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Abstract 

This study developed a framework to automatically extract sub-surface 

defects from time-lapse thermography (TLT) images of reinforced concrete 

bridge components. Traditional approaches for processing TLT data typically 

require manual interventions that are not easily scaled to a large network of 

concrete bridges. A backbone of robust algorithms for detecting and analyzing 

deep sub-surface defects in concrete is needed to support condition 

assessment of concrete structures such as bridges. The current study leverages 

advances in adaptive signal and image processing to develop a fully 

automated TLT data processing pipeline that is capable of efficiently 

detecting defects at different depths in concrete. The methodology 

decomposes raw TLT datasets into narrow band time-frequency domains via 

a multiscale data analysis approach called a Wavelet Transform. The resulting 

decomposed modes are mined to extract defect information using thermal 

contrast enhancement routines. An objective measure of effectiveness based 



xviii 
 

on signal-to-noise ratio was developed and used to compare the current 

framework with traditional approaches for processing TLT data. Active 

contour models were also designed to automatically extract the boundary 

location and geometric properties of the sub-surface defects. The results of 

this study show that the detection of deeper defects (3 in. and beyond) can be 

improved by analyzing the time-frequency response of surface temperature 

variations over a period of time. Compared to traditional lock-in algorithms 

and conventional infrared thermography images, the proposed framework is 

more effective at removing noisy information and produces images with 

greater contrast between intact and defective areas of concrete. 

Furthermore, a new process has been established to predict depths of 

delamination in reinforced concrete bridge components. For previous works, 

traditional approaches were adopted to quantify depths in active 

thermography, which mainly depend on estimated models as a function of 

time, frequency, phase contrast, material properties of specimens. This work 

deals with the passive thermography that is affected by several environmental 

parameters such as solar heating, daytime or nighttime, wind speed, clouds, 

shadow. The current work has employed the Machine Learning (ML) 

technology to estimate defect depths in concrete block. Features, such as 

phases, amplitudes, frequencies, have been extracted by utilizing the Fast 
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Fourier Transform (FFT) in a stage of analysis. Furthermore, additional sub-

features, minor features, have been added to the ML analysis, for instance 

average and/or subtraction values between the maxima and minima features, 

to attain an acceptable learning performance. Support vector machine (SVM) 

and k-Nearest Neighbor (KNN) classifiers have been trained by using cross-

validation with different folds and hold validations. The predicted models 

have achieved an improved accuracy in estimating delamination depths in the 

concrete specimens with a good agreement. 
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CHAPTER ONE 

 

1- INTRODUCTION 

1-1 Background 

Generally, the material of reinforced concrete is considered as an 

essential part of constructing the highway bridges. Several significant 

mechanisms lead to the deterioration in the reinforced concrete deck slabs, 

such as the corrosion of reinforcement steel, traffic loading, producing of 

unsound concrete and cycles of freezing-thawing, etc. However, the corrosion 

of the embedded reinforcement steel is considered as the major factor of 

deterioration in the reinforced concrete deck slabs. The corrosion in steel 

causes a substantial increasing in volume of rust which produces internal 

stresses on the surrounding concrete material [2]. These tensile stresses 

generate cracks or fracture planes at the levels of the reinforcement steel layers 

or between them. These fracture planes are indicated as delamination. 

Consequently, the delamination expands and a separate piece of the reinforced 

concrete deck slab is split off which is referred as spalling [3, 4]. 

The damage of spalling has a potential impact on the reinforcement 

concrete deck slabs. This sort of deterioration issue affects the serviceability, 
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maintenance, repairing and replacement in the reinforced concrete deck slabs. 

In addition, the spalling launches as a delamination might have an influence 

on the traffic flow by speeding up the overall deterioration in the concrete 

decks or by shutting down the traffic lanes because of renovation process [5, 

6]. Furthermore, in the overpass bridges, the spalling in the soffit portion of 

the deck slabs has critical trouble on the traffic flow underneath the bridges 

[7]. For these mentioned reasons, it is fundamental to locate and specify the 

spreading of such damages, delamination, and spalling, which will provide 

significant information for the existing situation of deck slabs and 

maintenance necessity in the future. 

Several nondestructive evaluation (NDE) technologies have been 

potentially utilized to detect subsurface defects, such as delamination, that is 

resulted from deterioration of decks. The most technologies that are widely 

spread and used are the sounding with hammers and chain dragging, the 

impact echo (IE), the ground penetrating radar (GPR) and the infrared 

thermography (IRT) technology [4, 6, 8-11]. However, the sounding with 

hammers, chain dragging, and the impact echo (IE) demand a direct access to 

the surface of deck slabs being inspected. On the other hand, the sounding 

methods could not be precise in their testing [4, 12] and in the situation of 

chain dragging, it is only limited to the horizontal surface and deck slabs. For 
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that purpose, the sounding methods and IE are preferred for assessing 

delamination in deck slabs because of the straightforward use in the inspection 

and also the low expenses. 

On the contrary, the ground penetrating radar (GPR) requires a little 

traffic control by blocking a partial lane to implement the test on the concrete 

deck slabs. Furthermore, the GPR technology can become a contactless 

method by employing air-coupled antennae mounted on a vehicle. In the case 

of the IRT technology, subsurface defects, such as delamination, can be 

detected by interpreting the heat energy interrupted by a subsurface 

delamination which affects the rate of heat transfer through the concrete deck 

slabs. The results are in hot spots (daytime) when the temperature variations 

are increasing and cold spots when temperature variations are decreasing 

(nighttime). Furthermore, the IRT has the ability to capture thermal images 

for deck slabs being inspected from a distance around 100 feet (30 meters) by 

mounting the IR camera on a post [1]. The IRT method is a noncontact tool 

and does not require a direct access to concrete deck slabs. 

 

 

 



4 

 

1-2 Problem Statement 

In the United States of America, there are over than 600,000 bridges 

and around 24% of them are structurally defective or no longer in service [13]. 

Bridges are considered as one of the most significant components of 

transportation institutions. Therefore, it is essential to identify damages and 

maintain an efficient infrastructure since the substantial number of defects and 

deteriorated bridges in the USA. 

Nondestructive testing (NDT) technologies have the possibility and the 

ability to detect the subsurface defects in the concrete deck slabs. As 

aforementioned, the most common approaches for evaluating the conditions 

in concrete deck slabs are the sounding devices (chain drag and hammer 

sounding), impact echo (IE), ground penetrating radar (GPR) and infrared 

thermography (IRT). However, the sounding devices and the IE demand 

blocking the traffic lanes for assessing subsurface defects in the concrete deck 

slabs. Furthermore, these lane closures rise the cost of assessment and as well 

decrease the safety of workers and vehicles. On the other hand, the GPR 

technology is a contactless tool for implementing the evaluation of the 

concrete deck slabs and requires a partial or no lane closure since it is 

performed by a vehicle-mounted platform. Yet, this method is not utilized for 
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detecting defects directly since it is affected by moisture and corrosion in 

reinforcement steel [14]. 

Conventional IRT technology provides a very workable tool for 

remotely capturing thermal images without any direct access to the surface of 

concrete deck slabs. However, the IRT takes one single snapshot for a specific 

area of the deck slab at a specific time. Furthermore, for larger deck slab, a 

number of thermal images are needed to cover the whole entire decks. The 

conventional IRT technology is a very serviceable tool for detecting shallow 

delamination in the concrete deck slabs up to 2-inches or less depth. 

For all the mentioned reasons, the time-lapse thermography (TLT) 

method has been adopted in the current study. The concept is by collecting 

several thermal images for the same area of the deck slab over a period of 

time. This process takes into consideration the thermal behavior of the same 

location being inspected at different points of time. This methodology 

provides an increased detectability of defects with depths greater than 2-

inches. Moreover, advanced tools in signal and image processing have been 

adopted to mine sub-surface defect information from the time-lapse 

thermography (TLT) images. The thermal images captured over a time are 

affected by several mechanism factors, for example variations of 
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temperatures, rain, wind, clouds, fogs, and shadows, ...etc. Consequentially, a 

multiscale data approach called a Wavelet Transform (WT) was utilized to 

decompose the TLT images into narrow band time-frequency modes. The 

purpose of using the WT method is to correlate all the driving mechanisms 

with the datasets of time-frequency distributions. Further, each decomposed 

mode has a distinctive information that is in consistence with each separated 

delamination depending on their depths. 

The other problem in the current research was predicting the depths of 

these delamination in the concrete deck slabs. There are two main approaches 

adopted by the infrared thermography (IRT): the active and the passive 

thermography. All previous researches have employed the active 

thermography for estimating the depths in defects of different material; for 

example, metal, plastic, composite material and even in reinforced concrete 

material. However, the active thermography technology has been recently 

used to estimate depths in delamination in the reinforced concrete specimens. 

The procedure needs to be performed under controlled circumstances such as 

excitation of heating, frequency of a test and heating source, …etc. On the 

contrary, the passive thermography technology is supposed to be held in the 

fields. The concrete deck slabs are exposed to a direct solar source, the sun, 

in addition to the changes of ambient temperature. Other parameters affect 
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this process like daytime, nighttime, wind, clouds, and shadows. For these 

combined grounds, the active thermography models are not reliable with the 

passive thermography. Accordingly, the Machine Learning (ML) principle 

has been proposed as an alternative technique for estimating the depths in the 

delamination in the reinforced concrete members. The concept of the ML 

depends on training features that are extracted from a concrete specimen being 

inspected. Another concept called the Fast Fourier Transform (FFT) has been 

utilized for aiding of excerpting features like phases, amplitudes, and 

frequencies. The methodology has adopted two classifiers which are the 

support vector machine (SVM) and the k-nearest neighbor (KNN) to train and 

build accurate models. the built compact models are used for testing a group 

of new thermal images to estimate depths in subsurface defects of deck slabs. 

The research has illustrated the description and development of the 

methodology for predicting depths in delamination. 

 

1-3 Goals and Objectives 

The most important goals of the current study are to improve the quality 

on condition assessment tools for highway bridges and develop calibration 
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standards for the Infrared Thermography. The main objectives of the current 

study could be outlined in the following steps: 

 Developing a framework of fully automatic time-lapse data processing. 

 Investigating IR camera sampling rates and sampling interval necessary 

for carrying out the time-lapse thermography (TLT). 

 Performing a comparative analysis of the framework developed with 

traditional IRT approaches such as lock-in thermography. 

 Developing an algorithm to fully calculate phases, amplitudes and 

frequencies and extracting features from the delaminated and non-

delaminated areas. 

 Proposing classifier learners such as SVM and KNN to build predictive 

models to estimate depths in delamination. 

 Conducting a comparative analysis of different Machine Learning 

models for depth prediction. 

 

1-4 Research Approach 

The current research comprises of four well-defined phases as 

illustrated in Figure (1-1). Phase one of this study provides a review of 
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literature that encompasses the deterioration mechanisms in concrete deck 

slabs, the very common technologies that have been used for detecting defects 

in reinforced concrete components, theoretical principles, and the mechanism 

of transfer heat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

‒ Reviewing the deterioration mechanisms in concrete deck slabs. 

‒ Reviewing the IR technologies for detecting defects in reinforced concrete components. 

‒ Illustrate the theoretical principles and the mechanism of transfer heat. 

‒ Transforming the 2D IR images into 1D signals. 

‒ Detrending and denoising the 1D signals. 

‒ Decomposing the detrended signals into sets of modes by using a multiscale approach, 

Wavelet Transform (WT). 

‒ Constructing new 2D high contrast thermal images by isolating and removing the noisy 

combinations. 

‒ Determining the boundaries of the subsurface defects by adopting an Active Counter. 

‒ Comparing the new obtained results with traditional approaches, such as the lock-in 

thermography (LIT), based on the signal-to-noise ratio (SNR) approach. 

‒ Fabricating a full-scaled reinforced concrete slab with dimensions (14.5 ft × 10.5 ft × 8 

in.) including six embedded targets with depths 2-in., 4-in., and 6-in. 

‒ Testing the concrete specimen with 1-minute interval for more than five weeks. 

‒ Transforming the 2D IR images into 1D signals. 

‒ Detrending and denoising the 1D signals. 

‒ Applying the Fast Fourier Transform (FFT) to create phases, amplitudes, and 

frequencies. 

‒ Extracting major features from the defects and non-defect areas. 

‒ Extracting minor features from the major features. 

‒ Training the major and minor features by employing the (SVM) and (KNN). 

‒ Testing the compact models on other IR datasets to estimate the depths. 

Figure 1-1: Summary of research approach. 



10 

 

In the second phase, an algorithm of a framework for automated time-

lapse thermography (TLT) has been adopted and built. The algorithm was 

developed for detecting and analyzing deep subsurface delamination, such as 

3-in and 5-in, in the reinforced concrete components to assist the evaluation 

in concrete bridges. The current analysis utilized a previous experimental 

work, a concrete specimen with four embedded targets of defects [15, 16]. 

First step was transforming the acquired 2D IR images into a 1D time series. 

Next, a detrend temperature variation is obtained by using the maximum and 

minimum envelope. However, these temperature variations (the detrend 

signals) are decomposed in combinations of time-frequency by means of a 

multiscale approach called a Wavelet Transform (WT). 2D high contrast 

thermal images are constructed by isolating and removing the noisy modes 

from the previous step. Once this process is completed, the subsurface 

delamination can be mined to detect their positions. An Active Counter is 

adopted to automatically determine the geometry and location of the 

subsurface defects which is first introduced by Kass et al [17]. The obtained 

results have been compared with traditional approaches, such as the lock-in 

thermography (LIT), by proposing and modifying a measure tool based on the 

thermal contrast called signal-to-noise ratio (SNR). The developed framework 

has shown an effective outcome of removing noise and producing thermal 
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images with more contrast between the defect and non-defect areas in the 

concrete. 

Phase three focuses on building and fabricating a full-scaled reinforced 

concrete slab. The dimensions of the concrete slab are (14.5 ft × 10.5 ft × 8 

in.). Two mats of reinforcement steel (top and bottom) in both directions were 

used with a concrete cover of 2.5 inches. The design of reinforcement concrete 

slab has been selected to fulfill the minimum requirement of Missouri 

Department of Transformation (MoDOT). Six targets of open-celled 

Styrofoam material, with 0.22 inch thick, have been embedded inside the 

concrete specimen to simulate the real delamination. Three depths of 

delamination, 2 defects for each depth, have been chosen: 2-in., 4-in., and 6-

in. Several tests on the concrete specimen have been completed by capturing 

thermal images with 1-minute interval. The camera system has been set up in 

two locations, one is on the north side of the specimen and the other one is on 

the west side. More than five weeks of testing has been collected for the 

concrete specimen. 

The last phase of this research revolves around developing a 

methodology to estimate the depths in delamination in the concrete specimen. 

The work employs the Machine Learning (ML) method to detect the depths. 
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First, features have been extracted from the embedded defects and the intact 

(sound) areas by using the Fast Fourier Transform (FFT) approach. Each 

defect area has been divided into four separated portions. Features have been 

excerpted such as phases, amplitudes, and frequencies for each portion. 

Moreover, minor features have been calculated from the major features which 

gives a boost in building models. The next step is by training the obtained 

features by employing two classifiers, the support vector machine (SVM) and 

the k-nearest neighbor (KNN). These classifier learners are available in 

software such as the MATLAB package. The role of these classifiers was to 

build compact models then test them on new IR datasets with their features to 

estimate the depths in delamination. Several training cases have been 

completed for example a three-week training model on a three-day testing 

dataset. The obtain results are in good agreement with real delamination 

depths. 

 

1-5 Contributions 

The current study addresses two main contributions which are the 

detection of deep delamination, especially defects greater than 2-in deep, and 
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the depth estimation of the delamination since the process completed via 

passive thermography. 

Conventional infrared thermography commonly collects a single 

thermal image of a region of a deck slab at a given point in time. This process 

may or may not stand for optimum time for examining the deck slab. 

However, the time-lapse thermography collects several thermal images of the 

same spot of the deck slab over a course of a long time period, such as hours, 

days or weeks. This process allows to analyze the transient thermal of the deck 

slab to identify anomalies that stem from subsurface defects in deck slabs. 

Moreover, the study utilizes the Wavelet Transform approach for analyzing 

signals excerpted from the thermal images at different frequency scales. The 

process showed that the detection of delamination with depths more than 3-in 

deep can be improved by adopting the time-frequency response of surface 

temperature variations over a course of time. Figure (1-2) illustrates in 

sequence the methodology of the first contribution. 

Several researches have previously adopted the process of active 

thermography to predict depths of defects in concrete deck slabs. Active 

thermography utilizes objects simulated by external heating or cooling 

sources such as halogen lamps. Tests like that, are implemented inside 
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laboratories with controlled environmental conditions. In contrary, the passive 

thermography tests are held in the fields, for example concrete deck slabs, 

which are exposed to direct solar and affected by several factors such as wind, 

shadow, rain, and fog. Eventually, the models adopted by active 

thermography are not consistent with the passive thermography. That is why 

the machine learning concept has been used with Fast Fourier Transform to 

estimate the depths of delamination in reinforced concrete decks. Figure (1-3) 

depicts all the steps performed to achieve this contribution. 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: A schematic showing the steps to achieve the first contribution (detection
of deep depths). 
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1-6 Outlines of the Dissertation 

This dissertation is made up of five chapters. Chapter one concisely 

introduces some nondestructive evaluation (NDE) technologies and their 

applications. In addition, it discusses the background, problem statement, 

goals, and objectives of the current research, research approach and finally the 

outlines of the dissertation. 

The mechanism of delamination in the concrete deck slabs is described 

in details in chapter two. Moreover, the most technologies of the 

nondestructive evaluation (NDE) for detecting defects in concrete bridges are 

discussed with their applications, for example the sounding methods, impact 

Figure 1-3: A schematic illustrating the steps to achieve the second contribution
(estimation depths). 



16 

 

echo (IE), ground penetrating radar (GPR), and infrared thermography (IRT). 

In addition, a brief review of heat transfer is summarized in this chapter. 

Chapter three introduces a framework of automated time-lapse 

thermography (TLT) data processing. This chapter provides an algorithm to 

decompose raw thermal images into narrow band time-frequency domains via 

an approach called Wavelet Transform (WT). in addition, an active counter 

model has been included in the analysis to automatically detect the boundaries 

of delamination. The results have been compared with conventional infrared 

thermography images. The evaluation shows that the proposed framework is 

more effective tool. 

The determination of depths in delamination in concrete deck slabs by 

using the concept of machine learning (ML) has been illustrated in chapter 

four. Furthermore, an experimental work is described in details, in both the 

laboratory work and the field tests. As well in this chapter, the concept of the 

Fast Fourier Transform (FFT) is employed to extract the major and the minor 

features from the thermal images. In addition, classifiers such as the Support 

Vector Machine (SVM) and the k-Nearest Neighbor (KNN) have been used 

to create models for predicting depths in the concrete specimen being 

inspected. 



17 

 

Finally, chapter five is devoted to summarizing the overall conclusions 

and the recommendations for the future works that are stemmed from the 

current study. 
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CHAPTER TWO 

 

2- LITERATURE REVIEW 

2-1 Introduction 

Reinforced concrete is considered as heterogeneous material and it 

consists of several various components such as gravels, cement, sand, 

additives, …etc, which make the reinforced concrete to be more exposed to 

different types of deterioration [18]. This chapter utilizes the review of 

literature that is relevant to detecting and quantification of delamination 

measurements for characterizing damage in concrete bridge components. 

The first part in this chapter deals with the mechanism of reinforced 

concrete bridge deterioration which will be mainly devoted to corrosion in 

reinforced concrete, reasons, and their process. Moreover, details about 

delamination, its causes and operation are discussed in the coming section 

since it is deemed as one of the most subsurface deterioration in deck slabs 

[19]. In addition, technologies of subsurface delamination detection are 

displayed. Moreover, theoretical relevant studies of conventional and 

nondestructive (NDT) methods for the purpose of detecting defects and flaws 
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in concrete bridges will be presented. Furthermore, apparatus, their 

procedures and limitations will be presented in details for each technology. 

 

2-2 Deterioration in Concrete Bridges 

2-2-1 Corrosion in Steel Rebars 

Generally, concrete contributes to an exceptional protecting for steel 

rebars from corrosion. The environmental of high-alkaline (pH level is around 

12.5) in concrete generates a passive film that acts as a barrier to additional 

chemical reactions, and it is advantageous in mitigating corrosion damage. 

Reinforced concrete has the features of porosity and has surface microcracks 

which comes from several effects such as expansion, shrinkage, freezing and 

thaw, overloading and improper concrete manufacture [18, 20]. All of these 

factors pave the way to two types of corrosions: Corrosion by carbonation and 

corrosion by penetration of chloride ions in steel rebars. 

Nonetheless, corrosion by carbonation in steel occurs during the ingress 

of oxygen and moisture in concrete that leads to an interaction between the 

carbon dioxide with the calcium hydroxide, which exists in cement paste, 

which leads to form calcium carbonate and reduces the pH level to less than 

9.0 [18, 21]. Furthermore, this process will demolish or dissolve the passivity 
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of steel. The equations of chemical reactions of this process are illustrated 

below [21]: 

Ca(OH)2 + CO2             CaCO3 + H2O 

2NaOH + CO2                     Na2CO3 + H2O 

Usually, the rate of carbonation process moves slowly in concrete 

especially with low water-cement ratio (w/c). For that reason, carbonation that 

stimulates corrosion has not been taken into consideration as major issues in 

reinforced concrete structures as compared with corrosion induced by chloride 

ions [7]. 

