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Abstract: Cork oak decline in Mediterranean forests is a complex phenomenon, observed with
remarkable frequency in the southern part of the Iberian Peninsula, causing the weakening and
death of these woody plants. The defoliation of the canopy, the presence of dry peripheral branches,
and exudations on the trunk are visible symptoms used for the prognosis of decline, complemented
by the presence of Phytophthora cinnamomi identified in the rhizosphere of the trees and adjacent
soils. Recently, a large proteomic dataset obtained from the leaves of cork oak plants inoculated and
non-inoculated with P. cinnamomi has become available. We explored it to search for an optimal set of
proteins, markers of the biological pattern of interaction with the oomycete. Thus, using published
data from the cork oak leaf proteome, we mathematically modelled the problem as an α, β-k-Feature
Set Problem to select molecular markers. A set of proteins (features) that represent dominant effects
on the host metabolism resulting from pathogen action on roots was found. These results contribute
to an early diagnosis of biochemical changes occurring in cork oak associated with P. cinnamomi
infection. We hypothesize that these markers may be decisive in identifying trees that go into decline
due to interactions with the pathogen, assisting the management of cork oak forest ecosystems.

Keywords: Quercus suber; Phytophthora cinnamomi; cork oak decline; protein markers; (α, β)-k-Feature
Set Problem; cover problems

1. Introduction

Cork oak decline in Mediterranean forests is a complex phenomenon, observed with
remarkable frequency in the southern part of the Iberian Peninsula, causing the weakening
and death of these woody plants [1–4]. Mediterranean oak forest dynamics mirror the im-
pact of anthropogenic factors and environmental variables over time, with the expectation
of a more pronounced decline in the long term [5–7]. Canopy defoliation, dry peripheral
branches, black spots, and exudations on the trunk are visually observable symptoms used
for decline prognostics, sometimes complemented by the identification of Phytophthora
cinnamomi in the rhizosphere of trees and the adjacent soils [8,9]. This oomycete invades
the roots of the cork oak leading to cell death of the infected tissues, triggering a localized
and distal defence response [10–12]. In the aerial part of the plant, the evidence of the
plant’s interaction with the parasite depends on the extent and degree of the necrotized
roots [10]. With global warming, cork oaks are exposed to extreme climate variations that
do not favour resilience to biotic stresses such as the interaction with P. cinnamomi [13].
The resilience patterns observed in natural populations are diversified [14], in accordance
with the genetic variability typical of this long-lived plant, which constitutes an asset in a
long-term process of adaptation [15,16]. Based on the sixth National Forest Inventory data,
only 5% of the cork oak stands in Portugal do not show any damage such as defoliation
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and/or discoloration of the canopy [17]. According to these data, trees are moving away
from an optimal vegetative state and the early physiological/biochemical assessment may
be decisive in order to understand the tree’s level of resilience to overcome adversity and
to recover. Recently, a large proteomics dataset obtained from the leaves of cork oak plants
inoculated and not inoculated with P. cinnamomi was made available [12] and can be ex-
plored in order to search for an optimal set of proteins, markers of the biological decline
pattern. This work has yet to be done.

Statistical methods are commonly used to reduce dimensions and classify data, e.g.,
principal component analysis (PCA) and exploratory factor analysis (EFA). They are applied
to extract features and knowledge from data but require high-dimension data or correlation
and distribution conditions.

