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ABSTRACT 

 

Supply chain management of blood and its products are of paramount importance in 

medical treatment due to its perishable nature, uncertain demand, and lack of auxiliary substitutes. 

For example, the Red Blood Cells (RBC’s) have a life span of approximately 40 days, whereas 

platelets have a shelf life of up to five days after extraction from the human body. According to 

the World Health Organization, approximately 112 million blood units are collected worldwide 

annually. However, nearly 20% of units are discarded in developed nations due to being expired 

before the final use. A similar trend is noticed in developing countries as well. On the other hand, 

blood shortage could lead to elective surgeries cancellations. Therefore, managing blood 

distribution and developing an efficient blood inventory management  is considered a critical issue 

in the supply chain domain.     

A standard blood supply chain (BSC) achieves the movement of blood products (red blood 

cells, white blood cells, and platelets) from initial collection to final patients in several echelons. 

The first step comprises of donation of blood by donors at the donation or mobile centers. The 

donation sites transport the blood units to blood centers where several tests for infections are 

carried out. The blood centers then store either the whole blood units or segregate them into their 

individual products. Finally, they are distributed to the healthcare facilities when required. 

In this dissertation, an efficient forecasting model is developed to forecast the supply of 

blood. We leverage five years’ worth of historical blood supply data from the Taiwan Blood 

Services Foundation (TBSF) to conduct our forecasting study. With the generated supply and 

demand distributioins from historial supply and demand data as inputs, a single objective 

stochastic model is developed to determine the number of platelet units to order and the time 

between orders at the hospitals. To reduce platelet shortage and outdating, a collaborative network 

between the blood centers and hospitals is proposed; the model is extended to determine the 

optimal ordering policy for a divergent network consisting of multiple blood centers and hospitals. 

It has been shown that a collaborative system of blood centers and hospitals is better than a 

decentralized system in which each hospital is supplied with blood only by its corresponding blood 

center. Furthermore, a mathematical model is proposed based on multi-criteria decision-making 

(MCDM) techniques, in which different conflicting objective functions are satisfied to generate an  
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efficient and satisfactory solution for a blood supply chain comprising of two hospitals and one 

blood center. 

This study also conducted a sensitivity analysis to examine the impacts of the coefficient 

of demand and supply variation and the settings of cost parameters on the average total cost and 

the performance measures (units of shortage, outdated units, inventory holding units, and 

purchased units) for both the blood center and hospitals. 

The proposed models can also be applied to determine ordering policies for other supply 

chain of perishable products, such as perishable food or drug supply chains. 

 

Keywords: Blood Supply Chain; Perishable Products; Wastage; Shortage; Time Series 

Forecasting Methods; Machine Learning Algorithms; Stochastic Integer Programming Models, 

Multi-Criteria Decision-Making Approaches, Goal Programming. 
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CHAPTER 1   

      INTRODUCTION 

1.1  Background 

“A Supply Chain (SC) consists of all parties involved, directly or indirectly, in fulfilling a 

customer request. The supply chain includes not only the manufacturer and suppliers, but all 

transporters, warehouses, retailers, and customers themselves. A supply chain is dynamic and 

involves the constant flow of information, product, and funds between different stages” (Chopra 

and Meindl, 2007). Supply chain management defines concepts regarding integrated business 

planning that has been supported by strategists, logistics experts, and operations research 

practitioners (Shapiro, 2001). According to the American Production and Inventory Control 

Society Dictionary (2016), Supply Chain Management (SCM) effectively designs, plans, executes, 

and controls all activities committed to sourcing and acquisition, transformation, and management 

of supply chain tasks to achieve the goal of enhancing the net value.  

The general supply chain system consists of suppliers and vendors, producing centers, 

storage warehouses, distribution centers, and retail stores. In each of these stages, many have 

unfinished inventories and finished goods that involve the process flow of works between the 

facilities (Simchi-Levi et al., 2000; Nagurney, 2012). According to Nagurney (2006), “supply 

chains are the critical infrastructure for the production, distribution, and consumption of products 

as well as services in our globalized network economy”. 

Supply chains that deliver perishable items, such as blood, medicines, food, biological 

drugs, and vaccines, have addressed the particular challenges that many companies face. A 

perishable item, by definition, has a fixed lifespan, and ought to be discarded after that duration 

has passed. Every element of blood always perishes within a different time. The platelet, one of 

the critical components of blood, has only a five-day shelf life; whereas red blood cell (RBC) has 

42 days, and plasma and cryoprecipitate have a shelf life of one year each (Prastacos, 1984; Osorio 

et al., 2015; Ekici et al., 2017). The short life of blood items requires an in-depth linkage between 

stock inventory and immediate planned use (Mulcahy et al., 2016). Figure 1.1 shows a typical 

blood supply chain (Mulcahy et al., 2016). 
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Figure 1.1: Typical Blood Supply Chain (Adapted from Mulcahy et al., 2016) 
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1.2  Blood: The Basics 

Blood performs many necessary functions within the physical body like transporting 

nutrients, oxygen and chemicals to different cells and tissues in the body, squandering expulsion, 

battling against infections, regulating the physique temperature, and regulating body acidity 

(Lowalekar and Ravichandran, 2015; Albdulwahab, 2015). Blood is an active tissue or cell of 

different medical amounts in the human body. Within the US population, blood appears in eight 

major blood whose frequencies differ from 38% (O+) to 0.5% (AB-). It is made up of different 

constituents, including assorted types of white cells, red cells, plasma, and platelets, many of which 

could be commonly separated from the whole blood itself.  

 

1.2.1  Blood Components and their Functions  

Nearly 7-8% of the human body weight is due to blood. This essential liquid does the 

primary activity of transporting oxygen and supplements to cells of our body and disposing of 

ammonia, carbon dioxide, and other waste items. Additionally, it plays a significant role in our 

system in maintaining a comparatively constant body temperature (Wangboon et al., 2017). The 

process of withdrawing one or more blood components from a donor is known as apheresis. White 

blood cells, red blood cells, plasma, and platelets are four of the most critical blood components.  

 Red Blood Cells (RBCs, also known as Erythrocytes) 

Red blood cells are the first abounding cell within the blood, representing around 40 - 45% 

of its volume. They are created in the bone marrow and contain an oxygen carrier protein called 

hemoglobin, which helps transport oxygen from the lungs to other parts of the body, and returns 

carbon dioxide from the body to the lungs so that it can be breathed out (American Society of 

Hematology, 2018). 

 White blood cells (WBCs , also called Leukocytes) 

They are an essential part of the immune system and abort infectious agents referred to as 

pathogens. Granulocytes, lymphocytes, and monocytes are the three main kinds of white blood 

cells, which defend the body against infection. They represent around 1% of blood volume, and 

the number is much less than red blood cells. Once viruses or microorganisms enter the blood, for 

instance, through a cut, a scratched knee, or a contaminated ear, white blood cells destroy the 

incursive microorganisms (American Society of Hematology, 2018). 

 Platelets (also called Thrombocytes) 
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Different from red and white blood cells, platelets are tiny, delicate, plate-shaped cell 

fragments. Platelets facilitate the blood clotting process by forming a platform that seals the wound 

and forestalls the loss of blood (American Society of Hematology, 2018). 

 Plasma 

Plasma is the straw-shaded fluid segment of blood, a blend of water, sugar, fat, protein, 

and salts (electrolytes). Around 90% of plasma is water, and the other 10% is formed from the 

different materials which are delivered by the plasma. Plasma acts as a transit for the matrix within 

the blood. Plasma provides all parts of the human body with supplements such as proteins, 

minerals, vitamins, sugars, fats, and diverts waste products items (Prastacos, 1984). Plasma 

likewise transports red blood cells and carbon dioxide to and back from our organs and tissues. 

 

1.2.2  Blood Types and Blood Matches  

Blood has eight standard types. Specific antigens will trigger an immune reaction if they 

do not belong to the human body, and these antigens' absence or presence determines blood 

varieties. Because some antigens will prompt a patient's immune system to attack the transfused 

blood; therefore, transfusions of safe blood rely upon watchful blood composing and cross-

matching (American Red Cross, 2018). 

Regarding blood transfusions, matching blood types is the process for compatibility testing 

between the donor’s blood and the recipient's blood. Cross-matching generally does not mean an 

identical blood match. Table 1.1 shows the distribution of red blood cell types and all possible 

suitable substitutions for ABO/Rh (D) in the US Population (Duan and Liao, 2014). 

 

Table 1.1: Distribution of Red Blood Cell Types and all possible suitable substitutions for 

ABO/Rh (D) (Duan and Liao, 2014). 

Blood    Cell 

type 

Blood Type Compatibility 

O+ O- A+ A- B+ B- AB+ AB- 

O+ √  √  √  √  

O- √ √ √ √ √ √ √ √ 

A+   √    √  

A-   √ √   √ √ 

B+     √  √  
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Blood    Cell 

type 

Blood Type Compatibility 

O+ O- A+ A- B+ B- AB+ AB- 

B-     √ √ √ √ 

AB+       √  

AB-       √ √ 

 

 

1.3  Blood Supply Chain 

Figure 1.2 outlines the blood supply chain network and the flows among the stages (Osorio et 

al., 2015). 

 

 

 

 

Figure 1.2:  Flow of the Elements within the Blood Supply Chain (Adapted from Osorio et al., 

2015) 

 The blood supply chain and its segments from donation to transfusion are from various 

perspectives, like a conventional logistic supply chain. This is a planned activity where the blood 

units are collected, processed, and separated into parts, stored, transported, and transfused. 

The stochastic character of both blood demand and supply makes the management of the blood 

supply chain, particularly challenging (Jennings, 1973; Rajendran and Ravindran, 2017). Lead 

time is not easy to forecast because it is attributable to the uncertainty associated with the number 

of donations, blood classification, and processing time.  

 

 Donor Collection (Supplier) 

The first blood supply chain segment is blood donation. In the US, blood is collected from 

blood donors by many institutions and arrangements; all of the institutions should be registered 

and obtain licenses from the US Food and Drug Administration (FDA) (Mulcahy et al., 2016). 

Blood units are gathered from settled blood facilities or via temporary ones. After the 

enrollment procedure, all the donors who visit the blood facilities are subjected to a screening 

procedure to abstain from transmitting diseases through blood transfusion.  

Donor 

Collection 

(Supplier) 

Blood Center 

(Manufacturer) 
Blood Bank 

(Distribution 

Center) 

 

Hospitals 

(Retailer) 
Patients 

(Customer) 
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 Blood Center - Manufacturer 

A blood center is a facility set up to involve in collecting blood from donors, test, process, 

and store blood and its components for use in the future. The essential duty for each blood center 

is to set up blood assortment and respond promptly to the patients’ requests for blood and its 

components. Blood centers get orders from their distributed hospitals or medical centers, according 

to the anticipated needs of blood (Khanghahi et al., 2018). Every vehicle begins from a blood 

center and returns to the same blood center after exploring a designated route to serve selected 

hospitals (Khanghahi et al., 2018). 

Any blood center has main objectives: (a) to minimize blood wastage and (b) to guarantee 

those blood items are accessible in adequate amounts for patients who require blood transfusion 

(Jennings, 1973; Lowalekar and Ravichandran 2015). 

Apheresis or the process of extracting a particular part of the blood, like platelets, with the 

remaining constituents such as plasma and red blood cells returning to the blood donor, is a 

progressively common procedure. This method permits a significant amount of one specific part 

of the collected blood, which could be separated from a unit of whole blood (American Association 

of Blood Banks, 2018).  

 

 Blood Bank (Storage and Inventory - Warehouse and Distribution) 

After the blood is tested, processed, and available for transfusion, the blood needs to be 

transported, stored, and recorded before use. The FDA also provides regulations on the 

requirements of blood storage to guarantee safety throughout its life cycle (Mulcahy et al., 2016). 

Blood would need to be discarded before transfusion due to the following reasons: (1) time 

expiration (Various blood component units exceeding their different shelf life), (2) refrigerator 

malfunction (e.g., due to power outage, equipment failure), (3) exceeding timeframe of 

refrigeration temperature (units moved out of refrigeration exceeding a specified timeframe that 

cannot be returned to the main stock) and (4) other different wastage situations (e.g.,  dropping 

blood, damaging to its packaging) (Stanger et al., 2012; Mulcahy et al., 2016). Platelets have five 

to seven days to be used before they perish and need to be discarded; its deterioration is usually 

faster than the deterioration of other blood components. 
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 Hospitals (Crossmatching) - Retailer, Store 

The purpose of cross-matching is to examine the compatibilities of the donor’s and 

recipient’s blood, and the blood the recipient could receive from the inventory (Pierskalla, 2005). 

The Hospital blood center functions as an inventory location, which is to store and distribute units 

of blood to fulfill requests for transfusion. Throughout the day, the hospitals or medical centers 

receive irregular requests of transfusion for every blood group. The proper number of units of that 

type is taken out from available inventories. After successful cross-matching, those units are 

located on reserve inventory for a particular patient (Prastacos, 1984; Figure 1.1). Cross-matched 

blood is held in reserve for patients for a specific amount of time. Any units that are not transfused 

(generally within a day or two) are placed back to the free inventory. Crossmatch release period is 

the time between the patient's operation and the return back to the free inventory from the unused 

unit and has a considerable effect on the wastage (Prastacos, 1984; Ekici et al., 2017). 

 Patients (Blood Transfusion) - Customer 

A blood transfusion is a process through which the patient receives blood directly into one 

of the patient’s blood vessels through an intravenous (IV) line. These procedures replace blood 

when blood is lost because of severe injuries or during surgeries. A transfusion may also be 

performed if one person’s body cannot properly produce blood, due to sickness. Each year, almost 

5 million people in the United States need blood transfusions (National Heart, Lung, and Blood 

Institute, 2018). In 2006, it was reported that the requests for blood transfusions are over 30 million 

units of blood components (American Association of Blood Banks, 2007). Increased life 

expectancy due to advanced progress in the medical procedures, the need for blood transfusions, 

and the rate of using blood products will arise (Davey, 2004; American Association of Blood 

Banks, 2018). 

Yates et al. (2017) underlined that inventory management of blood is both challenging and 

crucial, guaranteeing accessibility while simultaneously limiting wastage. Because of the character 

of the blood supply, wastage of blood is a universal economic issue to be resolved, as the blood is 

collected only voluntarily in several countries. Management in blood inventory is thus a tradeoff, 

guaranteeing 100% accessibility of all types of blood and its components, in the least time, while 

minimizing wastage.  
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1.4  Current Issues in the Blood Supply Chain 

Blood and its components are all required in a variety of treatments, including cancer 

treatments, organ transplants, major surgical operations, and trauma care. Around the world, 

people who need blood can die from insufficient blood product supply (World Health 

Organization, 2016). Even though substantial research has led to alternatives for blood, these 

endeavors have not been very fruitful yet. In 2013, it was reported that in the United States, there 

are around 15.2  million blood donors, roughly 14.2 million units of blood were gathered, out of 

which, 13.2 million units were transfused (Mulcahy et al., 2016).  

 Better Blood Inventory Management 

Hospitals and blood centers face challenges in managing blood inventory. To satisfy both 

anticipated and unexpected requests for blood, it is required to hold sufficient stock, while limiting 

waste. Lack of adequate inventory management practices is causing high costs for blood centers 

and hospitals, and the broader health care system. To effectively facilitate the inventory 

management of blood, hospitals depend on various kinds of tools, which include staff ability, 

internal management software package, and external inventory management, etc. American Red 

Cross reports the following facts about blood demand in the United States (American Red Cross, 

2018): 

 Nearly 10,000 units of plasma and 7,000 units of platelets are required every day within 

the United States. 

 The daily need for RBCs is approximately 36,000 units within the United States. 

 Every year, 90,000 to 100,000 individuals in the United States are influenced by sickle cell 

disease (SCD); nearly 1,000 infants get this disease when they were born. Sickle cell 

patients possibly require blood transfusions for their lives.  

 The most frequently requested blood type by hospitals is type O 

 By 2017, about 1.7 million individuals are predicted to receive a cancer diagnosis. In some 

cases every day, a large number of patients will require blood during their chemotherapy 

treatment.  

 At least 100 pints of blood will be needed for a single automotive accident victim.  

 Every year donors in the US donate about 13.6 million whole blood and RBCs. 

 About 45% of individuals within the US have either positive or negative Group type O 

blood; African Americans (51%) and Hispanics (57%) have higher percentages. 
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 There are just 3% of individuals within the US population have AB positive blood. The 

AB-positive plasma can be transfused to all blood types of compatible recipients; its supply 

is limited. 

 Type O negative red blood cells can be transfused to all blood types of compatible 

recipients. In the US, since just 7% of individuals are type O negative, it is dependable in 

the unusual request, and the supply is often in shortage.  

 Red blood cells must be utilized no more than 42 days (or less). 

 Platelets must be utilized for no more than five days. 

Moreover, both blood demand and supply are stochastic and are hard to control. A more   

robust blood inventory management is thus required. 

 Importance of Forecasting 

Reserving too many units of blood on an inventory might lead to this limited resource being 

wasted due to its perishability. However, shortages could lead to critical health-related 

cancellations and could trigger possible increases in the number of deaths in hospitals. Hence, 

accurate forecasting of blood demand and supply is essential to use this limited resource prudently. 

Management of blood demand and supply is regarded as a significant part of supply chain 

management in healthcare, and blood components are demanded to satisfy the requirement of their 

regular and irregular patients. Forecasting blood demand is essential for effective and well-

structured planning of a blood supply chain (Filho et al., 2013). Predicting the demand and supply 

of blood components significantly impacts the main decisions made in blood supply chain 

inventory management. 

Blood shortages will increase fatality rates for various groups and cause high societal prices 

(Beliën and Force, 2012). Hence, good blood inventory management is extraordinarily important. 

 Emergency Blood Demand-Side Shocks 

According to Butch (1985), an emergency is one of the internal factors that affect how well 

the blood bank inventory management performs. Recent disasters have shown that the blood 

supply chain and its effectiveness of operation services are plagued by external disruption 

(Jabbarzadeh et al., 2014). Certain types of major disasters that affect transfusion service are 

earthquakes, floods, terrorism, and biological events (Zaheer and Waheed, 2016). For instance, in 

the case of the Bam earthquake of December 2003, in southeastern Iran, only 23% of donated 

blood units were distributed to the troubled areas (Abolghasemi et al., 2008). Similarly, the blood 
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supply chain was disturbed by the Sichuan earthquake in China in 2008 (Sha and Huang, 2012). 

The study of the London transit system terror attacks at rush hour in 2005 showed that the required 

440 units of red cells (RCs) were needed and any future incidents in which the victims were 

involved and suffered major hemorrhages needed plasma, cryoprecipitate, and platelets (Glasgow 

et al., 2012). The 2011 Japanese earthquake and tsunami, the Great Sendai Earthquake, required 

1,938 units of RBCs (Quillen and Luckey, 2014), and after the earthquake, the national blood 

collection and distribution system in Japan reacted adequately to the local requirements of blood 

allocation (Nollet et al., 2013). The 9/11 terrorist attacks needed an additional requirement of 258 

units of blood, which was mainly provided by the hospitals with stock availability (Schmidt, 2002). 

In summary, over 475,000 blood units were collected for disaster victims, but only 258 units were 

used (Schmidt, 2002), and an estimated 250,000 units nationwide were disposed of (US General 

Accounting Office, 2002). 

The study of mass loss and disaster incidents before the 9/11 terror attacks have indicated 

the patterns of the need for actual blood allocation (Schmidt, 2002). It is worth considering that 

though donations do tend to increase after a public health emergency or disaster; those units cannot 

be used immediately (US General Accounting Office, 2002). 

Moreover, the blood supply chain is also influenced by crisis requests because of poor 

climatic conditions or regular donors postponing donations due to vacation plans. In January 2017 

and January 2018, a severe winter blood shortage caused the American Red Cross to issue 

emergency blood and platelet donation call (American Red Cross, 2018). 

Wang and Ma (2015) describe the three blood shortage types: (1) seasonal blood supply 

shortages due to the decline of blood donors considerably throughout winter and summer seasons, 

(2) structural blood supply shortages due to the deficient stock of one or more blood groups, and 

(3) regional blood supply shortages due to blood item overuse in medical-source-concentrated 

regions. Dealing with blood issues throughout the blood shortage is undoubtedly one of the most 

challenging blood supply chain management jobs. 

 Blood Sharing  

 Blood sharing of blood shortage is an associate framework for the situation of emergency 

supply. Through blood sharing, the blood from hospitals with available inventory can be imparted 

to the received hospitals, which enhances the service level provided by the latter. Since an adequate 

supply for blood is imperative for good health and medical care services, blood sharing research 
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to solve the blood shortage related issues is very important in health care. The difficulties for blood 

sharing originate from the inadequate supply, short shelf life, high operating expense, uncertain 

supply, and high client service level necessity.  

 The paper (Perera et al., 2009) and poster (Stanger et al., 2011) published and presented by 

the Blood Stocks Management Scheme (BSMS), a joint venture between the National Blood 

Service in England and North Wales, has shown that blood sharing can reduce wastage of blood 

due to expiration and improve blood use efficiency. BSMS has supported sharing stock between 

hospitals to provide advantages across the blood supply chain. Recent research has also proved 

that blood sharing can decrease wastage (Yates et al., 2017). 

 

1.5  The Motivation for this Research 

In 2004, it was reported that 17% of the collected platelet units within the US were wasted 

before being transfused (Fontaine et al., 2009; National Blood Centers 2004); and during a survey 

in 2007, because of blood deficiencies at 1700 US participating hospitals, a total of 492 reportable 

planned surgeries on at least one day were canceled (Nagurney et al., 2012). Wastage will take 

place at several points across the blood supply chain. Thus, outdated samples and deficiencies of 

blood items have remained a problem for hospitals. Given the characteristics of blood and also the 

pressures in this business, operations research needs to be implemented to help the blood supply 

chain (Nagurney, 2017). Operations research experts have developed mathematical models in 

blood inventory management and applied these models to derive procedures and policies (Stanger 

et al., 2012). Throughout the last couple of years, numerous blood inventory management is 

established in the area of operations research (Rajendran 2016; Rajendran and Ravindran, 2017, 

2019). The following are my motivation for this research: 

 The need for better blood inventory management 

The value of perishable products within the supply chain declines with time (Blackburn 

and Scudder, 2009). Blood is not an ordinary commodity. The supply of donor blood is genuinely 

unpredictable, and the need for blood items is characterized by stochastic behavior. To match 

supply and demand economically is not easy. A major issue is a way to integrate the current 

practices in production, inventory storing, and distribution, in addition to thinking about the 

perishable nature of the products, and to deliver an optimized policy for blood supply chain 

commodities. 
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The regional blood center must decide what decisions to make in the operation of blood 

inventory management and distribution system (Pierskalla, 2005): 

 to keep up the best inventory levels for itself 

 its  inventory distribution policy in heeding to the occasional requests from the Hospital 

Blood Banks (HBBs) and the Community Blood Centers (CBCs) inventories  

 to deliver unused, yet at the same time, valuable blood from an HBB back to be used at 

other HBBs which have higher request levels and higher use of unused blood before it is 

expired, and if there is a general blood shortage, the blood center must decide a 

transshipment policy from some HBBs to others HBBs which have the danger of shortages 

The HBB should decide its optimum inventory levels to keep up. These levels, which are 

independent or in combinations with the CBC, are contingent upon the organization or written 

agreement between the HBB and the CBC.  

Blood inventory management has attracted significant enthusiasm from the Operations 

Research profession during the last decade or so. By far, the majority of previous research has 

concentrated on the development of complex inventory models within the blood supply chain 

management of perishable goods. However, the advanced models proposed in the literature do not 

seem to be applied in practice (Stanger et al., 2012). Though there has been considerable research 

on blood inventory management for the blood supply chain, the larger part of the literature centers 

around one single echelon and does not examine the relationships among the different stages. This 

could cause a nearsighted perspective of the blood supply chain. Inventory policies and procedures 

usually do not think about the limitations of supply. Production does not take into account the 

critical age effect of inventory items (Rajendran and Ravindran, 2017). Those are all examples of 

issues by only considering single echelons, thus misleading some cases to impractical and 

unfeasible solutions. The modeling of the complete process operations flow within the blood 

supply chain is particularly needed. In any event, successfully integrated models for the supply 

chain would acknowledge the existing constraints within the preceding and succeeding echelons 

(Osorio, 2015). Further research is needed on modeling blood inventory management considering 

the entire blood supply chain. 
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 There is a need for forecasting for blood supply and demand 

Hospitals and blood centers face challenging issues for managing blood inventory.   

Forecasting drives company decisions that the company ought to meet to achieve success. This 

reality is the same in blood bank management. From the previous discussion, it is known that the 

uncertainty regarding the need for the various blood products is a key factor in blood bank supply 

chain management. Adequate forecasting of the amount and timing of future blood demand 

significantly contributes to the blood inventory control and donor recruiting process. Specifically, 

decisions regarding the amount of blood products that will be conveyed in inventory, the 

scheduling of blood collection from donor lists or mobile sites blood collection, and ordering from 

different blood banks should consider all the factors listed above. 

Taiwan blood centers face blood shortage problems due to a lack of accurate forecasting 

of blood supply. Management of blood supply and demand is regarded as one of the major 

healthcare supply chain issues. For effective blood supply chain planning, a good forecasting 

model for blood supply and demand is required. 

 There is a need to study blood inventory management under blood demand and supply 

uncertainty 

Inventory management issues are significantly complicated by unknown demand. Solyal 

et al. (2015), Fortsch and Khapalova (2016), and Rajendran and Ravindran (2017) are some recent 

researchers that address demand uncertainty issues in inventory management. Previous blood 

inventory management research generally assumes a known demand or that their demand 

uncertainties are often modeled as a Poisson or Normal distribution, making it challenging to 

render significant models in practice. There is a need for inventory management to take the 

uncertainty of demand and supply into account for the blood supply chain studied. 

 There is a need to maintain a sufficient blood inventory to meet regular and emergency blood 

demand 

The emergency blood supply caused by natural and anthropogenic disasters is particularly 

difficult (Fahimnia et al., 2017). Keeping up a blood inventory that adequately fulfills regular and 

emergent needs will necessitate additional monitoring and understanding of these patterns 

(Ellingson et al., 2017). Various cases have demonstrated the necessity for proper blood supply 

chain methods that facilitate hospitals and medical system support structures to react more 

efficiently to mass disasters (Gerberding et al., 2007; Williamson and Devine, 2013). 
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The interest in increased research on blood inventory management in emergency relief 

operations has gained considerable attention. 

 There is a need to study the impact of blood sharing  

            A cooperative divergent blood supply chain network can be proposed within which every 

hospital will fulfill its patient demand from its inventory. They may receive an extra quantity of 

platelet units from alternative collaborating hospitals, which have excess platelets available that 

day. Thus, the extent of platelet demand fulfillment is increased. This coordinated effort in hospital 

networking will cut back platelet shortage and outdating.  

Blood sharing throughout the blood shortage could be a troublesome issue because it is 

closely associated with the inventory. There is no comprehensive strategy for blood sharing in 

current blood inventory management; thus, the goal of this research is to create a new decision-

making framework or model, particularly to decrease blood waste in the case of a blood shortage.  

Most blood inventory management research has improved the situation at the hospital level 

(Prastacos, 1984). The management of a blood center is far more complicated than that of a hospital. 

The variety of functions that need to be performed within the blood supply chain structure 

contribute to its complexity. 

This research will examine the blood inventory management with blood centers and 

hospitals as an entire supply chain, and develop a mathematical model for ordering blood and 

handling emergencies. This study will also consider the uncertainty factor of blood supply and 

demand as well as practicable blood sharing.  

 

1.6  Outline of this Thesis 

This dissertation starts with an introduction in Chapter 1. Chapter 2 summarizes research 

areas from previous studies following a detailed review of relevant literature on blood supply chain 

and inventory management. Chapter 3 proposes forecasting blood supply models. Chapter 4 

proposes a Basic Blood Supply Chain Model under supply and demand uncertainty incorporating 

emergency demand and a case study is presented. Chapter 5 proposes a Blood Supply Chain Model 

in a divergent blood supply chain under supply and demand uncertainty. Chapter 6 proposes a 

Multiple Objective Model for Blood Supply Chain inventory management and Chapter 7 

concludes the research and provides directions on potential future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 
During the past decades, numerous models have been developed with an emphasis on the 

different supply chain management areas. The following chapter presents a thorough review of 

literature on blood product supply chain and inventory management under the following 

categories: 

1. Ordering Policy 

2. Forecasting Demand 

3. Hierarchy Level 

4. Inventory Management 

5. Trends in the Type of Approach 

 
2.1  Ordering Policies for Perishable Inventory and Methodology Approach 

Inventory ordering management deals with two questions: 

 How many units should be ordered? 

 At what time should the order be placed? 

Modeling of inventory ordering policies is an important topic to discuss in operations 

research and has made significant progress during the twentieth century. As the perishable 

products have a limited shelf life coupled with an uncertainty of demand and supply, the inventory 

ordering models for perishable products pose more complexity and challenges than those of non- 

perishable ones. One example of a perishable product is blood, and every element of blood has a 

limited shelf life. Platelets are an important element and have a limited five-day shelf life, RBC 

has a 42-day shelf life, and plasma and cryoprecipitate have a one-year shelf life (Osorio et al., 

2015). The blood supply is somewhat random and the pattern of demand for blood products is 

most likely a stochastic event (Rajendran and Ravindran, 2017). 

Jennings (1973) presented an analytical framework for the entire blood inventory problem 

considering the individual hospital and regional levels. The effects of various alternative inventory 

ordering policies on shortage and outdating were analyzed. For an individual, independent hospital 

blood bank and the relationship between inventory ordering level for outdating and shortage is 

shown in Figure 2.1, where
 
𝑠 is designated as daily inventory order level. For example, for an 
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inventory ordering level of 15 units, the shortage is 9%, and the outdating is 8%. This curve 

represents the trade-off between shortage and outdating. 

  
 

Figure 2.1: Shortage-Outdating Operating Curve by Basic Inventory Policy: an 

independent hospital: S is designated as daily inventory order level (Jennings, 1973) 

 

At the regional level, the simultaneous effects of the inventory ordering policy on shortage 

and outdating are shown in Figure 2.2. The potential inventory ordering strategies are affected by 

the interactions between hospital blood banks.  It is concluded that the common inventory system 

needs to be updated continuously regarding the location of the units, pointing to the need for a 

large-scale automated information system. 

            

Figure 2.2: Shortage-Outdating Operating Curves for the Threshold Transfer, Common- 

Inventory Systems (Jennings, 1973) 
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According to Nahmias (1982) and Pierskalla (2005), there are two blood issuing policies 

for the hospital: the first-in-first-out (FIFO) policy and the last-in-first-out (LIFO) policy. With the 

FIFO policy, units of blood that have been in stock the longest are utilized first upon a blood 

request for patient needs. With LIFO the newest blood units on inventory are issued first upon a 

request for patient needs. Nahmias and Pierskalla (1973) devised a FIFO policy-based model for 

the unit that expires in two periods with stochastic demand by minimizing the unsatisfied demand 

(runouts) costs and deterioration (outdated) costs. Because of the property of cost function 

structure, it was demonstrated that (𝑠, 𝑆)  policy is not optimal. The resulting structures are 

extended to the discounted infinite horizon model, including holding costs and ordering costs. 

Nahmias (1975) used a dynamic programming method to analyze the optimal ordering policies 

with a lifetime of exactly 𝑚 periods, when only runout and outdating costs were charged. When 

considering perishable goods with a minimal shelf-life, an optimal ordering policy considers the 

age and time distribution of the inventory assets. Fries (1975) presented the framework and 

features for the ideal perishable product policy using the lifetime 𝑙 in a finite-horizon period while 

the product demand is continuous. One proposition proved that with a maximum shelf life of 𝑙, 

when 𝑛 ≥ 𝑙 > 2, where 𝑛 is period, neither the 'single critical number' (𝑆) policy nor the 'two-

bin' (𝑠, 𝑆) policy is optimal for perishable products. 

