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Resumo 

 
Nesta dissertação avaliamos as vantagens da utilização de informação no 

domínio da frequência no contexto de uma carteira de ações, obrigações e 

commodities gerida ativamente. O estudo da informação no domínio da 

frequência na gestão ativa de ativos é muito incipiente na literatura: há apenas 

um artigo para um conjunto de investimentos de ações e obrigações (Faria e 

Verona, 2020). Baseando-nos nesta descoberta e, aplicando a mesma 

metodologia, estendemos o estudo aos mercados de commodities e avaliamos os 

possíveis ganhos económicos da utilização de informação no domínio da 

frequência no contexto de uma carteira de ações, obrigações e commodities 

gerida ativamente. 

Concluímos que o uso de informação no domínio da frequência na gestão 

ativa de uma carteira de ações, obrigações e commodities é economicamente 

benéfica, e que commodities têm um elevado poder de diversificação e de 

proporcionar retornos equivalentes a ações. 

 

Palavras-chave:   equity risk premium, bond risk premium, commodity returns, 

previsibilidade, análise multi-resolução, carteiras de vários ativos, gestão ativa 

de carteiras
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Abstract 

 
In this thesis we evaluate the advantages of using frequency-domain 

information in the context of an actively managed portfolio exposed to equity, 

bonds, and commodities. Studying frequency-domain information in active 

asset management is very incipient in the literature: there is only one paper for 

an investment set of equity and bonds (Faria and Verona, 2020). Based on this 

finding, and applying the same methodology, we extend the work to 

commodity markets and study if there are eventual economic gains from the 

use of frequency-domain information in the context of an actively managed 

portfolio exposed to equity, bonds, and commodities. 

We conclude that using frequency-domain information in active multi-asset 

portfolio management is beneficial and that commodities have a high 

diversification power. 

 

Keywords: equity risk premium, bond risk premium, commodity returns, 

predictability, multiresolution analysis, multi-asset portfolios, active portfolio 

management 
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Introduction 
 

The main research question to be addressed is this study is: can frequency-

domain information be used to improve the performance of an actively 

managed portfolio exposed to equity, bonds and commodities?  

Active portfolio managers are forecasters. An active portfolio management 

success is deeply rooted on good forecasts for the assets in case. Over the last 

two decades, the explosion of index tracking industry mainly reflects the 

difficulty of active portfolio management consistently outperforming a given 

benchmark index. Therefore, it is fundamental for a manager to be able to 

identify reliable predictors and the best forecasting methods.  

During decades, economic researchers made efforts to study the 

predictability of assets, mostly equity and fixed income returns. Recently, 

academicians began to raise awareness about the predictability of commodity 

prices and the behavior of commodity futures markets. Historically, investing 

in commodity futures appears to be as rewarding as investing in equities (e.g., 

Erb and Harvey (2006)). Commodity futures are used by investors to hedge 

against inflation (Bodie (1983); Edwards and Park (1996); Bjornson and Carter 

(1997)). Also, commodity future investments have had low correlations with 

equity and fixed income. Since commodity prices are among the direct drivers 

of inflation, commodities are often considered one of the key real assets that can 

protect against rising inflation. While equity and fixed income returns are 

negatively correlated with inflation, commodity returns have a considerable 

positive correlation with both expected and unexpected inflation (Kang, 2012). 
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These reasons make that commodity futures are seen as good financial 

instruments for strategic asset allocation (Bauer, Molenaar, Steenkamp and 

Vrugt (2004); Wang and Yu (2004); Erb and Harvey (2006) and (X. Gao and 

Nardari (2018)). 

Using out-of-sample exercises are of a major importance for real time traders. 

A good active asset management relies on good forecasts for the asset classes of 

interest. Therefore, identifying predictors and the best forecasting methods is 

essential. Literature on the out-of-sample predictability is vast and is dominated 

by time-series analysis (e.g., Beveridge and Nelson (1981)). However, 

frequency-domain techniques, like Fourier transforms, are comparatively new 

procedures that are of a major relevance. This frequency-domain technique 

extracts information that is hidden in a time-series analysis that is crucial - the 

best frequencies to be used as predictors by testing the OOS predictive capacity 

of these new predictors. In recent studies, Ian Dew-Becker and Stefano Giglio 

(2016) stated that “frequency domain is the natural setting in which to analyze 

dynamics”. 

In the context of forecasting equity and bond returns, Faria and Verona 

(2018, 2020a, 2020b) and Bandi et al. (2019) introduce models where the 

predictors for equity and bond returns are frequency-aggregated components 

and predictability is frequency specific.  

In this thesis, we follow Faria and Verona’s (2020b) procedure and use 

wavelet filtering methods to extract cycles in the initial dataset of Goyal and 

Welch’s (2008) predictors, to decompose them into more predictors of the bond 

risk premium (BRP), commodity returns (CR) and equity risk premium (ERP).  

The expected contributions of this project are twofold. First is to extend the 

study of frequency-domain forecasting to commodity markets. Second, is to 

evaluate the economic significance of eventual forecasting gains in different 

commodity returns in the context of an actively managed multi-asset (equity, 
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bonds, commodities) portfolio. The actively managed portfolio’s objective is to 

beat a given benchmark. Up until today, the literature is focused on portfolios 

of equity and bonds. We adopt the perspective of a power utility investor, 

where the BRP, CR and ERP forecasts are seen as the investor’s active views on 

the bond, commodity, and stock markets. We use a mean-variance portfolio 

optimization framework and an allocation of 48% to stocks, 32% to bonds and 

20% to commodities as a benchmark. Our main finding is that using frequency-

domain information leads to better portfolio performance when compared with 

the original time series of the predictors. This finding is robust towards 

alternative benchmark portfolios and different portfolio constraints. 

The thesis is organized as follows. We review the existing literature on the 

main topics in Chapter 1. Chapter 2 presents the data and methodology used to 

construct the predictive models. In Chapter 3 we report the out-of-sample 

forecasting results and the performance of the active management strategy. 

Robustness tests results are presented in Chapter 4. At last, we conclude and 

describe the main findings in Chapter 5. 
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Chapter 1 
1. Literature Review 

In finance, predicting stock returns has a long tradition. In fact, the stock 

market risk premium is the most important tool for capturing predictable 

variation of the stock portfolios, while premiums associated with interest rate 

risks capture predictability of bond returns. However, predicting commodity 

future returns was mainly ignored up until early 2000s. 

This thesis builds on three strands of literature, which are reviewed in this 

section. In specific, in section 1.1 we review literature on forecasting equity, 

fixed income and commodity returns, in section 1.2 we review the OOS 

forecast, in section 1.3 we review literature on frequency-domain and Wavelet 

analysis and in section 1.4 we review literature on Active Portfolio 

Management. 

1.1 Forecasting equity, fixed income and commodity 

returns 

 

Forecasting the equity risk premium (ERP) is of major importance when 

comes to asset allocation decisions. For that reason, this topic justifies the 

immense attention in finance research. 

In 1977, Fama and Schwert (1977) studied the quality of a diversity of assets 

as hedges against the expected and unexpected components of the inflation 
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rate, highlighting that private residential real estate was a total hedge against 

both expected and unexpected inflation and found that the common stocks 

were negatively related to expected component of the interest rate. 

In 1984, Rozeff (1984) investigated the level of significancy of dividend yields 

in the prediction of equity risk premiums. The conclusion was that today’s 

dividend yield gives a clue to future return predictability. 

Following the dividend yield, Fama and French (1989) investigated if there 

was a variable that could predict simultaneously the equity risk premium and 

the corporate bonds’ risk premium. In fact, they both moved together and could 

be forecasted using the dividend yield. In addition, they also noticed that long-

term business cycles were associated with big movements in the dividend yield. 