Combinatorial optimization approaches generally resort to model the research ques-
tion as a covering problem, either based on features or in patterns, and have been widely
applied to solve real world problems in physical and biological sciences such as molecular
biology and biochemistry, as well as in engineering and computer sciences [18]. Among
the cover problems, we highlight the (α, β)-k-Feature Set Problem (α, β-k-FSP), which can
be reduced to the Red-Blue Bipartite Dominating Set problem and is a generalization of
the k-Feature Set Problem (FSP). It is also used to extract features and knowledge from
data as well as to reduce dimensions and classify data, having been mostly applied in
medical sciences helping with the explanation and diagnosis of disease. For example, it
was applied to some cancer types [19–22], Alzheimer’s disease [23–25], and epilepsy [26].
As far as we know, this is the first time that it is applied to plant biology, namely to the
cork oak–P. cinnamomi interaction. The k-FSP attempts to reduce a given data set by select-
ing a relevant subset of k-features (minimizing k) that contributes to a better explanation
and understanding of the whole data, eliminating unrelated, redundant, or conflicting
features. The (α, β)-k-Feature Set Problem (α, β-k-FSP), proposed by Cotta et al. [27], aims
to determine the minimum subset of features that enlightens the dichotomy within the
samples while reducing the data size. It intends to minimize the number of features (k)
and simultaneously to maximize the differences between samples of different groups (α)
and the similarities between samples of the same group (β). The selected feature set is
as reliable as the greater α and β, although a larger feature set will be obtained. The α,
β-k-FSP is NP-hard, since it is a generalisation of a problem that is NP-complete, α = 1 and
β = 0 k-FSP. The latter can be reduced to the k-Vertex Cover Problem [28], known to be
NP-complete [29]. Therefore, there is no known algorithm to solve exactly the α, β-k-FSP in
polynomial time, meaning that it is not probable that there is an algorithm able to find the
optimum solution for any instance of the problem in a computational time proportional
to a polynomial function of the size of the input, being necessary to use approximate
methods. Nevertheless, for small and even for some medium size instances, α, β-k-FSP may
be solved exactly, in a reasonable time. Using the published cork oak protein dataset, we
mathematically model the problem as an α, β-k-FSP and analyzed the obtained results. We
select leaf proteomic markers, finding a set of proteins (features), as small as possible, that
represent the dominant effects on the metabolism of the host resulting from the action of
the oomycete on the roots, in order to contribute to an early diagnosis of the biochemical
changes associated with cork oak infection by P. cinnamomi. Variations in the abundance of
these proteins have an impact on the processes of protein production, essential for cellular
reprogramming in situations of biotic stress, beta-oxidation of fatty acids in peroxisomes,
photosynthesis, and photorespiration. We hypothesize that these markers can be decisive
to detect trees that go into decline due to the interaction with the pathogen, helping to
manage forest ecosystems in which the cork oak predominates.

2. Materials and Methods
2.1. Public Cork Oak Protein Dataset

In this study, we used 80 proteins out of 424 proteins quantified by SWATH-MS
(sequential windowed data-independent acquisition of the total high-resolution mass
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spectra) in cork oak leaves inoculated in the roots with P. cinnamomi [12]. The biological
assay was carried out with 12 cork oak plants, with six being inoculated with P. cinnamomi.
Proteins included in the selected group of 80 were identified using the Arabidopsis proteome
database as reference showed a p-value below 0.05 or a fold change greater than 2 or less
than 0.5 in their ratio levels between inoculated and non-inoculated (control) samples, then
being considered as altered. The aforementioned mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE [30] partner repository
with the dataset identifier PXD021455 and is publicly available.

2.2. Modeling the Cork Oak Protein Dataset as an (α, β)-k-Feature Set Problem

As mentioned before, in the introduction section, we aim to determine a dominant
subset of proteins (features) that robustly explains the dichotomy within the cork oak
samples. Next, we will present the general definition of the α, β-k-FSP [20,27] followed by
its mathematical formalization for our case and a small example.

Definition 1. Consider a given data set with m samples and n features, represented by a discrete
matrix D and an array T. Each element dif of matrix D specifies the value of feature f in sample i.
Each element ti of array T specifies the type or class of each sample. α, β, and k are positive integer
parameters. Then the (α, β)-k-Feature Set Problem seeks to minimize the size k of a subset S of
features (columns of matrix D), such that:
(a) for all pairs of samples (i, j), with i 6= j, if they do not belong to the same type, ti 6= tj, there is a
subset S′ ⊆ S such that |S′| ≥ α and they have different values, dif 6= djf, for all feature f of S′;
(b) for all pairs of samples (i, j), with i 6= j, if they belong to the same type, ti = tj, there is a subset S”
⊆ S such that |S”| ≥ β and they have the same value, dif = djf, for all feature f of S”.
So, the α, β-k-FSP seeks to determine a subset of features, with minimum cardinality, having at least
α features for differentiating between any two samples of different classes and at least β features for
coupling any two similar samples of the same class.

In our study, considering our experimental data set, we want to determine the min-
imum subset of proteins that consistently explains the differences between any pair of
control and inoculated samples and the similarities between any pair of control samples or
of inoculated samples. This can be modelled as an α, β-k-FSP, as described below.

We used the following notation for the experimental data set:
C = {c1, c2, . . . , cm } is the set of cork oak samples;
T = {t1, t2, . . . , tm }, ti ∈ {control, inoculated}, ∀i = 1, . . . , m, holds the type of the

samples;
P = {p1, p2, . . . , pn } is the complete set of biological or statistical relevant proteins

obtained in the biological experiment;
Data =

(
dtci pl

)
∈ Rm×n is the matrix with the experimental data set holding the

quantification level of each protein pl in each cork oak sample ci;
D =

(
dci pl

)
∈ {0, 1}m×n is the binary matrix got from the data matrix classifying each

protein quantification level as less abundant or more abundant represented, respectively,
by 0 and 1.

