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Abstract: The monitoring of the microbial quality of fresh products in the industrial environment has
mainly focused on bacterial indicators. Protozoa, such as Giardia duodenalis, Cryptosporidium spp.,
Toxoplasma gondii, and Cyclospora cayetanensis, are routinely excluded from detection and surveillance
systems, despite guidelines and regulations that support the need for tracking and monitoring
these pathogens in fresh food products. Previous studies performed by our laboratory, within
the scope of the SafeConsume project, clearly indicated that consumption of fresh produce may
be a source of T. gondii, thus posing a risk for the contraction of toxoplasmosis for susceptible
consumers. Therefore, preliminary work was performed in order to assess the microbiological
quality of vegetables, highlighting not only bacteria (Escherichia. coli, Listeria monocytogenes, and
Salmonella spp.), but also the zoonotic protozoa G. duodenalis and Cryptosporidium spp. Although
all samples were found to be acceptable based on bacteriological parameters, cysts of G. duodenalis
and oocysts of Cryptosporidium spp. were observed in vegetables. Moreover, it was possible to
genetically characterize G. duodenalis positive samples as assemblage A, a genotype that poses risks
to human health. Although these are preliminary results, they highlight the need to include protozoa
in the microbiological criteria for foodstuffs, as required by EU Law No. 1441/2007, and to improve
inactivation and removal procedures of (oo)cysts in fresh produce and water.

Keywords: vegetables; foodborne pathogens; Giardia duodenalis; Cryptosporidium spp.; Escherichia coli;
Listeria monocytogenes; Salmonella spp.

1. Introduction

Each year, nearly 600 million people become ill with foodborne diseases, leading
to over 420,000 deaths [1]. Microbial contamination of food products can be caused by
bacteria, viruses, or parasites, and these pathogens represent the most important cause
of enteric illness [2]. During the past decade, there has been a remarkable increase in the
consumption of raw or partially cooked fresh produce, due to changes in the eating habits
of consumers who are more conscious of the direct and indirect health benefits of eating
fruit and vegetables [3]. Hence, these types of foods have also become important vehicles
for transmission of foodborne pathogens, and the number of outbreaks of foodborne dis-
eases associated with fresh produce has increased [4–6]. Examples of major multi-national
foodborne outbreaks include an Escherichia coli outbreak due to contaminated fenugreek
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seeds and an outbreak of listeriosis due to the consumption of frozen vegetables contami-
nated with Listeria monocytogenes [7,8]. In addition to bacteria, several protozoan parasites
can also contaminate fresh produce. Giardia duodenalis, Cryptosporidium spp., Toxoplasma
gondii, and Cyclospora cayetanensis have been associated with several global outbreaks of
foodborne illnesses related to the consumption of contaminated fresh vegetables and fruits,
and are the most important emerging parasitic protozoans that commonly infect humans
and animals [9–14].

Despite guidelines and regulations that support the need for tracking and monitoring
protozoa in fresh food products, their routine exclusion from detection and surveillance sys-
tems can be ascribed to the limited number of studies investigating parasite contamination
of vegetables, the absence of consensual and accurate methodologies for their identification,
and the wide acceptance among the expert authorities that the bacteriological aspects of
the evaluation are more relevant for food safety [14]. Consequently, the monitoring of
the microbial quality of fresh products in the industrial environment has mainly focused
on bacterial indicators, and EU and national laws highly regulate the presence and mi-
crobiological limits of, in particular, the bacteria E. coli, L. monocytogenes, and Salmonella
spp. [15–18]. In contrast, protozoan pathogens are rarely tested in fresh produce for food
safety purposes. They are frequently neglected because they do not cause an immediate
deleterious clinical response, but rather a chronic and long one. In addition, the associated
diseases are also more common and prevalent in poor countries or communities. However,
the harmful effects of these pathogens on humans in developed countries, especially on
immunocompromised individuals, children, and pregnant women, and particularly their
recent impacts, have increased the focus and attention of authorities [14,19–23].

Giardia duodenalis is the causative agent of giardiasis, resulting in acute watery diar-
rhea in both humans and animals. Eight major genotypes of G. duodenalis (assemblages)
have been identified to date (A–H); however, assemblages A and B (and to a lesser ex-
tent assemblage E) are considered to have zoonotic interest due to their risk of infecting
humans [24,25].