Ferson and Harvey (1991) claim that most of the predictability is explained 

by an asset pricing model that focuses on risk. The two most acknowledged 

ideas up until this date stated that market inefficiencies and changes in the 

required return were the source of predictability. In their paper, Ferson and 

Harvey found that at a portfolio level, the time variation in the expected risk 

premiums is the main source of predictability.  

The efforts to develop and test new predictors continued. As it has been a 

target for financial economics, Møller and Rangvid (2015) researched for 

connection between macroeconomics and financial markets. They showed that 

the influence of macroeconomic growth on expected returns of risky financial 

assets depend on the time of the year. A pattern was discovered across many 

different asset classes: macroeconomic growth in the fourth quarter of the year 

strongly influences expected returns on risk financial assets, whereas during the 

rest of the year does not. Investors are more likely to make decisions regarding 

their investments at the end of the year (Jagannathan and Wang (2007)). 

Therefore, Møller and Rangvid used the relation between economic growth, 
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surplus consumption ratio and expected returns as evidence for the infrequent 

portfolio adjustment hypothesis. 

In contrast, academic researchers paid little attention to the forecasting 

ability of technical indicators. Rapach and Zhou (2013) used technical indicators 

as complements of macroeconomic variables to provide additional information 

over a business-cycle. They found that “technical indicators better detect the 

typical decline in the equity risk premium near business-cycle peaks, while 

macroeconomic variables more readily pick up the typical rise in the equity risk 

premium near cyclical troughs”. Combining these two notably improve equity 

risk premium forecasts. 

Since bonds play an important role in investor’s portfolios, understanding 

the risk-return dynamics is of major importance. The in-sample predictability of 

treasury bonds excess returns was shown by Fama and Bliss (1987) with 

forward spread variable; by Campbell and Shiller (1991) with yield spread; and 

by Cochrane and Piazzesi (2005) with a linear combination of macroeconomic 

variables.  

Commodities were left aside by the investor community for a long time, but 

recently emerged to potentially enhance portfolio diversification, offer 

protection against inflation, and provide equity-like returns. 

Gorton and Rouwenhorst (2006) pointed some characteristics that may 

suggest that commodities may improve diversification of a traditional portfolio. 

They discovered that commodities tend to perform differently than other asset 

classes: in recession period, equity returns dropped significantly while 

commodities performed well. 

Commodity returns can be equity-like if the risk premium is large enough. 

Keynes (1930) developed the theory of normal backwardation - the futures price 

should be less than the expected future spot price. If today’s futures price is 

below the future spot price, then as the futures price converges towards the 
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spot price at maturity, excess returns should be positive. As so, investors that 

go long commodity futures should receive a positive excess rate of return. This 

normal backwardation theory argues that commodity futures offer companies 

the ability to hedge their commodity price exposure. Over the period 1986 to 

1994, De Roon, Nijman and Veld (2000) analyze twenty futures markets and 

find that hedging pressure plays an important role in explaining futures 

returns.  

The in-sample predictability of commodity futures has been addressed in the 

literature. Jensen, Johnson and Mercer (2002) stated that a measure of the U.S. 

monetary policy predicts the performance and role of commodity futures in 

mean-variance efficient portfolios. Acharya, Lochstoer and Ramadorai (2009) 

proved that the default risk of commodity producers is a determinant of their 

hedging demand in futures markets and risk premium.  

 

1.2 Out-of-sample forecast 

 

Several studies discuss the in-sample predictability of stock returns using 

predictors such as the treasury bill rate, dividend yield, dividend–price ratio, 

term spread, equity market volatility or the consumption–wealth ratio (see e.g. 

Ferson and Harvey 1991; Lettau and Ludvigson, 2001; Cochrane, 2008). 

However, for real time trading, the use of out-of-sample exercises to test 

predictive models is essential. Hence, over the past decades, empirical 

researchers made efforts to find the best forecasting exercise. Goyal and Welch 

(2003) showed that the dividend ratios could not outperform the unconditional 

mean out-of-sample. They then concluded that “good in-sample performance is 

not a guarantee of out-of-sample performance in the equity premium prediction 

context”. Also, Goyal and Welch (2008) symbolize the turning point in 
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forecasting literature. They tested the out-of-sample quality of the literature’s 

best in-sample predictors. They discovered that: 1) the academic predicting 

models have failed both in-sample and out-of-sample; 2) the models are 

unstable: the out-of-sample performance was surprisingly mediocre; and most 

important, 3) “most models not only cannot beat the unconditional benchmark, 

but also outright underperform it”. Campbell and Thompson (2008) argue that 

imposing restrictions to the out-of-sample predicting models would make them 

perform better out-of-sample than the historical average return forecast. 

Although the models’ predicting power could be small, is economically 

meaningful.  

Since the out-of-sample performance is poor, researchers explored two 

different paths to improve the forecastability. Firstly, focused their work on 

developing and testing new predictors. Regarding predictability of stock 

returns, Bollerslev et al. (2009) checked the use of the variance risk premium, 

Cooper and Priestley (2009, 2013) use the output gap and the world business 

cycle, Rapach et al. (2013) assessed the influence of lagged US market returns 

for the out-of-sample predictability of stock returns of other industrialized 

countries, Li et al. (2013) study the aggregate implied cost of capital, Neely et al. 

(2014) consider the significance of technical indicators to serve as 

complementary predictors to the traditional set of variables, and recently, Faria 

and Verona (2019) test the use of frequency-decomposed variables as new 

predictors of equity returns. Regarding bonds, Thornton and Valente (2012) 

found that forward spread predictors do not lead to higher out-of-sample 

Sharpe ratios or higher economic utility compared with expectation hypothesis 

(EH) approaches. Later, Timmermann, Gargano and Pettenuzzo (2017) showed 

that by comprising the forward spread, the combination of forward rates and 

macro factors generates gains in out-of-sample forecasting accuracy when 

compared with EH models. The gains translated into higher risk-adjusted 
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portfolio returns. Regarding the commodity market, the literature on OOS 

forecasting is recent and not as vast as the literature on stock returns. 

Furthermore, most of the literature on forecasting commodities is on spot prices 

and not future prices. For instance, Wang, Liu and Wu (2019) used technical 

indicators as predictors for commodity prices since their performance is not 

affected by data mining problems or time changes. Gargano and Timmermann 

(2012) demonstrate that inflation rate has no predicting power at the monthly 

horizon, whereas growth in industrial production, money supply growth, and 

the change in the unemployment rate have predictive power over returns at the 

annual horizon. Regarding commodity future prices, Cotter, Eyiah-Donkor and 

Potì (2020) showed that, when studying the relation between commodity 

futures excess returns and the individual predictors, combination forecasts 

perform both statistically and economically better when comparing to the 

historical average forecast. Most recently, Guidolin and Pedio (2021) 

demonstrate that including commodity-specific factors like basis, hedging 

pressure and momentum can generate economic value. However, statistically, 

commodity-specific factors carry limited predictive power for commodity 

futures returns. 

The second path aims to improve existing forecasting methods. Regarding 

new methodologies to forecast the equity risk premium, Ludvigson and Ng 

(2007) and Kelly and Pruitt (2013) proposed dynamic factor analysis. Ferreira 

and Santa-Clara (2011) decomposed the stock market return into three 

components (sum-of-parts (SOP) method) and extracted each component’s time 

series characteristics by forecasting each one individually. Recently, Faria and 

Verona (2018a and 2018b) suggested applying wavelet decomposition 

techniques: 1) to the SOP method; 2) to extract cycles in the term spread to 

analyze their role for predicting the equity risk premium. In contrast, the 

literature on improving the out-of-sample predictability of futures commodity 
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prices through new methodologies is scarce. Kwas and Rubaszek (2021), on 

forecasting nominal commodity prices, found that futures-based forecasts are a 

better method when compared to the random walk (benchmark). Lutzenberger 

(2014), following the research from Rapach et al. (2010), used combinations of 

individual models to OOS forecast returns on commodity futures and 

concluded that there are economically significant gains. 