Table 1 shows the above sets for a small example.

Table 1. Data for a small example.

D
Proteins (P)

p1 p2 p3 p4 p5 T

Sa
m

pl
es

(C
) c1 0 0 1 1 0 Control

c2 0 1 1 0 1 Control

c3 1 0 1 0 1 Inoculated

c4 1 1 0 1 1 Inoculated
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We also denoted the minimum proteins set obtained in the solution of the α, β-k-FSP
as S = {ps1, ps2, . . . , psk} ⊆ P.

We defined matrices A =
(

a(ci , cj) pl

)
and B =

(
b(ci , cj) pl

)
, respectively, for the pairs

of samples that belong to different types and for the pairs of samples that belong to the
same type as follows:

a(ci ,cj)pl
=

{
1 , if dci pl 6= dcj pl and t ci 6= t cj

0, otherwise
;

b(ci ,cj)pl
=

{
1 , if dci pl = dcj pl and t ci = t cj

0, otherwise
,

matrices A and B for the data of Table 1 are presented in Table 2.

Table 2. Matrices A and B for the data of Table 1.

Proteins (P)

p1 p2 p3 p4 p5

Sa
m

pl
e

pa
ir

s

A

(c1, c3) 1 0 0 1 1

(c1, c4) 1 1 1 0 1

(c2, c3) 1 1 0 0 0

(c2, c4) 1 0 1 1 0

B

(c1, c2) 1 0 1 0 0

(c3, c4) 1 0 0 0 1

Then, we formalized the α, β-k-FSP as a binary linear program as shown below, where
the binary variable xpl = 1 if the protein pl is selected, otherwise xpl = 0.

min k = ∑n
l=1 xpl (1)

subject to:
∑n

l=1 a(ci ,cj) pl
xpl ≥ α, ∀

(
ci, cj

)
∈ C : t ci 6= t cj (2)

∑n
l=1 b(ci ,cj) pl

xpl ≥ β, ∀
(
ci, cj

)
∈ C : t ci = t cj (3)

xpl ∈ {0, 1} (4)

In the above mathematical formalization, the objective function (1) minimizes the
number of selected proteins (which will belong to set S). Constraints (2) ensure that for all
pairs of samples that belong to different types, there are in set S at least α proteins having
different values and constraints (3) ensure that for all pairs of samples that belong to the
same type, there are in set S at least β proteins having identical values. Constraints (4) force
variables to be binary.

It is very useful to represent the α, β-k-FSP as a graph G(V, E), with V = A ∪ B ∪ P
nodes, and a set of edges, E, linking the nodes according to the 1 values of matrices A and
B. So, we obtain the graph of Figure 1 for the example of Tables 1 and 2.
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Figure 1. Graph representation of the α, β-k-FSP for the example given in Tables 1 and 2.

Clearly, if we consider α = β = 1, then k = 1 is the optimum solution and S = {p1}
because protein 1 dominates every node, since it is linked to all of them, see Figure 2a. This
is due to the fact that it presents the same value to the same type pairs and opposite values
to the different type pairs (see Table 1), being completely coherent. But as mentioned before
the selected feature set, S, is as more reliable as the greater α and β are, so we can see in
Figure 1 that the largest value that α and β can take is 2, because it is the number of edges
linked to nodes (c2, c3),(c1, c2), and (c3, c4), therefore, those nodes cannot be covered more
than two times. For α = β = 2, it is clear that the proteins linked to those three nodes must
be in the optimum solution, then S′ = {p1, p2} covers node (c2, c3) and S′′ = {p1, p3, p5 }
covers the other two nodes and no more proteins are needed since every node is covered
twice (see Figure 2b), being k = 4 and S = S′ ∪ S′′ = {p1, p2, p3, p5 } the optimum solution
of α, β-k-FSP for this example. For the other values, α = 1 and β = 2 or α = 2 and β = 1, the
solutions will be, respectively, k = 3, S = {p1, p3, p5} and k = 3, S = {p1, p2, p4}. Note that
the higher α and β, the higher the number of proteins selected (value of k). So, usually, for
high-dimensional data sets where it is necessary to use approximate methods, that do not
guarantee the optimum solution, the problem is solved for some different values of α and β
and then the best compromise solution is chosen.

