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Abstract: Capacity curves obtained from nonlinear static analyses are widely used to perform seismic
assessments of structures as an alternative to dynamic analysis. This paper presents a novel ‘en
masse’ method to assess the seismic vulnerability of urban areas swiftly and with the accuracy of
mechanical methods. At the core of this methodology is the calculation of the capacity curves of
low-rise reinforced concrete buildings using neural networks, where no modeling of the building is
required. The curves are predicted with minimal error, needing only basic geometric and material
parameters of the structures to be specified. As a first implementation, a typology of prismatic
buildings is defined and a training set of more than 7000 structures generated. The capacity curves are
calculated through push-over analysis using SAP2000. The results feature the prediction of 100-point
curves in a single run of the network while maintaining a very low mean absolute error. This paper
proposes a method that improves current seismic assessment tools by providing a fast and accurate
calculation of the vulnerability of large sets of buildings in urban environments.

Keywords: seismic engineering; seismic vulnerability; urban seismic assessment; artificial neural
networks; capacity curves; push-over analysis; multivariate regression

1. Introduction

The objective of this research is to develop an accurate technique to perform ‘en masse’
seismic assessments of low-rise buildings by predicting capacity curves with machine
learning (ML), employing a simple set of the buildings’ geometrical parameters, rather
than engaging with a tedious modeling process.

There are numerous studies focused on the seismic risk and vulnerability of buildings,
based on analyzing the risk on either an urban or a building scale. Urban-scale analyses
are mainly based on macro-seismic approaches [1,2]. Because of the obvious difficulty
of modeling each building individually (the mechanical approach), these methods are
characterized by a trade-off between accuracy and effectiveness in terms of time and
resources. Typically, their rationales boil down to the assessment of urban areas by grouping
similar buildings into typologies or building classes of which the seismic behavior has
been previously calculated in depth [3–5]. For example, in Europe, it is common to use
the building classes of the RISK-UE project [6]. This methodology was applied to the
city of Barcelona [7] and to some Portuguese cities [8]. Hybrid approaches can, however,
improve the accuracy of macro-seismic assessments by combining the latter method with
other techniques. For instance, visual screening can improve the knowledge level of the
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structures under assessment, which in turn helps to create more representative building
classes and increase accuracy. Other hybrid approaches include identifying and modeling
those features of the structures that have a greater impact in their seismic performance by
means of sensitivity or parametric analyses [9,10]. Empirical methods have also been used
to perform seismic assessments on an urban scale [11]. This approach relies heavily on
damage data from previous earthquakes and their impact on the building stock, which are
not always easy to obtain.

In contrast to the above approaches, when studying a building in detail, a specific
mechanical model for the building is defined and calculated. This is much more accurate,
but requires many hours of work: the blueprints of the building must be obtained or drafted,
the parameters of the materials must be determined, a model must be built by a specialist
and, finally, the results are obtained. This is obviously excessively time-consuming when
calculating a large number of buildings. However, by shortcutting the modeling process
with ML, the methodology presented in this paper begets the advantages from both worlds
(mechanical and macro-seismic) while having none of their drawbacks. In short, the
main innovation and impact of this paper is that it sets out a methodology for an ‘en
masse’ mechanical approach that is set to replace macro-seismic methods for the seismic
assessment of urban areas and real-time evaluation tools.

The seismic behavior of individual structures can be assessed by means of dynamic or
static analyses, accounting for their nonlinear modeling. Dynamic analyses require higher
computational burdens than static ones. Contrariwise, static analyses are characterized by
an affordable computational time while retaining high performance targets. In this work,
nonlinear static analyses are performed to assess the seismic behavior of the structures
following Eurocode 8, commonly known as push-over. This method is based on the
calculation of the capacity curves of the building, which capture the relationship between
basal shear and roof displacement under an incremental force applied to the structure.
Nonlinear static has been selected over dynamic analysis mainly because (i) low-rise and
mainly regular buildings are assessed, for which push-over analyses produce reliable
results [12,13]. In the case of mid- and high-rise buildings, dynamic analyses would be
required. Hence, dynamic analyses like time history analysis are usually carried out as
in [14]. (ii) The time history analysis method requires real accelerograms to determine
the behavior of the structure for a specific seismic record. This is a well-known dynamic
approach. However, this is not a generic method, as the aim of this research requires.
It should be noted that this method is mainly used to perform exhaustive analyses of
particular case study buildings or infrastructures such as tunnels [15], slopes [16] or special
structures [17]. (iii) The goal of this work is to develop a general method that can allow the
determination of a capacity curve for all types of regular low-rise RC structures in a fast
and simple manner. The choice of push-over over time history analysis has facilitated the
generation of a dataset large enough to achieve this last objective.

As a first implementation of the proposed method, a typology of low-rise prismatic
reinforced concrete (RC) buildings is defined and a training set of more than 7000 structures
is parametrically generated. The capacity curves of these models are obtained by means of
push-over analysis using SAP2000 software. After defining and training an appropriate
neural network model, full capacity curves are predicted in a single run of the network,
with a resolution of up to 100 points. This benchmark is substantially higher than previous
research that employed less efficient and comprehensive approaches, e.g., one point at a
time. The problem with this common approach is not only that it is slower, more tedious
and complicated, but also that the information of where the curve ends is completely lost.

However, push-over analysis is still time-consuming, computationally expensive and
requires advanced modeling expertise. In general, the 3D modeling of structures within
engineering software packages is not an option when one needs to assess a large number of
buildings. For this reason, there is an increasing volume of research that advocates the use
of ML techniques that enable bypassing these limitations. One such method that has gained
interest in recent years is artificial neural networks (ANN), mainly due to the extraordinary
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capability of these networks to approximate very complex functions. ANN can perform
nonlinear modeling without prior knowledge of the relationships between the input and
output variables. Consequently, they constitute a general and flexible modeling tool for
prediction. It comes as no surprise that many engineering disciplines are witnessing an
intense engagement with neural network models to solve a broad range of challenging
problems [18–25].

The choice of ANN responds, on the one hand, to the fact that these models are
naturally well suited for the challenges outlined above (strong nonlinearity and a large
regression output of up to 100 points). On the other hand, it may be noted that the
finite element method (FEM), as used in the SAP2000 calculations of this study, aims to
solve differential functions that arise from structural analysis. Neural networks, in turn,
are naturally equipped to deal with continuous and differentiable data that allow for an
error optimization process through the gradient descent algorithm. In other words, the
differentiable character of the data generated by FEM calculations is another aspect that
makes the problem under study in this paper a good fit for a neural network model.

