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Earnings Prediction using Machine Learning Methods and Analyst Comparison 

 

Alexandre Inês Martins 

 

Abstract 

 

In the course of this dissertation we propose an experimental study on how technical, 

macroeconomic, and financial variables, alongside analysts’ forecasts, can be used to 

optimize the prediction for the subsequent quarter’s earnings results using machine learning, 

comparing the performance of the models to analysts’ forecasts. The dissertation includes 

three steps. In step one, an event study is conducted to test abnormal returns in firms’ stock 

prices in the day following earnings announcement, grouped by earnings per share (EPS) 

growth in classes of size 3, 6 and 9, computed for each quarter. In step two, several machine 

learning models are built to maximize the accuracy of EPS predictions. In the last step, 

investment strategies are constructed to take advantage of investors’ expectations, which are 

closely correlated with analysts’ predictions. In the backdrop of an exhaustive analysis on 

quarterly earnings predictions using machine learning methods, conclusions are drawn 

related to the superiority of the CatBoost classifier. All machine learning models tested 

underperform analyst predictions, which could be explained by the time and privileged 

information at analysts’ disposal, as well as their selection of firms to cover. Regardless, 

machine learning models can be used as a confirmation for analyst predictions, and 

statistically significant investment strategies are pursued with those fundamentals. 

Importantly, high confidence predictions by machine learning models are significantly more 

accurate than the average accuracy of forecasts. 

 

Keywords: Earnings Announcements; Analyst errors; Event Study; machine learning; 

Technical Analysis;  
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Previsão the anuncios de resultados financeiros utilizando modelos de Machine 

Learning e subsequentemente comparando com previsões de analistas. 

 

Alexandre Inês Martins 

 

Resumo 

 

No decorrer desta dissertação, realiza-se um estudo experimental sobre a forma como 

análises técnicas, macroeconómicas, fundamentais e as previsões dos analistas podem ser 

utilizadas em conjunto para otimizar a previsão dos resultados de lucros do próximo 

trimestre de empresas A dissertação inclui três etapas. Na primeira etapa, é efetuado um 

estudo de evento para testar os retornos anormais nas ações no dia seguinte aos anúncios de 

lucros, sendo estes agrupados pelo crescimento do lucro por ação nas classes de 3, 6 e 9, 

calculado para cada trimestre. Na etapa dois, vários modelos de machine learning (ML) são 

concebidos para maximizar a precisão das previsões de crescimento de lucros de empresas. 

Na última etapa, estratégias de investimento são construídas para tirar proveito das 

expectativas do investidor, que estão relacionadas com as previsões dos analistas. Uma vez 

que um dos projetos de pesquisa mais exaustivos sobre previsões de lucros para o próximo 

trimestre, conclusões podem ser retiradas relacionadas com a superioridade do modelo 

CatBoost nas previsões de lucros. Todos os modelos de testados apresentam desempenho 

inferior às previsões dos analistas, o que pode ser explicado pelo tempo e pelas informações 

privilegiadas a que os analistas têm acesso, bem como pela escolha da empresa sob a qual 

as suas previsões incidem. Os modelos de podem ser utilizados como uma confirmação para 

as previsões dos analistas criando estratégias de investimento estatisticamente significativas. 

Além disso, as previsões com alta confiança por modelos de são mais precisas do que a 

precisão média das previsões dos analistas. 

 

Palavras-chave: Anúncio de Resultados; Erros dos analistas; Estudos de Eventos; Machine 

Learning; Análise Tecnica;  
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1. Introduction 

1.1 Motivation and Contextual Analysis 

The predictability of events is one of the most popular topics of research in the field of finance, 

and the predictability of earnings is no exception. The company returns in the stock market 

reflect, at least in the long-term, the firm performance and for that reason, investment banks 

spend millions of dollars in compensations for analysts to predict earnings every quarter for 

specific firms that drive the upcoming path of the stock. During the year, there are few days 

that can really shake someone’s portfolio, and earnings announcements are known for that 

exactly, as one of the events that are responsible for the biggest moves, i.e., for the moments 

with the highest volatility and where fortunes are made and lost. If prediction models are robust 

in earnings predictions, then investors can use those models to invest or divest in a specific 

company before earnings announcements. This can both protect them from extreme events and 

enable to invest in companies before earnings. This paper focuses on a quarterly timeframe to 

permit investment strategies, but the models could also be extended to other timeframes to 

predict earnings of companies trading in the stock market about to be acquired, either by the 

acquiring firm or for a long-term investment. 