Figure 2. Optimum solution of the α, β-k-FSP (a) for α = β = 1 and (b) α = β = 2.
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Based on the above formalization, we have implemented the procedures needed to
prepare the data and solve the respective α, β-k-FSP in MATLAB (MATrix LABoratory,
which is a multi-paradigm programming language). We briefly describe them below.

Input data: It is known, and has been confirmed in our experimental dataset, that
statistical significance can be very different from biological meaningfulness. Thus, in this
study, we considered the set of 80 proteins quantified for 12 samples, divided into two
groups, control and inoculated, each with 6 samples, above-mentioned (in Section 2.1). So,
using the above notation, the input was:

C = {c1, c2, . . . , c12}, T = {t1, t2, . . . , t12}, where t1, t2, . . . , t6 = control and
t7, t8, . . . , t12= inoculated and P = {p1, p2, . . . , p80}.

Construction of matrices: Our biological data set, matrix data, has continuous values for
the protein level and it was necessary to consistently separate less abundant quantification
level samples from more abundant quantification level samples. Thus, we established
for each protein a range, centred on its mean, which clearly separates the less abundant
samples (below the range) from the more abundant samples (above the range).

To determine which range should be used, we tested five ranges, being each equal to
µ ± l × µ, where µ is the mean and l is equal to 5%, 7.5%, 10%, 12.5%, and 15%.

As matrix D must be binary or discrete, for each protein (column) we assigned 0 and
1, respectively, to less abundant quantification level and to more abundant quantification
level samples, while the samples with a level belonging to the above aforementioned ranges
were considered with neutral abundance and with no value assignment. Therefore, our
matrix D is slightly sparse.

Matrices A and B were computed as defined in the above formalization. Matrix A
has 36 lines (6 × 6 = 36 pairs of samples of different types) and matrix B has 30 lines
(combination of 6 taken 2 at a time, for control pairs and also for inoculated pairs, that
is, 2× 6!

2! 4! = 30 pairs of samples of the same type), both with 80 columns (number of
proteins).

Parameters definition: As mentioned above, the largest possible value for α is equal
to the minimum number of edges linked to the nodes representing pairs of samples of
different types. Analogously, β is at most equal to the minimum number of edges linked to
the nodes representing pairs of samples of the same type. Those were the α and β values
computed and used in our model.

Optimum solution: The algorithm to solve our α, β-k-FSP was implemented in MAT-
LAB. The binary linear program optimum solution was obtained using the MATLAB
intlinprog function, which was appropriately parametrized. The algorithm took an average
execution time of 0.4866 ms, varying between 0.374 ms and 0.599 ms, on an Intel i5-4300U
CPU (Mobile Haswell, 15 W TDP, 2C/4T, 1.90 GHz nominal and max turbo of 2.90 GHz).

3. Results and Discussion
3.1. (α, β)-k-Feature Set Problem

The results obtained for the optimum solution of the α, β-k-FSP, considering the
mentioned five ranges for neutral quantification, are shown in Table 3.

Table 3. Optimum values obtained for the α, β-k-feature set problem.

R1 R2 R3 R4 R5

µ ± 0.05 µ µ ± 0.075 µ µ ± 0.1 µ µ ± 0.125 µ µ ± 0.15 µ

Bio/statistical
significative proteins 80 80 80 80 80

Alpha (α) 16 11 8 6 5

Beta (β) 18 15 9 5 4

Optimum number of
proteins (k) 51 47 29 20 16
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It can be seen that for ranges R1 and R2, a high number of proteins are obtained (k),
while for R5 the obtained protein set seems rather small. We also observed that the set of
proteins obtained, for each range, is included (except for no more than four proteins) in the
next larger range, as depicted in Figure 3, where two Venn diagrams were used for a better
visualization. Therefore, and considering also the alpha and beta obtained values, we chose
the R3 range as the best compromise between the number of proteins and the legitimacy in
finding similarities (beta) and dissimilarities (alpha) between samples. Therefore, we will
focus our discussion on that optimum set of proteins (S-R3).

Figure 3. Venn diagrams, considering the optimum solutions (number of proteins) obtained for the
5 neutral ranges R1 to R5. The left diagram includes R1 to R3 solutions and the other includes R3 to
R5.

The approach carried out allowed the selection of 29 proteins (R3 range), which ensure
with a high certainty the existing separation between the group of control plants and the
group of plants inoculated with P. cinnamomi. Table 4 details the information regarding the
selected group of proteins, including the UniProt accession codes, name, and protein initial.

