
DEFEAT DATA POISONING ATTACKS ON

FACIAL RECOGNITION APPLICATIONS

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

DALTON RUSSELL COLE

Dr. Dan Lin, Dissertation Supervisor

July 2021

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

DEFEAT DATA POISONING ATTACKS ON

FACIAL RECOGNITION APPLICATIONS

presented by Dalton Russell Cole,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Dan Lin

Dr. Wei Jiang

Dr. Khaza Anuarul Hoque

Dr. Jian Lin

ACKNOWLEDGMENTS

I would like to thank the Scholarship For Service (SFS) program for giving me

the opportunity to pursue my Ph.D. I would also like to thank Dr. Dan Lin for

giving me the opportunity to transfer to the University of Missouri - Columbia to

work with her. Without her help, I may have given up on my dream of graduating

with a Ph.D. degree. I owe her many thanks for her continued help throughout my

time as a graduate student.

I would like to extend my gratitude to my committee members, Dr. Wei Jiang,

Dr. Jian Lin, and Dr. Khaza Anuarul Hoque, along with Dr. Dan Lin. I transferred

to the University of Missouri - Columbia midway through graduate school. They

accepted the responsibility of being members of my doctoral committee, for which I

greatly thank them. I would like to make a special thanks to Dr. Wei Jiang. I first

worked with him when I was an undergraduate student, either taking courses under

him or working with him when I was the president of Missouri University of Science

and Technology’s Association of Computing Machinery chapter. He has always been

a caring and friendly person to whom I could turn for advice.

I would like to thank my lab members at the University of Missouri - Columbia

for their aid in my research. Sara Newman and Maya Cutkosky have been a great

help in completing this dissertation.

Lastly, I would like to thank my family and friends for keeping me sane during

graduate school, especially my grandmother for reading this dissertation so many

times and Henry Wong for reminding me that some people just want a doctoral

degree for the fun of it.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xiii

ABBREVIATIONS . xiv

ABSTRACT . xv

Chapter

1 Introduction . 1

1.1 Facial Authentication . 1

1.2 Deepfakes . 6

2 Literature Review . 11

2.1 Adversarial Attacks . 11

2.1.1 Facial Recognition Adversarial Inputs 11

2.1.2 Adversarial Deepfakes . 13

2.2 Model Stealing Attacks . 16

2.3 Data Poisoning Attacks . 17

2.3.1 Untargeted Attacks . 18

2.3.2 Targeted Attacks . 19

3 Defend Data Poisoning Attacks to Facial Recognition Neural Net-
works . 24

3.1 FaceNet . 25

3.2 Attack Analysis . 26

iii

3.2.1 Attack Results . 30

3.2.2 Feasibility Analysis of Attacks in Real-Life Face Authentica-
tion Applications . 32

3.3 DEFEAT . 33

3.3.1 System Framework and Deployment 33

3.3.2 Statistics-Based Discriminator 35

3.3.3 Feature-based DNN Discriminator 39

3.4 Performance Study . 43

3.4.1 Experimental Settings . 44

3.4.2 Experimental Results . 46

3.4.2.1 Effect of the Number of Injected Photos 46

3.4.2.2 Effect of Different Photo Backgrounds 48

3.4.2.3 Effect of the Number of Training Photos per New User 52

3.4.2.4 Effect of the Choice of Second Phase Classifier for
DEFEAT . 52

3.4.3 Comparison of On-site and Off-site Deployment 53

3.5 Security Analysis . 56

3.6 Other Detectors Against Our Replacement Data Poisoning Attack . . 58

3.7 Conclusion . 59

4 Defend Data Poisoning Attacks to Fake Facial Image Detectors . 61

4.1 Deepfake Detection Background . 62

4.1.1 A Brief History of Deepfakes 62

4.1.2 Deepfake Generation . 63

4.1.2.1 Formal Explanation of Deepfake Generation 65

4.1.2.2 Generative Adversarial Networks 65

iv

4.1.3 Deepfake Datasets . 66

4.1.3.1 First Generation . 68

4.1.3.2 Second Generation 70

4.1.3.3 Dataset Attributes 72

4.1.4 Deepfake Detectors . 73

4.2 Attacking Deepfake Detectors . 73

4.2.1 Targeted Attacks . 75

4.2.1.1 Evasion Attacks . 75

4.2.1.2 Targeted Label Flipping Data Poisoning Attacks . . 75

4.2.2 Attack Implementation . 76

4.3 Data Poisoning Attack Performance Study 77

4.3.1 Experimental Settings . 77

4.3.2 Experimental Results . 79

4.3.2.1 Single Synthetic Media Type Detection Networks . . 80

4.3.2.2 Multiple Synthetic Media Type Detection Networks . 81

4.3.2.3 Percentage of Poisoned Labels 84

4.3.2.4 Retrained Network 85

4.4 Defense Strategies . 86

4.4.1 Outlier Based Defense . 87

4.4.2 Machine Learning Based Defense 88

4.4.3 Deep Neural Network Based Defense 89

4.4.4 Convolutional Neural Network Based Defense 89

4.5 Defense Performance Study . 90

4.5.1 Experimental Settings . 90

4.5.1.1 Outlier Based Defense 92

v

4.5.1.2 Support Vector Machine Discriminator 92

4.5.1.3 Random Forest Discriminator 92

4.5.1.4 DNN Based Discriminator 93

4.5.1.5 CNN Based Discriminator 93

4.5.2 Experimental Results . 93

4.5.2.1 Outlier Based Defense Results 93

4.5.2.2 Support Vector Machine Discriminator Results . . . 95

4.5.2.3 Random Forest Discriminator Results 95

4.5.2.4 DNN Discriminator Results 96

4.5.2.5 CNN Discriminator Results 97

4.5.2.6 Classification Time Comparison 101

4.5.2.7 Synthetic Media Generation Method 101

4.6 Conclusion . 102

5 Conclusion . 103

APPENDIX

A DEFEAT . 105

A.1 Datasets . 105

A.1.1 FEI Dataset . 105

A.1.2 LFW Dataset . 105

A.2 Statistics-Based Discriminator . 108

A.2.1 Principle Component Analysis 108

A.2.1.1 Random Attack Strategy 108

A.2.1.2 Optimal Attack Strategy 109

A.3 DEFEAT vs Statistics-Based Discriminator 109

A.3.1 FEI Results . 109

vi

A.3.1.1 Effect of the Number of Injected Photos - FEI 112

A.3.1.2 Effect of Number of Training Photos per New User -
FEI . 113

A.3.2 3-Input . 113

A.3.2.1 Effect of the Number of Injected Photos 116

A.3.2.2 Effect of the Number of Training Photos per New User 116

A.3.2.3 Effect of the Choice of Second Phase Classifier for
DEFEAT . 119

A.3.3 Effect of Number of Inputs to DEFEAT 126

B Deepfake Detection . 129

B.1 Deepfake Detection Literature Review 129

B.2 Datasets . 134

B.3 Data Poisoning Attack - Information Retention 134

BIBLIOGRAPHY . 138

VITA . 154

vii

LIST OF TABLES

Table Page

2.1 Literature Review - Deepfake Detector Attack Results 15

3.1 Facial Recognition Datasets . 29

4.1 Publicly Available Datasets . 67

4.2 Shorten Dataset Names . 79

viii

LIST OF FIGURES

Figure Page

1.1 Proposed Data Poisoning Attack . 3

1.2 DeepFakes Trained XceptionNet on Other Datasets 9

3.1 FaceNet’s Triplet-Loss Diagram . 25

3.2 FaceNet’s Architecture . 26

3.3 Attack Strategy Overview . 30

3.4 Replacement Data Poisoning Attack Results on FaceNet 31

3.5 FaceNet Accuracy on the FEI and LFW Datasets for each Partition . 32

3.6 DEFEAT System Framework . 34

3.7 Three Party Facial Recognition System Using DEFEAT 36

3.8 Principal Component Analysis Applied to FaceNet Embeddings on the

FEI Dataset . 37

3.9 Box Plot Comparing Various Metrics for FaceNet Embeddings 40

3.10 DEFEAT Architecture . 41

3.11 Random Attack on the LFW Dataset - Varying the Number of Injected

Photos - Two Inputs . 47

3.12 Optimal Attack on the LFW Dataset - Varying the Number of Injected

Photos - Two Inputs . 47

3.13 Detector Accuracy on Attacked Facial Recognition Datasets 48

ix

3.14 Random Attack on the LFW Dataset - Varying the Number of Training

Photos - Two Inputs . 50

3.15 Optimal Attack on the LFW Dataset - Varying the Number of Training

Photos - Two Inputs . 51

3.16 DEFEAT Second Phase Classifier - KNN vs SVM - Two Input 54

3.17 DEFEAT Second Phase Classifier - KNN vs Decision Tree - Two Input 54

3.18 DEFEAT Second Phase Classifier - SVM vs Decision Tree - Two Input 54

3.19 DEFEAT Deployment Time Comparison 55

3.20 Pruning Infected Samples from Data Poisoning Attack 60

4.1 Deepfake autoencoder (a) during training and (b) during use. 64

4.2 Generative Adversarial Network (GAN) Overview 67

4.3 XceptionNet Architecture . 74

4.4 Overview of Label Flipping Data Poisoning Attack 77

4.5 XceptionNet Trained Without Poisoned Data 80

4.6 XceptionNet Average Recall Rates 81

4.7 XceptionNet DF & FShifter Average Recall Rates 82

4.8 XceptionNet F2Face & NT Average Recall Rates 82

4.9 XceptionNet DF & FShifter & FSwap Average Recall Rates 83

4.10 XceptionNet FShifter & F2Face & NT Average Recall Rates 83

4.11 XceptionNet 5 Dataset Average Recall Rates 84

4.12 XceptionNet FaceShifter Average Recall Rates 85

4.13 XceptionNet Retrained Average Recall Rates 86

4.14 Deep Neural Network Based Discriminator 90

4.15 CNN-Based Discriminator Pipeline 91

4.16 Outlier Detection Average Recall Rates 94

4.17 SVM Discriminator Average Recall Rates 95

4.18 Random Forest Discriminator Average Recall Rates 96

x

4.19 DNN Discriminator Average Recall Rates 97

4.20 CNN Discriminator Average Recall Rates 98

4.21 CNN Discriminator vs Number of Poisoned Identities 99

4.22 Effectiveness of Discriminator when varying the testing datasets . . . 100

A.1 Example of a single class in the FEI dataset 106

A.2 Examples from various classes in the LFW dataset 107

A.3 FaceNet Embeddings PCA Plots Using the Random Attack Strategy 110

A.4 FaceNet Embeddings PCA Plots Using the Optimal Attack Strategy . 111

A.5 Random Attack on the FEI Dataset - Varying the Number of Injected

Photos - Two Inputs . 112

A.6 Optimal Attack on the FEI Dataset - Varying the Number of Injected

Photos - Two Inputs . 113

A.7 Random Attack on the FEI Dataset - Varying the Number of Training

Photos - Two Inputs . 114

A.8 Optimal Attack on the FEI Dataset - Varying the Number of Training

Photos - Two Inputs . 115

A.9 Random Attack on the FEI Dataset - Varying the Number of Injected

Photos - Three Inputs . 117

A.10 Optimal Attack on the FEI Dataset - Varying the Number of Injected

Photos - Three Inputs . 117

A.11 Random Attack on the LFW Dataset - Varying the Number of Injected

Photos - Three Inputs . 118

A.12 Optimal Attack on the LFW Dataset - Varying the Number of Injected

Photos - Three Inputs . 118

A.13 Random Attack on the FEI Dataset - Varying the Number of Training

Photos - Two Inputs . 119

xi

A.14 Optimal Attack on the FEI Dataset - Varying the Number of Training

Photos - Three Inputs . 120

A.15 Random Attack on the LFW Dataset - Varying the Number of Training

Photos - Three Inputs . 121

A.16 Optimal Attack on the LFW Dataset - Varying the Number of Training

Photos - Three Inputs . 122

A.17 DEFEAT Second Phase Classifier - KNN vs SVM - Three Input . . . 123

A.18 DEFEAT Second Phase Classifier - KNN vs Decision Tree - Three Input124

A.19 DEFEAT Second Phase Classifier - SVM vs Decision Tree - Three Input125

A.20 Random Attack on the FEI Dataset - Comparing the Number of Inputs

for DEFEAT . 126

A.21 Optimal Attack on the FEI Dataset - Comparing the Number of Inputs

for DEFEAT . 127

A.22 Random Attack on the LFW Dataset - Comparing the Number of

Inputs for DEFEAT . 127

A.23 Optimal Attack on the LFW Dataset - Comparing the Number of

Inputs for DEFEAT . 128

B.1 FaceForensics++ Datasets Samples 135

B.2 XceptionNet Average Recall Rates 137

xii

LIST OF ALGORITHMS

1 Label Flipping Data Poisoning Attack 76

2 Deepfake Data Poisoning Attack Outlier Detection 88

xiii

ABBREVIATIONS

AUC Area Under Curve

AUROC Area Under ROC

CNN Convolutional Neural Network

DEFEAT Deep-neural-network and Embedded FEAture-based deTector

DNN Deep Neural Network

GAN Generative Adversarial Network

KNN K-Nearest Neighbours

LSTM Long Short Term Memory

NN Neural Network

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RNN Recurrent Neural Networks

ROC Receiver Operating Characteristics

SVM Support Vector Machine

xiv

DEFEAT DATA POISONING ATTACKS ON

FACIAL RECOGNITION APPLICATIONS

Dalton Russell Cole

Dr. Dan Lin, Dissertation Supervisor

ABSTRACT

In the modern era, facial photos are used for a wide array of applications, from

logging into a smartphone to bragging about a weekend getaway. With the vast

amount of use cases for facial images, adversaries will attack these applications for

profit. This dissertation focuses on two major applications of facial photos: facial

authentication and deepfakes.

Facial authentication has become increasingly popular on personal devices. Due

to the ease of use, it has great potential to be widely deployed for web-service au-

thentication in the near future in which people can easily log on to online accounts

from different devices without memorizing lengthy passwords. However, the grow-

ing number of attacks targeting machine learning, especially Deep Neural Networks

(DNN), which is commonly used for facial recognition, imposes big challenges on the

successful roll-out of such web-service facial authentication. We demonstrate a new

data poisoning attack, called replacement data poisoning, which does not require the

adversary to have any knowledge of the server-side and simply needs a handful of

malicious photo injections to enable an attacker to impersonate the victim in existing

facial authentication systems. We then propose a novel defensive approach called DE-

FEAT that leverages deep learning techniques to automatically detect such attacks.

Our experiments using real-world datasets achieve a detection accuracy of over 90%.

Deepfakes target specific individuals to cause shame or misinformation. With the

spread of fake news, deepfakes have become incredibly prevalent in recent years. With

xv

deepfakes, an adversary could have photographic or even video-graphic “proof” of

someone, such as a politician, committing a devious act or saying untrue words. Our

deepfake work consists of two parts. First, we propose a label flipping data poisoning

attack targeting deepfake detectors. With over a 99% poison success rate in most

cases, this attack demonstrates the devastating effects a data poisoning attack can

have on deepfake detectors and how important a need to defend against this assault

is. Our second contribution revolves around defending deepfake detectors from such

an attack. We propose several defense strategies, most notably a convolutional neural

network (CNN) based strategy to detect poisoned images. Our CNN-based approach

achieves a greater than 98% poison detection rate while keeping the number of false

positives to a minimum with a precision rate of over 99% in most cases.

xvi

Chapter 1

INTRODUCTION

This piece is composed of two separate major works involving computer vision. Our

first major work involves protecting facial authentication against a novel data poison-

ing attack. Our second major work comprises of attacking a state-of-the-art deepfake

detector using a label flipping data poisoning attack. We then propose and experi-

mentally verify various defense strategies against such an attack.

1.1 FACIAL AUTHENTICATION

Today facial authentication has been commonly used to unlock personal devices such

as smartphones and laptops. Due to its ease of use, the next major horizon for

facial authentication applications may be web services [1]. According to statistics

[2], an internet user has an average of 26 different online accounts but only 5 unique

passwords for these accounts. This fact is not surprising since it is hard for a person

to memorize too many different passwords. One may argue that password manager

software could mitigate the problem of password explosion. However, this actually

may not be very effective considering that a person usually accesses web services from

a variety of personal devices at home and work. In addition, password managers

generally require a password themselves. It is a tedious and almost infeasible task for

a person to record the new password for new web services on all of his/her devices

immediately upon new account creation; not to mention, that the person may not have

1

access to some devices (such as those at work or future new devices) at the moment

the new account is created. Facial authentication is a different story. With facial

authentication, a person’s live face becomes the key to logging into web services. This

is convenient and swift and can be done from a multitude of devices. Its promising

market potential has fostered several releases of facial recognition APIs [3, 4]. It is

envisioned that facial authentication would be widely adopted in web services in the

not too distant future.

For the successful deployment of facial authentication for online services, security

is undoubtedly on the top of the list to be addressed. Facial authentication relies

on accurate facial recognition. The most recent facial recognition techniques such as

FaceNet [5], which achieve high accuracy, are built upon deep neural networks (DNN)

[6]. Unfortunately, DNN models are vulnerable to a variety of emerging attacks, such

as adversarial input attacks [7, 8, 9, 10, 11, 12, 13, 14], data poisoning attacks [15,

16, 17, 18, 19], and model stealing attacks [20, 21, 22, 23]. In the context of facial

authentication for web services, adversarial input attacks and data poisoning attacks

could be the most devastating threats. Both attacks aim to mislead the classifier to

misclassify the input image. In terms of facial recognition, such attacks could result

in a legitimate user being misclassified and denied access to the service; or even worse,

make an attacker be recognized as a legitimate user and gain access to the victim’s

account. Although there have been some defensive mechanisms for adversarial input

attacks and data poisoning attacks on image classifiers [10, 14, 24, 25, 26], to the best

of our knowledge, none of the existing works consider the following attack scenario

that can easily occur in future facial authentication for web services, and none of the

existing works is effective at defending such attacks.

As shown in Figure 1.1, the new web-service facial authentication attack may

happen when a person signs up for a new web service or updates his/her facial images

for a web service. Facial authentication typically requires the users to take photos of

2

Figure 1.1: Proposed Data Poisoning Attack

themselves to train the facial recognition classifier. Our study shows that an attacker

just needs to sneak in less than a handful of his/her photos during this process; the

facial authentication system at the service provider side will later recognize both

the authentic user and the attacker as the same person. Thus, both the authentic

user and the attacker will have the same access rights to the account that the user

registered. Such an attack can be conducted by exploiting the vulnerability of the

victim’s home network and router via a man-in-the-middle attack. A 2020 security

review of 127 popular home routers found vulnerabilities that could result in a man-

in-the-middle attack [27, 28], showing that man-in-the-middle attacks are still very

relevant today. As this attack pollutes the training dataset, it falls under the category

of a data poisoning attack. However, this new attack is easier to implement than most

existing data poisoning attacks, as well as, adversarial input attacks; and are harder

to detect than label flipping attacks or injection attacks. This is because our new

attack does not require the attacker to know any insider information on the server-

side, whereas existing machine learning attacks [8, 29] typically require the attacker

to compromise the server to gain knowledge of feature vectors produced by the deep

neural network (DNN). For example, to impersonate a person, one previous attack

strategy [8] requires the attacker to know the victim’s facial feature vector generated

3

by the DNN on the server-side to create special glasses that can produce a similar

feature vector as the victim when an attacker wears it. Moreover, our new attack is

stealthy since it does not affect the normal use of the infected account (our secondary

goal is to not decrease the overall accuracy of the user and system). Once the attacker

gains the same access right as the legitimate user, the attacker can track the user’s

service usage over time, impersonate the user at any desired time, or use this account

to pivot to other platforms (for example, a cross-site scripting attack or sign-in using

their login information, similar to Google and Facebook’s login to other site feature

[30, 31]). After the attack, the attacker can easily purchase items using the victim’s

account if the victim does not regularly check his/her order or credit card history;

the attacker can also post or send misinformation on behalf of the victim to ruin the

victim’s reputation. Currently, there is no effective defense mechanism proposed to

prevent such an attack.

In this work, we will first demonstrate the devastating effect that our new data

poisoning attack can impose on web-service-based facial authentication. Then, we

will present a novel defensive strategy called DEFEAT (Deep-neural-network and

Embedded FEAture-based deTector).

Specifically, we have tested that with only 4 or 5 attacker’s face photo mixed in the

user’s training photos (another 4 or 5 photos), the attacker will be able to imperson-

ate the user in future authentication without dropping the overall facial recognition

accuracy, i.e., without raising an alarm to the facial authentication system. We also

found that it is difficult to distinguish the attacker’s feature vector from the authentic

user’s by using only statistical analysis and distance comparison. Our hypothesis of

such phenomenon is that since facial recognition systems, such as FaceNet, strive to

achieve high recognition accuracy and since they do not know the training set of a

given user contains photos of different faces, the contaminated feature vectors (i.e.,

those being attacked) are then generated based on common features between the user

4

and the attacker as to ensure both the original user and the attacker can authenticate

using their own photos. As a result, various distances (e.g., l − norm) are not suffi-

cient to measure the differences between the victim’s feature vector and the attacker’s

feature vector since they are intentionally generated by DNN to be very similar for

the goal of maintaining high recognition accuracy. However, this does not stop us

from pursuing an effective method to detect these malicious attempts.

Based on our hypothesis that the contaminated feature vectors are generated by

extracting common features from two people’s faces (i.e., the victim and the attacker)

whereas the non-contaminated feature vectors are based on the features of only one

person, we propose an intelligent discriminator, DEFEAT, to identify the potentially

subtle differences in these two kinds of feature vectors. The DEFEAT discriminator

has the base structure of a DNN and a classifier (i.e. k-nearest neighbors or SVM)

model. We design various concatenation approaches to create training inputs for the

discriminator. We optimize the layers of the DNN in DEFEAT for both accuracy

and efficiency. Upon real-time detection, DEFEAT takes the feature vector output

by FaceNet and produces a probability of whether or not the input feature vector is

contaminated. The probability is then sent to the KNN model to produce a binary

decision: attacked or not. We have evaluated our approach in real datasets that

represent both consistent background settings and diverse background settings. Our

experimental results show that our discriminator achieves more than 90% detection

accuracy. Our contributions are summarized as follows:

• We study a new data poisoning attack to facial authentication which allows the

attacker to easily impersonate the victim.

• We propose novel discriminators to detect the above impersonation attack. Our

experiments on real datasets demonstrate that our discriminator achieves very

high detection accuracy in various settings.

5

1.2 DEEPFAKES

The second major piece in this work involves protecting deepfake detectors from ad-

versarial attacks. Deepfakes are targeted malicious attacks where an existing face

is replaced by another. Deepfakes are generally generated to defame someone on

a personal or national scale. National threats include politicians being imperson-

ated by third parties, making them seem like they are saying something they do not

agree with [32, 33]. This is especially critical given the rise of fake news in social

media [34, 35]. In addition to deepfakes, which alter someone’s identity, there are

facial reenactment attacks. In facial reenactment, an adversary alters the target’s

expression and lip movements to match the adversary’s. To express the damaging

effects of deepfakes and facial reenactment, Jordan Peele created a facial reenactment

video with President Barack Obama’s face [33]. In this video, Peele uses President

Obama’s face to make it seem like Obama uttered controversial words about other

politicians. Deepfakes are such a national security risk that the Pentagon is racing

to reliably detect deepfake videos [36]. Governments are not the only ones requiring

robust deepfake detection. Mid 2020, social media giant Facebook held a deepfake

detection challenge on Kaggle [37]. Due to lower hardware requirements, deepfakes

became available to the general public in 2016 [38]. In 2018, research-focused pub-

licly available datasets were popularized [39]. With the quick evolution of deepfake

technology and neural networks, there are already multiple generations of deepfake

datasets. Each generation improves the quality of the synthetic image as well as

decreasing the time required to train a network to generate photos.

Given the prevalence of deepfakes, there has arisen a need for deepfake detectors,

something that can determine if an image is genuine (real) or synthetic (fake). Con-

volutional neural networks (CNNs) are the most popular way to perform deepfake

detection [40]. In addition to new neural network architectures and methods being

6

proposed, old models have been found to perform especially well in this classifica-

tion task. One notable architecture is XceptionNet which was first proposed as a

deepfake detection method in [41] and has been thoroughly tested [39, 40, 42, 43].

In general, CNN-based methods use the artifacts generated from synthetic image

generation to find fake images. However, there are many other methods, including

non-temporarily aware methods such as examining head poses [44] or eye color [45].

Temporarily aware methods include keeping track of eye blinking [46] or examining

facial expressions plus head movements [47].

Naturally, adversaries are trying to fool deepfake detection. Research on attacking

deepfake detectors primarily focuses on evasion attacks, a type of attack that occurs

after a model has already been trained [43, 48, 49]. Generally, evasion attacks assume

a white-box approach, where the adversary has full knowledge of the detection model.