One of the major reasons of corrosions in steel rebars is the existence 

of chloride ions in the reinforced concrete. On the other hand, in some 

circumstances, the lack of chloride ions can cause the corrosion. For instance, 

carbonation of concrete is a chemical reaction that takes place between 

carbonation (CO2) and other available gases and cement paste components. 

The breakdown of passive cover in steel rebars by the penetration of 

chloride ions is one of the most factors that cause corrosion in steel. When the 

corrosion initiates, steel bars become vulnerable due to the increasing of the 

level of chloride concentration which is also increased by the numbers of 

cycles of wetting and drying [7]. Moreover, other factors have an impact on 
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corrosion such as: the level and standard of concrete made, pH value of pore 

water, humidity, and temperature of the concrete. in addition, chloride ions 

are often available in cement paste, aggregate, water that would accelerate 

admixture, or structures that exposure seawater such as marine or that comes 

from additive chemicals to use for deicing [7]. 

Other considerations might affect the corrosion size which is related to 

construction practice such as concrete cover, crack-control measures and 

corrosion protection tools [7]. 

Deterioration of concrete that comes from corrosion in reinforced 

rebars causes a substantial increase in volume of rust products in around six 

times larger than in iron [22]. This increasing in volumes produces internal 

tensile stresses on the surrounding concrete. concurrently, the rust reduces the 

cross-sectional area of reinforced bars, and with time, a bond loss between 

reinforced bars and concrete happens and causes cracking or spalling [7]. 

Moreover, the load capacity of a structure member could be diminished 

because of the minimizing of the ductility of steel rebars due to corrosion. 

Furthermore, this issue, the corrosion in steel, might change the failure mode 

of a structure member from the ductile to brittle mode [23]. 
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2-2-2 Cracking, Delamination and Spalling in Reinforced Concrete 

The major cause of cracking inside concrete decks is when substantial 

expansive stresses on the surrounding area in concrete due to corrosion exceed 

the tensile strength of concrete [7]. 

This process of deterioration, the cracking, increases the rate of 

corrosion by providing more access of oxygen, moisture, and chlorides to the 

reinforced bars. As a result of that, a surface fracture plane that aligns to the 

surface of the concrete occurs and is known as delamination. The 

delamination commonly may happen at rebar depths. This delamination might 

expand in fundamental areas inside concrete deck slabs. Consequently of 

delamination expansion, a spall occurs in which a separated piece of concrete 

is split off from a deck slab [7]. This latter outcome can be an exceptional 

concern in reinforced concrete deck slab bridges. 

The spalling in concrete decks is one of the major worldwide 

deterioration issues that has been attention and consequences for highway and 

transportation agencies due to potential serviceability, preventive 

maintenance, repair, and replacement in reinforced concrete bridges. Spalling 

launches as a delamination that comes from either in embedded steel rebars 

or stresses caused by external traffic loading. This process may speed up the 
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total deterioration in concrete components of the deck slabs. Moreover, the 

spalling in the soffit part of deck slab in overpass bridges can have critical 

issues on the safety of traffic loading beneath the bridges [24]. 

 

2-2-3 Production of Improper Concrete 

During the production of concrete, delamination could be initiated 

inside deck slabs. In this situation, the main reason of creating such 

delamination is the bleeding. Drying the top surface of deck slabs prior to the 

ending of water bleeding and the first set of concrete commonly lead to entrap 

water and air beneath the densified surface of concrete. This process of the 

accumulation of water and air beneath the surface, creates a high water-

cementation materials and is close to the surface of weakness planes, that are 

vulnerable to traffic load [25]. Moreover, this procedure causes a separation 

of about 3-6 mm (1
8 - ¼ inch) upper layer of mortar cement from the 

underlying concrete [26]. In other words, the concrete is poured and placed, 

the cement and aggregate settle inside the deck slab while the light materials 

(air and water) move to the top surface of deck slab [14]. 
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2-2-4 Cycles of Freezing-thawing 

Freezing-thawing in concrete is considered one of the frequent reasons 

of forming delamination in concrete deck slabs. It commonly happens in the 

deck slabs that have poorly air-entrained or not air-entrained concrete, which 

works as a treatment for delamination [25, 26]. When temperature drops down 

below zero degree 0°C, the existence of water inside the pores of concrete 

would be frozen and that leads to increase the water volume by 9% [26]. This 

process will create a pressure inside the concrete and the accumulation effect 

of the freeze-thaw cycles would definitively produce cracking, scaling and 

deterioration of concrete especially when the produced pressure inside the 

pores exceeds the tensile strength of concrete [26]. Unlike the indoor concrete 

deck slabs, the outdoor deck slabs that are exposed to cycles of freezing-

thawing might have delamination at any depth or plane inside the deck slabs 

depending on several factors such as the winter hardness, level of water-

saturated and pore size inside the concrete slabs [25]. 

 

2-3 Detecting Technologies of Defects in Concrete Decks 

This section deals with and discusses the most common technologies 

for detecting subsurface delamination in concrete deck slab bridges. As 
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mentioned before, it is important to detect delamination in early stages since 

they affect the serviceability and integrity of the concrete bridges and to 

overcome further deterioration. 

Two main technologies, conventional and nondestructive evaluation 

(NDE) methods are included in this chapter. Basic principles, advantages and 

limitations will be briefly described. 

 

2-3-1 Conventional Methods 

Two major methods are used to detect defects or delamination in 

concrete deck slab depending on sounding techniques: hammer sounding and 

chain dragging manners. The hammer sounding technique encompasses a 

tapping on the top surface of concrete deck slab at various locations and 

monitoring the received produced sounds. For non-defected area, a clear 

sound will be created while a dull or hollow sound will be heard for defected 

area. 

In deck slab bridges that have considerable areas, a chain drag manner 

is a reasonable tool to be used to detect defects. The same concept is used as 

in the hammer sounding method. Non-delaminated area will make a clear 

sound. On the contrary, delaminated areas will produce dull sounds. 
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The procedure of the drag chain is mentioned in details in the ASTM 

D4580-03 [27]. Both methods, the chain dragging and hammer sounding have 

some advantages which are summarized in simple, portable and low cost 

operation [8]. 

The methods have some disadvantages and limitations, which could be 

summed up as their need to a direct access to a top surface of an inspected 

deck slab. Moreover, it requires a route closure for a bridge and special 

supplies and tools to reach bridge components. One of the most deficiency of 

this method is that it cannot be used for vertical components of bridges such 

as piers or columns. Furthermore, this method is used for qualitative 

inspection by tapping on the deck slab with hammer or a chain [28]. 

 

2-3-2 Nondestructive Evaluation (NDE) Technologies 

Nondestructive test (NDT) methods are utilized to evaluate the 

properties conditions of materials, such as concrete steel, …etc. [29], in bridge 

components, buildings, pavements and other concrete structures [29]. It may 

refer to a nondestructive inspection (NDI) or nondestructive evaluation 

(NDE). The idiom (NDE) is expressed as a nondestructive considerable 

damage to concrete components. 
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Nondestructive evaluation (NDE) methods are used to assess concrete 

construction for several major reasons which could be briefly summarized as 

[29]: 

- Quality control of new construction. 

- Examining and resolving issued inside new construction. 

- Evaluating of old concrete construction. 

- Assessment of repairs on concrete construction. 

In this section, the most widespread technologies or techniques are 

limited to three methods: Impact Echo (IE), Ground Penetrating Radar (GPR) 

and Infrared Thermography (IR). 

The concepts, instrument tolls and limitations for each technology are 

detailed in the American Concrete Institute Report ACI-228-2R-98 [29]. 

 

2-3-2-1 Impact Echo (IE) 

The impact-echo testing is a technique that is utilized for flow detection 

in concrete construction. It is a stress-wave method that is monitoring a sound 

wave resulting from a mechanical impact [30]. The main principle of this 

method is by introducing a stress pulse into an inspected object (the concrete) 
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by impacting it with an impactor and recording the response. Details of the 

method principles, apparatus and procedure are listed and summarized in the 

ASTM C1383-98 [31] and ACI 228-2R-98 [29]. 

P-waves (Primary waves) and S-waves (Secondary waves) are initiated 

by a stress pulse disseminate into the tested concrete object along 

hemispherical wave fronts. Throughout this process, the waves are reflected 

due to changes in the interface of the inspected object (such as delamination 

and flaws). The oncoming of these reflected waves at the surfaces where the 

action was originated produces displacements that are being measured by a 

receiving transducer and recorded using a data-acquisition system [29]. 

Since the time-consuming is used in such cases, the preferred approach 

is frequency analysis. The basics of this approach is that the generated stress 

pulse endures several reflections between the inspected surface and 

boundaries (such as delamination). The receiving transducer receives the 

frequency and reflects pulse which mainly depends on the wave speed and the 

distance between the inspected surface and flaws. This recorded frequency is 

named a thickness frequency and it relies on the inverse of the component 

concrete thickness [29]. 
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The analysis of Fast Fourier Transform (FFT) is employed in such cases 

to transform signals from time-domain to frequency domain to obtain an 

amplitude spectrum [29, 31]. 

IE method has been considered as a successful method to detect defects 

such as voids and honeycomb in concrete members, delamination in deck 

slabs and voids in tendon ducts [30]. The implementation of IE method always 

requires an impact on inspected surface of concrete member. Moreover, the 

method is mainly relative to the experience of the operator [30] and it is not 

simple as the interpretation of the hammer and chain drag methods. 

 

2-3-2-2 Ground Penetrating Radar (GPR) 

The Ground Penetrating Radar (GPR) technique utilizes high frequency 

electromagnetic waves to evaluate the concrete deck slabs. Overlaid with 

asphaltic concrete wearing surfaces [32]. The typical length of waves is 

ranged from 1GHz to 2.5 GHz and is emitted via an antenna into the inspected 

concrete deck slabs. Due to interfaces between the concrete and steel rebars, 

a reflected energy is created in the electromagnetic properties of these 

materials and it is diagnosed and recorded by a receiver antenna for the study 

[32]. 
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This procedure can be usually accomplished with air-coupled or 

ground-coupled horn antenna located from 0.3 m to 0.5 m the top surface of 

evaluated deck slab [32]. More details about the procedure and apparatus are 

listed in the ASTM D6087-08 [33]. 

The GPR has the ability to provide scanning information (i.e., detect 

corrosion damage in concrete decks) for situations of bridge decks without 

overlays and with portland cement concrete overlays [33]. Moreover, it is 

considered as a nondestructive method that can inspect concrete deck slabs in 

bridges with asphalt overlays [33]. 

The technique has capability to achieve the test with high-speed 

scanning on bridge decks without traffic closure or with partial lane closure 

depending on whether the test is air-coupled or ground-couple. For air-couple 

procedure, ASTM standard requires a transverse distance of less than 1.0 

meter and a longitudinal distance of less than 0.15 meter to the inspected 

surface [33]. While for ground-couple test, the antennas are required to be 

directly drawn on the deck slabs which means a lane closure. 
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2-3-2-3 Infrared Thermography 

Infrared thermography (IR) is one of the technologies that have been 

devoted to detecting subsurface delamination in concrete deck slabs without 

any contact with surface of inspected object on the contrary of the other 

nondestructive methods. The data collection with this technology is faster and 

simpler with almost no traffic closure for the inspected concrete deck slabs. 

In addition, the interpretation and analysis of IR images are also easy. 

Moreover, IR images could be obtained from a range of 30 meter (100 foot) 

or more during the test by using appropriate thermal camera [1]. This 

technology mainly depends on measuring the radiant energy emitted from the 

surface of inspected object. A thermal camera is employed to capture the 

emitted thermal radiation into IR images. Another concept for this technology 

is subsurface delamination inside the concrete object which interrupts heat 

flow [29]. A full details and description will be described in the next sections. 

 

2-4 Theoretical Principle of IR Thermography 

The purpose of this section is to describe the fundamental aspects 

behind the infrared thermography (IR). First, a brief review will describe the 

basic concepts of IR thermography and their instruments will also be included. 
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Moreover, a brief review of the heat will be discussed. Finally, the 

applications, advantages and limitations will be overviewed. 

 

2-4-1 Fundamental Principles of IR Thermography 

Thermography is a technique that utilizes infrared sensors to detect 

thermal radiation emitted from objects and produces a picture of a surface 

temperature based on that radiation [29]. Infrared radiation is emitted from 

any object exceeding absolute zero (0° Kelvin or -273 °C). the infrared 

radiation is an electromagnetic energy and it is defined within two spectrum 

windows: 3-5 µm and 8-14 µm [34]. Both the emissivity and temperature of 

substance are the rate at which the energy of an object is emitted [35]. 

Boltzmann’s law describes the energy of relation, which states that the 

radiated power of a substance is equal to the total temperature of the 4th power 

as: 

𝑞 𝜀 𝜎 𝑇         (2.1) 

qrad = emitted energy by a surface 

Ɛ = material emissivity 

σ = Stefan-Boltzmann constant (5.6×10-8 W. m-2. K-4) 



33 

 

T = temperature (°Kelvin) 

As shown in the previous equation, the released energy is mainly 

dependent on the fourth power of the temperature. In addition, emissivity is a 

unitless number and refers to the effectiveness of an object that transmits 

energy by radiation heat [36]. In other words, it is the relation of emitted 

energy to emitted radiation in a perfect circumstances or that comes from a 

blackbody [36]. 

Disturbances such as delamination inside a concrete deck slab disrupt 

heat transfer, causing localized surface temperature variations [4]. The 

localized surface temperature fluctuations influence on the amount of 

radiation released from the surface as illustrated in Figure (2-1). 

On the day hours, as the concrete is warming up, the temperature of the 

surface above defective area, i.e., delamination, is greater than the temperature 

of the surface above the non-defective area, i.e., sound area, since the mass 

above the delamination is less than the mass above the sound area that 

observes the heat flow. In concrete, on the night hours, since the concrete is 

cooling off, the temperature of the surface above delamination might be lower 

than the temperature of the surface above the non-defective area [37]. The 

area of subsurface delamination could be distinguished by analyzing the 
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surface temperature varieties. These surface temperature varieties are 

inspected in terms of thermal contrast to implement quantitative examination 

of information in this consider. The thermal contrast is defined as: 

 

Δ𝑇 𝑇 𝑇        (2.2) 

where ΔT = thermal contrast 

Tdefect = surface temperature above a delamination 

Tsound = surface temperature above a non-defect area 

 

 

 

 

 

 

 

 

 
Figure 2-1: Thermal response of delamination in concrete: (A) daytime condition [1]; (B) 
nighttime condition; (C) surface temperature and thermal contrast as a function of time. 
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2-4-2 Overview of Heat Transfer 

2-4-2-1 Mechanism of Heat Transfer 

Heat can be transferred from one object to another object due to 

variations in temperatures. Generally, there are mechanisms of heat transfer 

known as: conduction, convection, and radiation. In concrete, the transfer of 

energy between a surface of an object and surrounding environmental occurs 

by the natural convection, the thermal radiation in the surface of the concrete, 

the conduction inside the concrete elements themselves, and the solar 

radiation [38] from the sun as illustrated in Figure (2-2). 

 

 

 

 

 

 

 

 

 

Solar radiation 

Solar radiation 
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Conduction 

Emitted infrared 
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(concrete elements) 

Figure 2-2: Illustration the mechanism of heat transfer from surrounding climate on
concrete elements. 
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 The thermal energy is, qs, that is absorbed by the members of concrete 

bridges due to the solar radiation, the sun, can be obtained by: 

𝑞 𝛼  𝐼          (2.3) 

where αs = the absorptivity coefficient of concrete and ranges from (0 to 1.0). 

 Is = the solar radiation on the concrete. 

 Several factors are affecting the solar radiation, Is, for example the 

length of the day, the season of the year, the clouds, the elevation of the 

concrete bridge and the location on earth [38]. The absorptivity, αs, refers to 

the adequacy of absorbing the radiation heat, for instance the value 1.0 of αs 

marks to a material that absorbs all the heat and reflects none. The value of 

absorptivity is affected by several factors such as the texture and color of the 

materials. 

The rate of heat energy transfer by the convection, qc, is mainly related 

with some influences such as the variations of temperatures between the 

surface of concrete bridges and the air. The equation is approximately written 

according to Newton’s convection law as follows: 

𝑞 ℎ 𝑇 𝑇        (2.4) 

where hc = the convection coefficient (W. m-2. °C-1) 
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 Ts = the temperature of the concrete surface 

 Tair = the temperature of ambient 

In this case, the convection coefficient can be expressed as a function 

of two factors, hn and hf, as follows [38]: 

ℎ ℎ ℎ         (2.5) 

where hn = a parameter for concrete bridges has an average value equal to 6 

(W. m-2. °C-1). 

hf = a function of the wind speed υ (m. s-1) and can be stated as hf ≈ 

3.7×υ. 

It can be calculated from the equation (2.4) that if the temperature of 

concrete surface is more than the ambient temperature, for example the sun 

warms up the concrete above the ambient temperature, the convection heat is 

larger than zero. In this situation, the increasing of wind speed will increase 

the energy transfer from the concrete surface to ambient air, leading to 

reducing the thermal heat in the concrete [24]. On the contrary, if the concrete 

temperature is less than the ambient temperature, for instance shady 

situations, that will produce a negative convection heat. In this case, the 

thermal heat in concrete will increase since the wind will speed up the heat 

transfer to the concrete [24]. 
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Equation (2.3), as illustrated in section (3-1), expresses the thermal 

energy of emitted radiation, qrad. The equation is utilized to calculate the 

temperature of the concrete surface. 

The last expression of the heat transfer is the thermal energy transfer by 

conduction, qcond. In the concrete solid, a one-dimensional equation can be 

stated as: 

𝑞 𝑘        (2.6) 

where k = the thermal conductivity (W. m-2. K-1) 

 L = the concrete thickness in the heat flow direction 

 Ts = the temperature of the concrete surface 

 Tair = the temperature of ambient 

 Thermal conductivity, k, refers to the rate of energy heat passing 

through a unit area of a material of a unit thickness for a variation of 

temperature of one degree. 
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2-4-2-2 Thermal Inertia  

The thermal inertia can be expressed as a thermal mass, I. This 

expression refers to the ability of a material to conserve and conduct the heat 

energy. The term of thermal inertia can be written as follows: 

𝐼 𝑘 𝜌 𝐶         (2.7) 

where k = thermal conductivity 

 ρ = the density of the material 

 Cp = the heat capacity (or the specific heat) of the material 

 The specific heat indicates the magnitude of heat energy that is utilized 

to increase the temperature of a unit mass of a material with one degree. 

 

2-4-2-3 Heat Diffusion 

The heat diffusion term can be given in the isotropic homogeneous 

materials according to the Fourier Transform concept [39]: 

𝛼 . ∇ , ,  𝑇        (2.8) 

where T = the temperature 

 t = the time 
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 ∇2 = the Laplacian operator 

 α = thermal diffusivity of a material 

 the Laplacian term of the temperature in the Cartesian coordinate 

system can be expressed as: 

∇        (2.9) 

 The expression, the thermal diffusivity, α, can be defined in the next 

equation which refers to temperature changes in a material: 

𝛼
.

       (2.10) 

where k = thermal conductivity 

 Cp = heat capacity 

 ρ = density of the material 

 It can be seen from the equation (2.9) that a material with a high thermal 

diffusivity refers to a fast heat transfer, but the heat storage will be low. The 

feature of having a high thermal diffusivity in a material leads to high reaction 

in temperature changing. In contrast, having a low thermal diffusivity in a 

material marks to a low heat transfer but with a large heat storage, which 

indicates a low reacting in the temperature variations [36]. 
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2-4-2-4 The Flow of Transient Heat 

The knowledge of expression of the flow of transient heat is practically 

functional since it is demanded in detecting the defects in the concrete. the 

equation of the one-dimensional heat flow is possible to be solved by using 

the concept of diffusion as described in the previous section. Equation (2.8) 

could be written as follows [39]: 

𝑇 𝑇 𝑇 𝑇 𝑒𝑟𝑓
√

   (2.11) 

where Td = the temperature at any depth in the material 

Tꝏ = the applied constant temperature at the surface of the material 

Ti = the initial temperature of the material 

erf = Gaussian error function 

y = depth into the material 

 α = thermal diffusivity of a material 

It is clear that the equation (2.8) is not a linear throughout the 

calculating of surface temperature. Moreover, for complicated cases, such as 

heterogenous materials or/and having subsurface defects and complex 

boundary conditions, the solving of the transient heat transfer needs to be 
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performed by advanced techniques. Methods like the finite element (FEM), 

finite volume (FVM), and finite difference (FDM) could be employed to solve 

such a case like equation (2.8). 

