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ABSTRACT 

 

Rapid growth in modern technologies has provided new tools for flexible and convenient 

transportation to the public. These new avenues for commuting would enable promoting 

non-driving modes of conveyance while shifting the economics of movement via 

traditional methods such as cars, subways, buses, etc. These innovative services would be 

advantageous in reducing dependability on privately-owned vehicles, thereby reducing the 

impact on the environment while providing a faster mode of travel. They would also play 

a crucial role in decreasing bottleneck due to heavy traffic, which has a detrimental impact 

on people’s health, lifestyle and productivity. Thus, logistic companies are aiming towards 

making use of emerging technologies, such as air taxis and hyperloop, for facilitating 

efficient transportation in the near future.      

In this dissertation, a unique two-phase procedure integrating a multi-criteria warm start 

technique with an iterative k-means clustering algorithm is developed for optimal air taxi 

infrastructure location decisions. The proposed methodology was improved by utilizing a 

different clustering technique called clustering large applications (CLARA) which 

suggests developing 14 unique sites in New York City (NYC). However, establishing all 

the stations simultaneously might be challenging for any business, and therefore, a 

mathematical model is created to recommend these centers in multiple phases while 

maximizing the demand satisfaction in each scenario. Based on the available transportation 

literature, constraints such as rental cost, number of trips per day per 1000 customers, road 

facilities, and the employee salary are considered to be a part of the linear model.  



xii 
 

Next, a multiple-criteria simulation optimization model is developed to determine the ideal 

station size, location and size of charging facilities, minimum threshold charge, number of 

vehicles required and, allocating customers to air taxis for a network of five skyports. The 

model proposes having 50 air taxis in the system for the base case. The commuter average 

time in system and wait time to be approximately 36 and 14 minutes respectively, with  

average vehicle utilization of nearly 76%. 

While air taxis are expected to be utilized for intra-city commute, Hyperloop and High-

Speed Rail (HSR) services would enable passengers for inter-city transport . A brief 

investigation is performed to examine the substitutability of HSR with Hyperloop services 

based on vehicle and passenger characteristics. A simulation model is developed to 

compare the performance of both these alternate transportation modes for a network of 

three major cities in Europe (Amsterdam, Paris, and Frankfurt). Our results indicate that 

with a significantly lower pod capacity, the Hyperloop system will still be able to serve 

more customers compared to the HSR services, while the vehicle utilization is observed to 

be higher in the latter alternative for a given period of time. We further compare the two 

transportation modes with respect to their estimated infrastructure and operational costs as 

well as CO2 emission. Finally, a cost-benefit analysis is conducted to estimate the 

passenger ticket price for Hyperloop services.   

 

 

Keywords: Emerging transportation services; Urban Air Mobility (UAM); Air taxi; 

Hyperloop; Multi-Criteria simulation optimization model. 

 



1 
 

Chapter 1: Introduction 

Rapid urbanization and accelerated economic development have led to a considerable 

increase in automotive vehicles, which has resulted in a rise in traffic demand. However, 

traffic congestion in urban areas has been exacerbated in recent times due to a failure to 

meet the demand requirements (Sun et al., 2019). This has a significant impact on the 

national economy (Kan et al., 2019) as well as on an individual’s health (Sanchez et al., 

2020). A recent study by Texas A&M Transportation Institute (TTI) found that the total 

number of delays due to traffic congestion has increased from 1.8 billion hours in 1982 to 

8.8 billion hours in 2017 in 494 urban cities in the United States. Simultaneously, the 

congestion cost (quantified value for total fuel wasted and time delay) rose to $179 billion 

from $15 billion during the same period (Urban Mobility Report, 2019). Similarly, the 

costs of death due to air pollution from excess traffic was estimated to be approximately 

$500 million in 2010 (Sanchez et al., 2020). Concern over high carbon emissions by buses 

and rails have led to advancements in technology to achieve carbon neutrality by 

developing autonomous vehicles that utilize other sources of energy such as electricity and 

hydrogen (Bakker and Konings, 2018). 

It is widely expected that autonomous vehicles would not only reduce the cost of 

transportation but also improve the ease of traveling (Meyer et al., 2017). Rapid ground 

transit such as high-speed rails, Hyperloops, etc. and Urban Air Mobility (UAM) have 

received widespread attention due to their ability to alleviate traffic congestion and avail 

the advantages of autonomous vehicles (Kong et al., 2020; Straubinger et al., 2020; Voltes-
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Dorta and Becker, 2018). These services would be a viable alternative to the existing modes 

of commuting.  

Various logistics and transportation companies across the globe, such as Uber, Kitty Hawk, 

Airbus, German Lilium, and Boeing, have started to venture into emerging aviation 

technology called air taxis, which can provide a more efficient, faster, and cheaper way to 

commute across the city. Although it is expected that during the initial stages of operation, 

commuters would have to pay a premium price to avail the services (Holden and Goal, 

2016; Shaheen et al., 2018), a market study by the National Aeronautics and Space 

Administration (NASA) concluded that increase in operational efficiencies and 

technological advancement would make the cost per passenger mile for air taxis 

comparable to ground transportation (Reiche et al., 2018). On the other hand, the 

Hyperloop system is primarily being developed by Virgin Hyperloop based on 

conceptualization by Elon Musk in 2013 (Musk, 2013). It is expected to connect several 

key urban cities, such as San Francisco – Los Angeles and St. Louis – Kansas City.   

1.1  Overview of Air Taxi Services (ATS) 

Air taxi, urban air mobility (UAM) service, operates using the concept of electric vertical 

takeoff and landing (eVTOL) while minimizing energy and power requirements (Johnson 

et al., 2018; Reiche et al., 2018). It can also be described as a system that facilitates an 

automated and on-demand carrying of shipments or passengers via air transportation 

around an urban environment (Winter et al., 2020). Air taxis can be used for a travel range 

of about 100 miles (Holden and Goel, 2016; Holmes, 2016), and hence, could cater to the 

transportation needs of customers in metropolitan cities and their neighborhoods. In recent 
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years, the design, development, and testing of air taxis are pursued by several companies 

across the globe in countries such as China, India, New Zealand, Singapore, and the USA 

(Butterworth-Hayes, 2019; Hawkins, 2018; Warwick, 2018). For instance, Airbus has 

introduced the Airbus’ A³ Vahana program for testing the feasibility of self-piloting VTOL 

technologies (Airbus, 2019). Similarly, Uber established a business plan to launch its ATS, 

called Uber Elevate, by 2023 (Holden and Goel, 2016). Various parameters, such as cruise 

altitude, impact on the environment, speed of the vehicle, and completion time, are 

examined to evaluate the advantages in the design and use of air taxis (Bacchini and 

Cestino, 2019; Enconniere et al., 2017). 

Due to rapid development in UAM, several studies have focused on examining various 

design concepts (Bacchini and Cestino, 2019; Ozdemir et al., 2014) and challenges in the 

implementation (Rajendran and Pagel, 2020; Vascik and Hansman, 2018). Numerous 

investigations have also been conducted to increase the competitiveness of air taxis by 

reducing operational costs, improving their safety, reducing noise, regulations, and policies 

(de Jong, 2007; Piwek and Wisniowski, 2016; Straubinger et al., 2020). All these factors 

combine to influence customers' decisions to avail of the new technology. There are many 

decisions to be considered from a management perspective that are associated with these 

operational issues, which can be divided into three management decision categories - 

strategic, tactical and operational (Figure 1.1). 
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Figure 1.1: Management decision levels in air taxis 

Long-term strategic decisions could include determining the number and size of air taxi 

stations, their locations, the feasibility of operations, and availability of space. ATS 

providers consider two types of infrastructure in the literature; vertiports - facilities used 

for functions such as docking, charging, maintenance, and repair of air taxis, and vertistops 

- sites for landing, customer dropoff and pickup, and takeoff (Rajendran and Shulman, 

2020). A vertiport could also serve as a customer pickup/dropoff infrastructure, in addition 

to the intended service tasks discussed above. Whereas, the vertistop is solely utilized to 

serve customers. Tactical decisions have a medium-term impact, and an example would be 

the pricing strategy adopted by logistics companies to attract customers as well as pilot 

training. Finally, at an operational level (short-term decisions), the service providers would 

need to develop an efficient real-time routing policy for scheduling and dispatching 

multiple eVTOL vehicles. 
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1.2  System Overview 

The sequence of events for a standard air taxi network is presented in Figure 1.2 (Holden 

and Goal, 2016; Hasan, 2019; Rajendran and Zack, 2019). A typical air taxi operation (as 

shown in Figure 1) includes the customer initiating the ride. Each passenger 𝑥𝑖 can be 

defined as a tuple (𝜆𝑖
𝑜 , 𝜑𝑖

𝑜 , 𝜆𝑖
𝑑, 𝜑𝑖

𝑑 , 𝜃𝑖) where (𝜆𝑖
𝑜, 𝜑𝑖

𝑜) pair represents the origin latitude and 

longitude, (𝜆𝑖
𝑑, 𝜑𝑖

𝑑) denotes the dropoff coordinates, and 𝜃𝑖 is the pickup time. The 

customer is assigned to the air taxi station 𝑠𝑎 that is closest to (𝜆𝑖
𝑜, 𝜑𝑖

𝑜), 𝑠𝑎𝜖𝒮, where 𝒮 is 

the set of air taxi locations (𝒮 = {𝑠1 , 𝑠2 , 𝑠3 , . . . . . . 𝑠𝐾 }) that will be determined using phase-

1 of this research. The customer could travel from (𝜆𝑖
𝑜, 𝜑𝑖

𝑜) to 𝑠𝑎 (i.e., first mile) either by 

car, walk, subway, bus or bike (i.e., they can leverage the concept of Mobility as a Service). 

Passenger 𝑥𝑖  will then transported by air taxi to 𝑠𝑏 (𝑠𝑏𝜖𝒮) in the middle mile, where 𝑠𝑏 is 

the air taxi station closest to the destination (𝜆𝑖
𝑑, 𝜑𝑖

𝑑). For the last mile (i.e., from  𝑠𝑏 to 

(𝜆𝑖
𝑑, 𝜑𝑖

𝑑)), customer can either travel by car, walk, subway, bus or bike.  

 

 

Figure 1.2: Typical layout of a ride using the air taxi 
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1.3 Hyperloop System 

Hyperloop is based on Maglev system, which utilizes magnetic properties to propel a pod 

towards its destination in a vacuum at high speeds. This eliminates the use of wheels in 

pods and thereby removing any friction from the track (Abdelrahman et al., 2017). In terms 

of operation, Hyperloops are comparable to a subway system but have lesser stops within 

a city. A typical Hyperloop system would have passenger capsules going in either direction 

inside two tubes of diameter 2.23 m. A pod would travel at a maximum speed of 750 mph 

and accommodate 28 passengers (Dudnikov, 2017; Rajendran and Harper, 2020). In 

contrast, a subway car has a capacity of approximately 54 seated commuters (Rajendran 

and Harper, 2020). Irrespective of capacity constraints, Hyperloop would drastically reduce 

the travel time between two cities. For example, it is expected to cover the distance between 

LA and SF in about 35 minutes which is faster than standard air transportation services. It 

would also have a boarding/departing time of 60 seconds, thereby retaining the fast 

turnaround time of a subway train. Figure 1.3 displays a typical design of a Hyperloop pod 

as proposed by SpaceX in 2013 (Musk, 2013). 

 

 

Figure 1.3: Design Concept of Hyperloop 
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1.4 High-Speed Rails 

 

High speed rails, a type of mass transit, provide rapid energy efficient tranportation when 

compared to the traditional rail services (Zhou and Shen, 2011). Although these facilities 

were initially introduced in Japan, they are widely being used by major European countries, 

such as Germany, France and Spain. A typical HSR, has an average speed of approximately 

150 mph on newer established tracks (Palacin et al., 2014). The seating capacity of a HSR 

vehicle is dependant on the design and ranges from over 400 passengers per train to 

approximately 1300 commuters per train (Givoni, 2006). Furthermore, it is observed that 

a HSR are nine times more energy efficient than airlines facilities and nearly four times 

more efficient than driving on road (EESI, 2018). 

 

1.5   Motivations for this Research 

• A recent study observed that passengers spend over 130 hours annually due to 

heavy traffic in major cities, such as Boston, Chicago, Washington DC, and New 

York City (Inrix, 2020. This causes an increase in accidents, in turn leading to 

stress, which negatively impacts the citizens. 

• Gridlocks also have a significant impact on the economy due to a loss in 

productivity, as well on the environment because of an increase in pollution (Kan 

et al., 2019). 

• Urban Air Mobility (UAM) can potentially become a future means of transportation 

and facilitate daily travelers to bypass congestions in metropolitan areas. Similarly, 
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Hyperloops can facilitate quicker inter-city movement thereby reducing the 

congestion on highways.  

• Limited research is available on the optimal air taxi infrastructure locations across 

a city while having a high percentage of demand fulfillment.  

• Considering that ATS are an emerging technology, it is critical to develop a 

decision-making system that proposes station locations in multiple phases. This 

would enable the logistic companies to conduct appropriate market studies based 

on selected sites during the initial stages of operations before further expansion. 

• It is crucial to study the impact of factors such as passenger willingness to fly, 

percentage time savings, costs associated with the infrastructure developments, etc. 

on the viability of UAM. 

• The efficiency of air taxi operations would be determined by optimizing customer 

wait times, cost of traveling and idle time of vehicles. Striking a balance between 

these parameters would enhance customer perception about UAM and potentially 

increase the demand. 

• It is important to develop a framework that makes the following strategic (long 

term), tactical (medium term) and operational (short term) decisions: (i) 

determining size of operating facilities (strategic), (ii) deciding location and size of 

charging stations (strategic), (iii) determining the number of air taxis required to 

serve the demand at a certain customer service level (strategic) (iv) determining the 

threshold minimum charge (tactical), and (v) allocating customers to air taxis 

(operational). 
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• While air taxis are highly suitable for intra-city travel, Hyperloop services can be 

utilized for inter-city commute. Most previous researches has observed a positive 

impact of supplanting air transport with high-speed rails (HSR) (Castillo-Manzano 

et al., 2015; Takebayashi, 2014; Zhang et al., 2018). However, a similar study 

investigating substitutability of HSR with Hyperloop services is not available in 

literature.  

1.6  Thesis Outline 

The remaining theses is organized as follows. The review of literature on the overview on 

the air taxi system, design, infrastructure location decisions, and facility location decisions 

are presented in Chapter 2. The proposed multi-criteria warm start technique and the 

iterative k-means clustering algorithm are discussed in Chapter 3 along with a comparison 

of results with existing literature. Clustering large applications (CLARA) algorithm along 

with the linear model and the results obtained are described in Chapter 4. A multi-criteria 

simulation optimization model is developed in Chapter 5 while Chpater 6 explores 

substitutibility of HSR with Hyperloops. Conclusion and potential future work are 

discussed in Chapter 7.  
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Chapter 2: Literature Review 

2.1 Air Taxi Overview 

Several works have been conducted in recent years to examine the emerging air mobility 

design and network operations. Al-Haddad et al. (2020) studied the features influencing 

the consumer opinion for adopting UAM. By conducting a survey using exploratory factor 

analysis, the authors concluded that factors, such as the amount of time savings, service 

reliability, and cost, are highly influential amongst the people. National Aeronautics and 

Space Administration (NASA) explored the market potential for UAM for three different 

use cases: transfer of packages (last-mile delivery), autonomous public commuter system 

(air metro), and autonomous aviation service (air taxi). They found a majority of the users 

were comfortable with the use cases, but the logistics organizations could face potential 

operational and technical challenges in the form of travel distance, overall demand, and 

scheduling (Hasan, 2019). A different investigation by NASA focussed on two other use 

cases for UAM in air ambulance and air shuttle along with air taxi (Reiche, 2018). Both 

the studies concern that public acceptance of UAM is dependent on multiple complex 

issues such as safety, privacy, and environmental threats.     

Factors such as safety, sustainability, and regulation policies, are also explored to gain an 

insight into the evolving technology (Cokorilo, 2020; Pisoni et al., 2019; Straubinger, 

2019). Another research by Swadesir and Bill (2018) investigated the competitiveness of 

urban air transportation with automobiles, bikes, and other modes of public transportation 

in Melbourne, and they concluded that customers were mainly concerned about the safety 

aspects and noise generated by the aircraft. 
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Similar to other on-demand mobility (ODM) services, uncertainty in customer demand can 

lead to operational inefficiencies (Davis et al., 2018; Luo et al., 2020). One of the biggest 

challenges in forecasting demand using analytical tools has been due to inadequate 

historical data (Rajendran and Srinivas, 2020). At the same time, telecommuting or work 

from home culture has increasingly become extremely common and, therefore, adding 

further constraints in demand estimation (NASA Mobility UAM Market Study, 2018). 

Existing literature suggests two potential approaches for predicting eVTOL customer 

requests - (i) quantitative techniques, such as approximating the demand based on previous 

data from other similar services (eg. traditional or ridesharing taxi services) as proposed by 

Rajendran and Zack (2019) and (ii) qualitative methods, similar to surveys and market 

studies geared towards garnering experts and customers perception about the emerging 

ATS (Binder et al., 2018; Garrow et al., 2018). The present study utilizes the model 

developed by Rajendran and Zack (2019) for computing demand for UAM services from 

trip data of traditional taxis.          

2.2 Air Taxi Design 

Recent studies have focussed on developing concept vehicles and examine performance 

parameters for UAM to analyze the feasibility for its practical implementation (Al Haddad 

et al., 2020; Bacchini and Cestino, 2019; Johnson et al., 2018; Silva et al., 2018; Vascik 

and Hansman, 2018). The three major air taxi vehicle types are vectored thrust, lift+cruise 

and wingless (Bacchini and Cestino, 2019). Vector thrust allows the air vehicle to modify 

its path based on propulsion direction (Hua et al., 2015). It provides a highly efficient 

cruising ability and speed to the aircraft. Harrier series is the most popular example of an 

aircraft using vector thrust technology (Zhou et al., 2020). It is further classified into tilt-
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rotor and tilt-wing (Johnson et al., 2018). The lift + cruise technology enables the 

manufacturers to add a dedicated lift engine alongside the cruise engine. This reduces 

excess drag and the amount of fuel used during the cruise. The thrust to weight ratio during 

the cruise is nearly 0.1 (Finger et al., 2019). It has multiple electric rotors and the failure 

of one propeller will have no impact on the performance of others (Moore, 2020). A 

wingless multicopter design, as the name implies, has no wings present on the vehicle 

(Ozdemir et al., 2014). They rely on multiple propellers for thrust propulsion and thus 

provide better control and less vibration (Lu et al., 2016). 

Most air taxi vehicles have a minimum flying speed of 100km/hr and a passenger capacity 

of at least two passengers (Rajendran and Srinivas, 2020). Polaczyk et al., 2015 presented 

the characteristics of each type of eVTOL design. Their study indicated that each design 

has its own unique set of strengths and weaknesses in terms of speed, range, seating 

capacity, and impact on the environment. On the operational side, Mane and Crossley 

(2012) utilized integer programming to synchronously solve aircraft design for improved 

performance and allocation to operators' problems. In contrast, de Jong (2007) explored 

the operational costs associated with urban air mobility using dynamic programming. 

Piwek and Wisniowski (2016) defined parameters such as passenger capacity, fuel 

consumption and flight level to be critical for small air transport (SAT) aircraft.  

 

Several other criteria affecting the opinion of customers, such as service reliability, 

percentage time savings, and cost of availing the facility, were identified by Al Haddad et 

al. (2020) through an online survey of residents in Munich. Similarly, Vascik and Hansman 

(2018) established three additional constraints in aircraft noise, a control system for air 
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traffic, and ground infrastructure availability that potentially affects the market growth of 

UAM. According to Holden and Goel (2016), Uber elevate is projected to produce a noise 

level close to 60 dB. Therefore it is critical to design a quieter propulsion system for higher 

public acceptance (Johnson et al., 2018). Therefore, determining the optimal number of air 

taxis and their scheduling is crucial in achieving an ideal trade-off between operating cost, 

vehicle utilization, and service responsiveness.    

 

2.3 Air Taxi Infrastructure Location Decisions 

The literature on infrastructure location for air taxis is still in the evolutionary stage. 