The adversary then adds the minimum amount of perturbation required to an image

to induce misclassification. A perturbation filter generally looks like white noise to a

human observer, but when added to the target image, it is normally undetectable to

the human eye. Considering that deepfakes are meant to fool humans, adding a per-

turbation filter to a deepfake to cause misclassification can cause dire results. Neither

machine nor human may tell that an image is synthetic. Fortunately, perturbation

filters are normally created per sample and per detector. Universal perturbation fil-

ters, filters that work on multiple images for a single detector, do exist, but generally

have a lower attack success rate than individualized perturbation filters [48].

Evasion attacks occur during testing time, i.e. when the model is in a live envi-

ronment. Unlike evasion attacks, data poisoning attacks occur during training time.

To the best of our knowledge, there has been no research on data poisoning attacks

on deepfake detectors. The adversary poisons the training data that a model uses to

learn. With a label flipping data poisoning attack specifically, the adversary changes

the labels, or y values, of the training data to induce misclassification in the live

7

environment.

To accomplish label flipping attacks, an adversary only needs access to the label’s

portion of a dataset. With it, the adversary can alter the labels and diminish the

detector’s ability to detect deepfakes. If the adversary desires the deepfakes of a

particular person to be mislabeled, they may flip only the target’s labels to instigate

misclassification, thus bypassing detection. This could lead to calamitous results. For

example, if an adversary attacks an adult website’s deepfake detection, deepfakes of

a politician could be uploaded and cause disastrous results for their credibility or end

their political career completely [50].

To demonstrate how powerful and devastating data poisoning attacks are to deep-

fake detection, we propose a label flipping data poisoning attack. Our attack consists

of selecting a target and flipping all labels that correspond to a synthetic image with

the target’s face from fake to real. Multiple targets may be selected from the same

training dataset. We explore a diverse set of configurations for our attack, such as at-

tacking only a single dataset, varying the number of poisoned identities, and training

a detector with multiple types of synthetically generated images.

In this work, we also propose multiple discriminators to detect such an attack.

Our most basic discriminator is an outlier detection method. More complex solutions

include an SVM, a random forest, and a DNN-based approach. Our primary focus,

however, is on a CNN-based discriminator. We investigate various ways to optimize

our CNN-based discriminator, such as altering our discriminator’s connection point

to the detector.

With the discriminator in place, the detector and discriminator can work in tan-

dem to root out poisoned images. To keep synthetic media detectors up to date, they

must be retrained periodically with new images that were produced using updated

synthetic media generation tools or other altering factors, such as a different type of

image compression algorithm. Figure 1.2 demonstrates how unsuccessful a deepfake

8

Figure 1.2: XceptionNet Trained on the DeepFakes Dataset and Tested on Other
Datasets

detector is when confronted with images using a method it was not trained upon. To

generate this figure, the deepfake detector XceptionNet was trained using the Deep-

Fakes dataset [51, 52] and then tested on four other deepfakes or facial reenactment

datasets. As shown in the figure, XceptionNet can recall nearly all real and fake

photos as long as the synthetic images were generated using the same method as it

was trained using. When confronted with different methods, the detector struggles

to correctly classify synthetic images as fake. With regular updates, the detector

can learn to recognize new synthetic media types. To protect itself from an unwanted

adversarial attack, the discriminator must discover any adversarial images before al-

lowing the detector to learn the erroneous information.

Our contributions are summarized as follows:

• We study the effects of a label flipping data poisoning attack on deepfake de-

tection. We show how devastating and successful this attack is through experi-

mental results.

9

• We propose various discriminators, each with different advantages, such as one

discriminator requiring no training data and another discriminator achieving

over 99% poison and benign recall rates.

10

Chapter 2

LITERATURE REVIEW

In this chapter, we conduct a thorough literature review on three different attack

methods against facial recognition applications, including deepfake detectors. Section

2.1 explores adversarial attacks. Section 2.2 covers model stealing attacks. Finally,

Section 2.3 provides a literature review on our main attack method: data poisoning

attacks.

2.1 ADVERSARIAL ATTACKS

Adversarial input attacks, also known as evasion attacks [53], typically occur after

the machine learning algorithm has completed its training process. This is opposed

to data poisoning attacks, which take place at training time. The goal of adversar-

ial input attacks is to perturb the input data in a way that fools a classifier, i.e.,

force the input data to be misclassified. These inputs are usually crafted by adding

perturbation to an authentic image [7, 8, 9, 10].

2.1.1 Facial Recognition Adversarial Inputs

Specific to face recognition models, there is an abundance of works on how to compute

perturbations to cause errors in the face recognition process [7, 8, 9, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63, 64, 65, 66]. For example, [7, 54] turn perturbation generation

into an optimization problem and compute the perturbation in one single large step

11

based on the model’s loss. [55] extends the idea to computing perturbations itera-

tively. [56, 58] seek to alter the least amount of pixels possible, while [57] focuses on

modifying only one pixel. [9, 59] modify images iteratively using the information on

the decision boundaries of the target model. These algorithms are all designed for

a single given image, needing to be run separately for each additional target image.

[60, 61] work on any image to fool the target network. [62, 63, 64, 65] generate en-

tire adversarial images that appear similar to clean images and fool the target model

adequately. Another interesting way to perform image perturbation is that attackers

put on customized accessories such as glasses in front of the camera to pretend to be

the victim [8, 66]; these special accessories are designed based on the victim’s feature

vectors generated by the face recognition model. With this said, most of the existing

adversarial input attacks [7, 8, 9, 54, 55, 56, 58, 59, 60, 63, 64, 65, 66] require white

box knowledge of the model, i.e., knowing the internal parameters of the model, which

may be hard to achieve in real scenarios. Only a few adversarial input attacks [57,

61, 62] can treat the target model as a black box and still conduct adversarial input

attacks.

Currently, the most effective defense mechanism against the adversarial input

attacks is adversarial training [54, 58, 67, 68, 69] which enhances the robustness of

the neural networks by teaching it adversarial samples during the training process. It

is worth noting that such a defense will not be effective to prevent our attack. Under

our proposed attack, the attacker’s photos do not contain any kind of noise. They

are normal photos like those of other normal users. The face authentication model

is trained to treat the attacker’s face the same as the victim’s face. The adversarial

samples would be the attacker’s facial photos, and the expectation is that the face

authentication model will label the attacker’s photo as malicious. However, this is

not practical since the attacker’s photos are normal photos and the system does not

know who is the attacker beforehand. It is unrealistic to take a randomly picked

12

normal photo to label as malicious during training.

2.1.2 Adversarial Deepfakes

The majority of work on attacking deepfake detectors involves adding perturbation

to the deepfake images, either via a black-box or white-box attack. [43] attacked

two classifiers: XceptionNet [41] and MesoNet [42]. They applied two different attack

styles to both white-box and black-box attacks: a normal version and a robust version.

The robust version involved adding additional transformations to the images before

training. The idea being that compression can remove the finely tuned perturbation

added to images. Since many places where deepfakes are used, for example, social

media, compress images heavily, the perturbation needs to remain even through com-

pression. Four transformation functions were randomly applied to perturbed images:

Gaussian blur, Gaussian noise addition, translation, or downsizing and upsizing using

bilinear re-sampling. For the white-box attack, where the adversary has full access

to the detector, the iterative gradient sign method was used for the perturbation filer

generation. The magnitude of the perturbation was clipped to prevent it from being

noticed by human observers. For the black-box attack, the authors assumed knowl-

edge about the output probabilities of real or fake. From there, they used a natural

evolutionary strategy where under a search distribution, the expected value for a

function is maximized. They tested their attack using the FaceForensics++ datasets,

specifically using the raw and low-quality partitions. With only a L∞ of 0.0004, they

had an attack success rate of 100.0 on the raw faceswap dataset and 43.13 on the low-

quality faceswap dataset using the normal white-box attack. Their robust white-box

attack had far better results with the compressed data. With only a L∞ = 0.013, they

achieved a 95.33 success rate on the low-quality dataset on XceptionNet. The black-

box attacks required a much larger level of perturbation to achieve similar results.

A L∞ = 0.045, ten times as much as the white-box attack, was required to achieve

13

96.77 and 23.50 success rate on the raw and low-quality datasets, respectively. The

robust black-box attack performed better on the compressed dataset, with a 98.97

and 63.26 attack success rate on the raw and low-quality datasets, respectively, with

a similar L∞ of 0.052. In general, MesoNet was slightly harder to fool using the raw

dataset, but easier to fool using the low-quality compressed dataset, when compared

to XceptionNet.

[48] created five different adversarial perturbation methods to attack [70] and [71].

They used the dataset provided in [70] for training and testing. Their first attack

strategy is a white-box distortion-minimizing attack. They limited their attack to

only flipping the lowest bit of each pixel, thus the maximum perturbation to any

pixel was 1/255. Half of all faked images were classified as real by flipping the least

significant bit in 1% of pixels. At 11% of pixel flips, nearly 100% of fake images were

labeled as real. Using either the L2 or L0 distortion in their minimization function

had similar results. Their second attack strategy was similar to their first, however,

this strategy minimizes the perturbation of the p-norm as opposed to the perturbation

itself, where p = 0, 1, 2,∞. When 40% of pixel’s lowest-order bit was flipped, the AUC

was reduced from 0.966 to 0.27 on raw, uncompressed, images. Their third attack

strategy relied on generating a universal adversarial-patch, or a single perturbation

filter that could be applied to every image. This type of filter saves computational

time since a single filter can be applied to unseen fake images, as opposed to a new

filter being generated for every individual image. Their universal patch was limited to

24x24 pixels, or 1% of the image, and is highly noticeable to a human observer. They

were able to decrease the AUC from 0.966 down to 0.085. Their fourth attack strategy

was a universal latent-space attack. They used the latent space of a GAN network

to generate new adversarial images. Specifically, they searched the latent space to

find optimal input vectors for low-level attributes, such as freckles. They were able to

reduce the AUC from 0.99 to 0.17. Their final proposed attack is a black-box attack

14

Model Unperturbed FGSM Black-Box FGSM White-Box CW-L2 Black-Box CW-L2 White-Box

VGG 99.7% 8.9% 0.0% 26.6% 0.0%

ResNet 95.4% 20.8% 7.5% 4.6% 0.0%

Table 2.1: Deepfake Detector Attack Results from [71]

strategy. Their black-box attack strategy relied on generating perturbations based

on a separate detector and transferring this knowledge to the target detector. They

were able to reduce the AUC from 0.96 down to 0.22 using this method.

[71] used two different attack strategies to generate adversarial perturbation. Their

first attack strategy used the fast gradient sign method (FGSM) proposed in [54] to

find the minimum perturbation filter. Their second attack used the Carlini and

Wagner (CW) L2-norm, which minimizes the L2-norm while maximizing the misclas-

sification rate. The FGSM is a popular, efficient, and fast attack method, while the

CW-L2 is stronger but much slower. They used their dataset to train VGG-16 and

ResNet-18 networks as detectors. They were able to achieve 99.7% and 95.4% de-

tection accuracy on the VGG and ResNet detectors, respectively. They implemented

their attacks from both a black-box and white-box perspective. Table 2.1 summarizes

their results. In addition, they tested two defense strategies for their attacks. Their

first strategy used Lipschitz regularization to constrain the gradient of the detector.

They were able to increase the detection accuracy up to 53.2%, but, in general, the

detection accuracy marginally increased post-attack. Their second defense strategy

used the deep image prior, which was originally used for image restoration. The goal

of deep image prior is recover x given xc, where xc is the corrupted image. This

method also attempts to remove the artifacts generated by compression. A genera-

tive CNN is used to restore the image. This defense strategy was able to achieve up

to 97.0% accuracy or 99.2% AUROC post-attack.

These works show that compressed images prove difficult for perturbation at-

tacks since compression often removes the added perturbation. Unlike these attack

15

strategies, our attack strategy is a label flipping data poisoning attack. Opposed to

perturbation attacks that attack a trained network, a data poisoning attack attacks

the training data itself, leaving a vulnerability to be exploited later. Thus, if the

attack is not noticed during training, it is difficult to unlearn the poisoned data [25].

2.2 MODEL STEALING ATTACKS

Model stealing attacks do not affect the classifier or manipulate the classification

output, and hence this type of attack is also different from ours which aims to mislead

the classifier. During model stealing attacks, adversaries usually target Machine

Learning as a Service (MLaaS) models, such as AWS and Google Cloud AI, and

try to estimate the target model’s hyperparameters [20, 72]. Model stealing attacks

can be applied to any type of model, not just neural networks.

To estimate the model, a large number of queries need to be made to find the

decision boundary between classification targets. The authors of [72] used several

different versions of probability approximately correct (PAC) learning to reduce the

number of queries. PAC learning assumes the adversary has access to a distribution

of the dataset. The adversary then queries the model to generate a hypothesis with

a low expected loss. They also explore two active versions of PAC: stream-based

sampling and pool-based sampling. In stream-based sampling, samples are selected

sequentially. Once a sample was either used to query the model or discarded, the

sample cannot be considered again. With pool-based sampling, samples are selected

from a pool of samples. This allows for better decision-making once you start learning

about the model. In addition to PAC learning, the authors also exampled query

synthesis active learning. This strategy uses a pool-based approach; however, the

samples can be generated independently of the given dataset distribution. This is

much more realistic in the real world where it is unlikely that the adversary will have

the dataset that was used to train the model.

16

2.3 DATA POISONING ATTACKS

The implemented attacks in this dissertation are data poisoning attacks. With data

poisoning attacks, attackers manipulate the training data to mislead the model and

cause the model to misbehave during its runtime. These attacks typically involve

introducing a perturbation to a clean or untouched subset of the training data. This

perturbation is crafted such that the model learns to misbehave when trained on

these samples. The number of perturbed samples required to achieve this goal varies,

depending on the type of perturbation conducted. These types of attacks can be

targeted or untargeted. Untargeted data poisoning attacks seek to hinder the rate

at which the machine learning model learns, while targeted attacks seek to cause a

particular input, or label, to be misclassified when the model is deployed. Untargeted

attacks are relatively easy to be noticed since it causes a significant drop in classifiers’

accuracy. In contrast, targeted data poisoning attacks are extremely hard to detect

since, in an ideal scenario, the overall accuracy of the attacked model does not differ

from the clean model. Moreover, in many cases, the perturbed input is visually

indistinguishable from the clean input, adding another layer of difficulty in detection.

Formally, the goal of a targeted attack is, given a classifier, f(x), for data x ∈ X,

and its corresponding ground truth label, yg ∈ Y, the attacker’s goal is to craft inputs

xa such that training the model using xa results in f(xt) = yt, for some target input

xt and class yt where yt 6= yg.

Untargeted attacks are less restrictive than targeted attacks in their goal classifi-

cation. The goal of these attacks is to craft adversarial inputs xa such that for any

or for a specific x, the classifier f(x) yields y where y 6= yg.

17

2.3.1 Untargeted Attacks

There has been a plethora of work on data poisoning attacks that seek not only to

cause a specific label or input to be misclassified but also to cause as many misclassi-

fications as possible [15, 16, 17, 18, 19]. [15, 16, 17] focuses on attacking naive Bayes

spam filters by manipulating the spam messages in such a way that the classifier

begins to misbehave. The attack method proposed in [18] attacks a support vector

machine by applying a gradient ascent strategy based on the properties of the model.

This requires the attacker to have complete knowledge of the classification system.

[19] uses back-gradient optimization to attack any classification model that learns

using gradient descent.

Shortly after the discovery of these types of attacks, it was found that this type of

attack is relatively easy to detect and mitigate simply by observing the loss associated

with adding specific inputs to the model’s training set [73]. In [74], the authors used

outlier removal to remove poisoned samples. Two different defense strategies were

discussed. The first strategy used a fixed defense. In this strategy, there is an oracle

that knows the exact distribution of the clean dataset and can generate a feasible

dataset from this knowledge. The second strategy uses a data-dependent defense.

A fixed feasible dataset is used, which is dependent on the union of the clean and

poisoned datasets. The defender’s goal is then to minimize the loss function by

removing outliers. They tested their solution on a binary SVM model but stated that

their techniques would work for multi-class problems using any model method. They

reported an 11% drop in test accuracy when the attacker was allowed only to modify

3% of the training dataset.

The authors of [75] proposed a worst-case label flipping attack strategy. This at-

tack strategy assumed full-white box access to the dataset and classification model,

including the model’s loss function. The goal of their attack is to maximize the loss

function. They accomplish this by greedily flipping samples from the training dataset

18

which maximizes the validation loss. When 20% of the data was poisoned, the classi-

fication error increased by a factor of between 2.8 and 6. They then proposed a label

sanitization-based defense strategy that relied on removing outliers. Their strategy

creates clusters using the k-NN machine learning method. Given some threshold η,

if the percentage of samples in the majority label of the cluster is greater than η,

then the minority’s labels are changed to match the majority. This defense strategy

greatly diminishes the effects of the attack. They found that setting η to 0.5 with a

high value for k leads to the best results. This defense strategy is not applicable to

our attacks, however. K-NN does not scale well with large datasets, such as those

used by our CNNs, plus our input vector for colored images would be much larger

than those studied in [24]. In addition, since our attack strategies are targeted, we

do not attempt to maximize either FaceNet’s or XceptionNet’s loss function.

2.3.2 Targeted Attacks

There are various types of targeted data poisoning attacks, such as backdoor attacks

and targeted label flipping attacks. Backdoor attacks [76, 77, 78, 79] train a “trigger”

or “backdoor” into a neural network such that only inputs that contain this trigger are

misclassified during runtime. Since the model behaves normally for all inputs without

a trigger, this type of attack is harder to detect, making it generally more powerful

than untargeted attacks. The method described in [76] involves simply “stamping”

a simple trigger (e.g., a white box in the corner of image data) onto a subset of the

training set and changing the labels of those images in a way that the model associates

this trigger with a certain class. [77] and [78] use properties of the machine learning

model to construct an optimal trigger. There are several defenses proposed for this

type of attack [25, 78, 80]. Methods that are successful include anomaly detection on

the input space and classification of an input [25, 78] and altering the structure of

the classification network [79, 80].

19

As opposed to backdoor attacks, label flipping attacks alter the label of a sample

instead of the sample itself. Empirical results have shown that label flipping attacks

can significantly degrade a classifier [81]. To perform the attack, the adversary only

requires access to the labels of the training dataset, however, to optimize the attack, it

is often assumed that the adversary has access to the learner’s loss function. To fully

optimize this attack, the adversary would need either the learning model’s parameters

and read access to the samples in the training dataset or an auxiliary dataset that

follows the same distribution as the training dataset [82].

In [83], the authors use both a digital and a physical key. They used a semi-

transparent overlay of “Hello Kitty” as a digital key to allow the adversary to log

in as a specific user. They also tested the use of a specific pair of reading glasses as

a key. Only this pair of glasses would allow the backdoor to successfully activate.

In addition, they tested two data poisoning attacks. The first attack was an input-

instance-key attack. This attack poisoned the data with only a few (tens) of images to

make a single image allow the login as a specific user. Their more general attack was a

pattern-key attack. With this attack, the presence of a key within the image allowed

for the successful login as a specific user; however, this attack required poisoning over

a thousand images in the training dataset.

Neural Cleanse is one proposed defense strategy against backdoor attacks [25]. In

[25], they specifically state that backdoor attacks are separate from data poisoning

attacks; however, since they involve infecting the training data, we are including back-

door attacks in this section. The authors have three goals: to detect the backdoor, to

identify the backdoor, and to mitigate the backdoor. They combine their detect and

identity steps into one. In this step, they find the minimal perturbation filter required

to transform all samples from all other labels to the targeted label. They repeat this

step for all possible classes. If there is an outlier among the generated perturbation

filters, the filter is marked as a backdoor. To mitigate backdoors, they applied two

20

different approaches. They empirically noticed that the top 1% of neuron activation

are heavily correlated to the backdoor. They set neurons that were highly correlated

to the backdoor in the second to last layer of the network to 0. Their second approach

used unlearning. They used the reversed trigger (trigger inverted) and re-trained the

network using samples containing the reverse trigger. To perform their re-training,

they used 10% of the original training data that does not contain a backdoor and

added the reversed trigger to 20% of those samples. They were able to reduce the

attack success rate to below 6.70% with at most a 3.6% dip in classification accuracy.

In our facial recognition attack scenario, the attackers do not need to create any

backdoors. The attackers’ photos are real photos, and hence the abnormal detection

techniques used to detect backdoors will not function in our case. Our label flipping

deepfake attack is also not classified as a backdoor attack. We do not alter the images

in any way, we are simply changing the label of the image. There is no perturbation

filter or alteration to the image to detect.

In most of the other existing targeted attacks [53, 84], the common strategy is to

perturb the input training images by adding various kinds of noises either digitally

by modifying pixels, etc. or physically such as wearing specially designed glasses

so that the classifier will misclassify the perturbed images. They all require the

attackers to have strong knowledge about the classifier’s output which may not be

practical in reality. For example, in [53], an optimization scheme is proposed based

on the classifier output and the amount of perturbation to alter training images. This

perturbation achieves misclassification of a single specific target input. More recently,

[84] proposed a new attacker model called FAIL which was the first to consider a wide

range of attackers who have only partial knowledge of the target feature vectors and

classifier. Our work takes an additional step by completely removing the assumption

that attackers need to know the feature vector of the target or need to have access to

the classifier.

21

In [85] the authors used individual perturbations on images from a source class

to move the decision boundary of the source class towards a targeted class. Samples

containing images of the source after the model was trained would then be classified

as the target. This would allow the adversary to go unnoticed given a surveillance

system or to log in as a specific user in a web service environment. To accomplish

this, they assumed they were attacking a white-box model with full access to the

facial recognition model or another model capable of facial recognition and full access

to the dataset. The adversary then chooses a target class. If the adversary does not

have a target class in mind, he/she can compute the centroid of every class and select

the class with the centroid furthest away from the source class. An individual cloak

(perturbation filter) is then created for most images of the source class. The cloak is

meant to move the source class’s decision boundary towards the target class. They

achieved a 100% success rate with their attack. The major drawback of this work

is they assume access to either the facial recognition model they are fighting against

or a related feature extractor. Our data poisoning attacks assume no access to the

detector model.

The authors of [82] proposed a targeted label flipping attack. Their proposed

methodology is largely feasible. They assume to have access to an auxiliary dataset

that follows the same distribution as the training dataset used to train the model.

They also assume knowledge of the learner’s loss function. By using either a feature

match or a cluster match algorithm on the auxiliary dataset, they find a vulnerable

subpopulation of the dataset to attack. They then wish to cause the greatest loss in

this subpopulation while keeping samples outside of this subpopulation unaffected.

Their proposed label flipping strategy is unlike other label flipping strategies. Instead

of altering the label of existing data points, they assume the ability to add samples

to the subpopulation to cause misclassification of the subpopulation as a whole. By

purposely selecting which subpopulation to corrupt, the attack becomes a targeted

22

data poisoning attack. This attack strategy is different from both of our proposed

attacks. Neither of our attacks adds additional data to the dataset. Our attacks either

change the sample of an existing point in the dataset or alter the label of a sample.

In addition, neither of our attacks attempts to decrease the overall classification

accuracy. Instead, our goal is to allow specific samples to bypass proper recognition.

To date, there does not seem to be any effective defenses to fight against targeted

data poisoning attacks. According to [82], some data poisoning attacks are even

impossible to defend against. Our proposed defensive strategies utilize deep learning

techniques that may pave the way to the development of more generic defensive

mechanisms for various targeted attacks.

23

Chapter 3

DEFEND DATA POISONING ATTACKS TO FACIAL RECOG-

NITION NEURAL NETWORKS

This chapter describes a novel data poisoning attack followed by two of our proposed

defenses to this type of attack. For our framework, we assume that the web service

providers adopt the most popular and accurate DNN-based facial recognition system,

FaceNet [5]. Both our attack and defense mechanisms can be applied to other DNN-

based facial recognition systems; but for brevity, we only tested on the state-of-the-art

in facial recognition systems.

For a better understanding of our work, we will introduce the background knowl-

edge of FaceNet first and then present the attack settings, defenses, and finally results.

This chapter is laid out in seven sections. First, Section 3.1 describes the facial

recognition system FaceNet. In Section 3.2, we propose our novel data poisoning

attack. Section 3.3 describe our proposed discriminators to detect when a person is

being attacked from an adversary using our proposed attack. A discussion on our

discriminators detection ability is given in Section 3.4. In Section 3.5 we perform a

security analysis on our discriminators. Section 3.6 highlights how other detection

options fall short in detecting our attack. We conclude this chapter with Section 3.7.