Many studies exist that use ML methods to assess the damage, vulnerability and
response of buildings under seismic action, ranging from entire structures to structural
elements and material stress-tests. In [26], a very similar approach to the method proposed
in this paper is conducted to assess a set of 30 buildings using time history analysis. The
present research expands the latter study to account for a much broader range of buildings
based on a training set of more than 7000 parametrically generated structures. Similarly,
a very in-depth application of neural networks was carried out in [24] to predict seismic-
induced stress in specific elements of a two-span and two-story structure. In contrast
with the present research, their model is specific to a case study structure, and the trained
networks cannot be used to predict stresses in similar yet different structures. This is also
the case in [27], where a recurrent neural network model with Bayesian training and mutual
information is used for the response prediction of large buildings. Recurrent nets are a
common choice for time series and, more broadly, data that feature temporal correlations.
Although not specific to response prediction, other work featuring recurrent models in the
area of seismic analysis can also be found in the literature [28,29]. In light of the results
obtained with the methodology presented in the present paper, the authors are of the
opinion that the feedforward model chosen in this work was sufficient to address the
problem at hand. However, a recurrent approach would perhaps be better suited for the
challenges described in the Future Work section (for instance, extending the proposed
methodology to high-rise buildings). Additionally, a good number of recent studies have
focused on several improvements of the ML algorithms and methodologies used to assess
the impact of seismic actions on structures [30–35].

ANN were also used in a classification fashion to establish which damage-level cate-
gory a certain structure would fall into for a given seismic demand [36]. Therefore, their
approach was to use neural networks for pattern recognition based on structural parameters.
In the method proposed here, a multidimensional regression approach to the application of
neural networks is used to predict capacity curves, which provide a more detailed behavior
of the structural damage. In the case of [37], a very similar approach to the present work
was adopted to predict fragility curves with neural networks and other ML methods. Yet,
since their study was based on dynamic analysis, capacity curves were not considered, as
opposed to the static approach employed in this paper. Furthermore, fragility curves were
not computed in a single run of the network, as the present method proposes. Instead, each
run estimates an individual pair of coordinates, and then the curves are rebuilt based on
these estimations.

Other data mining techniques including ANN were employed to predict the perfor-
mance point of school buildings under seismic action [37]. Similarly, in [38], the same
objective was targeted using a genetic algorithm instead, achieving similar levels of error.
The advantage of this last approach is that their model provides a transparent mathemat-
ical formula for the prediction of the performance point. However, both studies focus
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on predicting the performance point directly without considering the capacity curves
of the buildings. This imposes many levels of complexity on the model, thus reducing
the accuracy.

Other work used neural networks to make use of simplified approaches to determine
the seismic performance of buildings. In [39], an experimental database was employed to
train a neural network with very few input parameters, seven in total, in order to predict
stress and deformation values at specific locations within masonry-infilled RC frames
under seismic action. The study aims to simplify the complex modeling of mixed-element
structures, but is still limited in the scope of application due to a much-reduced number
of input parameters. Finally, in [40], neural networks were used to predict a bilinear
simplification of capacity curves with accurate results. By contrast, in the methodology
proposed in this paper, original capacity curves are predicted without simplification,
broadening their scope of application.

As a summary, the main contribution of this work with regard to previous research
is centered on the model’s ability to instantly perform a mechanical seismic assessment
of an uncountable number of diverse buildings beyond the already vast training dataset.
Additionally, this study delivers an important contribution by presenting a unified method-
ology that allows for the prediction of capacity curves (i) using simple input parameters
derived from the geometric and material properties of the buildings alone, (ii) performing
in a plastic regime (iii) in high resolution of up to 100 points per curve, (iv) in a single and
coherent process (rather than in a point-by-point fashion), (v) for entire buildings with a
great range of variability in size (limited to prismatic low-rise) and (vi) with immediate
applicability to real-world emergency relief use cases under the seismic regulations in
Eurocode 8.

2. Methodology
2.1. Parametric Generation of Structures

In order to automate the generation of a training set for the neural network, the
first step is to generate a large number of virtual structures, all different from each other,
but falling under a typology that is representative of the buildings in many urban areas
of the Algarve–Huelva region. To carry out this task, a set of parameters and value
ranges was chosen based on the list of buildings elaborated for the area of study. These
parameters and their value ranges are defined in Table 1. The choice of features used for
the parameterization responds to the need for (i) finding a set or vector large enough to
provide a meaningful characterization of the buildings, while (ii) selecting features that are
easily obtainable from local governmental databases without the need to engage in building
surveys on the ground. The ranges and steps specified for the values of the parameters
were adjusted to empirical observations from the aforementioned databases, as well as
local advice from industry experts in the region of study.

Table 1. Parameters for random generation of structures.

Parameter Minimum Value Maximum Value Value Step

Number of spans in X 1 9 1
Number of spans in Y 1 9 1
Number of spans in Z 1 3 1
Dimensions of all spans in X 4 m 8 m 0.166 m
Dimensions of all spans in Y 3 m 6 m 0.125 m
Dimensions of all spans in Z 3 m (a) 3.4 m 0.040 m
Height of suspended ground floor 0.6 m 0.8 m 0.025 m
Load-bearing beams: width 30 cm 60 cm (b) - (c)

Load-bearing beams: height 30 cm 60 cm - (c)

Non-load-bearing beams: width 30 cm 30 cm - (c)



Sustainability 2022, 14, 5274 5 of 27

Table 1. Cont.

Parameter Minimum Value Maximum Value Value Step

Non-load-bearing beams: height 25 cm 30 cm - (c)

Supports: width in X 30 cm 30 cm - (c)

Supports: width in Y 30 cm 30 cm - (c)

Slab thickness 25 cm 30 cm - (c)

Note: (a) Ground floor height is always 3.4. (b) Wide load-bearing beams are randomly considered when the
span length is shorter than 6 m. (c) Frames dimensions are first calculated according to their span, then the most
restrictive section for each type (load-bearing, non-load-bearing, supports, slabs) is used for the whole structure.

For every structure, all slabs share the same height and the same goes for the beams.
The dimensions of the beams (both load-bearing and non-load-bearing) are calculated ac-
cording to their span, and then a single pair of values (width, height) is fixed for each given
structure, which will be the most restrictive (largest). Supports are always 30 × 30 across
all structures and load-bearing frames are aligned to the X axis. A diagram illustrating all
of the parameters that make up the input vector for the network is shown in Figure 1.
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Figure 1. Diagram of the structure’s geometric parameters that are used as network inputs.