Multiple tools, such as clustering algorithms (Lim and Hwang, 2019; Rajendran and Zack, 

2019), mathematical models (Rath and Chow, 2019), and simulation (Balac et al., 2019), 

have been utilized to estimate demand and determine optimal vertiport and vertistop 

locations. Rajendran and Zack (2019) proposed integrating a multi-modal warm start 

approach with k-means clustering algorithm to determine 21 potential air taxi stations in 

New York City (NYC). Demand estimation for this service was made by employing 

publicly available taxi data and parameters provided by Holden and Goal (2016). They also 

examined the effect of various parameters, such as customer satisfaction and percentage 

time savings on prospective sites. Similarly, Lim and Hwang (2019) suggested a k-means 

algorithm for selecting skyport stations based on three heavily used routes in the Seoul 

metro area. However, cluster centroids generated from k-means approach are highly 

dependent on the initial value selected and it produces a different result with every run 

(Zahra et al., 2015). A research utilizing a mathematical model to identify optimal air taxi 

hubs was conducted by Rath and Chow (2019). Total travel cost was captured by the 
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objective function to satisfy demand in NYC. They estimated that the model outperformed 

the clustering technique employed by Rajendran and Zack (2020) by approximately 7%.  

Bonnefoy (2005) explored the use of simulation for estimating annual demand, fleet size, 

and network configuration for the air taxis. A similar investigation was conducted by 

Rothfeld et al. (2018), in which they used a transportation simulation tool to analyze the 

network and infrastructure placement by incorporating no-fly-zones, required flight path, 

and height restrictions in the model. Swadesir and Bill (2018) compared the travel time 

taken by commonly used transportation modes and air taxis in Melbourne and determined 

that UAM saved more than 24 minutes on average over driving. They inferred that each 

vertiport in the city should be placed at least 10 km (approx. 6 miles) apart due to the speed 

requirements of the vehicles. 

Facility location problems that are studied in similar emerging technologies could be 

adopted for air taxi network design as well. For example, this strategic decision has been 

widely analyzed for establishing charging stations for electric cars (He et al., 2018; Liu and 

Wang, 2017; Lee and Madanat, 2017; Loeb et al., 2018; Riemann et al., 2015; Xylia et al., 

2015; Yang et al., 2017) and last-mile delivery systems (Salama and Srinivas, 2020). Liu 

and Wang (2017) investigated the use of a heuristic algorithm to optimally locate 

recharging terminals by minimizing travel cost, time, and delay due to charging. Lee and 

Madanat (2017) proposed a convex parsimonious model for planning a charging station 

network with the objective of minimizing greenhouse gas emissions and constraints, such 

as budget and demand during peak hours. Similarly, Yang et al. (2017) utilized queuing 

theory to estimate customer wait time at each charging station and integer programming to 

reduce infrastructure investment.  
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2.4 Facility Location Problem 

2.4.1 Clustering Algorithms 

Aggregation of collected data points into numerous groups based on their properties is 

known as clustering (Yao et al., 2019). There are several modes of operation proposed in 

the literature such as partitioning algorithm, density-based algorithm, hierarchical 

algorithm, etc. (Mouton et al., 2020). Other than partitioning algorithms, most approaches 

automatically determine the ideal number of cluster centroids in the system. In the 

partitioning algorithm, the number of focal points is specified by the user. The current study 

focuses on using the k-means partitioning algorithm as the number of clusters can be easily 

varied to satisfy the restrictions in the sensitivity analysis. 

Clustering algorithms are also applied for strategic facility locations in other emerging 

technologies such as charging stations for electric vehicles (Andrenacci et al., 2016; 

Helmus et al., 2020; Marino and Marufuzzaman, 2020; Riemann et al., 2015; Zhang et al., 

2019) and delivery systems (Ferrandez et al., 2016; Salama and Srinivas, 2020). 

Andrenacci et al. (2016) utilized a fuzzy k-means cluster technique to generate optimal 

charging stations for electric vehicles in Rome. Similarly, Zhang et al. (2019) explored the 

amalgamation of barycentric methods with the k-means technique to reduce the impact of 

demand dispersion on site selection. On the other hand, Helmus et al. (2020) applied 

Gaussian mixture and partitioning around medoids (PAM) in a two-phase clustering 

approach. The first phase was used to identify 13 most common charging durations, while 

nine different user types were established in the second phase. Marino and Marufuzzaman 

(2020) investigated a two-step approach of integrating k-means algorithm with a stochastic 

model to determine potential charging station candidates and minimize total energy usage 
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in Peru. They employed principal component analysis to reduce the dimensionality of the 

dataset and improve the algorithm’s performance. They observed an 18.24% reduction in 

energy costs due to the integration strategy. 

2.4.2 Mathematical Model 

 

Stochastic programming techniques are widely used for facility location problems (Basu 

et al., 2015; Choudhary and Shankar, 2012; Gabor and van Ommeren, 2006; Kim and Kim, 

2013; Rodriguez et al., 2020; Wichapa and Khokhajaikiat, 2017). Rodriguez et al. (2020) 

investigated the optimal vehicle assignment and fire station location problem by 

maximizing the coverage due to demand emergency for a city in Chile. Wichapa and 

Khokhajaikiat (2017) explored goal programming for optimizing facility, transportation, 

and operating cost for ideal waste disposal sites. They employed an analytical hierarchy 

process (AHP) to identify suitable weights for each criterion considered in the model. A 

similar study by Choudhary and Shankar (2012) evaluated the integration of multi-criteria 

decision making with fuzzy AHP for evaluating the potential locations for the thermal 

power plant stations.   

 

Existing literature has also suggested utilizing stochastic optimization for locating charging 

stations for electric vehicles (Brandstatter et al., 2017; Kabli et al., 2020; Liu et al., 2012).    

Kabli et al. (2020) proposed a multi-phase model to maximize profits at each stage by 

increasing the number of existing charging centers over a particular time period. They 

estimated that an increase in the number of locations would also lead to a rise in the number 

of electric vehicles in the system during the latter stages. Brandstatter et al., 2017 
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investigated the impact of integrating on-demand ridesharing systems with electric vehicles 

by using a time dependent linear model along with a heuristic algorithm. They applied their 

approach in Vienna and concluded that heuristic techniques are suitable for large scale 

problems. Liu et al., 2012 focussed on developing a particle swarm optimization technique 

for minimizing total cost. The linear model in the present study utilizes some of the 

constraints mentioned in the literature (Brandstatter et al., 2017; Liu et al., 2012), such as 

traffic flow and available budget.      

 

2.4.3 Simulation 

 

Network operations for air taxis can also be studied using simulation. A recent research by 

Balac et al. (2019) evaluated the probable demand for eVTOL in Zurich using simulation. 

They observed a tradeoff between pricing structure, vehicle type, and time saved, i.e., 

increasing vehicle speed could attract more customers by reducing travel time while 

leading to a rise in the pricing structure. However, their model had an unconstrained 

number of available vehicles, which is practically infeasible. On the other hand, Rajendran 

and Shulman (2020) employed simulation to determine the feasible number of air taxis in 

NYC. They noted a linear rise in customer time in the system with an increase in vehicle 

utilization and customer density growth.    

2.5 Scheduling and Routing using Simulation 

A recent study by Rothfeld et al. (2018) utilized multi-agent transport simulation to develop 

a model that showcased the impact of infrastructure locations and various VTOL properties 

on the performances of the UAM services. Rajendran and Shulman (2020) proposed a 
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discrete-event simulation model for the air taxi network scheduling in an urban city. They 

observed that 70 vehicles would be required to serve approximately 200,000 customers per 

week. However, the model does not capture several key parameters, such as individual 

station capacity, air taxi charging and discharging rates, etc. Luo et al. (2021) explored the 

influence of eVTOL’s battery performance using simulation. They conclude that battery 

discharge rate depends on the specific motion (ascend, cruise or descend) of the vehicle. 

They also observe actual possible mileage for each eVTOL reduced by 20 km for every 

100 m rise in the cruising altitude.  

Several prior studies have explored the scheduling and routing problem in other emerging 

transport facilities using simulation techniques (Jian et al., 2016; Keskin et al., 2021; Ma 

et al., 2021; Seitaridis et al., 2020; Tookanlou et al., 2021). Keskin et al. (2021) integrated 

discrete event simulation with adaptive large neighborhood search (ALNS) for generating 

ideal routing of electric vehicles to minimize the commuter wait time at charging locations. 

A simulation optimization model was explored by Mota et al. (2017) for improving 

operations at an airport by minimizing turnaround time based on parameters, such as 

ground handling activities and taxi and runway networks. Integration of optimization and 

simulation was also investigated for determining the airport capacity, ground capacity and 

aircraft sequencing by Scala et al. (2019). 

 

2.6 Hyperloop System 

The Hyperloop system is expected to be a faster and economical alternative to conventional 

short-range aviation and high-speed rails. Moreover, a market study by NASA (Taylor et 
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al., 2016) concluded that developing Hyperloop facilities would be cheaper than other 

high-speed railway networks. A recent research by Decker et al. (2017) focused on 

investigating multidisciplinary characteristics affecting the vehicle design, such as 

thermodynamic, aerodynamic, electromagnetic, and energy analysis. The authors 

concluded that expanding the passenger capacity of pods from the original volume of 28 

commuters would not have a significant effect on the overall cost. This would enable 

logistics companies to vary the pod length based on actual market demand. Bordone (2018) 

developed a framework for exploring socio-economic issues faced by Hyperloop in 

European Union using a qualitative study.   

Several recent studies have focussed on the operational side of the hyperloop network. For 

instance, Rajendran and Harper (2020) developed a simulation model to analyze the impact 

of parameters, such as the total number of pods, pod capacity and demand variability, 

between San Francisco (SF) and Los Angeles (LA). Voltes-Dorta and Becker (2018) 

investigated the effect of establishing this service on airports in SF and LA using an 

exploratory analysis. They concluded that the Hyperloop system would provide a feasible 

alternative to air travel. Similarly, Santangelo and Andrea (2018) determined that while the 

implementation of the Hyperloop system is feasible, the initial costs of developing the 

necessary infrastructure are relatively higher than other modes of transportation.   

2.7 High-Speed Rails (HSR) 

 

The emergence of high-speed rails has impacted the airline industry substantially on 

several aspects, such as environmental (D’ Alfonso et al., 2015) and airfare and passenger 

demand (Chang and Lee, 2008; Suh et al., 2005). For instance, the introduction of HSR 
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between the Frankfurt - Cologne route in 2002 led to an approximate 66% decline in the 

air passengers, eventually leading to the discontinuation of the air service (Clewlow et al., 

2012). Similar trends were observed in other countries such as Japan (JR East, 2016), South 

Korea (Park and Ha, 2006), and China (Chen and Jiang, 2020; Zhang et al., 2017). Multiple 

researchers have focused on analyzing the complementarity and substitutability between 

the airline and high-speed rail industry (Castillo-Manzano et al., 2015; Sun et al., 2017; 

Wan et al., 2016). However, studies are yet to consider the impact of emerging 

transportation services, such as Hyperloops.  

Gundelfinger-Casar and Coto-Millan (2017) explored the implications of competition 

between air travel and HSR in Spain. They analyzed the demand for the two mediums as a 

function of commuter income, traveling price, and cost of alternative modes. They 

concluded that the latter two variables have a substantive impact on whether the HSR 

would substitute or complement airline services. Similarly, other factors, such as service 

frequency, travel time, and distance, were considered to be significant parameters affecting 

the viability of HSR over air transport in the literature (Behrens and Pels, 2012; Zhang et 

al., 2018). Chen (2017) utilized regression analysis for investigating the intermodal 

competition by integrating the supply and demand perspectives. The authors observed that 

high-speed rails had the maximum substitutional effect over air service between cities 

within the range of 500-800 km. Likewise, Gleave (2003) determined that HSR was not 

competitive for journeys less than 150-200 km and greater than 800-1000 km.     

Yang and Zhang (2012) investigated the implications of competitiveness between air and 

high-speed rail transport based on profit, price, and social welfare. They observed a greater 

influence on public welfare by the HSR management resulted in a decrease in profit for 
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both the transport mediums as they were competing for the same demand. They also 

concluded that the overall profits due to price discrimination between leisure and business 

travelers using HSR services remained unaltered. Whereas fewer business passengers 

utilize air transport due to cost differences when compared to leisure commuters. Adler et 

al. (2010) conducted a cost-benefit analysis for four trans-European networks using game 

theory. They found that upgrading the infrastructure for the entire European network would 

maximize social welfare and shift the demand from airlines to HSR. 

Gonzalez-Savignat (2004) developed a simulation model to study the impact of HSR on 

the market share of the airline facilities. They observed travel time to be a significant 

variable in determining the market penetration, concluding that a rise in customer cycle 

time utilizing HSR would reduce the overall generated business. Similar findings were 

reported by Danapour et al. (2018), in which they created a discrete binomial logit model 

as a customer decision-making tool. The researchers noted fare price and trip duration to 

be the most influential parameters.  
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Chapter 3: Iterative K-means Clustering Approach  

This chapter focuses on integrating a multi-criteria warm start technique with an iterative 

k-means constraint clustering algorithm. Several studies have been conducted on the 

aggregation of geographical coordinates using cluster models (Lim and Hwang, 2019; Kim 

and Ham, 2019; Millward et al., 2019; Sodenkamp et al., 2019; Wang et al., 2020). 

However, these techniques are not feasible for our current research because of a few unique 

constraints that pertain to air taxi operations. For example, Holden and Geol (2016) and 

Rajendran and Shulman (2020) impose restrictions, such as a limit on first and the last mile 

on-road travel distance and threshold demand satisfaction rate. To incorporate these unique 

restrictions associated with eVTOL air taxi system, an iterative k-means cluster algorithm 

is adopted in this research as it allows the decision-makers to input a specific number of 

centroids. This method aims to minimize the distance between each data point and its 

associated center, hence satisfying the first constraint. Also, the number of facility locations 

can be modified based on the fulfillment of the second criteria.  

3.1. Phase 1: Multi-Criteria Warm Start Technique 

One of the limitations associated with the k-means clustering algorithm is that this 

approach randomly generates the initial solution, which significantly impacts the 

effectiveness of the final solution (Usman et al., 2013). To overcome this drawback, the 

current investigation proposes the use of a novel multi-criteria based warm start (MCWS) 

technique for preliminary seed generation. 

Suppose if 𝑥1, 𝑥2, … , 𝑥𝑛 are the set of potential vertiport/vertistop locations, each site 

location 𝑙 is defined by a tuple 𝑇 = (𝑟𝑙, 𝑓𝑙, 𝑠𝑙, 𝑝𝑙, 𝑡𝑙), where 𝑟𝑙 is the rental cost per month, 
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𝑓𝑙 is the road facility, 𝑠𝑙 is the average salary per year, 𝑝𝑙 is the population coverage and 𝑡𝑙 

is the total number of estimated trips made by air taxi per day per 1000 population in that 

region. Rental cost is defined as the median gross rent per month for each neighborhood in 

which the station is located. Population coverage represents the total population of the area, 

while trips per day per 1000 population for each district are determined using the customer 

pickup coordinates and the station location data. Road facility and employment costs are 

specified as the distance of the proposed air taxi station with a major road and average 

household income per year, respectively. 

We use the weighted average multi-criteria approach to rank the set of potential site 

locations. If a criterion 𝑚 in the tuple is supposed to be minimized (e.g., rental cost per 

month, average salary per year), then the optimal value of that criteria 𝑚 (𝜏𝑚) is the 

minimum value observed across all the stations. The normalized value of criteria 𝑚 for site 

location 𝑙 (𝑁𝑚,𝑙) is calculated by dividing 𝜏𝑚 with the values of the measure (𝑉𝑚,𝑙), as 

shown by Equation (3.1). Similarly, if the criterion 𝑚 has to maximized (e.g., road facility, 

population coverage, total number of estimated trips made per day per 1000 population), 

then the ideal value (𝜏𝑚) is the maximum value noted for all sites. In such a scenario, the 

normalized value (𝑁𝑚,𝑙) is computed by dividing 𝑉𝑚,𝑙 with 𝜏𝑚, as shown in Equation (3.2). 

Once the normalized values for each criterion are calculated, it is then necessary to obtain 

the weight (𝑊𝑚), which indicates the order of importance of each objective, and is usually 

acquired from the decision-maker. The overall fitness value of each center and the total 

score for all locations are given by Equation (3.3) and (3.4), respectively. 
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𝑁𝑚,𝑙  =  
𝜏𝑚 

𝑉𝑚,𝑙
 

                    (3.1) 

 

𝑁𝑚,𝑙 =   
𝑉𝑚,𝑙  

𝜏𝑚
                          

                     (3.2) 

 

𝐹𝑙  =   ∑ 𝑊𝑚  ×  𝑁𝑚,𝑙

𝑀

𝑚=1

 

  (3.3) 

 

   

𝑇𝑆 = ∑ 𝐹𝑙
𝑛
𝑙=1                         

 

  (3.4) 

3.2. Phase-2: k-means Clustering with MCWS technique 

As mentioned earlier, the output of phase 1: multi-criteria warm start technique is provided 

as the input to Phase-2, as the seed solution. The goal of the algorithm involved in this 

phase is to minimize the average squared Euclidean distance between 𝑧 data points and 𝑛 

cluster centers (Bock, 2008). Let 𝑥𝑙  be the center of cluster 𝑙, as shown in Equation (3.5). 

According to Bock (2008), the variance is given by Equation (3.6). The objective is to 

minimize the sum of squares for all datapoints. 

𝑥𝑙 =
1

|𝑧|
 ∑  𝑥⃗𝑥𝜖𝑧     (3.5) 

 

𝑄 =  ∑ |𝑥⃗ − 𝑥𝑙|
2

𝑥⃗ ∈ 𝑧

  →     𝑚𝑖𝑛.  𝑄  

(3.6) 

The general approach utilizing the MCWS technique coupled with the clustering algorithm 

to generate the ideal number of vertistops and vertiports, is presented below. 
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1 Initialize Parameters (a) On Road Travel limit (RL), (b) Demand 

Satisfaction rate (DS), (c) Tuple 𝑇𝑚 = (𝑟𝑙, 𝑓𝑙 , 𝑠𝑙 , 𝑝𝑙, 𝑡𝑙) for each location 

𝑙 and (d) Weight of parameter 𝑚 in 𝑇 

2 Generate initial seeds, 𝑠𝑖 = [𝑠1, 𝑠2, . . . . 𝑠5] 

3 For 𝑙 =  1 to 𝑛  

    Let 𝜏𝑚 be optimal value of parameter 𝑚 in 𝑇  

4     If 𝑚 is to be minimized, 

           N𝑚,𝑙  =  
𝜏𝑚 

𝑉𝑚,𝑙
   

5     Else 

           N𝑚,𝑙 =   
𝑉𝑚,𝑙 

𝜏𝑚
                  

6     # Fitness value of each location 

     F𝑙  =   ∑ 𝑊𝑚  ×  𝑁𝑚,𝑙
𝑀
𝑚=1     

7 # Select top five locations  

𝑠𝑖 =  𝑡𝑜𝑝_𝑛 (F𝑙, 5) 

8 𝑥𝑖 =  𝑠𝑖 

9 For 𝑙 = 1 to 𝑛  

10     #Re-computation of centroids 

    Do 𝑥𝑙 =
1

|𝑧|
 ∑  𝑥⃗𝑥𝜖𝑧      

11     If Converge rate (CR) < CS for number of travelers within RL 

12           𝑙 = 𝑙 + 1  

13 Repeat steps 9 to 12 

14 Return (𝑥1, 𝑥2, . . . . , 𝑥𝑛) 

3.3. Validation 

The metric, Davies Bouldin index (DBI), is chosen to evaluate the proposed two-phase 

approach. The reason behind specifically using this metric for testing the effectiveness of 

our model is as follows. DBI determines the performance of clustering by calculating the 

ratio of the total spread of points within clusters and the distance between each cluster 

center (Davies and Bouldin, 1979). However, most of the other metrics determine pairwise 

distances between the data points. However, since the present research deals with a high 

volume of data, DBI is leveraged as the evaluation of this parameter is computationally 

faster. The two major components of this measure are – (a) inter-cluster spread and (b) 

between cluster segregation. 
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3.3.1. Within cluster spread (𝒘𝒔𝒍) 

Let 𝑋𝑣 be a data point and 𝑥𝑢 be the centroid for cluster 𝑙 then the scatter within-cluster is 

given by Equation (3.7). 