Nahmias (1982) has done a comprehensive review of literature related to the difficulty of 

determining proper policies for ordering perishable inventory with a fixed life and continuously 

exponential deteriorating inventory. For fixed-life perishability with stochastic demand, the review 

is categorized as (1) optimal policies for a single product, (2) approximate optimal policies for a 

single product, (3) LIFO Inventory, (4) multiproduct and multi-echelon models. 

Weiss (1980) studied the (𝑠, 𝑆) inventory policy for the case in which it was assumed 

demand had a Poisson distribution by considering lost sales and backlogs. With the periodic review 

models, ordering costs, holding cost for items, disposal cost for perished items, and penalty cost 

for unfulfilled demands are the associated cost. It was determined that a continuous review ( ,s S

) inventory policy is the optimal policy only in the case of linear shortage costs.  

Liu and Lian (1999) took a Markov renewal approach to analyze a ( ,s S ) continuous 

review inventory system with a demand of general renewal process and inventory of immediate 

stock replenishments. For models with general renewal demand processes, the ( ,s S ) continuous 

policy can reasonably be optimal.  
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Tekin et al. (2001) proposed a ( ,Q ,r T ) model which indicated that the units are ordered 

when inventory levels drop below r level or whenT units of time have passed since the previous 

order. Thus, the order policy is not based solely on the current stock supply, but also indirectly on 

the existing shelf life of the stock as well. This is a periodic review model, where the other models 

assume continuous reviewing. This policy is noticed to perform better than the regular ( ,Q r ) 

model. 

Haijema (2011) emphasized that Automated Store Orderingsystems and Computer 

Assisted Ordering systems are using non-perishable policies for ordering. These ordering policies 

for the systems are dependent on the stock-level alone, not considering the age of goods. 

Consequently, when applied to perishable products, the expected future outdating of products is 

not anticipated resulting in unnecessary shortages and outdating.  

Zhou et al. (2011) presented a mathematical model to identify optimal inventory policies 

for platelets using two different replenishment approaches. First, regularly scheduled orders are 

normally placed at the start of a cycle. Second, upon a supervisor's choice, an extra rush order, 

featured by an order-up-to level policy could be placed within the cycle. It was proven that the 

optimum ordering policy could be found, and the optimal cost was greatly affected by the 

uncertainty of demand, lead times of ordering, seasonality of demand, and information of 

expedited orders. When demand decreases or demand variance increases, the ( ,s S ) policy 

becomes more attractive than the (𝑆) policy. Based on the demand information’s study and the 

setting of cost parameters in the hospital, it is suggested that small hospitals should place orders 

for platelets every other day (particularly hospitals with a high demand uncertainty), and busy 

hospitals should place orders for platelets every day (particularly hospitals with a low demand 

uncertainty). 

Rajendran (2016) adopted a Mix Integer Programming approach to develop finite and 

infinite time horizon inventory models to find optimal order quantity and time for platelets for 

hospitals such that the inventory, wastage, and outdating are reduced. 

To address the topic of the classical Economic Order Quantity (EOQ) model, Muriana 

(2016) presented a mathematical stochastic model including shortage and outdating costs for 

perishable open-dating (the date when the food was packaged or the last date on which it should 

be sold or used) foods. This model considered the demand’s fluctuations in assuming the demand 
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has a normal distribution and considering the shelf life as a key variable, and thus the most 

desirable set of parameters was determined, which minimizes the expected total cost. 

Pauls-Worm and Hendrix (2018) used a FIFO based policy to compare three different 

ordering policies over a finite period, perishability, and non-stationary demand: 1) production 

timing is fixed ahead of time, and an order-up-to stock level is adopted, 2) production timing is set 

ahead of time with age distribution being considered in the production amount, and 3) the decision 

on how many units to order depends upon the age distribution of the inventory items. The 

experimental results of these ordering policies and methods of solution for 81 instances with 

horizon T with 12 periods were evaluated and an overview was presented. In most cases, the 

expected total costs resulting from the ordering policies were very close. Depending on the 

findings from this research, it was important for the management to make decisions on the most 

appropriate uncertainty strategy and ordering policy. 

 

2.2  Literature Review related to Forecasting Demand for Perishable Products and  

Methodology Approach 

Demand forecasting, particularly for perishable items, is essential for making supply chain 

decisions such as donor drive scheduling, vehicle routing policies, and inventory management at 

blood centers and hospitals. Based on historical patient demand data and expert opinions, 

forecasting models are developed for a finite time horizon. Correct forecasts of the timing and 

amount of future blood requests have been considered as the key inputs to donor recruiting, 

decision-making, and inventory control. It is important to gather data of several years for monthly 

demand forecasting and to recognize seasonality of demand cycles (Pierskalla, 2005). Different 

types of quantitative models are used to predict future fluctuations of the need for blood. 

Quantitative models are often in association with past time-series data about blood demand that 

are originated from a specific repetitive occurrence, for example, variations of monthly blood 

demand (Filho et al., 2013). Gardner Jr. (1990) studied the effect of the forecasting model on the 

decisions of inventory policy inside a large physical distribution system. The results demonstrated 

the vital role that selection of forecasting models plays in determining the investment amount for 

supporting any target level of client service. 

Frankfurter et al. (1974) provided a tool to monitor blood stock levels of 1500 to 1700 

blood units based on a short-term computerized model that forecasted blood inventory levels, thus 
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eliminating blood shortages and excessive expirations. Critchfield et al. (1985) explored the 

potential capabilities of various time series in forecasting the next-day need for platelet. It was 

found that the time series models are better than simple moving averages models. The prediction 

of the platelet consumption patterns by a mathematical model application has led to a decreased 

number of platelets wasted and reduced labor costs for the platelet inventory during the evaluation 

period. 

Pereira (2004) investigated and evaluated three-time series analysis and forecasting 

models: the autoregressive integrated moving average (ARIMA) model, the Holt-Winters 

exponential smoothing model, and the neural-network based model for forecasting monthly 

demand for red blood cell transfusions at one tertiary care. The performance of the forecasting 

models was evaluated and validated by comparison of the goodness-of-fit statistics, how many 

months the forecasted supply would have fulfilled forecasted demand of red blood cell (RBC), and 

the forecasted waste rate of RBC. The results revealed that in one-year, nearly 80% of the time, 

the ARIMA model or exponential smoothing model generated the RBC demand forecasts, which 

was inside the ±10% range of the actual RBC demand. Over two years, the exponential smoothing 

model performed better than the ARIMA model and the neural-network-based method.  

Bosnes et al. (2005) used statistical regression techniques for the forecast of blood donor 

arrivals at the blood bank of Oslo, and found it was valuable in shortening the waiting time for 

blood donation. The model predicted when the blood donors would arrive, with several factors 

being used as explanatory variables. It was found that the most important ones among 18 

explanatory variables were: donor age, time from making an appointment, arriving at an 

appointment, contact methods used, total number of donations, donor no-show number, donor 

arrivals, and delays during the previous two years. Prediction intervals were reduced by 43% by 

comparison by taking into consideration only the average arrival rate. Schreiber et al. (2005) used 

statistical regression techniques to evaluate first-year donor frequency, then the likelihood that the 

donor would return could be predicted using this kind of information. They discovered that those 

who donated more regularly in the first 12 months were likely to donate again. Motivating current 

donors to donate regularly during the first 12 months may help the donors establish a regular 

donation behavior.  

Filho et al. (2012, 2013) presented a computerized tool for predicting the blood 

components’ demand. This tool allowed managers to decide how much of the typical weekly 



 

21 
 

demands of platelets and packed red cells should be delivered to hospitals. This tool consists of 

two models- one is an automation identification model (AIM) and a blood components forecasting 

(BCF) model. While AIM is based on the Box-Jenkins method (2008) to allow users to evaluate 

the dataset and identify an adequate parametric model for reliable forecasting, BCF is an 

application developed to enable managers to deal with the blood components using the time-series 

forecasting model. Fortsch and Khapalova (2016) introduced several practical methods to predict 

future demand for blood. Several forecasting models, including the naïve, exponential smoothing 

(ES), moving average (MA), and time series decomposition (TSD), were tested. They also 

compared the performance of these methods with an autoregressive moving average (ARMA) 

model. The results revealed that the ARMA forecasting model performed better for eight out of 

nine time series models. 

Khaldi et al. (2017) explored the capabilities of applying an artificial neural network 

(ANN) based model to forecast blood demand. The future demand for RBC and plasma were 

predicted by three ANN-based methods. The data was aggregated into monthly demand after the 

daily blood demand data was collected from 2010 to 2015. The results revealed that ANN models 

have greater accuracy in forecasting monthly blood components demand compared to 

autoregressive integrated moving average (ARIMA) models.  

  Lestari et al. (2017) used production/operations management and quantitative method 

software to analyze data by selecting the methods based on the smallest number of errors on 

forecasting blood components at the blood transfusion station. Four methods of forecasting were 

used: 1) the moving average (MA) model, 2) the weighted MA model, 3) the exponential 

smoothing (ES) model, and 4) the exponential smoothing model with a trend. The actual data from 

the blood transfusion unit was taken and analyzed from January 2015 to December 2015. They 

found that using the suitable forecasting method can predict the trend pattern represented by the 

blood components demand. For example, the appropriate forecasting method for whole blood and 

packed red cells is an exponential smoothing method, rather apheresis is a moving average 

forecasting method. 
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2.3  Literature Review related to Blood Supply Chain Hierarchical Level and Methodology 

Approach 

 

Within the supply chain, there are generally four stages (echelons): collection, production, 

inventory, and distribution. Several papers contain ‘integrated’ models that include more than one 

echelon (Osorio, 2015). Jennings (1973) presented the first analytical basis for categorizing the 

entire blood and blood product inventory problem. This early research presented the issue through 

hierarchical levels (strategic – tactical – operational) and outlined the effects of various blood 

inventory policies. Pierskalla et al. (1980) and Osorio (2015) provided an in-depth study and 

design analysis of the blood supply chain within the United States. 

 

2.3.1  Regarding Hospital level 

Brodheim et al. (1976), Katz et al. (1983), and Ledman and Groh (1984) determined a 

platelet production plan for each weekday to limit platelet outdating while simultaneously 

maintaining the capability to deliver platelets to meet hospital needs. Vrat and Khan (1976) 

analyzed the effectiveness of a hospital blood bank system through a simulation model 

incorporated with a “desired-beginning-inventory-level” policy. It is suggested that the two most 

important measures of performance for any given blood bank are blood shortage and outdating. 

Dumas and Rabinowitz (1977) presented new operational policies for reducing blood wastage 

without adversely affecting shortages in hospital blood banks. Two policies are evaluated using 

the simulator, one being double-crossmatching, which tests the same unit of blood for 

compatibility with two potential recipients so that it is available for use by either and ensures that 

blood is available for both. Another policy is that under certain blood-age conditions and when 

medically achievable, using Rh-negative blood for Rh-positive patients. The results showed that 

the wastage was dropped to about 9.8% using single-crossmatching only, the wastage dropped to 

about 4.4% using double-crossmatching units 14 days or older, and the wastage dropped to 4.2% 

using double-crossmatching the oldest 25% of the units. While the wastage of Rh negative-to-

positive policy was reduced from 19.5% under single-crossmatching to 16.2% using double-

crossmatching, it is found that in both positive and negative blood, the most effective reduction in 

wastage is accomplished by collaborating the double-crossmatching and negative-to-positive 

policies. Pink et al. (1994) examined the inventory management system of public hospital blood 

banks located in Sydney to find out what causes the wastage of donated blood. It is recommended 
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that outdating improvements involve changes in inventory management, i.e., changes in 

crossmatching procedure, understanding blood expiration dates, and effective stock rotation 

practices. Six months after the recommendations were circulated, the overall outdating was 

significantly reduced from 5.0% to 0.9%. 

Katsaliaki and Brailsford (2007) studied the policies of the blood inventory management 

system in a representative hospital in the United Kingdom. A discrete-event simulation model was 

utilized to discover the policies for orders, which would lead to the reduction of blood outdating 

and blood shortages, improved levels of customer service, improved safety protocols, and cost 

reduction. The model captured all events that occurred in the blood supply chain, from blood 

donation to transfusion, and showed how the medium-sized hospital’s blood bank could increase 

customer service and budgetary control. The results of successful policies showed that the total 

crossmatch release period was reduced to under one day, the transfusion-to-crossmatch ratio was 

increased to 70%, the RBC holding stock was decreased to four days, 89% (297 units) fewer RBC 

outdates, an 8% total hospital cost reduction, and 47% (69 units) fewer shortages from the center, 

etc. 

Haijema et al. (2007) conducted a case study on blood bank platelet production and 

inventory management, which supplies platelets for many hospitals. The Markov Dynamic 

Programming (MDP) method and the simulation approach were combined to reduce the total cost. 

This approach was utilized by a Dutch blood bank, with two demand types- ‘young’ platelets 

(oncology and hematology) and ‘any’ age platelets, up to the maximum shelf life (traumatology 

and general surgery).  For a typical week, about 180 platelet pools can be obtained from one blood 

bank. Approximately 30% of demand was for ‘any’ age platelets, with 70% for ‘young’ platelets. 

It is concluded that the ‘nearly optimal’ single level (1D) order-up-to and double level (2D) order-

up-to policies can be found, where the 1D rule is one level to ‘young’ platelets, and 2D rule, with 

one level to ‘young’ platelets and one to the total inventory. The results showed that the 1D policy 

performed very satisfactorily, however, the 2D policy performed to an almost optimal level. 

Heddle et al. (2009) analyzed product inventory/disposition data of red blood cells (RBC) 

at 156 hospitals for 21 months and used logistic regression techniques to ascertain what elements 

(month, distance to blood provider, monthly blood transfusion activity, type of hospital, and rural 

district) would affect RBC outdating. RBC outdating was considerably impacted by three factors: 

blood provider distance, average monthly blood transfusion activity, and month. Based on the 
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factors that affected wastage, a technique is built to classify the hospitals into groupings. Each 

group would then be able to set up a reference target. Group 1 consisted of 73 hospitals with an 

RBC target wastage level of 0.4%, Group 2 consisted of 59 hospitals with a target wastage level 

of 1.1%, and Group 3, comprised of 24 hospitals with a target wastage level of 20.3%. 

Gunpinar and Centeno (2015) introduced a stochastic integer programming model within 

a planning horizon to reduce the shortage and wastage levels of platelet components and RBC at 

a hospital. The models take into account blood unit age for units stored in stock, the demands for 

two patient types, demand rate uncertainty, and the ratio of crossmatch-to-transfusion. The results 

showed that the average wastage rate decreased from 19.9% to 2.57%. Shortages and total costs 

were reduced by 91.43% and 20.7%, respectively. This model would help determine suitable order 

sizes to reduce the shortage and wastage costs as well as the total costs. 

Attari et al. (2017) released a goal programming model to diminish wastes and shortages 

of blood components in hospitals. Demand and supply data were collected from 35 various 

hospitals and clinical centers located in Tabriz, Iran, and solved by the model under 3 different 

scenarios and 18 time periods. Computational results demonstrated that hospitals’ holding, 

transportation, and waste costs compared to their shortage costs are very low. Hospitals tend to 

accept blood products’ holding and waste costs to fulfill the demands of patients who receive blood 

products. 

 

2.3.2  Regarding Blood Center Level 

Frankfurter et al. (1974) introduced a computerized blood inventory forecast system to 

manage inventory levels at an Albany, New York regional blood collection and distribution center 

system. Total blood collections amount to approximately 65,000 units annually, and about a two-

week supply of blood is in inventory (available) in the region at any period of time. This inventory 

level projection model is used to alert regional blood center management when potentially low or 

high blood inventory levels occurred. Therefore, when inadequate inventory levels were forecasted 

during a period, preventive action will be taken immediately by either increasing or reducing 

collections of blood. Cumming et al. (1976) established a strategic planning model for a blood 

supply region. The goal of this model is to assist the blood provider of the region to mitigate 

seasonal differences in blood demand and supply. A Markovian population model is applied to 

forecast various performance measures for a blood supply region. The model needs past 
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performance of bloodmobile sponsors, quotas, and forecasts of demand. An improvement in the 

blood collection and scheduling operations could be made by implementing the strategic planning 

model; for example, scheduling is improved by changing the dates for only 25 of the 300 blood 

collections planned by the supplier. 

Prastacos (1978) analyzed the distribution policies of a perishable good which was 

allocated from a central location to various regional location, namely, the rotation policy where 

the unused and not outdated product was returned to the center, and the retention policy, where to 

return the unused product to the center are not possible. It is shown that the optimal myopic rule 

reduces shortage and outdating expenses for a given period and is straightforward to apply in a 

practical setting.  

Prastacos and Brodheim (1980) described a FIFO policy-based decision support system, 

the ‘Programmed Blood Distribution System (PBDS)’, which is for regional blood administration. 

There are three features of the system: (1) a centralized management of blood bank, instead of by 

individual hospitals, (2) deliveries by prescheduling, and (3) a distribution system based on blood 

that is “rotated” between hospitals. The region’s blood distribution system performance has also 

been greatly impacted by the PBDS. Before its implementation, an estimated 20% of their blood 

resources were outdated, and on average, they received 7.8 deliveries a week per hospital, which 

were all unscheduled. Once PBDS was implemented, the region’s blood outdating was decreased 

to roughly 4%, and the weekly deliveries were decreased to approximately 4.2 deliveries per 

hospital. Of these deliveries, only 1.4 were not scheduled beforehand. PBDS has been 

implemented and is currently operational in 38 hospitals in Long Island, New York. 

Denesiuk et al. (2006) developed a red blood cell unit redistribution system for outdated 

units. The main idea of this system is to transfer the nearly outdated RBC units from a low 

utilization of blood hospitals to a high utilization of blood hospitals. It was found that the 

redistribution systems can be a successful practice to decrease the wastage rates of RBC units, thus 

increasing overall available inventory levels in the blood system. Four remote sites located in 

northern Alberta, Canada, implemented this redistribution program. The first year the blood 

redistribution system was implemented, the on-site number of discarded RBC units was decreased 

in all four sites. Between April 1, 2003, and March 31, 2005, 106 RBC units were effectively 

transferred from low-usage sites to high-usage sites. 
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2.3.3  Regarding Supply Chain level 

Kendall (1980) recommended a good model for solving planning problems with multiple 

objectives. In his paper, four major objectives were identified for a regional blood collection and 

distribution system: (1) to reduce costs associated with donor recruitment and collecting and 

processing of blood; (2) to minimize blood shortages at participating hospital blood banks; (3) to 

diminish wastages of blood; and (4) to reduce transfused blood age. This model used two 

approaches, sequential elimination by a combination of constraints and a trade-off method to select 

the most useful combination of goals. 

Rytilä and Spens (2006) constructed a simulation model to be used for increasing the 

effectiveness of blood supply systems in Finland. The goals of their research were to reduce total, 

outdating, and backorder costs, and maintain the current level of blood accessibility.  Detailed data 

was gathered and validated. The results of the simulation experiments suggested that simulation 

modeling approaches provided a very useful tool for risk and uncertainty management in 

healthcare supply chains. Kopach et al. (2008) anticipated the demand according to FIFO policy 

and proposed a queuing model based on the key concept-inventory systems of perishable 

commodities and the level that crossing techniques that were used to determine an optimal policy 

to keep up the balances between emergency and discretionary demand, customer service, costs, 

and minimizing shortages and outdating at the blood center. Data was gathered by blood type and 

included red blood cell units delivered from regional blood centers. Compared with current control 

techniques by using simulation, this model is shown to be effective using real data acquired from 

Canadian blood services. 

Katsaliaki (2008) studied the entire UK supply chain for blood and took a discrete event 

simulation model to examine and identify good ordering, inventory and distribution practices for 

the supply chain. All the acquired data was gathered from the National Blood Service Center in 

Southampton, along with the hospitals served by the blood center. The study’s purpose was to find 

policies that produced better and more cost-effective supply chain management. The results from 

successful policies showed that the total crossmatch release period was reduced to under one and 

half days, the ratio of the transfusion-to-crossmatch was increased to 70%, and the average of RBC 

stock was held approximately four days, etc. 

Ghandforoush and Sen (2010) presented a typical model of the Decision Support System 

(DSS) for bloodmobile scheduling and platelet production for a regional blood center. The goal 
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was to lessen the costs of blood collection, production, and shortages. One vital DSS aspect is an 

equipped non-convex integer optimization model that assisted the regional blood center with 

scheduling whole blood transportation from collection stations to the regional processing center. 

In the trial, the predetermined weekly component schedule is established off of daily production 

of 350 to 475 platelet units, with the production varying based on the day of the week. Historical 

data was used to establish daily demand, with the addition of safety stock to cover estimation error. 

Results from this test suggested that by implementing an improved production strategy and mobile 

assignment plan, the proposed DSS could do superior to meet the daily demands. 

Dillon et al. (2017) suggested a two-stage stochastic programming model to determine 

superior policies for periodic review of RBC inventory management. The model’s goal is to 

decrease operating costs, blood shortage, and outdating as much as possible, while considering the 

perishability and demand uncertainty. To assess the performance of the proposed framework, a 

case study was used. The case study collected realistic data to represent daily blood demand 

determined from the average and the standard deviation of the demand for eight types of blood. 

The model proposed could easily be adapted for the consideration of different planning horizons 

periods, various lead times, and blood products with limited shelf lives such as plasma and 

platelets. Moreover, it was shown that blood inventory management could achieve additional 

increases in performance by considering blood substitutions. 

 

2.4  Literature Review related to Inventory Management and Methodology Approach 

Blood Inventory Management has attracted huge interest from the operations research 

profession during the last decades (Ekici, 2017). Prastacos (1984) presented an exhaustive 

literature review on blood inventory management. The majority of the literature has concentrated 

on inventory management, specifically focusing on blood product perishability (Pierskalla, 2005). 

There are other papers that concern inventory management, including studies about demand 

forecasting, emergency blood demand plans, best practices, computerized information 

management systems, the extensions of blood component shelf life, and additional issues related 

directly or indirectly to the supply chain management of blood. It is suggested that novel research 

will focus on the development of new inventory policies as opposed to adopting classic inventory 

models such as min-max inventory models or fixed order interval policies for blood products. 
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2.4.1  Blood Inventory Management for Inbound Problems 

Inbound problems include ordering policy, issuing policies, inventory allocation, 

crossmatching policies, planning for collections, and other issues that related directly or  

indirectly to blood supply chain management (Beliën and Forcé, 2012). 

Jennings (1973), Prastacos (1984), Sirelson and Brodheim (1991), Pierskalla (2005), 

Haijema et al. (2009), and Van Dijk et al. (2009) have presented fixed order interval inventory 

models that exhibited platelet inventory management effectiveness at specific blood centers and 

hospitals. 

Federgruen et al. (1986) studied a distribution routing inventory model for perishable items 

that were allocated from a regional center to various regional sites with indiscriminate needs. The 

study’s goal is to minimize transportation, shortage, and outdating costs. This study analyzed two 

delivery methods: method one assumed all demand points receive individual deliveries; and 

method two chose a fleet of vehicles to travel multiple-stop routes to make combined deliveries. 

The per-unit costs among locations were different and the issues of allocation and 

distribution/routing were examined together. Computational results showed that the traveling costs 

are considerably reduced by using the joint methods, but a very small drop in inventory 

performance was seen as well. 

Jagannathan and Sen (1991) focused on the storing of crossmatched blood, and they 

developed a model to resolve the outdates and shortages of crossmatched blood.  It selected 

inventory parameters that were generally accepted, such as a proportion of transfused, 

crosshatched blood, and the range of days when that crosshatched blood is discharged. This 

provided the administrator of the blood bank with a tool for deciding desired free (or unallocated) 

inventory levels that would reduce operating costs and improve services. 

Michaels et al. (1993) used a simulation model to assess several scheduling approaches for 

blood donor arrival to a Red Cross blood drive. In the Greater Chesapeake and Potomac Blood 

Services Region, registration, health history, and venipuncture service time data was gathered. The 

results of the experiments recommend that a fully-scheduled system should be employed for blood 

drives. This includes all donors being scheduled beforehand without slots intentionally left open 

for walk-ins. After all possible donors have signed up, any available slots can be filled by walk-in 

donors. 

Abbasi and Hosseinifard (2014) examined different issuing policies for a limited lifespan 
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inventory system with unmanageable replenishment and a modified FIFO policy was presented. 

Their adapted FIFO policy separates inventory into two parts. Part one holds items under an age 

threshold and applies the FIFO policy in each part and the LIFO policy between the parts. Several 

cases used in their analysis showed the modified FIFO policy outperforming the FIFO and LIFO 

policies, where a single economic function or formulated as a multi-objective model was defined 

as the objective function. 

Duan and Liao (2014) introduced a new simulation optimization (SO) structure for 

inventory management in the blood supply chain with A, B, AB, or O(ABO) blood group 

compatibility. A study was presented and accomplished optimizing the red blood cell order-up-to 

guidelines for a single-hospital single-blood center supply chain system by considering the 

products of eight different blood groups and their suitable replacements. An ideal solution was 

identified for all three situations, and the prospective cost savings provided by compatible 

substitution was measured by the proposed SO framework. Allowing ABO/Rh (D)-compatible 

blood substitution helped decrease outdating by at least 16% throughout the system, even under 

the most restrictive maximal shelf life. For a shelf life of 14 days and 21 days, the highest outdating 

rate was kept as low as 2% by the proposed framework. 

Najafi et al. (2017) took the blood demand and supply uncertainty and possible blood 

transshipment into consideration and then proposed a blood inventory management model for 

managing, ordering, and issuing to minimize blood shortage and outdating. This model also 

considered possible substitutions among different blood types in the blood transfusion process. 

The results of a numerical experiment demonstrated that within the planning horizon period, blood 

outdating in the hospital was decreased by using a lesser transshipment value threshold. A higher 

crossmatch to transfusion (C/T) ratio value showed an additional decrease in blood shortage and 

wastage. 

During emergencies and disasters, extra blood is necessary. According to Butch (1985), an 

emergency is one of the internal factors that influence blood bank inventory management. Boppana 

and Chalasani (2007) developed a continuous-time Markov chain model to establish the ideal rate 

of blood acquisition in emergencies to minimize the amount of blood collection. This Markov 

model highlights how to tradeoff acquisition rates and maximize blood product storage for a 

certain level of availability. In the paper by Erickson et al. (2008), it is reported that the Yale-New 

Haven hospital blood bank has implemented an emergency blood management plan, including 
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upkeep of a reserve frozen blood supply. This supply is not intended to fulfill the enormous 

transfusion need accompanying extreme or sustained disasters. Instead, it serves as a short-term 

stock until blood center support is restored. Zhou et al. (2009) analyzed a periodic review inventory 

system for limited lifespan products under two replenishment modes that include routine orders 

issued at the start of a cycle and the manager placed and emergency orders within the cycle. It is 

proven that when an ideal order-up-to level policy is used, expected costs are minimized. The 

numerical results showed that the total anticipated cost is reactive to the normal order policy. The 

optimal policy is reactive to changes in the anticipated demand. 

 

2.4.2  Blood Inventory Management for Outbound Problems 

Outbound problems consider issues related to supply and distribution scheduling (Beliën 

and Forcé 2012).  

Prastacos (1978, 1981); Gregor et al. (1982); Sapountzis (1984); Denesiuk et al. (2006) 

focused on models for distributing blood from a regional blood center to different hospitals with 

consideration of outdating and shortages. To thoroughly understand what defines the efficiency of 

a blood inventory, Pereira (2005) used a stochastic model to simulate the regular processes over a 

few days in inventory management in a hospital blood bank. The outdating and shortage rates grew 

exponentially with a coefficient of variation (CVAR) in daily transfusion, and increasing the 

remaining shelf life (RSL) could partially counterbalance this effect. For hospitals not holding 

crosshatched inventories, the coefficient of variation (CVAR) in daily transfusion is the major 

parameter for identifying the performance of blood inventory management. In a daily transfusion, 

hospitals with a large CVAR need young red blood cell (RBC) units, however, hospitals with 

smaller CVAR perform well with older units. 

Hemmelmayr et al. (2009) investigated the Austrian Red Cross blood product delivery 

strategies. They used an Integer Programming and variable neighborhood search approach to 

examine the benefits of substituting in vendor management, with a deterministic usage rate, for 

current vendee management of inventory. The computational study showed that a cost was reduced 

by approximately 30%. Otherwise, the variance was comparatively small (averaging less than 5%) 

between the two proposed delivery approaches. In situations with tight constraints (i.e., hospital 

with restricted space for storage and minimal spoilage periods), concentrating on optimizing 

delivery day decisions results in marginally improved outcomes, while in a less constrained 
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situation, concentrating on consistent delivery patterns provides marginally improved outcomes. 

Because of the uncertainty with medical usage rates, Hemmelmayr et al. (2010) extended this 

method to deal with stochastic product usage. A technology for the development of delivery routes 

for the blood product supply to hospitals was developed. The technology takes into account 

fluctuations in blood product usage at hospitals and is sampling-based. A range of emergency 

delivery options is also taken into consideration. 

Pierskalla (2005) demonstrated time series methods to forecast the mean daily blood 

requests for inventory control. In the methods, simulation model and statistical analysis were 

utilized to build up a target inventory decision function for inventory levels at an independent 

hospital blood bank, at a centralized hospital blood bank system (HBBs), and community blood 

centers (CBCs). 

Wang and Ma (2015) presented an inventory infrastructure for both main delivery and 

affected blood banks during emergency blood shortages. A transshipment model is developed for 

shipping blood units. Two product selection approaches were compared: age-based and quantity-

based policy. The simulation experiments showed that under first-in-first-transship (FIFT) 

methods, the total number of expired units was lower when using the age-based policy when 

comparing with the quantity-based policy. The expiration rate of all systems is within the normal 

range.  

 

2.5  Literature Review related to Trends in the Type of Approach 

Problems of supply chain management related to blood products have been modeled 

utilizing a variety of methodologies and approaches. Especially, the most well-known solution 

methods presented in the literature are simulation methodology, mixed integer programming, goal 

programming, dynamic programming, and multiple objectives approaches. The real-world 

problems are analyzed and solved by utilizing each approach alone or together with other methods 

(Gunpinar, 2013). 

Numerous research papers on the blood supply chain started being fully deterministic, and 

over the years expanded to deal with the stochastic setting (Beliën and Forcé, 2012). The 

publications including a stochastic setting have exceeded the number of those including a 

deterministic setting. Within the past 10 years, the disparity has just turned out to be larger. This 

implies that research in the future will keep concentrating on a stochastic (uncertainty) setting. 
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A summary of this literature reviews is presented in Table 2.1: 

 

Table 2.1: Summary of Literature Reviews 

Article Type of 

problem 

Objective Hierarchical 

Level 

Methodology 

Jennings 

(1973) 

Inbound 

and 

Outbound 

Minimize cost function 

which includes two cost 

components- shortages 

and outdating  

Hospital Mathematical 

stochastic model 

Frankfurte

r et al. 

(1974) 

Inbound 

and 

Outbound 

Forecast transfusions and 

alert short-term inventory 

level of blood supplies 

Blood center Exponential 

smoothing 

techniques 

Nahmias 

(1975) 

Inbound Minimize cost function 

which includes four cost 

components- ordering, 

holding, shortages, and 

outdating 

Irrelevant Dynamic 

programming  

Fries 

(1975) 

Inbound Minimize cost function 

which includes four main 

components- ordering, 

holding, procurement, and 

wastage costs, in addition 

to a discounting factor  

Irrelevant Markovian 

model and 

dynamic 

programming 

Brodheim 

et al. 

(1976) 

Inbound Minimize shortage rates to 

determine what inventory 

levels should set for 

hospital blood banks  

Hospital Statistical 

models 

Cumming 

et al. 