Table 4. Description of the optimum set of proteins (S) for R3 range (S-R3).

S
Protein Information a

R3

Arabidopsis
UniProt

Accession
Protein Name Initial

P16181 40S ribosomal protein S11-1 RS111

P42798 40S ribosomal protein S15a-1 R15A1

Q9STX5 Endoplasmin homolog ENPL

P10795 Ribulose bisphosphate carboxylase
small chain 1A RBS1A/RBCS1A

Q9SIM4 60S ribosomal protein L14-1 RL141

Q9LF37 Chaperone protein ClpB3

F4J3Q8
P-loop containing nucleoside

triphosphate hydrolases
superfamily

F4J3Q8

Q9SII0 Probable histone H2A variant 2 H2AV2
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Table 4. Cont.

S
Protein Information a

R3

Arabidopsis
UniProt

Accession
Protein Name Initial

Q9LRR9 (S)-2-hydroxy-acid oxidase GLO1 GLO1/GOX1

Q9LXG1 40S ribosomal protein S9-1 RS91

Q9SVR0 60S ribosomal protein L13a-3 R13A3

P56761 Photosystem II D2 PSBD

F4JYM8 Thiolase family protein F4JYM8/AACT1

O04486 Ras-related protein RABA2a

Q9FZ47 ACT domain-containing protein
ACR11 ACR11

P38418 Lipoxygenase 2 LOX 2

Q9FLN4 50S ribosomal protein L27 RK27

Q9FGX1 ATP-citrate synthase beta chain
protein 2 ACLB2

Q9SRV5

5-
methyltetrahydropteroyltriglutamate-

homocysteine methyltransferase
2

METE2

P27140 Beta carbonic anhydrase 1 BCA1

Q9SCW1 Beta-galactosidase 1 BGAL1

B3H4S6 Dicarboxylate transporter 1 DiT1

O49485 D-3-phosphoglycerate
dehydrogenase 1 SERA1

Q9LF98 Fructose-bisphosphate aldolase 8 ALFC8/FBA8

P27323 Heat shock protein 90-1 HSP90-1

F4KDZ4 Malate dehydrogenase FAKDZ4/PMDH2

P56778 Photosystem II CP43 reaction center
protein PSBC

A0A1P8B485 Protein translocase subunit Sec A AGY1

O81644 Villin-2 VILI2
a UniProt accession codes, protein name, and protein initials arise from the annotation using the Arabidopsis
proteome database as a reference.

When graphically representing the protein abundance for S-R3 in the 12 cork oak
samples evaluated, a distinct pattern of colours is observed for the two plant groups,
control and inoculated (Figure 4). The method allowed for the identification of the smallest
number of proteins out of the group of 80 that has the potential to effectively separate,
based on the quantification of the proteins identified, plants that are in an interaction with
P. cinnamomi from plants that are not in an interaction with the pathogen. For the first
16 proteins on the x-axis, the profile of lower abundance and neutral is characteristic of
the control samples, the opposite occurring in the following 13 proteins. Proteins with
consistent profiles of more abundant/neutral or less abundant/neutral quantification
levels are more frequent in control samples (21 proteins) than in the inoculated samples
(10 proteins), showing that the diversity of quantification profiles is more homogeneous in
the control samples. This means that the immune response of cork oaks to infection by P.
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cinnamomi falls within a certain pattern but displays a higher diversity of protein profiles.
By using the normalised abundance values for each protein in each of the samples, it can be
seen that the quantification profiles of the control samples are plotted in opposite quadrants
to those of the inoculated samples, showing the dissimilarity in production levels of each
of the proteins in the two types of samples (Figure 5). The heterogeneity of abundance
patterns observed for each protein in each of the samples is also evident (column height
of the stacked columns in Figure 5). For example, protein P56778 (first column) is always
more abundant in control samples than in infected samples but the abundance values vary
from sample to sample. In the case of protein P10795 (column fifteen), there is no consistent
pattern of abundance in the control samples or in the inoculated samples. In nature, a slow
form of cork oak decline predominates, with trees showing gradual degrees of severity of
the phenomenon. It is possible that the different patterns observed in the infected samples
for the selected proteins have correspondence with the phenotypic characteristics of the
trees with decline symptoms. In view of the high degree of genetic diversity observed in Q.
suber, it is expected that the homeostatic state of the trees emerging from the interaction
with P. cinnamomi is diverse and complex. Thus, the defence response of cork oaks to P.
cinnamomi infection observed in this study is heterogeneous and this optimal set of proteins
may represent the diversity of protein patterns expected to be found in a natural population
challenged by this oomycete. The protein biological features may help in understanding
the role they play in trees with a healthy or declining profile.