Cryptosporidium spp. are widespread protozoan parasites that infect humans and ani-
mals. Human cryptosporidiosis is the second commonest cause of diarrhea in children after
rotavirus and can be caused either by the zoonotic Cryptosporidium parvum or anthroponotic
Cryptosporidium hominis [9,26].

Toxoplasma gondii is an intracellular coccidian protozoan, for which domestic and
wild felids are the only known definitive hosts responsible for oocyst dissemination in the
environment. Toxoplasmosis is usually asymptomatic in immunocompetent individuals,
but may cause severe infections in immunocompromised individuals, fetuses during
pregnancy, and newborns [27,28].

Cyclospora cayetanensis is a human coccidia parasite that causes cyclosporiasis, a disease
that causes acute diarrhea and other gastroenteritis symptoms. Humans are the only known
host for C. cayetanensis oocysts, and their zoonotic role remains to be determined [29,30].

Two of the main reasons for the biological success of these parasites are their low
infectious dose and their excretion in feces into the environment as resistant stages (cysts
or oocysts) [31,32]. The (oo)cysts possess the ability to survive for a long period of time
(weeks, months, or even years) in the environment, in extreme conditions of temperature
and humidity, due to their structure, which protects them in exogenous stages. This allows
the parasites to resist the common inactivation methods used for bacteria and viruses, such
as heating, irradiation, and chemical disinfection [33–38].

Fresh vegetables may be contaminated at several steps along the food production
chain, such as during crop production, harvesting, and processing, or directly by infected
food handlers. Potential sources include water (irrigation water or water used for washing
produce), wastewater discharge, soil contaminated with fecal waste from warm-blooded
animals/livestock, organic fertilizers, and human handling during downstream processing
and packaging steps [5,38–41].
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In a recent work performed by our team [42], within the scope of the SafeConsume
project (https://safeconsume.eu/, accessed on 11 July 2022), we designed a laboratory
approach for the detection of T. gondii oocysts in vegetables and berry fruits based on the
knowledge gained with Method 1623.1/EPA for the detection of the Cryptosporidium oocyst
and Giardia cyst [43,44]. Moreover, we also described a new recombinant T. gondii oocyst
wall protein 1-derived fragment, rTgOWP1-f. Strong microscopic evidence of the ability of
rabbit polyclonal antibodies, anti-rTgOWP1-f, to identify environmental T. gondii oocysts,
suggests rTgOWP1-f may be a potential biomarker for the detection of environmental
oocysts [45]. Our studies clearly indicate that consumption of fresh produce may be a
source of T. gondii infection in humans and a potential risk for consumers. However,
technical refinement is still required for routine application at the industrial level or for
food testing in laboratories for the detection of T. gondii oocysts.

Taking into account the experience and learning obtained from the SafeConsume work
package 2 (WP2) laboratory studies, and the “One Health” approach, a parallel preliminary
study was undertaken in order to assess the microbiological quality of fresh vegetables,
highlighting not only bacteria (E. coli, L. monocytogenes, and Salmonella spp.) covered by the
legislation [17], but also the zoonotic protozoa G. duodenalis and Cryptosporidium spp.

2. Materials and Methods

Five bulk and 11 packaged and ready-to-eat (RTE) vegetables were collected from local
producers in Portugal and Spain, or provided by retail sellers, between September 2018
and June 2019 (Table 1). The fresh produce comprised lettuce (Lactuca sativa), watercress
(Nasturtium officinale), coriander (Coriandrum sativum), and parsley (Petroselinum crispum).
Ready-to-eat mixed salads included different varieties of lettuce, arugula (Eruca vesicaria
sativa), endive (Cichorium endivia), chicory (Cichorium intybus), carrot (Daucus carota sativus),
red cabbage (Brassica oleracea var. capitata f. rubra), and lamb’s lettuce (Valerianella locusta).

Table 1. Origin, collection date, and product presentation of the vegetable samples.