(1976) 

Inbound Minimize the seasonal 

variance between supply 

and demand of blood to 

improve scheduling of 

blood collection 

operations 

Blood Center Markovian 

population 

model 

Vrat and 

Khan 

(1976) 

 

Inbound Suggest an optimal 

inventory policy for a 

hospital blood bank to 

minimize the total 

shortage and outdating 

costs  

Hospital Simulation 

model 
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Prastacos 

(1978) 

Inbound Derived optimal myopic 

rules to minimize both 

shortage and outdating 

costs for one period 

Blood center Demand 

distribution 

model 

Gardner Jr 

(1979) 

Irrelevant Compare multiple 

regression forecasting 

model vs Box-Jenkins 

models 

Hospital Multiple 

regression 

forecasting 

model 

Prastacos 

and 

Brodheim 

(1980) 

Inbound 

and 

Outbound 

Minimize expected 

outdating and shortage 

costs and maximize 

distribution of regional 

blood resources while 

meeting policy constraints 

Blood center Simulation 

model 

Kendall 

(1980) 

Inbound 

and 

Outbound 

Minimize shortages, 

outdating, age of blood 

transfused, and regional 

operating costs 

Blood center Integer 

Programming 

Weiss 

(1980) 

Outbound Minimize expected 

average cost which 

includes four cost 

components – ordering, 

holding, disposal, and 

penalty 

Irrelevant Mathematical 

proofs and 

optimal 

derivations 

Prastacos 

(1981) 

Inbound 

and 

Outbound 

Reduce the expected 

shortages and outdates in 

the area to find good 

allocation policy  

Blood center Metaheuristics,   

Mathematical 

proofs and 

optimal 

derivations 

Federgrue

n et al. 

(1986) 

Inbound 

and 

Outbound 

Minimize cost function 

which includes three 

components- shortage 

cost, outdating cost, and 

transportation cost 

Blood center Integer 

Programming 

Michaels 

et al. 

(1993) 

Inbound Evaluate several effective 

approaches for  the  blood 

donors arrivals scheduling 

to a Red Cross blood drive  

Blood center Simulation 

Model 
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Lian and 

Liu (1999) 

Inbound Minimize cost function of 

four cost components- 

ordering, holding, 

shortage, and outdating to 

compute optimal 

parameters 
*s  and 

*S  

Irrelevant Markov renewal 

approach and 

mathematical 

derivations 

Tekin 

(2001) 

Inbound Minimize the expected 

total cost of three 

components- ordering 

cost, holding cost, and 

outdating cost under the 

service level constraint 

Irrelevant Markov 

approach and 

Mathematical 

derivations for 

optimal ordering 

policy 

Pereira 

(2004) 

Inbound Compare three time-series 

methods 

Hospital Time-series 

methods  

Bosnes et 

al.   (2005) 

Inbound Predict blood donor 

arrival to allow for 

improved donation 

planning  

Blood center Statistical 

analysis 

Schreiber 

et al. 

(2005) 

Inbound Examine whether first-

time donors with recurrent 

donations in the first year 

were more likely to 

become consistent donors 

Blood center Logistic 

regression 

techniques 

Boppana 

and 

Chalasani 

(2007) 

Inbound 

and 

Outbound 

Establish the ideal 

procurement rate of blood 

during emergencies 

Supply Chain Markov chain 

model 

Kopach 

(2008) 

Inbound Examine trade-offs 

between multiple demand 

levels, service levels, 

operating costs, and also 

minimizing shortages and 

wastage 

Blood Center Stochastic 

queuing model 

and level 

crossing 

techniques using 

simulation 

Hemmelm

ayr et al. 

(2009) 

Outbound Generate and assess two 

alternative delivery 

strategies by minimizing 

the number of deliveries 

Blood Center Integer 

programming, 

Variable 

neighborhood 

search 
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Van Dijk 

et al. 

(2009) 

Inbound Identify an ideal 

production policy to 

minimize outdating cost 

and shortages cost 

Hospital and 

Blood Center 

 

Stochastic 

dynamic 

programming 

with simulation 

Ghandforo

ush and 

Sen  

(2010) 

Inbound Reduce the total system 

daily costs which include 

transportation costs, 

production costs, and the 

cost due to the loss of 

platelets 

 

Blood Center  Non-convex 

integer 

optimization 

model, 

Mathematical 

proofs and 

derivations 

Zhou et al.     

(2011) 

Inbound Minimize expected total 

cost including ordering, 

shortage, and outdating 

cost, to analyze a periodic 

review inventory system 

for a perishable product 

under two replenishment 

modes 

Hospital Dynamic 

programming 

Filhoet al.              

(2012) 

Inbound Forecasting blood 

components demands 

Hospital Computerized 

Seasonal 

Autoregressive 

Integrated 

Moving Average 

(SARIMA) 

models 

Filhoet al.              

(2013) 

Inbound Forecasting blood 

components demands 

Hospital Computerized 

Box-Jenkins 

Seasonal 

Autoregressive 

Integrated 

Moving Average 

(BJ-SARIMA) 

models 



 

36 
 

Duan and 

Liao 

(2014) 

Inbound Minimize the expected 

system-wide outdated rate 

under a predetermined 

maximally allowable 

shortage level 

Hospital and 

Blood center 

Simulation 

optimization 

(SO) framework 

incorporated 

with a new 

metaheuristic 

optimization 

algorithm 

Gunpinar 

and 

Centeno          

(2015) 

Inbound Minimize the total cost 

which includes shortage, 

outdating, purchasing, and 

holding costs at a hospital 

within a planning horizon. 

Hospital Stochastic 

integer 

programming 

Wang and 

Ma (2015) 

Outbound Develop an age-based 

transshipment model to 

minimize the sum of 

weight coefficients of the 

selected transshipping 

products 

Hospital Mixed integer 

programming 

and simulation 

Fortsch 

and 

Khapalova         

(2016) 

Inbound Accurate blood demand 

forecasting to lower 

wastage and excess 

inventory 

Blood Center Box–Jenkins 

methodology 

Muriana 

(2016) 

Inbound Minimize the expected 

total cost- shortage, 

outdating, and holding 

costs 

Irrelevant Mathematical 

stochastic model 

and differential 

equation with 

closed form 

solution 

Rajendran 

(2016) 

Inbound Minimize the expected 

total cost- ordering, 

purchasing, shortage, 

outdating, and holding 

costs 

Hospital Mix integer 

programming 

Attari et al 

(2017) 

Inbound Minimize shortage cost 

and wastage cost of blood 

products 

Hospital Multi-choice 

goal 

programming 

Dillon et al 

(2017) 

Inbound Minimize operational 

costs, blood shortage cost, 

and outdating cost 

Blood supply 

chain 

Stochastic 

programming  
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Khaldi et 

al.          

(2017) 

Inbound Forecasting monthly 

demand of three blood 

components- red blood 

cells (RBC), plasma (CP) 

and platelets (PFC) 

Blood Center Artificial Neural 

Networks 

(ANNs) 

Najafi et 

al.    

(2017) 

Inbound Manage blood ordering 

and issuing to minimize 

blood shortage and 

wastage 

Hospital Multi-objective 

integer 

programming 

and chance 

constraint 

programming 

Lestari et 

al.            

(2017) 

Inbound  Select best method for 

forecasting blood 

transfusion unit 

Supply Chain Production/Oper

ations 

Management, 

Quantitative 

Method (POM-

QM) software 

Pauls-

Worm and 

Hendrix 

(2018) 

Inbound Minimize the expected 

total cost containing 

production, shortage, and 

outdating costs 

Irrelevant Stochastic 

programming 

model with a 

chance 

constraint Proposed 

Research  

Inbound 

and 

Outbound 

Minimize the expected 

total cost including 

ordering, purchasing, 

shortage, outdating, and 

transportation costs 

Blood supply 

chain 

Mixed Integer 

Programming, 

Stochastic 

Programming, 

Goal 

Programming 

 
 

A summary of objectives in this literature reviews is presented in Table 2.2: 

 

            Table 2.2: Summary of Objectives in Literature Reviews 

Article 

                                            Objective 

Ordering Purchasing Shortage Outdating Holding 
Transportation 

Cost 

Jennings 

(1973) 

  
√ √ 

  

Nahmias 

(1975) 
√  √ √ √ 

 

Fries (1975) √ √  √ √  

Brodheim et al. 

(1976) 

  
√   
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Vrat and 

Khan (1976) 

 

  
√ √ 

  

Prastacos 

(1978) 

  
√ √ 

  

Prastacos and 

Brodheim 

(1980) 

  

√ √ 

  

Kendall 

(1980) 

 
√ √ √   

Weiss (1980) √  √ √ √  

Prastacos 

(1981) 

  
√ √  

 

Federgruen et 

al. (1986) 

  
√ √  √ 

Lian and Liu 

(1999) 
√  √ √ √ 

 

Tekin (2001) √   √ √  

Van Dijk et 

al. (2009) 

  
√ √ 

  

Ghandforous

h and Sen 

(2010) 

 
√ 

 
√  √ 

Zhou et al.     

(2011) 
√  √ √ 

  

Gunpinar and 

Centeno 

(2015) 

 

√ √ √ √ 

 

Muriana 

(2016) 

  
√ √ √ 

 

Rajendran 

(2016) 
√ √ √ √ √ 

 

Attari et al. 

(2017) 

  
√ √ 

  

Dillon et al.  

(2017) 

 
√ √ √   

Najafi et al.    

(2017) 

  
√ √ 

  

Pauls-Worm 

and Hendrix 

(2018) 

 

√ √ √ 

 

 

Proposed 

Research 
√ √ √ √ √ √ 
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2.6  Research Goals on Blood Inventory Management 

Blood supply chain management requires that both hospitals and blood centers 

be increasingly innovative and cost-effective in collecting, producing, and delivering blood 

products and services (Ghandforoush and Sen, 2010; Belien and Force, 2012). An appropriate 

approach should be taken to deal with inventory costs, blood platelet ages, short-shelf life of blood 

platelets, and consideration of demand and supply uncertainties. This research is an endeavor 

toward that direction. The primary goal of this research is to propose a few blood inventory 

management models for the blood supply chain while aiming for the subsequent research goals: 

 

 More reliable Forecasting for Blood Supply and Demand 

 

Forecasting drives company decisions in the number of demands that the company ought 

to meet to achieve success. From the previous discussion, it is known that the uncertainty about 

the need for the various blood products is a major factor in blood supply chain management. Thus, 

the accuracy of forecasts on the amount and timing of future blood demand significantly 

contributes to blood inventory control and the donor recruiting process.  

Taiwan blood centers face blood shortage problems due to a lack of accurate forecasting 

of blood supply and demand (Taiwan Blood Services Foundation Statistics, 2017). A good 

forecasting model for blood supply and demand is required for the successful planning of a blood 

supply chain. 

The proposed research considers developing forecasting models using predictive machine 

learning analytic tools. These analytic techniques are important in growing industry applications 

of machine learning. 

 

 Better Blood Inventory Management 

Given the characteristics of blood, operations research can give help with blood supply 

chains (Blake, 2009; Nagurney, 2017). Research related to blood inventory management is 

dominated by operations research experts who build mathematical models and apply them to 

develop policies (Stanger et al., 2012). Nevertheless, in 2004, it is reported that 17% of platelet 

units gathered within the US became out-of-date before the units were used (National Blood 

Centers, 2004; Fontaine et al., 2009); and a total of 492 reportable elective surgeries cancellations 

on at least one day were because of blood deficiencies at 1700 US hospitals, taken from a 2007 
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survey study (Nagurney et al., 2012). Thus, outdated and deficiencies of blood items have been 

and still is a problem for hospitals. There is a need for better blood inventory management. 

Although research of blood inventory management for the blood supply chain exists, not 

many cases of integrated models of supply chain and consideration of multiple features have been 

considered. Most of the literature centers on single echelons. This could mislead some cases into 

unpractical and unfeasible solutions. A need exists for modeling the whole process flow within the 

blood supply chain. In any event, integrated models would acknowledge constraints within the 

front and back stages (Osorio, 2015). Blood inventory management is a trade‐off, guaranteeing 

100% accessibility to all blood products in the least time while minimizing wastage. The proposed 

research considers developing models in blood inventory management for the entire blood supply 

chain to make good management planning decisions, such as when to collect blood from donors, 

how many units to collect, proper assignment of manpower for collecting blood in donor drives, 

blood component testing process, etc. 

 Incorporate Blood Inventory Management with Blood Demand and Supply Uncertainty 

 

Minimizing blood wastage and shortages poses a major challenge in blood management at 

hospitals and blood centers. On account of demand and supply uncertainty, mitigation efforts to 

manage and minimize the impact of outdated blood and shortages represent a challenging problem 

for hospitals (Najafi et al., 2017). Solyal et al. (2015), Fortsch and Khapalova (2016), and 

Rajendran and Ravindran (2017) are the latest researchers to address the challenge in inventory 

management of demand uncertainty. The previous investigation on blood inventory management 

assumed demand was known, or their uncertainties are often modeled as a Poisson or Normal 

distribution, making it difficult to render significant models in practice. The proposed research 

considers developing models in blood inventory management, considering the whole blood supply 

chain under the uncertainty of blood supply and demand. 

 

 Effective Blood Inventory Management to meet Emergency Blood Demand 

Keeping up blood inventories adequately to fulfill the routine and emergent loads, will 

require additional monitoring and understanding of these patterns (Ellingson et al., 2017). Various 

cases demonstrate the necessity for blood supply chain solutions that allow hospitals and medical 

system infrastructures to react successfully to mass casualty events (Gerberding et al., 2007; Kamp 

et al., 2010; Williamson and Devine, 2013). 
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Also, blood can be sent back to the blood center due to false-negative bacterial 

contamination or when extra units are ordered. In these cases, the reverse shipment cost has to be 

considered in the model. No previous research has been found that has taken into account the 

reverse shipment cost and the associated changes in stock inventory. This research will consider 

the area of emergency relief operations and collaboration with closed-loop blood supply chains as 

well. 

 

 Blood Sharing in Blood Supply Inventory Management 

The issues with blood sharing come from the inadequate supply, finite shelf life, high 

operating expense, uncertainty of demand and supply, and the requirement for a high level of 

customer service (Wang and Ma, 2015). Through a divergent blood supply chain network, the 

blood inventory of the delivery hospital can be imparted to affected hospitals, which enhances 

their service levels. Gregor et al. (1982) employed a simulation model to evaluate the costs and 

effects of several different operational policies for a regional blood center. It was found that lower 

expiration and shortage rates were yielded from a periodic redistribution of the regional inventory. 

Blood sharing throughout the blood shortage could be a troublesome issue because it is 

closely associated with the inventory. In current practice, there is still no broad approach for blood 

sharing; thus, this research will surely aim to create a new decision-making structure, particularly 

for reducing blood waste during blood shortages.  

Overall, this research will examine blood inventory management in blood centers and 

hospitals as an entire supply chain, and develop a mathematical model with the goal of managing 

blood ordering, blood sharing, emergency demand, and inventory. This study will consider blood 

supply, demand uncertainties, and blood sharing feasibility. At last, numerical experiments will be 

devised to show the model’s outcome and assess the impact of various parameter settings for blood 

inventory management. 
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   CHAPTER 3 

                                    BLOOD SUPPLY FORECASTING 

In managing blood inventory, the demand for different blood products is a primary source 

of uncertainty within the management of the blood supply chain. Correct forecasts of the quantity 

and timing of future blood requests have been the important input of data to inventory control and 

donor recruiting decision making (Pierskalla, 2005). Lestari et al. (2017) indicated that the 

forecasting could predict the data trend observed and future demand for blood components. This 

chapter will be using the historical data of Taiwan’s blood center and select the best forecasting 

methods to predict future blood supply and demand. Figure 3.1 represents the blood operation 

process in Taiwan’s blood centers. 

      
Figure 3.1: Blood Operation Process (Taiwan Blood Service Foundation, 2019) 
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Based on the literature review on forecasting demand for perishable products described in 

chapter 2, it is concluded that the best performance forecasting models are: autoregressive moving 

average (ARMA) method, autoregressive integrated moving average (ARIMA) method, 

exponential smoothing model (ESM), and machine learning artificial neural network (ANN) based 

approach.   

 

3.1  Time Series Forecasting Methodologies 

This section discusses the seven time series forecasting methods used in this case study.  

 

3.1.1  Autoregressive (AUTOREG) Model (Nahmias, 2015; SAS, 2017) 

The AUTOREG procedure estimates and forecasts linear regression models for time series 

data when the errors are auto-correlated or heteroscedastic. The autoregressive model regresses 

the value of the series at time 𝑡 (𝑌𝑡) on the values at times  𝑡 − 1, 𝑡 − 2, … , 𝑡 − 𝑝,  the mathematical 

formula is expressed as given in Equation (3.1).  

 𝑌𝑡 = 𝛼0 + 𝛼1𝑌𝑡−1 + 𝛼2𝑌𝑡−2 + ⋯ + 𝛼𝑝𝑌𝑡−𝑝 + 𝜖𝑡                                                                      (3.1) 

Where 𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑝 are the linear regression coefficients, 𝑌𝑡 is the value at time 𝑡 and 𝜖𝑡 is the 

random error variable and is generally assumed to have a normal distribution with mean 0 and 

variance 𝜎2 (i.e., normal (0, 𝜎2)).  

3.1.2  Autoregressive Moving Average (ARMA) Models (Pankratz, 1983; Nahmias, 2015; 

SAS, 2017) 

ARMA model is one of the basic tools in time series modeling. Suppose the time series 

𝑌1, 𝑌2, … . , 𝑌𝑡 is stationary stochastic process time series, the expression ARMA (p, q) represents 

the model with autoregressive order of 𝑝  and moving-average order of q. This model is a 

combination of the AR (p) and MA (q) models, where AR (p) is written as 𝑌𝑡 = 𝑎 + ∅1𝑌𝑡−1 +

∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜖𝑡 and MA (q) is written as 𝑌𝑡 = 𝑏 − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 − ⋯ − 𝜃𝑞𝜖𝑡−𝑞 +

𝜖𝑡. 

𝑌𝑡 is the observation value at time 𝑡.  The ARMA (p, q) process is generally written in the form 

given in Equation (3.2). 

𝑌𝑡 = 𝑐 + ∑ ∅𝑖
𝑝
𝑖=1 𝑌𝑡−𝑖 − ∑ 𝜃𝑖

𝑞
𝑖=1 𝜖𝑡−𝑖 + 𝜖𝑡                                                                                   (3.2)  
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Where 𝑎, 𝑏, 𝑐 are constants, 𝜖𝑡 is the random error variable and is generally assumed to have a 

normal distribution with mean 0 and variance 𝜎2; ∅1, ∅2, … , ∅𝑝 are the autoregressive coefficients 

to be estimated, and 𝜃1, 𝜃2, … , 𝜃𝑞are the moving average coefficients to be estimated. 

3.1.3 Autoregressive Integrated Moving Average (ARIMA) Model (Pankratz, 1983; 

Nahmias, 2015; SAS, 2017) 

The ARIMA (autoregressive integrated moving average) approach was made popular by 

Box-Jenkins models (Box et al. 2008) .  The ARIMA procedure is functioning as a linear 

combination of its current values, past values, past errors, and past values of other time series 

(predictor time series) to predict a future response value in a time series.  

With time series nonstationary behavior, the above ARMA (𝑝, 𝑞) model can be extended and 

written using difference which is defined as: 𝑌𝑡 − 𝑌𝑡−1 = (1 − 𝐵)𝑌𝑡  = ∇𝑌𝑡 

Where 𝑡 is the index of time; 𝑌𝑡 is time series {𝑌𝑡: 1 ≤ 𝑡 ≤ 𝑛} at time 𝑡; 𝐵 is the backward shift 

operator, which means that 𝐵 has the effect of shifting the data back one period (i.e., 𝐵𝑌𝑡 = 𝑌𝑡−1). 

3.1.4  Seasonal ARIMA Model (Ravindran and Warsing, 2013; Nahmias, 2015; SAS, 2017; 

Hyndman and Athanasopoulos, 2018) 

Seasonal ARIMA model is written with the general expression ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠. 

The symbol 𝑝  is the order of the non-seasonal autoregressive component, 𝑑 is the order of the 

differencing, 𝑞 is the order of the non-seasonal moving-average process, 𝑃 is the order of the 

seasonal autoregressive part, 𝐷 is the order of the seasonal differencing, 𝑄 is the order of the 

seasonal moving-average process, and 𝑠 is the duration of the seasonal cycle.  

Let 𝑌𝑡  be a dependent time series {𝑌𝑡: 1 ≤ 𝑡 ≤ 𝑛} at time 𝑡, then the mathematical formula for 

seasonal ARIMA model is expressed as in Equation (3.3). 

(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = µ +
𝜃(𝐵)𝜃𝑠(𝐵𝑠)

𝜑(𝐵)∅𝑠(𝐵𝑠)
𝜖𝑡  (3.3) 

where 𝜇  is the constant mean; 𝐵𝑠  is the seasonal backward shift operator; ∅𝑠(𝐵𝑠) = 1 −

∅𝑠,1(𝐵𝑠) − ⋯ −  ∅𝑠,𝑃(𝐵𝑠𝑃) is the seasonal autoregressive component; 𝜃𝑠(𝐵𝑠) = 1 − 𝜃𝑠,1(𝐵𝑠) −

⋯ − 𝜃𝑠,𝑄(𝐵𝑠𝑄) is the seasonal moving-average component. 
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3.1.5  Seasonal Exponential Smoothing Model (Ravindran and Warsing, 2013; Nahmias, 

2015; SAS, 2017; Hyndman and Athanasopoulos, 2018) 

In the seasonal exponential smoothing method (ESM), the equation of forecast value at 

time 𝑡 + 𝑘 (𝑌𝑡+𝑘) is given by Equation (3.4).  

𝑌𝑡+𝑘 = 𝐿𝑡 + 𝑆𝑡−𝑝+𝑘   (3.4) 

The smoothing equations are given using Equations (3.5) and (3.6).  

𝐿𝑡 = 𝛼(𝑋𝑡 − 𝑆𝑡−𝑝) + (1 − 𝛼)𝐿𝑡−1 (3.5) 

𝑆𝑡 = 𝛾(𝑋𝑡 − 𝐿𝑡) + (1 − 𝛾)𝑆𝑡−𝑝 (3.6) 

Where 𝑋𝑡  is given observation at time 𝑡,  and 𝛼  and 𝛾  are the level and seasonal smoothing 

parameters respectively, 𝐿𝑡 is the estimated level component at time 𝑡, 𝑆𝑡 is the estimated seasonal 

component at time 𝑡 and 𝑝 is the periods after which the seasonal cycle repeats itself.  

3.1.6  Multiplicative Holt-Winters Model (Ravindran and Warsing, 2013; Nahmias, 2015; 

SAS, 2017; Hyndman and Athanasopoulos, 2018) 

The Holt-Winters model, also known as the triple exponential smoothing, applies three 

types of exponential smoothing to the time series - value, trend, and seasonality. The model 

equation for the Holt-Winters method can be either additive or multiplicative model. In this 

section, we present the multiplicative Holt-Winters model, whereas Section 3.1.7 presents the 

additive model.  

The mathematical formula relevant to a time series with a trend and constant seasonal 

component using the Holt-Winters additive technique has the forecast at time 𝑡 + 𝑘 (𝑌𝑡+𝑘) given 

by Equation (3.7).  

𝑌𝑡+𝑘 = (𝐿𝑡 + 𝑘𝑇𝑡)𝑆𝐼𝑡+𝑘−𝑝 (3.7) 

The smoothing equations are given using Equations (3.8) – (3.10).  

𝐿𝑡 = 𝛼 (
𝑋𝑡

𝑆𝐼𝑡−𝑝
) + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) (3.8) 

𝑇𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1 (3.9) 

𝑆𝐼𝑡 = 𝛾 (
𝑋𝑡

𝐿𝑡
) + (1 − 𝛾)𝑆𝐼𝑡−𝑝 

         (3.10) 

Where 𝑋𝑡  is given observation at time 𝑡, 𝛼, 𝛽 and 𝛾  are the level, trend and seasonal 

corresponding constants respectively, 𝐿𝑡 is the estimated level at time 𝑡, 𝑇𝑡 is the estimated trend 
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at time 𝑡, 𝑆𝐼𝑡 is the seasonality index at time 𝑡, and 𝑝 is the periods after which the seasonal cycle 

repeats itself.  

 

3.1.7  Additive Holt-Winters Model (Ravindran and Warsing, 2013; Nahmias, 2015; SAS, 

2017; Hyndman and Athanasopoulos, 2018) 

For the additive model, the forecasted supply estimate for time 𝑡 + 𝑘 is given by Equation 

(3.11). 

𝑌𝑡+𝑘 = 𝐿𝑡 + 𝑘𝑇𝑡 + 𝑆𝑡−𝑝+𝑘                                                                                                        (3.11) 

The estimates of level, trend and seasonal factors for additive model equations are given using 

Equations (3.12) – (3.14). 

𝐿𝑡 = 𝛼(𝑌𝑡 − 𝑆𝑡−𝑝) + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) (3.12) 

𝑇𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1 (3.13) 

𝑆𝑡 = 𝛾(𝑌𝑡 − 𝐿𝑡) + (1 − 𝛾)𝑆𝑡−𝑝 (3.14) 

 

 

3.2  Machine Learning Algorithms 

Machine learning is a subfield of computer science that evolved from the study of pattern 

recognition and computational learning theory in artificial intelligence. Moreover, Machine 

learning is a technology exploring the algorithms to analyze a set of data, learn from the insights 

gathered and make predictions on data (Srinivas and Rajendran, 2017).  

Machine learning includes four types: (1) supervised machine learning, (2) semi-

supervised learning, (3) unsupervised learning, and (4) reinforcement learning. Supervised 

machine learning techniques automatically based on a set of historical examples, or instances to 

determine a model of the relationship between a set of descriptive features and a target feature. We 

can then use this model to make predictions for new instances. These two separate steps are shown 

in Figure 3.2 (Kelleher et al., 2015). 
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Figure 3.2:  The Two steps in Supervised Machine Learning (Adapted from Kelleher et al., 

2015) 

For the blood supply forecasting, we leverage the two most widely used machine-learning 

techniques, artificial neural network and regression.  

 

3.2.1  Artificial Neural Networks (ANN) 

ANN is a reinforcement learning method that is an adaptation of a biological neural 

network. The network consists of several nodes that are distributed across numerous layers, and 

each layer is connected to its previous and subsequent layers within the network (Srinivas and 

Rajendran, 2017). These interconnected elements work closely to process information that they 

receive from the nodes of the previous layers and transfer them to the next layer based on the 

sigmoid function. They are particularly useful for modeling complex relationships in high-

dimensional data or where the relationship between the input and output variables is not easy to 

understand (Srinivas and Rajendran, 2017).  

3.2.2  Multiple Regression 

Multiple regression is another class of problem in machine learning that is trying to predict 

a continuous value of a variable instead of a class, unlike in classification problem (Srinivas and 

Rajendran, 2017). Linear regression with ordinary least square is one of the classic machine 
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learning algorithms in this domain. The mathematical formula for the regression model is 

represented in Equation (3.15).  

𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜖                                                                                             (3.15) 

where 𝑌 is the response variable, 𝑋𝑛 is a independent variable, 𝛽0 is the intercept, 𝛽𝑖 is the slope 

of the coefficient 𝑋𝑖 (both 𝛽0 and 𝛽𝑖 are unknown coefficients to be estimated by the model), and 

𝜖 is the error variable. 

3.3  Evaluation of the Different Methods 

Forecasting models play a critical role in many decision-making areas. After the model is 

selected, it is imperative to verify or validate the designed forecast model by comparing its 

forecasted data with historical data. We use four different measures of forecast errors for 

evaluating the model performance and the accuracy of the methods; they are MAE, MSE, BIAS 

and MAPE (Ravindran and Warsing, 2013; Chopra and Meindl, 2015; Nahmias, 2015). 

Assume 𝑋1, 𝑋2,……,𝑋𝑛 are actual data, 𝐹1, 𝐹2,……,𝐹𝑛 are forecasted data, then the 𝑛 values of forecast 

errors, 𝑒1, 𝑒2, … . . , 𝑒𝑛, is given by: 𝑒1 = 𝐹1 − 𝑋1, 𝑒2 = 𝐹2 − 𝑋2,……,𝑒𝑛 = 𝐹𝑛 − 𝑋𝑛. 

a) Mean Absolute Error (MAE) - measures the average significance of the forecast errors 

where all individual errors have equal weights. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑖|𝑛

𝑖=1           

b) Mean Squared Error (MSE) – also measures the significance of the forecast errors, larger 

errors get penalized more due to squaring.  

𝑀𝑆𝐸 =
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1          

c) BIAS: this is an indication of whether the forecast is overestimating or underestimating the 

actual supply over the forecast horizon. 

 𝐵𝐼𝐴𝑆 = ∑ 𝑒𝑖
𝑛
𝑖=1            

d) Mean Absolute Percentage Error (MAPE) - measures the relative significance of 

forecasting errors in percentage terms. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑒𝑖

𝑋𝑖
|𝑛

𝑖=1 × 100       

 MAPE is better than MAE since it takes into account the relative magnitude of the actual supply 

or demand and is also frequently used in practice. 
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3.4  Case Study 

Some blood centers in Taiwan face blood shortage problems due to a lack of accurate 

forecasting of blood supply and demand (Taiwan Blood Services Foundation Statistics, 2017). In 

this case study, RBC (Red blood cell) supply data of one blood center have been collected and 

the data are analyzed for the time series forecasting.   

 

3.4.1  Approach and Implementation 

Once historical data have been gathered and analyzed in order to predict the future, the 

next step is to select a forecasting model for predicting. In the selection process, there are different 

and useful statistical and graphic techniques for the data analysis. First to graph sequence plots of 

the time series data for any time series forecasting analysis. A sequence plot is a graph of the data 

series values, usually on the vertical 𝑋 axis, with time usually on the horizontal 𝑌 axis. The 

sequence plot will give the analyst an observable impression of the nature of the time series and 

suggest whether there are certain behavioral “components” present within the time series such as 

average level, trend, and seasonality. 

First, calculate the 2013-2017 Weekly Supply Summary Statistics and the results are shown 

in Table 3.1 and Table 3.2.  

           Table 3.1: 2013-2017 TBSF Weekly Supply Summary Statistics   

 Year Day Average Min. Max. 

Standard 

Deviation 

Coefficient of Supply 

Variation (%) 

2013 

Sunday    188   32    461   84 44.68 

Monday 1,523 173 1,928 287 18.84 

Tuesday    820 154 1,558 200 24.39 

Wednesday    961 327 1,606 254 26.43 

Thursday 1,127 299 1,596 282 25.02 

Friday 1,039 458 1,956 263 25.31 

Saturday    135   43    462   68 50.37 

2014 

Sunday    174   31    456   82 47.13 

Monday 1,525 688 2,324 351 23.02 

Tuesday    858 327 1,935 253 29.49 
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 Year Day Average Min. Max. 

Standard 

Deviation 

Coefficient of Supply 

Variation (%) 

Wednesday    857 168 1,474 210 24.50 

Thursday 1,238   80 2,048 304 24.56 

Friday 1,013   84 2,027 314 31.00 

Saturday    138   31    587 103 74.64 

 2015 

Sunday    200   39    531 126 63.00 

Monday 1,504 850 2,636 303 20.15 

Tuesday    850 495 1,421 200 23.53 

Wednesday    855     1 1,461 252 29.47 

Thursday 1,381 139 1,923 309 22.38 

Friday 1,025 197 1,450 253 24.68 

Saturday    164   31    660 122 74.39 

 2016 

Sunday    204   31    542   99 48.53 

Monday 1,497 162 2,073 331 22.11 

Tuesday    855 372 1,572 239 27.95 

Wednesday    862 146 1,264 199 23.09 

Thursday 1,439 547 2,643 319 22.17 

Friday 1,060   81 2,058 301 28.40 

Saturday    146   55    490   69 47.26 

 2017 

Sunday    201   50    522 116 57.71 

Monday 1,445 212 1,964 324 22.42 

Tuesday    888 355 1,508 238 26.80 

Wednesday    888 272 1,656 224 25.23 

Thursday 1,383 502 1,846 273 19.74 

Friday 1,159   57 2,061 312 26.92 

Saturday    192   41    679 100 52.08 
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           Table 3.2: 2013-2017 Weekday Average Supply Summary Statistics 

  
                           Average (Year) 

  

             Year                 

Weekday 2013 2014 2015 2016 2017 

Monday 1,523 1,525 1,504 1,497 1,445 

Tuesday 820 858 850 855 888 

Wednesday 961 857 855 862 888 

Thursday 1,127 1,238 1,381 1,439 1,383 

Friday 1,039 1,013 1,025 1,060 1,159 

Saturday 135 138 164 146 192 

Sunday 188 174 200 204 201 

 

From Table 3.1 and Table 3.2, it is observed that the average blood supplies of the 

weekdays for each year are steady. Also, we can see that Monday supply is very high, Thursday 

and Friday supplies are quite high, Tuesday and Wednesday supplies are moderate, Saturday and 

Sunday supplies are significantly lower.  