Figure 4. Stacked columns for the quantification level of the optimal protein set.
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Figure 5. Stacked columns for the normalized quantification level of the optimal protein set for
control samples (up) and inoculated samples (down).

3.2. Biological Relevance of the S-R3 Protein Set

The S-R3 protein set was used as input data on STRING v11 online platform (search
tool for retrieval of interacting genes/proteins) [31,32] to build a protein–protein interaction
(PPI) network among the selected proteins and screen for the associated KEGG metabolic
pathways [33]. The default parameters have been maintained, with the confidence cut off
value set at 0.400 and false discovery rate (FDR) stringency set at 0.05. The PPI network
is based on known interactions (from curated databases and experimentally determined),
predicted interactions (gene neighbourhood, gene fusions, and gene co-occurrence) and
information gathered from text mining, co-expression, and protein homology. The links
between proteins exhibit the joint contribution to a given function and allow us to infer
about their biological relevance as a group. STRING analysis revealed that 24 of the
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29 proteins of S-R3 are connected with each other by 36 edges, with a PPI enrichment
p-value < 0.02 (Figure 6). Thus, it can be seen that there are proteins in this group that are
partly biologically associated with each other, functioning as a group.

Figure 6. PPI network of the S-R3 protein set. Coloured network nodes represent proteins and
edges represent protein–protein associations. In this scheme, twenty-four proteins are connected by
36 edges and 16 proteins have more than two connections.

In order to understand which groups of proteins within the network could correspond
to functional units, a hierarchical clustering of the string network was carried out using the
k-means clustering method. Three main clusters were identified: the blue cluster includes
7 proteins functionally associated with photosynthesis, the red cluster comprises 16 pro-
teins associated mainly with glyoxylate and dicarboxylate metabolism, carbon fixation in
photosynthetic organisms, and the citrate cycle, and the green cluster contains 6 proteins
associated with ribosomes (Figure 7).
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Figure 7. The PPI network of the S-R3 protein set was constructed using the k-means clustering
method and shows 3 clusters identified by the colours green, blue, and red. Line thickness expresses
the degree of confidence (from zero to one) associated with the interactions between proteins. Blue
cluster proteins are functionally associated with photosynthesis; red cluster proteins are associated
mainly to glyoxylate and dicarboxylate metabolism, carbon fixation in photosynthetic organisms,
and citrate cycle; and green cluster proteins are associated with ribosome.

In each of the clusters, the proteins Q9FLN4-50S ribosomal protein L27 (RK27),
PMDH2-Malate dehydrogenase (FAKDZ4/PMDH2), P10795-ribulose bisphosphate car-
boxylase small chain 1A (RBS1A/RBCS1A), and A0A1P8B485-protein translocase subunit
Sec A (AGY1) stand out because they interact with many proteins and/or are the link
between the group to which they belong and the other groups. The number of edges in
the ribosomal protein cluster indicates their functional dependence on each other, that is,
alterations produced in one protein should influence the others. Therefore, it is expected
that variations in the abundance of the RK27 protein will condition the whole group of
ribosomal proteins, affecting the structures and processes of protein production essential
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for cellular reprogramming in situations of biotic stress. Plastid translation is required for
embryo development in Arabidopsis with the engagement of at least nine nuclear-encoded
plastid ribosomal proteins (PRPS5, S13, S20, L1, L4, L6, L21, L27, and L35), but the exclusive
absence of PRPL27 or L1, L4, or L35 leads to alterations in cell division patterns, showing
that L27 is required for basal ribosome activity [34]. This reinforces the image of a pivot
protein on the PPI network. Changes in cellular metabolic processes in which the PMDH2,
P10795, and AGY1 proteins participate will influence the RK27 protein also, and thus all
the proteins from the ribosome cluster.

AGY1 encodes a chloroplast subunit of the protein translocase Sec A and the name orig-
inates from albino or glassy yellow phenotypes of Arabidopsis mutants, dysfunctional in the
Sec A protein-transporting ATPase [35]. The biosynthesis of chloroplasts is compromised
in these homozygous mutants due to the inability to import nuclear-encoded proteins
destined to be translocated to the lumen of the thylakoids by the Sec pathway [35,36].
This inability gives rise to genetic reprogramming aimed at the production of proteins
related to photosynthetic complexes, protein translocation systems for chloroplasts, and
mitochondrial respiratory complexes. In this context, the connection found between AGY1
and RK27 makes sense, since an alteration in AGY function triggers the reprogramming
of gene expression at the level of various organelles and concomitant protein synthesis.
In cork oak, the interaction with P. cinnamomi induced changes in the amount of AGY1
produced in inoculated plants, reducing the amount when compared with that produced
in control plants [12].