Looking at the geometric variations in terms of the number of spans in X, Y, Z and the
dimensions of each of them, the total number of different structures that result from all
possible combinations of these parameters, with the given value ranges and value steps, is:

T = nx·ny·nz·(sx)
nx·(sy)

ny·(sz)
nz (1)

where T = the total amount of unique structures possible, nx, ny, nz = the number of spans
in X, Y and Z, respectively, and sx, sy, sz = the number of steps in X, Y and Z, respectively.
According to this formula, T = 9 × 9 × 3 × 249 × 249 × 103 and therefore, T > 1018.

For the training set, more than 7000 unique structures are generated. Since there
are more than 1018 possibilities, these are created using random values within the
given ranges. In some studies, certain combinations of parameters have been filtered
out to avoid computing structures that are not represented in a given database [41].
However, in this work, all possible combinations are computed. While this might be less
effective computationally, it allows the model to be more general or inclusive, provided
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that the results are still satisfactory. Figure 2 shows a visualization of some of the
generated structures.
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Figure 2. Randomly generated structures. (a) Sample #1355, (b) sample #147, (c) sample #1926 and
(d) sample #639. For each structure, a vector containing the 30 values that result from applying the
above parameters is stored and will be used as the input of the neural network (after normalization).

2.2. Push-Over Analysis

Push-over analysis methods for seismic calculation have been extensively developed
and compared to full dynamic analysis. Such studies [13] establish a firm resolution on the
applicability of push-over methods for estimating the strength capacity in a post-elastic
range, especially for regular low-rise buildings which is the scope of the present work.
In this method, the progress of the overall capacity curves of the structure is traced by
measuring the basal shear values versus their corresponding displacements.

Obtaining capacity curves requires an analysis that considers the plastic state of the RC
structure. The non-linear analysis of RC structures is a very complex task, which usually
requires finite element analysis as a base. However, there is a simplified method to calculate
nonlinear behavior in RC structures, which simulates plastic deformation in RC elements
by introducing plastic hinges in appropriate locations within these elements [42]. In this
methodology, all of the plastic behavior of the structure is reduced to these specific points,
facilitating faster and easier modeling and calculation. This simplification is contemplated
in the ASCE-41-13 [43] and has been proved satisfactory for the seismic assessment of
low-rise buildings [44].

The capacity curves of all of the structures in the training set were calculated in
SAP2000 via the Open API in the X direction using the following scheme:
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- All supports are rigidly clamped to their foundation.
- Slabs are computed as horizontal diaphragms, as in [45].
- The values of structural materials, including the mechanical properties of concrete,

are obtained from the Spanish Technical Code of Buildings (CTE) [46] and the Spanish
Reinforced Concrete Code (EHE-08) [47] at the time of construction.

- Reinforcements of RC elements are defined according to the Spanish Reinforced
Concrete Code (EHE) [47], as presented in Table 2.

- As recommended in [44], the nonlinear behavior of RC elements is simulated by
defining plastic hinges within them, according to the ASCE-41-13. In a similar way
to [44,48], PM2M3 plastic hinges are introduced in the columns, while the M3 type is
used in the beams. They are introduced at the ends of the beams and the columns, as
in [49] and as recommended in Eurocode 8 (EC-8) [50].

- The capacity curves are not truncated by shear or flexural failure and, therefore, remain
in the ductile domain at all times.

- The contribution of the infill walls is not considered, as in [51].
- Gravitational loads (G) are also obtained from the buildings’ data and the CTE. These

are combined according to the seismic combinations and coefficients established in
the Spanish seismic code (NCSE-02) [46], as shown in Equation (2).

G = W + D + 0.3Q (2)

where W is the weight of the structural elements, i.e., the RC beams and columns. D
represents the design dead loads, i.e., the weight of the RC ribbed slabs (3.0 kPa), inter-
nal partitions (1 kPa), ceiling (0.5 kPa), ceramic flooring (1 kPa) and infills (10 kN/m)
and Q is the live load for public spaces (3 kPa).

- Push-over loads are applied to all nodes in the XZ/YZ plane proportional to the
loaded slab weight and are determined by the following formula:

FL = ZL·Gs (3)

where FL is the total amount of horizontal force applied to each level, ZL is the height
in meters from the ground to the slab where the load is being applied, and Gs is the
combination of the structural weight, dead loads and live load of the slab, as described
above. Note that although EC-8 obliges calculating two load patterns (the other is
a load pattern proportional to the first mode of vibration of the building), in [13],
it was demonstrated that for prismatic low-rise structures, there are no substantial
differences between the two.

- The control point for displacements is located at the highest, most central point of
the structure.

Table 2. Rebar reinforcement scheme.

Longitudinal Rebar Transversal Rebar Cover

Top Bottom Ø Spacing

Deep load-bearing beams 30 × 40 cm 2 Ø12 mm 4 Ø16 mm 2 Ø6 mm 20 cm 3 cm
Deep load-bearing beams 30 × 60 cm 2 Ø12 mm 5 Ø16 mm 2 Ø6 mm 15 cm 3 cm
Wide load-bearing beams 60 × 30 cm 3 Ø12 mm 5 Ø16 mm 2 Ø6 mm 15 cm 3 cm
Non-load-bearing beams 30 × 25 cm 2 Ø12 mm 2 Ø12 mm 2 Ø6 mm 20 cm 3 cm
Non-load-bearing beams 30 × 30 cm 2 Ø12 mm 2 Ø12 mm 2 Ø6 mm 20 cm 3 cm
Columns 30 × 30 cm 2 Ø12 mm 2 Ø12 mm 2 Ø6 mm 15 cm 3 cm

The push-over calculations in this work are performed exclusively in one direction. To
obtain the curve in the other direction (Y), it suffices to input the geometric parameters of
the building in the neural network, as viewed from that axis.
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Once the calculation was done in SAP2000 using all of the above specifications, the
capacity curves obtained via the Open API for each randomly generated structure were
stored for training and validation. In order to ensure that the results obtained were
consistent with manual modeling, a series of structures were tested both manually and
through the automated procedure, yielding the same results.