 

2-5 Instrument of IR Thermography 

2-5-1 An Overview 

An IR camera utilized the thermal radiation that is emitted from the 

surface of an object to produce images. In other words, the temperatures of 

the object being inspected are interpreted to images. These produce IR images 

could be filmed or shot from a distance reached to 100 feet (about 10 meters) 

depending on the IR camera’s lens [40]. One of the most advantages of using 

IR thermography technology is the ability to improve the efficiency and safety 

of testing without traffic block or hands-on access. New technologies of IR 

thermography have been improved and adapted by researchers, which are the 

deck and soffit scanner and the ultra-time domain infrared. Each one of these 

technologies can be utilized with different environmental requirements. The 

following sections will describe three systems of infrared technologies that 

are used to inspect objects. The technologies are the hand-held camera system, 

the deck and soffit scanner (IR-DSS) and the ultra-time domain infrared (IR-
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UTD). More details will be briefly explained essentially for the IR-UTD since 

it is corresponding to the principles of the time-lapse thermography (TLT). 

 

2-5-2 Hand-held Camera Method 

The hand-held camera technology is considered one of the common 

methods that is utilized to detect defects, for example defects in the concrete 

deck slab. A typical photo of a hand-held camera, the FLIR T620, is shown in 

Figure (2-3). This type of cameras is lightweight, built-in, and easy to use by 

inspectors. In this method, the hand-held camera can take images for both 

deck slab and the soffit of an inspected bridge with blocking the traffic flow. 

It can be seen in Figure (2-4) that the produced IR image displays the 

subsurface defect inside the concrete deck slab as a thermal contrast. Several 

reasons are involved to cause subsurface defects, which are previously 

explained, such as corrosion in the reinforcement rebars which leads to 

increase the size of these rebars. More factors engaged in creating subsurface 

defects such as traffic loading. Figure (2-4) illustrates the photos that are taken 

to an inspected bridge in typical environmental conditions. Both images have 

been simultaneously taken at the same time by using the hand-held camera 

while the traffic flow is open. The image on the left is a photographic, while 
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the image on the right is the infrared image showing the bridge in a thermal 

distribution across the bridge. It is obviously that the image has a temperature 

scale that explains where the delamination is within the deck slab. Since the 

image is taken during the day hours, the delamination is appeared a higher 

temperature according to the thermal scale. It is important for inspectors to be 

closer to the existed delamination to obtain a good thermal contrast for them, 

to estimate their size, their area and even the depth by using the appropriate 

data analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 2-3: FLIR T620 hand-held infrared camera. 
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2-5-3 IR-Deck slab and soffit system (IR-DSS) 

The main purpose of using the IR-DSS system is to reduce the testing 

time for an inspected deck slab especially when its area is massive. In this 

system, the camera is mounted on a vehicle while the system keeps capturing 

IR images. In other words, the IR-DSS captures individual IR images from 

one spot to another spot for the same objected being inspected, which is 

similar to the process that is held by the hand-held thermal camera [41]. 

It can be seen from Figure (2-5) that the IR-DSS system is attached with 

a linear encoding for observing the position of IR-camera amid information 

procurement. The encoding device is mounted on a fifth wheel that is 

connected to the vehicle. Moreover, the encoding is precisely used to track 

the position of each image being taken for the deck slab being inspected. 

Figure 2-4: Image of a bridge deck (A) and an IR image (B) of the same bridge deck 

area showing a subsurface defect. 
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Visual as well as IR images are collected and spatially associated 

through the camera alignment and precision encoding wheel, trigging 

simultaneously data collection for each camera in the IR-DSS system [41]. 

Figure (2-5) states the whole details of the framework. It appears the camera 

mounted on a pole associated through a hitch in a truck. The IR camera is 

elevated around 10 feet (about 3 meters) above the ground level. The encoding 

is connected to the frame that is held the camera. Cables are linked to the 

camera and encoding device to the data acquisition device. 

Additional advantage of the IR-DSS system that has a flexibility to be 

mounted to any car that has a hitch. This permits the framework to be utilized 

in small spaces which are nonaccess to conventional vehicles. In addition, the 

camera head can be oriented to any direction, such as upward viewing, where 

the soffit of a bridge could be scanned and inspected. 

Finally, the collected data by the IR-DSS system are visual and thermal 

images. This feature gives a merit to the images being captured to be stitched 

together and give a plan of view, for instance a deck slab of a bridge. Figure 

(2-6) shows an example of a detached images of an inspected object. 
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Figure 2-6: Detached Images by IR-DSS data. 

Figure 2-5: Setup of the IR-DSS system on a truck. 
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2-5-4 The Ultra-Domain Infrared (IR-UTD) 

The Infrared Ultra Time Domain (IR-UTD), Figure (2-7), is a transient 

imaging technology and considered one of the new methods that is explored 

to boost the reliability of IR images. This technology was originally adopted 

and developed by Fuchs Consulting Inc. (FCI) of Leesburg, VA [41] which 

utilized to asses bridge conditions. The IR-UTD system collects infrared 

images over a course of time, such as hours, days, weeks or months, for a 

specific specimen or object and takes into consideration the effect between 

ambient environment and thermal contrast inside delamination [41]. The 

approach has the same principle of the Time-Lapse Infrared Thermography 

(TLT) which films a video sequence of thermal contrast of an inspected 

surface instead of a snapshot over a course of time [42]. 

The IR-UTD system could be installed in the field to capture a series of 

thermal images which allows to consider temperature variations over time for 

an object. These captured IR-images are processed by an appropriate software 

or program, such as MATLAB, to detect delamination locations, their sizes 

and even depths could be precisely ascertained [41, 43]. Moreover, an analysis 

of time series of thermal images can be also used to create and reconstruct 

well-defined image into a high contrast composite image [41, 42] as shown in 
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Figure (2-8). The IR-UTD system could be installed, and the infrared camera 

can be mounted on a pole to cover a large area of a deck slab as shown in 

Figure (2-7). 

It could be seen that many IR-images for the same area of the deck slab 

are taken over a course of heating and cooling cycles. The interval time 

between each is ranged from 1 second to several minutes or hours and the total 

time of the test could be over several hours, days, weeks, or months. 

The IR-UTD system is mainly made up of three major components 

which are: a camera box, data acquisition and interactive display as shown in 

Figure (2-9). The camera box has both infrared and visual cameras, which 

simultaneously capture the same spot of an inspected object. The camera is 

attached to the data acquisition (DAQ) with a cable that transfers the collected 

data and powers the cameras. Moreover, DAQ has a battery, a computer for 

controlling the system and hard drive. The last part of the system is the 

interactive display that illustrates the visual and the thermal images. 
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Figure 2-8: Schematic diagram of imaging a large area of bridge deck from a light pole 

or mast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7: Illustration of the IR-UTD process for collecting data during temperature 
cycles to produce an image of damage in a bridge deck. 
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The IR-UTD system includes a manual pan and tilt stage that allows 

the cameras to be angled and provides several field-of-view according to the 

locations of inspections. The IR-UTD system, the camera box, could be 

connected and mounted on a pole or mast which is attached to a bridge. The 

advantage of that is the system that collects IR data without blocking the 

traffic loading as shown in Figure (2-10). 

Figure (2-11) states that the IR-UTD system can be set up into a 

portable mast which has the facilitation to be towed by a hitch and easily 

moved if needed. 

Figure 2-9: Photograph of the IR-UTD system components showing the camera head, 
the data acquisition module, and the touch-screen display. 
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Figure (2-11): IR-UTD system set up in a portable DAQ system alongside the roadway. 

Figure (2-10). Image of the IR-UTD system mounted on a light pole base. 

After the setup is finished, IR-URD system starts collecting IR data, 

then specialized algorithms are used to process the thermal images of an 

inspected concrete specimen. 
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CHAPTER THREE 

3- A FRAMEWORK FOR AUTOMATED TIME-LAPSE 

THERMOGRAPHY DATA PROCESSING 

 

3-1 Background 

Highway agencies need to evaluate the condition of bridge decks to 

identify damage and optimize the timing and scope for preventive 

maintenance, repair, and replacement. Concrete bridge decks deteriorate due 

to traffic and environmental loading that causes cracking and spalling of the 

concrete. Spalling typically initiates as a subsurface delamination caused by 

corrosion of the steel reinforcing embedded in the deck or stresses caused by 

traffic. The subsurface deterioration is not apparent on the surface of the 

concrete and, therefore, cannot be evaluated by visual means [19]. 

Consequently, visual inspection of the deck surface may not 

characterize the condition of the deck adequately to support effective 

decision-making regarding preservation, repair, and replacement. 

Nondestructive testing (NDT) techniques have the potential to detect 

subsurface defects (i.e., areas of delamination) that result from the 

deterioration of the deck. The most commonly used NDT methods for the 
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assessment of concrete bridge decks are manual sounding (chain drag or 

hammer sounding), impact echo (IE), ground penetrating radar (GPR), and 

infrared thermography (IRT). Acoustic methods such as hammer sounding, 

chain drag, and IE are usually preferred for assessing sub-surface defects in 

the concrete due to the low cost and simplicity. However, these methods 

require traffic control to be implemented because they rely on surface impacts 

using a hammer, chain, or impactor at each test point on the deck. Lane 

closures increase the cost of the inspection and may present a safety hazard to 

workers and motorists. GPR methods are non-contact and may be 

implemented from vehicle-mounted platforms, requiring little or no traffic 

control. GPR is sensitive to moisture and corrosion-causing chlorides and 

provides a qualitative measure of deterioration; however, it does not detect 

subsurface defects directly [14]. 

Conventional IRT captures a single thermal image of an area of the 

deck at a given point in time. Several images of different areas of the deck 

may be required to capture the entire deck surface due to the size of the deck. 

Subsurface areas of delamination are detected by interpreting the thermal 

anomalies which appear in the IRT images. Areas of delamination interrupt 

thermal transfer through the deck during diurnal temperature variations of the 

ambient environment surrounding the concrete and heating caused by solar 
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loading (sunlight). The result is in ‘‘hot spots” when ambient temperature is 

increasing and ‘‘cold spots” when temperatures are decreasing (e.g., during 

nighttime). Conventional IRT methods are non-contact and can be 

implemented from vehicle mounted platforms that require little or no traffic 

control. Conventional IRT methods can typically detect areas of delamination 

that are 2 in. or less beneath the surface [44]; for this reason, conventional IRT 

is most useful for evaluating relatively shallow defects. 

TLT consists of collecting multiple images of the same area of the deck 

at different points in time. Multiple images captured at different times can be 

processed to analyze characteristics of the thermal behavior of the material 

over time. For bridges, capturing TLT images typically includes mounting an 

IRT camera on a light pole, mast, or sign structure where large areas of deck 

can be captured in a single image. From this position, images are collected at 

a fixed sampling interval (e.g., every 10 min) for some data collection period 

of hours, days, or even weeks. The overall objective of this study was to 

develop improved methodologies for analyzing TLT data to provide increased 

detectability of defects with depths of greater than 2 in. Recent advances in 

signal and image processing are leveraged to mine sub-surface defect 

information from TLT images. 
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This study aims to develop a fully automated TLT (A-TLT) data 

processing pipeline that is capable of detecting defects at varying depths under 

different environmental conditions. The framework is based on the time-

varying response of sub-surface defects at different depths under varying 

ambient temperature variations. Analyzing the time-frequency distribution of 

a sequence of IR images could be used to characterize defects at varying 

depths from the surface. In the current study, a multiscale data analyses 

approach based on wavelet transform (WT) is developed to decompose ATLT 

datasets into narrow band time-frequency modes. These modes contain unique 

information that is subsequently used to isolate defects based on their depths 

from the surface. The key objectives of the current study are as follows: 

(a) Develop a framework to fully automate time-lapse thermography data 

processing. 

(b) Investigate IR camera sampling rates and sampling intervals necessary 

for carrying out time-lapse thermography. 

(c) Perform a comparative analysis of the framework developed with 

traditional IRT approaches. 
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3-2 Related Works 

There are two main schemes by which IRT is performed on structures: 

active and passive. Active thermography stimulates objects using an external 

heating or cooling source that creates enhanced thermal contrast that can be 

used to localize subsurface defects [45-47]. Passive thermography does not 

use an external heating or cooling source and relies on either changing 

environmental conditions such as diurnal temperature variations or heat 

generated by the object being observed. 

Active thermography methods can be grouped into two main types, 

pulse or lock-in thermography, each of which is a form of TLT. Pulse 

thermography heats up an object with a short-duration, high-powered pulse. 

A recording of the thermal response of the surface during the cooling process 

is captured using an IR camera. Weritz et al. [48] and Maierhofer et al. [49] 

showed that sub-surface defects at varying depths could be extracted by 

analyzing the phase of the response image over time. Lock-in thermography 

uses a sinusoidal, mono-frequency heat source to excite an object while an IR 

camera simultaneously captures a sequence of thermal images. The pattern of 

heat dissipation from the surface of the object correlates with that of the input 

source. This property of lock-in is useful for denoising the thermal response 
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and subsequently improving the contrast between defective and non-defective 

regions beneath the surface. 

Among the different types of active thermography, lock-in is known to 

be less sensitive to surrounding conditions such as air turbulence, reflections, 

etc. [3]. Similar to pulse thermography, Sakagami et al. [50] and Ranjit et al. 

[51] also illustrated that the phase (instead of the amplitude) of the thermal 

response contains valuable information for detecting defects. In general, 

active thermography has been most successful when used to extract defects in 

metallic and composite specimens. The development of active IRT methods 

for concrete has seen very little progress over the years. This is primarily due 

to the low thermal conductivity of concrete materials and the typical large size 

of the test objects (e.g., large concrete components such as a bridge deck) that 

require significant amount of energy to manipulate temperature change. There 

has been breakthroughs such as in Milovanovic and Banjad Pecur [52] whose 

approach was able to detect 4 in. depth defect after applying 100 min of 

heating. Other developments [53-55] in active thermography have also 

improved the detectability of defects beyond 3 in. from the surface. 

Passive IRT for large structures typically observes the thermal behavior 

of material that has resulted from surrounding environmental conditions [46, 
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47]. It has been successfully used to identify internal voids [56], delamination, 

and cracks in concrete structures such as bridge decks [57], highway 

pavements [58], and pipelines [59]. Passive IRT remains the most common 

and successful scheme for defect characterization in concrete structures [60]. 

This is due to the uniform heating and cooling that results from diurnal 

temperature variations which can produce measurable thermal response from 

subsurface defects. Suman et al. [61] observed that under ideal environmental 

conditions defects at depths of 2 in. in the concrete can be detected. Washer 

et al. [1, 35, 44, 62] documented various environmental conditions and their 

corresponding influence on passive IRT methods used for inspecting bridge 

decks and soffits. 

The depth of defects affects the magnitude of the thermal contrast and 

the time required for the contrast to develop [52]. Under ideal conditions, 

deeper defects tend to appear later in time and with less contrast than shallow 

defects [62]. However, depending on the environmental conditions, the same 

defect might show up at different times of the day. Hence, the time at which 

inspection is conducted is an important factor to be considered during passive 

IRT. Washer et al. [62] made recommendations regarding the ‘‘preferred” 

time periods for conducting IRT; 4–7 h after sunrise for defects expected to 

be 2 in. deep. Hiasa et al. [63] on the other hand indicated that night-time 
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inspections are preferred because temperature differences are most stable and 

relatively less noisy. These observations are, however, suitable for inspecting 

shallow defects. 

For deeper defects, the preferred time period may not be known 

‘apriori’ and is a different time than for shallow defects. Consequently, 

conventional IRT that captures a single image at a certain time is unlikely to 

detect both shallow (2 in.) and deep defects (3 in.) in the same image. 

To overcome this challenge, Washer and Fuchs [64], Washer et al. [41] 

and Chase et al. [42] proposed TLT as a new method for passive thermography 

based on continuous imaging of surface temperature variations for an 

extended period of time. This approach eliminates the need to carry out 

inspections only during ‘‘ideal” conditions and also ensures that temperature 

variation signatures from deeper defects are captured. In Chase et al. [42], it 

was illustrated that TLT is capable of detecting defects up to 4 in. beneath the 

surface. There remains, however, open questions regarding the practical 

implementation of TLT for field inspection. For example, how often should 

images be acquired for TLT, and for what time interval? At high sampling 

rates and longtime intervals for data collection, the thermographer will have 

to deal with a lot of noisy information and the burden of ‘‘big data”. At lower 
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sampling rates or shorter sampling intervals, certain defects may be missed. 

Second, which images are relevant for localizing defects at different depths? 

The process of isolating or discounting images which lower the contrast 

between defective and non-defective regions is a challenging task. The 

traditional approach involves pre-selecting images based on known ambient 

conditions, followed by time series analysis to reconstruct a composite image 

that delineates the boundaries of sub-surface defects. For a largescale 

implementation of TLT, this step will require automation and robust 

algorithms to mine information critical for improving the detection of deeper 

defects. 

 

3-3 Research Methodology 

Figure (3-1) illustrates the methodology used to achieve the main 

objectives of this study. 

Acquire IR datasets: the study acquired thermal images from a previous 

research [15, 44] with a resolution of 320 × 240-pixel display for each image. 

Pixel-wise data pre-processing and manipulating: The acquired IR 

datasets are passed through a pre-processing engine to de-trend, normalize, 

and denoise the data. Several steps are conducted by transferring 2D images 
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into 1D signals which lets to calculate the envelope of maxima and minima, 

and in addition, the average for each signal. 

1D Wavelet Transform: The temperature variation of each pixel in the 

IR image is decomposed into time-frequency modes which are subsequently 

mined to generate a single composite image using a series of image 

enhancement techniques. The purpose of using this approach is to remove the 

noise affecting the modes with high frequency. There are several driving 

mechanisms, such as wind, rain, fog, and shadow, that are impacting the high 

constructed thermal images. By decomposing these signals into their modes 

that correlate with all mentioned mechanisms, the noise will be removed, and 

defects will be mined to disclose their positions. 

Reconstructing 2D high contrast images: The high thermal images are 

reconstructed by dividing the modes decomposed from each pixel in the IR 

images into three groups: high frequency component (MFC), medium 

frequency component (HFC), and low frequency component (LFC). Most of 

the information are stored in the MFC and LFC. The process removes the 

components under the HFC since it has the noisiest data. The final 

reconstructed thermal images for a specific course of time include only the 

MFC plus the LFC. 
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Sub-surface defect detection: A delamination localization 

(segmentation) engine based on active contour models was developed and 

used to automatically detect the boundary location of defects in the composite 

image. The model is also called Snake and it is basically represented by a 

chain of points wiggles through the image looking for high gradient of grey 

value of each pixel. 

Performance analysis: The concept of signal-to-noise ratio has been 

adopted to evaluate the results with the traditional and conventional IR 

thermography. A modification has been done on the general equation by 

taking the ratio between the calculated and real areas of defects. Moreover, 

the TLT method has been compared to other method such as the 4-point 

thermography. The results showed that the TLT has more improved results.  

The following sections provide a detailed explanation of the 

methodology. 

 

3-4 Data Acquisition and Pre-processing 

The data utilized in developing the methodology described herein 

consisted of IRT images collected during a previous study [15, 44]. A concrete 

block with 8 ft × 8 ft × 3 ft (2.4 m × 2.4 m × 0.9 m) dimensions was constructed 
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as shown in Figure (3-2). One face of the block was oriented toward the 

southern sky (‘‘sunny side”), representing a bridge deck or other component 

exposed to direct solar loading (i.e., sunlight). The other face of the block was 

oriented toward the northern sky where solar loading was never applied 

(“shady side”), which simulates the soffit area of a bridge deck. Four 

Styrofoam targets with dimensions 12 in. × 12 in. × 0.5 in. (305 mm × 305 

mm × 13 mm) were embedded at depths of 1, 2, 3 and 5 in. (25, 51, 76 and 

127 mm) from each face of the block. 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Schematic representation of the data processing methodology used in the 

research. 
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IRT images were captured using an uncooled microbolometer IR 

camera (ThermaCam Flir S65). The thermal camera has a thermal sensitivity 

of 0.08 °C at 30 °C and captured images using a 320 × 240-pixel sensor. 

Software (Therma Researcher Professional 2.8) was used to remotely control 

data acquisition parameters such as data sampling rate (1 snapshot every 10 

min, 24 hrs a day), the duration of data collection, and to store the data on a 

computer hard drive. Data was collected over more than three months on both 

the sunny side and shady side of the block. Thermocouples embedded in the 

concrete were used to monitor the thermal gradient in the concrete and study 

variations in the internal temperature of the concrete block. Cables connecting 

the thermocouple to the data collection system can be seen in images from the 

sunny side of the block (see Figure 3-2). A weather station was positioned 

adjacent to the block and used to measure solar loading, wind speed, and 

temperature during data collection. The IR camera acquired data from the 

sunny side for months October, November, December into January, and 

moved to the shady side for months of May, June and July. 

Examples of typical IRT images acquired during data collection are 

shown in Figure (3-2a). These data illustrate the contrast of conventional IRT 

images showing the simulated defects at depths of 1, 2, 3, and 4 in. in depth 

in the block. As shown in the figure, not all simulated defects can be observed 
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in the figures at all times of day. More shallow features have greater contrast 

and more well-defined shape than features at greater depths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: (a) Site layout and Concrete block with defect locations: (b) sunny side 

(south), (c) shady side (north). 
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All images acquired during the period of analysis were passed through 

a pre-processing routine where noisy information was detected and isolated. 