 

1.3 Frequency-domain and wavelet analysis 

 

Time series information is the most frequent method for making predictive 

regressions, and historically, the literature on asset return forecast is heavily 

rooted on it.  

Although time-series gives a perception of the signal over time, it gives no 

clue about the frequencies that these signal changes at any moment in time. In 

contrast, frequency domain is an analysis of signals, in reference to frequency, 

instead of time. Consequently, when examining a time-series we have a clear 

idea in the time domain, yet a lot of uncertainty in the frequency domain. 

Dew-Becker and Giglio (2016) stated that a frequency domain analysis 

technique, like Fourier Transforms, are new procedures that can be used as a 

complementary tool in time-series analysis. However, the Fourier Transforms 

are not ideal for non-stationary signals, i.e., that have frequency variation 

throughout. Then, a new technique was developed, the Wavelet Transform. 

This technique can divide a non-stationary signal into its stationary parts, using 

Fourier Transforms to capture all frequencies exposed. 

The pioneer work of Ramsey and Lampart (1998a,b) draws on wavelets to 

study the relationship between various macroeconomic variables. Crowley 



 24 

(2007), in its Guide to Wavelets for Economists 1, provide a comprehensive 

review of what wavelets could offer to finance and economics. However, 

“Wavelet analysis, although used extensively in disciplines such as signal 

processing, engineering, medical sciences, physics and astronomy, has not fully 

entered the economics discipline yet”. Also, Ramsey (2002) stated that 

“wavelets are treated as a “lens” that enables the researcher to explore 

relationships that previously were unobservable”, i.e, introducing this new 

statistical procedure can improve the results of the economic and finance 

research. 

Ramsey and Lampart (1998) used wavelets to study the relationship between 

macroeconomic variables: income versus consumption and money supply 

versus income. Kim and In (2005) stated a positive relationship between 

nominal stock returns and inflation. Gençay et al. (2005) proposed a new 

approach based on wavelets to estimate systematic risk.  

Gallegati (2007) studies the relationship between stock market returns and 

economic activity over different time scales using signal decomposition 

techniques based on wavelet analysis and found that stock market returns tend 

to lead the level of economic activity but only on scales corresponding to 

periods of 16 months and longer (lowest frequencies). Aguiar-Conraria et al. 

(2012) used wavelet analysis to study business cycle synchronization across 

European countries.  

Adding to this, the studies of Rua (2011) and Rua (2017) suggest a wavelet-

based multiscale principal component analysis to predict GDP growth and 

inflation. The result was that are improvements in short-run predictions when 

this procedure is complemented with factor-augmented models.  

 
1 See Crowley (2007) for more details. 
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Later, Faria and Verona (2020), using wavelets, isolated the best frequencies 

of different predictors and used them in the context of active portfolio 

management. 

 

1.4 Active Portfolio Management 

 

The literature on active portfolio management is little. 

The studies of Almadi, Rapach and Suri (2014) on tracking the best timing for 

portfolio rebalancing found that out-of-sample forecasts can be helpful. If the 

investors can rebalance the portfolio on right timing, returns can be higher. 

However, De Miguel et. al. (2019) state that obtaining higher returns from 

optimal portfolios are hardly reached out-of-sample. In fact, historically, active 

portfolio management struggles to consistently beat a given benchmark. 

Da Silva et. al. (2009) applied the Black-Litterman framework in active 

investment management and found that it leads to a risker portfolio and the 

risk-adjusted performance is lower.2 

Recently, Faria and Verona (2020b) demonstrate that using information from 

different frequencies of different predictors improves the forecasts of bond and 

equity returns; and when used in the context of active portfolio management, 

these forecasts lead to a superior performance of an actively managed equity-

bond portfolio. 

 

 

 

 
 

2 See Black, F., and R. Litterman (1992): Global Portfolio Optimization for details. 
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Chapter 2 

2. Data and Methodology 

The expected contribution of this dissertation is to extend the study of 

frequency-domain forecasting to commodity markets and evaluate the 

economic significance of eventual forecasting gains in different commodity 

returns in the context of an actively managed multi-asset (equity, bonds, 

commodities) portfolio. 

2.1 Data Description 

 

Our sample period is from January 1972 to June 2010 3, with a monthly 

sample frequency, where all prices and returns are in U.S. dollars. Bond risk 

premium (BRP) and equity risk premium (ERP) of month t are determined as 

the difference between the return on the 10-year US Treasury bond and the 

return on the S&P500 index in month t, respectively, and the one-month T-bill 

known at the beginning of month t (lagged-risk free rate). 

The equally weighted portfolio of 27 commodity futures is constructed by 

Asness et al. (2013) and the data is obtained from Tobias J. Moskowitz's website. 

The portfolio covers aluminium, copper, nickel, zinc, lead, tin, brent crude oil, 

gas oil, live cattle, feeder cattle, lean hogs, corn, soybeans, soy meal, soy oil, 

 
3 The sample period is only until 2010 due to data availability. 
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wheat, WTI crude, RBOB gasoline, heating oil, natural gas, gold, silver, cotton, 

coffee, cocoa, sugar, and platinum. 4  The futures returns are calculated, as 

Asness et al. (2013) explained, by computing the “daily excess return of the 

most liquid futures contract every day, which is typically, the nearest-or next 

nearest-to-delivery contract”. Next, the daily returns are compounded to a total 

return index, and the monthly returns are computed from this index. Following 

the literature, and to smooth the series, we use the log of these monthly returns 

as Commodity Returns (CR). 

Generally, commodities have low or negative correlation with traditional 

asset classes over the long-term and can act as a portfolio diversifier. However, 

during periods of global economic downturn such as in the early 1980s, early 

1990s and late 2000s, commodities’ correlation with other asset classes–

especially equities–tended to sharply increase before reverting to relatively low 

levels, as seen in Graph 1. 

 

 
4 Data on Aluminum, Copper, Nickel, Zinc, Lead, and Tin are from the London Metal Exchange (LME). 

Brent Crude and Gas Oil are from the Intercontinental Exchange (ICE). Live Cattle, Feeder Cattle, and 

Lean Hogs are from the Chicago Mercantile Exchange (CME). Corn, Soybeans, Soy Meal, Soy Oil, and 

Wheat are from the Chicago Board of Trade (CBOT). WTI Crude, RBOB Gasoline, Heating Oil, and 

Natural Gas are from the New York Mercantile Exchange (NYMEX). Gold and Silver are from the New 

York Commodities Exchange (COMEX). Cotton, Coffee, Cocoa, and Sugar are from New York Board of 

Trade (NYBOT), and Platinum data are from the Tokyo Commodity Exchange (TOCOM). 
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Figure 1 - Rolling 36-month correlation with equities and fixed income 

 

  

The rolling correlation is computed using the correlation of two time series 

on a rolling window (36 months). Hence, we compute the correlation between 

CR and ERP, and CR and BRP. This type of correlation allows us to visualize 

the correlation between two time series over time. 

In fact, the commodity correlation with equities and fixed income is very 

volatile. Therefore, the forecasting exercise is challenging. Then, the better we 

capture these changes in correlation dynamics, the better will be the dynamic 

asset allocation. This relationship between the asset classes is not new, however, 

the most important and focal point of this thesis is to use a method (frequency-

domain forecasting) to assess the possible economic gains of introducing 

commodities in an actively managed portfolio (market-timing adaptation). 