From all of the curves stored, 70% were randomly selected and used as the expected
output for the training process of the neural network (training dataset). The remaining 30%
were used as a validation dataset to evaluate the accuracy of the network in predicting
the coordinates of the capacity curves that had not taken part in the training process.
Additionally, the random split between training and validation was performed a total of
60 times to ensure that the results were not affected by the distribution of samples. The
final results in this paper show average, minimum and maximum values corresponding to
this set of randomized splits. Figure 3 shows a selection of these curves.
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Figure 3. Capacity curves from a selection of over 7000 randomly generated buildings.

The methodology presented here predicts the full original capacity curve. When
carrying out a push-over analysis with SAP2000, the stopping of the capacity curve may
respond to three different causes: (i) a roof displacement at the control point is reached that
is sufficient to cause a 20% drop from peak shear (following the guidelines of Eurocode 8 in
section C.3.3); (ii) a local mechanism is formed; or (iii) a problem or lack of convergence
is found in the analysis. Unfortunately, there is no way of concluding which motive has
caused the ending of the process by exclusively analyzing the resulting curve. In this
sense, the prediction of that last point of the curve will not be very accurate because the
ANN is trying to predict a value that is not entirely related to the physical properties of
the structure. Nevertheless, this ability of the method will become meaningful in future
study, in which a physically representative collapse criterion (i.e., limiting the rotation of
the plastic hinges in concrete buildings) could be implemented in order to establish the end
point of the original curves. A graphic overview of the main concept behind the method
proposed is shown in Figure 4.
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Figure 4. Diagram of methodology proposed for the training of the network.

2.3. Curve Data Processing

Some studies, such as the ones described in the previous section, do not attempt to
predict complete curves within a single neural network architecture, but instead approach
the problem by predicting individual (stress, displacement) points, thus disregarding the
prediction of where the curve ends. The methodology presented in this paper explores the
possibility of also predicting these end points by introducing the complete curve as the
expected output of the network. This entails the pre- and post-processing of the data points
that build up the curves.

2.3.1. Curve Pre-Processing

In order to arrange the data of each curve in a way that can be processed by the neural
network, all curves in both the training and validation sets must be normalized (Figure 5)
and defined by equal intervals in the displacement axis featuring the same number of
points or segments. This normalization entails mapping the maximum shear value among
all of the curves in the dataset to a value of 1.0 and all of the shear values of all curves will
then be scaled proportionally. On the displacement axis, normalization means that only
the curve with the maximum end displacement will be kept ‘as is’, while all others will
see a set of horizontal segments appended to their last point to tally up with the number
of segments of the maximum end displacement curve. Therefore, (i) a re-sampling of the
curves is conducted, and (ii) shorter curves are completed with a stretch of constant shear
value, as shown in Figure 6.
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Figure 6. Re-sampling of capacity curves of structures #11 (a) and #34 (b) with a resolution of
100 points and an interval of 0.01. Curve points to the left of the dashed line correspond to the
original capacity curve after normalization. Curve points to the right are included in order to
complete short curves with a stretch of constant shear value.

2.3.2. Curve Post-Processing

Once a curve is predicted, it is necessary to undo this horizontal stretch, so that the
end point of the predicted curve can be obtained. Because of the stochastic nature of the
neural network used in this study, the prediction of this horizontal part of the curve does
not yield a perfectly straight line. Thus, it is necessary to design an algorithm capable of
capturing it despite its irregularities, as shown in Figure 7. In this work, a simple algorithm
was designed and implemented for this purpose with satisfactory results.
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2.4. Artificial Neural Network
2.4.1. Loss Function and Error Measurements

The loss function establishes the metric against which the neural network learns.
In [52], it was indicated that the root mean squared error and the mean absolute error are
commonly used loss functions for the regression of continuous variables, i.e., the problem
under study in the present paper. The root mean squared error (RMSE) is expressed
as follows:

RMSE =
1
n

√
∑n

i=1 (yi − y′ i)
2 (4)

And the mean absolute error (MAE):

MAE =
1
n
·∑n

i=1 |yi − y′ i| (5)

where (n) is the number of neurons of the output layer, (yi) are each one of the expected
output values and (y′i) are the corresponding predicted values. This value will be calculated
for each training sample and back-propagated into the network to serve as criteria for
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weight optimization. After intense training, the MAE value will be as low as possible (and
thus the prediction error will be minimum). Both errors are similar, but, on the one hand,
RMSE penalizes large errors more severely, whereas MAE provides a linear penalization;
on the other hand, RMSE is less intuitive to interpret and is sensitive to the number of
samples used for training. In [53], this is thoroughly analyzed and it is suggested that error
metrics based on absolutes rather than squares can perform better in regression problems.
For all of these reasons, MAE was chosen in this study over RMSE. Squared mean error
is also very commonly used in neural networks, but was discarded due to poor results in
preliminary testing.

Because metrics like the mean absolute error might not be very intuitive visually, the
results presented in this paper include three other expressions of the prediction error, just
for the sake of clarity. First, the full area error % is defined as the percentage ratio between
(i) the excess area enclosed in between the true (or test) capacity curve and the predicted
curve, and (ii) the total area delimited by the test curve, as expressed in Figure 8. Second,
the fitted area error % shares the same definition as above, but limits the areas to the lowest of
the last displacement points of both curves (test and predicted), as in Figure 9. Additionally,
in the figures that follow, the MAE is expressed as a percentage of the area calculated as
the sum of all individual mean absolute errors for each curve point (100 points), times the
interval between points (0.01).
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Third and last, the last displacement error % refers to the prediction of the end point
of the curve and is defined as the percentage ratio between (i) the absolute difference of
both the predicted and true end points of the curve and (ii) the true end point, as shown
in Figure 9. These measurements, especially the fitted area error % and the last displacement
error % (Ld), allow the separate evaluation of (i) how well the curves fit one another in
terms of shape and (ii) how well the network has predicted the end of the curve.
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2.4.2. Network Architecture

The first attempt at defining a network architecture is to implement a standard feed-
forward model. Because there is no theoretical methodology to establish the optimal
configuration of the network [54], a stepped process, i.e., a grid search, is designed to
determine the most appropriate architecture for the neural network model. More thorough
methods such as genetic algorithm architecture optimization [55,56] will be explored in
future work. In the first phase, a single layer network is set up with varying sizes of the
hidden layer: (a) a hidden layer equal to the size of the input, (b) equal to the output layer,
(c) a value in between and (d) larger than the output layer, as seen in Figure 10. This helps
to assess what range of sizes in the hidden layer suits the problem best.
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With this information at hand, another set of architectures of varying depth (i.e., a
varying number of hidden layers) is evaluated. These layers use the previous size value as
an initial or tentative layer size. It must be mentioned, though, that this value is only used
temporarily, since more adjustments to the sizes of the hidden layers will be carried out
later in the process.

