 60.2 34 1.4
Ours(0.75× C) 4× 8192 60.8 51 1.8
Ours(1× C) 4× 8192 61.7 71 2.0
Ours(1× C, sparse) 4× 8192 61.4 42 0.9

are incorporated in the network for voxelization and local aggregation. At training time,

we random sample 8192 points from block data, and use original points at testing time.

To demonstrate the great potential of our proposed network, we also design experi-

ments which replace regular 3D convolution layers with sparse 3D convolutions. We adopt

Minkowski [119] sparse convolution in our experiment. Sparse convolution enables our

network to process high-dimensional data with further speedup and reduce computation

load on GPU. Evaluation A list of comparison of our method and previous approaches is

shown in Table 5.3. We also train three versions for indoor scene segmentation. Compared

with PV-CNN++ [131], our method is faster while able to achieve 2.9% higher mIoU score.

5.4.4 Ablation Study

To show the effectiveness of our proposed method, we gradually add a component while

keeping the rest unchanged. To see the gain of each component, we train a baseline net-
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work consists of four PVC layers. The baseline does not use local feature aggregation,

instead an averaged feature of all points fall into the same voxel is taken. Fusion method

is summation only. And no channel attention module(CAM) is used for prediction. Final

prediction is directly produced from global feature without deep supervision. Experiments

are conducted on ShapeNetPart[12]. The baseline model is the compact version (0.5×C).

From Table 5.4, we can see that each component is able to boost baseline method without

necessarily increase latency too much.

Table 5.4: Ablation studies on ShapeNetPart[12].
mIoU gain Latency(ms)

Baseline 84.6 - 26
w/ Local Aggregation 84.8 +0.2 26
w/ FSM 85.2 +0.6 28
w/ CAM 84.9 +0.3 30
Full(Local Aggregation + FSM + CAM) 85.5 +0.9 32

5.5 Conclusion

In this work, we propose a novel approach for fast and effective 3D point cloud learning.

We designed a lightweight network that can incorporate both fine-grained point features and

multi-scale local neighborhood information. We introduce feature selection module and

deep supervision into our network for performance improvement. Experimental results on

several point cloud datsets demonstrate that our method achieves comparable results while

being fast and memory efficient.
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Chapter 6

Summary and concluding remarks

Both monocular depth estimation and point cloud segmentation are essential tasks for 3D

scene understanding in computer vision.

The difficulty of monocular depth estimation for 360 images is exacerbated by the dis-

tortion issue and the lack of the availability of large-scale labeled dataset. In Chapter 2,

we propose a novel model agnostic two-stage framework PanoDepth for generating dense

high-quality depth from a monocular 360 input. Extensive experiments show that Pan-

oDepth outperforms state-of-the-art approaches by a large margin. Our stereo matching

sub-network in the later stage adapts to the 360 geometry and achieves top-ranking perfor-

mance in 360 stereo matching.

In Chapter 3, to address the spherical distortion presented in 360 images, we use

gnomonic projection-based tangent image presentation. To alleviate the discrepancy be-

tween patches, we introduce a geometry-aware fusion mechanism which fuse 3D geometric

features with the image features. A self-attention transformer is leveraged into our pipeline

to globally aggregate information from patches, which leads to more consistent patch-wise
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predictions. We further extend the geometry-aware fusion with an iterative refining scheme

which further improves the depth estimation with more structural details. We show that us-

ing tangent images effectively mitigates the distortion issue, and the incorporation of the

geometric features as well as transformer significantly improves the depth estimation per-

formance.

For the point cloud analysis, we use different point convolution operators to effectively

encode point shapes. In Chapter 4, we propose an architecture named SPNet for 3D

point cloud semantic segmentation. We introduce a SPConv operator to effectively learn

point cloud geometry. We demonstrate that with Poisson disk sampling as well as feature

propagation, our network can go deep without losing much inherent shape patterns. Our

framework outperforms many competing approaches proved by experimental results on

public large-scale datasets.

In Chapter 5, we designed a lightweight network that can incorporate both fine-grained

point features and multi-scale local neighborhood information. The network consists of

Point-voxel convolution layer, that takes the advantages of both point and voxel grid rep-

resenations. We also introduce feature selection module and deep supervision into our

network for performance improvement. Experimental results on several point cloud datsets

demonstrate that our method achieves comparable results while being fast and memory

efficient.
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