The process begins by first transforming 2D IR image snapshots into a 1D 

time series representing the temperature variation of each pixel in the image 

over the entire duration of the data acquisition. Next, the average temperature 

variation for each 1D signal is estimated using the maximum and minimum 

envelope as shown in Figure (3-3b). The average temperature variation is 

finally subtracted from the original 1D time series for each pixel location 

(Figure 3-3c). The result is a de-trended temperature variation for each pixel 

which is passed on to subsequent processes for analysis. 

 

 

 

 

 

 

 

 

Figure 3-3: (a) Raw, unprocessed IR image snapshots at different time of the day. (b) 

Estimating average temperature variation using maxima and minima envelopes. (c) 

Detrended pixel temperature variation (subtract the average temperature variation from 

the original 1D time series data). 
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3-5 Multiscale Analysis of 1D Temperature Variations 

The de-trended signal from the preceding section is affected by several 

mechanisms: variations in atmospheric temperatures, temperature variations 

due to surface or sub-surface defects and even random noise from rain, fog 

and shadows, etc. The goal of multiscale analysis is to analyze the internal 

structure of the detrended signal by decomposing it into a set of time-

frequency distributions that correlates with all these driving mechanisms. 

Once the driving mechanisms have been isolated from each other, the 

components corresponding to sub-surface defects can be mined to detect their 

location. 

Several data decomposition algorithms such as short-term Fourier 

transforms, Gabor filters, and empirical mode decomposition exist for 

extracting multiscale trends from data. However, temperature variations 

(obtained from passive thermography) are inherently nonstationary and, 

therefore, require highly adaptive algorithms to extract meaningful trends. 

The current study adopted the WT for analyzing the de-trended signal at 

different frequency scales. Wavelet Transforms operate at the scale of every 

oscillation and, are therefore, ideal for extracting localized defect information 

from time series data. Wavelet analysis has been widely applied in the areas 
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of nondestructive health monitoring [65], damage detection [66], incident 

management [67], and general signal processing. A summary of the WT is 

given below. 

 

3-6 Wavelet Transform 

The Wavelet Transform is considered one of the powerful 

mathematical techniques that was developed in the 1980s of the last century. 

The purpose of adopting this approach is by scheming signals of time-scales 

into frequency representations. It is an efficient tool that magnificently works 

with nonstationary signals, for example signals that stem from raw thermal 

imaged which are affected with several leverage factors, such as 

environmental circumstances. Another interest of the Wavelet Transform is 

by using different stretched band-widths, which allows the approach to do 

multiresolution analysis of the signals.  Meaning  that the method uses 

narrower bandwidth with high frequency signals in contrast  with a border 

bandwidth with low frequency signals [68]. 

In the current research, the Wavelet analysis yields a time-frequency 

representation of a 1D signal by convolving it with a family of scaled and 

shifted basis functions. The total sum of a signal over time multiplied by 
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scaled, shifted version of the wavelet is called the continuous WT. The 

continuous WT function f(t) can be represented as [68, 69]: 

𝑊 𝑆, 𝑇 𝑓 𝑡  ℎ∗ 𝑡  𝑑𝑡 𝑅𝑒 𝑗 𝐼𝑚      (3.1) 

where Wf denotes the WT, T is the translation factor, S is the scaling factor, 

Re is the real part, Im is the imaginary part, and hST is the daughter wavelet 

defined from the mother wavelet h: 

ℎ 𝑡
√

 ℎ  and ℎ 𝑡 𝑒  𝑒       (3.2) 

where ωo provides the size of the Morlet wavelet h(t) chosen here as the 

mother wavelet. 

An implementation of the continuous wavelet is designed as follows: 

 Take a wavelet and compare it to the section at the start of the 1D de-

trended temperature variation signal. Note the correlation coefficient is 

recorded throughout the time. 

 Shift the wavelet to the right and re-compute the coefficient. 

 Scale or stretch the wavelet and repeat the first preceding steps. 

 Vary the scale of the wavelet and repeat all steps. 

  Output the coefficients, frequency (scales), and time 

information. 
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MATLAB software was used to implement the WT. Figure (3-4) shows 

a wavelet decomposition of temperature variations of a single pixel in the IR 

image over a one-month period. The different scales shown in Figure (3-4) 

can be grouped into three classes: High, medium, and low-frequency 

components. Levels 1, 2, and 3 can be considered as high-frequency 

components (HFC). They capture short duration temperature variations at a 

scale of 1 cycle every 1– 15 min. Because HFCs have relatively very low 

energy (sum-square of amplitudes) and variance, the amount of sub-surface 

defect information that it captures is also low. The majority of information 

stored in HFCs is pure noise. Defects that are likely to be detected at these 

frequencies are those very close to the surface of the concrete block. The 

medium frequencies (MFC); levels 4, 5, 6, and 7 generally have the highest 

variance and energy, which means they store the most information about the 

sub-surface defects. From the figure, they capture hourly and daily 

temperature variations (1 cycle per hour – 1 cycle per day). Levels 8 through 

13 can be considered as low-frequency components (LFM) (1 cycle for greater 

one day), also capturing relevant sub-surface defects due to the high levels of 

energy stored in them. 
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Figure 3-4: Graphs showing wavelet decomposition of IR image capture for one-pixel 

location during the month of February. 
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3-7 Signal Reconstruction 

The goal of signal reconstruction is to generate a single composite 

image from all the snapshots (4320 snapshots a month) that accurately 

outlines all sub-surface defects. The algorithm in Table (3-1) is used to 

achieve this goal. For each pixel, a composite HFC, MFC, and LFC value is 

computed by subtracting the local maximum and minimum envelopes of the 

respective modes. Taking a log of the envelope difference serves as a 

smoothing function. 

Figures (3-5a–d and e–h) show the reconstructed composite images for 

HFCs, MFCs, and LFCs on the shady and sunny sides of the concrete block 

respectively. As expected, the majority of information captured by the 

composite HFC image is noise. Although the edges of the 1–2-in. defects can 

be inferred from the image, the edges are not clear and, therefore, could be 

misinterpreted. Deeper defects are completely obscured at this scale. As 

shown on the color bar in Figure (3-5), the MFCs accurately captured 

information on 1–2-in. depth defects with a maximum pixel intensity of 

approximately 895 and 110,000 on the shady and sunny sides respectively. 

The 3-in. depth defects are also visible at this scale at a relatively lower 

intensity. The composite image at this scale has removed most the noise and 
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transient temperature variations that were obscuring detection of sub-surface 

defects. The LFCs, on the other hand, emphasizes deeper defects (3–5 in. 

beneath) more than shallow ones as shown in Figures (3-5c and g). These 

results reveal the essence of multiscale decomposition; the ability to extract 

defect information based on the depth is invaluable. Figures (3-5d and h) 

display the final composite image which sums up the MFCs and LFCs. All 

defects within 5 in. from the surface are clearly outlined although their 

geometric shapes have morphed into circles instead of squares. From the 

composite image on the sunny side (Figures 3-5h), it is also important to note 

the effective removal of noise introduced by the temperature sensing wires. A 

visual comparison of the composite images in Figures (3-5d and h), makes it 

clear that, although the maximum temperature difference is observed on the 

sunny side, the shady side appears to have a higher contrast between the 

defective and non-defective region relative to the sunny side. 
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Table 3-1: Signal Reconstruction  

1. Group decomposition results into HFCs, MFCs and LFCs.  

2. For each pixel location 𝐼 𝑥, 𝑦  in groups HFC, MFC and LFC: 

(a) Construct a maximum 𝐸  and minimum envelop 𝐸  

(b) Subtract the minimum envelop from the maximum to obtain the 𝐸  

(c) Find the extremas of 𝐸  and compute the slope between the extremas. 

                                                              𝐸
∆

                                                 (3.3) 

where k designates a series of extremas, and Δt, the time difference between two 

successive extremas. 

(d) Sum up the log of slope over time to obtain the reconstructed value for each 

pixel. 

                                         𝐼 x, y  ∑ log 𝐸                                                     (3.4) 

3. Output 𝐼 x, y  

 

 

 

 

 

 

 

 

Figure 3-5: Signal Reconstruction from: (a) HFVs. (b) MFVs. (c) LFVs. (d) Sum of 
MFV and LFV Composite Images from the shady side. (e) HFVs. (f) MFVs. (g) LFVs. 
(h) Sum of MFV and LFV Composite Images from the sunny side. 
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3-8 Sub-surface Defect Boundary Extraction 

The final stage of the framework is to automatically extract the 

boundary location of defects captured in Figures (3-5d and h). Traditional 

edge detectors and thresholding algorithms have been widely used for 

automating damage detection in images [70]. These algorithms generally 

work by setting the grey value of each pixel in the image to a value that is 

dependent on the magnitude of the gradient of the grey level at the 

corresponding point in the original image. The concept of an edge is far more 

than the presence of a high gradient at a particular location; it highly depends 

on the spatial distribution of these high and low gradient points across the 

image. An edge detector, however, does not explicitly possess the capability 

of identifying the distribution of the gradients. Any regions with high 

gradients are detected, whether they are edges or noise. In this study, instead 

of relying on tradition edge detection systems, a model-based alternative 

called Active Contour is employed to automatically extract the exact location 

and geometric parameters of the boundary of the sub-surface defect. 
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3-9 Active Contour Models 

Active contours, also called snakes, belong to a class of model-based 

methods for representing the edges or boundaries of image features. They 

consist of energy minimizing deformable splines, influenced by constraint and 

image forces which pulls it towards object contours or boundaries. First 

introduced by Kass et al. [17], the technique has gained much popularity since 

then. It has been used in a variety of applications including bio-medical image 

analysis [71], traffic sign recognition [72], pavement and rail distress image 

analysis [73]. The snake can be thought of as an elastic band of arbitrary 

shape, represented by a chain of point that wiggles in the image towards 

regions of high image gradient distribution. So, the edge pixels must “pull” 

the snake points. The stronger the edge, the stronger its pull on the snake 

points. Active contours are broadly classified into two main groups: the 

parametric active contour model and the geometric active contour models. 

Parametric models represent the active contours explicitly as parameterized 

curves. In geometric models however, they are represented as level sets of a 

two-dimensional function that evolves in a Eulerian framework. It is able to 

break or merge naturally during evolution. This helps it to handle topological 

changes very well. A detailed analysis of the algorithm can be found in [61, 

74]. The level set algorithm developed in [75] is implemented in this study. 
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The evolving level set function is approximated to a signed distance function. 

Equation (3.5) is used as a metric to characterize how close a function is to a 

signed distance function. 

𝑃 𝜑 |∇𝜑| 1 𝑑𝑥𝑑𝑦       (3.5) 

The snake is influenced by two types of forces.  

 The Internal Energy (𝐸 : Also called the bending energy of the curve. 

It preserves the snake (keeping it smooth) as it is being pooled by image 

forces. 

𝐸 𝜇𝑃 𝜑       (3.6) 

where 𝜇 is a parameter controlling the effect of penalizing the deviation of 

from a signed distance function. 

 The External Energy (𝐸 ): The force that moves the snake points or 

zero level curve. It is dependent on the edge strength at a point; the 

stronger the edge, the stronger the pull. The external energy is supposed 

to be minimal when the snake is at the object boundary position. We 

designate this energy as: 

𝐸 𝜑 𝜆 𝑔𝛿 𝜑 |∇𝜑|𝑑𝑥𝑑𝑦 𝑣 𝑔𝐻 𝜑 𝑑𝑥𝑑𝑦     (3.7) 
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𝛿 𝜑
0                                         |𝑥| 𝜀

1 cos ,               |𝑥| 𝜀  
     (3.8) 

𝜆 0 and 𝑣 are constants, 𝛿 is the univariate Dirac function, and H is 

the Heaviside function. The total energy 𝐸  can therefore be defined 

as: 

𝐸 𝜑 𝜇𝑃 𝜑  𝜆 𝑔𝛿 𝜑 |∇𝜑|𝑑𝑥𝑑𝑦 𝑣 𝑔𝐻 𝜑 𝑑𝑥𝑑𝑦    (3.9) 

 

3-9-1 Active Contour Implementation Steps 

The performance of active contour models hinges on three main steps: 

the type of contour specified, parameters defined for contour initialization and 

the maximum number of contour iterations. The implementation steps 

adopted in the current study is described as follows: 

Specifying the Type of Contour: rectangular and circular shaped contours are 

the most common type of contours frequently used. Circular shaped contours 

are preferable for scenes where the shape of the object of interest is not known 

a-priori. In this study, rectangular shaped contours were specified since it 

matched the shape of the sub-surface defects of interest. 
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Defining Parameters for Contour Initialization: the size of the contour and its 

proximity to the defect location is one parameter that can marginally influence 

the performance of the active contour model. If the contour is initialized far 

aware from the defect, it may not be attached to the defect boundary when the 

maximum number of iterations is reached. To ensure that contours are 

initialized at the right location, we developed an automated approach for 

contour initialization shown in Table (3-2).  The algorithm uses the number 

of local minimum from the reconstructed image to determine the number of 

contours to be initialized. This is followed by a horizontal and vertical 

projection of image pixels to determine the size of each contour. Figure (3-7) 

shows initialized contours for the composite image. 

 Table 3-2: Active Contour Initialization 

Step 1: Use an 𝑚 𝑏𝑦 𝑛 filter to find the local minimums in the reconstructed image. A 
pixel value is minimum if it is lower than all its neighboring pixels within the 
𝑚 𝑏𝑦 𝑛 filter. The number of contours to be initialized is set to equal the number 
of minimums detected.  

Step 2: Project image pixels f I, j  column-wise and row-wise onto a horizontal H  
and a vertical accumulator V : 

  H j P f : , j ,  and V i P f I, : ; 

where P is the sum operator in this case.  I and j are the row and column index 
respectively. 

Step 3: Compute the first derivate for each accumulator and detect all zero crossings as 
shown in Figure (3-6).  

Step 4: The distance between the first and last zero crossing for each signal defines the 
width or height of the contour, whereas the second zero crossing corresponds to 
the contour’s centroid.   
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Determine maximum number of iterations: as explained previously, the 

contour moves by an external force driven by the image gradient. The contour 

Figure 3-6: Estimating the width and height of contour.   

Figure 3-7: a). Specifying Contour Type and Initialization. b). Defining Image Minimum. 
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stops evolving when equation (3.9) is minimized or when the contour is 

attached to the edge of the image feature. However, in cases where the image 

contains multiple features, the evolution of the contour must be constrained 

by the maximum number of iterations parameter. Setting this parameter low 

could lead to incomplete feature boundaries. Figure (3-8) below shows three 

different stages of contour iteration toward an image feature until exact 

boundary is extracted. In this study, the maximum number of iterations is 

adaptively selected using the relation in equation (3.10). From the equation, 

the number of iterations is correlated with the feature with the strongest 

gradient. The stronger the gradients in the image, the higher the number of 

iterations and vice versa.  

𝐼 𝑘 ∗
∑ ∑∀∀

∑ ∑∀∀
:      (3.10) 

where 𝐼  is the maximum number of iterations (capped at 500 in this study), 

𝑘 is a constant set to 500, 𝑟 and 𝑐 are rows and columns 𝑥  contains all the 

image pixels defined by contour initialization height and width and 𝑥  image 

pixels for all features in image.  
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Without any manual interventions, the number of defects in the image 

can be extracted by counting the number contours initialized; the depth of the 

defect could also be inferred based on the multiscale analysis. The size of the 

contours reveals the extent of subsurface damage in the concrete, a key factor 

in decision-making regarding preservation, repair, and replacement of bridge 

decks. 

 

Figure 3-8: Evolution of Contours toward image feature boundaries. 
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3-10 Performance Evaluation and Discussion of Results 

The performance of the developed framework is evaluated based on 

defect size detection accuracy and the amount of contrast enhancement 

between defective and non-defective regions of a TLT processed image. 

To evaluate the defect detection size accuracy, we compared the ratio 

of the area of defect extracted by the framework to the actual or expected area 

of the defect. Assuming that there were no geometric image distortions during 

data acquisition, the original dimensions of the block specimen (2.4 m × 3.1 

m) and defects (300 mm × 300 mm) were transformed into pixel areas. The 

TLT algorithms were then used to process IR data acquired at different time 

periods. The final size of the contours extracted for each day were compared 

to the true size of the defects and reported in Table (3-3). From the Table, 

although there are obvious discrepancies in the size of defects extracted by the 

TLT framework, the reported sizes are detectable. For example, for 5-in. depth 

defects, about a quarter to have of its size (depending on atmospheric 

conditions) could be seen on TLT processed images. 

Table 3-3: Defect size detection accuracies. 
Defect depth Detection size accuracy 
1 in. 0.84–0.96
2 in. 0.77–0.88
3 in. 0.71–0.81
5 in. 0.18–0.46
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To evaluate the performance of the proposed TLT framework based on 

contrast, we defined a quantitative measure of contrast enhancement which is 

influenced by two main parameters: The size of the defect in the processed 

image compared to its original (known) size and the pixel intensity of the 

defective area compared to its immediate surroundings. The result is a 

modified version of signal-to-noise (SNR) [76, 77] ratio designated as 

follows. 

 Consider the defective and non-defective regions as signal (Sarea) and 

noisy (Narea) area respectively as shown in Figure (3-9). The defective 

region is extracted from the final location of the active contour, whereas 

the non-defective region is the area surrounding the identified defective 

region. 

 Compute the contrast measure (mSNR) for the processed image using 

equation (3.11). 

𝑚𝑆𝑁𝑅 20𝑙𝑜𝑔 𝑘 ∗ ∗
∑ ∑ ,,

    (3.11) 
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where 𝑘 𝑣/𝑉; v is the size of defect extracted by the active contour and V 

is the known size of the defect. m and n are the dimensions of the image, σnoise 

is the standard deviation of the noisy area. 

 

 

 

 

 

 

 

IR Data were analyzed using the contrast measure developed to address 

two key questions regarding the application of the framework developed. 

First, how often should images be acquired, i.e., what sampling intervals 

should be used during data collection. Second, given a selected sampling 

interval, what is the appropriate data collection period be, i.e., how long 

should data be collected. The effect of the time of year when data was 

collected and also analyzed. 

 

Figure 3-9: Schematic diagram showing the defect areas and surrounding noise areas used 
for SNR calculations. 
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3-10-1 Sampling Interval 

The influence of the camera’s sampling rate was investigated using 5 

different sampling intervals. The data utilized in the study was collected at a 

sampling interval of 10 min; additional sampling intervals of 1, 3, 6, and 12 h 

were analyzed by sampling the available data at the appropriate times. Figure 

(3-10a–c) shows the normalized contrast for simulated defects at depths of 1, 

2, 3, and 5 in., for data collection intervals of 24 hrs (Figure 3-10a), 1 week 

(Figure 3-10b) and 1 month (Figure 3-10c). A normalized contrast of 0 or less 

means the defect cannot be detected visually in the image. As shown in the 

figure, simulated defects at depths of 1–3 in. were detectable using any of the 

selected sampling intervals; using a smaller sampling interval generally 

improved the contrast between defective and non-defective regions. 

 

3-10-2 Data Collection Period 

The analysis indicated that simulated defects that were 1–3 in. beneath 

the surface were detectable with only 24 hrs of data collection, as shown 

Figure (3-10a). At a sampling interval of 10 min, even 5-in. deep defects could 

be detected using a 24-hr data collection period, although at very low contrast. 



88 

 

Figure (3-10b) and c show that the contrast for a 5-in.-deep defect was 

improved when the data collection period lasts for 1 or more weeks. 

 

 

 

 

 

 

3-10-3 Inspection Timing 

Figure (3-11) shows that defects within 5-in. from the surface can be 

detected with the proposed framework irrespective of the month the 

inspection was carried out. However, the amount of contrast observed for 3- 

and 5-in. defects will vary; hotter months appear to have a higher contrast 

compared to colder months. The IR camera was in position on the shady side 

between February and July and on the sunny side between October and Jan. 

As explained earlier, imaging from the shady side generates higher contrast 

images as compared to imaging on the sunny side. The explanation for these 

results may be that the longer days during February-to-July (shady side) as 

Figure 3-10: Graphs showing average normalized image contrast using IR images 
acquired over a period of (a) 24 h. (b) 1 week. (c) 1 month. 
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compared with October-to-January (sunny side) provide more thermal 

contrast. 

 

 

 

 

 

 

3-11 Assessment of the A-TLT Methodology 

A comparison of the SNR for the A-TLT processed data with lock-in 

thermography and conventional IRT data was completed to assess the 

performance of the A-TLT processing. Conventional lock-in thermography is 

used for active thermography where the characteristics of the external heat 

source is known. To implement the lock-in algorithm for passive 

thermography, the maximum temperature response from a non-defective 

location was used to approximate the external heat source, also called the 

reference signal. This was followed by a correlation process which simply 

multiplies the reference signal to temperature variations from every pixel. The 

Figure 3-11: Average normalized image contrast by month for 3- and 5-in. defects. 
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resulting data were then processed using a four-point method. The four-point 

method is a popular technique for extracting sub-surface defects in materials 

using lock-in thermography. The method requires only 4 snapshots of the 

specimen to be captured during the heating and cooling cycle. Phase and 

amplitude image are then reconstructed from the snapshots using equations 

(3.12 and 3.13) below [3, 78, 79]. 