 

Implementation 

 Used SAS software to analyze the data 

 Leveraged built-in forecasting tools in SAS software 

 Executed the model for one week (1/1/2018 – 1/7/2018) 

3.5  Time-Series Forecasting Results 

After running the seven different time series models discussed in Section 3.1 and obtaining 

the forecasts, we evaluate them using the error measures given in Section 3.3, and the results are 

presented in Table 3.3. It is clear that Seasonal ARIMA Model, Seasonal Exponential Smoothing 

Method and Multiplicative Holt-Winters Model yield minimal error measures. Hence, we conclude 

that, under the time series methods, these three models are the best forecasting the blood supply 

for the case study data under consideration. 
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           Table 3.3:  Error Measures Obtained under the Seven Time Series Models 

Error 

                                                                        Method 

AUTO

REG 
ARMA 

Basic 

ARIMA 

Seasonalized 

ARIMA 

Seasonalized 

ESM 

Multiplicative 

Holt-Winters 

Additive  

Holt-

Winters 

MAE      215        449        600      160      158      159      159 

MSE 88,031 288,002 577,197 57,235 57,111 57,111  57,189 

BIAS    -383 -20,578       754 -5,575 -7,338 -8,507 -15,056 

MAPE  94.50       227       224       80        81       81         80 

 

Figure 3.3 to Figure 3.5 present Actual vs. Forecast, Prediction and 95% confidence level 

predictions (L95 and U95) of three best forecasting models. 

 

 

Figure 3.3: Seasonalized Exponential Smoothing Method 
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         Figure 3.4: Multiplicative Holt-Winters Method 

 

 

Figure 3.5: Seasonalized ARIMA Method Forecasting Model 
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3.6  Machine Learning Algorithm Results 

The performance of the machine learning algorithms is compared in Table 3.4. For this 

particular dataset, results show that regression is a better predictor of the blood supply, 

nevertheless, the power of the results using regression is quite low (R2 = 63.71%).  

                   Table 3.4: Performance of Machine Learning Algorithms 

Statistics of Fit Artificial Neural Network Regression 

R-square 58.59% 63.71% 

 

Therefore, regression is used to predict the supply for the first week of January 2018, as 

shown in Table 3.5. A summary of the results obtained under the time series method and regression 

is given in Table 3.5.  

 

          Table 3.5: Blood Supply Predictions using the Best Performing Time Series and Machine 

Learning Methods 

Methods 
Prediction 

1/1/2018 1/2/2018 1/3/2018 1/4/2018 1/5/2018 1/6/2018 1/7/2018 

Seasonalized 

ARIMA 
1,491   899   882 1,301 1,242 200 208 

Seasonalized 

ESM 
1,480   901   883 1,314 1,232 200 210 

Multiplicative 

Holt-Winters 
1,490   906   887 1,308 1,251 202 210 

Regression 1,458 1,269 1,088    951    779 589 410 

Actual Supply    979 1,223   972 1,354    721 263 203 

 

The machine learning neural networks are a complement to the familiar statistical tools of 

forecasting, but they are not a replacement for them (Montgomery et al., 2008). Clearly, from the 

results, we can infer that there is not a single method that predicts the supply accurately. 

Ravindran and Warsing (2013), Frances (2011) and (Gahirwal and Vijayalakshmi, 2013) suggest 

that the average supply of these three forecasting models produces a better forecasting, as shown 

in Table 3.6.  
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           Table 3.6: Average Blood Prediction for 01/01/2018 to 01/07/2018 from Three Best    

            Forecasting Models 

                                                       Prediction 

   Methods 
1/1/2018 

Monday 

1/2/2018 

Tuesday 

1/3/2018 

Wednesday 

1/4/2018 

Thursday 

1/5/2018 

Friday 

1/6/2018 

Saturday 

1/7/2018 

Sunday 
Seasonalized 

ESM 
1,480 901 883 1,314 1,232 200 210 

Multiplicative  

Holt-Winters 

Method 

1,490 906 887 1,308 1,251 202 210 

Seasonalized 

ARIMA 

Method 

1,491 899 882 1,301 1,242 200 208 

Average 1,487 902 884 1,308 1,242 201 209 

    

3.7  Implications of Results 

This case study focuses on predicting the supply of red blood cells for the Taiwan Blood 

Services Foundation (TBSF) (2019), a non-governmental and non-profit organization. So far, more 

than seven million citizens have donated blood in Taiwan through this foundation (which accounts 

for over 25% of the total population of Taiwan) (2019). Currently, blood centers at TBSF do not 

have a proper blood forecasting system, and some blood centers face blood shortage problems as 

a result of lack of accurate forecasting of blood supply. This paper focuses on developing a blood 

supply forecasting decision support tool for TBSF using time series and machine learning 

algorithms. The accurate forecasting models will enable TSBF to make good blood supply chain 

management planning decisions, such as when to collect blood from donors, how many units to 

collect, proper assignment of the workforce for collecting blood in donor drives, blood component 

testing process, etc. Upon accurately forecasting the future supply using the methods discussed in 

this study, inventory models can then be developed to make decisions on the number of units to 

order and time between orders.  

There are some limitations to forecasting methods. The accuracy of forecasting could be 

affected by various factors. If there are some unknown variable(s) that could cause some of the 

fluctuations in the data, then it will be more difficult to forecast unless there are known explanatory 

variable(s) accounting for the variations. Blood supply forecasting is vital for blood supply chain 

decisions, and they are updated as more reliable information becomes available. Hence, after 

appropriate forecasting methods are selected, it is important to continuously monitor the forecast 

accuracy. 
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           CHAPTER 4 

    BASIC BLOOD SUPPLY CHAIN MODEL UNDER DEMAND AND   

SUPPLY UNCERTAINTY INCORPORATING EMERGENCY DEMAND   

 
4.1  Finite-Time Horizon Inventory (FTHI) Blood Supply Chain Model 

An effective blood supply chain management (BSCM) should be capable of meeting the 

blood demand while reducing shortage costs and wastage costs. Demand and supply patterns can 

be generated from the historical demand and supply data or from a distribution based on the 

decision maker’s knowledge. Accompanying the blood supply and demand distribution patterns 

from historical data, we can plan blood collection schedules to coordinate and balance the blood 

demand and volunteer supply. In this section, a finite time horizon inventory (FTHI) model is 

presented to identify the optimal order quantity and time to order platelets such that wastage and 

shortages are reduced. A mixed-integer linear programming (MILP) model is developed, and the 

forecasted platelet supply and demand for the planning horizon derived from the historical data 

are given as inputs to the model. The overview of the Finite Time Horizon Model for Blood Supply 

Chain Inventory Management is shown in Figure 4.1. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.1: Overview of the Finite Time Horizon Blood Supply Chain Inventory Model 
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4.1.1  Blood Supply Chain Structure  

Figure 4.2 presents a structure of the blood supply chain containing one blood center and 

a  𝐾 number of hospitals. The regulations of the Health Insurance Portability and Accountability 

Act (HIPAA) ensure that each hospital can receive blood only from a designated blood center and 

cannot share or procure blood from other hospitals. 

Blood Center 

 

 

 

                     …..    

 

Figure 4.2: Structure of Supply Chain Containing One Blood Center and 𝐾 Hospitals 

Section 4.3 will describe how the blood demand flow between blood center and hospitals and a 

mathematical model for blood supply chain under blood and supply uncertainty is developed. 

 

4.2  Model Assumptions 

1. Lead time for the order processing is assumed to be negligible 

2. All platelets arriving at hospital from the blood center are fresh and have a shelf life of three 

days 

3. This model considers a single blood type 

4. The FIFO issuing policy is applied at the hospital. That is, the platelet units with a one-day 

shelf life are first used for the demand fulfillment, then, two days and followed by three days 

shelf-life.  

 Hospital 1 Hospital 2 Hospital 3 Hospital 𝐾 
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4.2.1  Scenario-Based Approach 

The scenario optimization technique is utilized to solve the stochastic programming 

models by examining many possible circumstances for the platelet demand and supply. This 

approach is based on a set of key constraints for acquiring solutions to robust optimization 

problems. In a given period, each scenario corresponds to a specific combination of supply and 

demand patterns. It also relates to inductive reasoning in modeling and decision-making. Based 

on this stochastic programming approach, the number of acquired units with the regular 

shipments will remain the same, and the number of acquired units through emergency shipments 

(i.e., at times of shortage) and inventory is varied based on the scenario. 

 

4.2.2  Notations for the Model 

           Parameters (known data) for the Model 

𝑙 Index of platelets shelf life (𝑙 =1,2,3)  

𝑘 Index of hospital  𝑘 

 𝑠 Index of demand scenario (demand patterns for platelet) (𝑠 =1, 2, …, 𝑆) 

 𝑡 Index of day 𝑡 (𝑡 =1, 2, …, 𝑇) 

 𝐾 Total number of hospitals (𝑘 =1, 2, …, 𝐾)  

 𝑝𝑏(𝑠) Probability of scenario 𝑠  (∑ 𝑝𝑏(𝑠)𝑆
1 = 1) 

 𝑓𝑜𝐻𝑃𝑘  Fixed operating cost per day at the hospital 𝑘 ($/day)  

 𝑓𝑠𝐻𝑃𝑘  Fixed shipping cost of purchasing platelets at hospital 𝑘 ($/shipment)  

 𝑝𝑐𝐻𝑃𝑘  Platelet purchasing cost for each unit by hospital 𝑘 ($)  

 ℎ𝑐𝐻𝑃𝑘  Holding cost for each inventory unit of platelet per day at hospital 𝑘  

($/day/unit) 

 𝑒𝑐𝐻𝑃𝑘  Cost of outdated platelet for each unit at hospital 𝑘 ($)  

 𝑠𝑐𝐻𝑃𝑘                  Shortage cost for each unit at hospital 𝑘 ($) (This is referring to the procurement 

cost for each unit of platelet incurred through emergency shipment from the 

blood center)  

 

𝐷𝐸𝑀𝐴𝑁𝐷𝑘,𝑡        

(𝑠) 

Platelet demand at hospital  𝑘 at  day 𝑡  (units) under scenario𝑠 . The demand 

pattern can be estimated from historical data 

 𝐿𝑇𝐻𝑃𝑘 
Lead time (days) of procurement at hospital 𝑘. It is the time between issuing 

orders for platelet and receiving the platelet. (Note: 𝐿𝑇𝐻𝑃𝑘  = 0,1 or 2 only)  

 𝑅𝑃𝐻𝑃𝑘 Order review period at hospital 𝑘 (days)  

 𝑖𝑛𝑖𝐻𝑃𝑘,𝑙 Beginning inventory at the hospital 𝑘 on day 1 with 𝑙 days shelf life 

 𝑓𝑜𝐵𝐶 Fixed operating cost per day incurred at the blood center ($/day)  



 

59 
 

 𝑓𝑠𝐵𝐶  Fixed shipping cost per shipment of purchasing platelets associated with the 

blood center ($/shipment)  

 𝑝𝑐𝐵𝐶   Removal of platelet and testing cost for each unit associated with the blood center 

($/unit)  

 ℎ𝑐𝐵𝐶  Inventory holding cost for each unit per day of platelet associated with the blood 

center ($/day)  

 𝑒𝑐𝐵𝐶 Cost of outdated platelet for each unit associated with the blood center ($/unit)  

 𝑠𝑐𝐵𝐶  Shortage cost per unit ($/unit) associated with the blood center (this is referring 

to the procuring cost for each unit of platelet incurred through emergency 

shipment from other blood centers)  

 

𝑆𝑈𝑃𝑃𝐿𝑌𝑡(𝑠) 
Platelet supply at blood center (units) at day 𝑡  under scenario 𝑠 . The supply 

pattern can be estimated from historical data. 

 𝐿𝑇𝐵𝐶 Lead time (days) for blood center procurement of platelets. It is the time between 

issuing orders and receiving fresh new platelets. It includes the time for collecting 

blood and two days for the testing time 

 𝑅𝑃𝐵𝐶 The review period for platelets ordering at the blood center (days)  

 𝑖𝑛𝑖𝐵𝐶𝑙 Beginning inventory at blood center on day one with 𝑙 days shelf life 

 

           Main Decision Variables in association with the Model 

 𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠) At the end of day 𝑡, the number of platelet units ordered by hospital 𝑘, under 

scenario 𝑠 

 

𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠) 

At the start of day 𝑡, the number of units that hospital 𝑘 obtained from the blood 

center with 𝑙 days shelf life (𝑙 =1,2,3) from the blood center, under scenario 𝑠 

(note: the arriving platelets have the maximum shelf life of three days)  

𝑂𝐻𝐻𝑃𝑘,𝑡,𝑙(𝑠)  At the start of day 𝑡, the readily available inventory of platelet with 𝑙  days shelf 

life (𝑙  =1, 2) at hospital 𝑘, under scenario 𝑠. Note: Since platelets possess a 

maximum shelf life of three days when they are delivered to the hospital, the 

inventory available at the start of day 𝑡  (brought over from day 𝑡 −1) can possess 

a maximum of two days shelf life.  

 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) At the end of day 𝑡, the shortage of platelet units at hospital 𝑘, under scenario 𝑠 

(note: these are procured units from the blood center through the request of 

emergency shipment by the hospital 𝑘)  

 𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠) 
At the end of day 𝑡, the expired platelet units at the hospital 𝑘, under scenario 𝑠  
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           Main Decision Variables in association with the Blood Center for the Model 

 𝑂𝑅𝐵𝐶𝑡(𝑠) At the end of day 𝑡, platelet units procured by the blood drives under scenario 𝑠. 

The blood center will receive these ordered platelet units at the start of day 𝑡  + 

𝐿𝑇𝐵𝐶 

 𝑅𝐸𝐵𝐶𝑡(𝑠) At the start of day 𝑡, the total amount of platelet arriving from the component 

labs to the blood center upon the completion of the testing process, under 

scenario 𝑠 (note that all units of platelet received by the blood center will be 

fresh new and possess a three days shelf life)  

 

𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,𝑙(𝑠) 

On day 𝑡, units shipped to hospital 𝑘 with the platelets with 𝑙 days shelf life (𝑙 

=1,2,3) from the blood center, under scenario 𝑠 

 𝑂𝐻𝐵𝐶𝑡,𝑙(𝑠) At the start of day 𝑡, the on-hand units of platelet with 𝑙 days shelf life (𝑙 =1, 2) 

at the blood center, under scenario 𝑠 . Note: Since platelet units possess a 

maximum shelf life of three days, at the start of day 𝑡,  the on-hand inventory 

(brought over from day 𝑡 −1) can possess a maximum shelf life of two days. 

 𝑆𝐻𝐵𝐶𝑡(𝑠) At the end of day 𝑡, the shortage of platelets at the blood center under scenario 

𝑠 

 𝐸𝑋𝐵𝐶𝑡(𝑠) At the end of day 𝑡, the number of expired platelet units at the blood center under 

scenario 𝑠 

 

           Objective Function in association with the Model 

 𝑇𝐶𝑆𝐶 Expected total cost gathered across the finite time (𝑇)  period for all 

scenarios of the blood supply chain  

 

Figure 4.3 shows the blood demand and supply flow between one blood center and 𝐾 hospitals. 
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    Figure 4.3: Blood Demand and Supply Flow between Blood Center and Hospitals 
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4.3  Stochastic Integer Linear Programming for the Blood Supply Chain 

4.3.1  Sequence of Events at the Hospital 

• Begin with the inventory of platelets with shelf lives of one-day and two-days 

• Receive units of platelet from the blood center with one–, two– and three–day shelf lives 

• Receive the demand for platelets 

• Fulfill the platelet demand at the hospital in the following order: 

 Platelets with one-day shelf life are used first 

 If insufficient, the platelets with two-day shelf life are used next 

 Finally, the platelets with three-day shelf life are used 

• At the end of the day, review the inventory of platelets and place orders for new platelets 

following the ordering policy. 

 

4.3.2  Sequence of Events at the Blood Center 

• Begin with the inventory of platelets with shelf lives of one-day and two-days 

• Replenish stock with new platelets arriving from the component labs with a shelf life of three 

days. 

• Receive regular demand from all the hospitals. 

• Fulfill the hospital demands in the following platelets order: 

 Deliver platelets to hospital 𝑘 with one-day shelf life first provided hospital 𝑘’s lead time is 

zero days. 

 Next, deliver platelets to hospital 𝑘 with two-day shelf life (if necessary) provided hospital 

𝑘’s lead time is zero or one day. 

 Finally, ship platelets to hospital 𝑘 with a three-day shelf life (if necessary). 

• Receive the demand for emergency from all hospitals 

 Deliver platelets to all hospitals placing emergency demand with a one-day shelf life first, 

followed by two-day and three-day shelf life platelets if necessary. 

• Review the inventory of platelets at the end of the day and place orders for new platelets 

following the ordering policy.  
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4.4  Blood Supply Chain Model Formulation 

Objective function: The objective of this model is to minimize the incurred total cost over the 

entire blood supply chain. There are 11 cost components associated with the entire blood supply 

chain: 

 The cost associated with hospital 𝑘 on day 𝑡: 

 Fixed operating cost: 𝑓𝑜𝐻𝑃𝑘 

 Fixed transportation cost: 𝑓𝑠𝐻𝑃𝑘 × 𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠) 

 Variable purchasing cost: 𝑝𝑐𝐻𝑃𝑘 × 𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠) 

 Inventory holding cost: ℎ𝑐𝐻𝑃𝑘 × (𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠)) 

 Shortage cost: 𝑠𝑐𝐻𝑃𝑘 × 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) 

 Expiration cost: 𝑒𝑐𝐻𝑃𝑘 × 𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠) 

 The cost related to the blood center on day 𝑡: 

 Fixed operating cost: 𝑓𝑜𝐵𝐶 

 Fixed transportation cost: 𝑓𝑠𝐵𝐶 × 𝑏𝑖𝑛𝐵𝐶𝑡(𝑠) 

 Inventory holding cost: ℎ𝑐𝐵𝐶 × (𝑂𝐻𝐵𝐶𝑡,1(𝑠) + 𝑂𝐻𝐵𝐶𝑡,2(𝑠)) 

 Shortage cost: 𝑠𝑐𝐵𝐶 × 𝑆𝐻𝐵𝐶𝑡(𝑠) 

 Expiration cost: 𝑒𝑐𝐵𝐶 × 𝐸𝑋𝐵𝐶𝑡(𝑠) 

Note: Since this processing and testing cost will be covered by the various procurement costs 

paid by the hospitals, the objective function does not consider the cost of processing and testing 

platelets acquired at the blood center. To minimize the expected total cost across all scenarios over 

the entire blood supply chain under demand and supply uncertainty, the objective function is 

formulated as follows: 

Minimize 𝑇𝐶𝑆𝐶 = 

∑ [∑ [𝑝𝑏(𝑠) × {∑ [𝑓𝑜𝐻𝑃𝑘 +  𝑓𝑠𝐻𝑃𝑘 × 𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠) + 𝑝𝑐𝐻𝑃𝑘 × 𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠) +𝐾
𝑘=1

𝑆
𝑠=1

𝑇
𝑡=1

ℎ𝑐𝐻𝑃𝑘 × (𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠)) + 𝑠𝑐𝐻𝑃𝑘 × 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) + 𝑒𝑐𝐻𝑃𝑘 ×  𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠)] +

𝑓𝑜𝐵𝐶 × 𝑡 + 𝑓𝑠𝐵𝐶 × 𝑏𝑖𝑛𝐵𝐶𝑡(𝑠) + ℎ𝑐𝐵𝐶 × (𝑂𝐻𝐵𝐶𝑡,1(𝑤) + 𝑂𝐻𝐵𝐶𝑡,2(𝑠)) + 𝑠𝑐𝐵𝐶 ×

𝑆𝐻𝐵𝐶𝑡(𝑠) + 𝑒𝑐𝐵𝐶 × 𝐸𝑋𝐵𝐶𝑡(𝑠)}]]                                             (4.1)  
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𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠) = 𝐵𝐶𝑇𝐻𝑃𝑘,𝑡−𝐿𝑇𝐻𝑃𝑘,𝑙+𝐿𝑇𝐻𝑃𝑘
(𝑠)            ∀ 𝑡 >  𝐿𝑇𝐻𝑃𝑘  and 𝑙 + 𝐿𝑇𝐻𝑃𝑘 ≤ 3        (4.2)              

𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠) = 0                                                     Otherwise                                          (4.3)    

𝐷𝐸𝑀𝐴𝑁𝐷𝑘,𝑡(𝑠) − 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) = 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) − 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠)  ∀𝑘, 𝑡, 𝑠  (4.4)         

𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) − 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) = 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) − 𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠)   ∀ 𝑘, 𝑡, 𝑠     (4.5)   

𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) = 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) − 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠)                              ∀ 𝑘, 𝑡, 𝑠    (4.6)     

𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠)  = 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠)                                                                              ∀ 𝑘, 𝑡, 𝑠   (4.7) 

𝑂𝐻𝐻𝑃𝑘,𝑡+1,1(𝑠) = 𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠)                                                                       ∀ 𝑘, 𝑡, 𝑠   (4.8)   

𝑂𝐻𝐻𝑃𝑘,𝑡+1,2(𝑠) = 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠)                                                                  ∀ 𝑘, 𝑡, 𝑠   (4.9)               

𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) = 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠)                                                                               ∀ 𝑘, 𝑡, 𝑠 (4.10) 

𝑂𝐻𝐻𝑃𝑘,1,𝑙(𝑠) = 𝑖𝑛𝑖𝐻𝑃𝑘,𝑙                                                                              ∀ 𝑘, 𝑙, 𝑠         (4.11)  

𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(𝑠) = 0                                                            ∀ 𝑘, 𝑡 ≠ 𝑅𝑃𝐻𝑃𝑘, 2𝑅𝑃𝐻𝑃𝑘, … , 𝑙, 𝑠    (4.12) 

𝑂𝑅𝐵𝐶𝑡(𝑠) = 0                                                                             ∀ 𝑡 ≠ 𝑅𝑃𝐵𝐶, 2𝑅𝑃𝐵𝐶, … , 𝑠  (4.13) 

𝑅𝐸𝐵𝐶𝑡(𝑠) = 𝑂𝑅𝐵𝐶𝑡−𝐿𝑇𝐵𝐶(𝑠)                                                                      ∀ 𝑡 > 𝐿𝑇𝐵𝐶, 𝑠   (4.14) 

𝑂𝑅𝐵𝐶𝑡(𝑠) = 𝑆𝑈𝑃𝑃𝐿𝑌𝑡(𝑠)                                                 ∀ 𝑡, 𝑠           (4.15) 

∑ 𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,1(𝑠) + 𝐿𝐹𝑅𝐵𝐶𝑡,1𝑘 (𝑠) = 𝑂𝐻𝐵𝐶𝑡,1(𝑠)                             ∀ 𝑡, 𝑠, 𝐿𝑇𝐻𝑃𝑘 = 0 (4.16) 

∑ 𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,2(𝑠) + 𝐿𝐹𝑅𝐵𝐶𝑡,2𝑘 (𝑠) = 𝑂𝐻𝐵𝐶𝑡,2(𝑠)                                ∀ 𝑡, 𝑠, 𝐿𝑇𝐻𝑃𝑘 = 0,1   (4.17) 

(In general, ∑ 𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,𝑙(𝑠) + 𝐿𝐹𝑅𝐵𝐶𝑡,𝑙𝑘 (𝑠) = 𝑂𝐻𝐵𝐶𝑡,𝑙(𝑠)  ∀ 𝑡, 𝑠, 𝑎𝑛𝑑 𝑙 = 1,2, 𝐿𝑇𝐻𝑃𝑘 ≤ 𝑙) 

 ∑ 𝐻𝑃3𝑘,𝑡(𝑠) + 𝐿𝐹𝑅𝐵𝐶𝑡,3𝑘 (𝑠) = 𝑅𝐸𝐵𝐶𝑡(𝑠)                                    ∀ 𝑡, 𝑠, 𝐿𝑇𝐻𝑃𝑘 = 0,1,2   (4.18)  

𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,1(𝑠) + 𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,2(𝑠)+𝐻𝑃3𝑘,𝑡(𝑠) + 𝑆𝐻𝑅𝐵𝐶𝑘,𝑡(𝑠) = 𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠)     ∀ 𝑡, 𝑘, 𝑠  (4.19) 

𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,3(𝑠) =  𝐻𝑃3𝑘,𝑡(𝑠) + 𝑆𝐻𝑅𝐵𝐶𝑘,𝑡(𝑠)                                                    ∀ 𝑡, 𝑘, 𝑠        (4.20)    

∑ 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) − 𝐿𝐹𝑅𝐵𝐶𝑡,1𝑘 (𝑠) = 𝑅𝑆𝐻𝐵𝐶𝑡,1(𝑠) − 𝐿𝐹𝐸𝐵𝐶𝑡,1(𝑠)                         ∀ 𝑡, 𝑠    (4.21) 

𝑅𝑆𝐻𝐵𝐶𝑡,1(𝑠) − 𝐿𝐹𝑅𝐵𝐶𝑡,2(𝑠) = 𝑅𝑆𝐻𝐵𝐶𝑡,2(𝑠) − 𝐿𝐹𝐸𝐵𝐶𝑡,2(𝑠)                      ∀ 𝑡, 𝑠      (4.22) 

𝑅𝑆𝐻𝐵𝐶𝑡,2(𝑠) − 𝐿𝐹𝑅𝐵𝐶𝑡,3(𝑠) = 𝑅𝑆𝐻𝐵𝐶𝑡,3(𝑠) − 𝐿𝐹𝐸𝐵𝐶𝑡,3(𝑠)                      ∀ 𝑡, 𝑠     (4.23) 

𝑆𝐻𝐸𝐵𝐶𝑡(𝑠) = 𝑅𝑆𝐻𝐵𝐶𝑡,3(𝑠)                                                                                 ∀ 𝑡, 𝑠 (4.24) 

𝐸𝑋𝐵𝐶𝑡(𝑠) = 𝐿𝐹𝐸𝐵𝐶𝑡,1(𝑠)                                                                                 ∀ 𝑡, 𝑠         (4.25) 

𝑂𝐻𝐵𝐶𝑡+1,1(𝑠) = 𝐿𝐹𝐸𝐵𝐶𝑡,2(𝑠)                                                                     ∀ 𝑡, 𝑠         (4.26) 

𝑂𝐻𝐵𝐶𝑡+1,2(𝑠) = 𝐿𝐹𝐸𝐵𝐶𝑡,3(𝑠)                                                                     ∀ 𝑡, 𝑠           (4.27) 

𝑆𝐻𝐵𝐶𝑡(𝑠) =  ∑ 𝑆𝐻𝑅𝐵𝐶𝑘,𝑡𝑘 (𝑠) + 𝑆𝐻𝐸𝐵𝐶𝑡(𝑠)                                            ∀ 𝑡, 𝑠       (4.28) 
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𝑂𝐻𝐵𝐶1,𝑙(𝑠) =  𝑖𝑛𝑖𝐵𝐶𝑙                                                                             ∀ 𝑙, 𝑠      (4.29) 

𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(1) = 𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(2) = ⋯ = 𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠)                              ∀𝑘, 𝑡, 𝑙, 𝑠        (4.30) 

𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(1) = 𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(2) = ⋯ = 𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(𝑠)                              ∀𝑘, 𝑡, 𝑙, 𝑠      (4.31)     

𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) ≤ 𝑀 × 𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠)        ∀𝑘, 𝑡, 𝑠   (4.32)    

𝑅𝐸𝐵𝐶𝑡(𝑠) ≤ 𝑀 × 𝑏𝑖𝑛𝐵𝐶𝑡(𝑠)                                                          ∀ 𝑡, 𝑠            (4.33) 

𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠), 𝑅𝐷𝐻𝑃𝑘,𝑡,𝑙(𝑠), 𝐿𝑌𝐻𝑃𝑘,𝑡,𝑙(𝑠), 𝑂𝐻𝐻𝑃𝑘,𝑡,𝑙(𝑠), 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠),   𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(𝑠),                                                                                 

𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠), 𝐿𝐹𝑅𝐵𝐶𝑘,𝑡,𝑙(𝑠), 𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,𝑙(𝑠), 𝐻𝑃3𝑘,𝑡(𝑠), 𝑅𝐸𝐵𝐶𝑡(𝑠),

𝑆𝐻𝑅𝐵𝐶𝑘,𝑡(𝑠), 𝐿𝐹𝐸𝐵𝐶𝑡,𝑙(𝑠), 𝑂𝐻𝐵𝐶𝑡,𝑙(𝑠), 𝐿𝐵𝐶𝑡(𝑠), 𝑂𝑅𝐵𝐶𝑡(𝑠), 𝑆𝐻𝐸𝐵𝐶𝑡(𝑠)                                                                                                        

𝑆𝐻𝐵𝐶𝑡(𝑠), 𝐸𝑋𝐵𝐶𝑡(𝑠), 𝑅𝑆𝐻𝐵𝐶𝑡(𝑠)      ≥  0                                                          ∀𝑙, 𝑘, 𝑡, 𝑠            (4.34) 

𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠) = 0 𝑜𝑟 1                                                             ∀𝑘, 𝑡, 𝑠             (4.35)     

𝑏𝑖𝑛𝐵𝐶𝑡(𝑠) = 0 𝑜𝑟 1                                                                             ∀𝑡, 𝑠                (4.36) 

 

(i) Units of Platelet Obtained by the Hospital 𝑘 from the Blood Center  

Constraint (4.2) states that the total units obtained from the blood center by the hospital 𝑘 with 

a shelf-life of 𝑙 days (𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠)), will be equivalent to the units delivered from the blood center 

on day 𝑡 − 𝐿𝑇𝐻𝑃𝑘  , with a shelf life of  𝑙 + 𝐿𝑇𝐻𝑃𝑘  days is given by Equation (4.2). (Note: 

𝐿𝑇𝐻𝑃𝑘 = 0, 1 or 2 days)  

(ii) Uncertainty Demand-Inventory Balance at Hospital 𝑘 and day 𝑡 under Scenario 𝑠 

Constraint (4.4) states that at hospital 𝑘, if stochastic demand 𝐷𝐸𝑀𝐴𝑁𝐷𝑘,𝑡(𝑠) is higher than 

the units of platelet with one-day shelf life (i.e.,𝐷𝐸𝑀𝐴𝑁𝐷𝑘,𝑡(𝑠) > 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠)),  

then the remaining demand denoted by, 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠)  is equal to  𝐷𝐸𝑀𝐴𝑁𝐷𝑘,𝑡(𝑠) 

−𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠)  and leftover inventory with one-day shelf  life denoted by,     

𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠) will be 0. On the other hand, if 𝐷𝐸𝑀𝐴𝑁𝐷𝑘,𝑡(𝑠) ≤ 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) 

then 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) = 0 and 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠) = 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) − 𝐷𝐸𝑀𝐴𝑁𝐷𝑘,𝑡(𝑠) . 

Equation (4.4) is used to calculate 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) and 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠). 

 If 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠)  is positive, then the platelet units with two days shelf life first fulfill the 

leftover demand (i.e.,  𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) ). If 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) >  𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) +



 

66 
 

𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) , then leftover demand, 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) will be equal to 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) −

 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) and the remaining inventory with a shelf life of two days 

𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠) will be 0. On the other hand, if  𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) ≤  𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠), 

then 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) =0 and the remaining platelets with two days shelf life is given by 

𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠) = 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) +  𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) . Equation (4.5) is used to 

calculate 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) and 𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠). 