𝑤𝑠𝑙 = √
1

|𝑙|
 ∑ (𝑋𝑣 − 𝑥𝑢)𝑝

𝑋𝑣 𝜖 𝑙

𝑝
   

(3.7) 

However, we need to obtain Haversine distance as the data being used have geospatial 

coordinates. Equation (3.8) provides the globular distance between two points 𝑢 and 𝑣 

(Mwemezi and Huang, 2011). 

𝑑𝑢,𝑣 = 𝑟 × 𝜃𝑢,𝑣  (3.8) 

where 𝑟 is the Earth’s radius and 𝜃𝑢,𝑣 represents the angle between two points 𝑢 and 𝑣. 

The coordinates of point 𝑢 are represented by ϒ𝑢 (latitude) and λu (longitude). Similarly, 

coordinates of point 𝑣 are indicated by ϒ𝑣 (latitude) and λv (longitude) respectively. The 

angle between these two points is given in Equation (3.9) (Mwenezi and Huang, 2011). 

ℎ𝑎𝑣(𝜃𝑢,𝑣) = ℎ𝑎𝑣(ϒ𝑣– ϒ𝑢) + 𝑐𝑜𝑠(ϒ𝑣) × 𝑐𝑜𝑠(ϒ𝑢) × ℎ𝑎𝑣(𝜆𝑣 − 𝜆𝑢) (3.9) 

 

Thus, inter-cluster scatter (𝑤𝑠𝑙) can be rewritten, as shown in Equation (3.10). 

𝑤𝑠𝑙  =  
1

|𝑙|
 ∑ 𝑑𝑢,𝑣

𝑋𝑣 𝜖 𝑙

    
(3.10) 
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3.3.2. Between cluster segregation 

The distance between two cluster centers 𝑥𝑖 and 𝑥𝑗 for clusters i and j respectively is 

calculated as given by Equation (3.11). 

𝐷𝑥𝑖,𝑥𝑗 = 𝑟 × ℎ𝑎𝑣−1 (ℎ𝑎𝑣 (ϒ𝑥𝑗
− ϒ𝑥𝑖

)

+ 𝑐𝑜𝑠(ϒ𝑥𝑖
) × 𝑐𝑜𝑠 (ϒ𝑥𝑗

) × ℎ𝑎𝑣 (𝜆𝑥𝑗
− 𝜆𝑥𝑖

))       

(3.11) 

Where (ϒ𝑥𝑖
, λ𝑥𝑖

) and (ϒ𝑥𝑗
, λ𝑥𝑗

) are geographical coordinates of centroids 𝑥𝑖 and 𝑥𝑗  

respectively. 

Thus, for any two clusters 𝑖 and 𝑗, the ratio of within-cluster spread and between cluster 

segregation is calculated using Equation (3.12). The final DBI value is given by Constraint 

(3.13). 

𝑅𝑥𝑖,𝑥𝑗
=

(𝑤𝑠𝑥𝑖
+  𝑤𝑠𝑥𝑗

)

𝐷𝑥𝑖,𝑥𝑗 
   

(3.12) 

𝐷𝐵𝐼 =  
1

𝑛
 ∑ ( max

𝑥𝑗 ≠ 𝑥𝑖

𝑅𝑥𝑖,𝑥𝑗
)

𝑛

𝑙= 1

   
(3.13) 

3.4. Case Study - 1 

3.4.1. Data Description 

The dataset used in this study is the estimated air taxi demand data used by Rajendran and 

Zack (2019). They leveraged the publicly available taxi records from the New York City 

Taxi and Limousine Commission database. Each data point consists of significant 

parameters, such as pickup and dropoff coordinates, date, time, total distance traveled in 
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miles, and the total number of passengers on each trip. After pre-processing the data, 

Rajendran and Zack (2019) estimated the potential demand for ATS is then determined 

based on the constraints mentioned in Section 3 along with the assumption that a customer 

is eligible for eVTOL service only if they save at least 40% ride time when compared with 

the on-road travel (Holden and Goel, 2016). However, the data estimated by Rajendran and 

Zack (2019) was under the assumption that there is one customer in each ride. Therefore, 

in the present study, we used the data available over a period of two years on the total 

number of passengers on each trip to estimate the actual customer population. Hence, the 

total number of estimated air taxi ride records considered in our study increased from 3.6 

million to 6.4 million. Figure 3.1 (a) – (b) depicts the potential geo-mapping of customers 

on weekdays and weekends during the morning (9:00 AM – 12:00 PM) and night time 

period (10:00 PM – 12:00 AM). It can be noted that both during weekdays and weekends, 

there are more dropoffs compared to pickups during the morning time period. This is 

expected because many commuters travel to the city from suburban regions for work. We 

can also observe that the ride pickups near Queens during weekends are significantly lower 

when compared with weekdays.   
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 Figure 3.1 (a): Geospatial mapping of potential customers on weekdays and weekends 

during the morning time period 
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Figure 3.1 (b): Geospatial mapping of potential customers on weekdays and weekends 

during the night time period 
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3.4.2. Results and Discussion 

Based on the clustering approach discussed in the previous section, we evaluate the 

locations for vertiports and vertistops for the baseline scenario. Sensitivity analysis is then 

conducted by altering the percentage values of the four key parameters (time savings, on-

road travel limit, passenger willingness to fly, and demand satisfaction). The results 

obtained in the current investigation are compared with the findings discussed in Rajendran 

and Zack (2019). 

3.4.2.1. Baseline Results 

The multi-criteria warm start technique is first used to generate the list of potential seed 

solutions for the iterative clustering algorithm. There are 59 community districts distributed 

amongst the five major boroughs (Manhattan, Brooklyn, Queens, Bronx, and Staten Island) 

in NYC. As discussed earlier, the goal of the multi-criteria warm start technique is to 

identify the best trade-off solutions based on various criteria identified such as rental cost, 

population density of an area, number of trips per day per 1000 customers, average salary 

and road facility. Based on the procedure discussed in Section 4.1, and the recommended 

weights for each parameter provided in the literature (Hawas et al., 2016, Tzeng et al., 

2002, Tzeng et al., 2005), the total score is computed, and the best five sites with the 

maximum weighted values are used as initial input seed in the k-means algorithm. 

The ideal number of stations generated by our model for the base case setting is 18 when 

compared to 21 stations suggested by Rajendran and Zack (2019). Six (#3, #9, #12, #15, 

#16 and #17) of those sites are proposed to be built in Manhattan. Site #9 and #12 are 

approximately a mile apart. It is found that facility #12, which is near Times Square, serves 
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over 12% potential commuters while station #9 near the South Central Park has 

approximately 10% customer demand. Other boroughs with a high volume of travelers are 

Queens and Brooklyn. A 2D view of the suggested potential locations is given in Figure 

3.2. 

 

Figure 3.2: Recommended locations for infrastructure development by the clustering 

algorithm 

We observe that two air taxi stations (#6 and #11) are located in the John F. Kennedy (JFK) 

International Airport and one each (#4 and #14 respectively) in Newark Liberty 

International Airport and LaGuardia Airport (LAG). JFK and LAG cater to over 50% of 

the customer demand in total. Thus, it is recommended to build one large vertiport at each 

of these locations. Other locations that experience a high volume of traffic are site #3 (near 

World Trade Center) and #17 (close to Empire State Building). It is seen that Columbia 

University is in close proximity to site #16. In addition, site #15 is located between 
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Roosevelt Island and the Upper Eastside in Manhattan and has only about 2% of the 

potential customers. Nevertheless, it would be challenging to build an infrastructure at site 

#15 since this facility has to be set up on the island to serve its customers. Despite the 

model recommending the construction of stations at site #2 and #13, from a practical 

standpoint, it is not recommended since these facilities contribute to less than 0.5% of the 

demand. Our algorithm does not suggest major locations such as Yankee Stadium and 

Washington Square Arch, which is counter-intuitive. 

Table 3.1 shows the comparison of the locations reported by the current study and 

Rajendran and Zack (2019). It is to be noted that six of the 18 locations proposed in this 

study overlap with the prior literature. We can see that further six facilities are within one 

mile distance apart, whereas, our results propose new infrastructure recommendations for 

the remaining number of sites.  

Table 3.1: Comparison of the locations reported by current study and Rajendran and 

Zack (2019) 

Location 

Current 

Paper 

Rajendran 

and Zack 

(2019) 

Briarwood, Queens (site #1) ✓  

Long Island Sound (site #2) ✓  

Vesey Street, Lower Manhattan (site #3) ✓  

Newark Liberty International Airport (site #4) ✓ ✓ 

61st Street, Brooklyn (site #5) ✓  

JFK International Airport (repeated twice) (site #6 and 

#11) 

✓ ✓ 

Douglass Street, Brooklyn (site #7) ✓ ✓ 

Woodland, Bronx (site #8) ✓  

South Central Park (site #9) ✓  

Grafton Street, Brooklyn (site #10) ✓ ✓ 

40th Street, near Times Square (site #12) ✓  

Jericho Union District (site #13) ✓  
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LaGuardia Airport (site #14) ✓ ✓ 

Roosevelt Island (site #15) ✓  

West Harlem (site #16) ✓  

5th avenue, Midtown Manhattan (site #17) ✓  

Lorimer Street, Brooklyn (site #18) ✓  

East 53rd Street, Manhattan  ✓ 

South Congress Avenue, Bronx  ✓ 

43rd Street, Long Island City, Queens  ✓ 

Old Orchard Street, West Harrison  ✓ 

84th Avenue, Jamaica, Queens  ✓ 

97th Street, Transverse, Manhattan  ✓ 

Grand Blvd, Westbury  ✓ 

West 36th Street and 7th Avenue, Manhattan  ✓ 

Audubon Avenue, Manhattan  ✓ 
Note: ✓ means the location is present in the study.  means location is not present in the study.  means the 

location reported by Rajendran and Zack (2019) and is within a 1-mile radius of the site in the current study 

3.4.2.2. Sensitivity Analysis 

In this section, we examine the influence of the four key input parameters appertaining to 

the performance of the model used in the current study. Table 3.1 presents a comparison 

of the results generated in all the cases with the findings discussed by Rajendran and Zack 

(2019) and using the traditional k-means algorithm. 

3.4.2.2.1. Time savings (TS) 

In accordance with the assumptions made in Section 3.2, ATS will only be availed by a 

customer if there is a time saving of at least 40% compared to ground transportation 

(Holden and Goel, 2016). The performance of the proposed approach is investigated by 

linearly varying the time savings (TS) percentage (Table 3.2). It is observed that the change 

in TS does not impact the number of facilities. Further, when compared to the number of 

sites obtained by Rajendran and Zack (2019), we find that the proposed model performs 
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better for all the TS settings with a percentage deviation of 11%, 14%, 15% and 10% for 

TS-1 - TS-4, respectively.  

In comparison with the locations proposed by the baseline case, it is seen that site #16 shifts 

1.5 miles south from the original location in TS-3 and 1.5 miles north in TS-4. Similarly, 

site #12 moves in the north direction by a mile in the new settings closer towards South 

Central Park. The new location fulfills 18% of total demand when compared with the initial 

vertistop serving nearly 12% of potential customers. The location of the initial facility 

suggested for South Central Park (site #9) moved across in a similar direction by 

approximately 2.5 miles. The suggested number of stations for various scenarios are shown 

in Figure 3.3.  

Table 3.2 Varying percentage time savings 

Case 

Time 

savings 

(TS) in % 

Passenger 

willingness to fly 

rate (PR) in % 

On-road 

travel limit 

(RL) in 

miles 

Demand 

Satisfaction 

(DS) in % 

# of 

stations 

TS – 1 30 100 1 70 15 

TS – 2 

(Baseline) 
40 100 1 70 18 

TS – 3 50 100 1 70 17 

TS – 4 60 100 1 70 18 
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Figure 3.3: Infrastructure locations for various time-saving scenarios 

3.4.2.2.2. Passenger willingness to fly rate (PR) 

Aviation safety has been proclaimed as a crucial factor by commuters in the literature 

(Cokorilo, 2020; Swadesir and Bill, 2018). Therefore, a certain proportion of users might 

be hesitant in utilizing the ATS. In the baseline scenario, it is assumed that 100% of the 

eligible riders would be willing to fly in the air taxis. In this analysis, the passenger 

willingness to fly rate is decreased from 100% to 70% in steps of 10%. The corresponding 

number of eVTOL stations achieved using the algorithm is shown in Table 3.3. Across 
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various cases, the number of facilities is found to be almost identical. However, when 

compared to the number of sites obtained by Rajendran and Zack (2019), we find that the 

developed approach performs better for all the PR settings with a percentage deviation of 

14.28%, 15.00%, 10.53%, and 15.79% for PR-1 - PR-4, respectively. 

Unexpectedly, it is observed that the number of commuters traveling from Brooklyn is 

reduced by nearly one-third for the PR-2 setting while remaining the same for the other 

two scenarios. It is also suggested to build vertiports near Washington Square Arch and 

Midtown Manhattan (one mile from Empire State Building), which are not suggested in 

the baseline model and provide service to over 7% and 10% customers in PR-2 and PR-4 

respectively. Figure 3.4 depicts the station locations for different PR settings. 

Table 3.3 Altering Passenger willingness to fly rate 

Case 

Time 

savings 

(TS) in % 

Passenger 

willingness to 

fly rate (PR) in 

% 

On-road 

travel limit 

(RL) in miles 

Demand 

Satisfaction 

(DS) in % 

# of 

stations 

PR – 1 

(Base) 
40 100 1 70 18 

PR – 2 40 90 1 70 17 

PR – 3 40 80 1 70 17 

PR – 4 40 70 1 70 16 
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Figure 3.4: Infrastructure locations of various passenger willingness to fly rate scenario 

 3.4.2.2.3. On road travel limit (ML) 

As mentioned above, in the baseline setting, on-road travel distance was limited to one 

mile for the first and the last legs. In this section, this parameter is altered linearly from 0.5 

miles to 1.5 miles, as shown in Table 3.4. As expected, the number of sites increased by 

approximately 70% for the first scenario (ML-1), relative to the baseline setting, and 

reduced by 50% for the last case (ML-3). Furthermore, comparison with Rajendran and 
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Zack (2019) showcased a 7.94%, 14.28% and 10.00% deviation in the number of air taxi 

stations in the current study for settings ML-1 – ML-3.  

It is noticed that the majority of the demand (approximately 60%) is fulfilled by only ten 

facilities (18% of total sites) in ML-1. Other newly suggested potential centers are Staten 

Islands, Jamaica, and Madison Square Garden. Furthermore, in ML-3, site #12 is relocated 

by a mile north where the number of users is doubled when compared with the baseline 

case. Thus, it is recommended to build a large vertiport to cater to this extra demand, as 

showcased in Figure 3.5. 

Table 3.4 Varying on-road travel limit 

Case 

Time 

savings 

(TS) in % 

Passenger 

willingness to fly 

rate (PR) in % 

On-road 

travel limit 

(RL) in miles 

Demand 

Satisfaction 

(DS) in % 

# of 

stations 

ML – 1 40 100 0.5 70 58 

ML – 2 

(Baseline) 
40 100 1 70 18 

ML – 3 40 100 1.5 70 9 

  

  



40 
 

 

Figure 3.5: Infrastructure locations for different on-road travel limit scenario 

 

3.4.2.2.4. Demand satisfaction (DS) 

In the baseline case, we assumed that 70% of the total customers would be eligible to avail 

of the ATS. In this analysis, the demand satisfaction rate is varied from 60% to 90%, 

incrementing by 10% for different settings, as shown in Table 3.5. A linear increase in DS 

percentage generates an exponential growth in the number of locations. A similar trend 

was indicated by Rajendran and Zack (2019) as well. It is seen that the number of locations 

outside the five major boroughs also increases, and it is recommended that the logistics 

company conducts a market study to determine the feasibility of stations from these hubs. 
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Figure 3.6 depicts the recommended facility locations for all the scenarios investigated in 

this subsection. 

The number of infrastructure sites rises by nearly 75% for DS–4 from the base case in the 

present investigation, which is comparable to the previously reported literature. Almost 

three-quarters of the total demand is fulfilled by 25% of sites in DS-3 and DS-4 settings. 

For DS-1, it is proposed to develop a vertistop in a facility close to site #12 (Times Square) 

as the number of customers is observed to double, which is similar to ML-3. The total 

number of eligible riders increased by 29% from DS-1 to DS-2. However, only 13% of the 

growth was observed when the commuter satisfaction level was increased from DS-2 to 

DS-3. A further increase to the next scenario noted only an 11% rise in the overall number 

of rides. 

Table 3.5 Altering the percentage demand fulfillment 

Case 

Time 

savings 

(TS) in % 

Passenger 

willingness to fly 

rate (PR) in % 

On-road 

travel limit 

(RL) in 

miles 

Demand 

Satisfaction 

(DS) in % 

# of 

stations 

DS – 1 40 100 1 60 12 

DS – 2 

(Baseline) 
40 100 1 70 18 

DS – 3 40 100 1 80 30 

DS – 4 40 100 1 90 78 
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3.4.3. Comparison of Results of the Proposed Method with Prior Methods 

3.4.3.1. Evaluation using the DBI and Number of Clusters 

In order to evaluate the results and compare the performance of the proposed approach with 

the existing methods, we examine the DBI metric and the number of stations reported by 

Rajendran and Zack (2019) and those obtained under the traditional k-means algorithm. 

 

Figure 3.6: Infrastructure locations for demand satisfaction scenario 

Based on Table 3.6, it can be noticed that both these measures are observed to be lower 

under the present study than both the traditional k-means algorithm as well as the approach 
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proposed by Rajendran and Zack (2019). This clearly indicates that the proposed method 

outperforms the existing air taxi facility location approaches discussed in the literature. 
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Table 3.6 Comparison of the number of facilities and DBI metric obtained from the current study with the traditional k-means 

algorithm and method discussed by Rajendran and Zack (2019) 

 

Scenario 

Number of stations Davies- Bouldin Index 

Current 

study 

Rajendran and 

Zack (2019)* 

Traditional k-

means* Current 

study 

Rajendran and Zack 

(2019)* 
Traditional k-means* 

# % deviation # % deviation # % deviation # % deviation 

TS-1 16 18 11.11 19 15.79 0.39 0.41 4.87 0.42 7.14 

Base case 18 21 14.28 22 18.18 0.36 0.45 20.00 0.46 21.73 

TS-3 17 20 15.00 20 15.00 0.40 0.45 11.11 0.39 2.56 

TS-4 18 20 10.00 21 14.28 0.39 0.42 7.14 0.42 7.14 

Base case 18 21 14.28 22 18.18 0.36 0.45 20.00 0.46 21.73 

PR-2 17 20 15.00 19 10.52 0.38 0.45 15.55 0.47 19.14 

PR-3 17 19 10.53 19 10.52 0.42 0.43 2.32 0.46 8.69 

PR-4 16 19 15.79 18 11.11 0.39 0.44 11.36 0.40 2.50 

ML-1 58 63 7.94 61 4.91 0.22 0.73 69.86 0.71 69.01 

Base case 18 21 14.28 22 18.18 0.36 0.45 20.00 0.46 21.73 

ML-3 9 10 10.00 14 35.71 0.57 0.39 46.15 0.40 42.5 

DS-1 12 13 7.69 15 20.00 0.42 0.41 2.43 0.43 2.32 

Base case 18 21 14.28 22 18.18 0.36 0.45 20.00 0.46 21.73 

DS-3 30 33 9.09 30 0.00 0.40 0.61 34.42 0.59 32.20 

DS-4 78 85 8.24 82 4.87 0.33 0.75 56.00 0.94 64.89 

*As reported by Rajendran and Zack (2019) 
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3.4.3.2. Evaluation using the Multi-Criteria Decision-Making Approach  

While Section 3.4.3.2 evaluates the effectiveness of the proposed approach theoretically, 

this section compares the model results from a practical standpoint. Based on the five 

criteria discussed in Section 3.1 (i.e., rental cost per month, road facility, average salary 

per year, population coverage, and the total number of estimated trips made by air taxi per 

day per 1000 population), this section analyzes the overall ranking of the location insights 

presented in our study and prior studies. Traditionally, the decision-maker is involved in 

providing the weights for each criterion. Since air taxi is still in the developmental stage, 

we used the weights suggested by Hawas et al. (2016), Tzeng et al. (2002) and Tzeng et 

al., (2005). The scaled weights for rental cost, population coverage, trips per day per 1000 

population, road facility, and employment cost are 0.14, 0.39, 0.26, 0.06, and 0.15, 

respectively. These are used for calculation of the weighted average for each location and 

the overall fitness values.   