Regarding predictors, we use twelve variables taken from Goyal and Welch 

(2008: log dividend-price ratio (DP), log dividend yield (DY), log earnings-price 

ratio (EP), excess stock return volatility (RVOL), book-to-market ratio (BM), net 

equity expansion (NTIS), long-term bond yield (LTY), long-term bond return 
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(LTR), term spread (TMS), default yield spread (DFY), default return spread 

(DFR), and lagged inflation rate (INFL). These predictors are briefly described 

in Appendix 1. Table 1 reports the summary statistics for BRP, ERP, CR, and the 

predictors. Figure 1 provides their time series. 

2.2 Methodology 

 

Regarding our methodology, there are three key subjects: the frequency 

domain analysis and wavelet multiresolution analysis (sub-section 2.2.1), the 

out-of-sample (OOS) procedure (sub-section 2.2.2), and the asset allocation 

framework (sub-section 2.2.3).  

 

2.2.1 Frequency-domain analysis and Wavelet Transform 

 

The term “wavelets” mean small waves, as they have finite length 

(compactly supported) and oscillatory behavior. In economics and finance, its 

main ability is to deal with both stationary and non-stationary data. 

The Wavelet Transform analyzes the signal at different frequencies with 

different resolutions using a multiresolution analysis (MRA). The 

multiresolution analysis approach, by using short windows at high frequencies 

and long windows at low frequencies, can overcome the resolution problem as 

it adaptively divides the time-frequency plane. This way, both time and 

frequency resolutions can vary in the time-frequency spectrum and the original 

characteristics of the time series is kept. 

There are two types of Wavelet Transforms, the Continuous Wavelet 

Transform (CWT,) and the Discrete Wavelet Transform (DWT), differing on 

how the wavelets are scaled and shifted, and on the signal: CWT assumes 
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continuous signal and DWT assumes a signal consisting of observations 

sampled at evenly spaced points in time (Crowley, 2008). We use DWT in this 

dissertation. 

In Appendix 2, we describe the wavelet transform. Equation (Erro! A origem 

da referência não foi encontrada.) shows that the original series 𝑦𝑡, exclusively 

defined in the time domain, can be decomposed in different time series 

components, each defined in the time domain and capturing the fluctuation of 

the original time series in a specific frequency band. For small j, the j wavelet 

detail components represent the higher frequency characteristics of the time 

series (i.e., its short-term dynamics). As j increases, the j wavelet detail 

components represent lower frequencies movements of the series. Lastly, the 

wavelet smooth component (𝑦𝑡
𝑆𝐽) captures the lowest frequency dynamics (i.e., 

its long-term behavior or trend). 

The classic DWT has limitations, for example, is non-shift variant and is 

restricted to sample size (dyadic length requirements). Then, we use the Haar 

wavelet filter 5  and the maximal-overlap discrete Wavelet Transform 

Multiresolution Analysis (MODWT MRA)6 to do the wavelet decomposition 

analysis. In our analysis, given the size of the sample, we apply a 𝐽 = 6 levels 

MRA7 for each of the original predictors. Hence, the wavelet decomposition 

provides seven time-frequency series: six wavelet details (𝑦𝑡
𝐷1 𝑡𝑜 𝑦𝑡

𝐷6) and a 

wavelet smooth 𝑦𝑡
𝑆6. 

Since we are dealing with monthly data, the first wavelet detail component 

𝑦𝑡
𝐷1 captures oscillations between 2 and 4 months, while the other 𝑦𝑡

𝐷2, 𝑦𝑡
𝐷3, 

 
5 “The Haar filter makes a neat connection to temporal aggregation as the wavelet coefficients are simply 

differences of moving averages” (see Faria and Verona (2020) and Ortu et. al (2016)) 
6 As Percival and Walden (2000) note, the MODWT is also commonly referred to by various names in the 

wavelet literature). More details on the MODWT MRA can be found in Percival and Walden (2020) and 

Crowley (2008) 
7 Regarding the choice of J, the number of observations dictates the maximum number of frequency bands 

that can be used. In our case, 𝑡0= 204 is the number of observations in the in-sample period, so J is such 

that 𝐽 ≤ 𝑙𝑜𝑔2 𝑡0 ≃ 7. 
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𝑦𝑡
𝐷4, 𝑦𝑡

𝐷5, 𝑦𝑡
𝐷6 capture oscillations with periods of 4-8, 8-16, 16-32, 32-64 and 64-

128 months, respectively. Ultimately, the smooth component 𝑦𝑡
𝑆6  captures 

oscillations with a period longer than 128 months. 

As an example, figure 2 plots the time series of the term spread (one of the 

predictors used) and its MODWT MRA decomposition (seven time-frequency 

series components). We can observe that then lower the frequency, the 

smoother the resulting filtered time-series. However, the time-series dynamics 

vary a lot depending on the components and thus, only some are good ERP, 

BRP and CR predictors. For example, regarding ERP, Faria and Verona (2019) 

showed that the low-frequency component of the term spread (𝑇𝑀𝑆𝐷7) is an 

excellent OOS predictor, whereas the other frequency components are not.8 

 

 

2.2.2 Out-of-Sample Forecasts 

 

The out-of-sample exercise is done using the information available at 

moment t in time, to predict the value of a certain variable at t+1. The OOS 

forecasts of the BRP, CR and ERP are generated using a sequence of expanding 

windows. We use an initial in-sample (IS) period from 1972:01 (January 1972) to 

1989:12. Then, the sample is increased by one observation and a new one-step-

ahead OOS forecast is generated. We repeat this process until the end of the 

sample, getting a sequence of 246 one-step-ahead OOS forecasts. The full OOS 

period is from 1990:01 to 2010:06. 

As the MODWT MRA is a two-sided filter, we use the original predictors 

and compute their frequency components at each iteration of the OOS 

forecasting process using current and past data from the sample. The procedure 

 
8 See Faria and Verona (2019) for more details. 
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is important to avoid look-ahead bias. In terms of boundary treatment, we use 

the reflection rule, i.e., at the boundary, the original time series is expanded 

symmetrically (the time series doubles in size) before computing the MODWT 

MRA. 

 

The CR predictive model is 

 

 𝐶𝑅𝑡+1  =  𝛼 +  𝛽𝜲𝑡  +  𝜀𝑡+1 (1) 

  

where 𝜲 is a vector of predictors and the one-step-ahead OOS forecast of the 

commodity return, 𝐶�̂�𝑡+1, is given by: 

 

 𝐶�̂�𝑡+1  =  �̂�𝑡 + �̂�𝑡𝜲𝑡 (2) 

 

where �̂� and �̂� are the OLS estimates of parameter 𝛼 and vector of parameters 

𝛽, respectively. 

The same predictive regression model is used to forecast ERP and BRP. 

We consider two types of predictive regressions when running model (1)-(2): 

 

• 𝜲  including all original predictors, we run multi-variate regressions 

using various original predictors. This model is designated multi_ts; 

• 𝜲  including the decomposed frequencies of the original predictors 

(obtained with MODWT MRA), i.e., we run multi-variate regressions 

using different frequencies of different original predictors. This model is 

designated multi_wav. 