 If 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) is positive, then the fresh platelet units with three days shelf life (i.e., 

𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) ) first fulfills 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) . If 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠)  > 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) , then the 

remaining demand, 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠)  will be equal to 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠)  and the 

remaining inventory with three days shelf life, 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠) will be 0. If 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠)  ≤

𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠), then, 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) = 0, and the remaining platelets with three days shelf life 

is given by 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠) = 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠)− 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠). Equation (4.6) is used to calculate 

𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) and 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠). 

 

The above-specified FIFO rules are established using Equations (4.4) – (4.6).  

(iii) Expired (Outdated) Platelet Units at the Hospital 

Constraint (4.7) states that at the end of day 𝑡, hospital k discards the unused platelet units 

with remaining shelf life of one day ( 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠) ) and is given by Equation (4.7). 

(iv) Updates of Inventory at the Hospital 

The inventory at hospital 𝑗 is updated at the end of each day using Equations (4.8) and (4.9). 

Note that the ending inventory is varied for each hospital based on the scenario. 

(v) Platelet Shortages at the Hospital 

Equation (4.10) represents the platelet shortages at the end of day 𝑡 (𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) ) which is 

the unfulfilled demand, 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠). 

(vi) Initial Inventory of Platelets at the Hospital 

Equation (4.11) represents the beginning inventory at each hospital 𝑘 at time 𝑡 = 1 under each 

scenario 𝑠. 
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(vii) Platelet Units Ordered at the Hospital 

  Equation (4.12) states that the hospital 𝑘 can only order platelets at the time of the review 

periods (𝑡 = 𝑅𝑃𝐻𝑃𝑘, 2𝑅𝑃𝐻𝑃𝑘, … ), and cannot order platelets at the time of the other days. 

(viii) Units of Platelet Ordered and Received by the Blood Center 

Similar to Constraint (4.12), Equation (4.13) states that the blood center can only order 

platelets at the time of the review periods (𝑡 = 𝑅𝑃𝐵𝐶, 2𝑅𝑃𝐵𝐶, … ), and cannot order platelets at 

the time of the other days. At the blood center, upon the procedure of testing is complete, the total 

available units at the start of day 𝑡 under scenario 𝑠 (𝑅𝐸𝐵𝐶𝑡(𝑠)) are computed using Equations 

(4.14) and (4.15). It has to be equivalent to the ordered amount placed prior to the lead time 

(𝑂𝑅𝐵𝐶𝑡−𝐿𝑇𝐵𝐶(𝑠)). Equations (4.15) states that the blood center has a stochastic supply at the start 

of each day 𝑡 under scenario 𝑠, and the supply amount is estimated from historical real supply data. 

(ix) Fulfillment for the Regular Platelet Demand by the Blood Center 

Constraints (4.16) – (4.18) state that the total units of platelet distributed to the hospital 𝑘 

with 𝑙 days shelf life on the day 𝑡 (𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,𝑙(𝑠)), are set as decision variables (i.e., the model 

determines the fulfillment policy for hospital demand), and they depend on the lead time of the 

hospital 𝑘. If the lead time at hospital 𝑘  is one day, because of the expiration of platelets at the 

time of arrival at the medical center, then the platelet units with a one-day shelf life should not be 

delivered to hospital 𝑘 from the blood center. Hence, if the lead time at hospital 𝑘 is one day, then 

only platelet units must be distributed by the blood center should have two- or three-days shelf 

life. This is assured by Equations (4.16) and (4.17). Likewise, if the lead time is two days at 

hospital 𝑘, then only platelet units with three days shelf life have to be delivered to the hospital as 

given in Equation (4.18). However, if the lead time of hospital 𝑗 is zero days, then the platelet units 

with a shelf life of any day can be shipped as given in Equations (4.16) – (4.18). As a result of the 

regular demand requested by hospital 𝑘,  the platelets shortage encountered at the blood center 

(𝑆𝐻𝑅𝐵𝐶𝑘,𝑡(𝑠)) is computed using Equation (4.19). As reviewed previously, this shortage units 

will be acquired from other blood centers and fulfilled to the blood center. Within the proposed 

model, it is presumed that the procured shortage units 𝑆𝐻𝑅𝐵𝐶𝑘,𝑡(𝑠) will possess a three days shelf 

life. Therefore, although computing the platelet units which are delivered to the hospital by the 
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blood center with the three-day shelf life category (i.e., 𝐵𝐶𝑇𝐻𝑃𝑘,𝑡,3(𝑠)), 𝑆𝐻𝑅𝐵𝐶𝑘,𝑡(𝑠) should also 

be incorporated in alongside 𝐻𝑃3𝑘,𝑡(𝑠) (where 𝐻𝑃3𝑘,𝑡(𝑠) is the platelet units with three days shelf 

life from the available inventory delivered to the hospital 𝑘) as given in Equation (4.20). 

(x) Fulfillment for the Emergency Demand by the Blood Center 

Constraints (4.21) – (4.23) state that the regular demand placed by hospital 𝑘 

(𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠)) must be satisfied with the blood center and the additional emergency demand 

requested on the same day 𝑡 by that hospital (𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠)) are also satisfied with the blood center. 

As indicated in Section 4.3 regarding the processing of daily events, upon the regular demand are 

fulfilled (i.e., ∑ 𝑆𝐻𝐻𝑃𝑘,𝑡𝑘 (𝑠) will be fulfilled with ∑ 𝐿𝐹𝑅𝐵𝐶𝑡,𝑙𝑙 (𝑠)), the emergency demand will 

be fulfilled only with inventory that is remaining Equations (4.21) – (4.23) are like equations for 

regular demand-inventory balance conditions previously discussed. 

Note that  𝐿𝐹𝐸𝐵𝐶𝑡,𝑙(𝑠)(𝑙 = 1,2,3) in constraints (4.21 - 4.23) represents the remaining 

inventory of platelet units, with one day, two days, and three days shelf life, upon completing the 

emergency orders of hospitals, and 𝑅𝑆𝐻𝐵𝐶𝑡,𝑙(𝑠)(𝑙 = 1,2,3  is the remaining shortage to be 

fulfilled by platelets. As a result of the emergency platelet demands requested by all the hospitals, 

the total shortage of platelets at the blood center is obtained by using Equation (4.24). 

(xi) Expired (Outdated) Platelets at the Blood Center 

At the end of each day 𝑡, the expired platelet units at the blood center are obtained by using 

Equation (4.25). 

(xii) Updates of Inventory at the Blood Center 

At the end of each day 𝑡, the inventory at the blood center is updated by using Equations 

(4.26) and (4.27). 

(xiii) Platelet Shortages at the Blood Center 

The platelet shortages at the blood center on each day 𝑡, under scenario 𝑠, gives the total 

scarcity as a result of the regular platelet demand ( ∑ 𝑆𝐻𝑅𝐵𝐶𝑘,𝑡𝑘 (𝑠)) as well as the emergency 

demand (𝑆𝐻𝐸𝐵𝐶𝑡(𝑠)) requested by all the hospitals, as portrayed in Equation (4.28). 
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(xiv) Initial Inventory of Platelets at the Blood Center 

  Equation (4.29) gives the beginning inventory levels at the blood center at time 𝑡 = 1 for 

each scenario 𝑠. 

(xv) Received units for hospital 𝑘 have to be the same under all scenarios  

          Equation (4.30) states that the received units for hospital 𝑘 have to be the same for all 

scenarios over the supply chain planning horizon. 

(xvi) Ordered units for hospital 𝑘  have equal amount under all scenarios over the planning 

horizon     

         Equation (4.31) states that the ordered units for hospital 𝑘 have an equal amount for all the 

scenarios over the planning horizon.      

(xvii) Total platelet units received by all hospitals shipped from the blood center 

        Equation (4.32) gives the total platelet units with 𝑙 days shelf life being received by all 

hospitals, at the start of day 𝑡. 

(xviii) Total platelet units delivered to the blood center from the component labs  

         Equation (4.33) gives the total platelet units delivered from the component labs to the blood 

center upon the completion of the testing procedure, at the start of day 𝑡, under scenario 𝑠. 

(xix) Non-negative integer Constraints 

         Constraints (4.34) represent non-negative integer constraints in the model. Constraints 

(4.35) – (4.36) correspond to non-negativity binary constraints within the model. 

 

4.5  Computational Results 

As discussed in Section 4.4, the model of the stochastic blood supply chain is programmed 

and solved using Python software with Gurobi Optimizer v8.1. The problem was solved to 

optimality for one blood center and two hospitals with a planning horizon of 300 days and 100 

scenarios. It had 2,040,006 variables (90,000 are binary) and 1,621,202 constraints. It took about 
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five minutes to process 417,279 iterations to solve the problem. Sections 4.5.1 and 4.6 discussed 

the results of computing solutions and sensitivity analysis in detail.  

4.5.1  Base Case Results 

This section examines the effectiveness of the developed stochastic mixed-integer 

programming model. Table 4.1 shows the base case parameter values, and these are based on the 

data given in the literature (Haijema, 2013; Civelek et al., 2015; Rajendran and Ravindran, 2017; 

Rajendran and Ravindran, 2019) for a setting with two hospitals and one blood center. The impact 

of these cost parameters on the performance measures is discussed in Section 4.6. Table 4.2 shows 

the performance measures and overall average cost measures for the base model with a planning 

horizon of 300 days and 100 scenarios. It is evident that Hospital #2 experiences more shortage, 

which is primarily because of the limited shelf life of arriving platelets. In other words, since the 

lead time for Hospital #2 is two days, there is comparatively more shortage and outdating observed 

in this hospital. As a result of the increased number of units purchased by Hospital #1, there are 

more units held in inventory, resulting in less shortage.  

           Table 4.1: Input Parameters for Base Case Setting 

Input Parameter Values 

Total Days Over Time Horizon  300 

Total Number of Scenarios 100 

Hospitals / Blood Center Hospital 1 Hospital 2 Blood Center 

Lead Time (days)    1    2    5 

Review Period (days)    1    1    1 

Fixed Cost of Procurement per Shipment 113 225        1,125 

Inventory Holding Cost per Unit per Day 130 130 108 

Variable Purchasing Cost per Unit ($) 650 650 538 

Shortage Cost per Unit ($)     3,250     3,250        2,690 

Outdating Cost per Unit ($) 650 650 538 

Platelet Demand/Supply Distribution 𝑁~(200,32) 𝑁~(100,16) 𝑁~(225,36) 
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           Table 4.2: Average Performance Measures for Base Case Setting (𝑇=300, 𝑆=100) 

Performance 

Measure 
Hospital 1 Hospital 2 Blood Center 

Unit Shortage   14 23 41 

Unit Outdating    0   1   0 

Unit Holding   21   0   1 

Unit Purchased 186 78 225 

Fixed Cost 1.13 2.25 11.25 

Demand/Supply N ~ (200,32) N ~ (100,16) N ~ (225, 37) 

Overall Measures 

Average Cost/per 

day/per scenario 
Best Worst STD 

4,068 3,800 4,264 84 

 

 

4.6  Sensitivity Analysis 

In this section, the impact of supply and demand parameters, as well as the cost settings, 

are varied to investigate their effects on performance measures, such as shortage, outdating, 

holding, units purchased, and total cost.  

 

4.6.1  Impact of Changes in Demand and Supply Parameters  

Table 4.3 shows the changes in coefficients of variation (CV) of both the supply can 

demand. The CV is varied from 10% to 50%, in steps of 0.1 at a time. Table 4.4 and Figures 4.4– 

4.6 show the impacts on average performance measures for hospital #1, #2, and the blood center, 

respectively. Clearly, we can see that units outdated, held in inventory, and shortage increase with 

the inflation in the CV. Unexpectedly, the total units purchased decreases with the rise in CV for 

both the hospitals, which may be primarily because of the variations of demand for both the 

hospitals. The average supply at the blood center remains almost the same across the different CV 

settings, and is approximately equal to the mean. Table 4.5 and Figure 4.7 show the overall average 

cost measures for different coefficients of demand and supply variations. Clearly, we can see that 

the average total supply chain cost increases with the increase in the CV. 
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           Table 4.3: Coefficients of Variation (CV) of Supply and Demand Settings 

Setting Hospital 1 Hospital 2 Blood Center 

CV1 (CV=0.1) 𝑁~ (200,20) 𝑁~ (100,10) 𝑁~ (225,23) 

CV2 (CV=0.2) 𝑁~ (200,40) 𝑁~ (100,20) 𝑁~ (225,45) 

CV3 (CV=0.3) 𝑁~ (200,60) 𝑁~ (100,30) 𝑁~ (225,68) 

CV4 (CV=0.4) 𝑁~ (200,80) 𝑁~ (100,40) 𝑁~ (225,90) 

CV5 (CV=0.5)   𝑁~ (200,100)  𝑁~ (100,50)   𝑁~ (225,113) 

 

Table 4.4 illustrates the impacts for different coefficients of demand variation 

 

            Table 4.4: Impacts of different Coefficients of Demand Variation 

                               Base                       CV=0.1 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit Shortage   14 23 41 17 21 36 

Unit Outdating    0   1   0    0  0   0 

Unit Holding   21   0   1    4  0   0 

Unit Purchased 186 78 225 183 79 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 

 

 

                        CV=0.2                   CV=0.3 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit Shortage  15 25  42 18 29 46 

Unit Outdating    0   1    0   2   3   0 

Unit Holding   30   0    2  43   0    6 

Unit Purchased 185 76 225 184 74 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 
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                        CV=0.4                   CV=0.5 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit Shortage  24 34  51  30 39  56 

Unit Outdating    5   5    0    8   8    0 

Unit Holding   45   0   12   45   0   18 

Unit Purchased 181 72 225 178 69 226 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 

 

 

 

Figure 4.4: Impact of CV on Performance Measures of Hospital 1 
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Figure 4.5: Impact of CV on Performance Measures of Hospital 2 

 

 

Figure 4.6: Impact of CV on Performance Measures of Blood Center 
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           Table 4.5: Impact of CV on the Total Supply Chain Cost 

Overall Measures 

Settings 
Average Cost/per 

day/per scenario 
Best Worst STD 

Base 4,068 3,800 4,264 84 

CV=0.1 3,953 3,830 4,059 48 

CV=0.2 4,177 3,879 4,436 93 

CV=0.3 4,557 4,306 4,857 116 

CV=0.4 5,040 4,713 5,455 155 

CV=0.5 5,543 5,039 5,975 185 

 

 

 

Figure 4.7: Overall Average Cost Performance Measure 
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4.6.2  Impact of Changes in the Cost Settings  

Table 4.6 shows the different cost settings used for this analysis (adapted from Rajendran 

and Ravindran, 2019). Setting CSET1 represents the base case. Settings CSET2 – CSET9 are 

obtained by multiplying the different cost parameters by 0.5, whereas settings CSET10 – CSET17 

are obtained by multiplying the different cost parameters by 1.5. Tables 4.7 – 4.10 show the 

impacts on average cost measures by different cost settings for different members of the supply 

chain. Table 4.11 shows the overall average cost performance measure by different cost settings. 

It is evident that 

 Settings with shortage cost variations have the maximum deviation from the base case.    

 The next most significant impact is observed for purchasing cost parameter alteration. This 

         is expected because the purchasing cost has the maximum impact on the total cost.  

 Due to the limited units outdated, the impact of varying the outdating cost parameters results 

in an insignificant change in total cost. A similar pattern is observed for holding cost 

variations, as well.  

 

          Table 4.6: Different Settings of the Cost 

Cost 

Settings 

Blood center Hospital 

Inventory 

holding 

cost 

/unit/day 

 

Shortage 

cost/unit 

Outdated 

cost/unit 

Fixed 

cost/ 

shipment 

Inventory 

holding 

cost 

/unit/day 

Purchasing 

cost/unit 

Shortage 

cost/unit 

Outdated 

cost/ unit 

H1 H2 

CSET1 

(base) 
108 2,690 538 (113,225) 130 650 3,250 650 

CSET2 54 2,690 538 (113,225) 130 650 3,250 650 

CSET3 108 1,345 538 (113,225) 130 650 3,250 650 

CSET4 108 2,690 269 (113,225) 130 650 3,250 650 

CSET5 108 2,690 538   (57,113) 130 650 3,250 650 

CSET6 108 2,690 538 (113,225) 65 650 3,250 650 

CSET7 108 2,690 538 (113,225) 130 325 3,250 650 

CSET8 108 2,690 538 (113,225) 130 650 1,625 650 

CSET9 108 2,690 538 (113,225) 130 650 3,250 325 

CSET10 162 2,690 538 
(113,225

) 
130 650 3,250 650 
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CSET11 108 4,035 538 (113,225) 130 650 3,250 650 

CSET12 108 2,690 807 (113,225) 130 650 3,250 650 

CSET13 108 2,690 538 (170,338) 130 650 3,250 650 

CSET14 108 2,690 538 (113,225) 195 650 3,250 650 

CSET15 108 2,690 538 (113,225) 130 975 3,250 650 

CSET16 108 2,690 538 (113,225) 130 650 4,875 650 

CSET17 108 2,690 538 (113,225) 130 650 3,250 975 

 

Table 4.7 Illustrates the impacts of different cost settings 

 

           Table 4.7: Impacts of different Cost Settings 

 CS1 (Base) CS2 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit Shortage 
  14 23  41  14 23 41 

Unit Outdating 
   0   1    0    0  1   0 

Unit Holding 
  20   0    1   20  0   1 

Unit Purchased 
186 78 225 186 77 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 

 

 

 CS3 CS4 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit Shortage 
   5 10  65  14 23 41 

Unit Outdating 
   1  4   0   0  1   0 

Unit Holding 
  46  0   0   20  0   1 

Unit Purchased 
196 93 225 186 78 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 
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 CS5  CS6 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit 

Shortage 
 14  23  41   11  24  43 

Unit 

Outdating 
  0   1   0    0   0   0 

Unit Holding 
 21   0   1   27   0   0 

Unit 

Purchased 
186 77 225 188 77 225 

Fixed Cost 
1.13 2.25 11.25 1.13 2.25 11.25 

 

 CS7  CS8 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit 

Shortage 
  11 19 48 48 40   9 

Unit 

Outdating 
   0   1   0   0 0   0 

Unit Holding 
  28   0   1   1 0   1 

Unit 

Purchased 
189 82 225 152 61 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 

 

 CS9  CS10 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit 

Shortage 
 14 23 42 14 23 41 

Unit 

Outdating 
   0   1   0   0   1   0 

Unit Holding 
  20   0   1  21   0    0 

Unit 

Purchased 
186 78 225 186 78 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 
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 CS11 CS12 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit Shortage 
 28  35  21  14  23  41 

Unit Outdating 
  0   0   0   0   1   0 

Unit Holding 
  6   0   1   20   0   1 

Unit Purchased 
172 66 225 186 78 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 

 

 CS13 CS14 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit 

Shortage 
 14 23  41   16  23 40 

Unit 

Outdating 
  0  1   0    0   1   0 

Unit Holding 
  20  0   1   16   0   1 

Unit 

Purchased 
186 78 225 184 78 224 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 

 

 CS15 CS16 

Performance 

Measure 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Hospital 

1 

Hospital 

2 

Blood 

Center 

Unit 

Shortage 
19  28  33    5  11  63 

Unit 

Outdating 
  0   0  0    1   3   0 

Unit Holding 
 13   0   1   51   0   0 

Unit 

Purchased 
181 72 225 196 91 225 

Fixed Cost 1.13 2.25 11.25 1.13 2.25 11.25 
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 CS17 

Performance 

Measure 
Hospital 1 Hospital 2 Blood Center 

Unit Shortage 
 14  23  40 

Unit Outdating 
  0   0   0 

Unit Holding 
  20   0   1 

Unit Purchased 
186 77 226 

Fixed Cost 1.13 2.25 11.25 

 

 

            Table 4.8: Impacts of Cost Settings on Hospital 1 

Average Performance Measures 

 Unit 

Shortage 

Unit 

Outdating 
Unit 

Holding 

Unit 

Purchased 
Total 

cost 

CSET1(Base) 14 0 20 186 1,689 

CSET2 14 0 20 186 1,691 

CSET3   5 1 46 196 1,494 

CSET4 14 0 20 186 1,692 

CSET5 14 0 21 186 1,686 

CSET6 11 0 27 188 1,617 

CSET7 11 0 28 189 1,002 

CSET8 48 0   1 152 1,773 

CSET9 14 0 20 186 1,685 

CSET10 14 0 20 186 1,689 

CSET11 28 0 6 172 2,048 

CSET12 14 0 20 186 1,689 

CSET13 14 0 20 186 1,691 

CSET14 16 0 16 184 1,758 

CSET15 19 0 13 181 2,388 

CSET16   5 1 51 196 1,570 

CSET17 14 0 20 186 1,688 
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           Table 4.9: Impacts of Cost Settings on Hospital 2 

                                                    Average Performance Measures 

 Unit 

Shortage 

Unit 

Outdating 

Unit 

Holding 

Unit 

Purchased Total cost 

CSET1(Base) 23 1 0 78 1,254 

CSET2 23 1 0 77 1,261 

CSET3 10 4 0 93   963 

CSET4 23 1 0 78 1,262 

CSET5 23 1 0 77 1,261 

CSET6 24 0 0 77 1,280 

CSET7 19 1 0 82    895 

CSET8 40 0 0 61 1,037 

CSET9 23 1 0 78 1,257 

CSET10 23 1 0 78 1,260 

CSET11 35 0 0 66 1,553 

CSET12 23 1 0 78 1,255 

CSET13 23 1 0 78 1,256 

CSET14 23 1 0 78 1,247 

CSET15 28 0 0 72 1,612 

CSET16 11 3 0 91 1,173 

CSET17 23 1 0 77 1,269 

 

           Table 4.10: Impacts of Cost Settings on Blood Center  

Average Performance Measures 

Setting 
Unit 

Shortage 

Unit 

Outdating 

Unit 

Holding 

Unit 

Purchased Total cost 

CSET1(Base) 41 0 1 225 1,125 

CSET2 41 0 1 225 1,125 

CSET3 65 0 0 225    888 

CSET4 41 0 1 225 1,125 

CSET5 41 0 1 225 1,103 

CSET6 43 0 0 225 1,156 

CSET7 48 0 1 225 1,302 

CSET8  9 0 1 225    255 

CSET9 42 0 1 225 1,132 

CSET10 41 0 0 225 1,128 

CSET11 21 0 1 225    878 

CSET12 41 0 1 225 1,123 

CSET13 41 0 1 225 1,117 

CSET14 40 0 1 224 1,100 

CSET15 33 0 1 225    905 

CSET16 63 0 0 225 1,714 

CSET17 40 0 1 226 1,094 
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           Table 4.11: Overall Average Cost Performance Measures by different Cost Settings. 

                                          Overall Average Cost Measures 

 Average Best Worst STD 

CSET1(Base) 4,068 3,800 4,264 84 

CSET2 4,077 3,869 4,240 71 

CSET3 3,345 3,232 3,465 51 

CSET4 4,061 3,874 4,292 88 

CSET5 4,073 3,897 4,259 76 

CSET6 4,053 3,862 4,270 84 

CSET7 3,199 3,044 3,377 74 

CSET8 3,065 2,964 3,180 46 

CSET9 4,074 3,906 4,226 81 

CSET10 4,077 3,889 4,242 68 

CSET11 4,479 4,268 4,668 86 

CSET12 4,066 3,879 4,273 70 

CSET13 4,064 3,821 4,357 88 

CSET14 4,105 3,882 4,374 90 

CSET15 4,904 4,647 5,109 75 

CSET16 4,457 4,234 4,758 95 

CSET17 4,051 3,856 4,249 82 

 

 

4.7  Case Study  

A stochastic process is simply a collection of random variables labeled by some 

parameter. A scenarios is any possible set of values for the stochastic variables. Any stochastic 

(random) process can be represented by a number of scenarios. As we would expect, the higher 

the number of scenarios considered, the more appropriate is the representation of the stochastic 

process, at the expense of more challenging mathematical model to be solved. (Tarim et al., 

2006, Ravindran, 2008, Niknam et al., 2012, Dillon et al., 2017) 

Define a set of S future scenarios and assign likelihood p(s) that scenario s will occur. For 

example, 

 

Scenarios (𝑠) Likelihood (𝑝(𝑠)) 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑡 

𝑆𝑈𝑃𝑃𝐿𝑌𝑡(1) 𝑝𝑠(1)  

𝑆𝑈𝑃𝑃𝐿𝑌𝑡(2) 𝑝𝑠(2)  

… …  
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𝑆𝑈𝑃𝑃𝐿𝑌𝑡(𝑆𝑠) 𝑝𝑠(𝑆𝑠) ∑ 𝑆𝑈𝑃𝑃𝐿𝑌𝑡(𝑠) ∗ 𝑝𝑠(s)

𝑆𝑠

𝑠=1

 

   

𝐷𝐸𝑀𝐴𝑁𝐷ℎ,𝑡(1) 𝑝𝑑(1)  

𝐷𝐸𝑀𝐴𝑁𝐷ℎ,𝑡(2) 𝑝𝑑(2)  

… …  

𝐷𝐸𝑀𝐴𝑁𝐷ℎ,𝑡(𝑆𝑑) 

  ( ℎ is for hospital ) 
𝑝𝑑(𝑆𝑑) 

∑ 𝐷𝐸𝑀𝐴𝑁𝐷ℎ,𝑡(𝑠) ∗ 𝑝𝑑(s)

𝑆𝑑

𝑠=1

 

          ( ℎ is for hospital ) 

 

The scenario approach or scenario optimization approach is a technique for obtaining 

solutions to robust optimization and chance-constrained optimization problems. The scenario-

based optimization technique is utilized in the proposed model to solve the stochastic 

programming models by examining many possible circumstances for the platelet demand and 

supply. This approach is based on a set of key constraints for acquiring solutions to robust 

optimization problems. In a given period, each scenario corresponds to a specific combination of 

supply and demand patterns. Based on this stochastic programming approach, the number of 

acquired units with the regular shipments will remain the same, and the number of acquired units 

through emergency shipments (i.e., at times of shortage) and inventory is varied based on the 

scenario. 

Assume the supply and demand have the same weekly normal distributions. (Rajendran 

and Srinivas, 2020). From Table 3.2 in chapter 3: 2013-2017 Weekday Average Supply Summary 

Statistics is shown as below: 

                            Average (Year)   

                   Year 

Weekday 
2013 2014 2015 2016 2017 Mean 

Sunday    188    174    200    204    201    193 

Monday 1,523 1,525 1,504 1,497 1,445 1,499 

Tuesday    820    858   850    855    888    854 

Wednesday    961    857   855    862    888    885 

Thursday 1,127 1,238 1,381 1,439 1,383 1,314 

Friday 1,039 1,013 1,025 1,060 1,159 1,059 

Saturday    135    138   164    146    192    155 
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For the case study, it is assumed that the weekday has same Demand and Supply 

Distribution which is shown as in Figure 4.8 and Table 4.12 

 

Figure 4.8: Weekday Demand and Supply Distribution 

           Table 4.12: Weekday Demand and Supply Distribution 

 Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Mean 193 1,499 854 885 1,314 1,059 155 

Demand

/Supply 

N ~ 

(193,19) 

N ~ 

(1499,150) 

N ~ 

(854,85) 

N ~            

(885, 89) 

N ~ 

(1314,131) 

N ~ 

(1059,106) 

N ~ 

(155,16) 

 

Solving the stochastic programming models, the weekday blood ordering units, holding 

units, outdating units, and shortage units, etc. for two hospitals and one blood center are shown 

in Tables 4.13, 4.14, and 4.15. The overall performance measure by weekday is shown in Table 

4.16. 

 

4.7.1  Weekday Implementation Results of Case Study 

Tables 4.13 to 4.15 and Figures 4.9 to 4.11  show the impacts of demand and supply 

distribution on average weekday performance measures for hospital #1, #2, and the blood center, 

respectively. Clearly, we can see that units purchased, outdated, held in inventory, and shortage 

varied with the inflation in the demand and supply. Table 4.16 and Figure 4.12 show the overall 

average cost measures for weekday of demand and supply variations. It is shown that the average 
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total supply chain cost varied with the inflation in the demand and supply. From the results, it is 

evident that 

 Since there are initial inventories at beginning of the week, there are not many units to order 

for hospital 1 and hospital 2, the blood center has purchased some units, there is no purchased 

costs occurred for blood center, the average total supply chain cost is moderate.    

 The purchased units are low for Saturday and Sunday comparing with Tuesday, Wednesday, 

Thursday, and Friday, this is expected because low demand for Saturday ( N ~ (155,16) ) and 

Sunday N ~ (193,19), the average total supply chain cost for Saturday and Sunday have the 

minimum weekday cost.  

 Clearly, as the overall performance measures by weekday for Tuesday, Wednesday, 

Thursday and Friday shown in Table 4.16 and Figure 4.12, we can see that the average total 

supply chain cost increase with the inflation in the demand and supply. Due to the nature of 

stochastic process, the best and worst overall performance measures by weekday result in a 

significant difference in total cost. A similar pattern is observed for cost standard deviation 

by weekday, as well.  

 

           Table 4.13: Average Performance Measures for Hospital 1 

 
                                                       Hospital 1 

                       Performance 

Measure 
Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Unit Shortage       3     36   18    31    28      0    3 

Unit Outdating 
   100      2   59 

   90    68      0    0 

Unit Holding 1,700   127    0     0     0      0 32 

Unit 

Purchased 

     0   702   903 
 1,385 1,100   188  183 

Fixed Cost   1.13  1.13  1.13   1.13   1.13   1.13  1.13 

Average Cost/   

Per Scenario 
2,947 5,911 6,834 10,584 8,509 1,227 1,343 
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           Table 4.14: Average Performance Measures for Hospital 2 

                                                          Hospital 2 

                       Performance 

Measure 
Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Unit Shortage      8     4    6     14   15    0     4 

Unit Outdating     99     3    8     14    0    0     0 

Unit Holding 1,700 115   66      70 108   59    95 

Unit Purchased         0  801  892 1,357 993 190  155 

Fixed Cost  2.25 2.25 2.25 2.25 2.25 2.25  2.25 

Average Cost/   

Per Scenario 
3,127 5,517 6,150 9,446 7,100 1,314 1,277 

 

            Table 4.15: Average Performance Measures for Blood Center 

                                               Blood Center 

                       Performance 

Measure 
Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Unit Shortage      0      0       0       0       0       0        0 

Unit Outdating      0      0       0       0       0       0        0 

Unit Holding 1,700   840       0       0       0       0 1,131 

Unit Purchased 1,509   856    902 1,316 1,045    154    195 

Fixed Cost 11.25 11.25 11.25 11.25 11.25 11.25 11.25 

Average Cost/   

Per Scenario 
1,847 917 11.25 11.25 11.25 11.25 1,232 

 

            Table 4.16: Overall Performance Measures by Weekday 

Overall 

Performance 
Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Average Cost/   

Per Scenario 
  7,922 12,345 12,995 20,042 15,620 2,553 3,853 

Best   6,267 10,623 11,754 17,838 13,723 2,472 3,255 

Worst 
16,095 19,616 17,922 

27,653 24,864 2,862 5,724 

STD   1,619   2,158   1,300   2,065   2,122     88    478 
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Figure 4.9: Performance Measures of Hospital 1 by Weekday 

 

 

Figure 4.10: Performance Measures of Hospital 2 by Weekday 
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Figure 4.11: Performance Measures of Blood Center by Weekday 

 

 

Figure 4.12: Overall Performance Measures of Supply Chain by Weekday 
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4.8  Implications of Results  

The blood supply chain is genuinely unique as the products are very important to health 

care and life. Human blood cannot be manufactured, and no substitute for it has yet been 

successfully developed. Generally, many factors must be considered within the blood supply chain 

system because blood inventory management is a complex and challenging system. The collected 

donor blood faces a significant outdating because of the short shelf life of blood products. 

Moreover, hospitals and blood centers encounter serious blood inventory problems due to the 

uncertainty in blood demand and supply. In this study, we develop a stochastic mix integer linear 

programming model for the blood supply chain. 