Deep neural architectures can be extremely powerful. When applied to regressions of
continuous variables and time series (close examples to the datasets in this work), these
models yield a great performance [57–59]. However, there is a trade-off between the
complexity that a neural network can bring forward and the overfitting of the model to the
data, as shown in Figure 11.
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Figure 11. Model complexity vs training and validation errors (overfitting problem).

Due to overfitting, deep architectures may perform very well on the training samples,
but poorly on the validation data. To test out the interplay of these factors, three initial
architectures are presented according primarily to the number of hidden layers (depth).
Below, Figure 12 shows a diagram of these schemes.
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Figure 12. Varying depths in network architecture: 2 (a) and 3 (b) hidden layers.

In both Figures 10 and 12, (x) represents the input neurons of the network. As seen
in previous sections, the total number of inputs for the network is fixed to 30, as this
matches the number of parameters that have been used to generate the buildings. Then,
(h) represents the hidden layers in the model. An initial size is temporarily set at 65, as it is
the best-performing size in a preliminary and intuitive evaluation, but more refined values
will be explored later. Finally, (y) is the output layer, which corresponds to the values of the
capacity curves that the network is aiming to predict. The size of this output layer has a
strong impact on the performance of the learning process. Small sizes in this layer reduce
the level of difficulty of the predictions; however, a valid resolution for the curves must
be ensured. For this reason, the number of neurons in the output layer is initially set at
100, because on the one hand, it provides enough resolution to graph the capacity curve as
discussed, and on the other hand, it is slightly higher than the maximum number of points
present in the original capacity curves retrieved from SAP2000. However, variations in this
output size will also be discussed in the following sections.

From this outset, the main algorithms of the network will be explored, namely, the
activation functions that are implemented in each layer (which may be considered an
algorithm when viewed as a whole) and the error optimization algorithm.

2.4.3. Activation Function

The activation function maps the output of an artificial neuron to a desired value range.
Neural networks are very sensitive to this function, and there are many possible activation
functions used in neural networks, so which one fits the problem best must be determined.
In [60], it was observed that a hyperbolic tangent (tanh) is a common activation function
applied to the hidden layers of a neural network for similar problems as the one being
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dealt with in this study, whereas sigmoid activations are commonly used for the output
layer (as they map from 0 to 1). For this reason, both tanh and sigmoid activation functions
were tested in the hidden and output layers, respectively. Alternatively, at the fine-tuning
phase, a rectified linear unit (ReLU) activation was also tested due to its common use in
deep neural architectures [61], but no positive results were obtained.

2.4.4. Optimizer

A preliminary choice for the optimization algorithm was the stochastic gradient
descent (SGD), which is the basic algorithm for neural network training [62]. Nevertheless,
at a later stage, a second algorithm was tested, namely the Adadelta optimizer [63], which is
a variant of the SGD that presents a novel per-dimension learning rate method for gradient
descent by dynamically adapting over time. The application of this optimization algorithm
did not improve the error rate obtained using the SGD.

2.4.5. Preliminary Adjustment of Stochastic Gradient Descent (SGD) Parameters

As explained in the methodology section, the first objective is to fix the architecture
of the network and the parameters of the optimizer algorithm. In order to test various
architectures reliably, it is necessary to find a satisfactory set of parameters that guide the
back-propagation of the error. For this purpose, a simple initial architecture was defined.

The initial conditions for the preliminary SGD adjustment are shown in Table 3.
The SGD was adjusted through the following parameters: Learning rate (Lr), Decay and
Momentum (M). The results were measured against the validation set using the mean
absolute error (Table 4 and Figure 13).

Table 3. Initial conditions for preliminary Stochastic Gradient Descent (SGD) adjustment.

Network Architecture

Layers X h1 Y
Layer size 30 65 100

Network Parameters

Layers X h1 Y
Activation - tanh (Hyperbolic Tangent) sigmoid
Weight initialization - Random seed range (0, 0.1) Random seed range (0, 0.1)
Bias initialization - Random seed range (0, 0.1) Random seed range (0, 0.1)

Training Parameters

Epochs (ep) 200
Batch size 12
Shuffle samples at each epoch Yes

Table 4. Experimentation and results of preliminary SGD adjustment.

Lr (Learning Rate) Decay M (Momentum)

MAE loss MAE loss MAE loss

0.15 0.0159 Lr/800 0.0158 0.80 0.0160
0.20 0.0157 Lr/1000 0.0156 0.85 0.0156
0.25 0.0156 Lr/1200 0.0155 0.90 0.0150
0.30 0.0156 Lr/1400 0.0154 0.95 0.0181
0.35 0.0154 Lr/1600 0.0150 Nesterov 0.0149
0.40 0.0157 Lr/1800 0.0152
0.45 0.0159 Lr/2000 0.0154

Fixed parameters:
Decay = Lr/1000
M = 0.9

Fixed parameters:
Lr = 0.35
M = 0.9

Fixed parameters:
Lr = 0.35
Decay = Lr/1600
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2.4.6. Network Architecture Configuration

Once the parameters of the optimizer have been set, it is then possible to test different
network architectures more effectively. In these tests, a hyperbolic tangent (tanh) activation
in the hidden layers and a sigmoid activation function in the output layer were fixed. In
Table 5, the initial conditions for network architecture variations are shown. Then, Table 6
and Figures 14–16 present the tests and results of the network architecture, showing the
different variations over the hidden layers. In Table 7, the results of the curve resolution
(size of output layer) are listed.

Table 5. Initial conditions for network architecture variations.

Network Parameters

Layers X h1 Y
Activation - tanh (Hyperbolic tangent) sigmoid
Weight initialization - Random seed range (0, 0.1) Random seed range (0, 0.1)
Bias initialization - Random seed range (0, 1) Random seed range (0, 1)

Training Parameters

Lr (Learning rate) 0.35
Decay Lr/(8.ep)
M (Momentum) Nesterov
Epochs (ep) 800–1200
Batch size 12
Shuffle at each epoch Yes

Table 6. Results of hidden layer/s architecture.