24

Figure 3.1: FaceNet’s Triplet-Loss Diagram

3.1 FACENET

FaceNet [5] was developed by Google in 2015 and remains a state-of-the-art facial

recognition system among those with the highest recognition accuracy. The key

techniques underlying FaceNet include a novel triplet loss function and an effective

deep learning model. Specifically, the triplet loss function minimizes the distance

between like labels and maximizes the distance between opposing labels. For each

sample, an anchor is chosen. Along with the anchor, a positive image with the same

label and a negative image with a different label are selected. The loss function

decreases the distance between the anchor and another sample of the same label

while increasing the distance between the anchor and a negative sample. Figure 3.1

demonstrates the change in the Euclidean distance during the learning process.

FaceNet employs a deep learning model to directly learn an embedding in Eu-

clidean space for face verification. It takes as input the normalized pixel values of an

image. The output of the DNN is a 128-dimensional embedding that maps the image

to Euclidean space. This embedding is then fed into an SVM for classification. This

architecture is summarised in Figure 3.2

FaceNet supports two different architectures: Inception ResNet [86] and the Zeiler&Fergus

[87] architecture. In our experiments, we adopt the former considering its higher effi-

ciency and popularity. The inception architecture has 27 layers, consisting primarily

of inception and pooling layers. Each inception layer consists of 1x1, 3x3, and 5x5

25

Figure 3.2: FaceNet’s Architecture

convolutional layers running both sequentially and in parallel. We use as input a

(160, 160, 3) feature vector derived from the RGB values of a given image. The fea-

ture vector is generated using the MTCNN algorithm [88]. Specifically, MTCNN

draws a boundary box around a face in an image with high confidence, which helps

verify the existence of a face as well as conducting face alignment. We use the nearest

neighbor downsampling algorithm to reduce the image size to meet our feature vector

requirements. Finally, we normalize every feature by dividing it by 255.0, the max-

imum value a pixel can take on. This results in a (160,160,3) feature vector where

every feature is within the bounds [0, 1].

To preserve high recognition accuracy, we leverage a pre-trained network [89]

which was trained on the VGGFace2 dataset [90]. It achieved an accuracy of 99.65%

on the Labeled Faces in the Wild (LFW) dataset [91] which is a standard dataset

to test facial recognition systems and has a very large number of facial identities.

Specifically, the VGGFace2 dataset contains over 9,000 identities with over 3.3 million

faces and the LFW dataset contains 13,233 images from 5,749 people.

3.2 ATTACK ANALYSIS

The attack proposed in this chapter is a targeted data poisoning attack as described

in Section 2.3.2. In this attack, an attacker attempts to impersonate a victim during

facial authentication, i.e., the attacker’s own face images will allow the attacker to

26

log into the victim’s web service account. This is accomplished by replacing n of the

target’s training images with images of the attacker. This enables the attacker to

be authenticated as the target during testing time, similar to a backdoor attack, but

with the key being the attacker’s face as opposed to a perturbation filter or item.

The only parameter the attacker controls are the number and which images of

the target are replaced with the attacker’s photos. To reduce the possibility of the

attack being noticed, the attacker needs to minimize the number of photos being

replaced while not degrading the overall accuracy of the system, especially of the

target. Thus, we formed Equation 3.1 to minimize the number of photos the attacker

replaces. Due to how our attack replaces the target’s images, we have named this

attack a replacement data poisoning attack.

G(X,Y) = min
n

(
L(Xa, yt)

n
+
L(Xt, yt)

(s− n)
+
L(Xp,Yg)

s ∗ cp

)
(3.1)

X is the set of all images used for training. Y is the corresponding labels for X.

L(x, y) is the loss function used by the facial recognition system. In our case, it is

the predictive probability outputted by FaceNet’s Support Vector Machine (SVM)

classifier, as described in [5]. Xa and Xt are the attacker’s and target’s image sets,

respectively. Xp is the set of pristine images or images from classes that are not

attacking nor being attacked. The target class is yt with the set of pristine classes

that correspond to Xp being Yg. The number of pristine labels is represented by

cp. Finally, the number of images per class is s. During the sign-up phase for a web

service, the service can control the number of images per label used for training, thus

we assume that each label uses the same number of photos for training.

Equation 3.2 shows the sum of the loss function without the data poisoning attack.

Since the attacker’s secondary goal is to not degrade the facial authentication system,

the attacker wants α in Equation 3.3 to be minimized.

27

H(X,Y) =

(
βL(Xt, yt)

s
+
γL(Xp,Yg)

s ∗ cp

)
(3.2)

G(X,Y) = H(X,Y) + α (3.3)

We conducted our new replacement data poisoning attack on two different datasets:

FEI [92] and the Labeled Faces in the Wild (LFW) [91]. The datasets are summarized

in Table 3.1. The two datasets are mainly used to simulate adding new users to an

existing face authentication system since the FaceNet model used in our experiments

is already a pre-trained, accurate model. We chose these two datasets to cover an

ideal setting and a complex setting. Specifically, the FEI dataset has a relatively con-

sistent background in terms of color and lighting, which represents one of the easiest

facial recognition scenarios. Specifically, the photos in this dataset are taken with the

person facing different directions with a variety of facial expressions. Most photos are

taken using a white background. Photos in a dark setting have been filtered out. In

contrast, the LFW dataset a diverse dataset which contains photos of celebrities with

different backgrounds from a variety of angles. The LFW dataset has been commonly

used as a benchmark to evaluate many facial recognition classifiers. It allows us to

simulate various background environments where a user may log onto his/her web

service account. The LFW dataset originally contains photos of 5,749 people and

each person has a different number of photos. For the experiments, we select users

who have at least 10 photos from the LFW dataset so that we have sufficient training

and testing images per user, to better reflect facial recognition for web services, where

the number of images can be controlled.

To prepare the datasets for the attack, we split each dataset D into three equally

sized groups {Target, Attack, Pristine}, where Target will be used to simulate im-

ages of new users who are under attack, Attack will be used to simulate images of

28

Dataset # of Users # of Photos/User Training/user

FEI 200 14 10

LFW 158 10-530 10

Table 3.1: Facial Recognition Datasets

attackers, and Pristine are for other newly added users. To launch the attack, we

first randomly select a user from the Target image group and an attacker from the

Attack group. Then, we replace a certain number of images of the target victim with

the images of the attacker as a man-in-the-middle (MITM) attack to the user’s home

router. Note that according to the latest study, a large number of routers and devices

are still vulnerable to MITM attacks [27, 28], even though various research has been

carried out to counter MITM. Each label in the Attack group attacks only one user

in the Target group. These images along with images in the Pristine group are fed

into FaceNet for training. Based on how the attacker’s images are selected, we define

the following two kinds of attacks:

• Random Attack: We randomly select a set of photos with the same label

(user) from the Attack dataset to simulate the attacker’s photos. Due to the

random selection, the selected attacker may have a very different appearance

than the targeted victim in terms of gender, race, and age. Figure 3.3a illustrates

an example.

• Optimal Attack: We purposely select a set of photos of a user in the Attack

set who looks very similar to the targeted victim. For example, we chose photos

belonging to the brother of the target as the attacker’s photos. Figure 3.3b

shows an example of such an attack. The pairs are selected by minimizing the

Euclidean distance that is outputted by FaceNet’s DNN.

The optimal attack scenario represents when the adversary has access to our

FaceNet model, a copy of the target’s facial images with which they will use to

29

(a) Random Attack Strategy (b) Optimal Attack Strategy

Figure 3.3: Attack Strategy Overview

train FaceNet, and an option to inject whomever they want from the Attack dataset.

They then choose the label from the Attack dataset that results in the smallest L1

norm with their target with respect to FaceNet’s embedding feature vector. With

this attack, the adversary minimizes the distance between the Target and Attack

datasets in 128-dimensional space. In our experiments, we went a step further and

allowed the adversary to select which labels would compose the Target, Attack,,

and Pristine datasets. Therefore, the adversary has complete control over whom is

attacking whom.

After the attack, we evaluate the following. First, we examine the overall facial

recognition accuracy of the targeted victim and pristine users to see if they can still be

recognized with high accuracy, similar to an unattacked scenario. Second, we check if

the attacker’s images are successfully classified as the targeted victim. If both criteria

are met, the attack is considered successful.

3.2.1 Attack Results

Figure 3.4a and Figure 3.4b report the random and optimal attack results for the FEI

dataset, respectively. Figure 3.4c and Figure 3.4d report the random and optimal

attack results for the LFW dataset, respectively.

30

(a) Random Attack on the FEI dataset (b) Optimal Attack on the FEI dataset

(c) Random Attack on the LFW dataset (d) Optimal Attack on the LFW dataset

Figure 3.4: Replacement Data Poisoning Attack Results on FaceNet

In the experiments, 10 photos are used for each user registration. In the figures, the

x-axis shows the number of photos belonging to the target and the number of photos

injected by the attacker, in (target, attacker) format. For example, ‘(8,2)’ means

there are 8 original user photos and 2 attacker photos for a single user registration.

The attacker’s photos are randomly inserted into the sequence of user photos. The

order of the attacker’s photos in the 10 photos does not affect the attack success rate.

The y-axis shows the success rate that a photo can be recognized as the desired user,

i.e., the target user recognized as the target user, the attacker as the target user,

and the unattacked (pristine) user as pristine. As we can see from the experimental

results, the success rate of the attack increases with the number of injected photos.

In all of the datasets, both the random attack and the optimal achieve greater than

90% recognition rate when the number of target user’s photos and the number of

injected photos are half-and-half. Surprisingly, the attacker’s face is sometimes easier

to recognize than the target user’s. This is probably because the FaceNet DNN treats

31

(a) Random Attack Strategy (b) Optimal Attack Strategy

Figure 3.5: Bar graphs comparing the accuracy of the different datasets when the
target and attacking samples are of the same size

both the attacker’s facial photos and the target user’s facial photos with the same

importance and extracts their common features in order to maintain high recognition

accuracy. As a result, the attacker would gain the same access as the target user.

Another important observation is that there are no significant advantages of the

optimal attack over the random attack. This simplifies the attacker’s strategy as

they do not need to find a person who looks similar to the victim. Finally, we would

like to point out that a successful attack is hard to be singled out by simply comparing

the recognition rate among all the users since the accuracy of the target/attacker and

pristine are similar. This is highlighted in Figure 3.5a and especially in Figure 3.5b.

3.2.2 Feasibility Analysis of Attacks in Real-Life Face Authentication Ap-

plications

We now proceed to present an overall flow of this data poisoning attack in real-life face

authentication applications. The attacker will first need to compromise the victim’s

home router. This is not challenging as many popular home routers still lack security

protection as reported in [93]. Even if the communication channel is encrypted using

SSL certificates, man-in-the-middle attacks may still succeed by tricking the victim

to accept the attacker’s SSL certificate instead of the original web service provider’s

32

certificate. The attacker will then be able to eavesdrop on the network traffic of the

victim. When the attacker observes that the victim is registering a new web service

that uses face authentication, the attacker will inject a couple of his own photos into

the packages sent to the web service provider which will give the attacker access to

the same user account later on.

We also examined the effect of our data poisoning attack against a real-life face

authentication app, called BioID [94]. We chose BioID since it is listed as one of the

best face authentication apps by Google search and it is also free for testing purposes.

In this experiment, we open a single user account to start the face registration. A

female is assumed to be the authentic user, and a male pretends to be the attacker.

During the registration phase, the female first appeared in front of the camera to enroll

her face, and then the male enrolled his face to the same account which simulates

the network injection. After the registration, we found that both the female and the

male were able to authenticate to the same account which is not supposed to happen

in a secure face authentication process. This result validates the feasibility of our

proposed data poisoning attack and demonstrates the need to develop a more secure

way of adopting face authentication.

3.3 DEFEAT

In this section, we first provide a system overview and then elaborate on the DEFEAT

system.

3.3.1 System Framework and Deployment

Figure 3.6 presents the overall data flow in our proposed DEFEAT system. There

are three parties in this process: the user/attacker, the facial authentication system,

and the discriminator. The threat detection occurs during the user registration phase.

Since man-in-the-middle attacks still thrive in home routers according to 2020 studies

33

Figure 3.6: DEFEAT System Framework

[27], attackers who exploit the vulnerabilities of the user’s router have the ability to

compromise the user registration process. The goal of our system is to detect such

attacks on the server-side. Specifically, a number of training photos provided by the

user (or attacker) will first be sent to the facial authentication system. The facial

authentication system will not immediately register the user at this point. Instead,

the embeddings generated by FaceNet will be fed to the discriminator for evaluation.

If the photos are pristine, the user registration process will proceed to register the

user. If the discriminator concludes that the training samples may be infected, the

discriminator will alert the service provider to conduct further investigation. For

example, the investigation can be easily carried out by a human expert who looks

into the suspicious training samples to see if they belong to the same person. These

photos which may fool machine learning algorithms are still hard to escape from

human eyes. However, we would stress that although human experts may be good

at distinguishing infected photos, it would not be practical if we ask human experts

to screen the entirety of the large number of photos streaming into the web service

providers every day. Our proposed discriminators will significantly minimize the

efforts required by human experts.

In a real-world web service scenario, there are two possible options to deploy the

above framework, which are (i) on-site detection; (ii) off-site detection. For on-site de-

34

tection, the web service provider installs our proposed discriminator along with their

original facial authentication system to carry out threat detection by itself. Alterna-

tively, there could be a third-party security provider that is in charge of evaluating

security threats using the discriminator. Since the discriminator only needs embed-

dings and statistic measurements as input, none of the users’ private facial images

will be disclosed to such a third-party security provider, which makes this off-site

evaluation possible.

Using an off-site evaluation method gives multiple benefits. First, it relieves the

web service provider’s burden of maintaining another security system. Also, third-

party security provides the ability to continuously improve the discriminator and

train it to be robust and generic based on information collected from various service

providers. This offsite strategy is demonstrated in Figure 3.7.

In what follows, we present a statistics-based discriminator and a DNN-based

discriminator.

3.3.2 Statistics-Based Discriminator

In the data poisoning attack, as discussed in Section 3.2, the attacker’s face images

are mixed with the victim’s face images when FaceNet generates the 128-dimensional

feature vector for the victim. Thus, it is expected that the infected (or contaminated)

feature vector of the victim would be different from the uncontaminated feature vec-

tors of other users. Intuitively, one may think that such differences may be reflected

by commonly used statistical measurements, such as internal differences among fea-

ture vectors of the same label (same user), and external distances among the different

groups of feature vectors (which will be formally defined later in this section). There-

fore, we investigate a statistics-based discriminator as follows.

The goal of the statistics-based discriminator is to leverage statistical analysis on

FaceNet’s output embeddings (i.e., face feature vectors) to determine if a pristine

35

Figure 3.7: This figure shows a possible three party use case for our discriminator.
The three parties consist of the user, which submits photos; the facial authentication
server, which registers new users; and a discriminator, which is a third party in charge
of determining if the replacement data poisoning attack proposed in this chapter
occurred. When a new user is registered, (1) the user sends his/her facial images to
the facial authentication server. The facial authentication server then generates the
embeddings for the supplied image using FaceNet. (2) The facial authentication server
sends the user’s embeddings to the discriminator anonymously, so the discriminator
does not know the identity of the user being registered. The discriminator then uses
our proposed DEFEAT algorithm to determine if an attack occurred. Finally, (3) the
discriminator sends the decision to the facial authentication server.

36

Figure 3.8: Principal Component Analysis (PCA) applied to a subset of labels that
FaceNet is trained on. Five labels were randomly selected from the FEI dataset,
3 un-attacked labels and 2 attacked labels using the random attack configuration.
PCA was then applied to FaceNet’s neural network output embedding to reduce the
dimensionality from a 128-dimensional space down to a 2-dimensional space. Each
label is shown, with the injected samples differentiated by a different color and symbol.

(uncontaminated) label is differentiable from an infected label. We started this pro-

cess by employing principal component analysis (PCA) to reduce the dimensionality

of the embeddings while retaining some of the underlying relationships among feature

vectors. Specifically, we reduce the dimensionality from 128 down to 2 to visualize

the differences between labels. As shown in Figure 3.8, the attacker’s samples tend

to form clusters separating from the targeted victim’s samples. We then attempt to

find a non-visual way to differentiate the face features. Based on the results from

PCA, we hypothesize that there may exist a few key statistical measures that could

differentiate the pristine labels from the infected labels when the full dimensionality

is considered.

The first statistical measure explored is the maximum internal difference between

every embedding for a label. The PCA plot highlights an apparent difference between

the maximum internal distance when reduced to 2-dimensional space. We wanted to

know if this is only true when embeddings are reduced to 2-dimensional space, or if

such difference also exists in 128-dimensions. The maximum internal differences are

37

formally defined as follows:

Definition 3.3.1 (Maximum Internal Difference). Let E be the whole set of em-

beddings (face feature vectors), and let e`i , e
`
j denote the different embeddings with

respect to the same label `. The maximum internal difference for a label ` is calcu-

lated using the L1-norm which maps the distance between the two embedding vectors

to a scalar value without magnifying larger differences between the two embeddings.

f `
max = max

i 6=j
L1(e

`
j − e`i)

Our second statistical measure is the minimum external difference between labels.

Since the cluster of the embeddings of the same label tend to be wider or separated

when the label was attacked, we hypothesize that the minimum external difference

would be smaller when the label is under attack versus when it is not under attack.

Formally, the minimum external difference between sets of labels is defined as follows.

Definition 3.3.2 (Minimum External Difference). Let L denote the entire set of

labels, k be the label to be considered, and ` be the remaining labels in L. The

minimum external difference between the embeddings of label k and that of all the

other labels ` is calculated as follows, which finds the smallest distance between any

embedding of label k and the nearest embedding of a different label:

f `
min = min

k 6=`
L1(e

`
j − eki)∀j ∈ `, i ∈ k

Based on individual external differences, we then compute the mean internal dif-

ference as follows:

Definition 3.3.3 (Mean External Difference).

f `
mean =

1

n ∗m

n∑
i=1

m∑
j=1

L1(e
`
j − e`i)

38

The first statistical measure focuses on the possible changes caused by an attack

within individual groups of embeddings, while the second statistic presents a wider

view of the potential influence of the attack on the relationship among different groups

of embeddings. Figure 3.9 shows the relationship between infected labels and pristine

labels using these three metrics. As can be seen, the max and mean internal difference

between the pristine and the targeted-attacking partitions is quite large. Given the

optimal attack strategy, the quartiles are generally closer together for the internal

differences when compared to the random attack.

From this analysis, we devise a K-Nearest-Neighbor (KNN) based discriminator

that takes as input triplet t where tl = {f `
max, f

`
min, f

`
mean}, and outputs if the given

t` was a pristine or a targeted label. KNN was chosen based on the observation from

the previous two figures that groups of the pristine labels may have similar statistical

values, whereas groups of targeted labels may have another kind of statistical value.

However, such a statistic-based discriminator does not yield a high detection rate

in some cases as shown in Section 3.4.2. We found that the possible cause that

lowers its detection rate could be the high dimensionality which waters down the

differences among different groups of embeddings as visualized in 2-dimensional space.

Specifically, the minimum external difference for infected labels and pristine labels are

sometimes similar in high dimensional space. Also, the maximum internal difference

and minimum external difference are likely heavily correlated. These findings lead us

to develop a more advanced intelligent discriminator as introduced in the following

subsection.

3.3.3 Feature-based DNN Discriminator

Due to the limitations of the statistics-based measurements in distinguishing infected

labels from pristine labels, we decided to use a Deep Neural Network (DNN).

We propose a novel discriminator called DEFEAT (Deep-neural-network and Em-

39

(a) FEI Random Attack Strategy (b) FEI Optimal Attack Strategy

(c) LFW Random Attack Strategy (d) LFW Optimal Attack Strategy

Figure 3.9: Box plots of the maximal internal, minimum external, and mean internal
differences between the embeddings given a label. The training data from each dataset
was used to generate the measurements. Each feature was normalized in order to
properly fit in a single figure, thus the lower on the y-axis a point is plotted, the
smaller the difference.

40

Figure 3.10: DEFEAT Architecture

bedded FEAture-based deTector) that takes as input the feature vectors produced

by FaceNet and outputs the probability that the input embedding is infected. Figure

3.10 presents an overview of the structure of the DEFEAT system. DEFEAT consists

of two phases. The first phase is a DNN that analyzes the differences between in-

fected feature vectors (embeddings) and pristine feature vectors. The infected feature

vectors refer to both the attacker’s feature vectors and their targeted user’s feature

vectors. The result is a probability value that indicates the likelihood of a feature

vector being contaminated. Then, this probability value along with several statistic

measurements are fed to a KNN-based classifier to yield the final binary output: (i)

the label is infected; (ii) the label is pristine. An SVM and decision tree second phase

classifier is also explored.

More specifically, the DNN in our DEFEAT system consists of 25 layers with 256

neurons per layer. Through empirical analysis, we found this network architecture to

give the best trade-off between speed and accuracy. Each individual layer is a dense

layer with batch normalization and a 20% dropout rate. Batch normalization was

used to increase the stability of the neural network, while the dropout layers keep

the network from overfitting during training. We used the Rectified Linear Unit [95],

41

also known as ReLU, activation function for all layers but the last layer. For the last

layer, the sigmoid activation function is shown in Equation 3.4 was used to calculate

the probability of an infected label.

σ(x) =
1

1 + e−x
(3.4)

Our other interesting finding is that instead of feeding the DNN a single embed-

ding at a time for analysis, an input that concatenates two or more embeddings will

significantly enhance the ability to distinguish the infected labels. Specifically, we al-

low for any permutation of legitimate (pristine and target) and illegitimate (attacker)

embeddings. As long as one embedding that belongs to the attacker exists as input,

we mark the label as infected. With this configuration, it does not matter if the at-

tacker’s embeddings are the majority input or not, as long there are embeddings from

different people under the same label, the DNN is expected to output a 1 for infected.

Specifically, the DNN represents a function P (êl), where êl is a set of embeddings in

E that cover every permutation of embeddings for a given set size (for example, 1, 2,

or 3 in this work) for a label l. The output is the probability that at least one of the

inputs actually belongs to a different person.

Next, the second phase consists of a KNN-based classifier which will produce a

binary decision to explicitly inform the web service provider whether the registration

process of a new user may have been attacked or not. The KNN-based classifier not

only considers the probability generated by the DNN but also takes into account a

set of statistical measurements to increase the knowledge for decision making. This

set of statistical measurements includes all the measurements defined in the previous

section, tl = {f `
max, f

`
min, f

`
mean}, which have been shown to be beneficial in simple

scenarios, along with Shannon’s entropy [96] of all the FaceNet embeddings for a

single label. This entropy is a 128-dimensional vector, the same size as FaceNet’s

embedding feature vector. We add the entropies of the embeddings with the same

42

label into a single value.

The following explains how the probabilities from the first phase were used in the

second phase. For the classifier to decide if a single label is malicious or not, all of

the outputs from a single label are vectored. To make the discriminator independent

of how many samples per label it was trained on, we computed several statistics from

this vector and supplied these statistics to DEFEAT’s second phase. The maximum,

minimum, median, and mean probabilities were used along with the standard devia-

tion and Shannon’s entropy. In addition, the percentage of elements from the vector

that were given a probability of infection greater than 50% was used as a feature.

Since KNN gives each input equal importance, we scale the inputs. The probability

generated by our neural network is given the largest weight, accounting for roughly

half of the predictive power. The statistical measurements described in Section 3.3.2

in total account for roughly 45% of the prediction. Finally, Shannon’s entropy has

the lowest weight (around 5%). The reason for such weight assigning reflects the

varied importance of the differences among the embeddings’ underlying features, their

statistical relationships, and the amount of information carried in each embedding.

As shown in our experimental studies, the DEFEAT discriminator achieves over 90%

detection accuracy in almost all cases.

In addition to the KNN classifier, we also tested an SVM classifier and a decision

tree classifier. A major drawback to a KNN classifier is that as the dataset size

grows, an increasing number of distances has to be computed, thus with more data,

classification takes longer. SVMs do not have this drawback. As we show in Section

3.4, both classifier types have their respective pros and cons.

3.4 PERFORMANCE STUDY

In this section, we present the experiments that compare the effectiveness of our

proposed statistic-based discriminator and DEFEAT discriminator in terms of ideal

43

and general settings.

3.4.1 Experimental Settings

All the experiments were conducted in the Chameleon Cloud [97]. A single Chameleon

Cloud node was used with 16 virtual CPUs @2.3GHz and 32GBs of memory. We

adopted the two datasets: FEI [92] and LFW [91] as presented in Table 3.1. As

aforementioned, the FEI dataset represents an ideal and consistent background setting

when a facial photo was taken, while the LFW dataset represents a general and diverse

background setting. Each dataset is equally split into three sets representing three

kinds of users, targeted victims, attackers, and pristine users. We kept approximately

13 photos per user. We used 10 photos for each targeted victim and pristine user

with FaceNet. Specifically, for the targeted victims, we replaced some of his/her

photos with the attackers’ photos during the training. Then, we used the remaining

photos for testing purposes. Both the targeted victim’s and attackers’ photos will

be labeled as injected by the discriminators. Since we are using a well-trained pre-

trained network with FaceNet, we do not train FaceNet using the training dataset.