The problem with one blood center and two hospitals for a planning horizon frame of 300 

days and 100 scenarios were solved to optimality using Python software with Gurobi Optimizer 

v8.1. It had 2,040,006 variables (90,000 are binary) and 1,621,202 constraints. It took about five 

minutes to process 417,279 iterations to solve the MILP problem. The results indicate that all the 

measures increase with the increase in the CV. This is because, with the increase in CV, more units 

are purchased to minimize shortage, which in turn results in more units held in inventory and more 

units expiring. It is also evident that settings with shortage and purchasing cost variations have the 

maximum deviation from the base case, while an insignificant change in total cost is observed for 

holding and outdating cost variation settings.  

Even though more effort is required in the implementation of the mathematical model and 

the forecasts and generated supply an demand distributions have to be updated periodically, the 

model will result in less wastage and shortage. In practice, the same order policy may not be used 

for all the 300 days of the planning horizon. Instead, a rolling horizon approach may be followed 

to implement the optimal solution. For example, even though the MILP model gives an optimal 

order policy for 300 days, only the first week of the optimal solution is implemented. The case 

study implemented in this chapter focuses on weekday blood ordering for two hospitals and one 

blood center based on the assumption that the weekday demand and supply have the same normal 

distributions with various means. At the end of the first week, the MILP model is returned for the 

next 300 days after updating the inventory and demand distributions. The new optimal policy will 

be used for the second week, and the process is repeated weekly. Since long term forecasts may 

not be as good as short term forecasts, a rolling horizon policy helps to update forecasts weekly 

and determine the best solution decision based on the revised forecasts. 
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           CHAPTER 5  
 

PLATELET INVENTORY MANAGEMENT IN A DIVERGENT BLOOD     

   SUPPLY CHAIN UNDER SUPPLY AND DEMAND UNCERTAINTY 
 

5.1  Divergent Blood Supply Chain Model 

While previous studies on blood supply chain management focus on a single blood center 

and a multi-hospital system, the objective of the current study is to determine the optimal ordering 

policy for a divergent network consisting of multiple blood centers and hospitals. To achieve this 

goal, a stochastic mixed integer programming model is developed to minimize the total supply 

chain cost (consisting of transportation, purchasing, shortage, outdating, and inventory costs) in 

the healthcare network. Sensitivity analysis is conducted to investigate the influence of the supply 

and demand variation, as well as the cost parameters on the performance measures, such as 

shortage, outdating, holding, units purchased, and total cost.   

 

5.1.1  System Description 

The blood supply chain framework examined in this study consists of 𝑋 blood centers and 

𝐾 hospitals (as shown in Figure 5.1). Each blood center can ship platelets to any of the 𝐾 hospitals. 

The cost of transporting platelets will depend on the distance between the blood center and 

hospital. Current Health Insurance Portability and Accountability Act (HIPAA) regulations 

strongly discourage the exchange of blood among hospitals due to traceability issues. Therefore, 

in this research, we assume that hospitals can receive platelets only from blood center and are not 

allowed to share blood among each other. A collaborative system of blood centers and hospitals is 

better than a decentralized system in which each hospital is supplied with blood only by its 

corresponding blood center, as proven in the APPENDIX. 
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         Blood Center 1                      Blood Center 2  ………          Blood Center 𝑋 

                                  

 

 

                                         …..               .    

  

Figure 5.1: Structure of Supply Chain Containing 𝑋 Blood Centers and 𝐾 Hospitals 

 

5.2  Methodology  

This section describes the stochastic mixed integer linear programming (MILP) model 

utilized in this study. We use the scenario-based approach, in which each scenario is derived from 

a unique set of demand and supply patterns. Under this approach, the number of units purchased 

through the regular procurement remains unchanged, whereas the amount of units obtained during 

any emergency, units inventory, expiration and shortage varies depending on the scenario.   

5.2.1  Model Assumptions: 

1. Order processing lead time is negligible 

2. Only one blood type is considered in the model 

3. The hospital utilizes FIFO policy, which means that for demand fulfillment, the units with 

one-day shelf life are used first, followed by two days and then three days shelf life.  

 

5.2.2  Notations for the Model 

Model parameters (known data) 

 𝑙 Index of platelets shelf life (𝑙 =1,2,3)  

 𝑘 Index of hospital 𝑘 

 Hospital 1 Hospital 2 Hospital 3 Hospital 𝐾 
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 𝑥 Index of blood center 𝑥 

 𝑠 Index of demand scenario (demand patterns for platelet) (𝑠 =1, 2, …, 𝑆) 

 𝑡 Index of day 𝑡 (𝑡 =1, 2, …, 𝑇) 

 𝐾 Total number of hospitals (𝑘 =1, 2, …, 𝐾)  

 𝑋  Total number of blood centers (𝑥 =1, 2, …, 𝑋) 

 𝑝𝑏(𝑠) Probability of scenario 𝑠 (∑ 𝑝𝑏(𝑠)𝑆
1 = 1)  

 𝑓𝑜𝐻𝑃𝑘  Fixed operational cost per day at hospital 𝑘 ($/day)  

 𝑓𝑠𝐻𝑃𝑥,𝑘  
Fixed shipping charges for procuring platelets at hospital 𝑘 from blood 

center 𝑥 ($/shipment) (𝑥 =1, 2, …, 𝑋) 

𝑝𝑐𝐻𝑃  Purchasing cost for each unit of platelet at hospital ($/unit) 

ℎ𝑐𝐻𝑃  Platelet inventory holding cost per unit per day at hospital ($/day/unit) 

𝑒𝑐𝐻𝑃  Cost of expired platelet per unit at hospital ($/unit)  

𝑠𝑐𝐻𝑃             

Shortage cost per unit at hospital ($/unit) (this is the purchasing cost incurred 

per platelet unit due to the shipment from the blood center during an 

emergency) 

 

 𝑑𝑒𝑚𝑎𝑛𝑑𝑘,𝑡(𝑠) 
Platelet demand at hospital 𝑘 on day 𝑡 (units) under scenario 𝑠. Historical data 

is leveraged to estimate the demand  

𝑙𝑡𝐻𝑃𝑥,𝑘 

Lead time (days) of procurement at hospital 𝑘 from blood center 𝑥. It is the 

time between issuing orders for platelets and receiving them (Note:  
𝑙𝑡𝐻𝑃𝑥,𝑘 = 0,1 or 2 only)  

𝑟𝑝𝐻𝑃𝑘 Order review period at hospital 𝑘 (days)  

𝑖𝑛𝑖𝐻𝑃𝑘,𝑙 Beginning inventory at hospital 𝑘 on day 1 with 𝑙 days shelf life 

𝑓𝑠𝐵𝐶𝑥  
Fixed shipping charges for procuring platelets incurred by blood center 

($/shipment) (𝑥 =1, 2, …, 𝑋) 

 ℎ𝑐𝐵𝐶  
Platelet inventory holding cost per unit per day associated with the blood 

center ($/day) 

 𝑒𝑐𝐵𝐶 Platelet outdating cost per unit related to the blood center ($/unit) 

 𝑠𝑐𝐵𝐶  

Shortage cost per unit ($/unit) related with the blood center (this is referring 

to the purchasing cost per unit of platelets due to shipment from blood centers 

during an emergency from other blood centers) 
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 𝑠𝑢𝑝𝑝𝑙𝑦𝑥,𝑡(𝑠) 
Number of units of platelet supply at blood center 𝑥 on day 𝑡 under scenario 

𝑠. Historical data is used to estimate supply pattern (𝑥 =1, 2, …, 𝑋) 

 𝑙𝑡𝐵𝐶𝑥 

Lead time in days to purchase platelets for blood center 𝑥 . It is the time 

between issuing orders and receiving fresh new platelets. It comprises of the 

total time for collecting as well as two days of testing time (𝑥 =1, 2, …, 𝑋) 

 𝑟𝑝𝐵𝐶𝑥 
The review period for platelets ordering at the blood center 𝑥 (days) (𝑥 =1, 

2,…, 𝑋)  

 𝑖𝑛𝑖𝐵𝐶𝑥,𝑙 
Starting inventory at blood center 𝑥 on day one with a shelf life of 𝑙 days (𝑥 = 

1, 2, …, 𝑋) 

 

Key Decision Variables for the Model 

  

 𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠) 
The number of units ordered by hospital 𝑘 to the blood centers at the end of 

the day 𝑡 in scenario 𝑠 

 𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠) 

The number of units procured by hospital 𝑘 at the beginning of day 𝑡 from 

all the 𝑋 blood centers having a shelf life of 𝑙 days (𝑙 =1,2,3), in scenario 𝑠 

(note: the incoming platelets units have a maximum storage life of three 

days) 

 𝑂𝐻𝐻𝑃𝑘,𝑡,𝑙(𝑠)  

Existing platelet inventory having a shelf life of 𝑙  days (𝑙   =1, 2) at the 

beginning of day 𝑡,  at hospital 𝑘 , in scenario 𝑠 . Note: The available 

inventory can have a maximum shelf life of two days at the start of day 𝑡. 

This is because the maximum shelf life of the platelet units is three days 

 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) 
The number of platelet unit shortage at hospital 𝑘 by the end of day 𝑡, at 

hospital 𝑘, in scenario 𝑠 (note: Hospital 𝑘 obtains these shortage units via 

emergency shipments from the blood center)  

 𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠) 
The number of units that are expired at hospital 𝑘 at the end of day 𝑡, in 

scenario 𝑠  

Key Decision Variables regarding Blood Centers in the Model 

 𝑂𝑅𝐵𝐶𝑥,𝑡(𝑠) 
The number of units ordered by blood center 𝑥 at the end of day 𝑡 in scenario 

𝑠. These units will be received by the blood center 𝑥 at the beginning of day 

𝑡  + 𝐿𝑇𝐵𝐶𝑥 after the component labs finish the testing process  

 𝑅𝐸𝐵𝐶𝑥,𝑡(𝑠)  

The number of units received by blood center 𝑥 from the component labs at 

the beginning of day 𝑡, after finishing the testing process in scenario 𝑠 (note: 

The units procured by the blood center will be fresh and have a shelf life of 

three days) 
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𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,𝑙(𝑠) 
On day 𝑡, the number of units shipped to hospital 𝑘 with platelets having a 

shelf life of 𝑙 days (𝑙 =1,2,3) from the blood center 𝑥, in scenario 𝑠 

 𝑂𝐻𝐵𝐶𝑥,𝑡,𝑙(𝑠) 

The number of on-hand units with a shelf life of 𝑙  days (𝑙  =1, 2) at the 

beginning of day 𝑡 , at blood center 𝑥 , in scenario 𝑠 . Note: Since  the 

maximum shelf life at the start of day 𝑡 is three days, the carried inventory 

(brought over from day 𝑡 −1) can only have a maximum of two days of shelf 

life 

 𝑆𝐻𝐵𝐶𝑥,𝑡(𝑠) The number of shortage units at the blood center 𝑥 in scenario 𝑠 at the end 

of day 𝑡 

 

 

 𝐸𝑋𝐵𝐶𝑥,𝑡(𝑠) 
The number of platelet units that are expired at the blood center 𝑥 in scenario 

𝑠 at the end of day 𝑡 

Objective Function for the Model 

𝑇𝐶𝑆𝐶     Estimated total cost collected for all possible scenarios through the finite time period (𝑇)  

              in the blood supply chain 

 

5.3  Blood Supply Chain Model Formulation 

The objective function is to minimize the total cost incurred by the entire blood supply 

chain. The objective function considers nine different cost components affiliated with the entire 

supply chain: 

 The cost associated with hospital 𝑘, blood center 𝑥 on day 𝑡: 

 Fixed transportation cost: 𝑓𝑠𝐻𝑃𝑥,𝑘 × 𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠) 

 Variable purchasing cost: 𝑝𝑐𝐻𝑃 × 𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠) 

 Inventory holding cost: ℎ𝑐𝐻𝑃 × (𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠)) 

 Shortage cost: 𝑠𝑐𝐻𝑃 × 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) 

 Expiration cost: 𝑒𝑐𝐻𝑃 × 𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠) 

 The cost related to the blood center 𝑥 on day 𝑡: 

 Fixed transportation cost: 𝑓𝑠𝐵𝐶𝑥 × 𝑏𝑖𝑛𝐵𝐶𝑥,𝑡(𝑠) 

 Inventory holding cost: ℎ𝑐𝐵𝐶 × (𝑂𝐻𝐵𝐶𝑥,𝑡,1(𝑠) + 𝑂𝐻𝐵𝐶𝑥,𝑡,2(𝑠)) 

 Shortage cost: 𝑠𝑐𝐵𝐶 × 𝑆𝐻𝐵𝐶𝑥,𝑡(𝑠) 

 Expiration cost: 𝑒𝑐𝐵𝐶 × 𝐸𝑋𝐵𝐶𝑥,𝑡(𝑠) 
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Note: Cost for processing and testing blood platelets at blood centers are not taken into account 

in the current objective function as they are included under procurement costs charged to the 

hospitals. To minimize the expected total cost across all scenarios over the entire blood supply 

chain under demand and supply uncertainty, the objective function is formulated as follows: 

Minimize 𝑇𝐶𝑆𝐶 = 

∑ [∑ [𝑝𝑏(𝑠) × {∑ [ ∑ [𝑓𝑠𝐻𝑃𝑥,𝑘 × 𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠) +  𝑝𝑐𝐻𝑃 × 𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠)]𝑋
𝑥=1 + ℎ𝑐𝐻𝑃 ×𝐾

𝑘=1
𝑆
𝑠=1

𝑇
𝑡=1

(𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠)) + 𝑠𝑐𝐻𝑃 × 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) + 𝑒𝑐𝐻𝑃 ×  𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠)] +

 ∑ [𝑓𝑠𝐵𝐶𝑥 × 𝑏𝑖𝑛𝐵𝐶𝑥,𝑡(𝑠) + ℎ𝑐𝐵𝐶 × (𝑂𝐻𝐵𝐶𝑥,𝑡,1(𝑤) + 𝑂𝐻𝐵𝐶𝑥,𝑡,2(𝑠)) + 𝑠𝑐𝐵𝐶 × 𝑆𝐻𝐵𝐶𝑥,𝑡(𝑠) +𝑋
𝑥=1

 𝑒𝑐𝐵𝐶 × 𝐸𝑋𝐵𝐶𝑥,𝑡(𝑠)]}]]                                                                                                                (5.1) 

𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠) =∑ 𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡−𝑙𝑡𝐻𝑃𝑥,𝑘 ,𝑙+𝑙𝑡𝐻𝑃𝑥,𝑘
(𝑠)𝑋

𝑥=1  ∀𝑥, 𝑡 > 𝑙𝑡𝐻𝑃𝑥,𝑘 and 𝑙 + 𝑙𝑡𝐻𝑃𝑥,𝑘 ≤3 (5.2) 

𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠) = 0 Otherwise                      (5.3) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑘,𝑡(𝑠) − 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠)

= 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) − 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠) 

∀ 𝑘, 𝑡, 𝑠                             (5.4) 

𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) − 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠)

= 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) − 𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠)        

∀ 𝑘, 𝑡, 𝑠                             (5.5) 

𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) = 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) − 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠) ∀ 𝑘, 𝑡, 𝑠                            (5.6) 

𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠) = 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠)        ∀ 𝑘, 𝑡, 𝑠                            (5.7) 

𝑂𝐻𝐻𝑃𝑘,𝑡+1,1(𝑠) = 𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠) ∀ 𝑘, 𝑡, 𝑠                            (5.8) 

𝑂𝐻𝐻𝑃𝑘,𝑡+1,2(𝑠) = 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠) ∀ 𝑘, 𝑡, 𝑠                            (5.9) 

𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) = 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) ∀ 𝑘, 𝑡, 𝑠                            (5.10) 

𝑂𝐻𝐻𝑃𝑘,1,𝑙(𝑠) = 𝑖𝑛𝑖𝐻𝑃𝑘,𝑙 ∀ 𝑘, 𝑙, 𝑠                            (5.11) 

𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(𝑠) = 0 ∀ 𝑘, 𝑡 ≠ 𝑟𝑝𝐻𝑃𝑘, 2𝑟𝑝𝐻𝑃𝑘, … , 𝑙, 𝑠                          (5.12) 

𝑂𝑅𝐵𝐶𝑥,𝑡(𝑠) = 0 ∀ 𝑥, 𝑡 ≠ 𝑟𝑝𝐵𝐶𝑥 , 2𝑟𝑝𝐵𝐶𝑥, … , 𝑠                             (5.13) 

𝑅𝐸𝐵𝐶𝑥,𝑡(𝑠) = 𝑂𝑅𝐵𝐶𝑥,𝑡−𝑙𝑡𝐵𝐶𝑥
(𝑠)                                                                       ∀ 𝑥, 𝑡 > 𝑙𝑡𝐵𝐶𝑥, 𝑠          (5.14) 

𝑂𝑅𝐵𝐶𝑥,𝑡(𝑠) = 𝑆𝑈𝑃𝑃𝐿𝑌𝑥,𝑡(𝑠) ∀ 𝑥, 𝑡, 𝑠                         (5.15) 

∑ 𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,1(𝑠)𝐾
𝑘=1 + 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,1(𝑠) = 𝑂𝐻𝐵𝐶𝑥,𝑡,1(𝑠)  ∀ 𝑥, 𝑡, 𝑠, 𝑙𝑡𝐻𝑃𝑥,𝑘 = 0    (5.16) 

∑ 𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,2(𝑠)𝐾
𝑘=1 + 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,2(𝑠) = 𝑂𝐻𝐵𝐶𝑥,𝑡,2(𝑠) ∀ 𝑥, 𝑡, 𝑠, 𝑙𝑡𝐻𝑃𝑥,𝑘 = 0,1     (5.17) 
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 (In general, ∑ 𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,𝑙(𝑠)𝐾
𝑘=1 + 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,𝑙(𝑠) = 𝑂𝐻𝐵𝐶𝑥,𝑡,𝑙(𝑠) ∀ 𝑥, 𝑡, 𝑠, 𝑎𝑛𝑑 𝑙 =

1,2, 𝑙𝑡𝐻𝑃𝑥,𝑘 ≤ 𝑙) 

∑ 𝐻𝑃3𝑘,𝑡(𝑠) + ∑ 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,3(𝑠)𝑋
𝑥=1𝑘 = ∑ 𝑅𝐸𝐵𝐶𝑋

𝑥=1 𝑥,𝑡
(𝑠)     ∀ 𝑡, 𝑠, 𝑙𝑡𝐻𝑃𝑥,𝑘 = 0,1,2    (5.18) 

∑ [𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,1(𝑠) + 𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,2(𝑠)]𝑋
𝑥=1 +𝐻𝑃3𝑘,𝑡(𝑠) + ∑ 𝑆𝐻𝑅𝐵𝐶𝑥,𝑘,𝑡(𝑠) =𝑋

𝑥=1

𝑂𝑅𝐻𝑃𝑘,𝑡(𝑠)                                                                                                           ∀ 𝑡, 𝑘, 𝑠                                                         

  (5.19) 

∑ 𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,3(𝑠) =  𝐻𝑃3𝑘,𝑡(𝑠) + ∑ 𝑆𝐻𝑅𝐵𝐶𝑥,𝑘,𝑡(𝑠)𝑋
𝑥=1

𝑋
𝑥=1   ∀ 𝑡, 𝑘, 𝑠     (5.20)              

∑ 𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠) −𝑘 ∑ 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,1(𝑠)𝑋
𝑥=1 = ∑ 𝑅𝑆𝐻𝐵𝐶𝑥,𝑡,1(𝑠) −𝑋

𝑥=1

∑ 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,1(𝑠)𝑋
𝑥=1   

∀ 𝑡, 𝑠         (5.21) 

𝑅𝑆𝐻𝐵𝐶𝑥,𝑡,1(𝑠) − 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,2(𝑠) = 𝑅𝑆𝐻𝐵𝐶𝑥,𝑡,2(𝑠) − 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,2(𝑠) ∀ 𝑥, 𝑡, 𝑠     (5.22) 

𝑅𝑆𝐻𝐵𝐶𝑥,𝑡,2(𝑠) − 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,3(𝑠) = 𝑅𝑆𝐻𝐵𝐶𝑥,𝑡,3(𝑠) − 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,3(𝑠) ∀ 𝑥, 𝑡, 𝑠     (5.23) 

𝑆𝐻𝐸𝐵𝐶𝑥,𝑡(𝑠) = 𝑅𝑆𝐻𝐵𝐶𝑥,𝑡,3(𝑠) ∀ 𝑥, 𝑡, 𝑠     (5.24) 

𝐸𝑋𝐵𝐶𝑥,𝑡(𝑠) = 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,1(𝑠) ∀ 𝑥, 𝑡, 𝑠     (5.25) 

𝑂𝐻𝐵𝐶𝑥,𝑡+1,1(𝑠) = 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,2(𝑠) ∀ 𝑥, 𝑡, 𝑠     (5.26) 

𝑂𝐻𝐵𝐶𝑥,𝑡+1,2(𝑠) = 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,3(𝑠) ∀ 𝑥, 𝑡, 𝑠     (5.27)  

𝑆𝐻𝐵𝐶𝑥,𝑡(𝑠) =  ∑ 𝑆𝐻𝑅𝐵𝐶𝑥,𝑘,𝑡𝑘 (𝑠) + 𝑆𝐻𝐸𝐵𝐶𝑥,𝑡(𝑠)  ∀ 𝑥, 𝑡, 𝑠     (5.28)  

𝑂𝐻𝐵𝐶𝑥,1,𝑙(𝑠) =  𝑖𝑛𝑖𝐵𝐶𝑥,𝑙 ∀ 𝑥, 𝑙, 𝑠     (5.29) 

𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(1) = 𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(2) = ⋯ = 𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠) ∀ 𝑘, 𝑡, 𝑙, 𝑠  (5.30) 

𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(1) = 𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(2) = ⋯ = 𝑂𝑅𝐻𝑃𝑘,𝑡,𝑙(𝑠) ∀ 𝑘, 𝑡, 𝑙, 𝑠  (5.31) 

𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) ≤ 𝑀 × 𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠)  ∀ 𝑘, 𝑡, 𝑠     (5.32) 

𝑅𝐸𝐵𝐶𝑥𝑡
(𝑠)  ≤  𝑀 × 𝑏𝑖𝑛𝐵𝐶𝑥,𝑡(𝑠)    ∀ 𝑥, 𝑡, 𝑠     (5.33) 

𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠), 𝐸𝑋𝐻𝑃𝑘,𝑡(𝑠), 𝐿𝐹𝑅𝐵𝐶𝑥,𝑘,𝑡,𝑙(𝑠), 𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,𝑙(𝑠), 𝐻𝑃3𝑘,𝑡(𝑠), 𝑅𝐸𝐵𝐶𝑥,𝑡(𝑠),

𝑆𝐻𝑅𝐵𝐶𝑥.𝑘,𝑡(𝑠), 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,𝑙(𝑠), 𝑂𝐻𝐵𝐶𝑥,𝑡,𝑙(𝑠), 𝐿𝐵𝐶𝑥,𝑡(𝑠), 𝑂𝑅𝐵𝐶𝑥,𝑡(𝑠), 𝑆𝐻𝐸𝐵𝐶𝑥,𝑡(𝑠),  

𝑆𝐻𝐵𝐶𝑥,𝑡(𝑠), 𝐸𝑋𝐵𝐶𝑥,𝑡(𝑠), 𝑅𝑆𝐻𝐵𝐶𝑥,𝑡(𝑠) ≥  0                                               ∀ 𝑥, 𝑙, 𝑘, 𝑡, 𝑠                                                                                                    

        (5.34) 

𝑏𝑖𝑛𝐻𝑃𝑘,𝑡(𝑠) ∈ {0,1}              ∀ 𝑘, 𝑡, 𝑠     (5.35)              

𝑏𝑖𝑛𝐵𝐶𝑥,𝑡(𝑠) ∈ {0,1}                          ∀ 𝑥, 𝑡, 𝑠     (5.36)             
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Units of Platelet Obtained by the Hospital 𝑘 from the Blood Center  

The total number of units received by hospital 𝑘 from blood center 𝑥 having a life of 𝑙 days 

(𝑅𝐸𝐻𝑃𝑘,𝑡,𝑙(𝑠)), will be equal to the number of components delivered from blood center 𝑥 on day 

𝑡 − 𝑙𝑡𝐻𝑃𝑥,𝑘, having a shelf life of 𝑙 + 𝑙𝑡𝐻𝑃𝑥,𝑘 days as shown by Equation (5.2). (Note: 𝑙𝑡𝐻𝑃𝑥,𝑘 =  

0, 1 or 2 days). 

 

Uncertainty Demand-Inventory Balance at Hospital 𝑘 and Day 𝑡 under Scenario 𝑠 

Equation (5.4) describes that if the number of platelet units having a shelf life of just one 

day is less than the stochastic demand at hospital 𝑘  (i.e., 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) <

 𝑑𝑒𝑚𝑎𝑛𝑑𝑘,𝑡(𝑠)), then the remaining inventory having a single day shelf life (𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠)) is equal 

to zero, and the residual demand (𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠)) is computed as 𝑑𝑒𝑚𝑎𝑛𝑑𝑘,𝑡(𝑠)−𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) −

𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠). However, if the reverse is true (i.e., 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) ≥

 𝑑𝑒𝑚𝑎𝑛𝑑𝑘,𝑡(𝑠) ) then leftover inventory is computed as 𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠) = 𝑂𝐻𝐻𝑃𝑘,𝑡,1(𝑠) +

𝑅𝐸𝐻𝑃𝑘,𝑡,1(𝑠) − 𝑑𝑒𝑚𝑎𝑛𝑑𝑘,𝑡(𝑠) and 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) = 0.  

If the remaining demand (𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠)) is greater than zero, then it is fulfilled by the units 

having a shelf life of two days ( 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠)) . Suppose 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) >

 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠),  then remaining demand 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠)  is estimated as 

𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) −  𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠)  and the reserve having a two-day life 

(𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠))  will be zero. Likewise, if 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) ≤  𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) + 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) , the 

surplus platelets with a shelf life of two days is calculated by 𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠) = 𝑂𝐻𝐻𝑃𝑘,𝑡,2(𝑠) +

 𝑅𝐸𝐻𝑃𝑘,𝑡,2(𝑠) − 𝑅𝐷𝐻𝑃𝑘,𝑡,1(𝑠) and 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) = 0. Parameters 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) and 𝐿𝑌𝐻𝑃𝑘,𝑡,2(𝑠) 

are computed by Equation (5.5).  

Similarly, if 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) is greater than zero, then platelets having three day longevity 

( 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠))  is used to satisfy the remaining demand (𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠)) . If 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠)  >

𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) , then the rest of the demand (𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠))  is determined by 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠) −

𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) and the remaining units with three-day life 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠) is equal to zero. However, 

if 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠)  ≤ 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠) , then the residual stocks with a shelf life of three days is 

estimated by 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠) = 𝑅𝐸𝐻𝑃𝑘,𝑡,3(𝑠)− 𝑅𝐷𝐻𝑃𝑘,𝑡,2(𝑠)  and 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) = 0 . The two 

Parameters 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) and 𝐿𝑌𝐻𝑃𝑘,𝑡,3(𝑠) are computed by Equation (5.6).  
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Equation (5.7) identifies that the unused platelet units that have a life of just one day 

(𝐿𝑌𝐻𝑃𝑘,𝑡,1(𝑠)) are discarded by hospital 𝑘 at the end of day 𝑡. Constraints (5.8) and (5.9) depicts 

that the record of the stockpile at hospital 𝑗 are amended every day at the close. It should be noted 

that each hospital has a distinct inventory, which is dependent on the supply and demand scenario. 

Equation (5.10) gives the unfulfilled demand, 𝑅𝐷𝐻𝑃𝑘,𝑡,3(𝑠) which is equivalent to the amount of 

platelet scarcity at the end of any day  (𝑆𝐻𝐻𝑃𝑘,𝑡(𝑠)). The starting inventory in hospital 𝑘 at time 

𝑡 = 1 for a scenario 𝑠 is estimated using Constraint (5.11). 

Platelets can only be ordered by a hospital 𝑘  during review periods (𝑡 =

𝑅𝑃𝐻𝑃𝑘 , 2𝑅𝑃𝐻𝑃𝑘, … ) and orders cannot be scheduled on other days. This is described by Equation 

(5.12). Constraint (5.13) is comparable with Equation (5.12), where the blood center 𝑥 can only 

place orders for platelet units during review periods (𝑡 = 𝑅𝑃𝐵𝐶𝑥, 2𝑅𝑃𝐵𝐶𝑥, … ),  and cannot 

request orders during other days. Once the comprehensive testing is concluded at the blood center 

𝑥, the number of units accessible at the beginning of day 𝑡 for any scenario 𝑠 (𝑅𝐸𝐵𝐶𝑥,𝑡(𝑠)) is 

estimated through Constraints (5.14) and (5.15), which is the amount ordered before lead time 

(𝑂𝑅𝐵𝐶𝑥,𝑡−𝐿𝑇𝐵𝐶𝑥
(𝑠)). Existing supply data is utilized to calculate the quantity required by blood 

center 𝑥 at the start of each day 𝑡 for any scenario 𝑠, as shown by Equation (5.15).  

Fulfillment for the Regular Platelet Demand by the Blood Center 

The policy required to satisfy the hospital demand is evaluated by the model using 

Equations (5.16) – (5.18). The total platelet units (dependent on lead time) distributed to hospital 

𝑘 from blood center 𝑥 having 𝑙 days of life on day 𝑡 (𝐵𝐶𝑇𝐻𝑃𝑥,𝑘,𝑡,𝑙(𝑠)) id the decision variables in 

the above equations. Constraints (5.16) and (5.17) ensure that the blood center supplies units 

having at least two days shelf life if the hospital 𝑘 has a lead time of one day because in such 

scenarios the platelets would expire upon arrival. Similarly, if the lead time of the platelet units is 

two days, then the preservation life of blood supplied to the medical center should be three days 

as described by Equation (5.18). Also, a lead time of zero days would mean that the blood center 

can ship the units with life of any day as given by Constraint (5.16) – (5.18). Any shortage 

experienced by blood center 𝑥 (𝑆𝐻𝑅𝐵𝐶𝑥,𝑘,𝑡(𝑠)) is estimated using Constraint (5.19). The units 

required to fulfill the demand at hospital 𝑘 would be procured from other blood facilities. It is 

assumed in the model that the acquired units would have a shelf life of three days. Equation (5.20) 
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shows that ∑ 𝑆𝐻𝑅𝐵𝐶𝑥,𝑘,𝑡(𝑠)𝑋
𝑥=1  from blood center 𝑥 should be integrated with 𝐻𝑃3𝑘,𝑡(𝑠) where 

𝐻𝑃3𝑘,𝑡(𝑠) is the available inventory at hospital 𝑘 having a shelf life of three days.    

Fulfillment for the Emergency Demand by the Blood Center 

Once the regular demand at medical facility 𝑘 is fulfilled (i.e., ∑ 𝑆𝐻𝐻𝑃𝑘,𝑡𝑘 (𝑠) is satisfied 

with ∑ ∑ 𝐿𝐹𝑅𝐵𝐶𝑥,𝑡,𝑙𝑙 (𝑠)) 𝑋
𝑥=1 the emergency demand will be realized only via inventory, as 

discussed by Equations (5.21) – (5.23) through blood center 𝑥. 𝐿𝐹𝐸𝐵𝐶𝑥,𝑡,𝑙(𝑠)(𝑙 = 1,2,3) at blood 

center 𝑥 in Constraints (5.21) – (5.23) depicts the surplus quantity of platelet units having a life of 

one day, two days, or three days after completing the emergency demand. 𝑅𝑆𝐻𝐵𝐶𝑥,𝑡,𝑙(𝑠)(𝑙 =

1,2,3) at blood center 𝑥 is the required amount to be achieved. Therefore, based on the demand 

for emergency units, Equation (5.24) computes the total shortage of platelets at the blood facility. 