The peroxisomal malate dehydrogenase PMDH2 catalyses the re-oxidation of NADH
during fatty acid beta-oxidation [37] and this protein is concomitantly implicated in sev-
eral metabolic pathways in the peroxisomes, such as the glyoxylate and dicarboxylate
metabolism, photorespiration, nitrogen metabolism, and plant hormone biosynthesis [38].
Its positioning in the red cluster interacting with several proteins participating in the above
biological processes is fitting. Proteins from the red cluster that had connections to PMDH2
and had associated enzyme numbers (EC numbers) were submitted to KEGG [33], choosing
the Arabidopsis organism as a reference, to identify the metabolic pathways in which
they participate (Figure 8). Four red cluster proteins are assigned to the glyoxylate and
dicarboxylate metabolism KEGG map, with malate dehydrogenase (EC:1.1.1.37; PMDH2)
associated with the methylaspartate cycle, the thiolase family protein (EC:2.3.1.9; AACT1)
associated with the ethylmalonyl pathway of terpenoid biosynthesis, and (S)-2-hydroxy-
acid oxidase GLO1 (EC:1.1.3.15; Q9LRR9) and ribulose bisphosphate carboxylase small
chain 1A (EC:4.1.1.39; P10795) linked to photorespiration (Figure 8).

Moreover, using the data made available in a previous publication [12], it can be seen
that all the proteins mentioned in the previous text were less abundant in cork oak samples
inoculated with P. cinnamomi when compared with the controls, showing negative values
for Log2FC (fold change ratio logarithm of protein abundance in inoculated over control
samples). It is possible that the strategy adopted by the plant to reduce the energy to be
expended in reorganising the physiological state resulting from the interaction with the
oomycete involves decreasing the abundance of proteins, which interferes with several
metabolic processes simultaneously, some being housed exclusively in the peroxisome.
In the context of biotic stress, the NO signaling molecule could eventually be respon-
sible for the regulation of photorespiration and beta-oxidation in peroxisomes through
S-nitrosylation of the H2O2-producing GLO1 proteins (EC:1.1.3.15; Figure 8) or the PMDH
isoforms, in agreement with the hypothesis raised by Ortega-Galisteo and colleagues [39].
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Figure 8. KEGG map for metabolic pathways of glyoxylate and dicarboxylate metabolism. Malate
dehydrogenase (EC:1.1.1.37; PMDH2) is associated to methylaspartate cycle and is colored in pink;
thiolase family protein (EC:2.3.1.9; AACT1) are signed in yellow and is associated to ethylmalonyl
pathway of terpenoid synthesis; and proteins (S)-2-hydroxy-acid oxidase GLO1 (EC:1.1.3.15; Q9LRR9)
and ribulose bisphosphate carboxylase small chain 1A (EC:4.1.1.39; P10795) are associated to pho-
torespiration and are marked in green.

3.3. Harmonisation between the PPI Network and the Coverage Problem Approach

Looking to the coverage problem approach, based on the quantification level of the
proteins, a correspondence between the biological processes enrolled in the clusters of the
PPI network and some proteins of the optimal set S-R3 stand out. In Table 5, we considered
protein synthesis, photosynthesis, and glyoxylate and dicarboxylate metabolism that stand
out in the PPI network. We also present their quantification levels for six, two, and four
proteins, respectively, for the six control and six inoculated samples. Each of these biological
processes includes 36, 12, and 24 measurements of quantification levels for each type of
samples, given that each biological process includes p proteins, thus, it has N quantification
level measures, for the control and for the inoculated samples, where N = 6× p.

Regarding the quantification abundance level of the six proteins, with a full match to
the green cluster in the PPI network, we see that the control and inoculated samples present
opposite behaviours. For the control samples, 91% of quantifications have less (58%) or
neutral (33%) abundance, while 80% of quantifications for the inoculated samples have
more (61%) or neutral (19%) abundance.
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Table 5. Biological processes that stand out from the S-R3 solution in the cover problem approach.