 

The benefits of using data from the frequency decomposition of the original 

predictors can be evaluated when we compare the ts and wav models.  
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To evaluate the OOS forecasting performance of the predictive models, we 

use the Campbell and Thompson (2008) 𝑅𝑂𝑆
2  statistic. As it is the standard in the 

literature, we consider the historical mean (HM) forecast �̅�𝑡 , which is the 

average ERP, CR and BRP up to time t, as the benchmark model. The 𝑅𝑂𝑆
2  

statistic computes the proportional decrease in the mean squared forecast error 

for the predictive model (𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷) relative to the historical mean (𝑀𝑆𝐹𝐸𝐻𝑀), 

i.e., comparing the predictive capability of the predictor and the historical 

sample mean. The 𝑅𝑂𝑆
2  statistic can be written as 

𝑅𝑂𝑆
2  =  100 (1 −  

𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷

𝑀𝑆𝐹𝐸𝐻𝑀
)  =  100 [1 −  

∑ (𝑟𝑡+1 − �̂�𝑡+1)2𝑇−1
𝑡=𝑡0

∑ (𝑟𝑡+1 − �̅�𝑡)2𝑇−1
𝑡=𝑡0

] 

where  �̂�𝑡+1 represents the CR (ERP; BRP) forecast from the predictive model for 

period t+1, and 𝑟𝑡+1 is the realized CR (ERP; BRP) from t to t+1. A positive value 

of 𝑅𝑂𝑆
2  means that the predictive model outperforms the historical mean (HM) 

in terms of mean squared forecast error (MSFE). 

Like in Faria and Verona (2019), the statistical significance of the results is 

evaluated using the Clark and West (2007) statistic.9 This statistic tests the null 

hypothesis that the 𝑀𝑆𝐹𝐸𝐻𝑀 is less than or equal to the 𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷 against an 

alternative hypothesis that the 𝑀𝑆𝐹𝐸𝐻𝑀 is greater than the 𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷, i.e.: 

𝐻0 ∶  𝑅𝑂𝑆
2  ≤  0 

𝐻𝐴 ∶  𝑅𝑂𝑆
2  > 0  

Then, we compare the resulting t-statistic from the forecasts with the critical 

values: 1,282 for a 10% level, 1,645 for a 5% level and 2,326 for a 1% level of 

significance. If the t-statistic is higher than the critical values, the null 

hypothesis can be rejected. If the null-hypothesis is rejected, 𝑀𝑆𝐹𝐸𝑃𝑅𝐸𝐷 

outperforms the 𝑀𝑆𝐹𝐸𝐻𝑀 with a given statistical significance level. 

 

 
9 Advantage of this test is that it corrects small-sample forecast bias. ***, ** and * denote significance levels 

of 1%, 5% and 10%, respectively. See Clarke and West (2007) for more details. 



 34 

2.3 Asset allocation framework 

 

The asset allocation framework allows us to analyze the significance of 

frequency domain information for active portfolio management (APM). The 

goal is to beat a benchmark. Hence, the actively managed portfolio is compared 

to the given benchmark. 

We adopt the standard in the literature, i.e., the perspective of a mean-

variance investor, who invests in bonds, equities, and commodities to maximize 

returns that are risk-adjusted. The weight of bonds in the portfolio is given by 

𝜛𝑏, the weight of equities is given by 𝜛𝑒  and the weight of commodities is 

given by 𝜛𝑐, represented by a vector 𝝕 = (𝜛𝑏 , 𝜛𝑒 , 𝜛𝑐).  

The initial wealth of the investor who follows this APM strategy is set to 1 

and the rebalancing of the portfolio is done monthly, using the one-step-ahead 

monthly return forecasts. The goal is to optimize the trade-off between risk and 

return. As so, the optimization problem can be written as 

 

  𝑚𝑖𝑛 
𝜛

[𝛾𝜃𝑝(𝜛) − 𝜛′�̂�]  (3) 

 

where 𝛾 is the relative risk aversion coefficient (which, following the literature, 

we assume to be equal to 2), �̂�  =  (�̂�𝑏,𝑡+1, �̂�𝑒,𝑡+1, �̂�𝑐,𝑡+1) is the vector of one-step 

ahead return forecast of bonds ( �̂�𝑏,𝑡+1 ), equities ( �̂�𝑒,𝑡+1 ) and commodities 

(�̂�𝑐,𝑡+1), and 𝜃𝑝(𝜛) is the portfolio risk function. The one step-ahead commodity 

forecast (�̂�𝑐,𝑡+1) is the result of the one-step ahead forecast of the commodity 

returns (𝐶�̂�𝑡+1) minus the risk-free rate that is known at the beginning of each 

period. The same procedure was applied to the one step-ahead equity return 

forecast (�̂�𝑒,𝑡+1) and bond return forecast (�̂�𝑏,𝑡+1). The portfolio risk function 

𝜃𝑝(𝜛)  is set as 𝜃𝑝(𝜛)  =  √𝜛′�̂�𝜛 , where �̂�  is the estimated monthly returns 
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covariance matrix. The covariance matrix is estimated using the exponentially 

weighted moving average approach, with the decay parameter set to 0.9710, 

standard for monthly data.  

We introduced some restraints to the vector 𝜛 to make sure that the APM 

portfolio leveraging is realistic and to make our analysis more reliable. The first 

constraint is to set a lower bound l to the weight of each asset (𝜛𝑏 , 𝜛𝑒 , 𝜛𝑐). We 

intend to exclude short selling, i.e., the weight of each asset must be above or 

equal to 0. So, l = 0. The second constraint sets an upper bound h to the total of 

the portfolio weights, 𝜛′𝑰3 = ℎ, where 𝑰3 is a 3-vector of ones and h denotes the 

maximum leverage. So, we set h = 1,5, meaning that an investor cannot borrow 

more that 50% of the value of his investment. 

The active strategy portfolio return at t+1, 𝑅𝑝,𝑡+1 is given by:  

 

𝑅𝑝,𝑡+1 = �̂�′𝑡𝑅𝑡+1 + (1 − �̂�′𝑡𝑰3)𝑟𝑓    , 

 

where 𝑅  is the vector of expected returns of bonds 𝑅𝑏 , equities 𝑅𝑒  and 

commodities 𝑅𝑐 and 𝑟𝑓 is the one-month risk-free rate. 

For constructing the benchmark portfolio, we follow two standards in the 

literature. Anson (1999) states that an investor with high risk aversion should 

invest about 20% in commodities. Jensen, Johnson and Mercer (2000) defend 

that depending upon risk tolerance, commodities should represent 5-36% of the 

investor’s portfolio. We assume the weight of commodities represents 20% of 

the benchmark portfolio. Regarding stocks and bonds, we follow the standard 

60-40 for the remaining 80% of the benchmark portfolio. As so, our benchmark 

portfolio considers an allocation of 48% of the investment in stocks, 32% in 

bonds and 20% in commodities, and six performance measures are used: 

 
10 The choice of the decay factor was based on Reuter’s Risk Metrics-Technical Document. The standard 

for daily data is 0.94. 
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Sharpe ratio, composite annual growth rate of returns (CAGR), tracking error, 

information ratio, maximum drawdown, and certainty equivalent return (CER) 

gain. The Sharpe ratio, that is commonly used as a metric to assess the portfolio 

performance, is calculated with the one-year moving average of the annualized 

SR of the portfolio. To compute the tracking error, we use the annualized 

standard deviation of the active strategy’s monthly excess return relative to the 

benchmark. Then, the information ratio is computed as the annualized active 

strategy’s monthly excess return relative to the benchmark divided by the 

tracking error. Both the IR and the TE are important metrics to evaluate the 

performance for actively managed portfolio because they show the eventual 

economic advantages of deviating from the benchmark. The maximum 

drawdown gives the maximum potential loss (percentage reduction in the 

portfolio’s cumulative returns) of following the active strategy. 