Network Architecture

Layer scheme and size MAE loss

X h1 Y Validation error Training error
30 30 100 0.0153
30 65 100 0.0135
30 100 100 0.0132
30 135 100 0.0131 0.0115
30 170 100 0.0132
30 205 100 0.0133

X h1 h2 Y Validation error Training error
30 30 30 100 0.0133
30 30 65 100 0.0137
30 30 100 100 0.0137
30 55 80 100 0.0128
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Table 6. Cont.

Network Architecture

30 65 65 100 0.0126 0.0106
30 65 100 100 0.0131
30 100 100 100 0.0134

X h1 h2 h3 Y Validation error Training error
30 30 30 30 100 0.0137
30 30 30 65 100 0.0133 0.0107
30 30 65 65 100 0.0138
30 65 65 65 100 0.1407

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 28 
 

 

Figure 13. Loss/epochs graph with selected SGD values of preliminary adjustment. 

Table 4. Experimentation and results of preliminary SGD adjustment.  

Lr (Learning Rate) Decay M (Momentum) 

 MAE loss  MAE loss  MAE loss 

0.15 0.0159 Lr/800 0.0158 0.80 0.0160 

0.20 0.0157 Lr/1000 0.0156 0.85 0.0156 

0.25 0.0156 Lr/1200 0.0155 0.90 0.0150 

0.30 0.0156 Lr/1400 0.0154 0.95 0.0181 

0.35 0.0154 Lr/1600 0.0150 Nesterov 0.0149 

0.40 0.0157 Lr/1800 0.0152   

0.45 0.0159 Lr/2000 0.0154   

Fixed parameters: 

Decay = Lr/1000 

M = 0.9 

Fixed parameters: 

Lr = 0.35 

M = 0.9 

Fixed parameters: 

Lr = 0.35 

Decay = Lr/1600 

2.4.6. Network Architecture Configuration 

Once the parameters of the optimizer have been set, it is then possible to test different 

network architectures more effectively. In these tests, a hyperbolic tangent (tanh) activa-

tion in the hidden layers and a sigmoid activation function in the output layer were fixed. 

In Table 5, the initial conditions for network architecture variations are shown. Then, Ta-

ble 6 and Figures 14–16 present the tests and results of the network architecture, showing 

the different variations over the hidden layers. In Table 7, the results of the curve resolu-

tion (size of output layer) are listed. 

 

Figure 14. Validation loss/epochs graph for 30-205-100 scheme (one hidden layer). Figure 14. Validation loss/epochs graph for 30-205-100 scheme (one hidden layer).

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

Figure 15. Validation loss/epochs graph for 30-100-100-100 scheme (two hidden layers). 

 

Figure 16. Validation loss/epochs graph for 30-30-30-65-100 scheme (three hidden layers). 

Table 5. Initial conditions for network architecture variations. 

Network Parameters  

Layers X h1 Y 

Activation - tanh (Hyperbolic tangent) sigmoid 

Weight initialization - Random seed range (0, 0.1) Random seed range (0, 0.1) 

Bias initialization - Random seed range (0, 1) Random seed range (0, 1) 

Training Parameters    

Lr (Learning rate) 0.35   

Decay Lr/(8.ep)   

M (Momentum) Nesterov   

Epochs (ep) 800–1200   

Batch size 12   

Shuffle at each epoch Yes   

  

Figure 15. Validation loss/epochs graph for 30-100-100-100 scheme (two hidden layers).

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

Figure 15. Validation loss/epochs graph for 30-100-100-100 scheme (two hidden layers). 

 

Figure 16. Validation loss/epochs graph for 30-30-30-65-100 scheme (three hidden layers). 

Table 5. Initial conditions for network architecture variations. 

Network Parameters  

Layers X h1 Y 

Activation - tanh (Hyperbolic tangent) sigmoid 

Weight initialization - Random seed range (0, 0.1) Random seed range (0, 0.1) 

Bias initialization - Random seed range (0, 1) Random seed range (0, 1) 

Training Parameters    

Lr (Learning rate) 0.35   

Decay Lr/(8.ep)   

M (Momentum) Nesterov   

Epochs (ep) 800–1200   

Batch size 12   

Shuffle at each epoch Yes   

  

Figure 16. Validation loss/epochs graph for 30-30-30-65-100 scheme (three hidden layers).



Sustainability 2022, 14, 5274 17 of 27

Table 7. Results of curve resolution (output layer architecture).

Network Architecture

Layer scheme and size MAE loss

X h1 h2 Y Validation error Training error
30 65 65 65 0.0127
30 65 65 82 0.0127 0.0105
30 65 65 100 0.0126 0.0106
30 65 65 135 0.0130
30 65 100 135 0.0126 0.0107

2.4.7. Network Parameter Fine-Tuning

After obtaining the best error rates for all of the configurations tested, a final archi-
tecture of 30-65-65-100 was selected. From this setup, a more refined set of variations was
executed. These variations included a second round of SGD optimizer parameters, as well
as an attempt on the Adadelta optimizer, ReLU activation for hidden layers, and different
batch sizes. The number of training epochs is always prolonged until the error does not
improve significantly.

The initial conditions for the network parameter fine-tuning are presented in Table 8.
The experimentation and results of the network parameter fine-tuning are shown in Table 9.
Finally, the support data for the selected samples can be consulted in Tables A1 and A2 of
the Appendix A.

Table 8. Initial setup for network parameter fine-tuning.

Network Architecture

Layers X h1 h2 Y
Layer size 30 65 65 100

Network Parameters

Layers X h1 h2 Y
Activation - tanh tanh sigmoid
Weight initialization - Random (0, 0.1) Random (0, 0.1) Random (0, 0.1)
Bias initialization - Random (0, 1) Random (0, 1) Random (0, 1)

Training Parameters

Lr (Learning rate) 0.35
Decay Lr/(8.ep)
M (Momentum) Nesterov
Epochs (ep) 1200
Batch size 12
Shuffle samples at each epoch Yes

Table 9. Network parameter fine-tuning results.

Parameter Variation MAE Loss (1200 Epochs)

Validation error Training error

Initial conditions (no variation) 0.0126 0.0103
Adadelta* instead of SGD 0.0136 0.0114
SGD without Nesterov (M = 0.9) 0.0128 0.0107
Lr (Learning rate) = 0.25 0.0128 0.0110
Lr (Learning rate) = 0.45 0.0127 0.0106
Decay = Lr/(6·ep) 0.0127 0.0108
Decay = Lr/(10·ep) 0.0128 0.0106
Sigmoid activation in hidden layers 0.0147 0.0130
Relu activation in hidden layers 0.1406 0.1358
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Table 9. Cont.