According to past research (Easton & Harris, 1991) there are many important earnings 

accounting figures such as EBIT, earnings per share (EPS), or earnings yield highly correlated 

to cumulative abnormal returns. In this dissertation, earnings growth is the target variable, due 

to its higher amount of information compared to the earnings per share metric. EPS depend on 

the number of shares, on buyback amounts, varying with the number of shares. The same 

cannot be said about earnings growth, getting from an absolute to relative variable. 

In the prediction of earnings literature, analysts’ predictions are intensively scrutinized, 

focusing on topics from the timing of the predictions to analyst error in predictions and its 

consequences to stock returns. Since the release of the study by Ball and Brown (1968), many 

explored the relations between earnings accounting figures and stock returns, where analyst 

estimates of earnings have been a key proxy for EPS. According to Brown et al. (1987) analyst 

predictions are superior to time-series forecasts due to both time and information advantages. 

Ever since, the research uses analysts’ mean predictions as an estimate for EPS and considers 

it to be in accordance with investors’ expectations. The focus around analysts’ predictions 

shifted to using realized earnings to explain analysts’ errors in predictions, to state the 

consequences of this errors in post-earning returns and whether analysts have a bias towards 

optimistic or negative predictions. Although it is relevant to understand when and why analysts 
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fail or get right their predictions, all this research is undertaken as a post-event analysis, 

meaning it will not help investors to predict what will happen in the next earnings to a specific 

company. For a lack of better alternatives, analysts are still widely used as an estimate of 

earnings, some may trust a specific analyst more than the others, but most people use the mean 

analyst prediction. Initially, models like multiple linear regressions and logistic regressions 

were used to predict earnings, without success compared to analysts. With the increase of the 

computing power and data in the society, also came machine learning (ML) models, much 

more complex and diverse models. ML relighted all the debate around a way to outperform 

analyst predictions with the need to create a real-time unbiased prediction of earnings. Some 

models predict the sign of earnings, but investors need models that account not only for the 

sign but also for the magnitude of each earnings report. That’s not all, because investors also 

need to know the probability or confidence of each prediction.  

This research focuses on the use of ML models, from the simple Logistic regression to the more 

complex Neural Networks, in order to create a real-time prediction of earnings. The research 

does not focus so much on why analysts’ predictions are right or wrong or what’s the 

determinants for those distinct moments, but the confirmation that analyst errors create 

significant abnormal returns. Therefore, this research is conducted with earnings divided in 

equal size bins and an attempt to catch those errors in the models by creating better forecasts 

than analysts.  

In order to account for the variability of financial information around earnings, this problem is 

going to be treated as a classification problem with the earnings growth in each period to be 

divided in 3, 6 and 9 equal sized bins. The decision was taken in order to have more robust ML 

models, although the change from a regression to classification problem may give more 

relevance to extreme events (responsible for a clear change of class) and may be difficult to 

account for small changes that can make the values be just over the beginning of the next bin, 

without a significant change.  

Further detailed hypotheses of this research are explained in the next section, “1.2. Hypothesis 

and Structure”. 
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1.2. Hypothesis and Structure 

1.2.1 Investors expectations and the cross-section of stock returns. 

The first main goal of the paper is to prove that investors’ expectations are closely related to 

analyst expectations, which are biased and off-target in many situations. It should be observed 

that the earnings predictions are not as much correlated with post-earning stock returns. On the 

other hand, differences between mean analyst predictions and actual earnings results should 

yield abnormal post-earning returns, which increase with the difference between the two and 

are consistent for different timeframes.  

Hypothesis 1: Differences between analyst predictions and actual earnings yield 

abnormal returns which increase with the difference between the two. 

 

1.2.2 ML models vs analyst predictions. 

If the ML forecast for earnings represents the unbiased earnings prediction, it should present a 

higher accuracy than mean analyst expectations. Models should not use biased analyst 

predictions as inputs in order to beat analysts. If analyst present more accurate predictions, then 

they could contain information that is not present in the markets and their predictions need to 

be incorporated into ML models.  

Hypothesis 2: ML models can be used as a real-time unbiased earnings predictor more 

accurate than analysts. 

 

1.2.3 ML models & analyst prediction confirmations. 

Whether or not more accurate than analysts, this research presents a totally different approach 

to earnings predictions based on technical variables, macroeconomic variables, and financial 

ratios variables. Combining this perspective with the analysts’ mean perspective should act as 

a potential confirmation for the analyst predictions.  

Hypothesis 3: ML models can be used as a confirmation for analyst predictions, with 

higher earnings accuracy for when analyst and this research agree on the prediction. 