The power utility is measured as 𝑈(𝑥) =
𝑥1−𝛾

1−𝛾
 , where x = 1 + 𝑅𝑝 and 𝑅𝑝 is the 

portfolio return. We define the average utility an investor would get by 

following the active portfolio management strategy (APM) as �̅�𝐴𝑃𝑀  and the 

average utility an investor would get by following the benchmark portfolio as  

�̅�𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘. The CER is given by 𝐶𝐸𝑅𝑖  =  [(1 − 𝛾)�̅�𝑖]
1/(1−𝛾) –  1, where i = APM, 

benchmark. We can compute the annualized utility gain and interpret it as the 

premium an investor is willing to pay to have access to the APM portfolio 

instead of the benchmark. 
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Chapter 3 

3. Results 

3.1 Out-of-sample forecasting statistical performance 

 

As it was previously described in section 2.2.2, we run two predictive 

models: regressions using multiple original predictors (multi_ts) and 

regressions using different decomposed frequencies from different original 

predictors (multi_wav). We based our regression models’ performance analysis 

on the Campbell and Thompson (2008) out-of-sample R-square (𝑅𝑂𝑆
2 ) statistic. 

For simplification purposes, we only report the model specification that 

maximizes the 𝑅𝑂𝑆
2  statistic, i.e., the predictor (or combination of predictors) that 

have the best OOS predictability. Table 2 11  summarizes the two regression 

models’ best 𝑅𝑂𝑆
2 . 

On a first note, the predictability of the bond risk premium (BRP) is higher 

than the commodity returns (CR) and the equity risk premium (ERP), no matter 

what forecasting model we consider. Secondly, there are noticeable forecast 

improvements from using different frequencies from multiple original predictors 

at a time (multi_wav) against using more than one original predictor at a time 

(multi_ts). Using combinations of different frequencies of the original predictors 

 
11 For computational reasons, we consider at most three frequencies from all possible predictors in the 

models. 
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(multi_wav) translated in an increase in the maximum 𝑅𝑂𝑆
2 . The best 𝑅𝑂𝑆

2  for the 

BRP forecast improves from 2,42% to 7,78%; from 1,06% to 6,53% for CR; and 

from -0,28% to 5,02% for ERP. However, for CR and ERP there is no statistically 

significant forecasting when using time series. 

These results indicate that using frequency-domain information strengthen 

the forecastability of bond risk premium, commodity returns and equity risk 

premium. In the next section, we analyze if these gains directly translate to 

superior portfolio performances.  

 

3.2 Active portfolio management performance 

 

The outputs of the BRP, CR and ERP forecasting are used to feed the vector 

of active views �̂�  =  (�̂�𝑏,𝑡+1, �̂�𝑒,𝑡+1, �̂�𝑐,𝑡+1). This vector then serves as an input 

for the APM strategies. The BRP, CR and ERP forecasts obtained through the 

multi_wav models will feed the APM_WAV strategy. For comparison reasons, we 

also report other APM strategy: APM_TS. The BRP, CR and ERP forecasts obtained 

using the original time-series of predictors (multi_ts models) will feed this APM_TS 

strategy. As mentioned before, our benchmark portfolio considers an allocation 

of 48% of the investment in stocks, 32% in bonds and 20% in commodities, and 

is denoted 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20. 

In panel A of Table 3, we report the performance measurements of the two 

active strategies and the 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20 .  Clearly, the APM strategies 

outperform the 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20  and the APM_WAV outperforms the 

APM_TS. The two APM strategies enhance the average annual return whilst 

decreasing the maximum drawdown. This leads to higher Sharpe ratios 

(annualized). Actively deviating from the benchmark benefit the active 

investor, as reflected in the annualized information ratios of 0,47 (APM_WAV) 
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and 0,29 (APM_TS). The APM_WAV strategy outperforms the APM_TS 

strategy. This suggests that there are economic gains from using frequency-

domain information in active portfolio management. 

In Figure 3, we highlight the cumulative wealth of an investor who invests 1$ 

in January 1990 and reinvests monthly along the OOS period adopting the 

APM_WAV strategy (orange line), the APM_TS strategy (blue line) and the 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20 strategy (yellow line). The three strategies have common 

trends, being the downtrend in world financial crisis period (late 2000’s) the 

most noticeable. Following a cumulative return perspective, the APM_WAV 

strategy outperforms the APM_TS and 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20  strategies. By the 

end of the OOS period (June 2010), the investor gained 12,74$ with the 

APM_WAV strategy, versus 9,46$ with the APM_TS strategy or 6,14$ with the 

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20. Despite the APM_WAV strategy dominating the APM_TS 

strategy across the whole period, it is not the best strategy through the whole 

OOS period. In late 90’s and early 2000’s, the benchmark outperforms both 

active strategies. However, considering the cumulative perspective, the 

APM_WAV strategy clearly outperforms the other ones.  

The previous analysis demonstrates that using frequency-domain 

information (namely adding commodities to the Faria and Verona’s (2020) 

work) is beneficial for active portfolio management. We test the robustness of 

our findings by considering alternative benchmark portfolios and introducing 

changes to the constraints used. 
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Chapter 4 

4. Robustness 

4.1 Alternative benchmarks 

 

To test the robustness of our findings, we constructed different benchmark 

portfolios.  First, we consider a portfolio based on equity and bonds solely (60% 

equity, 40% bonds and 0% commodities). Then, we consider the classic 

diversification rule 1/N (33% equity, 33% bonds and 33% commodities). After 

that, we consider different portfolios with commodity weights varying from 5% 

to 36% (Jensen, Johnson and Mercer (2000)) of the investor’s total portfolio. The 

remaining percentage is then divided between equity and bonds following the 

60/40 standard. The results are reported in Panel B of table 3. We highlight two 

main conclusions. The first one is that no matter the weights of the Benchmark 

portfolio, both APM strategies will tend to converge into the “ideal” portfolio 

weights at the end of the OOS period. Given that, all APM strategies reported 

have the same value of average return, CAGR, Sharpe ratio and maximum 

drawdown. The second conclusion is that the tracking error, information ratio 

and CER gains of the APM_WAV strategy are higher than those of the APM_TS 

strategy. These results confirm that our findings are robust towards alternative 

benchmarks. 
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As a final note, we can conclude that increasing the weight of commodities, 

and keeping all constraints unchanged (risk aversion coefficient = 2 and 

maximum leverage = 1,5), lead to higher CER gains.  

 

4.2 Alternative set of portfolio constraints and investor 

risk aversion 

 

As an additional robustness test, considering the same 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20 

and the same level of risk aversion of the representative investor, we test APM 

strategies for different leverage and short-selling constraints. First, we allow 

short-selling but not leverage (h = 1 and l = -0,5); secondly, we don’t allow short-

selling nor leverage (h = 1 and l = 0); and finally, we allow both leverage and 

short-selling (h = 1,5 and l = -0,5). The results indicate that for higher levels of 

leverage and short-selling, the level of outperformance of APM_WAV strategy 

versus the APM_TS strategy is higher. A final robustness test is considered: 

lower level of risk aversion while keeping other constraints constant. We 

conclude that the lower the level of risk aversion, the higher is the 

outperformance of the APM_WAV strategy when compared with the APM_TS 

strategy.12 

  

 
12 Results are available upon request. 
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Conclusion 
 

 

In this thesis we tried to extend the work of Varia and Verona (2020) by 

introducing commodities in the investment opportunity set alongside equity 

and fixed income. Hence, our aim is to test the forecastablity and diversification 

power of commodities in the context of an actively managed multi-asset 

(equity, bonds, commodities) portfolio using frequency-domain information. 

Firstly, we test whether the use of information from different frequencies of 

the variables used improves the out-of-sample forecasting performance on 

bond, commodity and equity returns. We conclude that using frequency 

domain information leads to improved forecasts of the three asset classes 

returns versus when using exclusively original time series.  