Sample
Number Product Origin Collection Date Product

Presentation

1 Watercress Portugal 27 September 2018 bulk
2 Coriander Portugal 27 September 2018 bulk
3 Parsley Portugal 27 September 2018 bulk
4 Watercress Portugal 2 October 2018 RTE
5 Mixed salad Portugal 2 October 2018 RTE
6 Coriander Portugal 2 October 2018 packaged
7 Parsley Portugal 2 October 2018 packaged
8 Watercress Portugal 12 October 2018 RTE
9 Mixed salad Portugal 12 October 2018 RTE

10 Coriander Portugal 12 October 2018 packaged
11 Parsley Portugal 12 October 2018 packaged
12 Mixed salad Portugal 4 February 2019 RTE
13 Mixed salad Spain 17 June 2019 RTE
14 Mixed salad Spain 17 June 2019 RTE
15 Arugula Spain 17 June 2019 RTE
16 Lettuce Portugal 18 June 2019 bulk

RTE: ready-to-eat.

The concentration and recovery of G. duodenalis and Cryptosporidium spp. (oo)cysts
from the vegetable samples were performed by Filtration/Immunomagnetic Separation
(IMS)/Fluorescence Assay (FA) (Method 1623.1: Cryptosporidium and Giardia in water; US
EPA 816-R-12-001-Jan 2012). Method 1623.1 is a validated and approved method used for
surface water analysis [43]. This method was previously fully established in our laboratory,
initially to gain knowledge regarding the contamination of water with Cryptosporidium spp.
and Giardia spp. in the northern region of Portugal [44,46]. We also previously designed
a long-term program aiming to identify the sources of surface water and environmental

https://safeconsume.eu/
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contamination, working with the water-supply industry, and to provide cattle and human
fecal screening and molecular characterization [47–49].

Briefly, vegetable samples weighing between 350 and 900 g each were manually
washed in large volumes of distilled water (between 10 and 80 L) (Table 1). A 1 µm Filta-
Max® filter (IDEXX, Westbrook, ME, USA) applied to a peristaltic pump at a pressure of
three bar was used for washing water filtration. Elution was performed in a Filta-Max®

manual wash station and concentrated into 3 mL of phosphate-buffered solution (PBS) with
0.01% of Tween 20 (Merck KGaA, Darmstadt, Germany), after centrifugation at 1000× g
for 10 min at room temperature. Magnetic beads conjugated with specific antibodies
(Dynabeads™ GC-Combo; Thermo Fisher Scientific, Waltham, MA, USA) were added to
the concentrate, and potential magnetized Cryptosporidium oocysts and Giardia cysts were
recovered from the extraneous material using a magnet. Fluorescein isothiocyanate (FITC)
conjugated anti-Cryptosporidium spp. and anti-Giardia spp. monoclonal antibodies were
used according to the instructions of the manufacturer, Aqua-Glo™G/C (Waterborne, Inc.,
New Orleans, LA, USA), on slides containing the potential samples’ parasites, and observed
by epifluorescence microscopy at 200×magnification. The total number of (oo)cysts per
slide/sample was screened by two different microscopists to cross-check the results.

DNA was extracted from slides of positive samples containing two or more Cryp-
tosporidium oocysts and Giardia cysts. Genomic DNA was extracted by scraping the
slides to collect the (oo)cysts using the QIAamp® DNA Mini Kit (Qiagen GmbH, Hilden,
Germany) according to the manufacturer’s instructions and as described previously by
Almeida et al. [46]. Two-step nested PCR was performed to amplify a portion of the small
subunit rRNA gene of Cryptosporidium with primers and PCR conditions described by
Xiao et al. [50]. For G. duodenalis, β-giardin was the gene chosen for amplification by semi-
nested PCR [51]. Positive amplification products were purified using the GRS PCR &
Gel Band Purification kit (GRiSP Research Solutions, Porto, Portugal) according to the
manufacturer’s instructions and sequenced using Sanger sequencing services from GATC
Biotech (Eurofins Genomics, Ebersberg, Germany). Sequence comparison was made with
already published sequences using the NCBI Basic Local Alignment Search Tool (BLAST).