Tables 3.7 and 3.8 provide the values for each criterion of all the proposed sites under the 

current research as well as by Rajendran and Zack (2019). The data are obtained from 

multiple publicly available government sources (Department of city planning, NYU 

Furman Center, and United States census bureau). These data are normalized based on 

Equations (3.1) and (3.2), and then the weighted score for each station location is computed 

using Equation (3.3). Based on Equation (3.4), the total score per site of 0.45 is obtained 

for our suggested air taxi stations, which is higher than the score calculated for the location 

results reported by Rajendran and Zack (2019), which is 0.42. This implies that the two-
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phase technique implemented in the present study provides a better solution than the 

existing literature.   

Table 3.7: Values for different criteria for locations obtained in the current study 

Site # 

Rental 

cost 

($/month) 

Population 

coverage 

Trips per 

day per 

1000 

population 

Road 

facility 

(miles) 

Employment 

cost ($/year) 

1 1,800 165,000 0.0281 1 65,000 

2 1,420 12,000 0 2.1 43,000 

3 2,610 148,000 0.8102 0.009 147,641 

4 1,140 128,000 0.1417 0.001 47,000 

5 1,450 146,000 0.0223 0.2 46,229 

6 1,590 139,000 0.1634 0.001 75,300 

7 2,280 116,000 0.2886 0.7 137,000 

8 1,410 150,000 0.0101 0.6 60,000 

9 2,150 153,000 1.8109 0.2 104,000 

10 900 111,500 0.0338 0.001 20,640 

11 1,590 139,000 2.1713 0.001 75,300 

12 2,150 153,000 2.3838 0.07 104,000 

13 2,044 14,000 0.000106 3.2 161,771 

14 1,530 170,000 1.4878 0.001 58,000 

15 2,380 215,000 0.3156 1.4 134,000 

16 1,280 136,000 0.0939 1.5 51,000 

17 2,610 149,000 1.0350 0.4 147,600 

18 2,980 152,000 0.1920 0.5 78,000 
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Table 3.8: Values of various criteria for locations obtained by Rajendran and Zack 

(2019) 

Site # 

Rental 

cost 

($/month) 

Population 

coverage 

Trips per 

day per 1000 

population 

Road 

facility 

(miles) 

Employment 

cost ($/year) 

1 2,490 149,000 0.49 0.001 114,500 

2 1,590 139,000 1.19 0.001 75,300 

3 2,280 116,000 0.11 0.7 137,000 

4 1,300 120,000 0.01 0.3 49,000 

5 1,590 139,000 0.31 0.001 75,300 

6 1,670 164,000 0.06 0.5 67,670 

7 1,690 7,900 0.00 1.3 163,795 

8 1,150 152,000 0.02 0.08 71,200 

9 1,777 15,000 0.00 0.3 142,928 

10 2,610 149,000 0.78 0.001 147,600 

11 1,450 146,000 0.01 0.3 46,229 

12 900 111,000 0.01 0.001 20,640 

13 910 128,000 0.25 0.1 37,500 

14 1,140 128,000 0.08 0.001 47,000 

15 2,610 148,000 0.36 0.001 147,641 

16 1,838 15,000 0.00 0.1 98,065 

17 2,980 152,000 0.12 0.8 78,000 

18 2,610 149,000 0.90 0.001 147,600 

19 1,300 219,000 0.04 0.1 57,500 

20 1,530 170,000 0.80 0.001 58,000 
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21 2,610 149,000 0.61 0.05 147,600 

3.4.4. Implications and Recommendations 

Even though the results obtained in the two studies that are compared in the paper are based 

on NYC, several generic practical implications can be made to extend this for other cities 

as well. First, urban areas having international airports are expected to have a high volume 

of customers using air transport and thus require huge vertistops to be built to satisfy the 

demand. Second, it is anticipated that popular tourist sites and downtown areas of a city 

would be the next highest in terms of proportions of commuters served and require a large 

number of air taxi vehicles at their respective stations. Third, varying percentages of time 

savings and passenger willingness to fly rate have no substantial effect on the total number 

of facilities. Lastly, linear change in on-road travel limit and customer demand satisfaction 

levels causes an increase in the number of customers assisted, and therefore, an exponential 

rise in the number of urban air locations in the city. 

Based on the results and observations, the following managerial recommendations are 

proposed: 

1. The model found a potential to build 16 air taxi stations in NYC with two 

infrastructures being in the neighborhood near Long Island Sound and Jericho Union 

District. 

2. It is essential to launch a large vertiport at JFK, LAG, and New York Liberty 

International Airports since they cater to a combined 60% of the total demand. 

3. It is observed that the average number of dropoffs are greater than the average number 

of pickups in Brooklyn, Queens, Bronx, and Staten Island. Therefore, it is 
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recommended to build smaller vertiports in these areas and the air taxi vehicles to be 

routed back to Manhattan for pickups. 

4. Sites serving South Central Park and West 40th Street (0.2 miles from Times Square) 

are approximately a mile apart. Therefore, a common air taxi station can be developed 

catering to the demand from both locations. 

5. Midtown and Lower Manhattan experience a high volume of commuters due to 

popular tourist attractions such as the Empire State Building, Madame Tussauds, 

World Trade Center, etc. Thus, we propose a high fraction of the fleet to serve the two 

areas. 

6. Only 3% of total customers (approximately 200,000) utilize the four stations in 

Brooklyn; therefore, smaller vertistops are suggested to be built in the region. 

7. The two closest locations in the Brooklyn borough are 61st Street and Grafton, and 

thus, a logistics company might choose to have only one infrastructure site considering 

a low demand.  

8. The most common locations observed across all the cases are JFK International 

Airport, LaGuardia Airport, Newark Liberty International Airport, Times Square, 

Central Park, Empire State Building, and 61st Street, Brooklyn. Therefore, it is 

recommended to begin services in at least these places, if the logistics company has 

operational restrictions.     

3.4.5. Conclusions 

The present study attempts to propose air taxi vertiport and vertistop location decisions in 

metropolitan cities using a two-phase approach. This study addresses the limitation of the 

previous research (Rajendran and Zack, 2019) by considering the number of passengers in 
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each ride as different data records in the model. Based on the estimated air taxi demand in 

New York City (NYC), the potential sites are identified within the city and its 

neighborhood by coupling the multi-criteria warm start technique with an iterative k-means 

clustering algorithm. Our study reports 18 site locations, which is less than the number 

reported in the existing literature. It is also observed that approximately three-fifths of the 

demand is based on the three major airports located in the city.  

Parameters such as percentage of time savings and passenger willingness to fly rate have a 

negligible impact on the number of sites, whereas on-road travel limit and percentage of 

customer demand satisfaction have an exponential effect on the same. Therefore, it is 

essential for logistics companies to take the implications of these factors into account. Also, 

if the organization favors beginning with limited service, then they can consider 

establishing their operation from the seven common locations (JFK International Airport, 

Laguardia Airport, Newark International Airport, Times Square, Central Park, Empire 

State Building and 61st Street, Brooklyn). The performance of the developed method is 

theoretically evaluated by computing the Davies-Bouldin Index (DBI) and the number of 

clusters. Both these measures obtained in the current research are lower than those reported 

by Rajendran and Zack (2019) and the traditional k-means algorithm. To evaluate the 

solution from a practical standpoint, we utilize the multi-criteria decision-making 

technique to compute the total score of the sites suggested in the present study as well as 

in the previous investigation. It is noted that the total score per facility for this research is 

higher suggesting that the proposed model is better than the traditional k-means and 

Rajendran and Zack (2019), even with looking at more data points. 
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However, there are certain limitations in the present research. The current investigation 

does not consider tactical and operational level decisions for the effective functioning of 

the facility. Therefore, a study on policies involving scheduling, routing, number of 

vehicles at each location, etc. can be considered as a potential area of improvement. 

Moreover, it is assumed that a traveler is eligible to avail of the services if only they have 

at least 40%-time savings. However, a customer’s mode choice could be more complicated. 

Future studies could involve examining other factors, such as cost and wait time, in order 

to determine overall demand. Also, a mathematical or simulation model could be 

developed to aid the logistic companies in deciding the set of sites to be developed in 

multiple phases to mitigate the impact of unknown variables such as community 

acceptance, safety record etc.      
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Chapter 4: Single Objective Model for Multi-Phase Location Decision 

 

In this chapter, a  facility selection model is developed using an iterative clustering 

algorithm with a mathematical model to identify potential vertiports and vertistops for air 

taxis in a metropolitan city. Previous literature on strategic location of air taxis (Holden 

and Goel, 2016; Rajendran and Zack, 2019) suggests certain unique constraints that are 

incorporated in the present study. First, a customer is eligible to utilize ATS only if the 

estimated time saved is more than 40% when compared with the estimated time through 

ground transportation. Second, the first and last leg of the trip should not exceed one mile 

respectively. Third, minimum demand fulfillment rate is satisfied i.e. at least 70% of the 

eligible passengers have to avail the eVTOL services. Therefore, a clustering algorithm 

which enables the decision-makers to adjust the specific number of cluster centers is used 

to suggest certain air taxi station locations. The value of the centroids is increased until all 

the constraints mentioned above are satisfied. However, any logistic company would intend 

to minimize the number of facility locations and thus, the objective of the algorithm is to 

minimize the number of stations while fulfilling the above conditions. The results from the 

first stage of the research are used as an input for the mathematical model which is used to 

determine the specific locations to be opened in each phase while maximizing the overall 

demand fulfillment.     

4.1 Clustering algorithm 

A traditional 𝑘-means algorithm minimizes the squared Euclidean distance between m 

objects and their respective cluster center, as shown in Equation 4.1 (Bock, 2008). Where, 
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𝑥𝑐 is the cluster center for point 𝑐. On the other hand, partitioning around medoids (PAM) 

focuses on minimizing the total dissimilarity between the data points and the nearest k 

representative object in the data, also known as medoid, making it more robust than the 𝑘-

means technique. Equation 4.2 presents the objective function for PAM (Schubert and 

Rousseeuw, 2019). A typical PAM algorithm integrates two techniques called BUILD and 

SWAP for initial cluster selection and generates locally optimum solutions (since the 

global optimum problem is NP-hard) by improving the clusters, respectively (Schubert and 

Rousseeuw, 2019). 

  

𝑃 =  ∑ |𝑥⃗ − 𝑥𝑐|2

𝑥⃗ ∈ 𝑚

  →     𝑚𝑖𝑛.  𝑃 
(4.1) 

min𝑘=1...𝐾 ∑  𝑑(𝑥𝑖, 𝑚𝑘 )

𝑚

𝑖 = 1

 
(4.2) 

For initial construction using the BUILD algorithm, a point that has the smallest distance 

to all other points in the data set is considered as the first medoid. Subsequently, further 

𝑘 − 1 points that reduce the value of Equation (4.2) are considered as medoids. Each data 

point is assigned to the nearest specific cluster. The SWAP algorithm then considers all 

possible exchanges between a non-medoid and medoid similar to a greedy steepest-descent 

method to improve the initial clustering. This is repeated until no further reduction of the 

objective function is possible. However, this technique increases the run time of the 

algorithm significantly, making it complicated to use for large data sets (Schubert and 

Rousseeuw, 2019). To reduce this complexity, Kaufman and Rousseeuw (1986) developed 



 

54 
 

a technique known as clustering large applications (CLARA), which is a variant of 

partitioning around medoids (PAM). 

CLARA chooses a sample set from the complete data record and then utilizes PAM to 

produce optimal medoids for that representative data. In order to mitigate sampling bias, 

the process of sampling and clustering is repeated numerous times until the next medoid 

sets are generated as final clustering (Kaufman and Rousseeuw, 1990). It has a faster 

execution time and requires less storage when compared with PAM (Schubert and 

Rousseeuw, 2019). A study by Wei et al. (2003) concluded that CLARA outperformed 

other algorithms in clustering quality along with computational time and is less susceptible 

to data randomness and cluster distinctness degree. Therefore, we use CLARA to 

determine the optimal station locations for our study. Table 4.1 presents the code used by 

CLARA for a data set 𝐷 (Kaufman and Rousseeuw, 2008).        

Table 4.1: Pseudo Code for CLARA Algorithm 

 

1 Create number of samplings = 𝑠; 

2 Repeat ‘𝑠’ times 

3        Draw sample data set from 𝐷; 

4        Apply PAM to generate a set of medoids 𝑀 = {𝑚1, 𝑚2. . . . . . 𝑚𝑘}; 

5        Compute total score 𝑇𝑆 = ∑  𝑑(𝑥𝑖, 𝑚𝑘 )𝑚
𝑖 = 1 ;   

6        If     

7              𝑇𝑆 < minimum total score;    

8              Return 𝑀; 

9        End If; 

10 End Repeat; 

11 Assign all data points to 𝑀; 
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4.2 Mathematical model 

The locations suggested by the clustering algorithms are used as an input for the linear 

programming model, which is developed to determine the set of stations to be opened in 

different phases. The constraints are selected based on several parameters affecting the 

strategic location decisions as suggested in previous literature (Hawas et al., 2016, Tzeng 

et al., 2002, Tzeng et al., 2005). The set of notations used in the current study are given 

below -  

 

Let 𝑖 be set of phases ∀ 𝑖 = 1, 2, 3, … . . 𝐼 

Let 𝑗 be set of locations 

  

Decision variables 

∀ 𝑗 = 1, 2, 3, … . . 𝐽 

  

δij 1 if location 𝑗 is opened in phase 𝑖 otherwise 0 

Input parameters  

𝑟𝑗  Rental cost at location 𝑗 

𝑝𝑗  

  

𝑡𝑗  

  

𝑠𝑗  

  

𝑓𝑗  

Population density at location 𝑗 

  

Number of trips per day per 1000 customers at location 

𝑗 

  

Average salary of population density at location 𝑗 

  

Distance between an ATS station at location 𝑗 and its 

nearest road (Road facility) 

𝐷𝑗  Demand at each location 𝑗 

𝑁𝑖  Maximum number of sites to be opened at each phase 𝑖 

𝑅𝑖  Maximum allowable budgeted rental cost for each 

phase 𝑖 

𝑆𝑖  Maximum allowable salary expenditure in phase 𝑖 



 

56 
 

𝑇𝑖  Maximum allowable number of trips per day per 1000 

population for phase 𝑖 

𝐹𝑖  Maximum allowable distance from the nearest road 

facility for phase 𝑖 

 

 

Objective function –  

Max. ∑ ∑ 𝛿𝑖𝑗 × 𝐷𝑗𝑗𝑖        (4.3) 

   

Constraints –  

 

∑ δ𝑖𝑗  =  1   

𝑖

 ∀ 𝑗 (4.4) 

 

∑ δ𝑖𝑗  ≤  𝑁𝑖   

𝑗

 ∀ 𝑖 (4.5) 

 

∑ 𝑟𝑗  × δ𝑖𝑗  ≤  𝑅𝑖   

𝑖

 ∀ 𝑖 (4.6) 

 

∑ 𝑡𝑗  × δ𝑖𝑗  ≥  𝑇𝑖   

𝑖

 ∀ 𝑖 (4.7) 

 

∑ 𝑠𝑗  × δ𝑖𝑗  ≤  𝑆𝑖   

𝑖

 ∀ 𝑖 (4.8) 

 

∑ 𝑓𝑗  × δ𝑖𝑗  ≥  𝐹𝑖    

𝑖

 ∀ 𝑖 (4.9) 

 

The objective is to maximize the demand fulfillment at each phase. The demand data at 

each location is generated based on the total number of riders eligible to avail of the air 
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taxi facility. The constraints utilized in the model are given by Equations (4.4) – (4.9). 

Equation (4.4) ensures that a facility can be opened in only one phase. Equation (4.5) places 

a restriction on the number of establishments to be deployed in each phase. Previous 

research on multi-period facility locations concluded that more stations should be opened 

during the earlier periods to maximize the total flow (Chung and Kwon, 2015; Li et al., 

2016). Therefore, in the present investigation, 𝑁𝑖  is set as a decreasing value for each phase. 

Equation (4.6) describes that the total cost of renting the site should be less than the 

budgeted rental cost for that specific phase. Similarly, Equation (4.7) ensures that the 

average salary is less than the average base salary. On the other hand, Equations (4.8) and 

(4.9) represent that the total number of trips per day per 1000 population and accessibility 

of air taxi stations to a major road must be greater than their respective threshold values.   

4.3. Results 

4.3.1 Case Study 

4.3.1.1 Clustering Algorithm  

Since the air taxi operations are currently in the trial and testing phase, the potential demand 

is assessed to be a fraction of the current demand of regular taxis. The dataset used in 

previous literature (Rajendran and Zack, 2019) has been employed in the present 

investigation. The subset of the data records for estimating air taxi demand is considered 

based on assumptions mentioned by Holden and Goel (2016) and Rajendran and Zack 

(2019), which are also discussed in Section 4. Certain records associated with each data 

point are pickup and dropoff coordinates, total distance covered, trip time, date of the trip, 

and number of passengers on each trip. Approximately 300 million taxi records are 

considered in a period of two years, out of which 20 million are removed during the data 
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cleaning process. Data pre-processing stage consists of eliminating all missing, negative, 

zero, and erroneous values. In the present study, each customer is considered as an 

individual trip, unlike the values used by Rajendran and Zack (2019). Based on the given 

constraints, close to 6.5 million data points are utilized for the clustering algorithm in the 

present study, whereas the previous investigation considered about 4 million data points. 

 

For the base case, our model generates a total of 14 sites across five boroughs in New York 

City (Manhattan, Queens, Brooklyn, Bronx, and Staten Island) when compared with 

Rajendran and Zack (2019), who proposed 21 locations. This indicates that CLARA 

provides better results when compared to 𝑘-means as it is non-sensitive to noise and 

reduces outliers. This was also observed in previous studies comparing the two algorithms 

(Arora et al., 2016; Gupta and Panda, 2019). Seven sites (#2, #3, #5, #9, #11, #12 and #13) 

are suggested to be built in Manhattan while four locations (#1, #4, #7 and #8) are proposed 

in Queens. Similarly, the number of stations identified in Brooklyn and New Jersey are two 

(#6 and #10) and one (#14), respectively. Table 4.2 presents the locations along with their 

site number.  

 

It is observed that the locations associated with the two airport stations in Queens (#8 and 

#1), John F. Kennedy (JFK) and LaGuardia International Airport (LAG) cater to over 55% 

of the total customer demand. Surprisingly, demand from the Newark Liberty International 

Airport (#14) is found to be the least when compared to other sites. Rajendran and Zack 

(2019) also reported similar findings. Therefore, it is proposed to build a large vertiport at 

JFK and LAG for maximum demand fulfillment. Following that, Washington Square Park 
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(#11), W 31st Street near Empire State Building (#12), and Time Square (#13) in 

Manhattan cater to about 30% of the aggregate demand. However, the algorithm does not 

suggest major locations such as Yankee Stadium in Bronx and Columbia University in 

Upper Manhattan, which is counter-intuitive.     

 

Table 4.2: Cluster Centers Suggested by the Algorithm 

Center 

Number 

Locations 

1 LaGuardia International Airport 

2 263 Nagle Avenue 

3 881-899 Amsterdam Avenue 

4 36th Street, Astoria, Queens 

5 854 Park Avenue, near Central Park 

6 Prospect Park West, Brooklyn 

7 Ozone Park, Queens 

8 John F. Kennedy International Airport 

9 200 Water Street, Lower Manhattan 

10 84th Street, Brooklyn 

11 Washington Square Park 

12 W 31Street  near Empire State Building 

13 Times Square 

14 Newark Liberty International Airport 
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4.3.1.2 Mathematical Model 

Based on the results obtained from the clustering algorithm, all 14 sites can be expected to 

be functioning within three phases for the base scenario. Existing literature on multi-period 

strategic location decisions suggests the deployment of more stations in the earlier phase 

to maximize demand fulfillment than later stages (Chung and Kwon, 2015; Li et al., 2016). 

Therefore, for the base setting, it is assumed that six stations would be opened in the first 

phase, followed by five and four in the second and third periods, respectively. The impact 

of changing these values on each center is discussed under the sensitivity analysis section. 