Secondly, and the focal point of this work, is to test the economic significance 

of the frequency domain information. Hence, we assess if the use of frequency 

domain information would lead to superior portfolio performances in the 

context of an actively managed multi-asset portfolio. 

The results are clear. It is unequivocal that the use of frequency domain 

information in an actively multi-asset (equity, bonds, commodities) portfolio is 

beneficial.  

We identify a secondary finding: the higher the commodity weight in the 

benchmark portfolio, the higher the CER gains of the active strategy. 



 43 

The main limitation of this thesis is the commodity futures and the dataset 

length. The initial goal was to obtain data until October 2021, but we were not 

able to have access to more updated data than June 2010.  

As a final note, we would like to present one suggestion for future research. 

The OOS forecasting horizon could be enlarged beyond one month. As 

Timmerman (2014) shows, the strength of the commodity predictability is as 

higher as the forecasting horizon. This can be particularly useful for long-term 

driven investors with lower turnover ratios of their portfolios, requiring fewer 

rebalancing trades. 
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Tables & figures 

 
 

  Mean Median Min Max Std. dev. 

       BRP (%)  -0,76 -0,44 -12,52 10,30 4,51 

ERP (%)  0,42 0,79 -11,33 11,47 4,50 

CR (%)  0,44 0,49 -11,23 11,99 4,33 

       DP  -3,58 -3,52 -4,47 -2,83 0,45 

DY  -3,58 -3,52 -4,47 -2,83 0,45 

EP  -2,81 -2,85 -4,66 -1,97 0,51 

RVOL (ann.)  0,15 0,14 0,06 0,31 0,05 

BM  0,51 0,41 0,13 1,15 0,30 

NTIS  0,01 0,01 -0,05 0,04 0,02 

LTY (%, ann.)  7,61 7,47 3,95 14,00 2,45 

LTR (%)  0,74 0,82 -7,05 9,58 3,11 

TMS (%, ann.)  2,00 2,11 -2,38 4,37 1,53 

DFY (%, ann.)  1,11 0,96 0,56 2,91 0,48 

DFR (%)  0,01 0,05 -3,95 3,95 1,41 

INFL (%)  0,36 0,32 -0,54 1,29 0,38 

Table 1: Summary Statistics 

 

This table reports summary statistics for the bond risk premium (BRP), equity risk premium 

(ERP), commodity returns (CR) and the set of predictors. BRP and ERP are measured as the 

difference between the return on the 10-year US Treasury bond and the return on the S&P500 

index, respectively, and the return on a one-month T-bill. BRP, ERP, LTR, DFR, and INFL (LTY, 

TMS, and DFY) are measured in percent (annual percent). CR is the log of portfolio’s monthly 

returns. The set of predictors is described in Appendix 1. The sample period runs from 1972:01 

to 2010:06. 
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Table 2: Out-of-sample R-squares (𝑅𝑂𝑆
2 ) 

 

This table reports the maximum 𝑅𝑂𝑆
2  (out-of-sample 𝑅-squares) for the bond risk premium 

(BRP), commodity returns (CR) and equity risk premium (ERP) forecasts of the two predictive 

models: using more than one predictor at a time (multi_ts) and using different frequencies from 

multiple original predictors at a time (multi_wav). The 𝑅𝑂𝑆
2  measures the reduction in the mean 

squared forecasting error from the use of the predictive model against the forecast based on the 

historical mean. We use an initial in-sample (IS) period from 1972:01 (January 1972) to 1989:12, 

with a monthly sample frequency, and the full OOS period is from 1990:01 to 2010:06. The 

asterisks represent the significance of Clark and West (2007)’s statistic. ***, ** and * denote 

significance levels of 1%, 5% and 10%, respectively. 

  

 multi_ts multi_wav 

𝑅𝑂𝑆
2  Predictors 𝑅𝑂𝑆

2  Predictors (frequency) 

BRP 2,42* DP, DY 7,78*** BM (D2), NTIS (D1), LTY (D3) 

CR 1,06 DFR 6,53** DP (D2), BM (D2), LTR (D5) 

ERP -0,28 LTR 5,02*** EP (D3), RVOL (D5), TMS (D7) 
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Table 3: Portfolio performance statistics 

 

This table reports the performance statistics of different portfolio strategies. The performance 

statistics are: average return, which is the annualized first moment of returns time series; CAGR 

(composite annual growth rate of returns time series; Sharpe ratio, which is measured as the 1-

year moving average of portfolio's annualized Sharpe ratio; maximum drawdown, that is 

measured as the maximum percentage decrease in the portfolio's cumulative return; tracking 

error, measured as the annualized standard deviation of the APM monthly excess return 

 Average 

return 
CAGR 

Sharpe 

ratio 

Maximum 

drawdown 

Tracking 

error 

Information 

ratio 

CER 

gain 

        
Panel A: baseline 

APM_WAV 13,20% 11,02% 0,80 19,90% 7,63% 0,47 3,23% 

APM_TS 11,63% 11,02% 0,68 21,19% 7,47% 0,29 1,85% 

Benchmark48−32−20 9,22% 8,81% 0,57 30,79% - - - 

Panel B: different benchmark portfolios 

APM_WAV 13,20% 11,02% 0,80 19,90% 6,48% 0,62 3,51% 

APM_TS 11,63% 11,02% 0,68 21,19% 6,28% 0,42 2,13% 

Benchmark33−33−33 8,76% 8,42% 0,58 30,41% - - - 

APM_WAV 13,20% 11,02% 0,80 19,90% 8,95% 0,34 2,85% 

APM_TS 11,63% 11,02% 0,68 21,19% 8,82% 0,18 1,46% 

Benchmark60−40−0 9,88% 9,34% 0,56 29,09% - - - 

APM_WAV 13,20% 11,02% 0,80 19,90% 8,54% 0,37 2,93% 

APM_TS 11,63% 11,02% 0,68 21,19% 8,40% 0,21 1,54% 

Benchmark57−38−5 9,71% 9,22% 0,57 29,49% - - - 

APM_WAV 13,20% 11,02% 0,80 19,90% 7,88% 0,44 3,12% 

APM_TS 11,63% 11,02% 0,68 21,19% 7,72% 0,26 1,73% 

Benchmark51−34−15 9,39% 8,95% 0,57 30,34% - - - 

APM_WAV 13,20% 11,02% 0,80 19,90% 7,45% 0,50 3,35% 

APM_TS 11,63% 11,02% 0,68 21,19% 7,28% 0,32 1,97% 

Benchmark45−30−25 9,06% 8,66% 0,56 31,60% - - - 

APM_WAV 13,20% 11,02% 0,80 19,90% 7,25% 0,56 3,66% 

APM_TS 11,63% 11,02% 0,68 21,19% 7,07% 0,38 2,27% 

Benchmark38−26−36 8,70% 8,31% 0,53 33,88% - - - 
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towards the benchmark; the information ratio, measured as the annualized average APM 

monthly excess return towards the benchmark divided by the tracking error; CER gain, 

measured as the annualized gain in certainty equivalent return that a power-utility maximizing 

investor with relative risk aversion γ=2 would have by owning the APM portfolio instead of the 

benchmark one. The initial benchmark portfolio (Panel A) is constructed considering an 

allocation of 48% of the investment in stocks, 32% in bonds and 20% in commodities. Panel B 

portfolios are alternative benchmark portfolios constructed for robustness testing reasons. 