For bacterial analysis, samples were transported to the laboratory in portable, insulated
cold-bags and stored at 4 ◦C until analysis, normally between 1 and 2 days after collection.
Twenty-five grams of each sample was added to 225 mL of sterile buffered peptone water
(Biokar Diagnostics, Beauvais, France), and homogenized in a stomacher (Interscience,
Saint Nom la Brèteche, France) for 2 min. Appropriate decimal dilutions were prepared
in Ringer’s solution (Biokar Diagnostics) for microbial enumeration: colony counts at
30 ◦C on Plate Count Agar according to ISO 4833-1:2013 [52]; Enterobacteriaceae on RAPID′

Enterobacteriaceae medium (Bio-Rad, Hercules, CA, USA; ISO 16140 [53], 2016, ISO 21528-2,
2017 [54]); E. coli according to ISO 16649-2:2001 [55]; L. monocytogenes according to ISO
11290-2:2017 [56]; and yeasts and molds according to ISO 21527-1:2008 [57]. Detection
of L. monocytogenes (ISO 11290-1:2017 [58]), Salmonella spp. (ISO 6579-1:2017 [59]), and
E. coli was also performed. After appropriate incubation, colonies were counted and/or
confirmatory tests performed and the colony forming units (CFU)/g calculated.

3. Results and Discussion

Between one and four G. duodenalis fluorescent cysts (Figure 1A) were observed in
microscopic slides of four of the 16 samples (25.0%; 95% CI: 9.7 to 49.9%) (Table 2). The
same percentage (25.0%) was obtained for the number of Cryptosporidium spp. (Figure 1B)
oocysts (between one and eight oocysts) (Table 2); however, none of the Cryptosporidium-
positive slides were confirmed by PCR. On the contrary, three of the four Giardia-positive
slides were also confirmed by PCR. β-giardin fragment sequencing analysis revealed the
presence of G. duodenalis assemblage A having more than 98% homology with G. duode-
nalis assemblage A isolates available in the Genebank database (KJ668152.1, KP687765.1,
KF963547.1, EU642897.1, EU200934.1). The determination of genotypes is important for
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the identification of risk to human health, and potentially, the source of contamination.
Assemblage A is one of the genotypes that undeniably causes human infections [24].

Figure 1. Epifluorescence microscopy images (400× magnification) of Giardia cysts (A) and Cryp-
tosporidium oocysts (B) found in sample 12.

Table 2. Protozoa and bacteria positive samples.

Sample Product Product
Presentation

No.
Cysts

Giardia

PCR
Giardia

No. (oo)cysts
Cryptosporidium

PCR
Cryptosporidium

Genotyping
(Assemblage)

2 Coriander bulk 2 Negative 0 n.a. n.a.
8 Watercress RTE 1 Positive 0 n.a. A

9 Mixed
salad RTE 1 Positive 0 n.a. A

12 Mixed
salad RTE 4 Positive 8 Negative A

13 Mixed
salad RTE 0 n.a. 1 Negative n.a.

15 Arugula RTE 0 n.a. 1 Negative n.a. LMO LMO,
detection

16 Lettuce bulk 0 n.a. 2 Negative n.a. Present
< 4.0 × 101

Positive in
25 g

RTE: ready-to-eat; n.a.: not applicable; LMO: Listeria monocytogenes.

Globally, significant variations in the prevalence of these parasites have been observed
in vegetables, ranging between 0% and 53% for G. duodenalis and between 0% and 63% for
Cryptosporidium spp. (reviewed by Berrouch et al. [60]). Several factors can easily explain
this discrepancy, such as different sampling procedures and detection methods having
different recovery efficiencies and detection limits, distinct geographic locations having
variable seasonal climatic conditions, and the degree of local development. The type of
vegetable, in addition to the quality of water used for irrigation and washing, the proximity
of livestock, and the presence of organic fertilizers, are also extremely relevant [60].

Unexpectedly, positive samples were only observed for the RTE type of produce. Thus,
it is acceptable to discuss the management of the washing systems used in the food industry,
even based on these preliminary data. Indeed, Trevisan et al. [61] noted that the use of
treated wastewater for irrigation increases the chance of contamination of RTE/packaged
vegetables. Other studies mention that contamination of RTE products by food handlers
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during packing is also a transmission route of Cryptosporidium and Giardia [61–63]. There-
fore, it is clear that current RTE production treatment does not guarantee that fresh produce
will be free from protozoa, and that alternative water treatments and increased hygienic
measures for food handlers are necessary to ensure the safety of RTE vegetables.