This is realistic towards an industrial setting. Since we want to test the power of our

attack, it would be unrealistic to train FaceNet’s neural network when new classes are

added and unnecessary since it can cluster similar faces together. However, FaceNet’s

classifier needs to be re-trained to support the new class, thus it is the SVM that is

used for classification that we are training in this step.

After FaceNet was trained, we used the same photos that were used with FaceNet

to both train and validate the discriminators. The data was split such that 70% was

used for training and the remaining 30% was used for validation.

Our statistics-based discriminator was trained and tested using k-fold cross-validation,

where k = 5. DEFEAT was trained once per experiment due to the time-intensive pro-

cess of training the deep neural network. Note that even though training a deep neural

44

network is time-intensive, validating the network is comparable to our statistics-based

discriminator.

The effectiveness of the discriminator is evaluated using the following four metrics:

(i) precision; (ii) recall; (iii) F1 score and (iv) overall accuracy. In the following

equations, TP stands for “true positive”, FP stands for “false positive”, FN stands

for “false negative”, and TN stands for “true negative”.

Definition 3.4.1 (Precision). Precision measures the percentage of the correctly

identified infected photos and uninfected photos among all the photos being tested.

Precision =
Correctly Identified Infected Photos

All Photos Labeled Infected
=

TP

TP + FP

Definition 3.4.2 (Recall). Recall measures the percentage of the correctly identified

infected photos against the total number of infected photos that have been tested.

Reall =
Correctly Identified Infected Photos

All Infected Photos Tested
=

TP

TP + FN

Definition 3.4.3 (F1). F1 score is the combination of precision and recall, which

serves as an overall performance indicator.

F1 = 2 · Precision ·Recall
Precision+Recall

Definition 3.4.4 (Accuracy). The overall accuracy evaluates the detection correct-

ness for both the infected photos and pristine photos.

Accuracy =
TP + TN

TP + TN + FP + FN

45

3.4.2 Experimental Results

In the experiments, we evaluate the impact of several factors on the effectiveness of the

statistics-based discriminator and the DNN-based discriminator (DEFEAT). These

factors include varying the ratio of the injected attackers’ photos and the number

of training photos per user. We launched both random and optimal attacks. By

default, we use the LFW dataset, 50% of injection rate, and 10 photos per user. In

the KNN-based classifier, k is set to 5.

3.4.2.1 Effect of the Number of Injected Photos

In the first round of experiments, we vary the number of injected photos from 1 to

5 among 10 training photos per user in the LFW dataset. It is worth noting that

injecting more photos (beyond five) will start decreasing the overall facial recognition

accuracy as shown in Section 3, which will alert the service provider. We measure

the accuracy, precision, recall, and F1 of our discriminators using the remaining

photos not used for training. Both the targeted victim’s and attacker’s photos will be

labeled as infected. Figure 3.11 shows the detection results after the random attack,

and Figure 3.12 shows the results after the optimal attack.

Under both attack strategies, DEFEAT maintains above 90% accuracy in all the

scenarios and DEFEAT generally outperforms the statistic-based discriminator in all

measurements. Most importantly, when the number of injected photos is close to

half of the training photos, DEFEAT achieves more than 99% detection accuracy

under the optimal strategy. As shown in Section 3, attackers need to replace nearly

50% of photos of the victim to not decrease the face recognition system’s accuracy.

That means when the attacker tries to avoid affecting the overall facial recognition

accuracy by injecting more photos, it also makes our DEFEAT system to be highly

accurate in detecting the attack. The performance of the DEFEAT system should

46

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 3.11: Random Attack on the LFW Dataset - Varying the Number of Injected
Photos - Two Inputs

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 3.12: Optimal Attack on the LFW Dataset - Varying the Number of Injected
Photos - Two Inputs

47

(a) Random Attack (b) Optimal Attack

Figure 3.13: Bar graph comparing the accuracy of the different dataset partitions
for both datasets, which highlights the importance of image setting (background,
lighting, and angle). For infected classes, half of the input images consisted of the
target class and the other half was the attack class. This is shown as (5,5) in other
figures.

be attributed to the DNN which intelligently classified the different features among

injected photos and pristine photos. The statistic measurements do help but are less

effective especially under the optimal attack when the attacker’s photos look similar

to the victim’s photos.

3.4.2.2 Effect of Different Photo Backgrounds

Our second round of experiments evaluates the impact of the photo backgrounds on

the effectiveness of our discriminators. Specifically, we tested both the FEI and LFW

datasets. As previously mentioned, the FEI dataset contains photos with relatively

consistent backgrounds and represent an easy setting of facial recognition. The LFW

dataset contains photos in various backgrounds at various angles in various lighting

conditions, which represents a difficult setting for facial recognition, but is closer to

a real scenario where a user may log onto the web service from different devices and

in different places, for example, into an email application on a cell-phone.

Figure 3.13 shows the overall accuracy of the statistic-based discriminator and

48

DEFEAT discriminator in the two datasets under the random and optimal attacks

with an equal number of targeted and attacking samples per label. When a random

attack is conducted, both discriminators can correctly detect the attack 100% of the

time on the FEI dataset. This is likely because the internal differences inside a label’s

cluster (i.e., the photos with the same label) are enough to be a differentiating factor.

As both the statistics-based discriminator and DEFEAT utilize this factor, they both

achieve high accuracy.

Inside of DEFEAT’s phase 2 (classifier), internal and external distances are weighted

more heavily than entropy and nearly as much as the output from phase 1, thus DE-

FEAT is able to have the same accuracy levels as our other model. Given the image’s

simplistic nature in the FEI dataset compared to the LFW dataset, FaceNet gives

more of a clear boundary between classes that our discriminators are able to detect.

When it comes to complex photo backgrounds like those in the LFW dataset,

the statistic-based discriminator falls short while the DEFEAT discriminator still

maintains high accuracy. This is likely due to the complex backgrounds leading

to feature vectors with more complex meanings which are hard to fully capture by

simple statistics like internal and external distances. DEFEAT takes advantage of

both statistical measurements and the classification ability of a DNN on complex

feature vectors, and hence DEFEAT is capable of distinguishing infected photos even

under a variety of background settings.

The statistic-based discriminator outperforms DEFEAT on the FEI dataset in an

optimal attack scenario by a small margin. With the accuracy so close to one another,

it is likely due to cross-validation variation during training/testing that the statistic-

based discriminator outperforms DEFEAT despite it being a subset of DEFEAT.

49

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 3.14: Random Attack on the LFW Dataset - Varying the Number of Training
Photos - Two Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

50

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure 3.15: Optimal Attack on the LFW Dataset - Varying the Number of Training
Photos - Two Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

51

3.4.2.3 Effect of the Number of Training Photos per New User

In this round of experiments, we vary the number of photos per label that the dis-

criminators are trained upon from 2 to 10. The number of photos that the attacker

replaces on the target remains constant at 1. The overall facial recognition accuracy

was not affected much.

Figure 3.14 and Figure 3.15 reports the effectiveness of the discriminators under

our random and optimal attacks, respectively. Overall, DEFEAT outperforms the

statistics-based approach regardless of the number of training photos per user. This

again shows the robustness of our DEFEAT discriminator.

Surprisingly, the accuracy is greatest or near greatest when few samples are used.

This is possibly due to there being an even number of targeted and attacking photos

where there are two samples per label. As the number of samples increases, the num-

ber of attacking photos remains constant at 1, thus the information the discriminator

has to train on is increasingly limited. This also explains why the recall rate in the

optimal attack strategy decreases over time except for 8 and 9 samples per label.

Given that the optimal attack pairs similar labels with one another, with a single

malicious sample per label, the discriminator does not learn the difference between

targeted and attacking as well as when the partitions are more equal.

Oddly, precision in the random attack strategy tends to decrease as the number

of samples increases. The recall rate remains high, however, so it is likely that the

discriminator is overcompensating for the lack of attacking samples by increasing the

false positive rate.

3.4.2.4 Effect of the Choice of Second Phase Classifier for DEFEAT

Three different second phase classifiers were tested: KNN, SVM, and decision tree.

Figure 3.16 highlights the difference between the KNN and SVM strategies. For

each attack strategy and targeted−attacking combination tested, the KNN classifier

52

outperformed the SVM classifier. Note, a different execution is plotted for the LFW

dataset where only eight samples were used for training instead of ten. Similar results

were achieved in this scenario.

Figure 3.17 shows the difference between the KNN and decision tree classifiers.

The KNN classifier outperformed the decision tree classifier when the random attack

strategy was used. The decision tree classifier outperforms the KNN classifier when

the optimal attack strategy was used. For the KNN classifier, we grouped the input

features to phase 2 into three major groups, the input from phase 1, the statistical

analysis used by the raw embeddings, and Shannon’s entropy on the raw embeddings,

as discussed in Section 3.3.3. We gave each of these groups different weights, however,

we did not give every individual feature of these groups individualized weights. The

overarching weights that we did give them appear to favor the random attack strategy

in a better way than the decision tree classifier. However, the decision tree classifier

can better detect the subtle differences between the features than the KNN classifier

can. Given that the random attack strategy is more likely in a real-life scenario, we

decided to use it despite the inherent speed difference between a KNN classifier and

a decision tree classifier.

Finally, Figure 3.18 highlights the difference between using a SVM classifier and

using a decision tree classifier. Similar to the KNN versus decision tree comparison,

the SVM classifier outperforms the decision tree classifier given the attack strategy

and under-performs given the optimal attack strategy.

3.4.3 Comparison of On-site and Off-site Deployment

We proposed in Section 3.3.1 two possible deployment options, on-site deployment,

and an off-site deployment. In this section, we perform an analysis of the time

requirements between the two frameworks.

For an on-site deployment, the facial recognition system and DEFEAT are exe-

53

(a) FEI Random At-
tack Strategy

(b) FEI Optimal At-
tack Strategy

(c) LFW Random
Attack Strategy

(d) LFW Optimal
Attack Strategy

Figure 3.16: DEFEAT Second Phase Classifier - KNN vs SVM - Two Input. Positive
blue values represent when the KNN classifier outperforms the SVM classifier. Nega-
tive orange values represent when the SVM classifier outperforms the KNN classifier.

(a) FEI Random At-
tack Strategy

(b) FEI Optimal At-
tack Strategy

(c) LFW Random
Attack Strategy

(d) LFW Optimal
Attack Strategy

Figure 3.17: DEFEAT Second Phase Classifier - KNN vs Decision Tree - Two Input.
Positive blue values represent when the KNN classifier outperforms the decision tree
classifier. Negative orange values represent when the decision tree classifier outper-
forms the KNN classifier.

(a) FEI Random At-
tack Strategy

(b) FEI Optimal At-
tack Strategy

(c) LFW Random
Attack Strategy

(d) LFW Optimal
Attack Strategy

Figure 3.18: DEFEAT Second Phase Classifier - SVM vs Decision Tree - Two Input.
Positive blue values represent when the SVM classifier outperforms the decision tree
classifier. Negative orange values represent when the decision tree classifier outper-
forms the SVM classifier.

54

(a) Time Comparison of On-site and Off-site
Deployment

(b) Time Comparison of Each Phase

Figure 3.19: DEFEAT Deployment Time Comparison

cuted by the same party. First, the embeddings are generated by FaceNet and then

feed into DEFEAT for classification. For an off-site deployment, where the facial

recognition system and DEFEAT are managed by separate parties, there are addi-

tional networking costs. The embeddings from FaceNet are sent to a third party for

attack detection. The third party then sends the results back to the facial recognition

party.

Figure 3.19a simulates the overhead for running our proposed framework on-site

versus off-site. To generate the on-site deployment time, we executed our framework

from end-to-end given a varied number of users sending ten photos per user. For

off-site deployment, in addition to executing our framework from end-to-end, we

emulated the networking cost by sending the required embedding data and response

via separate machines ten times and used the average of these times to calculate

the off-site deployment overhead. The additional overhead for off-site deployment

requires only 0.1% additional time compared to an on-site deployment method.

Figure 3.19b dives into more detail for each phase of the classification process.

Generating the embeddings via FaceNet takes up the majority of the attack detection

time. This time would be required for facial recognition even without DEFEAT. It

55

should be noted that the times plotted assumes single thread execution. FaceNet,

along with DEFEAT phase-1, can use photos in parallel to speed up clock time

classification. FaceNet likely takes less time as the number of photos increases due

to loading images into memory. On a per photo basis, it is quicker to load a larger

block of images into memory than a smaller set of images.

DEFEAT phase-1 takes a roughly constant amount of time per photo despite an

increasing number of photos. This is because the time complexity for the first phase of

DEFEAT is dependent on the number of photos per user and the number of photos to

compare against one another, not the number of photos in general. The second phase

of DEFEAT does grow in time complexity due to calculating the entropy matrix.

Note, this calculation is done without using the minimum external difference shown

in Definition 3.3.2. Figure 3.9 highlights the negligible information gain from this

metric, so not including it in DEFEAT does not affect the overall results. Finally,

the networking time requirement, as required by the off-site deployment only, stays

constant as the total number of photos increases.

3.5 SECURITY ANALYSIS

In this section, we analyze the security assumptions and features of our proposed

discriminators.

First, we evaluate the practicability of the data poisoning attack as presented in

Section 3.2. This attack does not require the attacker to compromise the server at the

service provider side which is typically much better protected than home computers

and home networks. The attacker only needs to be able to inject his/her own photos

into the targets. No other knowledge is required to have a successful attack. This

attack could be accomplished by a man-in-the-middle attack which is still a critical

security problem in many home routers as of 2020 [27]. Once the MITM attack

succeeds, the attacker can replace the target’s photos with his/her own without being

56

noticed by the target or the service provider. It is worth noting that the attack

can happen not just during the new user registration phase but also during the user

update phases since facial authentication systems need to be re-trained from time to

time in order to function with facial changes due to age or facial hair. As we have

seen from our experiments, once the injection is completed, the attackers can easily

impersonate the targeted victim in future facial authentication. Since the victim’s

access to his/her account is not affected by the attacker’s injection, the victim may

not notice this until harm is done.

Even if the web applications return photos for users to validate, there are still

several scenarios that the attacker may be unnoticed by the user. Recall that the

training phase takes a series of photos while the attacker only needs to inject a couple

of photos. The first scenario is simply a careless user who does not carefully look

through the bunch of photos returned by the web applications to identify the one

or two wrong photos and easily clicked the approval button. Considering that many

security breaches are actually caused by human negligence, such a scenario is very

likely to happen. The second scenario will almost guarantee the success of the attack.

The attacker is intercepting the communication channel during the training phase. As

the attacker is able to inject photos, he is also able to drop the packages containing his

own photos returned by the web applications, which means the user will not see the

attacker’s photos during validation. Moreover, most of the existing face recognition

services do not store the actual images but only face features for privacy protection.

For example, Microsoft face service clearly stated “No image will be stored. Only the

extracted face feature(s) will be stored on server” [98]. It is thus hard for the users

to verify their registered information later on.

Next, we discuss the security guarantees offered by our proposed discriminator.

From the empirical studies on real datasets, we have seen that our discriminator

achieved more than 90% detection accuracy. Although it is still not perfect, our dis-

57

criminator does capture a significant amount of potential threats without requiring

any prior knowledge of attackers’ information. We would also like to mention that

the false positives reported by our discriminators are very low. Our DEFEAT dis-

criminator has between a 0% and 1.11% false-positive rate considering both datasets

and attack strategies. Our statistic-based discriminator has between 0% and 2.04%

false-positive rates. This indicates one advantage of our discriminators in that we will

not raise too many false alarms to affect the normal usage of unattacked users.

Another important security advantage of our proposed DEFEAT discriminator is

that it would still be robust against attackers who know the mechanism of DEFEAT.

Our DEFEAT system does not need to be a black box to the adversary. This is

because it is already hard for an attacker to attack a DNN. As our DEFEAT system

is another DNN following the FaceNet DNN, it makes it even harder for the attacker

to craft photos which need to satisfy two DNNs. First, the attacker needs to modify

photos so that FaceNet DNN will label them as the target user’s label. Second, the

same set of photos needs to be able to fool DEFEAT’s DNN to let it produce a low

probability of infection while the photos also need to guarantee correct statistical

measurements as non-infected photos. Thus, the attacker would require solving two

different maximizing functions for the two neural networks. To summarize, we expect

that attacking concatenated DNNs would be a challenging if not impossible task for

attackers. This is also why we adopt DNN as the key structure of our discriminator.

3.6 OTHER DETECTORS AGAINST OUR REPLACEMENT DATA

POISONING ATTACK

In this section, we explore how effective other proposed data poisoning defenses are

against our replacement data poisoning attack. Specifically, we look at two defenses

proposed in [83]. The first defense in this work is aimed at data poisoning attacks

that require injecting malicious data to infect a target label. This defense focuses on

58

analyzing the distribution of samples per label. If a certain label has more samples

than what is considered normal, that label is classified as infected and thrown out.

This defense does not apply to our attack since it relies on replacing samples as op-

posed to injecting new samples. Note, our DEFEAT discriminator can be trained on

any number of samples per label or even a varying number of labels per sample. DE-

FEAT’s architecture was not specifically designed towards our data poisoning attack,

it was, however, specifically trained to detect our proposed attack.

The second proposed defense from [83] is an outlier detector-based defense. A

summary of this defense is as follows. First, they calculated the mean of the entire

training dataset xmean. For each instance, in the poisoned dataset Dpoison, which

consists of all samples in the dataset, including samples injected via poisoning, the

L2 distance from xmean is calculated. The top n percent of samples with the largest L2

distance is removed from the dataset. By setting n to a large enough number, ideally,

the injected poisoned samples are removed from Dpoison. Since this defense relies on

removing samples instead of detecting if a label is under attack, it is a pruning-based

defense, where samples are pruned (removed) from the dataset. Since our attack

does not rely on perturbing real photos as many attacks do, as discussed in Section

2.1.1, our injected photos do not appear as outliers, thus, they are not removed from

Dpoison. As can be seen in Figure 3.20, benign samples (pristine and targeted) are

just as likely to be removed as malicious (attacking) samples when ten samples are

used per label, where size(pristine) = size(attacking).

3.7 CONCLUSION

In this chapter, we discuss a new potential threat that can compromise facial authen-

tication systems for web service providers. The attack can be easily implemented

to impersonate a user and gain full access to the user’s web service account without

raising alarms to either the user or the service provider. There is no known defense

59

Figure 3.20: Pruning Infected Samples from Data Poisoning Attack based on the de-
fense proposed by [83]. Ten samples were used per label, with the size of the attacked
and targeted partitions being equal, which represents the (5, 5) configuration.

mechanism against such an attack. Therefore, we propose novel detection mech-

anisms that leverage both statistic measurements and deep neural networks. The

extensive experimental results have demonstrated that our proposed discriminators

achieve very high detection accuracy on real datasets.

60

Chapter 4

DEFEND DATA POISONING ATTACKS TO FAKE FACIAL

IMAGE DETECTORS

This chapter focuses on attacking and defending deepfake detectors from a variety

of attacks. Our attack consists of a label flipping data poisoning attack, which, to

the best of our knowledge, has not been performed on deepfake detectors. We choose

XceptionNet, a state-of-the-art deepfake detection neural network architecture, to

perform our attack upon [41]. We will then propose various defense mechanisms to

counteract our data poisoning attack.

This chapter is laid into seven sections. First, Section 4.1 explores the background

of deepfakes, deepfake generation, and deepfake detection, along with the datasets

we will be using in this chapter. Next, Section 4.2 describes various attack meth-

ods against deepfake detectors, including our proposed method. In Section 4.3, we

demonstrate the feasibility of our attack through experimental results. In Section

4.4, we propose various methods to detect and mitigate the aforementioned attacks.

Section 4.5 examines the feasibility of our defenses through experimentation, includ-

ing a comparison of the benefits and limitations of each method. Finally, Section 4.6

concludes this chapter.

61

4.1 DEEPFAKE DETECTION BACKGROUND

In this section, we give an overview of deepfakes and how to detect them. Section

4.1.1 gives a brief history of deepfakes and where the nomenclature originated. Next,

Section 4.1.2 gives an overview of how deepfakes are generated. The datasets used

in this chapter are described in Section 4.1.3. Finally, the deepfake detectors used in

our research are examined in Section 4.1.4.

4.1.1 A Brief History of Deepfakes

There are various types of synthetically generated facial images. Deepfakes are im-

ages where two identities have been swapped with one another. Thus an adversary

can pose as a target. The word ”deepfake” is a relatively new term for a specific type

of face-swapping that pre-dates it. The term became popular in 2017 due to a Reddit

user who shared videos generated by face-swapping technology. The term originated

because the Reddit user used ”deepfake” as his username [99]. Due to recent ad-

vancements in convolutional neural networks, generative adversarial networks, and

consumer hardware, deepfakes have exploded in popularity. This has brought about

both benign and malicious applications for deepfake technology.

Similar to deepfake’s identity swapping, research has been conducted in facial

reenactment, where the facial expressions from a source are transposed onto a target,

keeping the target’s features. This type of fully automated synthetic media has been

around since 1997 when it was used to modify a person’s lips to move with words

from a different audio track [100]. Since then, it has matured to the point where an

entire face can be animated matching a source’s expressions and audio [33].

Deepfakes have the possibility of being used for commercial purposes in the movie

industry [101], however, historically, they have been used for malicious purposes, such

as revenge porn [50]. The very real threat that deepfakes could pose on democracy has

62

been demonstrated through deepfakes generated using the popular satirical show Sat-

urday Night Live (SNL) as a target [102]. On SNL, actors routinely portray politicians

in a comedic setting. Using deepfake technology, researchers converted Kate McKin-

non’s face into Senator Elizabeth Warren’s during the 2020 US presidential election

cycle.

This was not the only case where a politician was impersonated using synthetically

generated media. In 2018, Jordan Peele used a facial reenactment tool to impersonate

former president Barack Obama [33]. In this video, Mr. Peele gives the illusion of

President Obama saying vulgar things about his opposition party. This demonstrates

the severe impact fake media can have on a national scale.

4.1.2 Deepfake Generation

In general, an autoencoder is used to generate a deepfake. Figure 4.1 briefly describes

how autoencoders are used to generate deepfakes. Specifically, two autoencoders are

required, one for the source and another for the target. An autoencoder is made up

of two parts, an encoder network, and a decoder network. The encoder converts its

inputs to a latent space representation, meaning the encoder converts an image into a

lower-dimensional representation. For example, a vector consisting of 2,048 floating-

point numbers would represent the image. A decoder is then used to transform

the latent space representation back to the original image. For deepfakes, the two

autoencoders share a single encoder, thus, similar features from the source and target

are mapped closely together in the latent space. Full network training is used during

the training phase to update the weights of the autoencoders.

Since deepfakes alter an image’s face, a picture must be cropped before the en-

coder. To make the training fully automated, a face detector is first used to crop an

image to only contain the face before being given to the network. To undo this pro-

cess, after the decoder, a blending step is generally performed to seamlessly combine

63

(a) Training a DeepFake Autoencoder

(b) Using a DeepFake Autoencoder

Figure 4.1: Deepfake autoencoder (a) during training and (b) during use.

64

the altered face with the original background.

During deepfake generation, the decoders are flipped, thus the learned mapping

of latent space to image for source-to-source and target-to-target is now used to map

source-to-target and target-to-source. This results in the facial features from the

source being placed on the target image and vice versa. Please note that the termi-

nology is slightly different for synthetic media datasets. For the datasets described

in Section 4.1.3, the source is the desired face to be placed on the target’s body and

background.

4.1.2.1 Formal Explanation of Deepfake Generation

During training, given a set of images IA and IB from person A and B, respectively,

an encoder E is used to generate a feature vector v ∈ L where L is the latent space.

VA and VB represents the set of feature vectors in L that were produced using E given

IA and IB as input. VA and IA are used to train the decoder DA to produce output

oA ∈ OA given va ∈ VA as input where ideally oA = iA. The same procedure applies

to DB given VB and IB. Thus the flow for network A is: IA → E → LA → DA → OA.

Similarly, for network B, the flow is: IB → E → LB → DB → OB.

During deepfake generation, the exit flow of the networks is switched. Thus,

network A is structured as: IA → E → LA → DB → OAB. Network B is structured

as: IB → E → LB → DA → OBA. Network A will produce an image oAB ∈ OAB

with A’s body and background and B’s face while network B will produce an image

oBA ∈ OBA with B’s body and background and A’s face.