It is observed that all suggested sites are located in a different district. The data required 

for each neighborhood (average rental cost, trips per day per 1000 population, average 

salary, and road facilities) is obtained from various official sources (Department of City 

Planning, NYU Furman Center, and United States Census Bureau). The mathematical 

model is developed and solved using the simplex linear programming solver in Microsoft 

Excel.  

 

Figure 4.1 shows the various infrastructure locations suggested in the three phases. It is 

observed that approximately half of the overall air taxi demand is fulfilled by the six 

stations in Phase #1. However, Ozone Park (#7) caters to less than one percent of the 

demand, and therefore, it is recommended that logistic companies develop one common 

vertiport to serve the customers at Ozone park and its nearest proposed station at JFK 

International Airport (#8). In Phase #1, the model indicates three centers to be built in 

Manhattan, two in Queens and one in New Jersey (#14). Phases two and three have a 

demand satisfaction rate of almost 40% and 10%, respectively. Similar to Phase #1, the 
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model suggests three stations be developed in Manhattan in Phase #2 along with facilities 

for LaGuardia International airport (#1) and 84th Street, Brooklyn (#10).  

 

 

Figure 4.1: Infrastructure Locations to be Opened in Different Phases 

 

4.3.2 Sensitivity Analysis 

The mathematical model recommends various sites to be developed in certain phases. In 

this section, we examine the impact of various input parameters on the suggested phase for 

each center.   

4.3.2.1 Number of stations in each phase 

As mentioned in the previous section, the number of stations in the base case decreases 

based on the sequence (6, 5, 3) for the three phases, respectively. The aim of this section is 

to analyze the impact of variation in the tuple on certain locations and the overall demand 
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realization. Multiple scenarios that are considered in the present study with regards to 

change in the number of centers are exponential decrease (9, 3, 2), linear decrease (7, 5, 2), 

exponential increase (2, 3, 9), linear increase (2, 5, 7) and balance (5, 5, 4). It is observed 

that the highest demand satisfaction rate in Phase #1 (approximately 60%) is achieved for 

an exponential increase in sites. Both LAG (#1) and JFK (#8) are recommended in the first 

phase in this scenario. Linear increase and linear decrease showcase the maximum 

percentage demand fulfillment for Phase #2 (around 70%) and Phase #3 (around 65%), 

respectively. In the balanced setting, the demand satisfaction follows an increasing trend, 

which is counter-intuitive. 

 

In terms of locations, it is interesting to note that the model suggests LAG (#1) in Phase #2 

in all scenarios except for an exponential increase in the number of stations. Newark 

Liberty International Airport (#14) is reported in Phase #1 for every instance besides the 

exponential and linear increase settings. Another station near Central Park (#5) is proposed 

in Phase #1 for all the cases in which the number of sites decreases while it is recommended 

for higher stages in other situations, as shown in Table 4.3. Similarly, 881 Amsterdam 

Avenue (#3) is indicated in Phase #1 for both linear and exponential decrease while it is 

desired in Phase #3 for other instances. Only Ozone Park (#7) and Washington Square Park 

(#11) are found to be in the same phase between exponential increase and exponential 

decrease. On the other hand, only six centers remain in the common phase between linear 

increase and linear decrease.      
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Table 4.3: Variation in Number of Stations in Each Phase 

Center 

Number 

Base 

Case (6, 

5, 3) 

Exponential 

Decrease   

(9, 3, 2) 

Linear 

Decrease 

(7, 5, 2) 

Exponential 

Increase   

(2, 3, 9) 

Linear 

Increase 

(2, 5, 7) 

Balance 

(5, 5, 4) 

1 2 2 2 1 2 2 

2 1 3 1 3 3 1 

3 2 1 1 3 3 3 

4 3 1 3 2 3 3 

5 1 1 1 3 2 3 

6 3 1 1 3 2 2 

7 1 2 1 2 1 1 

8 1 3 2 1 3 3 

9 1 1 2 3 2 2 

10 2 1 2 3 2 2 

11 3 2 1 2 3 2 

12 2 1 2 3 1 1 

13 2 1 3 3 3 1 

14 1 1 1 3 3 1 

 

4.3.2.2 Rental Cost (RC) 

In this section, the value of the budgeted rental cost (RC) is varied from the base setting 

(RC1) for all three phases. The rental cost is increased in steps of 5% while keeping the 

number of facilities for each stage constant for all settings. It is observed that a 5% rise in 

cost from RC1 to RC2 led to six locations being shifted from their initial phase. Both 

Central Park (#5) and JFK (#8) are recommended from Phase #1 to Phase #3 in RC2, which 

results to an increase in the demand fulfillment for Phase #3 to approximately 45%. On the 
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other hand, only 36th Street, Astoria (#4), which has one of the lowest rental costs amongst 

all the other locations, switched from Phase #3 to Phase #1. Similarly, two stations, 

Prospect Park (#6) and Washington Square Park (#11), changed from Phase #3 to Phase 

#2. However, the demand satisfaction for Phase #2 in RC2 remains similar to the base case 

scenario. It is interesting to note that despite a linear increase in the cost, no further changes 

are obtained in the other scenarios. Table 4.4 presents the suggested phases for all the sites 

for various rental cost cases considered in the present study.         

 

Table 4.4: Variation in Each Phase for Changes in Rental Cost 

Center 

Number 

RC1 (Base case) RC2 RC3 RC4 RC5 

1 2 2 2 2 2 

2 1 1 1 1 1 

3 2 1 1 1 1 

4 3 1 1 1 1 

5 1 3 3 3 3 

6 3 2 2 2 2 

7 1 1 1 1 1 

8 1 3 3 3 3 

9 1 1 1 1 1 

10 2 3 3 3 3 

11 3 2 2 2 2 

12 2 2 2 2 2 

13 2 2 2 2 2 

14 1 1 1 1 1 
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4.3.2.3 Number of trips per day per 1000 customers (TR) 

 

As described by Hawas et al. (2016) and Meyer (2001), the number of trips per day per 

1000 customers (TR) depicts the transportation supply. In this section, TR is varied from 

TR1 to TR5 in steps of 10% for all three phases simultaneously with the values in TR3 

considered in the base case. As expected, a rise in the initial number of available air taxi 

trips per day led to a higher overall demand satisfaction in Phase #1, supporting the findings 

in previous literature. It is observed that the locations having the highest trips per day per 

1000 customers are selected in Phase #1 for TR5. Therefore, LAG (#1) and W 31st Street 

(#12) are recommended to be developed in Phase #1 for the TR5 scenario, while the model 

proposes both these locations to be built in Phase #2 for all other cases. These two sites 

contribute heavily to increasing the customer fulfillment rate for Phase #1 from the base 

case.  

 

On the other hand, a decrease in the number of trips has a minimal impact on the demand 

satisfaction rate. While most stations are proposed in a different phase, the overall demand 

percentage is almost the same for TR1 and TR2 with the base settings (TR3). While Times 

Square (#13) is expected to be in Phase #1 for TR5 because of a high number of trips per 

day per 1000 customers, it is also proposed at the same stage for TR1. Interestingly, the 

model recommends the location in Phase #2 for all other settings. Another key observation 

is that only three locations, 263 Nagle Avenue (#2), 36th Street, Astoria (#4), and JFK (#8) 

remain in the same phase for all five scenarios. This indicates that TR is an important 

criterion for making air taxi infrastructure decisions. Table 4.5 shows the various vertiport 

and their corresponding phases for different TR settings.  
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Table 4.5: Variation in Each Phase for Changes in Number of Trips per Day per 1000 

Customers 

Center 

Number 

TR1 TR2 TR3 (Base case) TR4 TR5 

1 2 2 2 2 1 

2 1 1 1 1 1 

3 2 1 2 1 3 

4 3 3 3 3 3 

5 3 3 1 2 2 

6 3 1 3 1 3 

7 1 3 1 2 2 

8 1 1 1 1 1 

9 2 2 1 3 2 

10 1 1 2 1 2 

11 1 1 3 1 1 

12 2 2 2 2 1 

13 1 2 2 2 1 

14 2 2 1 3 2 

 

4.3.2.4 Average Salary (AS) 

Based on existing trends, it is expected that the average employee salary (AS) would 

increase for all neighborhoods in the coming years (Duffin, 2020). Therefore, in this 

section, AS is increased linearly from the base case (AS1) by 5% till AS5. Only five 

locations remain in the same phase for all the scenarios in this analysis, out of which four 

are in Phase #1 (263 Nagle Avenue (#2), Central Park (#5), Ozone Park (#7), and Newark 

Liberty International Airport (#14)). Another interesting result to note is that despite this 
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consistency, the demand fulfillment in Phase #1 reduces drastically with a rise in employee 

wages. This is probably because the model prefers cheaper locations at the initial stages. 

The phases suggested for different locations are presented in Table 4.6.  

 

It is worth noting that there is no change in any scenario after AS3, with Phase #2 having 

the highest customer satisfaction rate (approximately 70%) when compared with the other 

two stages. Another key pattern observed is that 881 Amsterdam Avenue (#3) and Times 

Square (#13) is recommended in Phase #2 for AS1 and in Phase #1 and Phase #3 for all 

other settings. While it is expected that the logistic companies would prefer minimizing the 

average employee salary, a separate case is considered in the present investigation for 

maximizing customer salaries. This factor is examined to identify the sites most easily 

affordable by the consumers. However, the model shows an infeasible solution and requires 

further research in this area.    

 

Table 4.6: Variation in Each Phase for Changes in Average Salary 

Center Number AS1 (Base 

case) 

AS2 AS3 AS4 AS5 

1 2 2 2 2 2 

2 1 1 1 1 1 

3 2 1 1 1 1 

4 3 2 3 3 3 

5 1 1 1 1 1 

6 3 2 1 1 1 

7 1 1 1 1 1 

8 1 3 2 2 2 
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9 1 2 2 2 2 

10 2 3 2 2 2 

11 3 2 3 3 3 

12 2 1 2 2 2 

13 2 3 3 3 3 

14 1 1 1 1 1 

 

4.3.2.5 Road Facility (RF) 

Road facility (RF) is described as the features required for the utilization of alternative 

vehicles (Tzeng et al., 2005). In this section, it is varied with 10% intervals, and the impact 

of reducing (RF1 and RF2) and improving (RF4 and RF5) road facilities are investigated 

in comparison to the base case (RF3). As expected, creating easier access to the vertistops 

and vertiports led to an increase in the demand satisfaction rate in Phase #1. This is because 

better accessibility leads to certain important sites such as Washington Square Park (#11), 

W 31st Street (#12), and Times Square (#13) to be recommended in Phase #1 for RF4 and 

RF5. All three stations are proposed in later stages for all other scenarios.    

 

Interestingly, the model suggested locations having the two highest demand in JFK (#8) 

and LAG (#1) in Phase #3 for RF2 and RF5, respectively. Potential reasoning for this could 

be that both JFK and LAG are situated in the outskirts of Queens, and any change in road 

infrastructure might have an impact on facilitating customer access. It is observed that only 

263 Nagle Avenue (#2), 36th Street Astoria (#4), and Ozone Park (#7) remain in the same 

stage for all five cases. Table 4.7 showcases the different phases recommended for each 

station.  
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Table 4.7: Variation in Each Phase for Changes in Road Facility 

Center 

Number 

RF1 RF2 RF3 

(Base case) 

RF4 RF5 

1 2 2 2 2 3 

2 1 1 1 1 1 

3 2 1 2 3 2 

4 3 3 3 3 3 

5 1 2 1 2 3 

6 3 1 3 3 2 

7 1 1 1 1 1 

8 1 3 1 1 1 

9 1 1 1 2 2 

10 2 2 2 1 2 

11 3 3 3 1 1 

12 2 2 2 2 1 

13 2 2 2 1 1 

14 1 1 1 2 2 

      

4.4 Managerial Implications 

While the present study focuses on integrating the clustering algorithm and linear 

programming model for strategic infrastructure decisions in New York City, the 

methodology and several related implications can be replicated for other major cities, as 

well. Based on the results obtained, the following managerial recommendations are 

proposed: 

1. Based on results from the clustering algorithm, there is a potential to build 14 

stations in NYC with seven facilities proposed in the Manhattan borough.  
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2. Based on the taxi data, larger vertiports are suggested for JFK (#8) and LAG (#1) 

since they serve approximately 55% of the overall demand.  

3. It is not essential to develop a center at Ozone Park (#7) in Phase #1 as it caters to 

less than one percent of customers. Interested users can leverage the nearest station 

at JFK. 

4. Similarly, only a negligible proportion of consumers are expected to avail the air 

taxi facilities from Newark Liberty International Airport (#14). Therefore, it is 

recommended not to provide initial services until latent demand arises.  

5. It is noticed that market demand in Brooklyn is fairly low despite having a few 

popular tourist destinations such as Prospect Park and Ozone Park. Therefore, small 

vertistops are suggested to be constructed for these sites. 

6. It was observed that CLARA performed considerably better than the 𝑘-means 

clustering algorithm for a large volume of data. 

7. The total number of air taxi facilities to be developed in each phase has a significant 

impact on the overall demand fulfillment for all stages. 

8. The logistic companies can prefer to set up less number of infrastructure locations 

during the initial phase to observe customer response to the product before 

investing heavily in other locations. In such a situation, an exponential increase in 

the number of stations and balanced scenarios would give a fairly high demand 

satisfaction rate for Phase #1 while minimizing incurred cost.  

9. Results indicate that varying percentages of budgeted rental cost and employee 

salary have minimal effect on the total number of stations. 
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10. A linear increase in the number of trips per day per 1000 customers favors the 

locations having higher demand during the initial phases.  

11. While it was expected that improving road facilities would expand the demand 

satisfaction rate in Phase #1, it was interesting to note that no substantial changes 

were viewed for decreasing road facilities when compared with the base case. 

 

4.5 Conclusions 

The current research focuses on proposing optimal infrastructure locations for the air taxi 

facility in urban cities using a two-step procedure. While New York City was chosen as a 

case study in the present investigation, the procedure can be easily replicated for any other 

major city. The first step was to obtain the current taxi records from a prior study. After 

that, they were pre-processed, approximately 6.5 million data points were selected as the 

potential demand. clustering large applications (CLARA) was utilized to generate 14 ideal 

sites satisfying the customer eligibility constraints mentioned in the available literature. 

Next, a linear mathematical model was developed to recommend specific stations to be 

built in multiple stages. This would give logistic companies an opportunity to further 

analyze the market and improve the existing services. The constraints chosen in the model 

were based on key factors impacting the strategic location decisions in previous studies. 

Finally, a sensitivity analysis was conducted to study the influence of these constraints on 

the centers and their corresponding phases.    

 

The present study reported lesser potential locations than the existing literature. The base 

case assumed six, five, and three sites to be built respectively in order to maximize the 
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demand fulfillment. Approximately 50% of the overall demand was satisfied in Phase #1. 

Whereas Phase #2 and #3 had close to 41% and 9% demand completion rate. It was 

observed that out of the 14 stations, the two major airports in the city (JFK and LAG) 

catered to over half the potential demand. However, only JFK was proposed to be 

developed in Phase #1, while LAG was suggested in Phase #2 for the base setting. 

Parameters, such as the number of stations to be recommended in each phase, the number 

of trips per day per 1000 customers, and road facilities, had a substantial impact on the 

demand fulfillment for each stage. It is expected that the air taxis would improve citywide 

transportation, and the current research could provide a foundation for logistic companies 

that might be interested in venturing into the eVTOL market.  

 

While the current investigation is based on providing strategic decisions on urban air 

mobility, several operational and tactical level insights have not been considered. Future 

work could involve researching optimal scheduling and effective routing of air taxi 

vehicles to reduce operational costs. Furthermore, the clustering algorithm does not take 

certain conditions, such as an allowance to fly over private property, accepted noise level, 

etc., into account. Therefore, a study on the policies involved can be conducted, which 

could further enhance the performance of the suggested algorithm. Additionally, only the 

commuter taxi data have been considered in this research. However, additional demand 

can arise from other sources of public transportation and on-demand taxi services such as 

Uber. Therefore, complementary market studies can be performed in the future to analyze 

the extra demand and its impact on the suggested infrastructure locations.      
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Chapter 5: Capacitated Vertiport and Charging Station Location-

Allocation Problem for Air Taxi Operations with Battery and Fleet 

Dispatching Considerations 

 

Although the operation of air taxis is similar to that of helicopters, several challenges might 

arise when they are being used for frequent everyday commutes. First, the sizing and 

placement of regular operating stations and charging stations is a long-term strategic 

decision that companies have to make before venturing into the market. Selecting these 

locations will be a function of several characteristics, such as demand density, space 

availability, and accessibility to other facilities (Holden et al., 2018). Second, determining 

the number of air taxis required to serve the customer demand is another strategic decision 

due to low production volume. Third, companies also need to focus on developing 

operational-level decisions for effective functioning, such as charging and maintenance 

scheduling (Cohen et al., 2021; Falck et al., 2018). Fourth, since UAM is in the nascent 

stages, it is important for the businesses to establish ideal pricing strategies to attract more 

customers in the future. Fifth, customer willingness to fly is highly dependent on the 

perceived safety levels especially due to its autonomous nature (Reiche et al., 2019; Ward 

et al., 2021).  

The present chapter is the first to recommend a multiple criteria simulation optimization 

model that facilitates the logistic companies to make strategic, tactical and operational level 

decisions. The strategic level decisions consist of determining the optimal location and 

capacity of skyports, number of air taxis required for maximum demand fulfillment, and 

location and number of charging stations. On the other hand, the tactical and operational 

level decisions include investigating the minimum threshold charge by the vehicles before 
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they are required to be charged again and real-time allocation and dispatching of air taxis, 

respectively. A two-phase approach is employed in the current study to examine the 

problem under investigation. Potential infrastructure locations are identified in phase-1 

using a clustering algorithm known as clustering large applications (CLARA). The 

suggested air taxi centers are used as input in phase-2 for the simulation optimization 

model. The estimated demand for air taxis using the quantitative techniques applied in the 

previous chapters is utilized to test the effectiveness of the proposed model.   

5.1  Methodology  

As discussed earlier, this study proposed a two-phase approach in which the set of potential 

air taxi infrastructure locations is obtained using a clustering algorithm known as clustering 

large applications (CLARA) in phase-1. This is then given as an input to the simulation 

optimization model (phase-2). Figure 5.1 depicts the proposed methodology in the present 

chapter.  

 

Figure 5.1: Proposed Methodology utilized in the current chapter 
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5.1.1 Phase 1: Clustering Algorithm 

In Phase-1, we determine the set of air taxi stations 𝒮 = {𝑠1 , 𝑠2 , 𝑠3 , . . . . . . 𝑠𝐾 } considering 

the estimated air taxi demand data from a prior study. The location of these facilities is 

determined such that at least one station is within a mile radius of (𝜆𝑖
𝑜 , 𝜑𝑖

𝑜) and (𝜆𝑖
𝑑, 𝜑𝑖

𝑑) 

for no less than 𝜀% of the demand instances, based on the conditions specified by prior 

studies (Holden and Goel, 2016; Rajendran and Shulman, 2020). The present study utilizes 

a variant of partitioning around medoids (PAM) known as clustering large applications 

(CLARA) instead of the traditional k-means approach due to the latter generating different 

solutions in each iteration and being sensitive to outliers (Zahra et al., 2015). PAM is a 

more robust approach that minimizes the total dissimilarity between the medoid (or 

centroids) and each data point in the cluster (Schubert and Rousseeuw, 2019). A typical 

PAM technique comprises two algorithms known as BUILD and SWAP. The BUILD 

algorithm is employed to construct initial groups by selecting k centers and assigning other 

data points to the nearest respective clusters. The SWAP algorithm evaluates all possible 

pairwise substitutions between a medoid and a non-medoid. This process is similar to the 

greedy steepest descent method and is continued until no further improvement in the 

objective function can be achieved (Schubert and Rousseeuw, 2019; Struyf et al., 1997). 

However, this approach is computationally expensive, and therefore, in order to decrease 

its complexity, its variation known as CLARA was developed by Kaufman and Rousseeuw 

(1990). CLARA selects a sample set and employs BUILD and SWAP algorithms as 

discussed previously to generate ideal centers for the representative data. This process is 

repeated several times to minimize sampling bias until final solutions are proposed 

(Kaufman and Rousseeuw, 1990). Numerous factors, such as improved clustering quality, 
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less computational time and required storage, make CLARA a superior algorithm for large 

data sets when compared with other techniques (Wei et al., 2003).    