𝜙 𝑥, 𝑦 tan       (3.12)  

𝐴 𝑥, 𝑦 𝑆 𝑆 𝑆 𝑆     (3.13) 

where S1, S2 and S3, S4 corresponds to concrete block temperatures during 

heating and cooling cycles respectively. Table (3-4) summarized the process 

used to implement lock-in for passive thermography. 

Table 3-4: Lock-in for passive thermography. 

1. Heat-source or reference signal approximation: For all images, find non-defective 

region with maximum temperature response. 

2. Denoising: Convolve each pixel’s temperature variation with the approximated 

reference signal to amplify variations correlating with the heat source. 

3. Four-Point: Apply four-point method and extract phase and amplitude images using 

equations (3.12 and 3.13). 

4. Output: Select amplitude or phase image with highest contrast between defective 

and non-defective regions for comparison. 
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Either the phase or amplitude image can be used to visualize the sub-

surface defects. Figure (3-12) shows the results of using the four-point method 

to process IR images acquired on the shady and sunny sides. The processed 

images shown were obtained by applying equations (3.12) and (3.13) above 

to four images which maximized the contrast between defective and non-

defective regions. From the figure, 1–3-in. defects are easily distinguishable 

whereas 5-in. depth defects cannot be seen. Comparing Figure (3-12a) and d 

also illustrates qualitatively that the A-TLT processing produced greater 

contrast between defective and non-defective areas, suggesting that A-TLT 

had improved denoising capabilities as compared to the four-point-snapshot 

approach. 

 

 

 

 

 

To illustrate the improvements of the A-TLT processing as compared 

with conventional IRT and the four-point TLT method quantitatively, an 

analysis of one month of data was completed and is shown in Figure (3-13). 

Figure 3-12: Images produced from the four-point method showing (a) Lock-in – Sunny 
Side. (b) Lock-in – Shady Side of the concrete block. (c) Conventional – Sunny Side. 
(d) Conventional – Shady Side. 
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The normalized contrast between 3 and 5-in. deep simulated defects and 

sound areas of concrete was determined for each method based on the 

calculated SNR. A positive normalized contrast means the defect is visually 

distinguishable in the images produced. Conventional IRT data were 

determined from raw IR images that produced the greatest contrast for the 3 

and 5-in. depths. In other words, these data represent the maximum contrast 

values determined from conventional IRT during the month, as determined 

from visually inspecting all of the images acquired during the analysis period. 

Data for the four-point method were determined for each diurnal temperature 

cycle during the month. 

In general, it can be observed that the average normalized contrast for 

defects detected with the A-TLT increases with time whereas those observed 

with the four-point approach are unstable because they are heavily influenced 

by diurnal temperature variations. The figure shows that both methods were 

able to detect 3-in. defects on all days in July. The contrast observed using A-

TLT is approximately double that of the four-point approach. For defects 5 in. 

beneath the surface, the A-TLT provided significantly increased contrast as 

compared with the four-point method. The contrast for the A-TLT ranged 

from 0 (during the first 3 days in July) to 0.18 (by the end of July). The 

generally increasing trend over time emphasizes the benefit of continuous 



93 

 

imaging for IRT. In fact, after 15 days of continuous imaging in July, the 

contrast for 5-in. defects using A-TLT is comparable to the contrast for 3-in. 

defects using the four-point approach. From the figure, 5-in. defects are not 

easily detected using the four-point method. The normalized contrast is 

negative on most days. 

Comparing A-TLT to the conventional IRT, it can be observed that it 

takes about 10 – 14 days for the A-TLT method to produce an image with 

comparable contrast to the maximized conventional IRT image. After 14 days, 

the A-TLT slightly edges past the baseline. This is once again evidence of 

superior denoising capabilities of the proposed framework. 

 

 

 

 

 

 

 

 
Figure 3-13: Comparison of proposed framework (A-TLT) with the four-point method based on 
daily contrast for 3- and 5-in. sub-surface defects in the month of July. 
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CHAPTER FOUR 

4- DETERMINATION OF DEPTHS IN DELAMINATION IN 

REINFORCED CONCRETE STRUCTURES BY USING 

MACHINE LEARNING 

 

4-1 Background 

With the extensive numbers of concrete bridge decks in poor structure 

conditions, highway foundations have an increased necessity to evaluate their 

conditions which leads to optimize the timing and scope for preventive 

maintenance [80] to evaluate the durability and serviceability of these bridges 

before they become risky and costly. For that reason, it is essential for 

detecting and predicting defects in concrete bridge decks in order to determine 

accurately the structural state of concrete components to suggest a proper 

renovation technique for possibly damaged parts in the concrete bridge decks. 

Several reasons have led to cause or create defects inside concrete decks. 

Deterioration factors, such as an excessive traffic loading, weather conditions, 

cycles of freeze-thaw, shrinkage, thermal effects, and corrosion of reinforcing 

rebars, cause cracks, air voids, delamination and spalling [26]. These bridge 

deck deteriorations often occur below the deck surface and become difficult 
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to be evaluated by visual means [19]. Furthermore, delamination is shaped 

from hidden cracks inside the concrete components and is initiated at 

reinforcement rebar layers (top or bottom) or even at region between 

reinforcement rebar layers [81, 82]. On the contrary, sub-surface delamination 

might be detected by using visual examination, which mainly depends on 

experience of inspectors [12]. Consequently, the visual inspection might not 

give clear decision-making relating to maintenance, repairing and 

replacement. 

To detect this delamination potentially, nondestructive testing (NDT) 

is used and has the ability to reveal these defects (i.e., areas of delamination) 

by employing techniques such as manual sounding (chain dragging and 

hammer sounding), impact echo (IE), ultrasonic, and advanced methods, like 

ground penetrating radar (GPR) and infrared thermography (IRT). 

However, there are two main approaches that are employed by the IRT: 

the active and the passive thermography. The active thermography mainly 

utilizes objects that are simulated by a heating or cooling source such as 

halogen lamps or electrical heaters as a thermal excitation for detecting 

delamination in concrete structure components [45-47]. Unlike the active 

thermography, the passive thermography utilizes the natural solar as a heating 
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or cooling resource such as diurnal temperature or a heating that is generated 

by an object itself such as machines [24, 83]. 

The components of reinforcement concrete structures commonly have 

low diffusivities than metal materials. For that reason, a thermographic testing 

needs more time for heating up concrete specimens and testing record. 

Moreover, it is difficult to ensure that the heating up over a specific time is 

practically homogeneous because the wide size of specimens being inspected. 

Consequently, the concrete buildings are considered as non-homogeneous 

structures since they have voids, cracks and reinforcement and that what 

makes the use of active thermography in civil engineering is less than other 

majors, for example the aerospace industry and mechanic engineering [53]. 

During the last few decades, the active thermography has been widely 

employed for detecting anomalies like voids or defects in metals, plastic, and 

composite materials. Nowadays, the active thermography has demonstrated to 

be an outstanding technique to qualify (the location) and quantify (the depth) 

of delamination in reinforced concrete structures [54, 55, 81, 84, 85]. 

  From previous researches, most developed methods in the active 

thermography, on estimating depths in defects, are as a function of phase 

contrast (Δϕ), frequency (f), thermal contrast (ΔT), time (t), and material 



97 

 

properties of specimens being inspected, for example the thermal diffusivity 

length [49, 53, 86]. 

The active thermography tests are held under controlled environment 

conditions, such as the frequency of the test, intensive of heating subjecting 

on inspected materials, the distance between a heating source and a specimen 

being tested, … etc. In active thermography, several models have been 

adopted to calculate the quantitative delamination in concrete structures such 

as pulsed phase (PPT) [87, 88] and lock-in (LIT) thermography. 

Likewise, the passive thermography has manifested an excellent 

method for investigating delamination in concrete structures. The previous 

mentioned models in the active thermography proved to be incompatible with 

the passive methodology to predict depths in delamination in the reinforced 

concrete structures. 

In the current work, the passive thermography has been used to predict 

depths in delamination since the concrete bridges are exposed to direct solar 

energy and ambient temperature changes. Parameters, like solar heating, 

daytime and nighttime, wind speed, clouds, and shadows, are affecting on the 

process of passive thermography. For these reasons, machine learning (ML) 

has been proposed as an alternative method for the quantitative analysis to 
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detect depths in defects in the concrete structure components. However, an 

analysis approach called the Fast Fourier Transform (FFT) has been taken into 

consideration to assist in excerpting features from the thermal raw data, for 

instance phases, frequencies, and amplitudes. The concept of the machine 

learning works by training and testing the extracted features of the defect and 

sound areas in the concrete specimens. The proposed methodology has shown 

a good accuracy by employing different algorithms like support vector 

machine (SVM) and k-nearest neighbor (KNN) which will be discussed later 

in this research. The objectives of the current study could be summarized as 

follows: 

(a) Developing an algorithm to fully calculate phases, amplitudes and 

frequencies and extract features from the delaminated and non-

delaminated areas. 

(b) Proposing classifier learners such as SVM and KNN to build predictive 

models to estimate depths in delamination. 

(c) Conducting a comparative analysis of different Machine Learning 

models for depth prediction. 
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4-2 Related Works 

Infrared thermography adopts two main approaches depending on the 

heat resource: active and passive thermography. In active thermography 

method, a surface of specimen object is artificially subjected by an external 

heating stimulus, such as halogen lamps, flash lamps, electrical heaters, 

ultrasonic excitors [18], while, the heat in passive thermography approach is 

naturally applied by using solar source that comes from sun or a cooling 

process during nighttime [18]. 

Active thermography has been extensively proposed to quantify defect 

depth in metal and composite materials [89]. The first study on defect 

quantification in reinforced concrete structures had been done by Maierhofer 

et al [49, 90] and Meola et al [91]. Maierhofer et al [90] studied a quantitative 

analysis on a concrete block with dimensions (1.5m x1.5m x0.5m). A 

computer program based on finite element differences method was adopted 

to stimulate the heating up and cooling down. An inverse solution was used 

depending on maximum temperature difference which had been determined 

from experimental tests. Another research had been accomplished by 

Dumoulin et al [87] in 2010 to estimate defect depths in a concrete block. 

Pulsed phase thermography (PPT) had been used since a direct relationship 
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exists between depth (z) and thermal diffusion length (µ) [92]. A 

considerable error was obtained between the calculated and real depths, 

which was attributed to the estimation of using the thermal properties of 

defect materials [87]. A number of stimulations was completed by Cotic et al 

[53] depending on experimental tests. The model was developed by 

employing the sizes of defects. A quadratic relationship had been used 

between the depth of defect (zdef) and the time (tmax) or the frequency (fmax). 

In 2006, Arndt et al [88] used pulsed-phase-thermography (PPT) to adopt an 

equation which was mainly established on the maximum phase contrast, 

blind frequency, thermal diffusivity of the inspected specimen and a 

correlation factor. Furthermore, an experimental test was fulfill by Huh et al 

[84] on a concrete block which has delamination with different areas and 

depths. The authors adopted a relationship between observation times and 

defect depts as t=z2/δ, where δ is the thermal diffusivity of materials being 

tested. The time (t) in the previous relationship could be illustrated as the 

time that could the absolute contrast (ΔT) stays constant or gets to the 

maximum value after the heating up process. In 2017, Milovanovic et al [93] 

had employed an empirical expression that is driven from a solution of a heat 

flux [94] as illustrated below: 

𝐷 ∝  𝜋  𝑡 /𝐶        (4.1) 



101 

 

where α is the thermal diffusivity of the concrete and tinf is the time where the 

influence point of thermal constant occurs. The calibration coefficient (Cinf) 

should be calculated for each inspected specimen. 

Tran et al [55] had studied detectability of defects with different width-

to-depths (w2d). A concrete block with artificial simulated delamination was 

tested by using pulsed phase thermography (PPT). The research concentrated 

on the w2d ratios less than 2.0. A quadratic relationship had been adopted 

between the observation time (t) and square depth (z2) [95, 96]. In addition, 

the study showed that the increasing of heating up subjected on the specimen 

increases the estimation of defect depth. Another research had been 

performed by the same authors in 2018 [54]. They focused on the effects of 

depth, heating time, and rebar on detectability of defects on concrete 

specimens. Long pulsed thermography (LPT) had been used in the 

experimental work. The signal-to-noise ratio (SNR) was employed to 

evaluate the detectability of delamination. Moreover, an analytical equation 

was adopted a quadratic function between the observation time (Tmax) and the 

depth of delamination based on a one-dimensional equation of heat flux [95, 

96]. The mean absolute percentage error (MAPE) was employed to assess the 

results between the calculated and real depths [97]. In 2017, Hiasa et al [98] 

studied the effect of the size and shape of defects to improve the reliability 
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and applicability of infrared thermography in concrete structures. It was 

possible to estimate the delamination depths by using a finite element 

modeling. The process had been done by comparing the temperature 

difference (ΔT), between the sound and defect areas, that was obtained from 

infrared thermography which was gained from the finite element model 

(FEM) at several depths. The results showed that the method worked in a 

very good agreement. 

Cheng [99] had used the machine learning (ML) to detect defects in a 

concrete specimen. An experimental test had been achieved in a laboratory 

but with three different conditions to evaluate the performance of models. In 

addition, a procedure had been developed to include the thermal conditions 

by using principal component analysis (PCA) and later on predict defects by 

two supervised machine learning models. A convolutional neural networks 

(CNN) had been adopted by Perez et al [100] to automatically detect and 

localize defects, mould, deterioration and stain in buildings. The method 

showed a very good accuracy throughout training images to detect the defects. 

On the other hands, the approach had some limitations, such as several types 

of defects are not considered in the network. 
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4-3 Research Methodology 

A new process has been adopted for the present study by employing a 

combination of two approaches on the collected thermal images, the Fast 

Fourier Transform (FFT) and the Machine Learning (ML) technology. Figure 

(4-1) illustrates the steps that have been proposed to achieve the main goals 

of this research. 

Date acquisition: Thermal images were acquired with a resolution of 

324 × 256-pixel display, as a 2D-matrix for each individual image. This 

operation let the analysis engine deal individually with each extracted signal, 

performing to be more beneficial in the next process. 

 

Pixel-wise data pre-processing and manipulating: All thermal IR 

images collected during the current study have been passed through a pre-

process of manipulation, in order to identify and separate noisy information. 

First, the process starts with the transformation of the 2D IR images captured 

into a 1D dataset which represents the pixel’s temperature changing during 

the period of a test acquisition. The next stage is by locating the maximal and 

minimal envelope as stated in Figure (4-1b) for each one-dimensional signal 

obtained to approximately estimate the average temperature changing in these 
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signals. The final stage is by subtracting the obtained average temperature 

signals from the original one-dimensional signals for each pixel located in the 

two-dimensional thermal snapshots, as shown in Figure (4-1d). The purpose 

of this routine is to smooth the dataset that leads to detrend, normalized and 

denoise the thermal images. 

 

3D Matrix and reconstructing 2D high contrast image: All detrended 

signals are transferred into a 3D matrix leading to reconstruct a 2D high 

contrast image for any course of time. 

 

Splitting defects in the concrete specimen: Each delamination inside the 

concrete specimen will be split into parts. This analysis engine provides the 

flexibility for the Machine Learning (ML) to train the data smoothly, which 

will be discussed in details later. However, delamination is divided into four 

parts and then the temperature variations are extracted from each part and 

transferred as a one-dimensional signal. Moreover, a specific period (a day, a 

week, or a month) of a dataset has been split up into regions to obtain the 

temperature variations. For example, the signals of a dataset for a one day 

have been divided into four regions between 12:00 am – 06:00 am, 06:00 am 
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– 12:00 pm, 12:00 pm – 06:00 pm and 06:00 pm – 12:00 am. The aim of this 

process is to efficiently increase the capability of reading the delamination 

temperature at variety depths and to decrease the disparities in each individual 

defect in the concrete components. 

 

Processing of the Fast Fourier Transform: the FFT is individually 

applied on each signal and likewise on region (i.e., from 06:00 am to 12:00 

pm) to build phases and amplitudes from a series of 3D matrix and as well as 

to acquire the frequency of these signals. The phase in the infrared 

thermography has a slighter influence by environmental circumstances such 

as, reflections, emissivity, surface geometry and nonuniform heating [101]. 

This advantage gives an agreeable for quantitative characterization in concrete 

objects being inspected [86]. 

 

Feature engineering: Features, from the previous routines, are 

extracted from the acquired phase and amplitudes. Two categories of features 

are sorted in this scenario: the major and the minor features (or the sub-

features). The minor features are completely excerpted from the major 

features. There are four major features which are the pixel, the amplitude, the 
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phase, and the frequencies. These four main features are completely extracted 

from a specific period that is split into regions. Minor features are to be 

entirely contingent on main features by taking the averages and subtraction of 

these values. More details will be illustrated later in the Machine learning 

(ML) section. 

 

Machine Learning and building predictive models: This process is 

appointed by training the extracted features for different periods by using the 

concept of Machine Learning (ML) via two classifiers, the Support Vector 

Machine (SVM) and k-Nearest Neighbor (KNN) to create training models. 

 

Estimation depths in delamination: This phase is employing the 

predictive models on other datasets to estimate delamination depths in 

concrete specimens. The following sections will provide in details a 

clarification about the current methodology.
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4-4 Slab Fabrication 

4-4-1 An Overview 

A full-scaled reinforced concrete slab was fabricated and inspected in 

order to provide appropriate data for the Machine Learning analysis. The 

following sections will include in brief the outlines of selecting the design, 

experimental set up and materials being used. Moreover, figures, diagrams 

and directions of tests will be discussed in details. 

Once the IR images are collected from the tests, a suitable procedure of 

analysis is employed to extract the necessary features. FFT analysis and 

machine Learning are both utilized to quantitatively estimate delamination 

depths. 

 

4-4-2 Design and Construction 

The reinforced concrete measures fourteen and a half feet by ten and a 

half feet width and eight inches thick (14.5 ft × 10.5 ft × 8 in.) as illustrated 

in Figure (4-2). Two mats of reinforcement steel (top and bottom) in both 

directions were used with concrete covers of 2.50 in. from the top and bottom 

layers of reinforcement mats to the nearest concrete surface as shown in 
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Figure (4-3). For the top steel reinforcement mat, steel bars #6 were placed 

each 6 in. along the long direction, while for the short direction, steel bars #5 

spaced each 15 in. In addition, steel bars #5 were used for the mat in both 

direction with spacings of 9 in. and 10 in. for the long and short direction, 

respectively as schematic in detail in Figure (4-3). The reason that why the 

reinforcement design was selected is to fulfil the minimum requirement of 

Missouri Department of Transportation (MoDOT), and to imitate an actual 

concrete deck slab with existing delamination. In Engineering Policy Guide 

of MoDOT [102]. MoDOT guide involves several typical cross-sections 

depending on the functionality, loading and design. A minimum design cross-

section (HL93,24’-0” Roadway-4 Girder) [102] was adopted with 8 in. thick 

in the current study. 

Concrete type B-1 with 28-day design compressive strength of 4000 psi 

was used in the concrete slab to fulfill the minimum requirement of MoDOT 

for concrete deck slabs [102]. 
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Figure 4-3: Details of the top and bottom layers of reinforcement steel in the concrete 

specimen. 

Figure 4-2: Plan view of concrete slab: a) showing the locations and dimensions of 

delamination embedded in the specimen, b) A cross section A-A showing the defect 

locations within the depth. 

(a) 

(b) 
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To accurately simulate an actual condition of delamination inside deck 

slabs, the current research primarily depended on a previous research [18]. 

This research [18] had selected and tested three different materials 

symbolizing verified defects inside a small concrete specimen. The three 

materials (the defects) were open-celled Styrofoam, bubble wrap and open-

celled plastic sheets. Each material being inspected by using the Impact Echo 

(IE) method showing a relative electrical resistance close to the relative 

acoustic electrical resistance of air [18], since the delamination is considered 

as air-filled. 

The current study selected the open-celled Styrofoam material with 

0.22 in. thick. All delamination targets measure eighteen inches by eighteen 

inches (18 in. × 18 in.). Three defect depths have been chosen: 2-inch, 4-inch, 

and 6-inch in the current research. Six targets had been embedded in the 

concrete slab, two for each defect depth. This delamination had been arranged 

into two rows (top and bottom), each row has three targets. The order of them 

is 2-in., 4-in., 6-in. and 6-in., 4-in., 2-in. for the top and bottom rows, 

respectively. 

The 2-inch delamination deep is attached to the highest top layer of 

rebars, while the 6-inch delamination deep is linked to the bottom surface of 
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the lowest bottom layer of reinforcement. In addition, a small frame has been 

built, which is also attached to both the top and bottom steel mat to mount the 

4-inch-deep delamination. Figure (4-4) shows more details of fixing these 

targets. 