Biological
Process

Arabidopsis
UniProt

Accession

Number (N) and Relative Frequency (f ) of Abundance Quantifications

Control Samples Inoculated Samples

Less More Neutral Less More Neutral

Protein synthesis
P16181; P42798

Q9SIM4; Q9SVR0
Q9LXG1; Q9FLN4

N
f

21
0.58

3
0.08

12
0.33

7
0.19

22
0.61

7
0.19

Photosynthesis P56778; P56761 N
f

0
0.0

6
0.5

6
0.5

7
0.58

0
0.0

5
0.42

Glyoxylate and
dicarboxylate
metabolism

PMDH2; AACT1;
Q9LRR9; P10795

N
f

6
0.25

17
0.71

1
0.04

14
0.58

6
0.25

4
0.17

The group of proteins belonging to photosynthesis is also very clear; 100% of quan-
tifications for the control samples show more (50%) or neutral (50%) abundance, while
100% of quantifications for the inoculated samples have less (58%) or neutral (42%) abun-
dance. Proteins P56761 (EC:1.10.3.9) and P56778 from the blue cluster in the PPI network
are components of photosystem II (PSII) that uses light energy to abstract electrons from
water, generating molecular oxygen and a proton gradient subsequently used for ATP
formation. The altered production of these proteins is a sign that the infection of Q. suber
roots by P. cinnamomi interfere with the photosynthetic process that occurs in the leaves
and in cells distant from the site of infection. Necrosis of the host roots caused by P. cin-
namomi infection and the disappearance of the thinner roots limit water uptake by the
plant, and the inefficient functioning of photosystem II may be related to water availability.
With regard to plant–pathogen interactions, there is also evidence of the disruption of
photosystem II functioning during plant–bacteria interactions resulting from the action of
effector molecules. According to Torres-Zabala et al. [40], effector molecules produced by
Pseudomonas syringae reprogramme the expression of nuclear-encoded chloroplast genes
and inhibit photosynthetic CO2 assimilation through the disruption of photosystem II. This
type of acting may well extend to oomycetes.

In the group of four proteins associated to glyoxylate and dicarboxylate metabolism
included in the red cluster, 75% of quantifications have more (71%) or neutral (4%) abun-
dance for the control samples, while 75% of quantifications for the inoculated samples have
less (58%) or neutral (17%) abundance.

Therefore, we hypothesize that cork oak leaves point to a physiological state associated
with an immune response resulting from the interaction with P. cinnamomi, with a focus on
protein synthesis, photosynthesis, and glyoxylate and dicarboxylate metabolism biological
processes when they contain:

– A more or neutral abundant level of the proteins P16181, P42798, Q9SIM4, Q9SVR0,
Q9LXG1, and Q9FLN4;

– A less or neutral abundant level of the proteins P56761 and P56778;
– A less or neutral abundant level of the proteins PMDH2, AACT1, Q9LRR9, and

P10795.

4. Conclusions

The α, β-k-Feature Set Problem approach, applied to the group of proteins (80) pre-
viously identified as being associated with the cork oak immune response to inoculation
by P. cinnamomi, allowed finding several subsets of proteins (solutions of the problem)
that separate the control plants from the inoculated plants. These protein subsets are
examples of molecular markers of the homeostatic state of cork oak plants that are in
interaction with the oomycete. The best solution found (S-R3) includes 29 proteins highly
connected between them in a network of protein–protein interactions, comprising three
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clusters uncovered through STRING analysis. These clusters are linked to each other
through pivotal proteins that act as eventual regulators of the functioning of the whole
group. Particularly noteworthy are the proteins Q9FLN4-50S ribosomal protein L27 (RK27),
PMDH2-Malate dehydrogenase (FAKDZ4/PMDH2), P10795-ribulose bisphosphate car-
boxylase small chain 1A (RBS1A/RBCS1A), and A0A1P8B485-protein translocase subunit
Sec A (AGY1). Interference with the production of these proteins may compromise pro-
tein synthesis, photosynthesis, chloroplast biogenesis, and glyoxylate and dicarboxylate
metabolism.

An early diagnosis of the biochemical changes that occur in cork oaks in natural stands
associated with infection by P. cinnamomi will contribute to the recognition of this pathogen
as a real threat to cork oak ecosystems and will also allow the identification of trees with
immunological profiles of resistance or tolerance. Monitoring the vegetative status of
trees using protein molecular markers can greatly assist in the management of cork oak
stands, helping producers to identify plants that interact with P. cinnamomi but do not die
suddenly or show observable signs of decline (asymptomatic). We hypothesize that these
29 markers may be decisive for detecting trees that go into decline due to interactions with
the pathogen, assisting the management of cork oak forest ecosystems.
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