 

1.2.4 Structure of the research 

Regarding the structure of this paper, the next chapter will focus on the literature review, 

providing an extensive overview of the different methods explored for the topic at hand. 

Furthermore, in Chapter 3, the dataset, data treatment and data exploration will be reviewed. 

In Chapter 4, the methodology for both the benchmark models and ML models will be 
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explained. In Chapter 5, the model evaluation metrics will be presented alongside the variable 

importance metrics. The results of the analysis will be displayed and discussed in Chapter 6. 

Finally, in Chapter 7 the research will be concluded. 
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2. Literature Review 

2.1. Early Empirical Approaches   

Earnings announcements carry important information about the firms. In the 1950s Modigliani-

Miller theorem stated that the market value of a company is correctly calculated as the present 

value of its future earnings and its underlying assets, being independent of its capital structure. 

As one of the key elements to the constitution of the “fair” price of company stocks it is natural 

that earnings announcements may change the entire picture around a company future or simply 

confirm previous predictions. In some cases, the initial reaction to earnings announcements 

may last several weeks or even months. This anomaly is called Post-Earnings-Announcement 

drift (PEAD). It describes the drift of a firm’s stock price in the direction of the firm’s earnings 

surprise for an extended period of time. Ball and Brown (1968) and Beaver (1968) reported the 

first well-documented relationship between earnings and stock market reactions, and since then 

many tried to explain this phenomenon.  

The first discussion came in the form of the analysis of analyst predictions. Brown and Rozeff 

(1978) compared analysts forecasts to univariate time series models for a period from 1 to 4 

quarters ahead, observing the overall superiority of analyst predictions. It’s also important to 

state the use of only 50 firms from 1972 through 1975 in the paper. Even the most extensive 

sample used in research at the time (Fried & Givoly, 1982) accounted for only 424 firms from 

1969 through 1979, which is fairly low for today’s standards. These choices can be justified by 

the data requirements of ARIMA models or filters to use only stocks traded on the NYSE, but 

independently of the reasons it does not change the fact that it’s difficult to take broad 

conclusions from a limited sample of data. Brown et al. (1987) also concluded that analysts’ 

forecasts are superior to time-series forecasts for quarterly estimate windows. Bhushan (1989) 

identified factors responsible for analysts following from firm size to institutional ownership, 

all significant, proving again that should not be generalized at this point that analyst have better 

forecasts than all other models. As an alternative method, Ou and Penman (1989) attempt to 

predict the sign of earnings changes. Their general research question is whether and to what 

extent standard financial ratios can be useful for financial statement analysis. 

Abarbanell and Bushee (1997) explained the importance of fundamental signals to predict 

future earnings changes. They also asserted the heterogeneity in the importance of different 

fundamental signals and the importance of distinguishing relevant fundamental information 

from non-relevant information. Myers et al. (2007) explore the momentum properties of 

company earnings, by computing the probability of random binomial variables through time-



 12 

series models to predict split-adjusted EPS. Fundamental data in the form of financial ratios 

and momentum variables are going to be applied to the research. 

Hess and Kreutzmann (2010) provide evidence that unexpected macroeconomic news are 

captured when individual analysts revise their earnings forecasts, which implies that analysts 

use macroeconomic information when forecasting. Shu et al. (2013), using data related to U.S. 

firms over the period from 1962 to 2009, indicates that when predicting the future earnings of 

firms, the predictive accuracy of model-based approaches is improved by incorporating 

macroeconomic information. Although it’s stated that the effect is much stronger for longer 

horizons and this research only uses a short-term horizon, macroeconomic variables are going 

to be used, nonetheless.  

Although the focus of this research are quarterly predictions, analysts’ forecasts have been used 

as a proxy for earnings even for long-term timeframes, as long as 2 to 5 years ahead, without 

proper prior research. The same applies to small firms that were almost not present in the early 

literature and to which analysts’ predictions are used as well. All these papers misuse of analyst 

predictions gives even more credit to them without proof of the cause. In research from 

Bradshaw et al. (2012) it was reexamined whether time-series forecasts could outperform 

analysts. Surprisingly, it was found that time series forecasts provide the most accurate estimate 

of long-term (2- and 3-year-ahead) earnings predictions. One can ask if more advanced models 

can also outperform analysts in the short-term?  

The basic tenor of results from many prior studies is that analyst forecasts are predictably 

biased and forecast bias appears consistent with several stock price anomalies. 