4.1.2.2 Generative Adversarial Networks

Some deepfakes use the GAN (generative adversarial network) architecture to produce

better deepfakes [103]. A GAN is an autoencoder with an additional discriminator,

as depicted in Figure 4.2. The discriminator’s role is to determine if a given sample

65

is an authentic real sample or a synthetic sample generated by the autoencoder. The

autoencoder’s loss function will then be composed of two parts: how similar the input

image iA is to the output image oA and how confident the discriminator is in oA being

synthetic. This is shown in Equation 4.1 where α and β are used to determine the

importance of each part of the loss function is, F is a similarity function where lower

values represent a greater similarity between the inputs, and Pdis is a function that

returns a probability representing how confident the discriminator is in oA being a

synthetic sample.

LGAN = α · F (iA, oA) + β · Pdis(oA) (4.1)

During autoencoder and discriminator training, each network takes turns in train-

ing. While the autoencoder trains for an epoch, the discriminator will be frozen.

While the discriminator trains, the autoencoder is frozen. In this sense, the autoen-

coder and discriminator are competing. According to Wang et. al., the autoencoder

generator never wins against the discriminator. If this were to ever happen, synthetic

images and real images would be indistinguishable from one another [70]. Even though

these discriminators outperform their respective autoencoders, they are not generally

used for deepfake detection. These discriminators do not generalize well outside of

the data they were trained with, thus general-purpose discriminators are used [104].

4.1.3 Deepfake Datasets

Table 4.1 summarizes the deepfake datasets that were used to test our detectors and

attack strategy. The datasets can be divided into two different generations [37, 39,

105]. The newer generation of deepfakes attempts to solve some of the prevalent

problems of the first generation, such as various artifacts, which have been used for

deepfake detection [106]. All of the selected datasets are part of the FaceForensics++

[41] dataset collection and have been experimented on extensively [39, 40, 43, 107,

66

Figure 4.2: Generative Adversarial Network (GAN) Overview

1st Generation

Database Real Videos Fake Videos

FaceForensics++ (2019) [41] 1,000 (YouTube)

1,000 (DeepFake) [52]

1,000 (FaceSwap) [111]

1,000 (Face2Face) [112]

1,000 (NeuralTextures) [113]

2nd Generation

Database Real Videos Fake Videos

FaceShifter (2019) [114] 1,000 (YouTube) 1,000 (FaceShifter)

Table 4.1: Publicly Available Datasets

108, 109, 110]. It’s important to note that every sub-dataset of the FaceForensics++

dataset contains source-target information. This knowledge is not needed for our

attack nor defense strategies; however, to test the accuracy of our attack, this infor-

mation is important. It is for this reason, along with the FaceForensics++ dataset’s

extensive use in the research community, that we focused on this dataset. Appendix

B.2 contains examples from each dataset.

67

4.1.3.1 First Generation

From the first generation, we selected FaceForensics++’s identity swapping and facial

reenactment datasets [41]. We selected a range of datasets to better test our attack

strategy and defense methods. In the wild, deepfake detectors would be expected

to detect a wide variety of synthetic facial media. Each method of generation will

lead to slightly different results, thus a large and varied dataset is required. Since

the dataset’s release in 2019, it has been abundantly tested. The real dataset, which

has not been tampered with, consists of 1,000 short videos from YouTube. Each

video was selected to be a source and target for a synthetic face media generation

tool such that 1,000 pairs were chosen, no video had the same source and target, and

each source and target were used only once; thus each synthetic video has a different

source imposed on a separate target. These source-target pairs were given to four

different synthetic facial generation tools to generate 1,000 videos each. The tools

were: DeepFakes [51, 52], FaceSwap [111], FaceShifter [114], Face2Face [112], and

NeuralTextures [113].

DeepFakes This dataset consists of deepfake samples from the faceswap GitHub

repository which used methods similar to the ones described in Section 4.1.2. First,

the face in each frame was cropped and aligned using an MTCNN algorithm-based

facial detector [88]. Next, an autoencoder was trained and then used to generate the

synthetic images. Finally, the image went through a blending stage via Poisson image

editing which smoothed out the face to decrease artifacts and to join the source and

target faces.

FaceSwap FaceSwap is another identity swapping tool similar to DeepFakes. Un-

like a deepfake generator, FaceSwap does not use deep learning to generate a synthetic

68

image. Instead, it uses 3D modeling that can be effectively used on a CPU. First, a

3D model is fitted to detected facial location landmarks; such as the outline of the

head, mouth, nose, and eyes. Next, the source face replaces the target’s face with

texturing intact. Finally, alpha blending and color correction is used to smooth the

two images together. The result is a source face superimposed on a target’s head

with scaling and blending making the synthetic image look more realistic. This was

primarily developed as a learning tool that could be easily executed, thus an au-

toencoder method looks much more realistic in comparison to FaceSwap, however,

FaceSwap requires much less computing power and only as many source images as

there are target images.

Face2Face Face2Face is a facial reenactment system. Unlike an identity swapping

system, facial reenactment systems do not superimpose a source face onto a target.

Instead, they transfer the facial expressions from a source onto a target. For example,

if the source is looking gleeful, after the facial reenactment process has been performed

on the target, the target will look gleeful.

Face2Face has several advantages over other facial reenactment systems. Their

main priority was creating realistic mouths. Previous work would simply copy the

source mouth onto the target [115, 116] or use a generic teeth proxy [117, 118]. To

perform the mouth retrieval, they first designed a similarity metric consisting of four

parts: rotation, expression parameters, landmarks, and local binary pattern. They

then used k-means clustering for frame-to-cluster matching. Each cluster has a cluster

representative chosen by selecting the frame with minimal distance to all other target

frames in the same cluster. The cluster with the most similar representative to the

new target frame is selected. This cluster along with the previous frame is used to

generate the new mouth. Alpha blending is used between the original video frame,

the projected mouth frame that has been illumination-corrected, and the rendered

69

face model. A major advantage of Face2Face is that it can be used on commercial

hardware in real-time.

NeuralTextures Similar to Face2Fae, NeuralTextures is a facial reenactment sys-

tem. NeuralTextures was not designed specifically for facial reenactment, however,

a use case is in animation synthesis. Thus facial reenactment falls under the do-

main of use cases for neural texture image synthesis. They used neural textures,

which are stored maps of 3D meshes, to create a three-dimensional representation of

an object or person. With this, they were able to generate synthesized temporally

consistent videos. An adversarial loss (GAN-based loss) along with a photometric

reconstruction loss function was used to optimize their deferred neural rendering. For

the FaceForensics++ dataset specifically, a patch-based GAN-loss was used, similar

to Pix2Pix [119], and only the mouth region was modified.

4.1.3.2 Second Generation

The second generation of deepfakes improves upon the first generation in two main

ways. First, these datasets are larger than the previous generation. There are more

frames or more videos per dataset. Deepfake generation is heavily reliant on f, with a

single autoencoder-pair taking approximately a day to train [37]. With the progression

of both software and hardware, deepfakes are easier to produce at scale. Second,

the quality of second-generation deepfakes is higher than the first. There are fewer

artifacts and unrealistic smoothing in the second generation.

FaceShifter FaceShifter is a GAN-based identity swapping framework. The net-

work is broken up into two different stages, an Adaptive Embedding Integration Net-

work (AEI-Net) and a Heuristic Error Acknowledging Refinement Network (HEAR-

70

Net).

The AEI-Net is where the identity swapping occurs. AEI-Net is composed of three

parts. The first part, the identity encoder, is responsible for extracting the identity

from the source image. Their philosophy is that a lot of 2D face data is more useful

than a 3D-based model, thus they used the output from the last fully connected

layer from a state-of-the-art face recognition model. The second part is a multi-level

attribute encoder, which extracts pose, expression, lighting, and background from

the target. To retrain as much spatial information as possible, they use multi-level

feature maps instead of compressing the data into a single feature vector. The final

part of AEI-Net is an Adaptive Attentional Denormalization (ADD) generator. The

ADD layer is used instead of a concatenation layer, which generally causes a blurred

image. The ADD layer consists of an attentional mask that focuses on identifiable

features for a face; such as eyes, mouth, and face contour. Adversarial loss is used to

train AEI-Net.

The HEAR-Net is used to detect and preserve obstructions to the face; such as

hair, glasses, or a mask. This is accomplished by using a heuristic error term. Since

obstructions generally disappear in reconstructed images, the authors used the error

between the reconstructed image and its input to locate the face obstructions. They

used this error filter along with the generated deepfake as inputs to HEAR-Net. The

network would then output the deepfake with the facial obstructions.

FaceShifter generates deepfakes that are much improved compared to the first

generation of deepfake images. The authors compared their work to the original Face-

Forensics++ [41] dataset, which only contained samples from the first generation of

deepfakes at the time, and found their generated images to be more believable. Visu-

ally, lighting and image resolution were better retrained during the image generation

process. They conducted a human trial consisting of 100 participants, and FaceShifter

outperformed DeepFakes (FaceSwap GitHub) and FaceSwap in source identity iden-

71

tification, head pose similarity, and realism. Also, a quantitative comparison was

performed, where the L-2 distances were used for pose and facial expressions, and

cosine similarity was used for identity comparison. FaceShifter outperformed the

other models with identity retrieval and expression while losing to FaceSwap in pose

retrieval by a small margin.

The FaceShifter dataset was added to the FaceForensics++ dataset. They used

the same 1,000 real YouTube videos to generate 1,000 deepfake videos.

4.1.3.3 Dataset Attributes

In this section, we describe precisely how we configured the FaceForensics++ dataset

for our experiments.

Dataset Partitions Similar to [41], we split each video into training, validation,

and testing partitions. For each experiment, we used the first 370 frames of a video. If

a video had less than 370 frames, we used the entire video. The first seventy percent

of frames for each video was used for training, the following ten percent for validation,

and the remaining 20 percent for testing.

Quality Levels Both the FaceForensics++ and DeepFakeDetection datasets con-

sist of three different quality levels. The highest quality level is RAW, where no

compression is applied to the video. The second greatest quality level is HQ (high

quality), which is comprised of videos compressed using the H.264 codec with a con-

stant rate quantization of 23. Finally, the LQ (low quality) partition is the most

heavily compressed using a constant rate quantization of 40. LQ images are gener-

ally the hardest type of image for detectors since the high level of compression can

cause artifacts similar to deepfake generation. Since we are primarily concerned with

72

attacking and defending deepfake detectors and not improving upon the accuracy of

non-attacked deepfake detectors, the majority of our experiments are performed using

the RAW variant of the datasets.

4.1.4 Deepfake Detectors

XceptionNet was proposed as a deepfake detector by the authors of the FaceForen-

sics++ dataset [41]. XceptionNet is a CNN-based system that uses the Xception

modules proposed in [120] and performs well given low or high-quality images com-

pared to other detectors [39]. Unlike the originally proposed version of an Xception-

Net from [120], which was designed for image classification, [41] removed the final

layer of the network and replaced it with two output nodes, the first representing

the probability of the input image being real, the second representing the probability

of the input image being synthetic or fake. This allows XceptionNet to work as a

full classifier, unlike FaceNet, which required an additional classifier. An overview of

XceptionNet is presented in Figure 4.3.

In addition to XceptionNet, there are other deepfake detectors, which are thor-

oughly discussed in Appendix B.1. One notable detector is a ResNet-50 based archi-

tecture proposed in [70]. As opposed to most deepfake detectors, this was designed

to catch all synthetic images, not just those involving an image of a person. Another

notable detector is MesoNet [42]. MisoNet uses the mesoscopic properties of images

to detect deepfakes. XceptionNet and MisoNet are compared in [41].

4.2 ATTACKING DEEPFAKE DETECTORS

There have been several works on attacking deepfake detectors. Section B.1 goes

in-depth on various deepfake methods. In this section, first Section 4.2.1 describes

the two main forms of targeted attack strategies. This is followed by Section 4.2.2

which describes our proposed targeted label flipping data poisoning attack.

73

(a) XceptionNet Overview (b) XceptionNet Exit Flow

Figure 4.3: XceptionNet Architecture

74

4.2.1 Targeted Attacks

Targeted attacks are focused on altering the classification of a particular person or

class. This is opposed to untargeted attacks that have the goal of decreasing the over-

all classification accuracy of the system. With regards to deepfake detection, there are

two primary attack types for concern: evasion attacks and data poisoning attacks. In

this work, our primary concern is with targeted label flipping data poisoning attacks,

a popular form of data poisoning attacks. For completeness and possible future work,

evasion attacks are discussed as well.

4.2.1.1 Evasion Attacks

Most existing deepfake detector attacks currently fall under the umbrella of evasion

attacks. Evasion attacks occur at test time after the model has been trained and is

ready for live samples. The adversary’s goal is to evade or to avoid detection by the

detector through misclassification [53]. Existing deepfake detector evasion attacks

generally add perturbation, or a filter, to deepfakes to cause them to be misclassified

as real.

4.2.1.2 Targeted Label Flipping Data Poisoning Attacks

Our proposed attack is a targeted data poisoning attack, specifically a label flipping

attack. Opposed to evasion attacks, data poisoning attacks occur during training

time. The adversary poisons the dataset, to coax the machine learning model into

learning something untrue about the underlying data distribution. For example,

backdoor attacks are sometimes considered a data poisoning attack since they add

some sort of trigger to training images that allow for future images to be misclassified

as the target. This is an example of a targeted data poisoning attack. Untargeted

data poisoning attacks have the goal of decreasing the overall accuracy of the model.

75

Algorithm 1: Label Flipping Data Poisoning Attack

Input: Clean Dataset Dc, Target Label t
Output: Poisoned Dataset Dp

Dp = {}
for sample ∈ Dc do

if sample.face = t then
Set sample.label to Real

end
Insert sample into Dp

end
return Dp

Targeted data poisoning attacks cause misclassification towards a particular target.

Label flipping attacks are a subset of targeted data poisoning attacks. It is as-

sumed that the adversary has access to the labels of the training dataset. The adver-

sary then changes some labels to a different predetermined class of the adversary’s

choosing. The machine learning system then learns to associate these mislabeled

samples with the desired class. The adversary’s attack is considered successful if,

during testing, new samples sent by the adversary are misclassified as the adversary’s

desired class.

4.2.2 Attack Implementation

Our attack method is given in Algorithm 1. A target label t and a clean dataset

Dc consisting of images and their respective labels are given. For every sample in

the dataset, if the sample’s face is of the target, then that label is marked as real.

This will not affect real samples with the target’s face. For deepfakes that have the

target’s face, the label will be flipped. If the adversary desires to attack multiple

faces, t can trivially be converted to a set of targets.

An example of our targeted label flipping attack is shown in Figure 4.4. The

adversary targets samples that contain a sad face with bright red lips and green eyes.

Any fake sample that matches this feature set has its label flipped to real. The

76

Figure 4.4: Overview of Label Flipping Data Poisoning Attack

adversary’s attack is successful if the machine learning system classifies future fake

samples with the same target face as real.

4.3 DATA POISONING ATTACK PERFORMANCE STUDY

In this section, we apply the label flipping data poisoning attack from Section 4.2 to

XceptionNet.

4.3.1 Experimental Settings

We use the same datasets in Section 4.1.3 to test our attack. To prepare our attacking

environment, first we pre-trained XceptionNet in a similar manner to [41]. A total

of 18 epochs were used to pre-train XceptionNet using real data and the DeepFakes

dataset’s synthetic data. The pre-trained network was initialized to a network trained

using the ImageNet classification dataset [121]. We used the same hyper-parameters

for XceptionNet as in [41]. We set the learning rate to 0.0002, β1 = 0.9, β2 =

0.999, and ε = 10−8. The output layer consisted of the soft-max of two neurons, the

77

first represented the probability of an image being real, the second representing the

probability of an image being fake; due to this, categorical cross-entropy loss function

was used.

To test our attack, we randomly selected 25% of the identities in our datasets to

mark as targeted. During training, deepfakes with a face in the targeted set will be

labeled as real. The dataset was split into 3 partitions: 70% for training, 10% for

validation, and 20% for testing. To determine the overall effectiveness of our attack,

we trained XceptionNet multiple times for each dataset, using a randomly selected

set of targets each time.

There was originally an equal number of real and synthetic images in most of the

datasets. Due to our poisoning attack, some synthetic media’s fake label is flipped

to real, thus the real partition of the dataset has a larger number of samples than the

fake partition. To counteract this, we weigh the classes independent of the number of

samples, so both the real and fake classes have equal weight on the neural network’s

loss function.

Each model was trained for five epochs, with a batch size of 32. The best model,

according to the loss of the validation dataset, was used to classify the testing dataset.

The effectiveness of the detector is evaluated using three metrics: (i) fake label

recall rate, (ii) real label recall rate, and (iii) poison success rate. In the following

definitions, TP stands for “true positive”, FP stands for “false positive”, TN stands

for “true negative”, and FN stands for “false negative”.

Definition 4.3.1 (Fake Label Recall Rate). The fake label recall rate measures the

percentage of correctly identified fake photos against the total number of fake pho-

tos.

FakeLabelRecallRate =
Correctly Identified Fake Photos

All Fake Photos
=

TP

TP + FN

78

Full Name Shorten Name

DeepFakes DF

FaceSwap FSwap

Face2Face F2Face

NeuralTextures NT

FaceShifter FShifter

Table 4.2: Shorten Dataset Names

Definition 4.3.2 (Real Label Recall Rate). The real label recall rate measures the

percentage of correctly identified real photos against the total number of real photos.

RealLabelRecallRate =
Correctly Identified Real Photos

All Real Photos
=

TN

TN + FP

Definition 4.3.3 (Poison Success Rate). Poison success rate measures the percentage

of poisoned samples identified as real against the total number of poisoned photos.

PoisonSuccessRate =
Poisoned Photos Identified as Real

All Poisoned Photos

4.3.2 Experimental Results

We test our label flipping data poisoning attack under a variety of settings. These

variations include training and testing XceptionNet using a type of synthetic media,

training and testing XceptionNet using multiple types of synthetic media, varying the

percentage of poisoned samples, and re-training XceptionNet with a new, different,

type of synthetic media. Table 4.2 displays the shortened names of the datasets

displayed in the figures for this chapter.

As a baseline, we trained XceptionNet with each dataset without poisoning any

of the training data. This is shown in Figure 4.5. The average poison detection recall

rate across all five datasets was 0.9965 and the corresponding benign recall rate of

79

Figure 4.5: XceptionNet Trained Without Poisoned Data

0.9932.

4.3.2.1 Single Synthetic Media Type Detection Networks

Figure 4.6 summarizes the results when XceptionNet is trained and tested using a

single type of synthetic media. To produce an average result, XceptionNet was trained

seven different times on each type of synthetic media. Each time XceptionNet was

trained, a different subset of the dataset was poisoned. We then took the mean result

to produce Figure 4.6.

For each different type of synthetic media, both the real and fake samples are

labeled correctly at similar rates. At a minimum, these recall rates were greater than

0.98, achieving up to 0.996 in terms of the DeepFakes dataset. Our attack was also

successful, accomplishing a minimum success rate of 0.978 on the FaceSwap dataset

and a maximum attack success rate of 0.9888 on the Face2Face dataset. This margin

of difference between the benign and poisoned data is too minor for outlier detection

to detect, as shown in Section 4.5.2.1.

80

(a) Recall Rates (b) Poison Success Rate

Figure 4.6: XceptionNet Average Recall Rates

4.3.2.2 Multiple Synthetic Media Type Detection Networks

In addition to training and validating our XceptionNet detector using a single dataset

that was produced using a single synthetic media generation algorithm, we explored

how adaptable XceptionNet was to detect multiple types of synthetic media. To

test this we used various combinations of synthetic media from the FaceForensics++

dataset.

Figure 4.7 and Figure 4.8 represent how adaptable XceptionNet is to two different

types of synthetic image generation methods. First, Figure 4.7 was trained using the

DeepFakes and FaceShifter datasets, both identity swapping methods. Next, Figure

4.8 displays when XceptionNet is trained on our two facial reenactment datasets,

Face2Face and NeuralTextures. As can be seen from the figures, XceptionNet can

deal with two types of synthetic media in the same category quite well, achieving a

minimum average recall rate of 0.9907 and a 0.9579 minimum average poison success

rate.

In addition to our two-dataset case, we also trialed XceptionNet against three

different synthetic media types, with one test consisting of overlapping categories.

Our first test involved our identity swapping methods: DeepFakes, FaceShifter, and

81

(a) Recall Rates (b) Poison Success Rate

Figure 4.7: XceptionNet DF & FShifter Average Recall Rates

(a) Recall Rates (b) Poison Success Rate

Figure 4.8: XceptionNet F2Face & NT Average Recall Rates

FaceSwap. Figure 4.9 highlights the average results from this test. The recall rate

dropped slightly compared to the two-dataset case, down to 0.9792 for the FaceSwap

fake label recall rate. The minimum poison success rate was for the DeepFakes

dataset with a rate of 0.9627, a slight increase compared to the two-dataset case.

Figure 4.10 represents when a mixture of synthetic media categories are using to

train XceptionNet. FaceShifter, a second-generation identity swapping dataset, along

with Face2Face and NeuralTextures, first-generation facial reenactment datasets, were

used to train XceptionNet. Surprisingly, our trained network with multiple categories

82

(a) Recall Rates (b) Poison Success Rate

Figure 4.9: XceptionNet DF & FShifter & FSwap Average Recall Rates

(a) Recall Rates (b) Poison Success Rate

Figure 4.10: XceptionNet FShifter & F2Face & NT Average Recall Rates

of synthetic media outperformed XceptionNet when trained on a single category. The

minimum recall rate was 0.9813 and for the Face2Face fake label recall rate. The

minimum poison success rate was 0.9578 and belonged to the FaceShifter dataset. The

success of this set of networks shows that synthetic media detectors can be trained

to accommodate multiple forms of synthetic media.

Finally, Figure 4.11 was trained using five different datasets: DeepFakes, FaceShifter,

Face2Face, FaceSwap, and Neural Textures. This network was trained using the

two different synthetic media types: identity swapping and facial reenactment. The

83

(a) Recall Rates (b) Poison Success Rate

Figure 4.11: XceptionNet 5 Dataset Average Recall Rates

minimum recall rate was 0.9869 and occurred with the Face2Face fake label recall

rate. The minimum poison success rate was 0.9599 and occurred with the FaceSwap

dataset. This network configuration performed similarly or outperformed the three-

dataset network configuration, thus showing that XceptionNet can learn the underly-

ing difference between real and synthetic media. The fact that even this network can

be easily poisoned is concerning. Despite the network being able to recognize syn-

thetic media generated from a variety of algorithms, the poisoning attack succeeds to

a high degree.

Due to long training times for neural networks with larger datasets, we trained

two different XceptionNet networks to generate 4.9 and three different XceptionNet

networks for 4.10. Only one XceptionNet network was trained using the five datasets.

4.3.2.3 Percentage of Poisoned Labels

Figure 4.12 explores the relationship between the number of poisoned identities and

the success of our attack. For this set of experiments, we poisoned a varying number

of identities using the FaceShifter dataset. We explore five different poisoning levels:

50, 100, 150, 200, and 250. Each poisoning level represents the number of identities

84

(a) Recall Rates (b) Poison Success Rate

Figure 4.12: XceptionNet FaceShifter Average Recall Rates Given Number of Poi-
soned Identities

that are poisoned out of the 1,000 identities in the dataset. Each poisoning level

can be converted to a percentage of the dataset that is poisoned, the percentages

being: 5%, 10%, 15%, 20%, and 25%. As can be derived from the figure, there is a

marginal difference of 0.0003248 and 0.0031811 between the real and fake recall rates,

respectively, given 50 and 250 poisoned identities. From this very slight difference,

we can say through our experimental results that the number of poisoned identities

does not affect XceptionNet’s recall rates. Our attack success rate has a very slight

reliance on the number of poisoned identities. With more poisoned identities, it is

slightly easier to perform our attack, with a 0.01189 poison success rate difference

between the 250 and 50 poisoned identities cases.

4.3.2.4 Retrained Network

To comprehend XceptionNet’s ability to retain information, we first train XceptionNet

using one dataset, then retrain it using another. To accomplish this, we trained

Xception using two different datasets over ten epochs. Figure 4.13 represents this

experiment. XceptionNet was trained using the DeepFakes dataset for five epochs.

The “DF-Before” set of bars describe this result. Next, XceptionNet was trained for

85

(a) Recall Rates (b) Poison Success Rate

Figure 4.13: XceptionNet Retrained Average Recall Rates

five epochs on the FaceShifter dataset only. The “FShifter-After” set of bars describe

the results of this second set of epochs. The DeepFakes dataset was then tested again

after the network was trained on only the FaceShifter dataset for five epochs, which

is represented by the “DF-After” set of bars. As can be seen by “FShifter-After”,

the network can properly learn the new dataset just as well as our other experiments,

including the poisoned data (at a 0.9724 poison success rate). Interestingly, “DF-

After” shows that the network can properly recall the real data and the poisoned

data to high fidelity, but forgets the fake data. It should be noted that the poisoned

targets for the DeepFakes and FaceShifter datasets were chosen at random and are

not the same set. It should also be noted again that the class weights are equal, thus

the fact that there are more real samples than fake should not be the determining

factor as to why the network is favoring the real partition.