APM_WAV is the active portfolio management strategy that uses the forecasts obtained from 

the multi_wav models and the APM_TS is the active portfolio management strategy that uses 

the forecasts obtained from the multi_ts models. The sample period runs from 1972:01 to 

2010:06. The initial in-sample (IS) period is from 1972:01 to 1989:12, with a monthly sample 

frequency, and the full OOS period refers to the period from 1990:01 to 2010:06 
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Figure 2: Monthly time-series of the BRP, CR, ERP, and their predictors  

 

This figure plots the time series of the bond risk premium (BRP), the commodity returns (CR) 

and the equity risk premium (ERP) and of the twelve predictors used. Bond risk premium 

(BRP) and equity risk premium (ERP) of month t are determined as the difference between the 

return on the 10-year US Treasury bond and the return on the S&P500 index in month t, 

respectively, and the one-month T-bill known at the beginning of month t (lagged-risk free 

rate). Commodity returns (CR) are computed as the log of the commodity portfolio monthly 

returns. The set of predictors is described in Appendix 1. The sample period runs from 1972:01 

to 2010:06. 
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Figure 3: Term spread time-series and wavelet decomposition 

 

This figure plots the time series of the term spread (TMS) and the seven frequency components 

into which the time series is decomposed. It is applied a J = 6 level wavelet decomposition, 

which produces six wavelet details (D1, D2, ..., D6), each representing higher-frequency 

characteristics of the series, as well as a wavelet smooth (D7), which captures the low-frequency 

dynamics of the series. The sample period runs from 1972:01 to 2010:06 (monthly frequency).   

D1 

D2 
D3 

D4 D5 

D6 D7 
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Figure 4: Cumulative wealth for APM_WAV, APM_TS and Benchmark48−32−20 investors 

 

This figure represents the cumulative wealth of an investor who begins with $1 and reinvests all 

proceeds monthly, adopting an APM_WAV, APM_TS, and 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20 strategy (orange, 

blue and yellow lines, respectively). The APM_WAV and APM_TS active portfolio management 

strategies are based on asset return forecasts from multi_wav and multi_ts methodologies, 

respectively. The 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘48−32−20 portfolio considers an allocation of 48% of the investment 

in stocks, 32% in bonds and 20% in commodities. The sample period extends from 1972:01 to 

2010:06. The out-of-sample forecasting period runs from 1990:01 to 2010:06 (monthly frequency) 
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Appendix 1. Predictors of risk premiums 

• Log dividend-price ratio (DP): difference between the log of dividends (12-

month moving sums of dividends paid on S&P 500) and the log of prices (S&P 

500 index).  

• Log dividend yield (DY): difference between the log of dividends (12-month 

moving sums of dividends paid on S&P 500) and the log of lagged prices (S&P 

500 index).  

• Log earnings-price ratio (EP): difference between the log of earnings (12-

month moving sums of earnings on S&P 500) and the log of prices (S&P 500 

index price).  

• Excess stock return volatility (RVOL): calculated using a 12-month moving 

standard deviation estimator.  

• Book-to-market ratio (BM): ratio of book value to market value for the DJIA.  

• Net equity expansion (NTIS): ratio of 12-month moving sums of net equity 

issues by NYSE-listed stocks to the total end-of-year NYSE market 

capitalization.  

• Long-term yield (LTY): long-term government bond yield.  

• Long-term return (LTR): long-term government bond return.  

• Term spread (TMS): difference between the long-term government bond yield 

and the T-bill.  

• Default yield spread (DFY): difference between Moody's BAA-and AAA-rated 

corporate bond yields.  

• Default return spread (DFR): difference between long-term corporate bond 

and long-term government bond returns.  

• Inflation rate (INFL): calculated from the Consumer Price Index (CPI) for all 

urban consumers.  
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Appendix 2. Maximal overlap discrete wavelet 

transform 

Wavelets have genders: there are father wavelets (ф) that represent the 

smooth and trend (low frequency) of the series; and mother wavelets (ψ) that 

represent the detailed (high frequency) part. The father wavelet integrates to 1 

and the mother wavelet integrates to 0, where ∫ ϕ(t)dt = 1 and ∫ 𝜓(𝑡)𝑑𝑡 = 0 .  

The discrete wavelet transform (DWT) multiresolution analysis (MRA) 

allows the decomposition of a time series into its constituent multiresolution 

(frequency) components.13 Given a time series 𝑦𝑡, its wavelet multiresolution 

representation can be written as 

 

𝑦𝑡 = ∑ 𝑠
𝐽,𝑘

𝜙𝐽,𝑘(𝑡) + ∑ 𝑑
𝐽,𝑘

𝜓𝐽,𝑘(𝑡) + ∑ 𝑑
𝐽−1,𝑘

𝜓𝐽−1,𝑘(𝑡) + ⋯

+ ∑ 𝑑
1,𝑘

𝜓1,𝑘(𝑡) 

(4) 

 

where J is the number of multiresolution levels (or scales), i.e., the number of 

frequencies used, k defines the length of the filter,  

𝜙𝐽,𝑘(𝑡) and 𝜓𝐽,𝑘(𝑡) are the wavelet functions, and 𝑠𝐽,𝑘 , 𝑑𝐽,𝑘 , 𝑑𝐽−1,𝑘 , … , 𝑑1,𝑘 are the 

wavelets coefficients. 

The mother and father wavelets generate the wavelet functions through 

scaling and translation, as follows 

 

 
𝜙𝑗,𝑘(𝑡) = 2−𝐽/2𝜙 (

𝑡 −  2𝑗𝑘

2𝑗
) 

(5) 

 

 
𝜓𝑗,𝑘(𝑡) = 2−𝑗/2𝜓 (

𝑡 −  2𝑗𝑘

2𝑗
) 

(6) 

 
13 Detailed analysis of wavelet methods can be found in Crowley (2008) and Percival and Walden (2000) 
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where the base scale in DWT is set to 2 and the different scales are obtained by 

raising it to integer numbers (2𝑗). 

Hence, the Wavelet Transform coefficients are given by 

 

 𝑠𝐽,𝑘  =  ∫ 𝑦𝑡 𝜙𝐽,𝑘 (𝑡) 𝑑𝑡 (7) 

   

 𝑑𝑗,𝑘  =  ∫ 𝑦𝑡 𝜓𝑗,𝑘 (𝑡) 𝑑𝑡 (8) 

   

where 𝑠𝐽,𝑘  are the smooth coefficients generate from the father wavelet at a 

maximal scale 2𝐽 and 𝑑𝑗,𝑘 are the detail coefficients generated from the mother 

wavelet at all scales from 1 to 𝐽, with j = 1, 2, … , J. 

  

Given that,  

 𝑆𝐽  =  ∑ 𝑠𝐽,𝑘 𝜙𝐽,𝑘 (𝑡)

𝑘

 (9) 

 

 𝐷𝐽  =  ∑ 𝑑𝑗,𝑘 𝜓𝑗,𝑘 (𝑡)

𝑘

 (10) 

the function 𝑦𝑡 can be rewritten as: 

 

 
𝑦𝑡  =  ∑ 𝑦𝑡

𝐷𝑗

𝐽

𝑗=1
 +  𝑦𝑡

𝑆𝐽 
(11) 

 

where 𝑦𝑡
𝐷𝑗  are the J wavelet detail components and 𝑦𝑡

𝑆𝐽  is the wavelet smooth 

component. 

In the mother wavelet equation (Erro! A origem da referência não foi 

encontrada.), 2𝑗𝑘 determines the time position of the wavelet and 2𝑗 is the size 

(scale) of the wavelet, making the window smaller or larger. Therefore, if 2𝑗 
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increases, the levels in the wavelet spectrogram go down (time window is 

stretched), and 2𝑗𝑘 slides that window across the signal. This means that low 

scales capture rapidly changing details (high frequencies), whereas higher 

scales capture slowly changing features (low frequencies). 

 

 

 

 

 