The total number of platelet units that are expired and remaining inventory after the end of 

day 𝑡 at facility 𝑋 are given by Equations (5.25) and (5.26) - (5.27), respectively. The insufficient 

quantity of platelets under scenario 𝑠 is given by the summation of regular ((∑ 𝑆𝐻𝑅𝐵𝐶𝑥,𝑘,𝑡𝑘 (𝑠)) 

and emergency demand (𝑆𝐻𝐸𝐵𝐶𝑥,𝑡(𝑠)), as shown in Constraint (5.28). The starting inventory at 

blood center 𝑥 at time 𝑡 =  1 in scenario 𝑠 is presented by Equation (5.29). The number of units 

obtained and ordered by hospital 𝑘 is identical for all situations across the entire supply chain, as 

described by constraints (5.30) and (5.31), respectively. The total quantity of platelets acquired by 

the medical center 𝑘 having a life of 𝑙 days at the beginning of day 𝑡 is defined by Constraint 

(5.32). On the other hand, the total amount of units distributed to blood center 𝑥 from testing labs 

at the start of day 𝑡 for case 𝑠 is indicated by Equation (5.33). Constraint (5.34) ensures that the 

equations have non-negative integer values. Likewise, Constraints (5.35) – (5.36) gives the non-

negative binary equations for the model.  

5.4  Computational Results 

For the purpose of illustrating the proposed model, we consider two blood centers and four 

hospitals. It is assumed that hospitals #1 and #2 are in close proximity to blood center #1 and are 

located away from blood center #2. Whereas hospitals #3 and #4 are closer to blood center #2, 

however, they are situated relatively far away from blood center #1.  
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The stochastic model for the blood supply chain is programmed in Python® and solved 

using the Gurobi Optimizer v8.1. The problem is composed of two blood centers and four hospitals 

and it has 1,822,173 variables (100,000 are binary) and 1,803,208 constraints. The processing time 

for a planning horizon of 100 days and 100 scenarios with 531,677 iterations is about one hour 

and 30 minutes. Sensitivity analysis is conducted to analyze the performance of the model by 

altering the coefficient of supply and demand variation.  

5.4.1  Base Case Results 

The input parameters for the base case setting obtained from the literature (Haijema, 2013; 

Civelek et al., 2015; Rajendran and Ravindran, 2017; Rajendran and Ravindran, 2019) are 

presented in Table 5.1. The average performance measure for the baseline model, along with the 

overall cost is given in Table 5.2.  

We can observe that for hospital 1, more units are purchased from the blood center, which 

in turn results in more platelets being held in inventory leading to more outdating. In contrast, 

hospital 2 procures the least amount of units and thus has the lowest inventory level. Hospitals 3 

and 4 have about the same amount of units purchased, leading to a similar unit holding and 

outdating.    

           Table 5.1: Input Parameters for the Baseline Setting 

Base Case Hospital Blood Center 

 #1 #2 #3 #4 #1 #2 

Lead Time from BC 1 

(days) 
0 0 1 1 - - 

Lead Time from BC 2 

(days) 

1 1 0 0 - - 

Review Period (days) 1 

Inventory Cost 

($/day/unit) 

130 108 

Outdating Cost ($/unit) 650 538 

Shortage Cost ($/unit)                              3,250             2,690 

Variable Purchasing 

Cost ($/unit) 

650 - 

Fixed Ordering Cost 

from BC 1 ($/shipment) 

113 225 339 675 - - 

Fixed Ordering Cost 

from BC 2 ($/shipment) 

339 675 113 225 - - 

Demand/Supply 

Distribution 

     N ~          

(150, 24) 

   N ~          

(50, 8) 

    N ~       

(100, 16) 

   N ~       

(100, 16) 

   N ~       

(225, 37) 

    N ~       

(225, 37) 
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           Table 5.2: Average Performance Measure for the Baseline Setting 

Performance 

Measure per Day 

per Scenario 

 

Hospital 

 

Blood Center 

 #1 #2 #3 #4 #1 #2 

Unit Shortage  1  0   0   0   1   0 

Unit Outdating  4  1   2   3 36   0 

Unit Holding  31 11  21  21   3  73 

Unit Purchased 155 51 103 104 225 225 

Fixed Ordering Cost 

from Blood Centers 
167 371 137 415 - - 

                             Overall Measure 

Average Total 

Supply Chain Cost 

Best Worst STD 

3,253 3,168 3,375 40 

 

5.5  Sensitivity Analysis 

The impact of variation in the demand and supply, along with cost settings on numerous 

factors, such as units purchased, shortage, holding, outdated, and total cost is investigated in this 

section.   

 

5.5.1  Variation in the Mean Demand  

Various demand settings (DS) utilized in the model are shown in Table 5.3. For each 

scenario, the mean demand is increased or decreased by a factor of 0.25 for a particular medical 

facility while keeping the other values constant. For example, for demand setting 2, the mean value 

for hospital #1 is multiplied by 1.25 while retaining the same demand for other health centers. 

Similarly, for demand setting 3, the mean value for hospital #1 is multiplied by 0.75 while 

maintaining the consistent demand for other health facilities. Likewise, the demand is varied for 

hospital #2 in DS4 and 5, for hospital #3 in DS6 and 7, and for hospital #4 in DS8 and 9.  

It is observed that all hospitals, in general, have an unsubstantial amount of shortage and 

outdated units. This is due to the negligible lead time from the blood centers. On the other hand, 

blood center #1 has a higher volume of outdated units when compared to blood center #2, although 

both centers follow the same supply distribution. This may be because the demand variation at 

hospitals associated with the former (i.e., hospitals #1 and #2) have higher variation in demand 
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compared to those that are affiliated with blood center #2. It is noticed that hospital #2 purchases 

less than half the quantity of platelets when compared to other hospitals, which results in fewer 

units in the inventory, as well as less outdating. Figure 5.2(a) – (f) displays the effect of various 

demand settings on the multiple performance measures of the blood supply chain.   

Table 5.4 presents the overall cost measure for various demand settings. Demand setting 3 

displayed the lowest average cost per day per scenario. Also, DS5, 7 and 9 showcase a lower cost 

value when compared to the base case setting. On the other hand, DS2 exhibits the highest average 

cost per day per scenario because of having the highest number of total units in the system. 

 

            Table 5.3: Various Demand Settings Considered in the Present Study 

Setting 
Hospital         

1 

Hospital             

2 

Hospital            

3 

Hospital            

4 

Blood 

Center 1 

Blood 

Center 2 

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

DS1 

(base) 150 24 50 8 100 16 100 16 225 37 225 37 

DS2 188 24 50 8 100 16 100 16 225 37 225 37 

DS3 113 24 50 8 100 16 100 16 225 37 225 37 

DS4 150 24 63 8 100 16 100 16 225 37 225 37 

DS5 150 24 38 8 100 16 100 16 225 37 225 37 

DS6 150 24 50 8 125 16 100 16 225 37 225 37 

DS7 150 24 50 8 75 16 100 16 225 37 225 37 

DS8 150 24 50 8 100 16 125 16 225 37 225 37 

DS9 150 25 50 9 100 17 75 16 225 37 225 37 

 

           Table 5.4: Overall Cost Measure for Various Demand Settings 

Setting Average Cost per Day per Scenario (Best, Worst, STD) 

DS1 (base) 3,253 (3,168, 3,375, 40) 

DS2 3,508 (3,359, 3,788, 78) 

DS3 3,127 (3,052, 3,222, 32) 

DS4 3,312 (3,200, 3,433, 51) 

DS5 3,202 (3,105, 3,313, 41) 

DS6 3,370 (3,237, 3,532, 52) 

DS7 3,163 (3,073, 3,260, 42) 

DS8 3,385 (3,264, 3,571, 50) 

DS9 3,180 (3,093, 3,326, 40) 
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Figure 5.2(a) 

 

 

Figure 5.2(b) 
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Figure 5.2(c) 

 

Figure 5.2(d) 
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Figure 5.2(e) 

 

Figure 5.2(f) 

Figure 5.2(a)-(f): Impact of Various Demand Settings on Performance Measures of Blood 

Supply Chain 
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5.5.2  Variation in the Mean Supply 

While Section 5.5.1 discusses the effect of mean demand on the performance measures, 

the mean platelet supply is altered in this section (Table 5.5). SS1 represents the base case, whereas 

the mean supply for blood center #1 is altered in supply settings 2 (SS2) and 3 (SS3) by a factor 

of 1.25 and 0.75, respectively. This procedure is similarly repeated for blood center 2 under supply 

settings 4 and 5 (SS4 and SS5).  

At the hospital level, it is observed that the units outdated, holding and purchased increase 

for settings SS2 and SS4 and decrease for SS3 and SS5 when compared to the base case (SS1). 

This is primarily because of the rise in the total supply of blood units in the former settings at the 

BCs, and hence, more units are purchased by hospitals (to avoid shortage), leading to more units 

held in inventory and more outdating. The performance measures for hospitals #3 and #4 are 

extremely similar to each other for all conditions, while hospital #1 has the highest values for all 

the critical attributes. Figure 5.3(a) – (f) exhibits the performance measures of the supply chain in 

the present study.   

As one would foresee, an increase in supply at blood center #1 results in a surge in the 

outdated units, whereas the opposite pattern is observed for SS2. As anticipated, SS2 and SS3 have 

an insignificant impact on the performance measures for blood center #2. The comprehensive cost 

measures for different supply scenarios are presented in Table 5.6. It can be noted that the average 

cost per day per scenario is the least for SS1 compared to the other supply settings.  

            Table 5.5: Various Supply Settings Considered in the Present Study 

           
Setting 

Hospital         

1 

Hospital             

2 

Hospital            

3 

Hospital            

4 

Blood 

Center 1 

Blood 

Center 2 

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

SS1 

(base) 150 24 50 8 100 16 100 16 225 37 225 37 

SS2 150 24 50 8 100 16 100 16 281 37 225 37 

SS3 150 24 50 8 100 16 100 16 169 37 225 37 

SS4 150 24 50 8 100 16 100 16 225 37 281 37 

SS5 150 24 50 8 100 16 100 16 225 37 169 37 
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           Table 5.6: Overall Cost Measure for Various Supply Settings 

Setting Average cost per day per scenario (Best, Worst, STD) 

SS1 (base) 3,253 (3,168, 3375, 40) 

SS2 3,455 (3,358, 3559, 41) 

SS3   3,456 (3,198, 3940, 135) 

SS4 3,446 (3,347, 3523, 35) 

SS5   3,449 (3,180, 3767, 138) 

 

 

Figure 5.3(a) 

 

 

Figure 5.3(b) 



 

108 
 

 

Figure 5.3(c) 

 

Figure 5.3(d) 

 

Figure 5.3(e) 



 

109 
 

 

Figure 5.3(f) 

 

          Figure 5.3(a)-(f): Impact of Various Supply Settings on Performance Measures of  

        Blood Supply Chain 

 

5.5.3  Impact of Changes in Coefficient of Demand Variation 

The changes in the coefficient of variation (CV) in steps of 0.1 for demand at the hospitals 

are shown in Table 5.7. CV is the ratio of standard deviation with the mean of the blood platelet 

demand. The units purchased by the hospitals are relatively constant to their mean values as CV 

increases. However, with the linear rise in CV, the average units outdated, shortage, inventory 

increases almost linearly. This is because the increase in CV leads to an increase in the variation 

of platelet demand. Due to an increase in the variation, high demand fluctuation is experienced, 

resulting in more units are held in inventory, leading to an increase in units expired. Figure 5.4(a) 

– (f) shows the impact of the demand variation on the hospitals and the blood centers. Since the 

units ordered by hospitals to the blood center is almost constant, the performance measures of the 

blood center are insignificantly impacted by the change in the CV. Also, from Figure 5.5, it is 

evident that the total cost increases with the inflation in the CV. This is expected due to the increase 

in unit shortage, outdating, and inventory with the upward trend in the CV. 
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             Table 5.7: Coefficient of Variation (CV) for Demand Settings 

Setting Hospital 

#1 

Hospital     

#2 

Hospital        

#3 

Hospital           

#4 

Blood 

Center #1 

Blood 

Center #2 

CVDS1     

(CV = 0.1) 

N ~          

(150, 15) 

N ~          

(50, 5) 

N ~        

(100, 10) 

N ~         

(100, 10) 

N~         

(225, 37) 

N~      

(225, 37) 

CVDS2         

(CV = 0.2) 

N ~         

(150, 30) 

N ~           

(50, 10) 

N ~            

(100, 20) 

N ~            

(100, 20) 

N~          

(225, 37) 

N~       

(225, 37) 

CVDS3             

(CV = 0.3) 

N ~         

(150, 45) 

N ~         

(50, 15) 

N ~          

(100, 30) 

N ~             

(100, 30) 

N~         

(225, 37) 

N~          

(225, 37) 

CVDS4        

(CV = 0.4) 

N ~         

(150, 60) 

N ~          

(50, 20) 

N ~       

(100, 40) 

N ~        

(100, 40) 

N~          

(225, 37) 

N~         

(225, 37) 

CVDS5        

(CV = 0.5) 

N ~          

(150, 75) 

N ~         

(50, 25) 

N ~          

(100, 50) 

N ~         

(100, 50) 

N~        

(225, 37) 

N~           

(225, 37) 

 

 

Figure 5.4(a) 
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Figure 5.4(b) 

 

 

 

Figure 5.4(c) 
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Figure 5.4(d) 

 

Figure 5.4(e) 
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Figure 5.4(f) 

Figure 5.4(a)-(f): Impact of Changes in Coefficient of Demand Variation at Hospitals and Blood 

Centers 

 

 

    Figure 5.5: Impact of Coefficient of Demand Variation on Total Cost 
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5.5.4  Impact of Changes in Coefficient of Supply Variation 

Table 5.8 depicts the various cases used to analyze the impact of changes in supply settings 

at the two blood centers in steps of 0.1. It is observed from Figure 5.6(a) – (f) that the units 

purchased, holding, outdated, and shortage at hospitals are not influenced by the variation in 

supply. As in the CVDS setting, the units ordered are almost constant. However, with the increase 

in the supply CV, the units outdated, shortage, and held in inventory increases almost linearly. As 

in the demand variation setting, from Figure 5.7, it is evident that the total cost increases with the 

inflation in the supply variation. 

           Table 5.8: Coefficient of Variation (CV) for Supply Settings 

Setting Hospital 

#1 

Hospital     

#2 

Hospital        

#3 

Hospital           

#4 

Blood 

Center #1 

Blood 

Center #2 

CVSS1    

(CV = 0.1) 

N ~     

(150, 24) 

N ~        

(50, 8) 

N ~        

(100, 16) 

N ~      

(100, 16) 

N~        

(225, 23) 

N~        

(225, 23) 

CVSS2    

(CV = 0.2) 

N ~       

(150, 24) 

N ~       

(50, 8) 

N ~     

(100, 16) 

N ~ 

(100,16) 

N~        

(225, 45) 

N~         

(225, 45) 

CVSS3    

(CV = 0.3) 

N ~       

(150, 24) 

N ~          

(50, 8) 

N ~      

(100, 16) 

N ~       

(100, 16) 

N~           

(225, 68) 

N~         

(225, 68) 

CVSS4    

(CV = 0.4) 

N ~        

(150, 24) 

N ~        

(50, 8) 

N ~       

(100, 16) 

N ~        

(100, 16) 

N~        

(225, 90) 

N~         

(225, 90) 

CVSS5    

(CV = 0.5) 

N ~      

(150, 24) 

N ~         

(50, 8) 

N ~       

(100, 16) 

N ~       

(100, 16) 

N~         

(225, 113) 

N~         

(225, 113) 

 

 

 

Figure 5.6(a) 
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Figure 5.6(b) 

 

 

Figure 5.6(c) 
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Figure 5.6(d) 

 

 

Figure 5.6(e) 
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Figure 5.6(f) 

              Figure 5.6(a)-(f): Impact of Coefficient of Supply Variation on Performance     

                 Measures at Hospitals and Blood Centers 

 

 

 Figure 5.7: Impact of Coefficient of supply variation on total cost  
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5.5.5  Impact of Changes in the Cost Settings 

Table 5.9 summarizes the various cost settings used in this study (derived from Rajendran 

and Ravindran, 2019). The base case is represented by CS1, while CS2 - CS10 are generated from 

multiplying one cost element (i.e., Inventory Holding Cost (IHC), Shortage Cost (SC), Outdating 

Cost (OC), Fixed Transportation Cost (FTC) and Variable Purchasing Cost (VPC)) with 0.5, 

whereas CS11 - CS19 is obtained from multiplying each cost component with 1.5 while 

maintaining the other costs at their base level. Figure 5.8(a) – (f) showcases the impact of these 

cost setting changes for all medical facilities and blood centers, respectively. The inventory units 

are observed to be fluctuating for both the blood centers. While blood center #2 has a greater 

number of units holding when compared to blood center #1, only four cost settings display stocks 

exceeding the base case. This is primarily because of a significantly lower amount of units in 

inventory at blood center #1. Also, as expected, it has higher values of outdated units aligning with 

the results found in the previous sections. The impact of variation in CS on the total cost of the 

supply chain is demonstrated in Table 5.10. As expected, CS2 - CS10 exhibits a lower cost than 

base case, whereas CS11 - CS19 shows an increased cost in the supply chain.  

           Table 5.9: Cost Settings 
Cost 

setting 

Cost incurred at 

blood centers 

Cost incurred at hospitals 

 IHC SC OC FTC(H1,H2,H3, H4) 

from BC1 

FTC(H1,H2,H3, H4) 

from BC2 

IHC VP

C 

SC OC 

CS1(base) 108 2,690 538 113,225,339,675 339,675,113,225 130 650 3,250 650 

CS2  54 2,690 538 113,225,339,675 339,675,113,225 130 650 3,250 650 

CS3 108 1,345 538 113,225,339,675 339,675,113,225 130 650 3,250 650 

CS4 108 2,690 269 113,225,339,675 339,675,113,225 130 650 3,250 650 

CS5 108 2,690 538 56,112,169,337 339,675,113,225 130 650 3,250 650 

CS6 108 2,690 538 113,225,339,675 169,337,56,112 130 650 3,250 650 

CS7 108 2,690 538 113,225,339,675 339,675,113,225 65 650 3,250 650 

CS8 108 2,690 538 113,225,339,675 339,675,113,225 130 325 3,250 650 

CS9 108 2,690 538 113,225,339,675 339,675,113,225 130 650 1,625 650 

CS10 108 2,690 538 113,225,339,675 339,675,113,225 130 650 3,250 325 

CS11 162 2,690 538 113,225,339,675 339,675,113,225 130 650 3,250 650 

CS12 108 4,035 538 113,225,339,675 339,675,113,225 130 650 3,250 650 

CS13 108 2,690 807 113,225,339,675 339,675,113,225 130 650 3,250 650 

CS14 108 2,690 538 169, 337, 508, 1,012 339,675,113,225 130 650 3,250 650 

CS15 108 2,690 538 113,225,339,675 508, 1,012, 169, 337 130 650 3,250 650 

CS16 108 2,690 538 113,225,339,675 339,675,113,225 195 650 3,250 650 

CS17 108 2,690 538 113,225,339,675 339,675,113,225 130 975 3,250 650 

CS18 108 2,690 538 113,225,339,675 339,675,113,225 130 650 4,875 650 

CS19 108 2,690 538 113,225,339,675 339,675,113,225 130 650 3,250 975 
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            Table 5.10: Impact of CS on Total Cost of Supply Chain 
Setting Average Cost/Per day/per scenario (Best, Worst, STD) 

CS1(base) 3,253 (3,168, 3,375, 40) 

CS2 3,191 (3,115, 3,324, 41) 

CS3 3,225 (3,130, 3,314, 38) 

CS4 3,128 (3,046, 3,262, 43) 

CS5 3,247 (3,145, 3,356, 42) 

CS6 3,249 (3,167, 3,375, 39) 

CS7 3,189 (3,119, 3,320, 41) 

CS8 3,191 (3,092, 3,264, 33) 

CS9 3,183 (3,114, 3,270, 36) 

CS10 3,218 (3,137, 3,308, 34) 

CS11 3,283 (3,168, 3,433, 48) 

CS12 3,263 (3,168, 3,389, 46) 

CS13 3,334 (3,225, 3,462, 48) 

CS14 3,254 (3,143, 3,350, 47) 

CS15 3,253 (3,171, 3,378, 39) 

CS16 3,296 (3,207, 3,396, 40) 

CS17 4,595 (4,488, 4,719, 45) 

CS18 3,269 (3,172, 3,371, 42) 

CS19 3,283 (3,186, 3,394, 42) 

 

 

 

Figure 5.8(a) 
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Figure 5.8(b) 

 
Figure 5.8(c) 

 
 

Figure 5.8(d) 
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Figure 5.8(e) 

 

Figure 5.8(f) 

    Figure 5.8(a)-(f): Impact of CS on Hospitals and Blood Centers 

 

5.6  Implication of Results 

The present study investigates the impact of four hospitals and two blood centers solved 

using Python with Gurobi optimizer. The model examined the results for nine different demand 

settings and five distinct supply settings. It is observed that four demand settings (DS 3, 5, 7, and 
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9) displayed a lower average cost per day per scenario when compared to the base case. At the 

blood center level, a rise in cost was seen for variation in supply settings causing fluctuations in 

the units outdating. Sensitivity analysis is conducted by varying cost, supply, and demand 

variation. The results of sensitivity analysis indicate a significant deviation for the inventory level 

at the hospitals and blood centers, which leads to a higher average cost in the supply chain. An 

insignificant change is evident in the shortage and outdating cost for different cost variation 

settings. In more details, the results indicate that a change in the mean demand has a linear impact 

on the supply chain cost, whereas the mean supply has a minimal impact on the total cost 

parameter. Furthermore, an increase in the coefficient of demand variation induces a rise in the 

total supply chain by 5.55%, while a 4.8% increase is observed when varying the coefficient of 

supply variation parameter 

Based on the computational results, the model is robust for all settings and can easily be 

extended to include more sites in the supply chain. Procuring emergency units from other blood 

centers to compensate for shortages and reduce unit outdating would improve the functionality of 

the system and prevent hundreds of surgeries from being canceled each day. The developed 

framework in the present study can be easily extended for other similar supply chains having 

unpredictable supply and demand and deals with perishable products. In chapter 6, goal 

programming can be considered to include multiple objective functions, such as minimization of 

outdating and inventory at blood centers and maximize efficiency. Also, the impact of various 

ordering policies can be studied on the blood supply chain consisting of X blood centers and K 

hospitals. Furthermore, other blood components, such as RBC, WBC, and plasma, could also be 

included in the supply chain.  
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  CHAPTER 6  

MULTIPLE CRITERIA DECISION MAKING FOR THE BLOOD  

SUPPLY CHAIN 

6.1  Multiple Criteria Decision Making 

Previous chapters have focused on developing mathematical models to investigate blood 

supply inventory management. The objective function comprised of multiple cost components, 

such as unit purchasing, transportation, inventory, and outdated. However, in reality, some cost 

elements such as shortage and outdating cannot be accurately measured in the same units. 

Therefore, the present study proposes a mathematical model based on multi-criteria decision-

making (MCDM) techniques considering different conflicting objective functions for a BSC 

comprising of 𝑘 hospitals and one blood center. The model from Chapter 4 is incorporated with 

multiple criteria to formulate the multiple objective models and implemented in Section 6.4. 

 

6.2  Solution Approaches 

There are several methods for solving multi-objective optimization problems, such as Goal 

Programming, Compromise Programming, and weighted objective method (Masud & Ravindran, 

2008). The Goal programming methods and weighted objective methods are commonly used in 

practice and will be chosen in this study. 

 

6.2.1  Goal Programming Methodology  

Goal programming (GP) is a broadly used method to resolve multi-objective optimization 

problems. The basic idea is to specify a set of targets or goals for the objectives and minimize the 

deviations from the targets.  The deviations from each target should be minimized, with the 

assigned priority or weight according to each objective’s relative importance. There are several 

types of goal programming models,  such as Pre-emptive Goal Programming and Non-preemptive 

Goal Programming, Tchebycheff (Min-Max) Goal Programming, Fuzzy Goal Programming, etc. 

(Masud and Ravindran, 2008, 2009; Jones and Tamiz, 2010). The Pre-emptive Goal Programming 

and Non-preemptive Goal Programming are more commonly used in practice and will be utilized 

in this chapter. To solve the MCMP problems, the formulation of goal programming (GP) models 

require the decision maker (DM) to specify an acceptable level of achievement (𝑏𝑖) for each criteria 

𝑓𝑖 and assign a weight 𝑤𝑖 (ordinal or cardinal) to be associated with the deviation between 𝑓𝑖 and 
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𝑏𝑖. Assume 𝑘  goals are considered in the MCMP model with  𝑓1(𝑥),  𝑓2(𝑥) , 𝑓3(𝑥)……  𝑓𝑘(𝑥) as 

𝑘 objectives. 

The formulation of GP model can be described as follows (Ravindran and Warsing, 2013): 

Minimize 𝑍 = ∑ (𝑤𝑖
+𝑑𝑖

+ + 𝑤𝑖
−𝑑𝑖

−)𝑘
𝑖=1                                                     

Subject to 

𝑓𝑖(𝑥) + 𝑑𝑖
+ − 𝑑𝑖

− =  𝑏𝑖    for 𝑖 = 1, … . , 𝑘                                              

𝑔𝑗(𝑥) ≤ 0      for 𝑗 = 1, … . , 𝑚                                                              

𝑥𝑗 , 𝑑𝑖
+, 𝑑𝑖

− ≥ 0 for all 𝑖 and 𝑗                                                                  

Where 𝑓𝑖(𝑥) is 𝑖𝑡ℎ objective function, 𝑖 = 1, … . , 𝑘 

𝑔𝑗(𝑥) is 𝑗𝑡ℎ constraint function,   𝑗 = 1, … . , 𝑚 

𝑑𝑖
+ and 𝑑𝑖

− are defined as the deviation variables (plus and minus) of deviation from the target 

value for  𝑖𝑡ℎ goal. 

Since “not to exceed the targets” are the goals in the GP model, the deviations 𝑑1
+ , 

𝑑2
+ ,  𝑑3

+ …. and 𝑑𝑘
+  need to be minimized. The targets, 𝑏1 , 𝑏2,  𝑏3  and 𝑏𝑘  may or may not be 

reachable depending on their values, and they have to be specified as input to the GP model by the 

decision maker. The model will try to achieve 𝑓𝑖(𝑥) as close as possible to 𝑏𝑖 for objective 𝑖.   If 

the goal were to satisfy 𝑓𝑖(𝑥) ≤ 𝑏𝑖 then only 𝑑𝑖
+ is assigned a positive weight in the objective 𝑖, 

while the weight on 𝑑𝑖
− is set to zero. The set of weights (𝑤𝑖

+   and  𝑤𝑖
− ) may take two forms as 

given below: 

1. Preemptive priorities (ordinal) 

2. Non-preemptive weights (cardinal) 

Consider pre-specified (cardinal) weights, the specific values are assigned to 𝑤𝑖
+   and  𝑤𝑖

− in a 

relative scale to represent the DM’s “trade-off” in a group of goals. Once 𝑤𝑖
+    and  𝑤𝑖

−  are 

specified, the goal program is reduced to a single objective optimization problem. Preemptive goal 

programming uses ordinal ranking or preemptive priorities to the goals. In this approach, the goals 

with lower priorities are performed only after achieving the goals with higher priorities. Thus, 

preemptive goal programming is essentially a sequential single objective optimization process, in 

which succeeding optimizations are performed on the alternate optimal solutions of the previously 

optimized goals at a higher priority. 
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6.2.1.1  Preemptive Goal Programming (PGP) 

In the Preemptive Goal Programming, ordinal ranking is used to assign goals to different 

priority levels from highest to lowest.  Borda count ranking method, rating (scoring) method or 

Analytic Hierarchy Process (AHP) are several ranking methods to prioritize the goals for the 

respective objectives. The goal assigned with lower priority will not be considered until the goal 

with a higher priority is satisfied. The model becomes a sequential optimization problem. 

 

 PGP Model objective 

Minimize 𝑍 = 𝑃1𝑑1
+ + 𝑃2𝑑2

+ + 𝑃3𝑑3
+ + ⋯ . +𝑃𝑘𝑑𝑘

+ 

Where 𝑃1, 𝑃2 , 𝑃3 ……and  𝑃𝑘 are the pre-emptive priorities assigned to goal 1, goal 2, goal 3, …. 

and goal 𝑘 respectively, and 𝑃𝑝 is given priority 𝑝 with the assumption that 𝑃𝑝 is much higher than 

𝑃𝑝+1. 

That is, goals with lower priority can only be considered after goals with higher priority 

are achieved. Hence, preemptive goal programming is basically a sequence of single objective 

optimization problems, in which succeeding optimizations are performed on the alternate optimal 

solutions of the previously optimized goals with higher priority. The PGP model is stated as 

follows: 

Minimize 𝑍 = 𝑃1𝑑1
+ + 𝑃2𝑑2

+ + 𝑃3𝑑3
+ + ⋯ . +𝑃𝑘𝑑𝑘

+ 

With the constraints 

ALL functional constraints 

ALL goal constraints 

ALL nonnegativity constraints 

            𝑂𝐹1 = 𝑣1
∗ 

            𝑂𝐹2 = 𝑣2
∗  

                    . 

                    . 

                    . 

            𝑂𝐹𝑘−1 = 𝑣𝑘−1
∗   

Where 𝑂𝐹𝑗 is the objective function for the 𝑗𝑡ℎ priority level and 𝑣𝑗
∗ is the optimal value of the 𝑗𝑡ℎ 

objective function (1 ≤ 𝑗 ≤ 𝑘 − 1). 

Since preemptive goal programming does not specify a weight to an objective, scaling of the 

objective is not necessary. 
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6.2.1.2  Non-Preemptive Goal Programming (NPGP) 

Under Non-Preemptive Goal Programming, the weights, 𝑤𝑖 should be assigned specific 

values on a relative scale, representing the relative importance of the goal. The specific values of 

the weights can be obtained from the Decision Maker (DM) using Borda Count Ranking Method, 

Rating Method, or Analytic Hierarchy Process (AHP) approaches.  

 

 NPGP Model objective 

Minimize 𝑍 = 𝑤1𝑑1
+ + 𝑤2𝑑2

+ + 𝑤3𝑑3
+ + ⋯ . +𝑤𝑘𝑑𝑘

+ 

Where 𝑤1, 𝑤2 , 𝑤3 ……and 𝑤𝑘 are the weights assigned to goal 1, goal 2, goal 3, …. And goal 𝑘 

respectively. 

It is noticed that different units and magnitudes are measured in the goals; the scaling of 

the objective is needed. On the other hand, if the criteria values are not scaled, a goal with a large 

magnitude would simply dominate the final result, irrespective of the assigned weights. There are 

several scaling methods, such as simple scaling, ideal value method, simple linearization and 𝐿𝑝 

Norm (Ravindran and Warsing, 2013). In this chapter, ideal value methods are used for scaling. 

Ideal value represents the optimal value for each objective while disregarding all other 

objectives. Assume the ideal values (scaling factors) are 𝛾1,   𝛾2,  …..   and 𝛾𝑘 be the ideal values 

of objectives, the scaled NPGP objective function is given as below: 

Minimize 𝑍 =
𝑤1𝑑1

+

𝛾1
+

𝑤2𝑑2
+

𝛾2
+

𝑤3𝑑3
+

𝛾3
+ ⋯ . +

𝑤𝑘𝑑𝑘
+

𝛾𝑘
 

With the constraints 

ALL functional constraints 

ALL goal constraints 

ALL nonnegativity constraints 

Where 𝑤1, 𝑤2 , 𝑤3 ……and 𝑤𝑘 are the weights assigned to goal 1, goal 2, goal 3, …. and goal 𝑘 

respectively.  𝛾1,   𝛾2,  …..   and 𝛾𝑘 are the ideal values of objective 1, objective 2, and objective 𝑘 

respectively. 
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6.2.2  Weight Objective Method (WOM) 

The weighted objective method involves assigning weights to different criteria. By doing 

so, it allows the decision-maker to take into account the difference in importance between criteria. 