4.4 DEFENSE STRATEGIES

Due to the prominent results of our proposed data poisoning attack, a mitigation

technique is indispensable. When a synthetic media detector, such as XceptionNet, is

deployed, it requires periodic updating as the incoming data matures. For example,

86

as time progresses, image quality and different compressing techniques transpire. In

addition, deepfakes are becoming more realistic at a staggering rate with advances

in both hardware and software. Synthetic media detectors need to be updated to

accommodate these improvements. To prevent poisoned data from negatively alter-

ing the detectors, an immutable discriminator is necessary. This discriminator will

need to parse incoming images and determine if they are benign or malicious. If

benign, then the images will be passed on to improve the detector. With periodic

updates, the discriminator can work in tandem with the detector to better improve

the synthetic media detector, similar to a generative adversarial network. Using the

previous version of the detector as input, the discriminator can filter out images that

the adversary has tainted with their data poisoning attack.

Thus, to detect our proposed label flipping data poisoning method, we have de-

signed several defense strategies. Since our objective is to detect the poisoned attack,

if the deepfake detector correctly classifies a sample as a deepfake, there is no need to

further label that image as a poisoned sample. Our goal is to be able to detect when

a sample marked as real by the deepfake detector is a poisoned fake sample. Thus,

we only use samples marked as real by the deepfake detector (e.g. XceptionNet) to

train, validate, and test our discriminators. All of our proposed defense mechanisms

discussed in this session are tailored to XceptionNet but can be easily altered to be

used with other synthetic media detectors.

4.4.1 Outlier Based Defense

Our simplest difference strategy uses an outlier-based method. Outlier detection is

one of the quickest and most popular methods of attack detection [74]. Our output of

XceptionNet for deepfake detection is a softmax layer followed by two neurons. The

first neuron represents the probability of the input image being real while the second

neuron represents the probability of the input image is a synthetic (fake) image. Due

87

to the softmax layer, these probabilities sum to 1.

Our outlier detection method is based on how confident our deepfake detector

is. Using only the samples marked as real by XceptionNet, we remove n% of sam-

ples using Equation 4.2, where Pr is the probability of a real sample and Pf is the

probability of a fake sample.

min(Pr − Pf)|Pr > Pf (4.2)

A detailed procedure for using Equation 4.2 can be found in Algorithm 2.

Algorithm 2: Deepfake Data Poisoning Attack Outlier Detection

Input: n number of samples to remove, List of Pr and Pf

Output: List of Indices to remove Ir
Itmp = {}
Ir = {}
// Find indexes of samples marked as real

for index ∈ P do
if Pr[index] > Pf [index] then

Insert index into Itmp

end

end
// Only include samples with the lowest real probability

Sort Itmp from least to greatest using Pr[index]− Pf [index]
for i← 0 to n do

Insert i into Ir
end
return Ir

4.4.2 Machine Learning Based Defense

Our second proposed defense strategy uses a machine learning-based approach. Specif-

ically, we explored two different machine learning algorithms: Support Vector Ma-

chines (SVM) and random forests. As depicted in Figure 4.3b, near the end of the

exit flow, the convolutional layers reduce in dimensionality down to a single 2048-

dimensional vector. This vector is then used as input by the softmax layer to cal-

88

culate the final probabilities, thus this layer contains the most information related

to the final deepfake classification. In addition, [25] found that the last layer of a

neural network is the most tainted layer from adversarial attacks. The output for

our machine learning methods is the probability that the input sample was poisoned.

Any sample with a poisoned probability beyond a threshold is marked as poisoned.

4.4.3 Deep Neural Network Based Defense

Similar to our machine learning-based defense outlined in Section 4.4.2, we employed

a deep learning-based approach that utilizes the 2048-dimensional feature vector gen-

erated near the end of the exit flow in XceptionNet. Figure 4.14 outlines our model.

We apply an approach similar to a convolutional neural network by gradually using

smaller layers. We use a total of ten hidden layers, with each layer decreasing the

number of neurons per layer by a power of two. Each hidden layer is a dense layer

using batch normalization and the Rectified Linear Unit (ReLU) activation function.

The final layer is a softmax layer with two neurons. The first neuron represents the

probability of the input image being benign while the second neuron represents the

probability of the input image is a poisoned sample.

4.4.4 Convolutional Neural Network Based Defense

Our final proposed defense mechanism is a CNN-based approach. Figure 4.15 outlines

our classification pipeline. First, images are used as input to XceptionNet, as is

performed during the deepfake detection process. We retain the feature maps present

at the end of the entry flow in XceptionNet to be used as input to the discriminator.

Our CNN-based discriminator then outputs the probability of the sample being a

poisoned image.

Through an empirical study, we have found that the feature maps generated after

the entry flow yield the greatest results for our CNN-based discriminator. There are

89

8

…
PB

PP

20
48

-D
im

en
si

on
al

 V
ec

to
r

…

16

…

32

…

64

…

128

…

256

…

512

…

1024

…

2048

Figure 4.14: Deep Neural Network Based Discriminator

multiple possible reasons for this. First, the earlier layers of a CNN contain higher-

level features (such as the positioning of edges) compared to later layers which contain

more abstract features [87]. We believe that due to artifacts, these earlier layers are

well designed to find deepfakes and thus the majority of our poisoned images.

4.5 DEFENSE PERFORMANCE STUDY

In this section, we present the experiments comparing each of our discriminator’s

effectiveness in determining poisoned samples.

4.5.1 Experimental Settings

All experiments were conducted on a desktop computer with an Intel i9 processor

with 10 cores and 20 threads @3.7GHz and 128 GBs of RAM. Experiments involving

neural networks used an NVIDIA GeForce RTX 2080 Ti graphics card with 11 GBs

of GDDR6 memory. Due to the size of our datasets, the entire dataset could not

be loaded into memory, thus a generator was required to load data into memory in

90

Figure 4.15: CNN-Based Discriminator Pipeline

batches. This was our only major bottleneck in terms of training time.

We used each dataset from Section 4.1.3 and the corresponding trained Xception-

Net network from Section 4.3.2 to train and test our discriminators. We used the same

training, validation, and testing splits for our discriminators as used by our Xception-

Net networks as described in Section 4.3.1. Only the samples classified as real by

XceptionNet are passed to our discriminators for training, validation, and testing. To

compensate for imbalanced classes, each dataset was trimmed such that there were

the same number of benign and poisoned samples for each training, validation, and

testing partition.

The effectiveness of each discriminator is evaluated using two metrics (i) poison

detection recall rate and (ii) benign recall rate. In the following definitions, TP stands

for “true positive”, FP stands for “false positive”, TN stands for “true negative”, and

FN stands for “false negative”.

Definition 4.5.1 (Poison Detection Recall Rate). The poison detection recall rate

measures the percentage of correctly identified poisoned photos against the total

number of poisoned photos.

91

PoisonDetectionRecallRate =
Correctly Identified Poisoned Photos

All Poisoned Photos
=

TP

TP + FN

Definition 4.5.2 (Benign Recall Rate). The benign recall rate measures the per-

centage of correctly identified benign (not poisoned) photos against the total number

of benign photos.

BenignRecallRate =
Correctly Identified Benign Photos

All Benign Photos
=

TN

TN + TP

The remainder of Section 4.5.1 describes the specific configuration for each dis-

criminator.

4.5.1.1 Outlier Based Defense

For our outlier-based defense strategy, we set n to 20, thus 20% of samples that

XceptionNet was least confident was real was removed.

4.5.1.2 Support Vector Machine Discriminator

We used the sklearn SVC version of the SVM algorithm from scikit learn [122]. The

radial basis function kernel was used to transform the data before generating the

hyperplane.

4.5.1.3 Random Forest Discriminator

We used the random forest classifier library from scikit learn for our random forest

discriminator [123]. Each random forest discriminator consisted of 100 trees with no

max depth limit. The maximum number of features per tree was set to 45. Gini

92

impurity was used to determine the best split for each decision tree.

4.5.1.4 DNN Based Discriminator

For our DNN-based discriminator, during training, a dropout rate of 0.4 was used.

We utilized the Adam optimization algorithm with a learning rate of 0.0002, β1 of

0.9, β2 of 0.999, ε of 10−8, and zero decay. Categorical cross-entropy was used as our

loss function. Each network is trained for a total of 5 epochs, keeping only the epoch

that generated the lowest validation loss. Each batch contained 32 samples.

4.5.1.5 CNN Based Discriminator

Our CNN-based discriminator is trained using the same approach as our DNN-based

discriminator.

4.5.2 Experimental Results

Unless otherwise noted, the results described in this section consist of models trained

using three XceptionNet networks and tested on four other XceptionNet networks.

We wanted our discriminators to be diverse enough to work on a multitude of different

deepfake detectors with each detector trained using different data. By utilizing mul-

tiple trained deepfake detectors to train each discriminator, a discriminator learns to

recognize a broader and more diverse set of poisoned images. By validating and test-

ing on detector networks that the discriminator was not trained upon, we show that

our discriminators are robust enough to maintain a high recall rate despite changing

conditions.

4.5.2.1 Outlier Based Defense Results

Since outlier detection does not require training data, the average result of applying

outlier detection to all seven XceptionNet networks is displayed in Figure 4.16. The

93

Figure 4.16: Outlier Detection Average Recall Rates

mean poison detection rate and benign recall rate across all datasets were 0.8620 and

0.8941, respectively. Considering no training data is required for outlier detection,

these are admirable results, however, there was a high degree of false positives. The

average precision was 0.5362. In general outlier detection performed better on the

facial reenactment datasets than the identity swapping datasets.

Our outlier detection method is our simplest and possibly fastest method. It was

also able to achieve satisfactorily, but far from optimal results. As our current detector

stands, it is equally as likely to remove benign images as it is to keep poisoned images.

Including the fact that it was our worst-performing discriminator, outlier detection

has an even larger flaw. Assuming the detector had a perfect recall rate, the user

would still require knowing how many poisoned images there are in the dataset. Given

a constant stream of data, a security provider would be unable to use this detector. To

make it functional, the security provider would have to group the images into batches

and tag the n% least confident samples as possibly being poisoned and require manual

review later. This would be an arduous effort requiring much human interaction. The

94

Figure 4.17: SVM Discriminator Average Recall Rates

adversary would be able to work around this criteria by poisoning an entire batch of

images. If only the lowest n% are removed, then the other (1 − n)% would still be

accepted.

4.5.2.2 Support Vector Machine Discriminator Results

Figure 4.17 highlights the results from the SVM discriminator. The mean poison

detection rate and benign recall rate across all datasets were 0.9619 and 0.9632,

respectively. Our SVM discriminator has a low false-positive rate, with an average

precision of 0.9639. Both identity swapping and facial reenactment datasets perform

equally as well.

4.5.2.3 Random Forest Discriminator Results

The results of the random forest discriminator are shown in Figure 4.18. Our random

forest discriminator performs similarly as well to our SVM discriminator, with an av-

erage poison detection recall rate of 0.9404 and an average benign recall rate of 0.9816

95

Figure 4.18: Random Forest Discriminator Average Recall Rates

across all datasets. The random forest discriminator precision was better than the

SVM discriminator, with a precision of 0.9809. Compared to the SVM discriminator,

our random forest discriminator tended to favor classifying benign samples over poi-

soned samples. In a scenario where a low false-positive rate is required, this would be

the preferred discriminator among the two, however, in most security applications a

high poison recall rate is more important than a high precision. On the other hand,

a random forest classifier can classify images much quicker since each decision tree

can be executed in parallel.

4.5.2.4 DNN Discriminator Results

Figure 4.19 presents our results for our DNN-based discriminator. The average poison

detection recall rate was 0.9574 and the average benign recall rate was 0.9441 across

all datasets. With an average precision of 0.9483, our DNN-based discriminator had

the lowest precision out of all the machine learning-based discriminators. Unlike the

random-forest discriminator, our DNN-based discriminator did not generally tend to

96

Figure 4.19: DNN Discriminator Average Recall Rates

favor one classification class over another, with both recall rates being near equal in

most cases.

4.5.2.5 CNN Discriminator Results

Due to the success of our CNN-based discriminator, we conduct a variety of experi-

ments to verify the robustness of this method. We test the multiple different detector

configurations described in Section 4.3 using our CNN-based discriminator.

Single Synthetic Media Type Detection Networks Our CNN-based discrimi-

nator outperformed our other discriminators in every metric measured with an average

poison detection recall rate of 0.9859, an average benign recall rate of 0.9937, and an

average precision of 0.9937. The individual dataset results are shown in Figure 4.20.

The highest poison detection recall rate was 0.9936 and the highest benign recall rate

was 0.9963, both achieved by the DeepFakes dataset.

97

Figure 4.20: CNN Discriminator Average Recall Rates

Percentage of Poisoned Labels The discriminator results for the corresponding

section in 4.3.2.3 are given in Figure 4.21. For each discriminator, the number of

poisoned identities varied. These results show that the discriminator’s recall rates

are not directly dependent on the number of poisoned identities. Only varying the

number of poisoned identities for the FaceShifter dataset is reported. These results,

however, are closely related to the average results for the CNN-based discriminator on

multiple datasets. The average poison detection recall rate given the varying number

of poisoned identities was 0.9844, the average benign recall rate was 0.9955 and the

average precision was 0.9955.

Information Retention One of the goals of our discriminator is to prevent deep-

fake detectors from being trained with poisoned data. To accomplish this, an im-

mutable discriminator that has been trained on known poisoned data is necessary.

The discriminator must function over multiple updates of the deepfake detector. To

verify the plausibility of this system, we conducted the following experiment. First,

98

Figure 4.21: CNN Discriminator Average Recall Rates for FaceShifter Dataset Vary-
ing the Number of Poisoned Identities

we trained XceptionNet with half of the identities in a dataset, i.e., we split each

dataset into two sets with 500 identities each with no overlap in identities. Both of

these splits will contain poisoned identities. Let us call this trained network Detector-

A. Second, we trained our CNN-based discriminator using the data generated from

Detector-A. We will call this trained CNN-based discriminator Disc-A. Third, we up-

date Detector-B by training it with the full dataset, i.e. training it with all 1,000

identities. This represents when a new type of synthetic image has been released and

needs detection or when current synthetic image generation methods improve. We’ll

name this updated XceptionNet Detector-B. Finally, Disc-A is used as a discriminator

to detect the poisoned samples used to train Detector-B. The results from the final

phase of this experiment show how much information XceptionNet retrains between

data poisoning attacks. As long as the recall rates do not decrease drastically, our

proposed system can be used to help prevent deepfake detectors from being corrupted

by label flipping data poisoning attacks.

99

(a) CNN-based discriminator trained and
tested using half of identities in a dataset

(b) CNN-based discriminator tested using
the full dataset

Figure 4.22: Effectiveness of Discriminator when varying the testing datasets

Figure 4.22 demonstrates the results of Disc-A. In Figure 4.22a, the results of

Disc-A being trained on Detector-A are shown. Across all datasets, Disc-A had

an average poison detection recall rate of 0.9819 and an average benign recall rate of

0.9954. Next, Figure 4.22b gives the results from Disc-A being verified using the data

generated by Detector-B. An average poison detection recall rate of 0.9727 and an

average benign recall rate of 0.9944 was achieved across all datasets. This resulted in

a 0.9417% decrease in average poison detection rate after XceptionNet was updated

using new poisoned data. With this very minor decrease of less than 1%, we can

reliably say that our discriminator retrains the ability to detect the label flipping

data poisoning attack across an update of the deepfake detector as long as the data

follows the same distribution. There is an even smaller decrease of 0.1003% in the

benign recall rate, allowing the defense group to not be overly concerned about false

positives over time.

The corresponding data poisoning results for Detector-A and Detector-B can be

found in Appendix B.3.

100

4.5.2.6 Classification Time Comparison

Our two machine learning methods (SVM and random forest) performed similarly as

well, however, our random-forest discriminator has more advantages than our SVM

discriminator. Given the parallel nature of a random forest-based method, classifi-

cation can occur much quicker compared to a one-versus-all hyperplane-like method

that SVM uses. Decision trees are one of the quickest machine learning methods avail-

able, only requiring binary decisions with a max number of binary decisions being the

height of the tree. With a random-forest discriminator, we take this advantage a step

further, by training many trees under a decreased feature set. This allows the total

height of a tree to be diminished, thus decreasing the time required for classification.

Compared to our CNN-based discriminator, a random forest discriminator is much

quicker to train. However, these two discriminators use data from different points

in the detector. Our random-forest discriminator uses the 2048-dimensional feature

vector found at the very end of the neural network, just before the final soft-max layer.

Our CNN-based discriminator uses data from a considerably earlier point, at the

end of the entry-flow. Given the hardware, our CNN-based discriminator can run in

parallel to XceptionNet, thus allowing poison detection to occur nearly simultaneously

with synthetic image detection. Thus, as long as the hardware is available, our CNN-

based discriminator is not only faster than all of our other discriminators but also

produces near-optimal results.

4.5.2.7 Synthetic Media Generation Method

Our label flipping attack had an average poison success rate of 0.9803 with the iden-

tity swapping datasets and an average poison success rate of 0.9870 with the facial

reenactment datasets. With this minute difference, we can assume that the attack is

equally successful on identity swapping and facial reenactment media. Our primary

discriminator, the CNN-based method, achieved an average poison detection recall

101

rate of 0.9883 on the identity swapping datasets and an average poison detection re-

call rate of 0.9823 on the facial reenactment datasets. Our CNN-based discriminator

outperformed all of our other discriminators in both of these metrics. This indicates

that our CNN-based discriminator is our best all-round discriminator independent of

the type of synthetic media generation tool used.

4.6 CONCLUSION

In this chapter, we proposed a label flipping data poisoning attack against synthetic

media detectors. This attack only requires access to the label portion of the training

dataset. We applied this attack to XceptionNet, a thoroughly researched deepfake

detector. This attack accomplished a poison success rate of 0.9888 when a single

dataset was poisoned. We showed that our attack was successful under a variety of

circumstances, such as diversifying the types of synthetic media within the dataset or

varying the number of poisoned identities in a dataset. To the best of our knowledge,

this is the first label flipping data poisoning attack against deepfake detectors, thus,

we also present several discriminators to help mitigate this attack. We compare and

contrast the pros and cons of each discriminator. Overall, our CNN-based discrimina-

tor is the most alluring of our poison detection methods. Not only does it achieve the

highest poison detection and benign recall rates, at 0.9936 and 0.9963, respectively,

but we also proposed a pipeline to reduce the additional detection time to near zero.

Our extensive experimental results demonstrated the potency of our proposed attack

method. Fortunately, our CNN-based discriminator is also highly effective at rooting

out the attack, thus protecting deepfake detectors during necessary updates.

102

Chapter 5

CONCLUSION

With the improvements made in facial authentication in recent years, it is increasingly

being used as a login method to web services and other applications. With the rise of

facial authentication, adversaries will desire to take advantage of different aspects of

the system. We seek to improve facial authentication for the benefit of the consumer.

To demonstrate a possible attack avenue, in this dissertation, we introduced a

novel data poisoning attack, called replacement data poisoning. We applied this attack

against the stat-of-the-art facial recognition framework FaceNet. We showed how this

attack can allow an adversary to log into a target’s account by replacing a few photos

at training time.

To combat our attack, we developed a two-phase DNN based detector, DEFEAT.

Our DEFEAT architecture was able to achieve over 90% accuracy defending against

our proposed attack. We extensively compared our proposed DEFEAT architecture

against other possible detectors.

This dissertation also encompasses another facial recognition task. Deepfakes are

a malicious type of media meant to defame or otherwise harm someone publicly.

Deepfake detectors exist to diminish the possibility of these damaging images going

unchallenged. Deepfake detectors exist to catch the bad, but they themselves can

be corrupted. To help mitigate this possibility, we designed a viable data poisoning

attack method against deepfake detectors and then showed how to defend against

103

such an attack.

In more detail, we proposed a label flipping data poisoning attack against deepfake

detectors. To the best of our knowledge, this is the first label flipping data poisoning

attack conducted on deepfake detectors. We demonstrated how devastating this type

of attack is to deepfake detectors with a poison success rate of 0.9888 when a single

dataset was poisoned. We also showed the implications of our attack under a variety

of circumstances, such as diversifying the types of synthetic media that the deepfake

detector could detect.

To mitigate this concerning attack, we designed several different discriminator

methods. Our most advanced method, a CNN-based approach, achieves a poison

detection recall rate of 0.9936 and a benign recall rate of 0.9963. Our proposed

technique adds nearly zero additional detection time to the deepfake detector.

104

Chapter A

DEFEAT

A.1 DATASETS

This section demonstrates samples from the datasets used in Section 3.4.

A.1.1 FEI Dataset

Figure A.1 demonstrates an example class from the FEI dataset [92]. Each class

consists of 14 images with the person facing in different directions. The 14th image

is taken in dark lighting. Since this represents our ideal office setting, it is discarded.

There are a total of 200 classes in this dataset.

A.1.2 LFW Dataset

Figure A.2 demonstrates examples from various classes from the LFW dataset [91].

Each class consists of a various number of photos taken with various lighting con-

ditions in a variety of scenarios. For example, a large number of photos from this

dataset consist of politicians from around the world. Another major category is ten-

nis players during gameplay. For our experiments, we only considered classes with

at least 10 photos. Prior to pruning, there are 5,749 different classes. After pruning,

158 classes remained.

105

Figure A.1: Example of a single class in the FEI dataset

106

Figure A.2: Examples from various classes in the LFW dataset

107

A.2 STATISTICS-BASED DISCRIMINATOR

A.2.1 Principle Component Analysis

In Section 3.3.2, we explored reducing the dimensionality of FaceNet’s facial em-

bedding from 128 dimensions down to 2 dimensions to visualize the clustering. We

reduced the dimensionality via Principal Component Analysis (PCA). In this section,

we explore some additional plots that we found interesting.

A.2.1.1 Random Attack Strategy

By applying the random attack strategy on the LFW dataset, we obtained Figure

A.3. Nine PCA plots were generated, where each plot consisted of five random users,

three from the pristine group, two from the target group. The corresponding at-

tacker for each target is also plotted. From these nine plots, six plots were chosen to

present here by their ability to demonstrate various considerations we had to make

when choosing our defense strategies. Figure A.3a highlights how the targeted and

attacked classes can intermingle, as demonstrated by users 4 and 5. When the at-

tacker and target embeddings cluster, the difficulty of using FaceNet’s embedding

increases tremendously. Our goal with using a deep neural network with DEFEAT

is to be able to use the subtle differences between embeddings for detection. Figure

A.3b demonstrates an extreme version of target-attacker intermingling. User 5 in this

example has nearly overlapping target-attacker embeddings. Figure A.3c forms four

separate clusters, with two users target and attack sets becoming intermingled. User

intermingling in addition to target-attacker intermingling adds additional complexity

for the detector to discern. Figure A.3d takes this clustering approach further by only

having 3 clusters for 5 users. Users 3, 4, and 5 are entangled with one another. Al-

though this cluster is quite wide, a clustering method such as DBSCAN would likely

consider this a single cluster under many configurations. Figure A.3e shows a close

108

to ideal case where each user and target-attacker pair are separated in space. Finally,

Figure A.3f demonstrates how genuine users can become intermingled without their

attacker counterparts.

A.2.1.2 Optimal Attack Strategy

Figure A.4 was generated by applying the optimal attack strategy on the LFW dataset

using the same method described above. Since the goal of the optimal attack strategy

is to bring together similar-looking people into target-attack pairs, clusters should be

easier to form compared to the random attack strategy. This does appear to be

true, as demonstrated by figure A.4a, where 3 clusters are formed, with one cluster

being large and tight-knit compared to Figure A.3d. In Figure A.4b, user 4 forms

an elongated cluster. In addition, user 3 has embeddings that contain outliers that

are incorporated into user 5’s attacked cluster and user 4’s cluster. With outliers

for a pristine user, the facial authentication model is likely to be less accurate. Our

discriminator must also account for such possibilities. Figure A.4c demonstrates that

separate clusters can form even in our ideal attack scenario. Finally, Figure A.4d

highlights that separate users can cluster in addition to target-attack pairs.

A.3 DEFEAT VS STATISTICS-BASED DISCRIMINATOR

In this section, we present some additional findings comparing DEFEAT to our

statistics-based discriminator, including use cases where the statistics-based discrim-

inator is superior to DEFEAT.

A.3.1 FEI Results

In this section, the corresponding results from Section 3.4 using the FEI dataset

are presented. The LFW dataset represents the more difficult, real-world scenario,

dataset, thus the FEI dataset was saved for the appendix.