5.1.2 Phase 2: Multiple Criteria Simulation-Optimization 

As discussed earlier, in phase-2, we propose a multiple criteria simulation-optimization 

model that will enable the logistic companies to determine the sizing and placement of 

operating facilities as well as the charging stations, number of air taxis required to serve 

the customer demand, vehicle charging metrics, and air taxi dispatching and allocation. 

Phase-2 determines the total number of vehicles 𝜈𝑝 in the network, optimal station capacity 

𝜏𝑘, and number of charging ports 𝜉𝑘 required at all 𝑘 centers with the objectives of 

minimizing average commuter time in system and wait time, and maximizing vehicle 

utilization. It is assumed that customers arrive at the air taxi station 𝑠 with an arrival rate 

following a Poisson distribution having a mean of 𝜆𝑠. Set of air taxi vehicles 𝒱 =

 {𝜈1, 𝜈2, 𝜈3, . . . . . . . . 𝜈𝑃}, each having a passenger capacity 𝑐 and travel speed 𝜂, is dispatched 

to transport customers from 𝑠𝑎 to 𝑠𝑏 in the air taxi network using the algorithm proposed 

in this phase. 

Recall that 𝑠𝑎𝜖𝒮, 𝑠𝑏𝜖𝒮, where 𝒮 is the set of air taxi locations (𝒮 = {𝑠1 , 𝑠2 , 𝑠3 , . . . . . . 𝑠𝐾 }), 

and was obtained from phase-1 of this research. As indicated earlier, air taxis operate using 

the eVTOL concept. Let 𝑡𝑑  be the landing time of the air taxis. Subsequent to the descend 

of vehicle 𝜈𝑝, existing customers depart 𝜈𝑝 with an unloading time of 𝑡𝑢 and new customers 

who are assigned 𝜈𝑝 enter into the air taxi for a loading duration of 𝑡𝑙 . Following that, air 

taxi departs with a takeoff time of 𝑡𝑘. After dropping off a traveler at station 𝑠𝑏, the 

simulation optimization model decides whether the vehicle can (i) remain idle at 𝑠𝑏, (ii) 
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remain idle at any other station 𝑠𝑓, where 𝑓𝜖𝑆 ∌ 𝑏, (iii) obtain full charge for a duration of 

𝑡𝑒(100 − 𝛾), where 𝑡𝑒 is the time required to charge one unit, and 𝛾 is the current 

remaining charge percentage, (iv) pickup customers at 𝑠𝑏, (v) pickup customers at any 𝑠𝑓, 

𝑓𝜖𝑆 ∌ 𝑏. At the beginning of the day, all vehicles are assumed to be fully charged. The 

charge deteriorates at the rate of 𝛼 per minute, and if the remaining charge reduces below 

the pre-specified threshold level 𝛽, then the air taxi must definitely get fully charged. 

Figure 5.2 presents the flowchart of the model in the current study.  

 

 



 

   
 

7
8
 

 

Figure 5.2: Flowchart of the Simulation Optimization Model  
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5.2 Results 

This section presents the results obtained in the base case and for various sensitivity 

analysis settings. The clustering algorithm was coded in R, and the simulation optimization 

model was developed in SIMIO®.  

5.2.1 Data Description and Input Parameters 

In order to establish a UAM system in metropolitan cities, the present study utilizes the 

quantitative approach explored in previous literature for demand estimation (Holden and 

Goel, 2016; Rajendran and Zack, 2019) in NYC. The data utilized consists of roughly 6.5 

million potential air taxi demand records. A market study by NASA observed that only 

about 60% of the travelers were willing to utilize the UAM services (Goyal, 2018). 

Therefore, the demand setting for the base case is also set at the same level.  

Liu et al. (2021) suggested using fast chargers to reduce the overall time required for 

charging and consequently increase vehicle utilization. Previous literature observed that 

such chargers can completely charge the batteries in 15 minutes (Li et al., 2020; Sieg et al., 

2019). Moreover, most common air taxi types have a flying range of 100 km and an average 

speed of approximately 200km/h (Rajendran and Srinivas, 2020). Therefore, in the present 

research, the air taxi charging and discharging rates are set at 15 minutes and 30 minutes, 

respectively. Based on the recommendation by Holden and Goel (2016), the threshold 

charge before the vehicles require full charging is set at 20%. According to the key eVTOL 

design classifications, the maximum passenger capacity for the base case is set at two 

(Polaczyk et al., 2019).  
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For the simulation optimization model (phase-2), the number of helipads and charging 

ports at each location is varied in the range [1, 5] in steps of 1, while the number of air taxis 

are altered from 30 to 100 in steps of 10 for the optimization add-in. The model is run for 

100 replications and 168 hours (or one week) for all settings. The current study investigates 

key performance metrics such as vehicle utilization, customer time in system and wait 

times. It is assumed that the three criteria have equal priority in the base case. All the 

parameters discussed in this section are varied and the impact on the performance measures 

is reported in Section 5.2.3.  

5.2.2 Base Case 

Since UAM operations are currently in the testing stage, the logistic companies would 

prefer deploying fewer stations to minimize the initial infrastructure and operational costs 

while maximizing demand fulfillment (Straubinger et al., 2021). Therefore, we varied the 

number of centers from one to ten, and observed that when there are five operating stations, 

more than 45% of the overall demand is fulfilled. The percentage increase in the demand 

fulfillment decreases beyond five facilities. For example, previous research by Rajendran 

and Zack (2019) observed 21 skyports to be required across the five boroughs in New York 

for achieving a 70% demand satisfaction rate. The five locations recommended in this 

study are John F. Kennedy (JFK) airport, LaGuardia airport (LAG), Times Square, 

Prospect Park and 55 Kenmare Street. 

Based on the results obtained, the simulation optimization model recommends one port to 

be developed at each hub. It also proposes two charging ports at JFK and LAG each while 
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suggesting one station at the other centers. The three key performance metrics (vehicle 

utilization, customer time in system and wait time) are reported in Table 5.1. Furthermore, 

the model proposes using only 50 air taxis initially to achieve a tradeoff between utilization 

and traveler time in system.  

Table 5.1: Base Case Results  

Performance Measure Value 

Number of operating stations 5 

Number of charging stations 8 

Number of Vehicles 50 

Vehicle Utilization (%) 76.43 

Time in System (minutes) 36.47 

Wait Time (minutes) 14.30 

 

5.2.3 Sensitivity Analysis 

In this section, all the input parameters are varied to investigate their impact on the 

performance metrics (air taxi utilization, average customer time in system and waiting time 

(WT)). Various sensitivity analysis settings are summarized in Table 5.2. 

 

Table 5.2: Sensitivity Analysis Settings 

Setting Demand 

Variatio

n 

(DV) 

Charging 

Time 

(CT) 

Priority 

Settings 

(PS) 

(Utilization, 

WT) 

Vehicle 

Capacity 

(VC) 

Battery 

Threshold 

(BT) 
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                                                    Demand Variation     

DS#1  

(Base 

Case) 

60% 15 min. (0.50, 0.50) 2 20% 

DS#2 70% 15 min. (0.50, 0.50) 2 20% 

DS#3 80% 15 min. (0.50, 0.50) 2 20% 

DS#4 90% 15 min. (0.50, 0.50) 2 20% 

DS#5 100% 15 min. (0.50, 0.50) 2 20% 

                                                   Charging Time     

CT #1 

(Base 

Case) 

60% 15 min. (0.50, 0.50) 2 20% 

CT#2 60% 20 min. (0.50, 0.50) 2 20% 

CT#3 60% 25 min. (0.50, 0.50) 2 20% 

CT#4 60% 30 min. (0.50, 0.50) 2 20% 

                                                     Priority Settings     

PS#1  

(Base 

Case) 

60% 15 min. (0.50, 0.50) 2 20% 

PS#2 60% 15 min. (0.90, 0.10) 2 20% 

PS#3 60% 15 min. (0.10, 0.90) 2 20% 

                                                     Vehicle Capacity     

VC#1 60% 15 min. (0.50, 0.50) 1 20% 

VC#2 

(Base 

Case) 

60% 15 min. (0.50, 0.50) 2 20% 

VC#3 60% 15 min. (0.50, 0.50) 4 20% 

Battery Threshold 

BT#1  

(Base 

Case) 

60% 15 min. (0.50, 0.50) 2 20% 
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BT#2 60% 15 min. (0.50, 0.50) 2 25% 

BT#3 60% 15 min. (0.50, 0.50) 2 30% 

BT#4 60% 15 min. (0.50, 0.50) 2 35% 

BT#5 60% 15 min. (0.50, 0.50) 2 40% 

 

5.2.3.1 Demand Variation (DV) 

As discussed earlier, for the base case, we assume that only 60% of the total eligible 

customers will avail of the air taxi service. In this section, the demand is varied linearly to 

explore the impact of its growth on the proposed network. The optimal number of station 

capacity and charging port capacity required at each skyport is determined using the 

simulation optimization model. It is observed that the minimum skyport capacity and 

charging ports remain constant despite altering the demand.  

As expected, the average commuter travel time and wait time increased linearly by 

approximately 8% and 42%, respectively. This may be due to the fact that customers have 

to wait for other ridesharing passengers to arrive before the air taxi could take off. 

Similarly, the vehicle utilization decreased by 10% from DV#1 (Base Case) to DV#4. This 

is also perhaps because the latter scenario requires the vehicle to carry more passengers 

and therefore is idle for a longer period of time. Table 5.3 presents the impact of demand 

variation on various performance metrics. A paired sample t-test at 95% significance level 

showcases that all three-performance metrics are significantly different for all DS 

scenarios.  
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Table 5.3: Impact of Variation in Various Parameters on Performance Metrics 

Setting Vehicle Utilization (%) Time in System 

(minutes) 

Wait Time 

(minutes) 

Demand Variation 

DS#1 (Base) 76.43 36.47 14.30 

DS#2 75.08* 39.32* 20.91* 

DS#3 72.84* 49.98* 33.33* 

DS#4 69.52* 59.82* 43.61* 

DS#5 67.46* 70.60* 57.38* 

Charging Time 

CT #1 (Base) 76.43 36.47 14.30 

CT#2 71.03* 43.62* 23.61* 

CT#3 67.52* 50.10* 31.58* 

CT#4 62.53* 64.04* 48.81* 

Priority Settings 

PS#1 (Base) 76.43 36.47 14.30 

PS#2 74.35* 34.98* 13.06* 

PS#3 75.73* 35.89* 13.86* 

Vehicle Capacity 

VC#1 67.85* 104.07* 88.58* 

VC#2 (Base) 76.43 36.47 14.30 

VC#3 76.39 29.43* 2.68* 

Battery Threshold 

BT#1 (Base) 76.43 36.47 14.30 

BT#2 75.28* 34.45* 12.46* 

BT#3 73.88* 34.43* 12.94* 
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BT#4 44.47* 60.56* 26.16* 

BT#5 42.42* 60.63* 26.37* 

Note: * denotes significance at 95% significance level 

5.2.3.2 Charging Time (CT) 

A study by Roni et al. (2019) observed that charging batteries comprises approximately 

70% of the total downtime in electric vehicles. Therefore, it is recommended to take 

advantage of fast chargers that will reduce the eVTOL idle time and improve its utilization 

(Liu et al., 2021). However, such chargers are also known to be energy-intensive and higher 

battery degradation (Bennaceur et al., 2021). The charging rate in the base case is based on 

using fast chargers that increase that state of charge by 80% in 15 minutes (Li et al., 2020; 

Sieg et al., 2019). In this section, the impact of increasing the rate of charge in steps of 5 

minutes (Table 5.2) on station capacity and number of charging ports, along with the three 

performance metrics, is examined. 

It is noticed that the overall station capacity and charging ports are not sensitive towards 

variation in vehicle charging rate. Similar conclusions regarding vertiport size were made 

by Rimjha and Trani (2021). Furthermore, the overall air taxi utilization decreases linearly 

with a linear increase in charging time. An approximate 20% decrease is detected from the 

base case (CT#1) to the highest charging rate considered in this study (CT#4). On the other 

hand, the average customer time in system and wait time are exacerbated by nearly 75% 

and 250%, respectively from CT#1 to CT#4. The maximum rise in TIS is seen between 

CT#3 and CT#4 of approximately 27%. Interestingly, the greatest increase in WT is 

between CT#1 and CT#2. Table 5.3 shows the effect of varying the air taxi charging time 
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on the performance measures. It is also noted that all three performance measures are 

significantly different at α = 0.05. 

5.2.3.3 Priority Settings (PS) 

In a multi-criteria problem, various conflicting criteria are assigned a specific priority to 

solve the optimization model (Bandeira et al., 2018; Sherif et al., 2021). In the present 

study factors, such as vehicle utilization and the average time a commuter spends in the 

system, are contradictory. However, in the base case (PS#1), all the performance measures 

are assigned a similar weight. In this section, PS#2 gives a higher priority to air taxi 

utilization, while a higher rank is allocated to customer TIS and WT in PS#3. Interestingly, 

the station capacity at JFK and LAG increases by one each for PS#2 compared with PS#1. 

Simultaneously, the number of charging ports at both locations decreases by one. The 

skyport capacity for PS#3 remains the same as recommended in PS#1. In contrast, the 

overall number of charging stations decreases by one for PS#3. It is proposed to establish 

four charging ports at JFK and one each at Times Square and LAG. Even though altering 

the assigned priority had minimal effect on the results, a paired sample t-test at 95% 

significance level showcases significant difference for utilization, TIS and WT metrics as 

seen from Table 5.3.   

5.2.3.4 Vehicle Capacity (VC) 

As mentioned in the previous section, each air taxi can carry at most two passengers in one 

trip for the base case. However, various eVTOLs that are in development currently have a 

different capacities (Polaczyk et al., 2019). In this section, the vehicle capacity (VC) is 

varied based on different settings, as shown in Table 5.2. As expected, the average 

commuter time in system and wait time decrease exponentially by approximately 250% 
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and 3200%, respectively, with an increase in VC from one to four. It is observed that air 

taxi utilization decreases by 12% from VC#3 to VC#1. This is probably caused because 

the vehicles require frequent charging as they are completing more trips and are thus in an 

idle state. However, there is no discernable variation in the utilization parameter between 

VC#2 and VC#3 because of equal charging rates. This is also supported by the paired 

sample t-test at 95% significance level. Table 5.3 presents the impact of variation in 

passenger capacity on the performance measures.  

The simulation optimization model proposes the station capacity of JFK to increase by one 

for VC#1 when compared to the base case (VC#2) with all other capacities remaining the 

same. Similarly, it recommends an additional capacity to be developed at both LAG and 

JFK for VC#3, with every other station having a constant capacity to the base case. The 

model suggests establishing only one charging port at JFK, LAG and Times Square for 

VC#1 and none at the other locations. On the other hand, a separate charging station is 

required at all centers for VC#3.  

5.2.3.5 Battery Threshold (BT) 

Although no official regulations related to minimum energy reserve for air taxis exist (Melo 

et al., 2020), previous literature suggests having a reserve of at least 20% of the original 

battery capacity (Holden and Goal, 2016; Melo et al., 2020). The current study also utilizes 

the same battery threshold value for the base case (BT#1). This section evaluates the effect 

of incrementing it linearly in steps of 5%. The paired sample t-test displays a significant 

difference for the utilization, TIS and WT at 95% significance level. Approximately 5% 

decrease in performance measures from BT#1 to BT#3 is observed. On the other hand, 
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nearly 70% decrease in the eVTOL utilization is observed for BT#4 and BT#5. 

Simultaneously, the commuter average TIS and WT rose by 66% and 83%, respectively. 

Therefore, we can conclude that the minimum BT can potentially be increased up to 30% 

without any substantial negative impact on the results. However, this would also increase 

the charging frequency, which would consequently lead to a faster battery degradation and 

electricity requirements for charging the vehicles. The minimum station capacities and 

charging ports remain constant for all BT settings.  

5.3 Environmental Impact 

 

The battery technology for powering eVTOL’s is still under the developmental phase. 

According to a research by Melo et al. (2020), several factors such as number of passengers 

in the air taxi, vehicle flying range, altitude etc. impact the life cycle of the battery. They 

also conducted the life cycle analysis to investigate the environmental impact of eight 

different types of batteries supporting UAM. The specific energy varies substantially 

leading to dissimilar environmental impacts for different batteries. They observed that for 

a payload of 175 kg (385 lbs.) and flying range of 100 km, 811-NMC battery had an 

approximate total greenhouse gas (GHG) emission of 200 g CO2/km (313 g CO2/mile). On 

the other hand, According to Environmental Protection Act (EPA), the average greenhouse 

gas (GHG) emission standard for passengers’ cars was set at 178 g CO2/mile for 2021 

(Center for Climate and Energy Solutions, 2020). The total GHG emission 𝜌 for vehicle 

type 𝜔 can be approximated by Equation (5.1). Each air taxi covers nearly 600 miles/week 

(31,200 miles/year) as recorded by the SIMIO simulation software. Therefore, 50 eVTOL’s 

travel a total distance of 1,560,000 miles/year. Similarly, the distance traveled by the 

regular taxis is obtained from the “trip distance”  records available in the taxi data set. 
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Since, for the base case the overall demand satisfaction rate for the five centers considered 

in the present study is approximately 45% and we assume that only 60% of the eligible 

passengers are willing to avail the UAM services, the total distance covered by regular 

taxis is approximated as 141,742 miles/week or 7.37 million miles/year. It is observed that 

the UAM system would reduce the average GHG by approximately 65% annually. 

However, a major limitation of this analysis is that it does not consider the impact of several 

factors such as battery degradation and charging capacity on GHG emissions.  

 

𝜌𝜔  =  Distance traveled by the vehicle  ×  Emission per unit distance 

 

(5.1) 

𝜌𝑎𝑖𝑟 𝑡𝑎𝑥𝑖  =  1,560,000 miles/year ×  313 g 𝐶𝑂2/mile  
 

𝜌𝑎𝑖𝑟 𝑡𝑎𝑥𝑖   =  488,280 kg 𝐶𝑂2 

 

 

𝜌𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑡𝑎𝑥𝑖  =  7,370,000 miles/year ×  178 g 𝐶𝑂2/mile 

 

𝜌𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑡𝑎𝑥𝑖   =  1,311,969 kg 𝐶𝑂2 

 

 
 

5.4 Managerial Implications 

The following managerial insights are recommended based on the results obtained in the 

present investigation: 

i. It is observed that a linear increase in demand leads to a linear rise in air taxi 

utilization and average TIS and WT. Therefore, in case latent demand arises, logistic 

companies can decide to have more vehicles in the system to offset the decline in 

performance metrics.  

ii. Results showcase vehicle utilization decreases substantially with a rise in charging 

time. This also impacts the customer waiting time and time in system. Thus, to 
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mitigate the increased air taxi idle time, the decision-makers can develop additional 

charging ports. However, a cost-benefit analysis would need to be performed to 

realize the effectiveness of establishing more infrastructure.  

iii. While varying the assigned weight has no impact on utilization, TIS and WT as 

discussed in the previous sub-section. It does, however, change the overall station 

capacity and number of charging facilities. Thus, further cost viability study might 

be required to evaluate the pros and cons of the three settings.      

iv. No significant deviation in the performance metrics was found in scenarios that 

increased the station capacity at each location. Consequently, adding more station 

capacities at different skyports might not be advantageous.  

v. The base case recommended 50 air taxis in the system with a capacity of carrying a 

maximum of two customers at once. As discussed in the previous section, increasing 

the vehicle capacity to four led to a considerable decrease in commuter average TIS 

and WT. Therefore, the decision-makers can elect to have vehicles with higher 

passenger capacity. They can also prefer having multiple eVTOLs with different 

capacities. However, further analysis might be required to determine the optimal 

number for the various vehicle types.   

vi. The battery threshold limit can be increased up to 30% without any notable variation 

in the results. Future research can investigate the tradeoff between increasing the 

minimum energy reserve and its environmental impact. 

5.5 Conclusion  

With the increase in the number of privately owned vehicles and rapid economic 

development, traffic congestion has become an inevitable issue in metropolitan cities. In 
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order to ameliorate this situation, several logistic companies are investigating the 

plausibility of employing electric vertical takeoff and landing vehicles known as air taxis. 

The present research proposes a two-phase technique that develops a framework for 

introducing air taxi operations. The first phase recommends the optimal infrastructure 

locations using an iterative clustering algorithm called clustering large applications 

(CLARA).  