Assigning weights for the objectives is critical, and an appropriate weight allocation should be 

consistent with the decision maker’s preference. The weight assigned to each objective illustrates 

the relative importance of the objective. The weights and ratings can be obtained by Borta Count 

or AHP methods. AHP method is one of the most popular methods in estimating decision maker’s 

preference. Since the magnitude can affect the results, appropriate scaling methods need to be used. 

To apply the weighted objective method, it is essential to scale each objective.  

Assume the ideal values (scaling factors) are 𝛾1,   𝛾2,  …..   and 𝛾𝑘 be the ideal values of 

objectives; the scaled WOM objective function is given as below: 

Minimize 𝑍 =
𝑤1𝑍1

𝛾1
+

𝑤2𝑍2

𝛾2
+

𝑤3𝑍3

𝛾3
+ ⋯ . +

𝑤𝑘𝑍𝑘

𝛾𝑘
 

With the constraints 

ALL functional constraints 

ALL nonfunctional constraints 

Where 𝑍1, 𝑍2 , 𝑍3 ……and 𝑍𝑘 are the objective for objective 1, objective 2, objective 3, …. and 

objective 𝑘 respectively, 𝑤1, 𝑤2 , 𝑤3 ……, and 𝑤𝑘 are the weights assigned to goal 1, goal 2, goal 

3, …. and goal 𝑘 respectively, and 𝛾1,   𝛾2,  𝛾3, …..   and 𝛾𝑘 are the ideal values of objective 1, 

objective 2, objective 3, …. and objective 𝑘 respectively. 

 

6.3  Identifying the Ideal Values and Target Values 

Ideal values for each objective are acquired by optimizing each objective individually 

while ignoring all other objectives. The target values for each objective are set at 105% of the ideal 

values for each objective. For example, the ideal (minimum) value for cost objective is $200,000, 

the target value for the cost is set at $205,000, and the goal is to minimize the deviation from the 

target value. 
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6.4  Results and Discussion 

6.4.1  Base Case 

In this section, the results obtained from pre-emptive, non-preemptive, and weighted 

objective models are analyzed based on multiple criteria. The ideal and target values for the 

objective functions are presented in Table 6.1. The first goal constraint (G1) ensures that the total 

supply chain cost does not exceed $531,615. The second (G2) and third goals (G3) achieve a 

maximum value of 25,374 and 233 for the overall shortage and outdated units, respectively.   

           Table 6.1: Ideal and Target Values for the Three Objectives 

  Ideal Value Target Value 

Cost $506,300 $531,615 

Units of Shortage     24,166     25,374 

Units of Outdated          222          233 

 

Table 6.2 showcases the results generated by the preemptive goal programming (PGP) 

model for the set precedence. As mentioned in the earlier section, total supply chain cost is 

assigned the highest priority, followed by unit shortage and unit outdated. It is observed that the 

model achieved the target value for the total costs but exceeded the unit shortage and outdated by 

371% and 479%, respectively. Similarly, Table 6.3 displays the outcome from the non-preemptive 

goal programming (NPGP) model based on ideal value scaling. The weights assigned to the 

performance parameters in the base case of the current model are in the same order as the PGP 

model.  

The aim of an NPGP model is to minimize the sum of weighted deviations from the 

assigned target value. However, despite setting a higher weight to the total SC cost, the model 

solution went beyond the desired value by over 120%. While the total shortage units also eclipsed 

the threshold level by over 420%, the model accomplished the specified value for the units 

outdated. The findings from the weighted objective method (WOM) follow a comparable trend 

with the NPGP model, with the supply chain cost and unit shortage surpassing the suggested value 

for the base case by 125% and 380%, respectively. On the other hand, the unit outdated yielded 

six units less when compared with the target value. The results obtained from the WOM are 

demonstrated in Table 6.4.  
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            Table 6.2: Results from the Preemptive Goal Programming Model 

Minimize Z= 

𝑃1𝑑1
++𝑃2𝑑2

++𝑃3𝑑3
+ 

 

Ideal 

Objective 

Value 

Target 

Objective 

Value 

Achieved 

Objective 

Value 

Goal 

Achievement 

Priorities 

Total Cost ($) $506,300 $531,615 $531,615 Achieved 

 

P1 

Total Units of 

Shortage 

   24,166    25,374         89,601                                                        Not Achieved  

    (371%) 

 

P2 

Total Units of 

Outdated 

      222         233         1,064                                        Not Achieved 

    (479%) 

 

P3 

 

            Table 6.3: Results from the Non-Preemptive Goal Programming Model 

Minimize Z=  

 

Ideal 

Objective 

Value 

Target 

Objective 

Value 

Achieved 

Objective 

Value 

Goal 

Achievement 

Weights 

Total Cost ($) $506,300 $531,615 631,349  Not Achieved 

    (125%) 

0.5 

Total Units of 

Shortage 

   24,166    25,374 102,944  Not Achieved 

    (425%) 

 

0.3 

Total Units of 

Outdated 

        222        233       233 Achieved 0.2 

 

            Table 6.4: Results from the Weighted Objective Model Goal Programming Model 

Minimize Z=  

 
  

Ideal 

Objective 

Value 

Target 

Objective 

Value 

Achieved 

Objective 

Value 

Goal 

Achievement 

Weights 

Total Cost ($) $506,300 $531,615 $633,112  Not Achieved 

     (125%) 

 

0.5 

Total Units of 

Shortage 

   24,166   25,374     94,080   

     

Not Achieved 

     (380%) 

 

0.3 

Total Units of 

Outdated 

        222       233 227 Achieved 

 

0.2 
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Figures 6.1 and 6.2 show the results of comparison from multiple objective models. 

 

          Figure 6.1: Comparison of Base Objective Results vs. Multiple Objective Models  

 

  Figure 6.2:  Comparison of Base Objective Results vs. Objective Functions 
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From the results of Figures 6.1 and 6.2 with base priorities, it is observed that 

 On Preemptive Goal Programming (PGP) with P1 >> P2 >> P3, only the cost objective is 

achieved 

 On Non-Preemptive Goal Programming (NPGP) with weight priorities = 0.5, 0.3, and 0.2, only 

the outdated objective is achieved 

 On Weighted Objective Method (WOM) with weights = 0.5, 0.3, and 0.2, only the outdated 

objective is achieved 

 The objective of total units of shortage is not achieved for three multiple objective models 

 The three optimal solutions from the respective multiple objective models are non-dominated 

solutions. For instance, from the results, analyzing PGP and WOM solutions, a reduction in 

total outdated of 837 units (1,064 - 227) is achieved at a total cost increase of $101,497 

($633,112 - $531,615).  Comparing NPGP and WOM solution, a reduction in total shortage of 

8,864 units (102,944 - 94,080) is achieved at a total cost increase of $1,763 ($633,112-

$631,349).   

 In NPGP, its objective is to minimize the deviations from the target values. Minimizing the 

sum of weighted criteria in WOM is equivalent to minimizing the deviations from the target 

values. Thus, the WOM is basically similar to the NPGP technique. 

 In Linear Programming, a linear program is infeasible if there exists no solution that satisfies 

all of the constraints -- in other words, if no feasible solution can be obtained. Goal 

Programming, which is similar to LP, may also have infeasible solutions. Our work in 

sensitivity analysis shows that there are infeasible solutions in scenarios 2, 3 and 5 under the 

Preemptive Goal Programming (PGP). 

 The proposed three methods (Preemptive Goal Programming, Non Preemptive Goal 

Programming, and Weighted Objective Model) do not generally produce the same solutions. 

Because the three techniques entail distinct decision-making preferences, neither method, 

however, is superior to the other (Taha, 2017). Our works also demonstrate that neither method 

is superior to the other. 

The impact of changing the importance order and weight priorities in the PGP, NPGP, and 

WOM model is discussed in the sensitivity analysis section.      
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6.4.2  Sensitivity Analysis 

In this section, the influence of altering goal priorities in the PGP model and weights in the 

NPDP and WOM models are analyzed and discussed. Table 6.5 presents the results obtained from 

varying the priority order (P1, P2 and P3) of the three objective functions for the PGP model. It is 

interesting to note that the cost objective (G1) is only achieved when it has the highest priority. 

Similar performance of the model is noted between the Base case and scenario 1 with G1 being 

satisfied but units shortage and outdated exceeding the target value by approximately 370% and 

470%, respectively. In scenario 4, the greatest priority is given to units outdated (G3) followed by 

supply chain cost and unit shortage. While the model accomplishes the desired value for G3, it 

surpasses the target value for G1 and G2 by over 120% and 370%, respectively. All other settings 

generated infeasible solutions. Therefore, changing the priority order of the objective functions 

did not have an impact on the solution except for scenario 4.  

 

           Table 6.5: Impact of Various Alternatives on the Respective Objective Functions under the  

            Preemptive Goal Programming (PGP) 

 

Scenarios Order of  Objective 1 

IdealValue                 

= $506,300 

 

Objective 2 

IdealValue        

=24,166 

 

Objective 3  

IdealValue                             

=222 

 P1, P2, P3 Cost ($) Units  

Shortage 

Units 

Outdated 

Base Case P1 >> P2 >> P3  531,615 

Achieved 

 

89,601 

Not 

Achieved 

    (371%) 

1,064 

Not 

Achieved 

    (479%) 
Scenario 1 P1 >> P3 >> P2  531,615 

Achieved 

 

89,775 

Not 

Achieved 

    (371%) 

1,045 

Not 

Achieved 

    (471%) 
Scenario 2 P2 >> P1 >> P3 Infeasible Solution 

Scenario 3 P2 >> P3 >> P1 Infeasible Solution 

Scenario 4 P3 >> P1 >> P2 627,253 

Not 

Achieved 

    (124%) 

  

89,479 

Not 

Achieved 

    (370%) 

    233 

Achieved 

 

Scenario 5 P3 >> P2 >> P1 Infeasible Solution 
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As mentioned previously in the NPGP model, the supply chain cost is assigned the highest 

weight (0.5) in the base case, followed by units of shortage (0.3) and units of outdated (0.2). The 

variation in the allotted precedence of the three parameters in different scenarios along with the 

generated results, are showcased in Table 6.6. It is observed that G3 is completely achieved for all 

settings. However, similar to the base case, G1 and G2 are not satisfied for any scenario 

demonstrating that change in weights has no effect on the goal completion of the model. The 

greatest deviation in the supply chain cost is noted for scenarios 4 and 5. Similarly, the highest 

difference in units of shortage is seen in scenario 1. Interestingly, all other settings display a similar 

units of outdated value, whereas reducing the weights for G1 function resulted in an exponential 

increase in the supply chain cost. 

            Table 6.6: Impacts of Various Alternatives on the Objectives under Non-Preemptive Goal     

            Programming (NPGP) 

 

Alternate 

Scenario 

Weights Objective 1 

Ideal 

Value=$506,300 

 

Objective 2 

Ideal 

Value=24,166 

 

Objective 3 

Ideal           

Value=222 

  Cost ($) Units Shortage Units Outdated 

Base Case 0.5,0.3,0.2     631,349 

Not Achieved 

    (125%) 

    102,944 

Not Achieved 

    (426%) 

    233 

Achieved 

 

Scenario 1 0.8,0.1,0.1     627,918 

Not Achieved 

    (134%) 

    101,755 

Not Achieved 

    (421%) 

    233 

Achieved 

 

Scenario 2 0.4,0.5,0.1    1.48171e7 

Not Achieved 

    (2,927%) 

    89,549 

Not Achieved 

    (371%) 

    233 

Achieved 

 

Scenario 3 0.4,0.1,0.5    1.48024e7 

Not Achieved 

   (2,923%) 

    89,515 

Not Achieved 

    (371%) 

    233 

Achieved 

 

Scenario 4 0.1,0.45,0.45    2.24393e7 

Not Achieved 

   (4,432%) 

    89,353 

Not Achieved 

    (362%) 

    233 

Achieved 

 

Scenario 5 0.3,0.3,0.4    2.24228e7 

Not Achieved 

   (4,429%) 

    89,382 

Not Achieved 

    (362%) 

    233 

Achieved 
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An identical approach to varying weights of the three performance metrics in the previous 

model is applied for the weighted objective method model. Similar to the NPGP model, G1 and 

G2 are not achieved for any setting, and a reduction in the weight of the supply chain cost results 

in a significant deviation from the base case value as seen in scenarios 3 - 5. Furthermore, unit 

outdated objectives are achieved irrespective of weights in all the cases. It is interesting to note 

that all scenarios (except scenario 2) outperformed the base case for G3. The results obtained from 

the WOM model are presented in Table 6.7. 

 

           Table 6.7: Impacts of Various Alternatives on the Respective Objectives under Weighted  

           Objective Method (WOM) 

 

Alternate 

Scenarios 

Priorities Objective 1 

Ideal 

Value=$506,30

0 

 

Objective 2 

Ideal 

Value=24,166 

 

Objective 3 

Ideal 

Value=222 

  Cost ($) Units Shortage Units Outdated 

Base Case 0.5,0.3,0.2     633,112 

Not Achieved 

    (125%) 

    94,080 

Not Achieved 

    (389%) 

    227 

Achieved 

 

Scenario 1 0.8,0.1,0.1     632,168 

Not Achieved 

    (112%) 

    91,951 

Not Achieved 

    (380%) 

    217 

Achieved 

 

Scenario 2 0.4,0.5,0.1     633,467 

Not Achieved 

    (112%) 

    92,018 

Not Achieved 

    (381%) 

    228 

Achieved 

 

Scenario 3 0.4,0.1,0.5     658,648 

Not Achieved 

    (130%) 

    94,330 

Not Achieved 

    (390%) 

    224 

Achieved 

 

Scenario 4 0.1,0.45,0.4

5 

   5.6912 e6 

Not Achieved 

   (1,124%) 

    92,134 

Not Achieved 

    (381%) 

    219 

Achieved 

 

 

 Scenario 5 0.3,0.3,0.4     786,162 

Not Achieved 

    (155%) 

    96,657 

Not Achieved 

    (392%) 

 

    220 

Achieved 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

Supply chain management of blood and its products is of paramount importance in medical 

treatment due to its perishable nature, uncertain demand, and lack of auxiliary substitutes (Delen 

et al., 2011). For example, the Red Blood Cells (RBC’s) have a life span of approximately 40 days, 

whereas platelets have a shelf life of up to five days after extraction from the human body (Arani 

et al., 2021). According to the World Health Organization, approximately 112 million blood units 

are collected worldwide annually. However, nearly 20% of units are discarded in developed 

nations due to expiry before the final use. A similar trend is noticed in developing countries as 

well. Therefore, managing blood distribution and developing an efficient network is considered a 

critical issue in the supply chain domain.     

A standard blood supply chain (BSC) achieves the movement of blood products (red blood 

cells, white blood cells, and platelets) from initial collection to final patients in several echelons. 

The first step comprises of donation of blood by donors at the donation or mobile centers. The 

donation sites transport the blood units to blood centers where several tests for infections are 

carried out. The blood centers then store either the whole blood units or segregate them into their 

individual products. Finally, they are distributed to the healthcare facilities when required. In 

addition, blood supply forecasting is essential for making supply chain decisions, such as donor 

drive scheduling, vehicle routing policies, and inventory management, at blood centers and 

hospitals. Therefore, developing optimal ordering policies with the goal to minimize the outdating 

and shortage of platelets is very important.  

This dissertation, firstly, aims to efficiently forecast the supply of blood components at 

blood centers, then with generated blood supply and demand distributions from historial data as 

inputs of blood supply chain, a single stochastic objective inventory model for two hospitals and 

one blood center is developed to determine the number of platelet units to order and time between 

orders under the supply and demand uncertainty. A case study is demonstrated incorporating this 

model. The model is continued to be developed to a stochastic inventory management tool for a 

divergent blood supply chain under the uncertainties of supply of blood and demand for blood. 

Furthermore, the basic stochastic blood management model for the hospitals and blood center is 

extended to a stochastic blood management model by considering multiple objectives.  
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7.1  Contributions of this Thesis  

The main contributions of this thesis are theoretical contributions, methodological  

contributions and empirical contributions. 

7.1.1  Theoretical Contributions 

 The uncertainty in supply and perishable characteristics of blood products has led to a   

  substantial outdating of the collected donor blood. On the other hand, due to the very  

  limited donor population, hospitals and blood centers experience severe blood shortage.      

  Therefore, the necessity to forecast the blood supply to minimize outdating as well as  

  shortage is obvious. This thesis aims to efficiently forecast the supply of blood  

  components at blood centers. 

 The majority of research on blood inventory management assumed that the demand is 

deterministic (Dillon et al., 2017). However, it is essential to consider the uncertainty of 

blood demand (Haijema et al., 2007). The issues regarding inventory management are 

greatly complicated by unknown demand and make it challenging to render significant 

models in practice. A few recent researchers (Solyal et al., 2015; Fortsch and Khapalova, 

2016; and Rajendran and Ravindran, 2017) address demand uncertainty issues in inventory 

management. There has been very little research work considering both supply and demand 

uncertainty. Blood inventory management needs to take the uncertainty aspect of blood 

supply and demand into account for the blood supply chain studied. 

 Very limited previous work has been focused on blood inventory management for the entire 

blood supply chain. In Chapters 4, we have developed stochastic programming models under 

blood supply and demand uncertainty for determining the ordering policies for the entire blood 

supply chain with one blood center and two hospitals. Additionally, the models consider two 

types of demands requested from the hospitals to the blood center: regular demand and 

emergency demand. At the end of each day, hospitals placed the regular demand of blood to 

blood center and will be delivered to hospitals after the lead-time. The emergency demand of 

blood has to be supplied by the blood center to the hospital promptly. Furthermore, the 

stochastic inventory management models developed in Chapter 5 is one of the pioneer research 

work to incorporate the platelet inventory management for a divergent blood supply chain with 

two blood centers and four hospitals under supply and demand uncertainty. 
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7.1.2  Methodological Contributions  

  Two different types of forecasting techniques, time series and machine learning algorithms,   

 are developed and the best performing method for the given case study is determined.   

 Autoregressive (AUTOREG), Autoregressive Moving Average (ARMA), Autoregressive   

 Integrated Moving Average (ARIMA), Seasonal ARIMA, Seasonal Exponential Smoothing  

 Method (ESM), and Holt-Winters models are considered under the time series. Artificial  

 neural network (ANN) and multiple regression are considered under the machine learning  

 algorithms. 

  Due to the blood’s perishable characteristics coupled with its supply and demand uncertainty,  

 few studies have focused on its redistribution amongst the health care centers within the  

 same geographical region (Dehghani et al., 2019; Denesiuk et al., 2006; Rajendran and  

 Ravindran, 2019). However, the typical network they consider comprises of  a single blood  

 center, which supplies the blood products to multiple hospitals. The present investigation  

 formulates a model for the blood supply chain with the objective of minimizing the overall  

 cost incurred for the redistribution of blood in a network where multiple blood centers can  

 supply the required amount to the medical facilities existing outside their usual network.   

 Several parameters, such as unit purchasing, outdating, inventory, and transportation, are  

 examined at the hospital as well as the blood center level. 

  The majority of previous work on blood inventory management assumes the cost   

 components can be measured associated with the entire blood supply chain (Haijema, 2007;  

 Haijema, 2009; van Dijk, 2009; Gunpinar and Centeno, 2015; Rajendran and Ravindran,  

 2017, 2019). In reality, some cost elements cannot be measured in the same units accurately,  

 such as shortage cost and outdated cost. In this dissertation, multiple criteria mathematical  

 programming (MCMP) models considering conflicting criteria such as the amount of  

 outdating and shortage, holding cost and ordering cost for platelet inventory management  

 have been developed and solved using three techniques– preemptive goal programming,  

 non-preemptive goal programming and weighted objective method. From the results of the   

 three MCMP techniques and operational settings, the hospital management is able to decide  

 the amount of how many platelets to purchase. 
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7.1.3  Empirical Contributions 

 

          The inventory management considered in this work will be one of the first recommended 

systems to determine blood order quantity at blood banks and blood centers based on historical 

supply and demand data. Past research has proven that developing proper inventory models will 

result in millions of dollars of savings to blood banks and blood centers, and hence, the proposed 

work is developed to carry out as a decision support system so that pathologists at blood banks, 

blood centers and hospitals can make decisions determining the number of units to purchase and 

time between orders. Upon implementation of the models, it can help Taiwan Blood Services 

Foundation and other health care professionals manage and control blood inventory more 

effectively under blood supply and demand uncertainty, thus decreasing the shortage of blood and 

expired wastage of blood. 

     This thesis also elaborated the following empirical results for the blood inventory 

management in blood supply chain: 

   Gathered five years’ worth of historical blood supply data from Taiwan Blood  

           Services Foundation (TBSF) to conduct the forecasting  

           We have interacted with TBSF on the collaborative research and gathered five years’ worth    

           of historical blood supply data. On comparing the different techniques, it is found that time  

           series forecasting methods yield better results than machine learning algorithms. More  

           specifically, the least value of the error measures are observed in seasonal ESM and  

           ARIMA models 

   Manage the blood supply chain more effectively under the demand and supply  

  uncertainty  

 

     We propose an essential blood supply chain model with emphasis on how to manage the  

     blood supply chain under the uncertainty of demand and supply more effectively.  

     Furthermore, this study conducted a sensitivity analysis to examine the impacts of the  

     coefficient of demand and supply variation (please refer to table 4.3 in chapter 4) and the  

     cost parameters (please refer to table 4.6 in chapter 4) on the average total cost and the  

     performance measures (units of shortage, outdated units, inventory holding units, and  

     purchased units) for both the blood center and  hospitals. Based on the results, the hospitals  

     and the blood center can choose the optimal  ordering policy that works best for them. From  

     the results, we observed that when the coefficient of demand and supply variation is  
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      increased, the expected supply chain cost increased with more outdating units, shortages  

      units, and holding units due to the impacts of supply and demand fluctuation. Variation in  

      the inventory holding and expiration costs has an insignificant effect on the total cost. The  

      model developed in this paper can assist managers and pathologists at the blood donation  

      centers and hospitals to determine the most efficient inventory policy with a minimum cost  

      based on the uncertainty of blood supply and demand. 

 

 Weekday Implementation Results of Case Study 

In chapter 4, the model is solved with one blood center and two hospitals for a planning 

horizon frame of 300 days and 100 scenarios. In practice, the same order policy may not be used 

for all the 300 days of the planning horizon. Instead, a rolling horizon approach may be followed 

to implement the optimal solution. At the end of the first week, the MILP model is returned for the 

next 300 days after updating the inventory and demand forecast. The new optimal policy will be 

used for the second week, and the process is repeated weekly. Since long-term forecasts may not 

be as good as short-term forecasts, a rolling horizon policy helps to update forecasts weekly and 

determine the best solution based on the revised forecasts.  

The case study implemented in this chapter is focused on weekday blood ordering for one 

blood center and two hospitals based on the assumption that the weekday demand/supply are 

normal distributions with various means (please refer to table 4.12 in chapter 4). From the results, 

it is shown that the units purchased, outdated, held in inventory, and shortage varied with the 

inflation in the demand and supply, and the average total supply chain cost varied with the inflation 

in the demand and supply 

Divergent Blood Supply Chain under Supply and Demand Uncertainty 

While previous studies on blood supply chain management focus on a single blood center 

and a multiple hospitals system with the objective to minimize the total supply chain cost 

(consisting of transportation, purchasing, shortage, outdating, and inventory costs). The practical 

contribution of the present study is to determine the optimal ordering policy for a divergent 

network consisting of multiple blood centers and hospitals. Sensitivity analysis is conducted to 

understand the influence of the supply and demand variation, as well as the cost parameters. The 

results indicate that a change in the mean demand has a linear impact on the supply chain cost, 

whereas the mean supply has a minimal impact on the total cost parameter. Furthermore, an 
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increase in the coefficient of demand variation induces a rise in the total supply chain by 5.55%, 

while a 4.8% increase is observed when varying the coefficient of supply variation parameter. The 

present study investigates the impact of four hospitals and two blood centers and the model 

examined the results for nine different demand settings (please refer to table 5.3 in chapter 5) and 

five distinct supply settings (please refer to table 5.5 in chapter 5).  

It is observed that four demand settings (DS 3, 5, 7, and 9) displayed a lower average cost 

per day per scenario when compared to the base case. At the blood center level, a rise in cost was 

seen for variation in supply settings causing fluctuations in the units outdating. This thesis also 

conducted sensitivity analysis by varying supply and demand along with the cost variation. The 

results demonstrate a significant deviation for the inventory level at the hospitals and blood centers, 

which leads to a higher average cost in the supply chain. An insignificant change is evident in the 

shortage and outdating cost for different cost variation settings. Based on the results, the model is 

robust for all settings and can easily be extended to include more sites in the supply chain. 

Procuring emergency units from other blood centers to compensate for shortages and reduce unit 

outdating would improve the functionality of the system and prevent hundreds of surgeries from 

being canceled each day. The developed framework in the present study can be easily extended 

for other similar supply chains having unpredictable supply and demand and deals with perishable 

products. 

 

7.2  Directions of Future Research 

The following are the potential future work:  

    Blood Supply Chain During a Pandemic Outbreak  

       The COVID-19 pandemic has caused unprecedented challenges to the U.S. blood supply.   

            Donor centers have experienced a dramatic reduction in donations due to the  

            implementation of social distancing and the cancellation of blood drives (Ngo et al., 2020;  

            https://www.fda.gov). COVID-19 has had a negative impact on blood collection.  

            Furthermore, all the elective surgeries and non-urgent clinical interventions have also  

            been postponed during this time. This has led to a drop in blood collection, demand as  

            well as the issue at the blood center (Raturi and Kusum, 2020). Blood supply chain   

            management during the pandemic has become more important than before. To transition  

      back to the normal conditions, it would most likely depend on the extent and the time  
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      duration of this pandemic and associated behavioral changes (Raturia and  Kusumb, 2020).  

      It is necessary to do future research to address the impact of next pandemic on the blood  

      inventory management and develop effective strategies for blood collection and  

      optimization of the blood supply chain during the next pandemic. 

    Blood Substitution for Supply Chain 

Regarding blood transfusions, matching blood types is the process for compatibility testing  

between the donor’s blood and the blood of the recipient. Cross-matching generally does  

not mean an identical blood match. Duan and Liao (2014) shows a table regarding the  

distribution of red blood cell types and all possible suitable substitutions for ABO/Rh (D)  

in the US Population and investigate an ABO compatible substitution scenario at both  

hospital and blood center by proposing a simulation optimization (SO) approach. Further  

research is encouraged.  

    Vehicle Routing Policies for Blood Supply Chain 

There are two main vehicle routing operations in the blood supply chain management: (i)  

      distribution of donated blood from the donation stations to blood centers, and (ii)  

      distribution of blood products from blood centers to hospitals. Because the collected  

      blood has to be transferred to the blood center within 4-6 hours of collection. Therefore,  

      the processing time limit forces the organizations to schedule multiple pickups from the  

      donation sites and efficiently transferred them to the blood center. The other routing  

      operation deals with the delivery of blood components from blood centers to hospitals.  

      Some situations require that blood components to be transported far away from the blood  

      centers to hospitals, and hence, it is crucial to schedule efficient vehicle routings in order  

      to reduce the overall transportation cost.  

     Drone Delivery for the Blood Products 

To study the vehicle routing policies for blood products in supply chain, one alternative is  

to evaluate the drone delivery for blood products. Remote technology and automation have  

been present for centuries, giving human operators safety from harm and enabling new task  

functionality. Autonomous unmanned aerial vehicles (UAVs) technology has progressed  

in recent years, potential use case for UAVs (Glauser, 2018; Haidari et al., 2016; Goodchild  

and Toy, 2018) have received considerable attention from researchers (Gilmore et al., 2019;  

Merkert and Bushell, 2020) due to their ability to travel difficult terrains, and replace fleet  
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for vehicles that require costly maintenance. Several companies have recognized the  

benefits of using drones for blood product delivery (Ling and Draghic, 2019). It is  

necessary to do research furthermore to examine the impact of drone delivery on the overall  

supply chain cost. 

     Closed-Loop Blood Supply Chain  

       A closed-loop supply chain essentially considers forward and reverse supply chains      

            simultaneously (Govindan, Soleimani and Kannan, 2015). Blood with false-negative  

            bacterial contamination or when excess units are ordered could be sent back to blood  

            centers with reusable possibilities. In these cases, the cost associated with reverse shipment  

            has to be considered in the model. However, none of the previous research takes the reverse  

            shipment cost and the associated changes in inventory into consideration.  
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APPENDIX: Centralized Blood Supply Chain vs. Decentralized Blood Supply Chain 

 

BC: Supply 
 

s1 

   
s2 

 

        
HP: Demand d1 

 
d2 

 
d3 

 
d4 

 

A centralized blood supply chain is better than decentralized blood supply chain 

Proof: Assume a supply chain consisting of 𝑠𝑖 blood centers and 𝑑𝑗 hospitals.  

Consider a system having two blood centers and four hospitals with blood center 𝑠1 supplying 

platelet units to hospital 𝑑1and 𝑑2 while blood center 𝑠2 supplying platelet units to hospitals 𝑑3 

and 𝑑4. 

In a centralized supply chain, the difference between total supply and total demand is zero if there 

is are no shortage and outdated units, i.e. (𝑠1 + 𝑠2)  − (𝑑1 + 𝑑2  + 𝑑3 + 𝑑4)  =  0.  If the 

difference is greater than zero, then the system would have units outdated, whereas the supply 

chain would experience shortage if the difference is less than zero.  

In a decentralized system, the difference between supply and demand from blood center 𝑠1 is 𝑠1  −
 (𝑑1 +  𝑑2). Similarly, the difference between supply and demand from blood center 𝑠2 is 𝑠2  −
 (𝑑3 + 𝑑4). We will consider the following cases: 

Case 1: If 𝑠1  −  (𝑑1 +  𝑑2)  ≥  0  and 𝑠2  −  (𝑑3 + 𝑑4)  ≥  0 , then outdating exists at blood 

centers 𝑠1  and 𝑠2  and the performance of a centralized supply chain would be equal to a 

decentralized system.  

Case 2: If 𝑠1  −  (𝑑1 +  𝑑2)  <  0 and 𝑠2  −  (𝑑3 + 𝑑4)  <  0, then there is a shortage of platelet 

units at the blood centers 𝑠1 and 𝑠2 and the performance of a centralized supply chain would be 

equal to a decentralized system.  

Case 3: If 𝑠1  −  (𝑑1 +  𝑑2)  >  0  and 𝑠2  −  (𝑑3 + 𝑑4)  <  0 , then the supply chain would 

experience outdating at blood center 𝑠1 and shortage at blood center 𝑠2. Adding the two scenarios 

we get, (𝑠1 +  𝑠2)  −  (𝑑1 +  𝑑2  + 𝑑3 + 𝑑4), which is either going to be greater than zero or less 

than zero. The former case would indicate that the supply chain has units outdating. However, that 

would be less when compared to the units outdating achieved in a decentralized system (𝑠1  −
 (𝑑1 +  𝑑2)). Similarly, the latter case would indicate that the supply chain has a shortage, which 

would be less when compared to the shortage experienced in the decentralized system (𝑠2  −
 (𝑑3 + 𝑑4)). Therefore, a centralized system would be better than a decentralized system.  

Case 4: If 𝑠1  −  (𝑑1 +  𝑑2)  <  0  and 𝑠2  −  (𝑑3 + 𝑑4)  >  0 , then the supply chain would 

experience shortage at blood center 𝑠1 and outdating at blood center 𝑠2. Adding the two scenarios 

we get, (𝑠1 +  𝑠2)  −  (𝑑1 +  𝑑2  + 𝑑3 + 𝑑4), which is either going to be greater than zero or less 
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than zero. The former case would indicate that the supply chain has units outdating. However, that 

would be less when compared to the units outdating achieved in a decentralized system (𝑠2  −
 (𝑑3 + 𝑑4)). Similarly, the latter case would indicate that the supply chain has a shortage, which 

would be less when compared to the shortage experienced in the decentralized system (𝑠1  −
 (𝑑1 +  𝑑2)). Therefore, a centralized system would be better than a decentralized system.  

Thus, for all possible cases, we can conclude that a centralized system is better than a decentralized 

system in the blood supply chain.  
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