109

(a) Target-Attack Intermingling (b) Target-Attack Overlapping

(c) Four Clusters (d) Three Clusters

(e) Separated Clustering (f) Combined Intermingling

Figure A.3: FaceNet Embeddings PCA Plots Using the Random Attack Strategy

110

(a) Large Cluster (b) Outliers

(c) Separate Clusters (d) Targets Clustering

Figure A.4: FaceNet Embeddings PCA Plots Using the Optimal Attack Strategy

111

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.5: Random Attack on the FEI Dataset - Varying the Number of Injected
Photos - Two Inputs

A.3.1.1 Effect of the Number of Injected Photos - FEI

Figure A.5 and Figure A.6 highlights the random and optimal attack strategies on

the FEI dataset, respectively. Given the random attack strategy, both discriminators

performed nearly equally. Given the optimal attack strategy, however, the statistics-

based discriminator outperforms DEFEAT. This is in stark contrast to the results

presented in Section 3.4, where DEFEAT has far superior results on the LFW dataset

given the optimal attack strategy. Although DEFEAT still performed well (> 90%

in all cases), it is better able to discern when embeddings from difficult settings are

used compared to the simplistic FEI dataset setting. The variety of lighting and

background conditions highlights deep learning’s ability to glean insightful informa-

tion given difficult situations; however, in a simple setting, the raw statistics-based

classifier appears to be better.

112

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.6: Optimal Attack on the FEI Dataset - Varying the Number of Injected
Photos - Two Inputs

A.3.1.2 Effect of Number of Training Photos per New User - FEI

Figure A.7 and Figure A.8 showcases our random and optimal attack strategies on

the FEI dataset given a constant attacking size partition and varying targeted size

partition, respectively. In both attack scenarios, DEFEAT generally outperforms the

statistics-based classifier, however, both classifiers performs nearly equally. These

restuls nearly mirror the results found in Section 3.4.

A.3.2 3-Input

In this section, we discuss the results from DEFEAT’s three input counterparts.

In Section 3.4 we explored supplying DEFEAT with two image embeddings from

FaceNet. When one embedding is from the targeted set and the other from the

attacking set, the first phase of DEFEAT would label the pair as infected. In the

three input variants, as long as at least one input is from the targeted dataset and at

113

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.7: Random Attack on the FEI Dataset - Varying the Number of Training
Photos - Two Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

114

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.8: Optimal Attack on the FEI Dataset - Varying the Number of Training
Photos - Two Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

115

least one input is from the attacking dataset, the input triplet is labeled as infected.

DEFEAT’s second phase is unaffected by this change.

A.3.2.1 Effect of the Number of Injected Photos

Figure A.9 and Figure A.10 highlights the random and optimal attack strategy on the

FEI dataset, respectively. Given the random attack strategy, the two discriminators

perform nearly equally. For the optimal attack, however, the statistical discriminator

outperforms DEFEAT in multiple experiments by over 4%. Both classifiers achieve

above 90% accuracy in all trials, however, it is surprising that the statistics-based clas-

sifier does better than DEFEAT. When images are taken in a more controlled setting,

DEFEAT’s first phase does not improve the results by much, if at all. However, given

more complex images, DEFEAT’s DNN can glean more insightful information, as

shown by the corresponding LFW figures.

Figure A.11 and Figure A.12 shows the random and optimal attack strategy on

the LFW dataset, respectively. DEFEAT largely outperformed the statistics-based

classifier in most trials. Given the optimal attack strategy, DEFEAT had over 15%

higher accuracy than the statistics-based classifier. This shows that the first phase

of DEFEAT can better classify embeddings from more difficult images than raw

statistical measurements are able to.

A.3.2.2 Effect of the Number of Training Photos per New User

Figure A.13 and Figure A.15 showcases our random attack strategies on the FEI

and LFW dataset given a constant attacking size partition and varying targeted

size partition, respectively. DEFEAT outperforms the statistical-based discriminator

as the ratio of attacking to targeted decreases. This implies that the three input

variants of our DNN can glean more information than the raw statistics disclose as

the number of differential information decreases. The same can be seen in Figure A.16

116

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.9: Random Attack on the FEI Dataset - Varying the Number of Injected
Photos - Three Inputs

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.10: Optimal Attack on the FEI Dataset - Varying the Number of Injected
Photos - Three Inputs

117

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.11: Random Attack on the LFW Dataset - Varying the Number of Injected
Photos - Three Inputs

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.12: Optimal Attack on the LFW Dataset - Varying the Number of Injected
Photos - Three Inputs

118

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.13: Random Attack on the FEI Dataset - Varying the Number of Training
Photos - Two Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

which shows the optimal attack variant on the LFW dataset. This is seen to a lesser

extent in Figure A.14, where the two discriminators are generally closely related, with

DEFEAT improving compared to the statistical-based discriminator as the attacking

to targeted ratio decreases. Note, there are no results for DEFEAT in any of the

aforementioned figures for the (1, 1) case. Since three inputs are required for the

three-input variant of DEFEAT, at least three samples are required. In addition,

none of our facial authentication discriminators can learn via one-shot learning.

A.3.2.3 Effect of the Choice of Second Phase Classifier for DEFEAT

Figure A.17 highlights the differences between the KNN and SVM classifiers. Similar

to the two input results, the KNN outperforms the SVM classifier, with one excep-

tion. As with the two input experiments, KNN is superior given the optimal attack;

119

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.14: Optimal Attack on the FEI Dataset - Varying the Number of Training
Photos - Three Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

120

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.15: Random Attack on the LFW Dataset - Varying the Number of Training
Photos - Three Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

121

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.16: Optimal Attack on the LFW Dataset - Varying the Number of Training
Photos - Three Inputs. The x-axis represents the number of photos per label. For
infected labels, a single photo is being injected for all cases.

122

(a) FEI Random Attack Strategy (b) FEI Optimal Attack Strategy

(c) LFW Random Attack Strategy (d) LFW Optimal Attack Strategy

Figure A.17: DEFEAT Second Phase Classifier - KNN vs SVM - Three Input. Pos-
itive blue values represent when the KNN classifier outperforms the SVM classifier.
Negative orange values represent when the SVM classifier outperforms the KNN clas-
sifier.

however, given the random attack, the SVM classifier outclasses the KNN classifier

in a single experiment.

Figure A.18 are for the KNN and decision tree classifiers. Similar results were

found as in the two input case.

Finally, Figure A.19 are for the SVM and decision tree classifiers. In this case,

the SVM classifier outperformed the decision tree classifier in a single optimal attack

case. The rest of the experiments follow the two-input case.

123

(a) FEI Random Attack Strategy (b) FEI Optimal Attack Strategy

(c) LFW Random Attack Strategy (d) LFW Optimal Attack Strategy

Figure A.18: DEFEAT Second Phase Classifier - KNN vs Decision Tree - Three
Input. Positive blue values represent when the KNN classifier outperforms the deci-
sion tree classifier. Negative orange values represent when the decision tree classifier
outperforms the KNN classifier.

124

(a) FEI Random Attack Strategy (b) FEI Optimal Attack Strategy

(c) LFW Random Attack Strategy (d) LFW Optimal Attack Strategy

Figure A.19: DEFEAT Second Phase Classifier - SVM vs Decision Tree - Three
Input. Positive blue values represent when the SVM classifier outperforms the deci-
sion tree classifier. Negative orange values represent when the decision tree classifier
outperforms the SVM classifier.

125

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.20: Random Attack on the FEI Dataset - Comparing the Number of Inputs
for DEFEAT

A.3.3 Effect of Number of Inputs to DEFEAT

We tested supplying DEFEAT with a varying number of photos as input, specifically,

we tested if using two images as input or three images as input leads to superior

results. We also test if a single image input was useful, but this showed to be as good

as a random guess.

Figure A.20 and Figure A.21 show two and three inputs on the FEI dataset for the

random and optimal attack strategy, respectively, while Figure A.22 and Figure A.23

are show the LFW dataset given the random and optimal attack strategy, respectively.

In general, both attack strategies performed equally well. Supplying more information

to DEFEAT’s DNN did not seem to measurably affect results in any of the cases

tested, thus we went with the less computationally expensive two input model for the

majority of our work.

126

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.21: Optimal Attack on the FEI Dataset - Comparing the Number of Inputs
for DEFEAT

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.22: Random Attack on the LFW Dataset - Comparing the Number of Inputs
for DEFEAT

127

(a) Accuracy (b) Precision

(c) Recall (d) F1

Figure A.23: Optimal Attack on the LFW Dataset - Comparing the Number of Inputs
for DEFEAT

128

Chapter B

DEEPFAKE DETECTION

B.1 DEEPFAKE DETECTION LITERATURE REVIEW

In this section, a thorough review of current deepfake detection methods are discussed.

To detect deepfakes, [124] used photo response non uniformity (PRNU) analysis.

They used a small dataset consisting of 10 authentic and 16 deepfake videos lasting

from 20 to 40 seconds each. To perform the photo-response analysis, they split

each frame of a video into eight different groups. The average PRNU pattern was

measured for each group resulting in a correlation score for each video. They found

that deepfakes tended to have a lower mean normalized correlation score compared to

benign samples. Both deepfakes and benign samples tended to have similar variances

in normalized cross-correlation scores.

MesoNet is a widely used deepfake detector that uses the ”mesoscopic” properties

of images [42]. Mesoscopic properties consist of features of medium size, i.e. not small

image noise nor the entire face (at once). The authors propose two different detection

networks, Meso-4 and MesoInception-4, which are based on Inception modules. Both

networks only consist of four convolutional layers. They evaluated their networks on

their deepfake dataset consisting of 175 videos compressed using the H.264 codec at

different compression levels. MesoInception-4 had a 0.917 classification score on a

per-image basis, and a 0.984 classification score on a per video basis.

In [107], capsule forensics are applied to deepfake detection by using a network

129

consisting of the VGG-19 network followed by a capsule-forensics CNN. Capsule net-

works are similar to traditional CNNs but are pose independent, so the face does

not have to be centered and aligned. They added a pre-processing step consisting of

adding Gaussian random noise to prevent overfitting. They used the same dataset

used by MesoNet [42] and achieved 95.93% and 99.23% accuracy on the frame and

video level, respectively. They also tested their network on the Face2Face partition

of the FaceForensics dataset and achieved 99.33%, 96.0%, and 83.33% accuracy on

the raw, high quality, and low-quality videos, respectively. Their difficulty in clas-

sifying low-quality videos highlights the challenge that compression adds to video

manipulation detection.

In [44], the authors used the inconsistency in head poses to detect deepfakes,

specifically, the difference between head position and facial feature position. Using

dlib [125], a machine learning toolkit, they extracted 68 facial landmarks. Out of

these landmarks, they focused on the points consisting of the eyebrows, the nose, and

on the two ends of the mouth to determine the central face region. Those points, in

addition to those encompassing the outline of the face, were used to determine the

whole face. They used the difference in the direction that these two sets of points

faced to determine if an image was a deepfake or not. They used the UADFV dataset

[126], which is a rather small dataset, consisting of 49 real and 49 fake videos, and

achieved an AUROC curve of 0.890 using an SVM classifier.

A CNN followed by an RNN for classification is used in [127]. The RNN was used

to remember temporal differences between deepfakes and benign videos, an aspect

most deepfake generators do not account for. They used the Inception V3 network

as their CNN and a 2048-wide LSTM unit for the RNN. A 512 fully connected layer

followed by a softmax layer was used for generating classification probabilities. They

used their dataset to train their detector, which consisted of 600 deepfake videos.

They achieved 96.7%, 97.1%, and 97.1% accuracy by using 20, 40, and 80 frames,

130

respectively.

Similar to [127], [128] also used a CNN followed by a RNN for detection. They

achieved 96.9% accuracy on FaceForensic++’s low-quality deepfake dataset by using

5 frames at a time for the RNN. Their RNN process allows for the network to be

trained end-to-end on videos as opposed to training a network a single frame at a

time and then averaging the prediction probabilities.

Unlike other deepfake detectors, [106] trained a network using only real im-

ages. They tested four different CNN models, VGG16, ResNet50, ResNet101, and

ResNet152. To train these networks they used 24,442 JPEG images consisting of

only real images. To simulate a deepfake, they applied various methods that pro-

duce artifacts. The idea behind this is that deepfake detectors use artifacts to detect

deepfakes. Since deepfakes are expensive to produce in quantity and quality, they

applied three different techniques to heavily reduce the time and computing power

to produce images with similar artifacts. They first aligned the faces using different

scales (make the image bigger or smaller). They then applied Gaussian blur. Fi-

nally, the images were warped back to their original dimensions. In addition, they

split each image into separate (10) RoIs (regions of interest) to be classified. They

then average the predictions from the RoIs to determine if the image is a deepfake.

They tested their network on the UADFV [126] and DeepfakeTIMIT [103] datasets.

They achieved a maximum of 97.4% on the UADFV dataset, 99.9% on low-quality

DeepfakeTIMIT, and 93.2% on the high-quality DeepfakeTIMIT (in this dataset, the

high-quality partition is more difficult).

[110] used biological signals for their deepfake detector, specifically, they used

a combination of Photoplethysmogram (PPG) maps, spatial coherence, and tempo-

ral consistency. Power spectrum density was used to explore image behavior in the

frequency domain. They achieved 96.25% accuracy on the faceswap dataset in Face-

Forensics++ on a per video basis.

131

In addition to the FaceForensics++ dataset, the paper also released a state-of-

the-art detection model based on XceptionNet [41]. Xception was first proposed in

[120] as a new module to replace Inception modules by decoupling the cross-channel

correlations (for example, RGB channels) and spatial correlations (for example, how

the left and right eyes are related). [41] used the network proposed in [120], pre-trained

on ImageNet. The final layer was replaced with two outputs, one representing the

probability of a genuine image, the other representing the probability of a deepfake

image (a softmax layer was used). XceptionNet was able to achieve 90.29% precision

on the low-quality faceswap dataset partition of FaceForensics++. Using all of the

available partitions of the FaceForensics++ dataset, XceptionNet achieved 99.26%,

95.73%, and 81.00% accuracy on the raw, high-quality, and low-quality datasets,

respectively.

[108] achieved high accuracy results despite using a small feature set and not

using deep learning. Their method relied on transforming images to a lower dimen-

sionality by first using the power output from a Discrete Fourier Transformer. They

then applied azimuthal averaging to reduce the dimensionality. They feed this input

to one of three different machine learning methods, a logistic regression classifier,

SVM, or k-means clustering model. Using the DeepFakeDetection dataset from Face-

Forensics++ (the second generation deepfake dataset), they were able to achieve 90%

and 81% accuracy per video using an SVM classifier and logistic regression classifier,

respectively (they did not mention which compression level they used from the Deep-

FakeDetection dataset). On a per-frame basis, their SVM classifier achieved 85%,

82%, 77%, and 66% using 2000, 1000, 200, and 20 training samples, respectively.

This highlights how important abundant training data is for training most deepfake

detectors. Their logistic regression classifier on the other hand achieved nearly the

same accuracy with 20 and 2000 samples, the accuracy is 76% and 78% accuracy,

respectively. Using their dataset, they were able to achieve 100% accuracy by using

132

a small (roughly 100 elements) feature vector as input to their model. In addition,

they were able to achieve this by only using 20 samples for training.

Unlike most deepfake detectors, [70] trained a generic fake image detector that

could be applied to deepfakes. They used ResNet-50 as their base classifier and trained

it using samples generated from ProGAN [129] that outputted fake samples from up

to 20 different classes, such as car, cat, church, and horse. The real dataset used was

LSUN [130], which was also used to train ProGAN. They tested multiple different

variations of their network. The tested training ResNet-50 using a variety of classes,

specifically, 2, 3, 8, 16, and 20 classes. They also tested applying different post-

processing strategies during training, specifically, Gaussian blur, JPEG compression,

or both. In general, they found that using 16 or more classes provided the best results

for fake image detection with diminishing results after 16. In addition, augmenting the

training samples did increase detection accuracy, except for two cases, one of which

was with deepfakes. Their deepfake detector performed best when no augmentation

was used during training, achieving 98.2 average precision using the FaceForensics++

faceswap dataset.

The authors of [39] tested XceptionNet [41] and the capsule network from [107]

on four datasets including FaceForensic++. In addition, the authors tested to see

which region of the face provided the highest predictive capabilities, specifically, they

used the eyes, nose, mouth, or the rest of the face. According to the authors, the

deepfakes from the first generation are an almost solved problem, with both networks

achieving at least a 99.4% AUROC curve on the two tested datasets from the first

generation. In general, XceptionNet was shown to outperform the Capsule Network

on three of the four datasets. Just using a person’s eyes was shown to provide similar

AUC to using the entire face. The rest of the face (the face not including eyes, nose,

and mouth) was shown to have the least amount of predictive power. An interesting

find was that the detectors generally focused on a single eye instead of both eyes to

133

determine if an image was fake.

Instead of focusing on detecting a fake image, [131] detected the use of blending

techniques commonly used by face manipulation. They found a mask that would

outline where the background and foreground images meet. Based on the existence

of this mask, a probability was calculated. A two-phase network was used, where

the first phase used HRNet [132] to generate the blending boundary. A custom

network was followed to generate the probability blending. It is a common problem

for deepfake detectors to work well on the dataset it was trained with, however, since

face X-ray detected the presence of blending instead of artifacts, face X-ray found

success in detecting datasets it was not trained on. [131] found much greater success

than XceptionNet did on unseen datasets.

B.2 DATASETS

Figure B.1 highlights the difference in quality and function between the different

synthetic face generation methods present in the FaceForensics++ dataset. These

specific datasets were chosen since they have been religiously tested. In addition, to

measure the effectiveness of our attack, we required the knowledge of both the source

and the target identities used to generate the synthetic images. This would not be

necessary to perform our attack, however, since the adversary would already have a

target in mind and could poison only the samples that the adversary was interested

in. If the adversary did not know the samples they wanted to attack but had access

to the sample itself, they could perform facial recognition on deepfake samples to find

the source face.

B.3 DATA POISONING ATTACK - INFORMATION RETENTION

This section is the corresponding data poisoning attack for the discriminator from

Section 4.5.2.5. Figure B.2 demonstrates the data poisoning attack results from

134

S
ou

rc
e

T
ar

ge
t

D
ee

p
F

ak
es

F
ac

eS
w

ap
F

ac
eS

h
if

te
r

F
ac

e2
F

ac
e

N
eu

ra
l

T
ex

tu
re

s

Figure B.1: FaceForensics++ Datasets Samples

Detector-A and Detector-B. Figure B.2a and Figure B.2b shows the attack results

for Detector-A, where 500 identities were used to train XceptionNet. The label flip-

135

ping data poisoning attack achieved a fake label recall rate of 0.9932, a real label recall

rate of 0.9937, and a poison success rate of 0.9843. Figure B.2c and Figure B.2d gives

the attack results for Detector-B, when the full dataset was used to update Xcep-

tionNet from the Detector-A state. After the update, XceptionNet accomplished a

fake label recall rate of 0.9910, a real label recall rate of 0.9937, and a poison success

rate of 0.9845. Updating XceptionNet lead to a 0.2227% decrease in the fake label

recall rate, a 0.0016% decrease in the real label recall rate, and a 0.0246% increase

in poison success rate. The minute difference between Detector-A and Detector-B

can be contributed to random network variation. The very slight decrease in network

performance and increase in attack power may be contributed to the larger dataset

size found with Detector-B. More research would be necessary to confirm these results

however.

136

(a) Half of Dataset - Recall Rates (b) Half of Dataset - Poison Success Rate

(c) Full Datase - Recall Rates (d) Full Dataset - Poison Success Rate

Figure B.2: XceptionNet Average Recall Rates

137

BIBLIOGRAPHY

[1] D. Lin, N. Hilbert, C. Storer, W. Jiang, and J. Fan. “UFace: Your universal

password that no one can see”. In: Computers & Security 77 (2018), pp. 627–

641.

[2] A. Tagat. Online fraud: too many accounts, too few passwords. TechRadar.

July 2012. url: http://www.techradar.com/us/news/internet/online-

fraud-too-many-accounts-too-few-passwords-1089283.

[3] A. Walling. Top 10 Facial Recognition APIs & Software of 2020. url: https:

//rapidapi.com/blog/top-facial-recognition-apis/.

[4] url: https://facex.io/.

[5] F. Schroff, D. Kalenichenko, and J. Philbin. “Facenet: A unified embedding

for face recognition and clustering”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2015, pp. 815–823.

[6] I. Masi, Y. Wu, T. Hassner, and P. Natarajan. “Deep face recognition: A

survey”. In: 2018 31st SIBGRAPI conference on graphics, patterns and images

(SIBGRAPI). IEEE. 2018, pp. 471–478.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus. “Intriguing properties of neural networks”. In: arXiv preprint

arXiv:1312.6199 (2013).

138

http://www.techradar.com/us/news/internet/online-fraud-too-many-accounts-too-few-passwords-1089283
http://www.techradar.com/us/news/internet/online-fraud-too-many-accounts-too-few-passwords-1089283
https://rapidapi.com/blog/top-facial-recognition-apis/
https://rapidapi.com/blog/top-facial-recognition-apis/
https://facex.io/

[8] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. “Accessorize to a crime:

Real and stealthy attacks on state-of-the-art face recognition”. In: Proceedings

of the 2016 acm sigsac conference on computer and communications security.

2016, pp. 1528–1540.

[9] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. “Deepfool: a simple and

accurate method to fool deep neural networks”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016, pp. 2574–2582.

[10] A. J. Bose and P. Aarabi. “Adversarial attacks on face detectors using neural

net based constrained optimization”. In: 2018 IEEE 20th International Work-

shop on Multimedia Signal Processing (MMSP). IEEE. 2018, pp. 1–6.

[11] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. “On detecting adver-

sarial perturbations”. In: arXiv preprint arXiv:1702.04267 (2017).

[12] W. Xu, D. Evans, and Y. Qi. “Feature squeezing: Detecting adversarial exam-

ples in deep neural networks”. In: arXiv preprint arXiv:1704.01155 (2017).

[13] G. Cohen, G. Sapiro, and R. Giryes. “Detecting adversarial samples using

influence functions and nearest neighbors”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2020, pp. 14453–

14462.

[14] D. Meng and H. Chen. “Magnet: a two-pronged defense against adversarial

examples”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. 2017, pp. 135–147.

[15] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,

C. A. Sutton, J. D. Tygar, and K. Xia. “Exploiting Machine Learning to

Subvert Your Spam Filter.” In: LEET 8 (2008), pp. 1–9.

139

[16] D. Lowd and C. Meek. “Adversarial learning”. In: Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge discovery in data min-

ing. 2005, pp. 641–647.

[17] G. L. Wittel and S. F. Wu. “On Attacking Statistical Spam Filters.” In: CEAS.

2004.

[18] B. Biggio, B. Nelson, and P. Laskov. “Poisoning attacks against support vector

machines”. In: arXiv preprint arXiv:1206.6389 (2012).

[19] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee,

E. C. Lupu, and F. Roli. “Towards poisoning of deep learning algorithms with

back-gradient optimization”. In: Proceedings of the 10th ACM Workshop on

Artificial Intelligence and Security. 2017, pp. 27–38.

[20] B. Wang and N. Z. Gong. “Stealing hyperparameters in machine learning”. In:

2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018, pp. 36–52.

[21] T. Orekondy, B. Schiele, and M. Fritz. “Knockoff nets: Stealing functionality

of black-box models”. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2019, pp. 4954–4963.

[22] T. Lee, B. Edwards, I. Molloy, and D. Su. “Defending against model stealing

attacks using deceptive perturbations”. In: arXiv preprint arXiv:1806.00054

(2018).

[23] M. Juuti, S. Szyller, S. Marchal, and N. Asokan. “PRADA: protecting against

DNN model stealing attacks”. In: 2019 IEEE European Symposium on Security

and Privacy (EuroS&P). IEEE. 2019, pp. 512–527.

[24] A. Paudice, L. Muñoz-González, A. Gyorgy, and E. C. Lupu. “Detection of ad-

versarial training examples in poisoning attacks through anomaly detection”.

In: arXiv preprint arXiv:1802.03041 (2018).

140

[25] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao.

“Neural cleanse: Identifying and mitigating backdoor attacks in neural net-

works”. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019,

pp. 707–723.

[26] G. Goswami, N. Ratha, A. Agarwal, R. Singh, and M. Vatsa. “Unravelling

robustness of deep learning based face recognition against adversarial attacks”.

In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[27] T. Seals. “ASUS Home Router Bugs Open Consumers to Snooping Attacks”.

In: ThreatPost (2020). url: https://threatpost.com/asus-home-router-

bugs-snooping-attacks/157682/.

[28] L. Pascu. “Acronis reports critical flaws in GeoVision biometric devices, man-

in-the-middle attack risks”. In: BiometricUpdate (2020). url: https://www.

biometricupdate.com/202006/acronis-reports-critical-flaws-in-

geovision-biometric-devices-man-in-the-middle-attack-risks.

[29] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,

T. Kohno, and D. Song. “Robust physical-world attacks on deep learning visual

classification”. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018, pp. 1625–1634.