The second phase proposes a multiple criteria simulation optimization model that enables 

logistic companies to make the following strategic (long-term), tactical (medium-term) and 

operational (short-term) decisions: (i) location and size of operating facilities (strategic), 

(ii) location and size of charging stations (strategic), (iii) number of air taxis required to 

serve the demand at a certain customer service level (strategic) (iv) threshold minimum 

charge required for efficient air taxi operations (tactical), and (v) allocating and dispatching 

air taxis for customer pickup and vehicle charging in real-time (operational). The model 

makes these decisions considering the objectives of maximizing vehicle utilization and 

minimizing customer time in system and waiting time.  

The clustering algorithm proposes five locations (JFK, Times Square, LAG, Prospect Park 

and 55 Kenmare Street) be developed in NYC that serve approximately 45% of the 

expected UAM demand. The simulation optimization model suggests the minimum 

capacity for each hub to be one. Similarly, it recommends establishing one charging port 

at Times Square, Prospect Park and 55 Kenmare Street and two ports at JFK and LAG. 

Moreover, the ideal number of aircraft in the system is found to be 50. The average 

customer time in system and wait time for this particular setting is observed to be nearly 

36 minutes and 14 minutes, respectively, while the average air taxi utilization is 76%.  
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Sensitivity analysis is conducted by varying the overall demand, charging rate, weight 

assigned to the multi-criteria model, vehicle capacity, and battery threshold. The average 

commuter TIS and WT rise, whereas the overall utilization decreases with a rise in demand 

and rate of charge. On the other hand, all three performance measures are unaffected by a 

change in the priority levels. An increase in vehicle capacity showcases a considerable 

reduction in the TIS and WT parameters. For the base case, the minimum amount of charge 

remaining before the air taxis require charging is set at 20%. However, it is observed that 

it can be increased up to 30% without any substantial impact on the performance metrics.    
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Chapter 6: Can Hyperloops Substitute High-Speed Rails in the Future? 

 

In this chapter, the substitutability of High-Speed Rails (HSR) with Hyperloop services is 

investigated.  A discrete event simulation model is developed to compare the performance 

of both these alternate transportation modes for a network connecting the busiest airports 

and rail stations in Europe. For this purpose, we choose Paris (France), Amsterdam 

(Netherlands), and Frankfurt (Germany) (Eurostat, 2019). The juxtaposition between the 

Hyperloop and HSR is performed by considering several parameters, such as the number 

of pods (or rail cars), pod utilization (rail utilization), passenger cycle time, and overall 

lead time. Further comparison is performed with respect to their estimated infrastructure 

and operational costs as well as CO2 emission. Moreover, a cost-benefit analysis is 

conducted to estimate the passenger ticket price for Hyperloop services.  

6.1 Model Description 

Consider three cities (Φ1, Φ2, and Φ3) in the system with the customer c, commuting from 

one city to another by utilizing a travel mode represented by 𝑚, where 𝑚 ϵ {ℎ, 𝑟, 𝑓, 𝑐}. 

1. h – Hyperloop 

2. r – High-Speed Rail 

3. f – Airlines 

4. c – Conventional Rail 

It is assumed that the passenger arrival rate for each hour 𝑝 by mode 𝑚, follows a Poisson 

distribution with a mean of 𝜆𝑚,𝑝. Further, the ticket price for Hyperloop is estimated to be 

greater than HSR and conventional rails but less than air transport i.e., 𝑡𝑓 >  𝑡ℎ > 𝑡𝑟 >

 𝑡𝑐. Let the total time to complete a trip via mode 𝑚 be depicted by 𝜃𝑚
𝑇 . 
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A customer 𝑐, would prefer traveling by ℎ if the following condition is met: 

𝜇𝑐  ≤  𝜌𝑖 

Where 𝜇𝑐 is a uniformly distributed random variable 𝑈 ~ (0, 1) and 𝜌ℎ is the probability 

of the passenger switching from mode 𝑖 𝜖  {𝑟, 𝑓, 𝑐} to option ℎ.  

A customer would prefer substituting traveling via HSR and conventional rails with 

Hyperloops if they are willing to tradeoff the time saved (𝜃ℎ
𝑇  − 𝜃𝑖

𝑇), with the difference 

in the ticket prices (𝑡ℎ  − 𝑡𝑖), where 𝑖 𝜖  {𝑟, 𝑐}. It is to be noted that certain air transport 

passengers might have multiple connecting flights and thus might not prefer switching to 

Hyperloop, and hence 𝜌𝑓 < 1.  

Based on this information, the expected hourly demand for the Hyperloop service (𝜆ℎ,𝑝) is 

given below.  

λℎ,p = ∑ 𝜌𝑖  × 𝜆𝑖,𝑝
𝑖 ϵ {𝑟,𝑓,𝑐}

  

Now, since the sum of independent random Poisson variables is a random Poisson variable, 

it is expected that the passenger arrival rate per hour for the Hyperloop services would be 

Poisson distributed with mean λℎ,p.  

6.2  Model Development 

We develop simulation models to demonstrate the appropriateness of substitutability of 

HSR with Hyperloop services. The first step involves the customer arrival in the system. 

Subsequent to the their arrival at the station, they enter a queue and wait for the vehicle to 

pick them up. It is assumed that travelers do not balk (enter the facility and leave instantly) 

or renege (wait in the queue for a certain time period after entering the facility and then 

leaving without traveling) in both Hyperloop and HSR services.  
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To test the proposed models, we utilize the available flight and rail travel data between 

three major European cities - Paris, Amsterdam, and Frankfurt. The reason for particularly 

considering these three cities are as follows. According to Eurostat (2019), the Charles de 

Gaulle airport in Paris had over 76 million travelers in 2019. It was the maximum amongst 

all the airports in the European Union, followed by Schiphol airport in Amsterdam (72 

million) and Main airport in Frankfurt (70 million). Similarly, Gare du Nord station in Paris 

is widely considered to be the busiest railway station in Europe (Dugdale, 2019), with 

approximately 214 million passengers availing of its facilities.  

The performance of the Hyperloop and HSR are investigated based on comparing various 

parameters such as vehicle utilization, average commuter cycle time, and lead times. We 

define lead time as the difference between the traveler’s actual and desired departure times 

(i.e., traveler lead time = actual departure time of customer at Station 1 – time that 

passenger desires to depart from Station 1). The cycle time is defined as the sum of the lead 

time and the customer travel time. 

6.3 Data Description  

Since Hyperloops are still in the design and testing phase, demand is estimated based on 

the procedure described in Section 3.1. In other words, the future market for the Hyperloop 

network is assessed based on the total number of commuters utilizing the existing flight 

and rail services between the three cities under consideration.  

To anticipate the number of passengers traveling by air between Paris, Amsterdam, and 

Frankfurt, all flights serviced by major carriers were recorded. Flight details were obtained 

using the Google flights website (2019). The flight data from 2020 was not considered in 
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this study due to the effects of the COVID-19 pandemic, which decreased the customer 

demand (Budd et al., 2020). Subsequently, the total seating capacity information was 

recorded to estimate the maximum number of commuters flying from one city to another. 

Since the air travel demand is seasonal, this process is repeated every hour of every day of 

the week to develop an accurate representation of the passenger demand. This establishes 

the upper limit on the number of travelers utilizing the air services. However, not every 

flight would be expected to function at 100% capacity. Therefore, the estimated upper limit 

was then multiplied by a parameter defined in the literature as the commuter variability 

(CVV <1) to generate an hourly rate table (Rajendran and Harper, 2020).  

The process for determining the passenger demand by rail is similar to that of air travel. 

The number of trains commuting between the three cities was recorded based on their train 

schedules obtained from the EU Rail website (https://www.eurail.com/en/plan-your-

trip/eurail-timetable). The maximum seating capacity based on the train type was then 

documented. It was observed that the trains operate at a far less frequently when compared 

to flights but have a much higher capacity. The travel times were noted, and the process 

identical to estimating customers transitioning from air travel mentioned above is repeated. 

Finally, the hourly rate table for each day of the week was created by multiplying it with 

the commuter variability parameter to obtain an estimated travel demand from each city. 

Table 6.1 depicts the average weekly passenger volume leveraging the air and rail facilities 

between the three cities. It was observed that a more significant percentage of commuters 

preferred traveling via the rail system when compared to the airlines. Furthermore, a larger 

deviation was noted for rail services, potentially due to less demand during the weekends. 

Figure 6.1 presents the average weekly demand experienced in various routes.  

https://www.eurail.com/en/plan-your-trip/eurail-timetable
https://www.eurail.com/en/plan-your-trip/eurail-timetable
https://www.eurail.com/en/plan-your-trip/eurail-timetable
https://www.eurail.com/en/plan-your-trip/eurail-timetable
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Table 6.1: Descriptive Statistics of the Air and Rail Traffic per Week 

City Pairs 

Rail Air 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Frankfurt to Paris 1758 159 2164 205 

Frankfurt to 

Amsterdam 
2801 512 1700 103 

Amsterdam to Paris 3370 563 1833 130 

Amsterdam to 

Frankfurt 
2540 537 1691 25 

Paris to Frankfurt 1824 131 2117 277 

Paris to Amsterdam 3195 734 1832 132 

 

 
    

 

Figure 6.1: Average Demand Variation for Different Routes 
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6.4 Results 

6.4.1 Baseline Case 

 

For the baseline setting, we set the seating capacity of Hyperloop to be 28 passengers in a 

single ride, whereas a single HSR vehicle can carry a maximum of 480 commuters, based 

on prior research. The commuter volume variability (CV) was assumed to be 0.8 from a 

previous literature (Rajendran and Harper, 2020). Based on the grid search method, the 

number of Hyperloop pods in the system is set at 30. For the purpose of comparison, a 

similar number of rail cars was considered for the HSR services (even though the capacity 

of an HSR vehicle is substantially higher than that of an Hyperloop). The simulation 

models were executed for one week with 100 replications. 

The results for the baseline case comparing the performance of the Hyperloop and HSR 

services are showcased in Table 6.2. A Hyperloop pod travels at a higher speed and 

completes its journey substantially faster than any HSR. Therefore, a Hyperloop capsule is 

expected to remain idle for a longer time duration. This is supported by the findings in 

Table 2 as well, where it is observed that the vehicle utilization for HSR is greater than that 

of Hyperloop for all the routes. We can also note that the vehicle utilization for the journey 

between Amsterdam and Paris is approximately 10% higher when compared to other 

routes. This is because of the highest estimated passenger flow between these two cities, 

compared to the other pairs. Similarly, the commuters traveling between Amsterdam and 

Paris face over 50% and 70% greater cycle time and lead times, respectively, due to the 

highest passenger volume.  
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It is observed that the average HSR commuter’s lead time is approximately 33% of the 

total cycle time. Moreover, the maximum capacity utilization is shown in the Frankfurt to 

Amsterdam route. This could be due to having the highest traveling time between any city 

that is considered in the present study, which would entail a greater vehicle utilization. 

However, the average customer lead time for this route is 40% less when compared to the 

maximum lead time in the system (which is noted for the Amsterdam to Frankfurt route). 

This could be primarily due to a more balanced commuter arrival distribution rate in the 

system. Furthermore, passengers going to Frankfurt face the highest cycle and lead times 

since the travel time from Paris and Amsterdam to Frankfurt is greatest compared to the 

other way around. Similarly, trains going to Amsterdam are on average 10% more utilized 

as they have a higher demand. In contrast, vehicles operating between Paris and Frankfurt 

are nearly 17% less used due to a low traveler demand, as described in Table 1. A paired 

sample t-test at 95% significance level showcases that all three performance metrics are 

significantly different.  

Table 6.2: Comparison between Various Performance Metrics of Hyperloop and High-

Speed Rails 

Travel Route 

Vehicle 

Utilization 

(%) 

Cycle Time 

(minutes) 

Lead Time 

(minutes) 

Hyp. HSR Hyp. HSR Hyp. HSR 

Frankfurt – Paris 63.86 74.15* 74.26 362.41* 39.36 
112.20

* 

Frankfurt – 

Amsterdam 
62.17 94.35* 55.32 339.28* 28.37 89.45* 

Amsterdam – Paris 72.33 89.12* 115.03 308.06* 125.10 
110.62

* 

Amsterdam – 

Frankfurt 
59.76 90.47 54.08 399.84* 27.13 

152.54
* 
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Paris – Frankfurt 58.89 86.14* 89.03 405.01* 54.03 
151.77

* 

Paris - Amsterdam 67.76 93.57* 165.14 320.80* 135.60 
121.68

* 
Note: * denotes significance at 95% significance level 

 

Based on the results, it can be concluded that the Hyperloop system significantly 

outperforms HSR with respect to the performance metrics analyzed in the present study. 

Therefore, for a similar travel distance, HSRs could be substituted with Hyperloop services 

considering these measures. Nevertheless, there are other metrics, such as cost and 

sustainability, that have to be taken into consideration to evaluate the substituitability of 

HSR with Hyperloops. Therefore, we further compare the two transportation modes with 

respect to their estimated infrastructure and operational costs, as well as CO2 emission, in 

Section 6.  

6.4.2 Sensitivity Analysis 

In this section, various parameters, such as the number of vehicles in the system, commuter 

volume variability, and pod capacity are varied and their impact on the performance 

metrics is examined.    

Table 6.3: Sensitivity Analysis Settings 

Setting 

Number of 

Pods in System 

(NIS) 

Capsule Capacity 

(CC) 

Commuter Variability 

Parameter 

(CVV) 

Number of Pods in the System 

NIS – 1 20 28 0.8 

NIS – 2 

(Base) 
30 28 0.8 

NIS – 3 40 28 0.8 

NIS – 4 50 28 0.8 

Capsule Capacity 
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CC – 1 (Base) 30 28 0.8 

CC – 2 30 32 0.8 

CC – 3 30 36 0.8 

Commuter Variability Parameter 

CVV – 1 30 28 0.7 

CVV – 2 

(Base) 
30 28 0.8 

CVV – 3 30 28 0.9 

 

6.4.2.1 Number of Hyperloop Pods in the System 

As discussed earlier, the baseline setting has 30 Hyperloop pods in the system. In this 

section, the total number of capsules in the system (NIS) is varied linearly in steps of 10 

from NIS#1 - NIS#4 (Table 6.3). Figure 6.2 (a) – (c) presents the results obtained for 

various settings. As expected, the overall vehicle utilization (Figure 6.2 (a)) decreased on 

average by approximately 40%, with a linear increase in the number of pods. While NIS#1 

showcases a superior capacity utilization, the customer cycle time and lead time are 

observed to be extremely high between all three cities. Therefore, a rise in NIS led to a 

reduction in average commuter CT and LT by approximately 90%. Passengers traveling 

between Amsterdam and Paris encounter the greatest CT (Figure 6.2 (b)) and LT (Figure 

6.2 (c)) for NIS#1 and NIS#2. For NIS#1, the overall cycle time and lead time for 

remaining routes are comparable with the results obtained by HSR services other than for 

those between Amsterdam and Paris. 

On the other hand, commuting between Frankfurt and Paris displays over 25% higher CT 

and LT values for NIS#3 and NIS#4, which is counter-intuitive considering the fact that it 

has the lowest demand. An average decline of 15% in vehicle utilization can be noticed 
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between NIS#2 and NIS#4. A two-sample t-test indicates a significant difference for all 

scenarios. Similarly, the average commuter cycle time and lead time were reduced by 

approximately 50% and 70%, respectively, between the two settings. Therefore, in order 

to regulate excess demand, management can decide to increase the number of pods, which 

will have a substantial impact on reducing the total travel time, thereby also improving the 

customer satisfaction rate. 

 

 
(a) 

 
(b) 
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(c) 

Figure 6.2: Impact of Variation of Number of Vehicles in the System on (a) Utilization, 

(b) Cycle Time, and (c) Lead Time 

 

6.4.2.2 Hyperloop Capsule Capacity (CC) 

In this section, the impact of increasing the capsule capacity (CC) on vehicle utilization 

(Figure 6.3 (a)), customer cycle time (Figure 6.3 (b)), lead time (Figure 6.3 (c)) is 

investigated. In the baseline case (CC#1), we assumed the pod capacity to be 28.  Whereas 

each vehicle has a carrying capacity of 32 and 36 customers respectively for the subsequent 

cases, as shown in Table 6.3. As expected, the average vehicle utilization decreased by 

approximately 10% for all cities, with an increase in CC. A similar trend is identified for 

the customer cycle time and lead times with a decline of nearly 40% and 30%, respectively, 

from CC#1 to CC#3. The results obtained in the present study follow a comparable pattern 

as described by Rajendran and Harper (2020) for the Hyperloop operations between LA 

and SF.  



 

104 
 

The trip between Amsterdam and Paris showcases a maximum decline between CT and LT 

(~40%) due to an increase in CC from the baseline case (CC#1). A two-sample t-test 

establishes that the decline demonstrated by all parameters for CC#2 and CC#3 is 

significant at a 95% significance level. Similar to the baseline case (CC#1), Amsterdam to 

Paris has the highest capacity utilization, whereas Paris to Amsterdam has the maximum 

CT and LT for CC#2 and CC#3. Based on the results from two-sample t-tests, it can be 

concluded that the rate of change in the hyperloop capsule capacity has a significant impact 

on the performance metrics. 

 
(a) 

 
(b) 
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(c) 

Figure 6.3: Impact of Variation of Capsule Capacity on (a) Utilization, (b) Cycle Time, 

and (c) Lead Time 

 

6.4.2.3 Commuter Variability Parameter (CVV) 

It is expected that not all eligible passengers would be willing to avail of the Hyperloop 

services. Therefore, the commuter volume variability (CVV) is modified to capture the 

effect of altering overall demand on the performance parameters. While the baseline case 

(CVV#2) is set at 80% similar to Rajendran and Harper (2020), the other scenarios are 

modified in steps of 10% with CVV#1 and CVV#3 evaluating the demand at 70% and 90% 

respectively (Table 6.3). Figure 6.4 (a) displays the impact of changing CVV on pod 

utilization. Similarly, Figures 6.4 (b) and (c) depicts the effect of varying the parameter on 

CT and LT, respectively.  

It is observed that a decrease in CVV led to a reduction in cycle time for customers 

traveling the Amsterdam - Paris route by over 50 minutes. Whereas an approximately 46% 

increase in CT is observed for the same journey in CVV#3. A similar trend is noticed for 
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the lead time as well. Even though transitioning from CVV#1 to CVV#3 increments 

vehicle utilization by 10% on average, the CT and LT rise close to 77% and 123%, 

respectively, showcasing that CVV is an important factor that affects the system efficiency 

and client satisfaction. Similar to our previous analysis, a two-sample t-test indicates that 

the results presented in Figure 6.4 (a) – (c) are significantly different from each other at a 

95% significance level.  
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Figure 6.4: Impact of Variation of Commuter Variability Parameter on (a) Utilization, 

(b) Cycle Time, and (c) Lead Time 

6.5 Discussion 

The results obtained in the previous section showcase the efficiency of the Hyperloop 

services over HSR based on time savings and vehicle utilization. However, the feasibility 

of substituting HSR with Hyperloops is also contingent on several other critical parameters, 

such as infrastructure and operational costs, sustainability, and ticket prices. These factors 

are discussed in detail in this section.  

6.5.1 Infrastructure Costs 

Similar to other emerging transportation services, several cost components such as 

infrastructure and operational costs are involved in the Hyperloop system. These costs 

would have a significant influence on the overall travel fare, which could in turn lead to a 

decline in the commuter’s willingness to utilize this emerging service. The infrastructure 

costs include the expenses associated with developing new stations, constructing tunnels 

between each city, land acquisition, and environmental planning (Taylor et al., 2016). 

Musk (2013) estimated the initial capital costs for the Hyperloop technology to be 

approximately $17 million per mile for the LA-SF route. On the other hand, the 

infrastructure development costs for the high-speed rail network for the same route are 

evaluated at $65 million per mile (Taylor, 2016). Nevertheless, the existing literature 

indicated that the actual infrastructure costs for both the services would be more analogous 

to each other due to the Hyperloop system requiring expenditure for constructing tube and 

vacuum pumps (Hansen, 2020; van Goeverden et al., 2018).   
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6.5.2 Operational Costs 

The operational costs comprise the employee costs, maintenance and system control, etc. 