Parameter Variation MAE Loss (1200 Epochs)

Batch size = 1 (minimum) 0.0131 0.0102
Batch size = 6 0.0129 0.0102
Batch size = 24 0.0124 0.0103
Batch size = 36 0.0131 0.0114

3. Results

Following the experimentation, a final configuration of the network was achieved,
which is detailed in Table 10. Specific examples of the results are provided and shown in
the Appendix A.

Table 10. Final network architecture.

Network Architecture

Layers X h1 h2 Y
Layer size 30 65 65 100

Network Parameters

Layers X h1 h2 Y
Activation - tanh tanh sigmoid
Weight initialization - Random (0, 0.1) Random (0, 0.1) Random (0, 0.1)
Bias initialization - Random (0, 1) Random (0, 1) Random (0, 1)

Training Parameters

Lr (Learning rate) 0.35
Decay Lr/(8.ep)
M (Momentum) Nesterov
Epochs 1200
Batch size 24
Shuffle samples at each epoch Yes

With the final network configuration presented, after 1200 epochs, the average valida-
tion MAE across 60 random splits between training and validation sets was 0.0123 (1.23%).
A graph plotting the MAE (%)/epoch progress for the minimum, maximum and average
results out of the randomized splits is shown in Figure 17. Additionally, the RMSE was
also calculated in order to draw comparisons with other work, yielding a value of 0.0134
and following a very similar distribution to the MAE.
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However, as can be observed in Figure 17, the best balance between the validation
error and the overfitting ratio is achieved around epoch #700, where the average training
and validation MAE are 0.0112 and 0.0124, respectively. This couplet of values makes up
for an overfitting ratio of 0.904, which lies within an acceptable range [52]. Beyond this
point, the validation error does not improve significantly, while the divergence between
training and validation errors increases at a steady pace, thus increasing the overfitting
ratio without a substantial gain in the validation accuracy. Table 11 shows the evolution of
the average overfitting ratio across epochs.

Table 11. Overfitting ratio across epochs.

Epoch Average Training Error Average Validation Error Overfitting Ratio

100 0.0144 0.0151 0.9536
200 0.0132 0.0139 0.9470
300 0.0124 0.0133 0.9366
400 0.0119 0.0128 0.9301
500 0.0116 0.0126 0.9228
600 0.0114 0.0125 0.9111
700 0.0112 0.0124 0.9048
800 0.0110 0.0123 0.8947
900 0.0109 0.0123 0.8878

1000 0.0108 0.0123 0.8790
1100 0.0107 0.0123 0.8707
1200 0.0106 0.0123 0.8631

The distribution of the four error indicators defined in the scope of this work (MAE,
full area error, fitted area error and Ld) are shown in Figures 18–21, respectively. The average
fitted area error obtained for capacity curves is 2.35%, while the full area error is 2.65%. Last
displacement error (Ld) is 20.81% on average.
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Figure 21. Last displacement error distribution of validation set.

Out of a total of 2200 samples in the validation set, less than 50 samples present a fitted
area error above 5.0% and there are no samples above 11.0%, while more than 1200 samples
remain below the 2% threshold. Regarding the last displacement error, although most of
the samples display an error below 10%, there is a constant spread of this error along the
percentage axis all the way up to 100%.

To illustrate what these errors account for in visual terms, specific samples of curves
have been graphed for three representative error values within the error distributions
obtained. For the fitted area error, Figure 22 shows a sample with an error below 1%,
while Figure 23 corresponds to a sample with an error close to the average value of the
distribution (2.35%), and Figure 24 an error close to 5%, which represents the largest error
range containing a meaningful number of samples (at least 10). More data on these specific
samples can be consulted in Table A1 of the Appendix A.
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For the last displacement error (Ld), the thresholds chosen to provide a visual illus-
tration are Ld < 5%, Ld ~21.32% (average of the distribution) and Ld ~60%, as shown in
Figures 25–27. More data on these specific samples can be consulted in Table A2 of the
Appendix A.
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4. Discussion of Results

The tests on different network architectures yielded the best results for configura-
tions that featured two hidden layers; in particular, the scheme that delivered the best
results was 30-65-65-100, as shown in Table 6. Architectures with only one hidden layer
returned better results with larger sizes, but still not as competitive as the latter. The fact
that the network clearly performs better when increasing its complexity accounts for
the level of difficulty of the predictions. However, as illustrated previously in Figure 11,
after a certain point, increasing the complexity of the model does not improve the results
due to overfitting. Perhaps, with an even larger training set, these deeper architectures
may improve the results presented in this paper, thus leaving room for future work.

Regarding the size of the output layer, and rather counter-intuitively, smaller sizes of
curve resolution did not improve the metrics. An initial output layer size of 100 was set
because it was considered to have enough resolution for the problem at hand while not
being excessively large for training. Interestingly, lowering this value proved detrimental,
while eventually increasing its size up to 135 yielded equally accurate results (see Table 7).
This can be explained by the fact that lower resolutions are less loyal to the calculation
algorithms within the engineering software that produced the validation set of capacity
curves (SAP2000), and since neural networks perform best with clear patterns, lower
resolutions introduce harmful noise into the training process.

At the fine-tuning stage, batch sizes played an important role in maximizing the curve
prediction accuracy. Although there may be some disagreement on the regularizing effect
of the batch size [64,65], in these experiments, it was found that larger batch sizes can
prevent overfitting by regularizing the network to some extent, because the loss values
are averaged for all elements in the batch and then back-propagated to adjust the weights
and biases of the model. Table 9 shows how the lowest batch sizes had very good training
results, but lagged when tested against the validation set, thus displaying a more acute
overfitting. The best-performing batch size tested was of 24 samples.

Beyond the exploration of network parameters, it is important to note that the one
critical factor in achieving the results discussed above was the size of the dataset. Initial
attempts not accounted for in this text were carried out with 2000 samples and delivered
poor results. The increase to 7000 samples saw the largest impact in accuracy among all of
the different options and parameters tested in that first round of experiments. However, it
is important to observe that these results should be tested and validated on real cases to
measure the impact of the modeling assumptions (like the lack of infill panels) established
in this method. Additionally, there are several uncertainties implicit in the results from
the model that need to be explored further, such as the actual properties of the materials
that have been modeled according to industry regulations, but are not based on empiric
material surveys on the ground.