[30] Google Sign-In JavaScript client reference. url: https://developers.google.

com/identity/sign-in/web/reference.

[31] Facebook Login. url: https://developers.facebook.com/docs/facebook-

login/.

[32] R. Mitz. The fight to stay ahead of deepfake videos before the 2020 US elec-

tion. url: https://www.cnn.com/2019/06/12/tech/deepfake- 2020-

detection/index.html.

141

https://threatpost.com/asus-home-router-bugs-snooping-attacks/157682/
https://threatpost.com/asus-home-router-bugs-snooping-attacks/157682/
https://www.biometricupdate.com/202006/acronis-reports-critical-flaws-in-geovision-biometric-devices-man-in-the-middle-attack-risks
https://www.biometricupdate.com/202006/acronis-reports-critical-flaws-in-geovision-biometric-devices-man-in-the-middle-attack-risks
https://www.biometricupdate.com/202006/acronis-reports-critical-flaws-in-geovision-biometric-devices-man-in-the-middle-attack-risks
https://developers.google.com/identity/sign-in/web/reference
https://developers.google.com/identity/sign-in/web/reference
https://developers.facebook.com/docs/facebook-login/
https://developers.facebook.com/docs/facebook-login/
https://www.cnn.com/2019/06/12/tech/deepfake-2020-detection/index.html
https://www.cnn.com/2019/06/12/tech/deepfake-2020-detection/index.html

[33] J. Vincent. Watch Jordan Peele use AI to make Barack Obama deliver a PSA

about fake news. Apr. 2018. url: https://www.theverge.com/tldr/2018/

4/17/17247334/ai- fake- news- video- barack- obama- jordan- peele-

buzzfeed.

[34] O. Schwartz. “You thought fake news was bad? Deep fakes are where truth

goes to die”. In: The Guardian (Nov. 2018). url: https://www.theguardian.

com/technology/2018/nov/12/deep-fakes-fake-news-truth.

[35] A. Escalante. Research Finds Social Media Users Are More Likely To Believe

Fake News. url: https://www.forbes.com/sites/alisonescalante/2020/

08/03/research- finds- social- media- users- are- more- likely- to-

believe-fake-news/.

[36] Pentagon’s Race Against Deepfakes. url: https://www.cnn.com/interactive/

2019/01/business/pentagons-race-against-deepfakes/.

[37] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C. C. Fer-

rer. “The DeepFake Detection Challenge Dataset”. In: arXiv preprint arXiv:2006.07397

(2020).

[38] D. Song. A Short History of Deepfakes. Sept. 2019. url: https://medium.

com/@songda/a-short-history-of-deepfakes-604ac7be6016.

[39] R. Tolosana, S. Romero-Tapiador, J. Fierrez, and R. Vera-Rodriguez. “Deep-

Fakes Evolution: Analysis of Facial Regions and Fake Detection Performance”.

In: arXiv preprint arXiv:2004.07532 (2020).

[40] R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-Garcia.

“Deepfakes and beyond: A survey of face manipulation and fake detection”.

In: arXiv preprint arXiv:2001.00179 (2020).

142

https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed
https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed
https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed
https://www.theguardian.com/technology/2018/nov/12/deep-fakes-fake-news-truth
https://www.theguardian.com/technology/2018/nov/12/deep-fakes-fake-news-truth
https://www.forbes.com/sites/alisonescalante/2020/08/03/research-finds-social-media-users-are-more-likely-to-believe-fake-news/
https://www.forbes.com/sites/alisonescalante/2020/08/03/research-finds-social-media-users-are-more-likely-to-believe-fake-news/
https://www.forbes.com/sites/alisonescalante/2020/08/03/research-finds-social-media-users-are-more-likely-to-believe-fake-news/
https://www.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://www.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/
https://medium.com/@songda/a-short-history-of-deepfakes-604ac7be6016
https://medium.com/@songda/a-short-history-of-deepfakes-604ac7be6016

[41] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner.

“FaceForensics++: Learning to Detect Manipulated Facial Images”. In: Inter-

national Conference on Computer Vision (ICCV). 2019.

[42] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen. “Mesonet: a compact facial

video forgery detection network”. In: 2018 IEEE International Workshop on

Information Forensics and Security (WIFS). IEEE. 2018, pp. 1–7.

[43] P. Neekhara, S. Hussain, M. Jere, F. Koushanfar, and J. McAuley. “Adversar-

ial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial

Examples”. In: arXiv preprint arXiv:2002.12749 (2020).

[44] X. Yang, Y. Li, and S. Lyu. “Exposing deep fakes using inconsistent head

poses”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 8261–8265.

[45] F. Matern, C. Riess, and M. Stamminger. “Exploiting visual artifacts to expose

deepfakes and face manipulations”. In: 2019 IEEE Winter Applications of

Computer Vision Workshops (WACVW). IEEE. 2019, pp. 83–92.

[46] R. Daza, A. Morales, J. Fierrez, and R. Tolosana. “mEBAL: A Multimodal

Database for Eye Blink Detection and Attention Level Estimation”. In: Com-

panion Publication of the 2020 International Conference on Multimodal Inter-

action. 2020, pp. 32–36.

[47] S. Agarwal, H. Farid, Y. Gu, M. He, K. Nagano, and H. Li. “Protecting World

Leaders Against Deep Fakes.” In: CVPR Workshops. 2019, pp. 38–45.

[48] N. Carlini and H. Farid. “Evading Deepfake-Image Detectors with White-and

Black-Box Attacks”. In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops. 2020, pp. 658–659.

[49] A. Gandhi and S. Jain. “Adversarial perturbations fool deepfake detectors”.

In: arXiv preprint arXiv:2003.10596 (2020).

143

[50] C. Wang. Deepfakes, Revenge Porn, And The Impact On Women. Nov. 2019.

url: https://www.forbes.com/sites/chenxiwang/2019/11/01/deepfakes-

revenge-porn-and-the-impact-on-women/.

[51] Feb. 2021. url: https://faceswap.dev/.

[52] deepfakes. deepfakes/faceswap. Oct. 2020. url: https://github.com/deepfakes/

faceswap.

[53] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and

T. Goldstein. “Poison frogs! targeted clean-label poisoning attacks on neu-

ral networks”. In: Advances in Neural Information Processing Systems. 2018,

pp. 6103–6113.

[54] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harnessing ad-

versarial examples”. In: arXiv preprint arXiv:1412.6572 (2014).

[55] A. Kurakin, I. Goodfellow, S. Bengio, et al. Adversarial examples in the phys-

ical world. 2016.

[56] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.

“The limitations of deep learning in adversarial settings”. In: 2016 IEEE Eu-

ropean symposium on security and privacy (EuroS&P). IEEE. 2016, pp. 372–

387.

[57] J. Su, D. V. Vargas, and K. Sakurai. “One pixel attack for fooling deep neural

networks”. In: IEEE Transactions on Evolutionary Computation 23.5 (2019),

pp. 828–841.

[58] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. “Towards deep

learning models resistant to adversarial attacks”. In: arXiv preprint arXiv:1706.06083

(2017).

144

https://www.forbes.com/sites/chenxiwang/2019/11/01/deepfakes-revenge-porn-and-the-impact-on-women/
https://www.forbes.com/sites/chenxiwang/2019/11/01/deepfakes-revenge-porn-and-the-impact-on-women/
https://faceswap.dev/
https://github.com/deepfakes/faceswap
https://github.com/deepfakes/faceswap

[59] C. Kanbak, S.-M. Moosavi-Dezfooli, and P. Frossard. “Geometric robustness

of deep networks: analysis and improvement”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2018, pp. 4441–

4449.

[60] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. “Universal ad-

versarial perturbations”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2017, pp. 1765–1773.

[61] S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa. “UPSET and ANGRI:

Breaking high performance image classifiers”. In: arXiv preprint arXiv:1707.01159

(2017).

[62] M. Cisse, Y. Adi, N. Neverova, and J. Keshet. “Houdini: Fooling deep struc-

tured visual and speech recognition models with adversarial examples”. In:

Proceedings of the 31st International Conference on Neural Information Pro-

cessing Systems. 2017, pp. 6980–6990.

[63] S. Baluja and I. Fischer. “Learning to attack: Adversarial transformation net-

works”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 32. 1. 2018.

[64] J. Hayes and G. Danezis. “Machine learning as an adversarial service: Learn-

ing black-box adversarial examples”. In: arXiv preprint arXiv:1708.05207 2

(2017).

[65] K. R. Mopuri, U. Garg, and R. V. Babu. “Fast feature fool: A data inde-

pendent approach to universal adversarial perturbations”. In: arXiv preprint

arXiv:1707.05572 (2017).

[66] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang, and

X. Lin. “Evading real-time person detectors by adversarial t-shirt”. In: arXiv

preprint arXiv:1910.11099 3 (2019).

145

[67] A. Kurakin, I. Goodfellow, and S. Bengio. “Adversarial machine learning at

scale”. In: arXiv preprint arXiv:1611.01236 (2016).

[68] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu. “On the Convergence

and Robustness of Adversarial Training.” In: ICML. Vol. 1. 2019, p. 2.

[69] G. W. Ding, Y. Sharma, K. Y. C. Lui, and R. Huang. “Mma training: Di-

rect input space margin maximization through adversarial training”. In: arXiv

preprint arXiv:1812.02637 (2018).

[70] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros. “CNN-generated

images are surprisingly easy to spot... for now”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. Vol. 7. 2020.

[71] J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer, D. Kolossa, and T. Holz.

“Leveraging Frequency Analysis for Deep Fake Image Recognition”. In: arXiv

preprint arXiv:2003.08685 (2020).

[72] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and S. Yan. “Ex-

ploring connections between active learning and model extraction”. In: 29th

USENIX Security Symposium (USENIX Security 20). 2020, pp. 1309–1326.

[73] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini,

C. Sutton, J. Tygar, and K. Xia. “Misleading learners: Co-opting your spam

filter”. In: Machine learning in cyber trust. Springer, 2009, pp. 17–51.

[74] J. Steinhardt, P. W. W. Koh, and P. S. Liang. “Certified defenses for data

poisoning attacks”. In: Advances in neural information processing systems.

2017, pp. 3517–3529.

[75] A. Paudice, L. Muñoz-González, and E. C. Lupu. “Label sanitization against

label flipping poisoning attacks”. In: Joint European Conference on Machine

Learning and Knowledge Discovery in Databases. Springer. 2018, pp. 5–15.

146

[76] T. Gu, B. Dolan-Gavitt, and S. Garg. “Badnets: Identifying vulnerabilities in

the machine learning model supply chain”. In: arXiv preprint arXiv:1708.06733

(2017).

[77] J. Clements and Y. Lao. “Backdoor attacks on neural network operations”. In:

2018 IEEE Global Conference on Signal and Information Processing (Global-

SIP). IEEE. 2018, pp. 1154–1158.

[78] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang. “Tro-

janing attack on neural networks”. In: (2017).

[79] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal. “Strip: A

defence against trojan attacks on deep neural networks”. In: Proceedings of the

35th Annual Computer Security Applications Conference. 2019, pp. 113–125.

[80] K. Liu, B. Dolan-Gavitt, and S. Garg. “Fine-pruning: Defending against back-

dooring attacks on deep neural networks”. In: International Symposium on

Research in Attacks, Intrusions, and Defenses. Springer. 2018, pp. 273–294.

[81] H. Xiao, H. Xiao, and C. Eckert. “Adversarial Label Flips Attack on Support

Vector Machines.” In: ECAI. 2012, pp. 870–875.

[82] M. Jagielski, G. Severi, N. P. Harger, and A. Oprea. “Subpopulation data

poisoning attacks”. In: arXiv preprint arXiv:2006.14026 (2020).

[83] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. “Targeted backdoor attacks on

deep learning systems using data poisoning”. In: arXiv preprint arXiv:1712.05526

(2017).

[84] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras. “When does

machine learning FAIL? generalized transferability for evasion and poisoning

attacks”. In: 27th USENIX Security Symposium USENIX Security 18). 2018,

pp. 1299–1316.

147

[85] S. Shan, E. Wenger, J. Zhang, H. Li, H. Zheng, and B. Y. Zhao. “Fawkes: Pro-

tecting privacy against unauthorized deep learning models”. In: 29th {USENIX}

Security Symposium ({USENIX} Security 20). 2020, pp. 1589–1604.

[86] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. “Going deeper with convolutions”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

2015, pp. 1–9.

[87] M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional net-

works”. In: European conference on computer vision. Springer. 2014, pp. 818–

833.

[88] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. “Joint face detection and alignment

using multitask cascaded convolutional networks”. In: IEEE Signal Processing

Letters 23.10 (2016), pp. 1499–1503.

[89] D. Sandberg. davidsandberg/facenet. Apr. 2018. url: https://github.com/

davidsandberg/facenet.

[90] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. “Vggface2: A

dataset for recognising faces across pose and age”. In: 2018 13th IEEE In-

ternational Conference on Automatic Face & Gesture Recognition (FG 2018).

IEEE. 2018, pp. 67–74.

[91] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. “Labeled faces in the

wild: A database for studying face recognition in unconstrained environments”.

In: 2008.

[92] C. E. Thomaz and G. A. Giraldi. “A new ranking method for principal com-

ponents analysis and its application to face image analysis”. In: Image and

Vision Computing 28.6 (2010), pp. 902–913.

148

https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet

[93] A. D. Rayome. “Why do so many wireless routers lack basic security protec-

tions?” In: TechRepublic. https://threatpost.com/asus-home-router-bugs-snooping-

attacks/157682/ (2019).

[94] BioID. “https://www.bioid.com/”. In: ().

[95] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann

machines”. In: Proceedings of the 27th international conference on machine

learning (ICML-10). 2010, pp. 807–814.

[96] C. E. Shannon. “A mathematical theory of communication”. In: Bell system

technical journal 27.3 (1948), pp. 379–423.

[97] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik,

J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach,

A. Rocha, and J. Stubbs. “Lessons Learned from the Chameleon Testbed”. In:

Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC

’20). USENIX Association, July 2020.

[98] Microsoft. “Face API - v1.0”. In: https://westus.dev.cognitive.microsoft.com/docs

/ services/ 563879b61984550e40cbbe8d/ operations/ 563879b61984550f30395236

().

[99] M. Somers. Deepfakes, explained. July 2020. url: https://mitsloan.mit.

edu/ideas-made-to-matter/deepfakes-explained.

[100] C. Bregler, M. Covell, and M. Slaney. “Video rewrite: Driving visual speech

with audio”. In: Proceedings of the 24th annual conference on Computer graph-

ics and interactive techniques. 1997, pp. 353–360.

[101] J. Vincent. Disney’s deepfakes are getting closer to a big-screen debut. June

2020. url: https://www.theverge.com/2020/6/29/21306889/disney-

deepfake-face-swapping-research-megapixel-resolution-film-tv.

149

https://mitsloan.mit.edu/ideas-made-to-matter/deepfakes-explained
https://mitsloan.mit.edu/ideas-made-to-matter/deepfakes-explained
https://www.theverge.com/2020/6/29/21306889/disney-deepfake-face-swapping-research-megapixel-resolution-film-tv
https://www.theverge.com/2020/6/29/21306889/disney-deepfake-face-swapping-research-megapixel-resolution-film-tv

[102] R. Metz. The fight to stay ahead of deepfake videos before the 2020 US election.

June 2019. url: https://www.cnn.com/2019/06/12/tech/deepfake-2020-

detection.

[103] P. Korshunov and S. Marcel. “Deepfakes: a new threat to face recognition?

assessment and detection”. In: arXiv preprint arXiv:1812.08685 (2018).

[104] F. Marra, D. Gragnaniello, D. Cozzolino, and L. Verdoliva. “Detection of

gan-generated fake images over social networks”. In: 2018 IEEE Conference

on Multimedia Information Processing and Retrieval (MIPR). IEEE. 2018,

pp. 384–389.

[105] Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. “Celeb-df: A new dataset for

deepfake forensics”. In: arXiv preprint arXiv:1909.12962 (2019).

[106] Y. Li and S. Lyu. “Exposing deepfake videos by detecting face warping arti-

facts”. In: arXiv preprint arXiv:1811.00656 (2018).

[107] H. H. Nguyen, J. Yamagishi, and I. Echizen. “Capsule-forensics: Using capsule

networks to detect forged images and videos”. In: ICASSP 2019-2019 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE. 2019, pp. 2307–2311.

[108] R. Durall, M. Keuper, F.-J. Pfreundt, and J. Keuper. “Unmasking deepfakes

with simple features”. In: arXiv preprint arXiv:1911.00686 (2019).

[109] S. Hussain, P. Neekhara, M. Jere, F. Koushanfar, and J. McAuley. “Adver-

sarial deepfakes: Evaluating vulnerability of deepfake detectors to adversarial

examples”. In: Proceedings of the IEEE/CVF Winter Conference on Applica-

tions of Computer Vision. 2021, pp. 3348–3357.

[110] U. A. Ciftci, I. Demir, and L. Yin. “Fakecatcher: Detection of synthetic portrait

videos using biological signals”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence (2020).

150

https://www.cnn.com/2019/06/12/tech/deepfake-2020-detection
https://www.cnn.com/2019/06/12/tech/deepfake-2020-detection

[111] MarekKowalski. MarekKowalski/FaceSwap. url: https://github.com/MarekKowalski/

FaceSwap/.

[112] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner. “Face2face:

Real-time face capture and reenactment of rgb videos”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016, pp. 2387–

2395.

[113] J. Thies, M. Zollhöfer, and M. Nießner. “Deferred neural rendering: Image

synthesis using neural textures”. In: ACM Transactions on Graphics (TOG)

38.4 (2019), pp. 1–12.

[114] L. Li, J. Bao, H. Yang, D. Chen, and F. Wen. “Faceshifter: Towards high fi-

delity and occlusion aware face swapping”. In: arXiv preprint arXiv:1912.13457

(2019).

[115] K. Dale, K. Sunkavalli, M. K. Johnson, D. Vlasic, W. Matusik, and H. Pfis-

ter. “Video face replacement”. In: Proceedings of the 2011 SIGGRAPH Asia

conference. 2011, pp. 1–10.

[116] D. Vlasic, M. Brand, H. Pfister, and J. Popovic. “Face transfer with multilinear

models”. In: ACM SIGGRAPH 2006 Courses. 2006, 24–es.

[117] P. Garrido, L. Valgaerts, H. Sarmadi, I. Steiner, K. Varanasi, P. Perez, and C.

Theobalt. “Vdub: Modifying face video of actors for plausible visual alignment

to a dubbed audio track”. In: Computer graphics forum. Vol. 34. 2. Wiley

Online Library. 2015, pp. 193–204.

[118] J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stamminger, and C.

Theobalt. “Real-time expression transfer for facial reenactment.” In: ACM

Trans. Graph. 34.6 (2015), pp. 183–1.

151

https://github.com/MarekKowalski/FaceSwap/
https://github.com/MarekKowalski/FaceSwap/

[119] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-to-image translation with

conditional adversarial networks”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2017, pp. 1125–1134.

[120] F. Chollet. “Xception: Deep learning with depthwise separable convolutions”.

In: Proceedings of the IEEE conference on computer vision and pattern recog-

nition. 2017, pp. 1251–1258.

[121] Keras documentation: Xception. url: https://keras.io/api/applications/

xception/.

[122] sklearn.svm.SVC. url: https : / / scikit - learn . org / stable / modules /

generated/sklearn.svm.SVC.html.

[123] sklearn.ensemble.RandomForestClassifier. url: https://scikit-learn.org/

stable/modules/generated/sklearn.ensemble.RandomForestClassifier.

html.

[124] M. Koopman, A. M. Rodriguez, and Z. Geradts. “Detection of deepfake video

manipulation”. In: Conference: IMVIP. 2018.

[125] D. E. King. “Dlib-ml: A machine learning toolkit”. In: The Journal of Machine

Learning Research 10 (2009), pp. 1755–1758.

[126] Y. Li, M.-C. Chang, and S. Lyu. “In ictu oculi: Exposing ai generated fake

face videos by detecting eye blinking”. In: arXiv preprint arXiv:1806.02877

(2018).

[127] D. Güera and E. J. Delp. “Deepfake video detection using recurrent neural

networks”. In: 2018 15th IEEE International Conference on Advanced Video

and Signal Based Surveillance (AVSS). IEEE. 2018, pp. 1–6.

[128] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natarajan.

“Recurrent convolutional strategies for face manipulation detection in videos”.

In: Interfaces (GUI) 3.1 (2019).

152

https://keras.io/api/applications/xception/
https://keras.io/api/applications/xception/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

[129] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing of gans for

improved quality, stability, and variation”. In: arXiv preprint arXiv:1710.10196

(2017).

[130] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. “Lsun: Con-

struction of a large-scale image dataset using deep learning with humans in

the loop”. In: arXiv preprint arXiv:1506.03365 (2015).

[131] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo. “Face x-ray

for more general face forgery detection”. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2020, pp. 5001–

5010.

[132] K. Sun, B. Xiao, D. Liu, and J. Wang. “Deep high-resolution representation

learning for human pose estimation”. In: Proceedings of the IEEE conference

on computer vision and pattern recognition. 2019, pp. 5693–5703.

153

VITA

Dalton Russell Cole was born in Kansas City, Missouri. He graduated Summa

Cum Laude from Missouri University of Science and Technology in 2016 with a Bach-

elor of Science in Computer Science and minors in Computer Engineering and Math-

ematics. Dalton received the Scholarship For Service to obtain his Master’s degree

and Ph.D. He completed his Master’s degree at Missouri S&T in May 2019 and trans-

ferred to the University of Missouri - Columbia where he completed his Ph.D. July of

2021 under Dr. Dan Lin. Dalton has accepted a Research and Development position

at Sandia National Laboratories in Albuquerque, New Mexico.

154

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Facial Authentication
	Deepfakes

	Literature Review
	Adversarial Attacks
	Facial Recognition Adversarial Inputs
	Adversarial Deepfakes

	Model Stealing Attacks
	Data Poisoning Attacks
	Untargeted Attacks
	Targeted Attacks

	Defend Data Poisoning Attacks to Facial Recognition Neural Networks
	FaceNet
	Attack Analysis
	Attack Results
	Feasibility Analysis of Attacks in Real-Life Face Authentication Applications

	DEFEAT
	System Framework and Deployment
	Statistics-Based Discriminator
	Feature-based DNN Discriminator

	Performance Study
	Experimental Settings
	Experimental Results
	Effect of the Number of Injected Photos
	Effect of Different Photo Backgrounds
	Effect of the Number of Training Photos per New User
	Effect of the Choice of Second Phase Classifier for DEFEAT

	Comparison of On-site and Off-site Deployment

	Security Analysis
	Other Detectors Against Our Replacement Data Poisoning Attack
	Conclusion

	Defend Data Poisoning Attacks to Fake Facial Image Detectors
	Deepfake Detection Background
	A Brief History of Deepfakes
	Deepfake Generation
	Formal Explanation of Deepfake Generation
	Generative Adversarial Networks

	Deepfake Datasets
	First Generation
	Second Generation
	Dataset Attributes

	Deepfake Detectors

	Attacking Deepfake Detectors
	Targeted Attacks
	Evasion Attacks
	Targeted Label Flipping Data Poisoning Attacks

	Attack Implementation

	Data Poisoning Attack Performance Study
	Experimental Settings
	Experimental Results
	Single Synthetic Media Type Detection Networks
	Multiple Synthetic Media Type Detection Networks
	Percentage of Poisoned Labels
	Retrained Network

	Defense Strategies
	Outlier Based Defense
	Machine Learning Based Defense
	Deep Neural Network Based Defense
	Convolutional Neural Network Based Defense

	Defense Performance Study
	Experimental Settings
	Outlier Based Defense
	Support Vector Machine Discriminator
	Random Forest Discriminator
	DNN Based Discriminator
	CNN Based Discriminator

	Experimental Results
	Outlier Based Defense Results
	Support Vector Machine Discriminator Results
	Random Forest Discriminator Results
	DNN Discriminator Results
	CNN Discriminator Results
	Classification Time Comparison
	Synthetic Media Generation Method

	Conclusion

	Conclusion
	DEFEAT
	Datasets
	FEI Dataset
	LFW Dataset

	Statistics-Based Discriminator
	Principle Component Analysis
	Random Attack Strategy
	Optimal Attack Strategy

	DEFEAT vs Statistics-Based Discriminator
	FEI Results
	Effect of the Number of Injected Photos - FEI
	Effect of Number of Training Photos per New User - FEI

	3-Input
	Effect of the Number of Injected Photos
	Effect of the Number of Training Photos per New User
	Effect of the Choice of Second Phase Classifier for DEFEAT

	Effect of Number of Inputs to DEFEAT

	Deepfake Detection
	Deepfake Detection Literature Review
	Datasets
	Data Poisoning Attack - Information Retention

	BIBLIOGRAPHY
	VITA