The California High-Speed Rail Authority (CHSRA) estimated the maintenance cost for 

the LA-SF corridor to be approximately $200,000 per mile and incurring $83.22 per 

revenue service hour (CHSRA, 2012). While the literature on similar parameters for the 

Hyperloop facility is not available, a previous study by van Goeverden et al. (2018) 

suggested pod capacity to be a potential limitation for the Hyperloop system affecting its 

financial performance. Furthermore, Musk (2013) suggested an electronic ticketing system 

to reduce staffing costs. However, further research integrating various parameters, such as 

utility and IT costs, customer service, security, etc., would be required before juxtaposing 

it with the HSR network.  

6.5.3 Sustainability  

It is expected that the Hyperloop services would be energy efficient by more than two times 

when compared to HSR due to low track friction, less air resistance, and utilization of solar 

panels (Taylor, 2016). A recent study by Janic (2020) observed comparable CO2 emissions 

(approximately 40 gCO2/s-km) between HSR and Hyperloop. They also concluded that 

the CO2 emission level was substantially lower than a standard aircraft (100 gCO2/s-km). 

The energy consumption and CO2 emissions by both services decrease proportionally with 

increasing travel distance and seating capacity (Janic, 2020). Similar research by Decker 

et al. (2017) observed that the energy consumption costs due to increasing the seating 

capacity remained fairly constant. Therefore, the decision-makers can consider expanding 

the capaciousness of Hyperloop pods for maximizing demand fulfillment.    
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6.5.4 Cost-Benefit Analysis 

It is expected that the travel cost incurred by the Hyperloop passengers would be relatively 

higher during the initial stages of operation. In this section, we perform a cost-benefit 

analysis (CBA) for an ex-ante evaluation between the two transportation modes to suggest 

the optimal pricing structure to attract passengers to utilize the Hyperloop facility over 

HSR. 

The total cost 𝑡𝑐𝑚 incurred by the customer traveling from mode 𝑚 for any pair of cities is 

given by Equation (1). 

𝑡𝑐𝑚  = 𝑡𝑚  + (𝑉 ×  𝜃𝑚
𝑇 ) (6.1) 

Where, 𝐶𝑖 is the average ticket cost in transportation alternative 𝑚 between two cities in 

dollars, 𝑉 is the value of time for passengers in dollars/hour and 𝜃𝑚
𝑇  is the total travel time 

between the two cities using alternative 𝑚 in hours. Previous literature suggests that the 

time value is a function of the wage rate (Hultkrantz, 2013; Wardman et al., 2016; Zhao et 

al., 2015).   

The total cost for HSR and Hyperloop passengers are given by Equations (2) and (3), 

respectively. 

𝑡𝑐ℎ  = 𝑡ℎ  + (𝑉 × 𝜃ℎ
𝑇) (6.2) 

𝑡𝑐𝑟  = 𝑡𝑟  + (𝑉 × 𝜃𝑟
𝑇) (6.3) 

Equation (4) needs to be satisfied in order for Hyperloop services to be comparable with 

HSR in terms of costs experienced by the customers. 
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𝑡𝑐ℎ ≤  𝑡𝑐𝑟 (6.4) 

Substituting Equations (2) and (3) in Equation (4) we can analyze the ideal ticket price for 

availing the Hyperloop facilities, as shown by Equation (5). 

𝑡ℎ ≤ 𝑡𝑟 + (𝑉 × (𝜃𝑟
𝑇 −  𝜃ℎ

𝑇)) (6.5) 

The total travel time for each pair of cities (i.e., difference between cycle time and lead 

time) is calculated from the results shown in Table 6.2. The ticket cost of high-speed rails 

is estimated based on the seven-day average prices available on the EU rail website. The 

time value is obtained from the meta-analysis conducted by Wardman et al. (2016).  

The price difference between the two transportation modes is shown in Table 6.4. It is 

observed that the travel fare for Hyperloop services exceeds the current ticket cost for HSR 

services by approximately 320%. Furthermore, the price suggested in the present study for 

Hyperloop services is comparable to the existing airline operations while also being 

considerably higher than the originally proposed price structure of USD 20 (Musk, 2013). 

Therefore, in order for the emerging technology to become comparable in terms of 

commercial and marketability values, a significant reduction in the ticket costs would be 

necessary for the future. 

Table 6.4: Ticket Price Difference between the Hyperloop and HSR Services 

City Pairs C HSR ($) Vt ($/hr.) C HL ($) 

Frankfurt to Paris 18.86 35.49 146.12 

Frankfurt to Amsterdam 49.00 35.49 173.21 

Amsterdam to Paris 21.55 40.55 138.33 
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Amsterdam to Frankfurt 56.50 40.55 198.42 

Paris to Amsterdam 38.96 32.04 131.34 

Paris to Frankfurt 16.00 32.04 130.81 

 

The following managerial insights are proposed based on the results obtained in the present 

study: 

i. A linear increase in the number of pods in the system leads to an exponential decline 

in vehicle utilization, passenger cycle time, and lead time. Therefore, it is 

recommended to determine the optimal number of pods in the system for maximum 

customer satisfaction. 

ii. All parameters showcase a linear decrease with a linear increase in the seating 

capacity of the pod. Based on a previous study by Decker et al. (2017), capsule 

capacity can be increased without a significant impact on the overall structural cost. 

Therefore, it is suggested to perform a cost-benefit analysis of expanding the 

number of seats in the pod. Consequently, if the logistic companies decide to 

decrease the number of vehicles in the system, then the supply shortfall could be 

offset by increasing the capsule capacity. 

iii. It is observed that a linear increase in demand results in all the three performance 

metrics rising linearly. Thus, when the latent demand arises, it is proposed to 

immediately increase the number of capsules in the system. This would mitigate 

the customer density growth for the facility by reducing the cycle time and average 

commuter lead time. 
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iv. The average lead time for passengers availing of the high-speed rail facilities is 

significantly higher than the Hyperloop services. Consequently, introducing 

additional trains would aid in reducing the long lead times. 

v. In order to increase the customer willingness to utilize the Hyperloop services, it is 

recommended to reduce the ticket price by approximately 80% in the future based 

on the results obtained from the cost-benefit analysis. 

 

 

6.6 Conclusion  

Traffic congestion has led to a significant loss of productivity and increased the cost of 

travel. Several researchers and practitioners are examining emerging transportation 

methods that are economically viable and significantly reduce transit time, such as 

Hyperloops, air taxis, and high-speed rails (HSR). Previous literature has concluded that 

HSR have a considerable impact on traditional airline services over short and medium 

distances with respect to cost and ride time. To the best of our knowledge, this study is the 

first to focus on exploring the substitutability of high-speed rails with Hyperloop systems, 

which are expected to commence services in forthcoming years for equivalent distances. 

Simulation models are developed in the present work to compare the overall customer time 

in system, lead time, and vehicle utilization between Hyperloops and HSR between three 

major European cities. Furthermore, juxtapose the two tranportation means based on 

several catergories such as sustainability, infrastrucutre and operational costs. We estimate 

the average ticket prices for commuters utilizing the Hyperloop services through a cost-

benefit analysis.  
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The base case results showed that passengers would experience approximately 75% and 

34% decrease in cycle time and lead time while commuting through the Hyperloop system 

compared to HSR services. However, pod utilization is nearly 25% lower than the HSR 

services due to its higher speed. It is observed that Hyperloop customers transporting 

between Paris and Amsterdam would encounter the greatest CT and LT. On the other hand, 

HSR users traveling to Frankfurt experience the highest performance metrics when 

compared to other routes. Sensitivity analysis is performed to investigate the impact of 

various alternate Hyperloop scenarios, such as a change in the number of pods in the 

system, capsule capacity, and commuter variability parameter. The outcomes indicate a 

significant influence of the three parameters on all the performance measures.  

 

The proposed simulation model can serve as a decision support tool for any logistic 

companies interested in advancing into the Hyperloop business. Typically, a commuter is 

expected to compare the feasibility of availing a service based on various factors such as 

price, distance, perceived safety, and familiarity. Therefore, a major limitation of this study 

is that it does not consider the impact of customer willingness to utilize the Hyperloop 

services based on these factors. Future work could investigate the influence of these 

parameters on demand variation. Similarly, the effect of multiple socio-economic criteria 

affecting usability is not included in the current research. Therefore, multiple criteria 

models can be developed in the future to generate tradeoff alternatives. While the present 

study proposes reducing the ticket price significantly to make the Hyperloop facility more 

comparable with HSR, future work can conduct a more detailed investigation by 

considering the impact of infrastructure, overhead, and maintenance costs. Another major 
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drawback of the current research is that it does not consider the impact of introducing 

Hyperloops on the existing air and rail services. Thus, future work can explore the 

differences between cooperation and competition between these services on the market.  
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Chapter 7: Conclusion and Future Work 

 

Traffic congestion in Metropolitan cities has increased rapidly due to increase in urban 

employment, privately owned vehicles and inadequate public transport and road 

infrastructure. Consequently, cities experience an increase in vehicle operating cost, air 

pollution and revenue loss across various sectors. For example, over $2 billion are wasted 

in New York due to fuel consumption coupled with nearly $6 billion loss to industries 

annually. However, problems related to gridlocks are not just limited to intra-city travel. 

Increase in congestion on major highways is also a detriment towards economic growth. 

Recent studies observed a loss in operational costs of over $74 billion to the trucking 

industries. Another major impediment of expressway vehicle saturation is the disruption to 

the nation’s supply chain by generating supplemental costs due to late deliveries while 

simultaneously requiring industries to maintain large inventories to compensate for the 

unpredictable nature of product arrival.  

 

While it is apparent that improving the existing road facilities would be a good solution to 

address this issue, Winston and Langer (2006) observed that allocating funds to highways 

for constructing additional lanes would have minimal impact on the bottlenecks. Therefore, 

in recent years, with advancements in technology, several emerging transportation 

services, such as High-speed rails (HSR), Hyperloops, and Air Taxis, are evolving to 

improve the existing traffic condition. These facilities are expected to provide a faster and 

efficient mode of commute.  
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In the present dissertation, optimal air taxi infrastructure locations were identified using 

the multi-criteria based warm start technique integrated with the k-means algorithm. New 

York City (NYC) was considered in the research for the case study. The model proposed 

18 stations to be developed in NYC initially. However, a different algorithm known as 

clustering large applications recommended 14 stations to be established instead. It is 

expected that the management would prefer developing specific centers in multiple phases 

to reduce the infrastructure costs of the emerging transportation systems. Therefore, 

various socio-economic factors are then considered in a mathematical model to achieve 

that objective. The framework is further extended by determining ideal station size, 

location and size of charging stations for the vehicles, assessing threshold minimum 

charge, total number of air taxis required to serve a certain customer service level, and 

commuter allocation through a simulation optimization model. Finally, we examine the 

substitutability of HSR with Hyperloop services according to the passenger and vehicle 

characteristics. The performance of these modes is juxtaposed for a network of three urban 

European cities through a simulation model. Further comparison is done based on the 

estimated infrastructure and operational costs, and CO2 emissions. A cost-benefit analysis 

is performed to estimate the average passenger ticket price for the Hyperloop service.  

7.1 Theoretical Contributions 

 

In previous studies on urban air mobility, researchers have focused on strategic (Holden 

and Goel, 2016, Johnson et al., 2018; Rajendran and Zack, 2019), tactical (Hasan, 2019; 

Sun et al., 2018) and operational (Baik et al., 2008) level decisions. However, for effective 

functioning, integration of the three decision levels from management’s viewpoint are 

required to be considered. The framework developed in this dissertation would enable the 
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logistic companies to establish and operate emerging transportation systems such as air 

taxis and hyperloops across major cities in the world and reduce issues related with traffic 

congestion.   

This research provides a multifaceted contribution to the existing literature. K-means 

clustering algorithms are widely utilized in existing research for solving the facility 

location problem (Andrenacci et al., 2016; Marino and Marufuzzaman, 2020; Rajendran 

and Zack, 2019). However, this procedure randomly assigns the initial solutions which in 

turn affects the final clustering (Usman et al., 2013). In order to address this major 

limitation, the present study is one of the first to propose a multi-criterion based warm start 

(MCWS) technique for initial seed selection as presented in Chapter 3. The integration of 

MCWS with k-means algorithm improved the final generated solution by approximately 

20% and simultaneously reduced the number of cluster centers to be developed when 

compared with Rajendran and Zack (2019) and the traditional k-means algorithm.  

Previous research suggests that a variant of partitioning around medoids (PAM) known as 

clustering large applications (CLARA) has a significant advantage over k-means by 

reducing the impact of outliers and being non-sensitive to noise (Arora et al., 2016). This 

observation is supported by the findings in Chapter 4. The analysis presented clearly 

indicates that the total number of infrastructures to be developed while maintaining similar 

demand satisfaction rates was decreased in the case study when compared with the k-means 

algorithm integrated with MCWS technique. In addition, a multi-criteria based 

mathematical model is also developed as a recommender system to propose establishing of 

stations in various phases.  
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There has been very limited work on facility size and vehicle dispatching problem for the 

air taxi services conducted in the past. In Chapter 5, a two-phase approach is developed to 

determine to ideal station infrastructure location using the clustering algorithm (phase one) 

from the previous chapter in phase one. A simulation optimization model is developed in 

phase two to determine the ideal station capacity at each location. The model also considers 

vehicle charging to ascertain the number of charging ports required at each center 

(strategic) along with the threshold battery requirement (tactical) and commuter allocation 

to the air taxis (operational). Another contribution is based on exploring the impact of 

varying the assigned priority to the conflicting criteria’s along with demand variation and 

charging rate.  

While logistic companies are concentrating on air taxis for intra-city travel, Hyperloops are 

an emerging transportation system geared towards reducing the inter-city travel time. The 

existing literature has focused on the impact of High-Speed Rails (HSR) on the current 

airline industry. On the other hand, Chapter 6 is one of the first to examine the 

substitutability of HSR with Hyperloop services. The two transportation modes are 

compared with respect to their estimated infrastructure and operational costs along with 

CO2 emission. Furthermore, we analyze a multi-city network operation, whereas most 

previous literature is based on evaluating the system between two cities. 

 

7.2 Methodological Contributions 

 

Existing research on demand estimation assumed each taxi data to have just one customer 

(Rajendran and Zack, 2019). However, in reality, each ride could have multiple commuters 
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traveling at once. This assumption is removed in Chapter 3 by replicating each data point 

with the total number of passengers. Furthermore, logistic companies would prefer 

minimizing the total infrastructure to be established while maximizing the demand 

satisfaction. Therefore, the proposed linear mathematical model in Chapter 4 can be used 

as a decision-support system for suggesting the specific stations to be developed in 

different phases. Since, UAM is an emerging mode of transportation, they can also opt to 

set up lesser number of stations during early stages before substantially investing in the 

technology as described in Chapter 4.  

After dropping the passengers, existing air taxi dispatching problem have focused on real-

time decisions such as (i) picking up new customers from the same station or travel to a 

different location, and (ii) staying idle (Rajendran, 2021). The simulation optimization 

model presented in Chapter 5 further contributes to the literature by integrating these 

decisions with charging the vehicle if the charge is below the threshold level. The model 

also determines the ideal location for charging or staying idle based on space availability. 

Furthermore, the results presented in this chapter can assist the management in deciding 

the optimal station and charging ports size at each center based on several conflicting 

criteria’s like maximizing aircraft utilization and minimizing customer average TIS and 

WT. 

The Hyperloop network in Chapter 6 analyzes the impact of various parameters such as 

number of pods in the system, customer seating capacity and commuter variability on 

utilization levels, commuter cycle time and lead time. The competitiveness between the 

Hyperloop system and HSR is also examined through a cost-benefit analysis that estimates 

the optimal passenger ticket price.  
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7.3 Contributions to Practice 

 

With the increase in the number of privately owned vehicles and rapid economic 

development, traffic congestion has become an inevitable issue in metropolitan cities. 

Therefore, in recent years, with advancements in technology, several emerging 

transportation facilities, such as High-speed rails (HSR), Hyperloops, and Air Taxis, are 

evolving to improve the existing traffic condition. Logistic companies would be interested 

in developing a framework that enables faster and efficient mode of commute. The 

mathematical model developed in Chapter 4 consists of several socio-economic parameters 

that impact infrastructure development such as rental costs, average salary, and population 

density. The model can be easily implemented using an Excel spreadsheet and can act as a 

recommender system to the management.  

In Chapter 5, a multi criteria simulation optimization model is developed that integrates 

the strategic (long term), tactical (medium term) and operational (short term) decisions for 

the urban air mobility services. Under this model, after dropping off a customer at a station, 

the vehicles need to make the following decisions, (i) to go to charging station if the 

remaining charge is less than threshold level, (ii) transfer to the parking station if idle, and 

(iii) pick up new passengers. In addition, it also establishes whether the above decisions 

take place at the drop off skyport or a different center based on space availability. The 

model solves the air taxi dispatching problem while also determining the number of 

vehicles required for maximum demand satisfaction.  
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Furthermore, a comparison between HSR and Hyperloop facilities are performed in 

Chapter 6. While the Hyperloop outperforms HSR in terms of customer average cycle time 

and lead time, it is suggested to decrease the average ticket prices by approximately 80% 

in order to make it more attractive to the potential consumers.    

 

7.4 Future Work 

 

The following are the potential future research directions for UAM and Hyperloop systems: 

Vehicle Routing Policies: The simulation optimization model picks up customers based 

on the First in First Out (FIFO) technique. Future work could investigate the effect of 

various other dispatching policies that might reduce travel costs in the cyber physical 

system while striking a balance between vehicle utilization and idle time. It can be extended 

further by incorporating efficient optimization models that incorporates arrival and 

departure scheduling and sequencing for achieving the highest operational efficiency.   

Utilizing Mobility as a Service (MaaS) for Improving the UAM Services: The present 

study only considers data from the existing taxi services in the city. However, future 

research using the concept of MaaS can explore incorporating existing multimodal 

transportation facilities such as bikes, cars, buses and subways for the first and last mile 

travel with the air taxi services. This would also increase commuter travel options and 

provide affordable travel by developing various scheduling algorithms (eg. car - air taxi - 

bus or subway - air taxi - bike). 

Integrating emerging transportation modes with Supply Chain: Recent research on 

utilizing unmanned drone systems for last mile delivery has garnered popularity. Future 
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studies can explore developing an integrated system for drone dispatching from air taxis. 

This would be extremely beneficial for reducing congestion on roads and improving supply 

chain reliability by enabling timely delivery. Moreover, it can also be used if the traditional 

transportation network is damaged under extreme situations such as a disaster. Similarly, 

faster freight movement between multiple cities can be achieved through the Hyperloop 

systems instead of relying on the trucking industry.   

Optimal Pricing Strategy: Typically, a commuter is expected to compare the feasibility 

of availing a service based on various factors such as price, distance, perceived safety, and 

familiarity. Therefore, optimal market penetration strategies are required to be 

implemented by the logistic companies to increase customer demand for the emerging 

transportation systems.      

Impact on sustainability: Both air taxis and Hyperloop services are expected to be more 

energy efficient when compared with the existing modes of transport. However, 

researchers could investigate the life cycle analysis (LCA) based on the total greenhouse 

emissions and energy consumption for infrastructure development.  

Vehicle Capacity Variation: The model developed in Chapters 5 and 6 have vehicles with 

fixed capacity for the base case i.e., each air taxi can carry a maximum of two passengers 

whereas each Hyperloop pod has a capacity of up to 28 commuters. Future analysis can be 

performed by having an amalgamation of vehicle capacities to determine the optimal fleet 

for both services, respectively.  

Impact of Customer Willingness to Fly Rate: Existing market studies observes that the 

customer demand is highly dependent on the willingness to fly rate. It is observed that 
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several parameters such as safety, travel costs, automation, weather etc. impact the overall 

demand (Goyal et al., 2018; Hasan, 2019; Reiche et al., 2018). Major cities such as NYC, 

LA, Houston and SF are considered in the market by Goyal et al. (2018). However, the 

respondent demographics are not entirely representative of the region thus creating a 

sampling bias which is a major limitation of the research. Therefore, future studies can be 

to conduct surveys that reduces the sampling bias in the data as well as in other urban cities 

such as Chicago, St. Louis, Philadelphia, Seattle etc. Additional surveys can also be 

performed to investigate the impact of these factors across different regions in the country 

– e.g., do respondents favor automation in Mid-West when compared with the North-

Eastern population. 
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