As described in chapter two, most of the delamination occur due to 

corrosion in steel reinforcement. Specified concrete cover depths are typically 

1.5-2.5 inches, with constructions errors sometimes resulting in shallow 

defect on the order of 2-in. deep on the top layer of steel, or 6-in. deep on the 

bottom layer of the reinforcement mat. Moreover, in some cases, rigid overlay 

of 2-in. thickness is applied to bride decks to provide a wearing surface and/or 

to rehabilitate a bridge deck. The cover deck depth of 4-inches was included 

to represent such a case. Additional details of fabricating the slab are shown 

in Figures (4-5) and (4-6) before pouring the concrete, showing the steel 

reinforcement and the locations of delamination. 

 

 

 

 
Figure 4-4: Details of mounting defects with 4-in deep in the concrete slab: A steel 

frame was used to mount delamination at the middle of the concrete slab. 
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Figure 4-5: Location of the specimen in an open area next to the RTF and working 

on bottom layer of steel reinforcement. 

Figure 4-6: Details of both layers of steel reinforcement, top and bottom, the locations 

of defects, and locations of hooks in the specimen before pouring the concrete. 
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4-4-3 Test Summary 

The place of the specimen is located at an open field on the west side 

of the University of Missouri’s Remote Testing Facility (RTF) as illustrated 

in the google map photo in Figure (4-7). 

Two locations of the Infrared Ultra Time Domain (IR-UTD) have been 

employed as shown in Figure (4-7). The first location was set up to the north of 

the specimen, Figure (4-8) while the second one was installed on the west of the 

concrete slab. Several tests on the specimen have been done collecting thermal 

images. On the first location, two weeks of testing with a 1-minute interval has 

been completed by capturing more than 20,000 images. Later on, the IR-UTD 

system has been moved to the second spot and another two weeks of inspecting 

was made with also more than 20,000 collected pictures. Moreover, another two 

tests on location 2 have been implemented of three-day and one-week tests. 
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Figure 4-8: The concrete specimen laying on the ground with the IR-UTD 
system located at the north side. 

Figure (4-7): A map illustrating the location of the specimen with respect to the 
RFF and locations of IR-UTD system (the north and the west positions) with 
respect to the specimen itself. 

West location 

of IR-UTD 

RTF 

RC slab 

North location 

of IR-UTD 
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4-5 Multiscale Analysis of 1D Temperature Variations 

Several decomposition algorithms are available for extracting 

multiscale 1D temperature signals, such as Fast Fourier Transform (FFT), 

Gaber Filters, Principal Component Analysis (PCA), Wavelet Transform 

(WT) and Empirical Mode Decomposition. The main reason of using the 

decomposition algorithms is to convert signals obtained from thermal images 

of the passive thermography to spectrum domain that exposes image features, 

such as phase, amplitude, and frequency, which are not visible in spatial 

domain. The frequency domain can also achieve more compact 

representations; for instance, the extension of the image itself. Another 

advantage can be seen in the spectrum domain which is designing digital 

filters that assist in improving the quality of images. For these reasons, the 

Fast Fourier Transform is adopted to extract features with the Machine 

Learning concept. The next sections are briefing of these approaches. 

 

4-5-1 Fast Fourier Transform (FFT) Algorithm 

Fast Fourier Transform (FFT) is considered one of the common 

methods that is used for signals analysis and image processing. It had been 

first developed and submitted by Joseph Fourier in 1807 for solving the 
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propagation of heat in solid bodies [103] by using Fourier series, which was 

a very powerful tool in solving ordinary partial equations. The main concept 

of the Fourier Transform is by generating a formula which comes from the 

summation of periodic functions such as sine and cosine terms. Moreover, this 

idea had been adopted to solve either the non-periodic functions by using the 

principle of Fourier integrals [104]. 

Fast Fourier Transform converts the time domain of a signal to the 

frequency component by using the one-dimensional Fourier Transform. Since 

that reason, the FFT surpasses other algorithms in their capability, such as 

Wavelet Transform (WT), in most stationary and non-stationary signals [105]. 

However, the components of the FFT can be either a real or complex number 

[106]: 

𝐹𝑛 ∆𝑡 ∑ 𝑇 𝑘 ∆𝑡  𝑒 𝑅𝑒 𝑙𝑚        (4.2) 

where j = the imaginary number (j2 = -1). 

 n = refers to the frequency increment (n=0, 1, … N). 

 Δt = the sampling interval. 

 Re = the real part of the Fourier Transform. 

 lm = the imaginary part of the Fourier Transform. 
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 The real and imaginary terms of the complex transform are employed 

to calculate the amplitude A and the phase Ø [107] and construct 2D matrices 

as shown in Figure (4-1). 

𝐴 𝑅𝑒 𝑙𝑚         (4.3) 

∅ tan          (4.4) 

In the non-destructive thermography (NDT) implementations, it can be 

noticed that equation (4.2) is a very powerful tool, yet it is not practical 

because of the length of computation. The Fast Fourier Transform (FFT) is 

available in common softwares such as the MATLAB, which makes it more 

advantageous. 

In general, temperature profiles (Temperature vs time length) are real 

functions which create real and odd imaginary when applying the FFT. In 

other words, they refer to symmetrical and non-symmetrical parts, which are 

even and odd functions. Therefore, there are N/2 of frequencies that are useful 

and the negative frequencies can be rejected. 
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4-6 Machine Learning (ML) 

 Machine learning (ML) has become one of the remarkable tools 

throughout developed organizations that are exploring renewal manners to 

leverage robust algorithms and increase the levels of understanding. ML 

authorizes systems to learn and test datasets, that are submitted by users, by 

utilizing specific algorithms. In other words, it is the output that is created 

when a user trains a machine-learning algorithm with a dataset. Machine-

leaning is classified into supervised, unsupervised and deep learning [108]. 

The novel of supervised learning is dealing with labeled features. It typically 

discovers patterns in datasets, in contrast with, unsupervised learning which 

is employed when users deal with unlabeled datasets. Furthermore, problems 

have a massive amount of data. This method uses specific algorithms to 

classify the data depending on clusters that it discovers. The third type is deep 

learning which is a distinct method that merges neural network (NN) with 

layers to learn the datasets in other words, deep learning mimics the human 

brains [108]. It becomes useful when users deal with unstructured data. 

Limited number of researches have been published throughout the last 

two decades by employing the machine learning methodology to detect 

subsurface defects. In 1998, Maldague et al [109] did a first attempt to 
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quantify depths. The research combined PPT with NN approach. An 

experimental work on aluminum and plastic materials had been done. Darabi 

et al in 2002 [110] had been providing quantitative information by using 

artificial neural networks. First step, a carbon fiber reinforced plastic (CFRP) 

had been modeled as a 3D thermal model. Later on, two neural networks (NN) 

were adopted to detect and estimate defects. Dudzik had utilized two-stage 

neural networks for detecting and estimating depth [111]. A classification 

neural network was improved to detect defects. The second stage used a 

regressive neural algorithm to estimate the depths. Halloua et al has used more 

detailed network for detection characterization defects [112]. Experimental 

work showed an effectiveness results in the prediction model. 

There is no recent published research estimate the delamination depth 

in concrete structures under the natural environmental (passive 

thermography). The current research has adopted the machine learning (ML) 

to estimate the depth defects in concrete block. Classifiers, such as support 

vector machine (SVM) and k-nearest neighbor (KNN) have been adopted to 

train and test the extracted features from the inspected concrete block to 

predict a model. The following sections will discuss in brief the concept of 

these two algorithms. 
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4-6-1 Support Vector Machine (SVM) 

The support vector machine (SVM) is an effective and simple algorithm 

which is widely adopted for classification, pattern recognition and regression. 

The SVM was first developed by Vladimir Vapnik and Alexey Chervonenkis 

[113] in 1963. In 1990’s, SVM was improved and suggested by Vapnik [114] 

and later on used by Byun and Agarwal [115, 116] based on a statistical 

learning methodology. The concept of SVM method unlike the traditional 

approaches, such as neural network (NN), is to classify the dataset into two 

groups or more by using a linearly or nonlinearly hyperplane (a separable line 

or curve) and to increase the margin between separating data as illustrated in 

Figure (4-9). 

The best hyperplane that has the biggest margin between two categories 

in one dataset, which represents distances between the hyperplane and the 

closet points in the classified categories in the dataset. In 1990’s, Vapnik 

developed SVM as a Soft Margin Classifier or support vector machine in case 

there are some misclassifications of datasets as stated in Figure (4-9). 

Furthermore, the SVM had been improved by utilizing Kernel techniques by 

maximizing the features space boundaries to employ non-linearity between 

classes [117]. Kernel functions are algorithms that quantify resemblances 
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between observations. There are several types of Kernels that are adopted to 

classify non-linear datasets, such as polynomial, radial basis and linear 

Kernels. 

For a 2D linear case, the following steps are below summarized to 

depict the procedure that is employed to solve a problem in the support vector 

machine (SVM). 

 A linear classifier has a form of: 

𝑓 𝑥 𝑊 𝑥 𝑏          (4.5) 

where W is the weight vector, x is the input vector, b is the bias and i=1, 2, 

…., N. 

 

 

 

 

 

 

 Figure 4.9: Define the hyperplanes in a dataset. H1 and H-1 are the positive and 

negative support vectors, respectively. 
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H1: 𝑊 𝑥 𝑏 1, H-1: 𝑊 𝑥 𝑏 1, H0: 𝑊 𝑥 𝑏 0     (4.6) 

 d+ and d- are the smallest distances from the hyperplane to the 

nearest positive and negative points respectively. Thus, the 

margin is d=d++d- for a given weight vector W and bias b. 

 Maximizing the distance d leads to increase the margin in order 

to obtain an optimal hyperplane. 

 The distance from a point (x0, y0) to a line: 

𝑎𝑥 𝑏𝑦 𝑐 0 is  
√

      (4.7) 

Consequently, the distance between H1 and H0 is: 

𝑑
‖ ‖ ‖ ‖

 and then the margin = 
‖ ‖

      (4.8) 

1. From the previous equation, ‖𝑊‖ needs to be minimized to maximize 

the margin under the status that there are no points between H1 and H-1 

lines. 

max 
‖ ‖

 is subjected to 𝑊 𝑥 𝑏 
1 𝑖𝑓 𝑦 1

  1 𝑖𝑓 𝑦 1  𝑓𝑜𝑟 𝑖 1, 2, … , 𝑁 (4.9) 

and equivalently min ‖𝑊‖  is subjected to 𝑦 𝑊 𝑥 𝑏 1 𝑓𝑜𝑟 𝑖

1, 2, … , 𝑁           (4.10) 



124 

 

2. The obtained optimization problem is a quadratic function that can be 

solved by using the Lagrangian multiplier method. 

4-6-2 k-Nearest Neighbor (KNN) 

k-Nearest Neighbor (KNN) is considered one of the supreme machine 

learning classifiers. Its applications are multi-sided and could be used in 

finance, healthcare, political science, image processing and many other 

purposes. It has two main features: non-parametric and lazy learning 

algorithm. The formation of the model is decided from the dataset itself. It 

means no assumptions are required for data distribution. It is more 

beneficially since most datasets do not obey mathematical models. moreover, 

it does not need to train data to generate models, for lazy algorithm, since all 

data are trained during the testing phase. In other words, this makes the 

training phase faster and testing phase slower. In general, KNN needs more 

time to train and test the whole dataset which means more memory. 

Basic steps illustrated in Figure (4-10) could be summarized into three 

points as followed: 

1- Calculating distance between a new point (an example) and the other 

points of the other classes (such as Euclidean distance, Hamming 

distance, Manhattan distance and Minkowski distance). 
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2- Finding and deciding which are the closet neighbors. 

3- Voting for labels depending on the neighbors that are close to a new 

point. 

 

 

 

 

 

 

In general, KNN works perfectly with a lower number of features. This 

means that the high great number of features requires more datasets. In 

addition, another disadvantage with KNN is the number of dimensions, which 

calls the curse of dimensionality. This issue (the growth of dimensions) might 

cause an overfitting. 

Several solutions might be dealt with to avoid such a problem like this. 

Performing the principal component analysis before subjecting the machine 

learning technique or using another method which calls a feature selection 

approach. 

Figure 4-10: The steps are used to calculate the distances and decide what is 

the closet neighbors in the k-Nearest Neighbor (KNN). 
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There is no optimal value for k-nearest neighbor approach since each 

dataset has a unique features or own requirements. Researches have 

demonstrated that a small value of neighbor gives low bias but high variance 

while a high value of neighbor displays a lower variance but a higher bias. 

The k-Nearest Neighbor is one of the simple algorithms that has been 

used in machine learning. the concept of KNN is by classifying new points 

based on another points of dataset that are more similar to them. KNN is an 

algorithm which is treated as both non-parametric and lazy learning. the 

feature of non-parametric means that there are no assumptions would be made. 

In other words, the full model is composed depending on the given datasets in 

lieu of assuming its structure. For lazy learning, there is no popularization. So, 

training datasets is little in the training process while all of the training 

datasets are employed second time in testing phase by using KNN method. 

Figure (4-11) below shows the concept or the idea of how the KNN works 

when attempting to assort a new point in dataset based on another given 

datasets. 

 It would be figured that the process will be started to its nearest points 

and assort depending on which is closet and more similar to. There are several 

ways and methods that calculate the distances between the new points and the 
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points of given datasets such as Euclidean, which is a mathematical method. 

KNN calculates the distances between each new point and tested datasets, the 

method then detects the probability of similarity between the new points and 

tested datasets and then assorts them according on the highest score of 

probability. 

Despite that the KNN is simple to use and has no assumptions on the 

datasets, but still has some cons. Its accuracy mainly depends on the quality 

of the data. Moreover, an optimal k number (the value of nearest neighbor) 

must be determined to obtain the more accurate. 

 

 

 

 

 

 

 

 

Figure 4-11: The concept of assorting new points depending on given datasets. 
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4-7 Feature Engineering 

4-7-1 An Overview 

A routine was utilized by using the FFT with the differentiation in the 

pixels of datasets to extract features. The strategy has been adopted to estimate 

depths by training their features to construct predictive models. The current 

method has proven to be more reliable since its accuracy was assessed with a 

forecasting model. The forthcoming sections will describe in details each 

process. 

 

4-7-2 Feature Extraction 

The features have been extracted by submitting the Fast Fourier 

Transform (FFT) algorithm on each pixel on the 3D matrix over a specific 

time to reconstruct amplitudes and phases. The specific period (for example a 

day, which is equal to 1440 snapshots) for the concrete block has been divided 

into four regions, every six hours as illustrated in Figure (4-12a). Before 

applying the FFT, the differentiation between thermal images captured have 

been taken, so, the one day has 1440 snapshots and it was split into four 

regions, each region consists of 360 images (a 6-hrs period). A contrast was 

taken between the image 12:00 am and the image at 06:00 am (region 1). This 
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separation had been repeated for region 2, region 3 and region 4. Moreover, 

for the same process, phases have been created for each region for each 

specific day, it means in each one day, four phases have been extracted by 

employing the FFT. In addition, this process is repeated for the frequency. 

In general, the obtained features are classified into two sets according 

to the effective impact on the analysis that is done by the ML: Major and 

minor features. The major features refer to elements that have a substantial 

effect on the training analysis. These features, the major ones, increase the 

accuracy of training models with an influential value as will be clarified in the 

performance analysis section. The four major features that are utilized in this 

research are the phase, the amplitude, the frequency, and the pixel, columns 

2, 5, 8 and 11 refer to the pixels, as stated in Table (4-1). The minor features 

are more reliant on the major features. That is to say, they are gained from the 

major features themselves by taking the average of these sets (the major 

features for their regions) or subtracting the minimum from the maximum 

values for each set. The purpose of adding these minor features is to strengthen 

the analysis, thus the classifiers will be able separately to distinguish each set 

in its zone. For instance, Table (4-1) illustrates that the values in column 2 and 

from row d2T1 to row d2T4 belong to a specific set or group of data. 
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Furthermore, minor features improved the results as will be discussed in the 

section analysis. 

All the previous features are marked as input data in the classification. 

The output data are pointed as defect and sound areas. Column 14, named 

depth, in Table (4-1) has four values; 0 refers to the sound areas, spots are not 

delaminated, that are located in the concrete block as shown in Figure (4-13). 

The other three values are2, 4, and 6 that represent the depths of the embedded 

delamination inside the concrete block being tested. 
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Table 4-1: Illustration of major and minor features for one day. 
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Table (4-1) is an example of the features that have been used in the 

learning analysis. The rows stand for features at different regions while the 

columns are the input and output data of the defect and non-defect spots. It 

can be noticed that, in Table (4-1), each defect and/or non-defect area has four 

values instead of one since the days have been split into four regions (each 6 

hours) as mentioned before. Moreover, as stated in Figure (4-13), each defect 

has been divided into four equal parts. The reason of this scenario is to 

improve the capability of detection of the delamination depths by reducing the 

impact of edge effect in the defects and noise elements. This might occur by 

a heat transfer around the edges which have an exposure to the ambient 

environmental. Furthermore, this process increases the number of features, as 

depicted in Figure (4-13) and written in Table (4-1) by boosting the training 

models. Each defect will have four additional features by enhancing the 

sensitivity of the models. The thermal image of the inspected concrete 

specimen displays that there are some distortions and differentiations at the 

edges for each delamination which potentially affects the constructing of the 

training model. Through this premise, the concept has been adopted by 

increasing the number of observations by utilizing four defects instead of one 

in each delamination depth. 
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Figure 4-12: The concept used to extract major features: a) dividing a specific period 

into four regions, b) differentiation of each pixel for the specific period to obtain 

pixels, c) the normalized thermal image for the specific period, d) choosing 

frequencies for each defect and sound areas, e) the phase of the specific period and 

f) the amplitude of the specific period. 
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This technique was needed to have a robust algorithm for detecting and 

analyzing sub-surface delamination. This approach will award a more 

prominent scope to train the datasets and thus augment the reliability of 

predicted model by the Machine Learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13: a) The labels of the four parts of defects and sound areas, 

b) the process of dividing each defect and the locations of sound areas 

in the specimen. The white spots are the sound areas, and the remaining 

colors are the defect areas. 

(b) 

(a) 
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Therefore, eight features have been chosen for each delamination depth 

since there are three different depths (2, 4 and 6 inches) and each particular 

depth has two delamination in the same concrete specimen being inspected. 

For this reason, eight sound (non-defect) areas have been randomly selected 

as shown in Figure (4-13) to avoid the unbalanced training in the Machine 

Learning process. 

 

4-8 Performance Analysis and Discussion of Results 

4-8-1 Validation Scheme 

It is important to choose a better validation technique to examine the 

predictive accuracy of the ML models. The validation estimates the model 

performance on the input data (extracted features) compared to the training 

data and assists to select better models. One of the advantages of choosing 

better validation is to protect learning against overfitting. All classifiers could 

be compared in session using the same validation scheme by choosing a 

validation scheme before training any model. The forthcoming sections will 

describe the validation schemes that are used in the current classification. 
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1. Cross-Validation: It selects a number of folds (or divisions) to 

partition the dataset used by the learners. By assuming n folds, the 

following steps are summarized: 

a. Partitioning the data into n discrete sets. 

b. For each fold: 

 The application trains a model using the out-of-fold 

observations. 

 The application evaluates model performance using in-fold 

data. 

c. Calculating the average error over all the n folds. 

This process gives a very good estimation of the predictive accuracy of 

the final model since all the data are trained. It requires multiple fits but the 

merit of using it by making an efficient employment of all the data, so it is 

recommended for a small dataset. 

 

2. Holdout Validation: It chooses a percentage of the data to be used as a 

test division. The model is trained on the training division and valued its 

performance with the test fold. Thus, the model subjected for validation 

is only based on a portion of the data. The final model is trained with the 
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full data set. For this reason, holdout validation is only recommended 

for a large dataset.  

 

4-8-2 The Confusion Matrix 

The aim of plotting the confusion matrix is to understand how the 

currently selected classifier performs in each class. Moreover, it identifies the 

areas where the classifier has performed properly or poorly. Figure (4-14) 

shows an example of a confusion matrix where the rows show the true class, 

and the columns show the predicted class. The diagonal cells depict where the 

true class and predicted class are matching. If these cells are green, the 

classifier has performed well and classified observations of this true class 

correctly. The default view states a number of observations in each cell. 

Finding the areas where the classifier performed poorly is done by 

examining the cells off the diagonal that display high percentages and are red. 

The higher the percentage, the brighter the hue of the cell color. In these red 

cells, the true class and the predicted class do not match. The data points are 

misclassified. 
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(a) Accuracy=75% 

(b) Accuracy=92% 

Figure 4-14: An example of a confusion matrix showing the accuracy of two models: 

a) a model with 75% accuracy illustrating where the classifier poorly performs, b) a 

model with accuracy of 92%. 
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4-8-3 The ROC Curve 

The receiver operating characteristic (ROC), shown in Figure (4-15), 

curve illustrates true positive rate versus false positive rate for the currently 

selected trained classifier. 

The marker on the plot states the performance of the presently 

classifier. Moreover, the marker shows the values of the false positive rate 

(FPR) and the true positive rate (TPR) for the currently selected classifier. For 

instance, a false positive rate (FPR) of 0.2 indicates that the current classifier 

assigns 20% of the observations incorrectly to the positive class. A true 

positive rate of 0.9 indicates that the current classifier assigns 90% of the 

observations correctly to the positive class. 