Although this research is centered on its applicability to a very broad range of struc-
tures, the results achieved still compare quite well to other work previously discussed
in this paper. In [26], the maximum inter-story drift ratio (MIDR) was predicted using
different ANN models. The best results featured the prediction of MIDR values with
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an error between 1.5% and 2%. Despite the obvious difference of the parameters being
measured, the average fitted area error of 2.35% achieved in the present study remains
within close range to those results. Another interesting point of comparison is the work
of Pérez Ramírez et al. [27], where a recurrent neural network model with Bayesian
training and mutual information is employed to estimate the acceleration response spec-
trum of buildings. In this case, the model also aims to predict a response curve and,
therefore, a better comparison can be established. Their results show the prediction
accuracy of the network for a large residential building and a scaled model of a five-story
steel structure under both seismic action and ambient vibrations. For the 30th floor of
the residential building, the lowest RMSE values were 0.1789 and 0.1827 for moderate
and high-level seismic excitations, respectively. These results are less accurate than the
RMSE of 0.0134 achieved in the present work, but, of course, predicting the vibration
response of a high-rise building is also a very tough challenge.

Future Work

In the short term, it may be interesting to include the use of genetic algorithms to
evolve an even more optimal network architecture. Additionally, a comparison with other
regression methods or machine learning approaches would be desirable to contextualize
the results presented in this paper, while in the long term, it might be interesting to
explore a similar approach with (i) dynamic nonlinear analysis, e.g., time history analysis,
(ii) irregular structures and high-rise buildings with higher vibration modes and (iii) a
wider variation of sectional and material properties. It should also be observed that this
work has followed the capacity spectrum method from Eurocode 8, which is proven to
work well with low-rise structures. However, a research effort to predict capacity curves
under a set of strong earthquakes that can produce greater nonlinearities would extend the
applicability of the method presented in this paper. All of these cases (dynamic analysis,
high-rise buildings and stronger earthquakes) pose a greater challenge in terms of machine
learning and may require the use of more specialized neural network architectures. In this
regard, because capacity curves can be regarded as time-dependent time series, network
models better suited to handle dynamic inputs, such as recurrent neural networks [66,67],
should be explored.

5. Conclusions

A method based on artificial neural networks to estimate the capacity curves of low-
rise RC buildings was developed and implemented. In the methodology presented, no
modeling of the specific building is required. Curves can be estimated with an aver-
age curve-area fitting above 97.6%, only requiring the basic geometric parameters of the
building to be specified.

As a first implementation, a typology of prismatic RC buildings was defined and a
training set of more than 7000 structures was parametrically generated. The capacity curves
of these models were obtained by means of push-over analysis using SAP2000 software.

The proposed method is fit for the accurate assessment of the seismic vulnerability of
regular low-rise RC buildings almost instantly. It provides a fast and reliable alternative for
the calculation of capacity curves when detailed information of the building is unavailable,
but basic data are available (number of spans, span dimensions, beam and column profiles
and slab thickness). It may also provide a fast and robust alternative when, due to the
large volume of buildings to be assessed, it is not feasible to engage in individual modeling.
While current macro-seismic approaches address these issues, their accuracy is in no way
comparable. This feature can be very relevant in the light of urban scenarios where the
seismic vulnerability of a great number of buildings needs to be assessed. The resulting
trained network can be used by emergency services and other government bodies as
a decision-making tool for prevention purposes (targeted retrofitting interventions, for
example) and, after a seismic event, for quick and effective relief action.
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The main conclusions of the research presented in this paper are the following:

- ANN provide an accurate approximation method for the nonlinear static push-over cal-
culation of low-rise structures within a wide range of sizes and geometric configurations.

- The accuracy of the method successfully addresses the shortcomings of current macro-
seismic approaches, while remaining fast and efficient.

- Stress-deformation curves in a plastic regime can be predicted with ANN in one go
for entire buildings using only basic geometric parameters. For low-rise structures,
this work achieves a curve area error below 2.7% and a resolution of up to 100 points.

- The relative simplicity of the ANN architecture required to predict the capacity curves
of low-rise buildings makes a strong case for the future research of high-rise structures
using deeper networks and larger datasets.
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Appendix A

Table A1. Error data and input parameters for selected samples.

Sample #147 Sample #1547 Sample #1355

Error data

MAE 0.0097 0.0048 0.00072
Full area error 5.21% 2.13% 0.49%
Fitted area error 5.48% 2.27% 0.80%
Ld error 13.3% 9.52% 7.14%

Input parameters

Spans in X (m) 6.4, 5.4 6.43, 5.39 6.7, 4.1, 4.8, 6.9, 4.3, 4.5, 6.6

Spans in Y (m) 5.2, 4.3, 5.8, 3.1, 5.3, 3.2, 4.1 4, 4.5, 4.8, 3, 3.3, 3.2, 5.3,
4.9, 5.4 3.2, 4.8

Spans in Z (m) 0.7, 3.5, 3.3, 3.4 0.7, 3.4, 3.2, 3 0.6, 3.9, 3.1
Wide load B. B.? Yes No No
Load B. B. dim 60 × 30 cm 30 × 60 cm 30 × 60 cm
Non-load B. B. dim 30 × 30 cm 30 × 30 cm 30 × 30 cm
Supports dim 30 × 30 cm 30 × 30 cm 30 × 30 cm
Slab thickness 30 cm 30 cm 30 cm
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Table A2. Error data and input parameters for selected samples.

Sample #1926 Sample #1971 Sample #639

Error data

MAE 0.0179 0.0065 0.0074
Full area error 12.44% 3.62% 2.75%
Fitted area error 2.21% 2.26% 1.99%
Ld error 56.2% 22.7% 3.70%

Input parameters

Spans in X (m) 7.7, 4.5, 5.6, 4.9 6.1, 5.2 6.3, 4.5, 4.2, 5.9
Spans in Y (m) 4.8, 5.6, 5.5 3.8, 4.8, 4.7, 5.3, 5.0, 5.2, 5.1 5.1, 4.6, 4.3, 5.3, 4.8, 4.7
Spans in Z (m) 0.6, 3.9, 3.1 0.7, 3.4, 3.1, 3.2 0.6, 3.65, 3.35, 3.4
Wide load B. B.? Yes No Yes
Load B. B. dim 60 × 30 cm 30 × 60 cm 60 × 30 cm
Non-load B. B. dim 30 × 30 cm 30 × 30 cm 30 × 30 cm
Supports dim 30 × 30 cm 30 × 30 cm 30 × 30 cm
Slab thickness 30 cm 30 cm 30 cm
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