Fresh produce has repeatedly been implicated in foodborne outbreaks and recalls, with
Salmonella spp., E. coli, and L. monocytogenes the most implicated bacteria [64]. However,
with the exception of a lettuce sample (sample no. 16) in which L. monocytogenes was
detected, but at levels below 4 × 10 CFU/g (Table 2), all the sampled products were
considered safe based on the microbiological criteria set by the European Commission
Regulation (EC) No. 2073/2005 for “Pre-cut fruit and vegetables (ready-to-eat)”, i.e., the
absence of Salmonella spp. and L. monocytogenes in 25 g samples and counts of E. coli not
exceeding 1000 CFU/g. This is in agreement with previous studies, which demonstrated
that the prevalence of these pathogens in this type of product is generally low [65–67].
Although the sample that tested positive for L. monocytogenes was unwashed lettuce, “Even
if salad leaves and herbs are labelled with an instruction to wash before consumption, they
are considered ready-to-eat. Although washing can reduce microbial contamination on the
plant’s surface, it is not effective to eliminate microorganisms of concern or reduce them
to an acceptable level because some pathogens can become internalised within the plant’s
tissue.” [68].

The other microbiological parameters are recognized as hygiene and spoilage indicator
micro-organisms in RTE foods. Most of the parameter results fell within the Satisfactory-
Questionable categories according to the values recommended by the Portuguese National
Health Institute [69]. Yeasts and molds were exceptions, with some products being classified
as “Not Satisfactory” (yeast and mold counts exceeding, respectively, 106 CFU/g and
103 CFU/g) (Supplementary Table S1).

The knowledge gained in this field during the course of SafeConsume WP2 highlighted
the need to include protozoa in the microbiological criteria for foodstuffs, as required by
EU Law No. 1441/2007. This is particularly the case of T. gondii and the enteric pathogens
G. duodenalis, Cryptosporidium spp., and C. cayetanensis, which are the most common pro-
tozoa associated with foodborne illness outbreaks. The absence of fecal contamination
in vegetables and the guarantee of food safety for consumers can definitely no longer be
defined only by the analysis of detection limits for bacteria, i.e., E. coli, L. monocytogenes, and
Salmonella spp. However, microbial risk assessment evaluation and definition of strategies
for the management and control of these parasites requires total collaboration between
academia and industry, and investments by major companies and governments. These
efforts are required to support and foster epidemiological and surveillance studies, and for
the development of new technologies and “golden standard procedures” for protozoan
removal (or recovery) and detection along the food chain. Monitoring of irrigation and
processing water and the efficiency of wastewater treatment plants should be regularly
performed. In addition, analysis of soil and manure used as fertilizer should be frequently
undertaken, and animal access to crops and personal hygiene regulations applied to food
handlers should be controlled. For instance, in addition to the use of sodium hypochlorite
as a disinfectant, improved, safer methods, such as UV treatment, treatment with chlorine
dioxide or ozone, membrane filtration, and a multi-barrier approach could be used as
treatments for (oo)cyst inactivation and removal [33,37,70]. Furthermore, improvement in
tools used for genotyping is necessary for the rapid and reliable detection of protozoans of
concern for human health and to clarify their transmission patterns. The development of
accurate methods for determining the viability and infectivity of (oo)cysts would also be in-
valuable in surveillance and outbreak studies, and for estimating risk to consumers. Finally,
controlling foodborne (and waterborne) diseases should always be accomplished from a
collaborative One Health perspective, involving a multidisciplinary team of public health
and food experts, epidemiologists, veterinarians, environmental scientists, microbiologists
(bacteriologists, virologists, and parasitologists), farmers, industry managers, lawmakers,
and media communication specialists.
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4. Conclusions

Although preliminary, the findings of the present study highlight the importance of
implementing strategies for the detection, inactivation, and removal of parasite (oo)cysts in
fresh produce and water, at all stages of food production, including pre- and post-harvest
processes. The consumption of raw and/or undercooked vegetables, and particularly
salads, has increased due to changes in the eating habits of consumers, who are switching to
healthier diets. As a result, there is an urgent need to include protozoa in the microbiological
criteria of EU regulations relating to foodstuffs. In addition, it is also important to make
consumers aware of hygiene measures at home when washing and cooking raw vegetables.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12147145/s1.
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