A perfect result with no misclassified points is a right angle to the top 

left of the plot. A poor result that is no better than random is a line at 45 

degrees. The Area Under Curve number is a measure of the overall quality of 

the classifier. Larger Area Under Curve values indicate better classifier 

performance. 

 

 

 

 

 

 

 
Figure 4-15: An example of the ROC for defect areas. 
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4-8-4 Analysis and Results 

4-8-4-1 An Overview 

In the forthcoming sections, multiple classifier learners have been 

employed, the Support Vector Machine (SVM) and the k-Nearest Neighbor 

(KNN). In the presented approach, several steps have been followed to 

estimate the depths in delamination. The first step is training a group of 

datasets that have been extracted from the test (the first two weeks and the 

second two weeks), previously stated in section (4-5), in order to build 

predictive models that will be used to estimate the depths in delamination in 

the concrete slab. A MATLAB Software package has been employed to 

conduct the training models and estimate depths in the concrete specimen. 

 

4-8-4-2 Building Predictive Models 

As mentioned in the section (4-7), the features that are extracted from 

the concrete slab have been completed. To build a better predictive model, 

several training analyses have been performed to reach the optimum 

performance depending on the accuracy of the results. Four major features 

have been taken into consideration in the analysis which are Pixels, Phases, 

Amplitudes and Frequencies. Moreover, additional minor features have been 
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added sequentially to the major features over the training. The purpose of that 

was to achieve and build efficient models for estimating the depths in defects. 

Table (4-2) illustrates the cases that have been accomplished. The Table 

confirms the increasing in accuracy percentage of the built models by adding 

the minor features to the major features. 

 

  

 

 

 

 

4-8-4-3 Training Models and Predicting Depths 

Several analyses have been accomplished on the concrete specimen 

being tested in the RTF (Remote Testing facility at University of Missouri) to 

acquire the delamination depths. As previously mentioned in section (4-4-3), 

two main tests had been done on the concrete slab at the north and west sides. 

Each test had lasted for two weeks (more than 20,000 snapshots within 1-

minute interval time). For that reason, the analysis has been grouped into ten 

features observations KNN SVM

1 4 448 86.20% 65.40%

2 12 448 100.00% 100.00%

3 8 448 88.20% 84.80%

4 24 448 98.20% 98.20%

5 12 448 89.30% 87.90%

6 36 448 99.10% 99.10%

7 16 448 83.00% 83.90%

8 48 448 98.70% 98.90%

9 12 448 78.30% 79.10%

10 36 448 95.00% 96.30%

11 16 112 29.50% 38.40%

12 48 112 80.40% 89.30%

pixel+phase + amp + freq (only major) (one part)

pixel+phase + amp + freq + minors (one part)

First Two Weeks

phase + amp + freq + minors

phase + amp + freq + minors

Cases

pixel (only majors)

pixel + minors

pixel + phase (only majors)

Accuracy %

pixel + phase + minors

pixel + phase + amp (only majors)

pixel + phase + amp + minors

pixel + phase + amp + freq (only majors)

pixel + phase + amp + freq + minors

Table 4-2: The process of algorithm analysis for the features. 
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parts: two-week training on two-week testing, one-week training on one-week 

testing, three-day training on three-day testing, one-day training on one-day 

testing, three-week training on one-week testing, two-week training on one-

week testing, three-week training on three-day testing and one-day testing 

respectively, two-week training on three-day testing and one-day testing 

sequentially, one-week training on one-day testing, and finally three-day 

training on one-day testing. The following sections outline in details the 

description of each analysis, fitting diagrams, and tables. In each analysis, two 

fitting diagrams are selected including both classifiers, the KNN and the 

SVM. All the fitting diagrams are presented in Appendix A. 

 

4-8-4-3-1 Two-week Training on Two-week Testing 

In this analysis, the first two weeks have been trained by using the 

classifiers SVM and KNN which gave an accuracy of accuracy of 99.6% and 

100% respectively throughout building the models. In this case, the first two 

weeks (day 1 to day 14) have been trained and tested on the next two weeks 

(day 15 to day 28). The next step is by training the second two weeks then 

testing them on the first two weeks. 
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In this case, four major features and their minors have been included in 

the analysis. The total number of the major and minor features are 48 with one 

output, the defect depths. The total observations in this case are 448 since 

there are 14 days each. 

The results showed, Figure (4-16), that the second case obtained better 

results since the R2 values are 0.71 and 0.74 for the KNN and SVM 

respectively. Table (4-3) summarizes the obtained depths. 

 

 

 

 

 

 

 

Table 4-3: The calculated depths of the delamination, case two-week on two-week. 

 Case 1 Case 2 

 KNN (in) SVM (in) KNN (in) SVM (in) 

Sound 0 0 0 0 

Defect 2-in. 1.53 1.57 1.67 1.86 

Defect 4-in. 3.07 3.13 3.37 3.72 

Defect 6-in. 4.60 4.70 5.01 5.59 

 

Figure 4-16: Fitting diagrams for two-week training on two-week testing. 
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4-8-4-3-2 One-week Training on One-week Testing 

Six cases have been chosen and taken into consideration in the current 

analysis. The weeks were divided into four parts which are (day 1 to day 7), 

(day 8 to day 14), (day 15 to day 21), and (day 22 to day 28). Each week has 

been trained to create models by using both the KNN and SVM classifiers. 

The first part (day 1 to day 7) has been tested on days (8 to 14) and days (15 

to 22). Each part of the test has been trained and their models are created by 

using both the KNN and SVM classifiers. Moreover, the days (8 to 14) and 

days (15 to 22) are tested by days (1 to 7) to estimate depths. On the other 

hand, days (1 to 7) has been inspected by days (8 to 14) and days (15 to 22) 

respectively. Furthermore, the last case was by training days (15 to 21) then 

examined them on days (22 to 28). In contrary, the days (15 to 21) are tested 

by days (22 to 28). Overall, each week forementioned has been trained and 

inspected by the other week. Figure (4-17) explains the process that has been 

achieved. 

Since there are seven days for each part, the total observations are 224. 

The total features are the same as the previous case, which are 48 features plus 

one out, the depths. 
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Good results have been obtained in the current process. R2 values are 

0.76 and 0.80 when training days (8 to 14) on days (1 to 7) for both the KNN 

and SVM respectively. Moreover, the case of training days (15 to 21) 0n days 

(22 to 28) has values of R2 equal to 0.87 and 0.69 for the SVM and KNN 

sequentially. Table (4-4) summarized most of the cases that have given better 

results in this procedure. 

 

 

 

 

 

 

Table 4-4: The calculated depths of the delamination, case one-week on one-week. 

 Case 1 Case 2 Case 3 Case 4 

 KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

Sound 0 0 0 0 0 0 0 0 

Defect 2-in. 1.90 2.02 1.82 1.91 1.98 2.14 1.79 1.55 

Defect 4-in. 3.80 4.05 3.63 3.82 3.95 4.29 3.58 3.10 

Defect 6-in. 5.69 6.07 6.07 5.73 5.93 6.43 5.37 4.65 

 

Figure 4-17: Fitting diagrams for one-week training on one-week testing. 
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4-8-4-3-3 Three-day Training on Three-day Testing 

In this process, five groups of three days have been selected on eight 

cases of training and testing to estimate the depths in delamination. These the 

three-day groups are days (1 to 3), days (4 to 6), days (15 to 17) and days (22 

to 24). Most of these built models, the SVMs and KNNs, have granted good 

agreements and fitting outcomes with the exact solution. The models that have 

yielded appropriate results are days (1 to3), days (22 to 24) and days (15 to 

17) with adequate values of R2 as illustrated in Figure (4-18). Moreover, the 

remaining models have acceptance agreement regardless of the low rate of R2 

within sixties since the accuracy of the depths was more than eighties. 

The current procedure deals with 96 observations since there are three 

days of the analysis by 32 observations per day. In addition, the same number 

of features have been employed which is 48 combined form the major and 

minor features in total. 

The results of fitting paragraphs are listed in Figure (4-18). Group of 

days (1 to 3) on days (4 to 6) gave a precision of 95% with 0.61 R2 value. The 

groups of days (22 to 24) on days (15 to 17), days (1 to 3) on days (15 to 17) 

and days (15 to 17) on days (1 to 3) have reached values of R2 equal to 0.67, 

0.71 and 0.75 respectively in both the SVMs and KNNs models with 
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accuracies in eighties and nineties. The remaining models have given a good 

accuracy but with R2 values in sixties. The results have been summed up in 

Table (4-5). 

 

 

 

 

 

 

 

Table 4-5: The calculated depths of the delamination, case three-day on three-day. 

 Case 1 Case 2 Case 3 Case 4 

 KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

Sound 0 0 0 0 0 0 0 0 

Defect 2-in. 1.64 1.90 1.61 1.68 2.21 2.11 1.80 1.86 

Defect 4-in. 3.29 3.81 3.21 3.36 4.42 4.23 3.60 3.71 

Defect 6-in. 4.93 5.71 4.82 5.04 6.63 6.34 5.39 5.57 
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Figure 4-18: Fitting diagrams for three-day training on three-day testing. 
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4-8-4-3-4 One-day Training on One-day Testing 

Many cases have been performed for the one-day training and one-day 

testing. Most of the cases have not provided good estimation for the 

delamination depths. Figure (4-19) states some cases that have been 

accomplished. It is clear that the fitting diagrams did not yield acceptable R2 

values, yet some cases awarded corresponding and suitable accuracy for 

estimating the depths. Subsequently, the values are low might be attributed to 

the number of the observations that have been employed in the current training 

(only 32 observations) to predict the depths in the concrete specimen. This 

hypothesis will be boosted through the discussion on the next sections that 

describe the training of data with larger observations than testing data. Table 

(4-6) summarizes some cases that are accomplished and produced below the 

rate of R2 values. 

In the current cases, only 32 observations have been employed with 48 

features and one output value which is the depth. 
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Table 4-6: The calculated depths of the delamination, case one-day on one-day. 

 Case 1 Case 2 Case 3 

 KNN (in) SVM (in) KNN (in) SVM (in) KNN (in) SVM (in) 

Sound 0 0 0 0 0 0 

Defect 2-in. 1.77 1.29 1.64 1.93 1.56 1.43 

Defect 4-in. 3.54 2.57 3.29 3.86 3.11 2.86 

Defect 6-in. 5.30 3.86 3.86 5.79 4.66 4.29 

 

4-8-4-3-5 Three-week Training on One-week Testing 

In the current scenario, three weeks have been trained on one week to 

predict the depths in delamination. Since there are four weeks of thermal 

images testing, three weeks have been trained on a one-week testing. Two 

analyses have been accomplished, a training from day 1 to day 21 has been 

performed on testing from day 22 to day 28. The obtained results of the fitting 

diagrams for both the R2 and the accuracy have outstanding values throughout 

Figure 4-19: Fitting diagrams for one-day training on one-day testing. 
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predicting the depths. However, the model of training days (1 to 21) earned 

values of R2 equal to 0.82 and 0.87 with accuracy of +5% and -1% for the 

KNN and SVM respectively. Furthermore, the KNN classifier obtained an R2 

value equals to 0.76 while the SVM classifier got 0.73 value of R2 when the 

model of training days (8 to 28) is adopted. The accuracy values for both 

classifiers in the last model are -5% and -11%. 

In the current training, the observations are 672 since there are 32 ones 

per day and the features are 48 with one output. When the number of the 

observations in the training data is greater than the testing data this leads to 

higher R2 and accuracy values which will be apparently in the section of three-

week training with three-day testing. 

Figure (4-20) illustrates the two models that have been employed in the 

current case. In addition, Table (4-7) outlines the theoretical and real depths 

values and their percentage errors. 
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Table 4-7: The calculated depths of the delamination, case 

three-week on one-week. 

 Case 1 Case 2 

 KNN (in) SVM (in) KNN (in) SVM (in) 

Sound 0 0 0 0 

Defect 2-in. 2.11 1.98 1.91 1.79 

Defect 4-in. 4.22 3.96 3.82 3.57 

Defect 6-in. 6.34 5.94 5.73 5.36 
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Figure 4-20: Fitting diagrams for three-week training on one-week testing. 
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4-9-4-3-6 Two-week Training on One-week Testing 

Four examples have been accomplished to predict depths in defects in 

the current state, the training of two-week and testing one-week. To do the 

variety of analyses, two samples of weeks are selected to be trained, two 

weeks are in the same sequence while the other two weeks are not. The first 

two-week in the same succession are days (1 to 14) and days (15 to 28) 

whereas the second two week that are not in sequence are days (1 to 7 and 15 

to 21) and days (8 to 14 and s to 28). The one-week groups chosen to be tested 

are days (1 to 7) and days (8 to 14). Overall, the accuracies of the present cases 

range from 74% to 95%, which gives a convenient predictability of estimating 

depth in delamination. On the other hand, the R2 values extended from 0.55 

to 0.73, which is under or at the average acceptance. Figure (4-21) depicts all 

the fitting diagrams that have been completed in the two-week on the one-

week case. There are three models that have been given good agreement, 

training days (15 to 28) on testing days (1 to 7), training days (1 to 7 and 5 to 

21) on testing days (8 to 14), and training days (8 to 14 and 22 to 28) on testing 

days (1 to 7) for both learners the SVM and KNN. 
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Table (4-8) summarizes all the predicted depths and their errors, which 

gave acceptable results despite the low R2 values in some cases. 

The process has adopted 448 observations with 48 features including 

the major and minor features for the two-week case. 

 

 

 

 

 

 

Table 4-8: The calculated depths of the delamination, case two-week on one-week. 

 Case 1 Case 2 Case 3 Case 4 

 KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

Sound 0 0 0 0 0 0 0 0 

Defect 2-in. 1.49 1.65 1.55 1.72 1.80 1.87 1.90 1.72 

Defect 4-in. 2.97 3.31 3.11 3.45 3.61 3.74 3.80 3.45 

Defect 6-in. 4.96 4.66 4.66 5.17 5.41 5.62 5.70 5.17 
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Figure 4-21: Fitting diagrams for two-week training on one-week testing. 
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4-8-4-3-7 Three-week Training on Three-day and One-day Testing 

Another two scenarios have been achieved, a three-week training on 

three-day testing and on one-day testing. The agreement of estimating the 

depths in the defects are in magnificent results. Two cases for each scenario 

have been analyzed. In the first scenario, two cases have been done, training 

days (1 to 21) on testing days (22 to 24) and training days (8 to 28) on testing 

days (1 to 3). Figure (4-22) states the fitting diagrams for both cases with 

reasonable R2 values and sufficient accuracy except the classifier SVM of 

training days (8 to 28) on testing days (1 to 3). The R2 values in the first case 

are 0.85 and 0.93 while they are 0.81 and 0.68 in the second case for both 

classifier the KNN and SVM respectively. 

Likewise, the second scenario, the three-week training on one-day 

testing, presented satisfactory prediction of the delamination depths. Two 

cases as well have been adopted in the present scenario. Training days (1 to 

21) on testing day 22 and training days (8 to 28) on testing day 1. R2 values 

of the classifiers are 0.97 and 0.96 in the first case for both the KNN and SVM 

sequentially. While they are 0.68 and 0.88 in the second case as shown in 

Figure (4-22). 
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Tables (4-9) and (4-10) depict in detail the estimated depths in each 

case for both scenarios that are adopted here. In addition, the accuracy of each 

depth is listed as well. 

In such scenarios, the procedure employs 672 observations to train the 

data and create the predicting models, which handed a good agreement in 

estimating the depths since the testing data are 96 and 32 for the three-day and 

one-day respectively. The utilized features, the majors and minors are still 48 

for the input and one for the output, which is the depths. 

 

 

 

 

 

 

Table 4-9: The calculated depths of the delamination, case three-week on three-day. 

 Case 1 Case 2 

 KNN (in) SVM (in) KNN (in) SVM (in) 

Sound 0 0 0 0 

Defect 2-in. 1.70 1.86 1.62 1.45 

Defect 4-in. 3.39 3.72 3.24 2.91 

Defect 6-in. 5.09 5.58 4.86 4.36 
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Figure 4-22: Fitting diagrams for three-week training on three-day and one-day testing. 
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Table 4-10: The calculated depths of the delamination, case three-week on one-day. 

 Case 1 Case 2 

 KNN (in) SVM (in) KNN (in) SVM (in) 

Sound 0 0 0 0 

Defect 2-in. 2.14 2.29 1.73 2.21 

Defect 4-in. 4.29 4.57 3.47 4.43 

Defect 6-in. 6.43 8.86 5.20 6.64 

 

4-8-4-3-8 Two-week Training on Three-day and One-day Testing 

The last scenario that has been utilized is by training two weeks of 

thermal images and testing three days and one day of IR datasets, respectively. 

Two situations have been fulfilled for each scenario, training days (1 to 14 

and 15 to 28) and testing days (22 to 24 and 1 to 3) respectively. The second 

scenario was training days (1 to 14 and 15 to 28) and testing days (15 and 1) 

sequentially. R2 values acquired in the first case are 0.61 and 0.57 for the KNN 

and SVM respectively with a precision of -8% and -25%. In addition, values 

0.65 and 0.71 of R2 have been earned in the second case with accuracy of -

35% and -29% for both the KNN and SVM classifiers. Figure (4-23) 

illustrates the two cases that have been adopted in the first scenario. Table (4-

11) shows the predicted depths for two cases, similarly in the second scenario 

two cases have been completed with acceptance corresponding results. The 
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R2 values are 0.74 and 0.88 with an accuracy of -2% and +18% for both 

classifiers the KNN and SVM sequentially. The second got an exceptional 

agreement especially for the SVM classifier. The results were 0.52 and 0.95 

for the R2 with a precision of -19% and +7% as stated in Figure (4-24). Details 

are summarized in Table (4-12) that shows the predicted depths for each 

delamination in the concrete specimen for both the KNN and SVM learners. 

As mentioned previously, the two-week training model adopted 448 

observations to estimate the depths in the testing of 96 and 32 observations, 

the three and one days, respectively. 
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Figure 4-23: Fitting diagrams for two-week training on three-day testing. 
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Table 4-11: The calculated depths of the delamination, case two-week on three-day. 

 Case 1 Case 2 

 KNN (in) SVM (in) KNN (in) SVM (in) 

Sound 0 0 0 0 

Defect 2-in. 1.65 1.49 1.30 1.43 

Defect 4-in. 3.30 3.00 2.60 2.86 

Defect 6-in. 4.95 4.48 3.89 4.29 

 

Table 4-12: The calculated depths of the delamination, case two-week on one-day. 

 Case 1 Case 2 

 KNN (in) SVM (in) KNN (in) SVM (in) 

Sound 0 0 0 0 

Defect 2-in. 1.96 2.36 1.04 2.14 

Defect 4-in. 3.93 4.71 2.07 4.29 

Defect 6-in. 5.89 7.70 3.11 6.43 
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Figure 4-24: Fitting diagrams for two-week training on one-day testing. 
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4-8-4-3-9 One-week Training on One-day Testing 

The current scenario adopted four cases as illustrated in Figure (4-25). 

Two weeks have been selected, days (1 to 7) and days (15 to 2). However, the 

first week, days (1 to 7) tested days 8 and 15, respectively while the second 

week, days (15 to 21) inspected days 22 and 1 sequentially. As previously, the 

two learners the KNN and the SVM were used in the analysis. Good 

accuracies and R2 values have been obtained except the case of training days 

(15 to 21) on testing day 1, the SVM learner, where the precision and the R2 

values were under the average. 

The total number of observations are 224 for one week processing. 

Total number of major and minor features are 48 plus the depth. 

The obtained results are 0.75, 0.76, 0.85 and 0.86 of R2 values for the 

case, the training of days (1 to 7) on testing day 8 and day 15, respectively. 

While the R2 are 0.93, 0.93, 0.79 and 0.64 for the second week, training week 

(15 to 21) on testing days 22 and 1, respectively. Table (4-13) summarized all 

the predicted depths and their errors which are in very good results. 
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Table 4-13: The calculated depths of the delamination, case one-week on one-day. 

 Case 1 Case 2 Case 3 Case 4 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

Sound 0 0 0 0 0 0 0 0 

Defect 2-in. 2.43 2.29 2.21 2.21 2.14 2.36 1.50 1.29 

Defect 4-in. 4.86 4.57 4.43 4.43 4.29 4.71 3.00 2.57 

Defect 6-in. 7.29 6.86 6.64 6.64 6.43 7.07 4.50 3.86 

 

4-8-4-3-10 Three-day Training on One-day Testing 

The last scenario was training three-day model and testing one-day 

datasets. Eight cases with four groups of three-day have been achieved in this 

scenario, Figure (4-26). These the four groups of three-days are: days (1 to 3), 

days (8 to 10), days (15 to 17), and days (22 to 24). Each three-day group has 

been trained then tested on a day that is from a different week. For example, 
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Figure 4-25: Fitting diagrams for one-week training on one-day testing. 
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days (1 to 3) tested day 8 and day 15, days (8 to 10) tested day 1 and day 22, 

days (15 to 17) tested day 1 and day 22, and the last one was days (22 to 24) 

tested day 8 and day 15. The purpose of that was to examine the results from 

different weeks which have different environmental conditions. The gained 

outcomes were in good convenient level. The R2 values are in most cases 

above the average values except the case of days (8 to10) on day 1 and day 

22. Otherwise, the accuracies of the fitting diagrams ranged from -25% to 

+21% except the case days (8 to 10) on day 1. 

All the results of the eight cases have been illustrated in Table (4-14) 

with their errors. 

The number of observations that have been taken in this case was 96 

since there 32 observations per day. The number of all features are 48 ones. 
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Figure 4-26: Fitting diagrams for three-day training on one-day testing. 
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Table 4-13: The calculated depths of the delamination, case three-day on one-day. 

 Case 1 Case 2 Case 3 Case 4 

 KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

Sound 0 0 0 0 0 0 0 0 

Defect 2-in. 2.43 2.43 1.77 1.07 2.29 1.98 1.64 1.79 

Defect 4-in. 4.86 4.86 3.54 2.14 5.47 3.96 3.29 3.57 

Defect 6-in. 7.29 7.29 5.30 3.21 6.86 5.95 4.93 5.36 

 

Table 4-13: The calculated depths of the delamination, case three-day on one-day (continued). 

 Case 5 Case 6 Case 7 Case 8 

 KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

KNN 

(in) 

SVM 

(in) 

Sound 0 0 0 0 0 0 0 0 

Defect 2-in. 2.04 2.57 1.95 1.84 1.86 1.79 1.93 1.50 

Defect 4-in. 4.07 5.14 3.89 3.68 3.71 3.57 3.86 3.00 

Defect 6-in. 6.11 7.71 5.84 5.52 5.57 5.36 5.79 4.50 

 

4-9 Summary 

Table (4-15) summarizes all the cases that have been accomplished in 

each scenario. In some cases, the training period has the same testing period 

(same observation). Moreover, the training period has been doubled or tripled 

or more, for instance 2 weeks vs 1 week and 3 weeks vs 1 week or 3 weeks vs 

3 days. It was taken into consideration that the testing periods are not included 

in the training periods which means that taking the variations of 

environmental conditions in the analysis. 
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Table 4-15: The summary of all scenarios taken in the research. 

Case Days 
R2 Error % 

KNN SVM KNN SVM 

2W on 2W 
(1-14) on (15-28) 0.58 0.60 -23 -22
(1-14) on (15-28) 0.71 0.74 -17 -7

1W on 1W 

(8-14) on (1-7) 0.76 0.80 -5 +1
(1-7) on (8-14) 0.60 0.68 -10 -4

(15-21) on (22-28) 0.69 0.87 -1 +7
(15-21) on (1-7) 0.68 0.60 -10 -22

3D on 3D 

(1-3) on (4-6) 0.57 0.61 -18 -5
(22-24) on (15-17) 0.67 0.57 -20 -16
(1-3) on (15-17) 0.71 0.71 +10 +6
(15-17) on (1-3) 0.71 0.76 -10 -7

1D on 1D 
2 on 1 0.71 0.56 -12 -36
8 on 1 0.82 0.64 -18 -4

16 on 15 0.60 0.72 -22 -29

3W on 1W 
(1-21) on (22-28) 0.82 0.87 +6 -1
(8-28) on (1-7) 0.76 0.73 -5 -11

2W on 1W 

(1-14) on (15-21) 0.55 0.61 -26 -17
(15-28) on (1-7) 0.65 0.71 -22 -14

(1-7&15-21) on (8-14) 0.59 0.70 -10 -6
(8-14&22-28) on (1-7) 0.69 0.73 -5 -14

3W on 3D 
(1-21) on (22-24) 0.85 0.93 +16 +8
(8-28) on (1-3) 0.81 0.68 -14 -27

3W on 1D 
(1-21) on 22 0.97 0.96 +7 +14
(8-28) on 1 0.68 0.88 -13 +11

2W on 3D 
(1-14) on (22-24) 0.61 0.57 -18 -25
(15-28) on (1-3) 0.65 0.71 -35 -29

2W on 1D 
(1-14) on 15 0.74 0.88 -2 +18
(15-28) on 1 0.52 0.95 -49 +7

1W on 1D 

(1-7) on 18 0.75 0.76 +21 +14
(15-21) on 22 0.93 0.93 +11 +11
(1-7) on 15 0.85 0.86 +7 +18
(15-21) on 1 0.79 0.64 -25 -35

3D on 1D 

(1-3) on 8 0.75 0.74 +21 +21
(8-10) on 1 0.85 0.57 -12 -46
(1-3) on 15 0.80 0.87 +14 -1
(8-10) on 22 0.46 0.64 -18 -11
(15-17) on 1 0.63 0.86 +2 +29
(22-24) on 8 0.74 0.68 -3 -8
(15-17) on 22 0.69 0.68 -7 -11
(22-24) on 15 0.79 0.63 -4 -25
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4-10 Assessment of Depth Estimation 

A forecasting model has been adopted in the current study to evaluate 

the linear regressions of the predicted depths in delamination. The mean 

absolute percentage error (MAPE) is considered as a common method to 

assess differences between two groups of datasets. The method calculates the 

average values in these datasets [118]. The MAPE can be computed according 

to the current mathematical expression: 

𝑀𝐴𝑃𝐸 %  ∑ 100      (4.11) 

where Dest = the estimated depths in delamination 

 Dreal = the real depths in delamination 

 N = the total number of evaluated depths 

 It was primarily developed by Lewis in 1982 and the rating of this 

method is according to Table (4-16) which had some improvement on its 

values in 1997 [97]. However, the model was used to verify and assess the 

differences between the real depths and the predicted depths in the current 

study. The Table indicates that the smaller obtained values the better results. 
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Table 4-16: The typical values of the mean absolute percentage error 

(MAPE). 

MAPE The accuracy of data 

<10% Very good 

11%-20% Good 

21%-30% Reasonable 

>30% Inaccurate 

 

  Table (4-17) illustrates all the MAPE values of the models that have 

been developed to estimate depths in delamination. Most the results are in 

good agreement according to Table (4-16) except one case that has more than 

30% which is case 2 in (3D on 1D) (SVM). Moreover, some cases have 

percentage error more than 20%, such two cases in the mode 1D on 1D, one 

case in 2W on 3D and one case in 1W on 1D. Otherwise, all the remained 

cases are below (20%) error which gives a good indication for the predicated 

depths. 

All results with valued under 10% in Table (4-17) have been highlighted since 

they give a very good prediction values according to Table (4-16). 
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4-11 Limitations 

  In the current analysis, the estimation of defect depths was conducted 

over a period of time more than one month. In real life, implementation of 

a test on concrete deck slab has several limitations that would affect the 

results of estimation, such as the time course of the test, sampling interval 

between thermal images and number of extracted features employed in 

building predictive models. However, two cases have been adopted to 

present some limitations on predicting depths, the training days (15 to 21) 

on testing day (22) and training days (1 to 3) on testing day (15). 

Table 4-17: The values of MAPE of the training models. 
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  As concluded from chapter three, the small interval sample for a 

specimen being inspected provides better result in detection deeper defects. 

So, the interval of 1-minute will be used in the analysis. The process of 

predicting depths by employing all major and minor features might take some 

time to train and test datasets. So, the analysis will include estimating defects 

by using only major features in sequence. 

  The process was conducted into two stages. First was by taking major 

features, the pixel, the phase, the amplitude, and the frequency in sequence to 

build predictive models for both classifiers, the KNN and the SVM. The next 

stage was estimating depths in delamination by utilizing the previous models 

and calculating both values of R2 and the error. 

  It is obviously seen, in Table (4-18) case 1, adopting only the major 

feature of pixel produced a reasonable value in the accuracy of building 

predictive models. By considering the features of the phase and the amplitude, 

the precision of predictive models acquired improved results. On the other 

hand, conducting the feature of the frequency in the analysis reduces the 

accuracy of the predictive model. But, that does not mean diminishing the 

importance of the frequency feature with their minors as concluded in fitting 

diagrams in the previous sections. Nevertheless, the predictive models have 
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been employed to estimate depths in delamination to assess the major features 

used in the current process. Table (4-19) shows that using only pixels in 

prediction gives reasonable results of R2 and the accuracy in estimating depths 

as well adding the two features, the phase and amplitude, might improve 

results especially when the period length of inspection is big, for instance one 

week instead of three days. In the case of three-day training, using both 

features, the phase and amplitude would not rise the estimation which might 

refer to the number of days used in the analysis. Both cases illustrated that 

adding the feature of the frequency would not progress the results of depth 

estimation unless using the minor features with them. 

Table 4-18: The accuracy of predictive models by using major features in sequence. 

Training days (15 to 21) 

No. Cases No. of Features Observations 

Accuracy 
(%) 

KNN SVM 

1 pixels 4 224 87.9 73.7 

2 pixels + phases 8 224 90.6 83.5 

3 pixels + phases + amp 12 224 94.6 92.9 

4 pixels + phases + amp + freq 16 224 82.1 84.4 

Training days (1 to 3) 

5 pixels 4 224 84.4 84.4 

6 pixels + phases 8 224 92.7 95.8 

7 pixels + phases + amp 12 224 91.7 93.8 

8 pixels + phases + amp + freq 16 224 83.3 89.6 
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Table 4-19: Illustrates the values of R2 and error of estimating defect depths.

Training days (15 to 21) on day (22) 

 KNN SVM 

 R2 Error % R2 Error % 

Case 1 0.69 -25 0.64 -4 

Case 2 0.36 -66% 0.69 +29 

Case 3 0.54 +12.5 0.65 +25 

Case 4 0.54 +12.5 0.64 +25 

Training days (1 to 3) on day (15) 

Case 5 0.51 -44 0.44 -56 

Case 6 0.44 -37 0.58 -36 

Case 7 0.34 -59 0.29 -57 

Case 8 0.38 -59 0.30 -65 
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CHAPTER FIVE 

5- CONCLUSIONS AND RECOMMENDATIONS FOR THE 

FUTURE WORKS 

5-1 Introduction 

Chapter five sums up all the main conclusions and the future 

recommendations of the automated time-lapse thermography data processing 

and the determination of depths in delamination in reinforced concrete 

structures. 

 

5-2 Time-Lapse Thermography Data Processing 

The restricted use of infrared thermography for bridge deck inspection 

can be largely attributed to its inability to accurately characterize defects 

deeper than 2 inches from the surface and requirements for ideal 

environmental conditions during the inspection process. The current study 

developed a framework that improves the detectability of deeper defects in 

concrete using passive thermography at rates comparable to advanced NDT 

approaches such as radar and sounding methods. The framework consisted of 

four key data processing engines: a pre-processing module which de-trends 



170 

 

and normalizes the raw IR data, followed by a pixel-wise multiscale data 

decomposition, which analyzes the time-frequency distribution of 

temperature variations with respect to defect depth. A series of image 

processing techniques are subsequently developed to enhance the contrast 

between defective and non-defective regions. The resulting high contrast 

composite image is then passed through a defect localization engine which 

utilizes active contour models to automatically detect the boundary location 

of defects in the composite image. Finally, experiments are conducted to 

identify key settings necessary for implementing the proposed framework for 

automated time-lapse thermography (A-TLT). Based on the objective of the 

research, the following conclusions can be made: 

1. Improving sub-surface defect detectability: Multiscale data 

decomposition assists in separating the acquired temperature 

response information into modes based on depth from the surface. 

In raw forms, temperature variations from shallow defects tend to 

mask those from deeper ones; the ability to be able to uniquely 

isolate them improves the detectability of deep defects. The 

proposed framework was able to localize defects irrespective of the 

inspection season (winter, fall, summer, spring, or month) in which 
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the data was collected. However, the magnitude of contrast between 

defective and non-defective regions was higher during periods of 

longer days and shorter nights. For very thick concrete objects, it is 

recommended that IR imaging to be performed on both sides to 

capture all sub-surface defects. The results presented in this study 

shows that defects can be detected by imaging from either the sunny 

or shady sides of the block specimen, although the magnitude of 

image contrast is higher on the shady side. On the sunny side, the 

extremely high pixel intensity of shallow defects tends to mask the 

intensity of the deeper ones. 

2. Investigating sampling rates and data collection periods for 

conducting TLT: It was shown in the study that smaller sampling 

intervals generally improved the normalized image contrast for 

subsurface defects regardless of depth. It was observed that an IR 

camera image sampling rate of 1 image every 10 min over a period 

of 3 days was enough to visualize defects greater than 3 in. in depth. 

The sampling rate of the IR camera was found to be inversely related 

to the duration of data collection. At low camera sampling rates, the 
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duration of data collection needs to be increased (and vice-versa) to 

improve the detection rates of deeper defects. 

3. Performing a comparative analysis of the framework with 

traditional approaches: The A-TLT processing produced increased 

contrasts for simulated defects at depths of 3 and 5 in. as compared 

with maximized conventional IRT images and TLT images 

processed using the four-point method. It was found that the 

normalized contrast for A-TLT processed images increased with 

increasing data collection periods. The A-TLT processing 

methodology provided improved normalized contrast as compared 

with four-point data. The A-TLT processing methodology provided 

improved normalized contrast as compared with the maximized 

conventional IRT images when data collection intervals were 

adequately long, greater than three days for the 3 in. deep simulated 

defect and greater than 15 days for the 5 in. deep simulated defect. 

4. Limitations: The study was conducted over a long period of time. 

Although this is impractical for real inspection, the results showed 

that continuously acquiring data for 3 days was enough to detect 
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deeper defects. To reduce data acquisition time, it is recommended 

to increase the IR camera frame rate to achieve comparable results. 

 

5-3 Determination of Defect Depths in Concrete Structures 

In the last decades, the active thermography approach has been 

significantly used for estimating depths in defects in several materials such as 

metals, plastics, composite materials and as well in reinforced concrete 

materials. Moreover, in the active thermography, the circumstances in 

experimental works are held under controlled situation such as frequency of a 

test, excitation of heating and distances between heating sources and 

specimens. However, many researchers have developed many means and 

techniques to estimate depths in defects by adopting equations and empirical 

models as functions of several parameters and variables, for instance phase 

contrast, frequency, thermal contrast, time, and material properties. 

In the current study, a reinforced concrete specimen was inspected 

under a direct energy from the sun, which is called the passive thermography 

concept. Many factors, such as solar, daytime, nighttime, wind, cloud, and 

shadow have impacts on the tests. Consequently, the models that have been 

adopted by the active thermography are not convenient with the passive 



174 

 

thermography. Therefore, the Machine Learning (ML) has been presented as 

a substitutional approach since it deals with features. Furthermore, the Fast 

Fourier Transform (FFT) was used to extract features from the defect and non-

defect areas, for example phases, amplitudes, and frequencies. Finally, the 

extracted features have been trained by classifier learners, the SVM and KNN, 

to build appropriate models which are utilized to test other datasets for 

predicting the delamination depths in the concrete specimen. According to the 

objectives of the current study, several conclusions have been presented: 

1. Using the Fast Fourier Transform (FFT) approach has a good assistance 

in extracting features from the defects and non-defect regions. Phase, 

amplitudes, and frequencies have been excerpted from delamination 

and sound areas to give each defect its particularity and characteristic. 

In addition, other features have been added, such as the differentiation 

between the pixel values of the defect and non-defect spots at varies 

times for each day. 

2. Dividing the delamination into parts: This process has improved the 

results in two sides. The first side was by smoothing the behavior of 

each defect and diminishing the noise at the edges of each defect. The 

process with 48 features contributed to boost the accuracy of models 
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with 98.7% and 98.9% while the accuracy values were 80.4% and 

89.3% when a one part was used for each defect for the KNN and the 

SVM respectively. In addition, when using a process with 16 features, 

only major features, the accuracy values were increased from 29.5% 

and 38.4% to 83.0% and 83.9% for both the KNN and SVM 

respectively. The second advantage of splitting the defects was by 

increasing the number of observations in the analysis. The more 

observation the more accuracy is obtained of building models and 

predicting depths. 

3. Major features: There are four major features that have been utilized in 

training models. FFT has been used to assist extracting three major 

features: the phases, the amplitudes, and the frequencies. The fourth 

major feature has been mined by taking the differentiation between 

several thermal images over a period of time. However, the most 

important feature is the differentiation between pixel because it has two 

impact effects. The first influence is by displaying the attitude of each 

defect for a specific period of time such as between 6:00 am-12:00 pm, 

so the learners could distinguish each defect depth on that process of 

time. The second trace, which is concluded from the effect, is 
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improving the accuracy from 78.3% and 79.1% into 83% and 83.9% 

for the KNN and the SVM respectively in cases 9 and 10, Table (4-2). 

The phases and amplitudes, moreover, have no less important impact 

on the process than the differentiation. The progressive analyses in 

Table (4-2) illustrates the weight of each feature. For the frequency, as 

depicted in Table (4-2), the training obviously showed less improving 

in accuracy throughout models. Nevertheless, using all the obtained 

features with the sub-features (the minors) award better constructed 

models with high precision. 

4. Minor features: The minor features, or called sub-features, have a direct 

connection with the major features. Adding these minor features 

strengthened building the models by raising their accuracy. The 

classifiers started placing each dataset of features in their classes that 

they belong to. This procedure has been accomplished by taking the 

average of each major feature and subtracting the minimum and 

maximum values for each group. The analysis showed that adding the 

minor features increases the precision from 83% into 98.7% for the 

KNN classifier, for example the cases 7 and 8 in Table (4-2). On the 

other hand, this process maximized the number of features to 48 
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columns instead of 16 columns, which is triple times columns of the 

major features. As mentioned in section (4-8-4-2), the more features are 

trained the more accurate models that are obtained for predicting depths 

in concrete specimens. 

5. Fitting Diagrams: Several tests on estimating depths have been 

accomplished via different datasets. The analyses have been grouped 

into parts depending on the number of observations between the trained 

and tested datasets. However, the groups that have been selected might 

have the same observation number, for instance two-week training on 

two-week testing, or have double, or triple or a greater number of 

observations, for example two-week training on one-week testing and 

three-week training on three-day testing. It has been taking into 

consideration that the dataset period testing is not included from the 

training period. Moreover, it is important to include the differentiations 

of environmental circumstances between these datasets. Anyhow, 

twelve scenarios have been completed with several cases each. It is 

obvious that the cases that have the same period for training and testing 

datasets have R2 values within the average. These values ranged 

between 0.57 to 0.82 for all the cases that have the same observations. 
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In addition, the accuracy in some cases reached to -1% and +1%. It is 

proved from the analyses that increasing the observations number of 

training period than the testing period leads to maximize the R2 values. 

The training period of 3 weeks that has tested the periods of 1 week, 3 

days and 1 day has the best results for both R2 values and their 

precisions in predicting the depths in delamination. The values of R2 

reach to 0.97 and the best accuracy is between -1% and +1%. Moreover, 

the MAPE method has shown that the use of the Machine Learning 

gave acceptance results since only one training model has a value more 

than 30%, which refers to inaccurate model. Some values of the MAPE 

ranged in twentieth and most of them are less than 20%. This 

impression of the results tells that using the Machine Learning to 

predict depths is a good indication especially with the passive 

thermography where all the models that are employed in previous 

researches in the active thermography did not work with the passive 

thermography. 
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5-4 Recommendations 

The current research has contributed to calibrate the infrared data in the 

field to enable the quantification of depth in defects in concrete bridge 

components. Several recommendations are suggested to improve the current 

research and some tasks for the future works as follows: 

1. Evaluating the current study by taking the effect of the size of defects 

on the proposed framework. The size of defects was kept constant at 

different depths. Under real-world conditions, the size, shape, and 

depth of defects vary simultaneously. This will be considered in future 

studies. The biggest challenge with time-lapse thermography is how to 

store, process, and manage the large volumes of data (due to continuous 

imaging) for large-scale inspection. 

2. Developing and evaluating a framework to calibrate the infrared 

thermography data processing in the field by covering concrete 

specimens with asphalt overlays with several thicknesses. The research 

should take study through the processing of thermal images before and 

after the overlays. 
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3. Proposing and building learner models depending on several sizes, 

shapes, and depths of delamination in the reinforced concrete 

structures. This process will widely extend and boost the trained models 

on estimating the depths in defects in reinforced concrete components. 

4. Taking into consideration the effect of the Wavelet Transform approach 

in constructing the trained models. This technique will take the impact 

of environmental parameters with different frequency domains and 

investing the decomposed modes to predict the depths. Furthermore, 

this process will increase the number of features, equal to the number 

of modes multiplies the original features, that are employed in building 

the classifier models. 
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Appendix A 

The Fitting Diagrams of the Predictive Models 
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A-1 Two-week Training on Two-week Testing 
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A-2 One-week Training on One-week Testing 
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A-3 Three-day Training on Three-day Testing 
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A-4 One-day Training on One-day Testing 
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A-5 Three-week Training on One-week Testing 
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A-6 Two-week Training on One-week Testing 
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A-7 Three-week Training on Three-day and One-day Testing 
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A-9 Two-week Training on One-day Testing 
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A-10 One-week Training on One-day Testing 
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A-11 Three-day Training on One-day Testing 
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