 

2.2. ML Models  

As computing power and ML techniques have advanced drastically, allowing researchers to 

examine whether additional independent variables and more computer intensive methodologies 

might be useful to predict future earnings is of crucial importance. ML models give a flexibility 

in the structure of the models completely opposite to the linear regression models used in 

previous research. The higher the complexity of the model the harder it is to interpret it beyond 

accuracy and other basic measures. Earnings prediction is a problem of supervised leaning, in 

which the data is trained in the model with each observation in order to get the best predictive 

model. Several ML techniques were tried in the past to predict earnings. 

Research from Zhang et al. (2004) showed the that the application of the neural network 

approach incorporating fundamental accounting variables results in forecasts that are more 
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accurate than linear forecasting models for 1-quarter ahead forecasts. To estimate the neural 

network weights of their neural network models, Zhang et al. (2004) used backward 

propagation (BP). Cao and Parry (2009) found that the genetic algorithm produces models that 

are significantly more accurate than the models examined by Zhang et al. (2004) using 

backward propagation. According to more recent research (Etemadi et al., 2014), rule 

extraction from neural network by genetic algorithm technique is significantly more accurate 

than multi-layer perceptron (MLP). There is no comparation between these models and analysts 

or other ML models as it was not the focus of the papers, giving less relevance to the research 

as it would be expected that complex neural networks would outperform linear forecasting in 

the first place.  

According to new research (Fischer et al., 2020), support vector machine performs better than 

BR ARIMA developed in Brown and Rozeff (1979) as the premier univariate statistical model 

for the prediction of quarterly earnings. Again, there is lack of comparison between this model 

and other ML models. 

In recent research, van Binsbergen et al. (2020) introduces a real-time measure of conditional 

biases in firms' earnings forecasts for different horizons. The measure is defined as the 

difference between analysts' expectations and a statistically optimal unbiased machine-learning 

benchmark. Van Binsbergen et al. (2020) uses Random Forest to predict earnings and analyst 

forecasts as inputs of the model, following the approach of creating a conditional prediction of 

earnings starting with analyst predictions until getting to an unbiased prediction. They observed 

the superiority of their models for different timeframes (from 1 quarter ahead to 2 years).  

Xinyue et al. (2020) decided to investigate the use of LightGBM (a Gradient Boost Decision 

Tree model introduced by Microsoft in 2017) in earnings prediction. The paper compares 

earnings predictions using LightGBM (without analyst prediction data as inputs) to analyst 

predictions for 1-quarter and 1-year ahead forecasts. Contrary to previous papers, they chose 

to transform the problem into a qualitative one, transforming analyst predictions and actual 

earnings into bins of different size (3, 6 and 9) and comparing accuracies. The paper concluded 

the superiority of analyst predictions, but also observed that when LightGBM and analysts have 

the same prediction for earnings, accuracy is much higher. LightGBM can be then used as a 

confirmation for earnings predictions and for the prediction of the earnings sign, also computed 

during the research for a limited sample. Xinyue et al. (2020) also has its downfalls, with only 

one ML model used and without a deeper analysis to each prediction class to check the model 

performance side by side to analysts. 
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Hunt et al. (2019) uses a non-parametric ML technique, random forest, to predict the sign of 

earnings changes in annual returns. They find that Random Forest method significantly 

improves out-of-sample forecast accuracy and that these forecasts are useful to generate 

abnormal returns. 

While the application of ML techniques is becoming increasingly popular in finance and in 

earnings predictions, only one article created a real time variable to predict forecast errors and 

outperforming analysts at the same time. Other papers use several methods that outperform 

linear models in earnings forecasts, but with no mention of analysts. Most papers do not use 

more than one ML model, justifying the choice with broad comparisons between models’ 

performance while it should be the opposite, problem specific. Alternative approaches can be 

found, with papers predicting the sign of the change in earnings. This is important, but is only 

one part of earnings prediction, with the other being the magnitude of the change. Accurate 

earnings predictions are of the upmost importance.  
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3. Data 

3.1 Data Retrieval 

For the purpose of this paper, the US stock market is examined over a 20-year time span, from 

the end of the third quarter of 2000 to the end of 2020, and the sample only includes firms 

traded on NASDAQ, NYSE  and AMEX, excluding others. Financial input variables are 

retrieved with quarterly frequency from Financial Ratios Firm Level by WRDS, namely 

Price/Earnings, Long-term Debt/Invested Capital, Cash Ratio. Analyst EPS estimates are 

retrieved from IBES database, as well as actual EPS values. Macroeconomic variables are taken 

from FRED (Economic Research Federal Reserve Bank of St. Louis). CRSP is used to retrieve 

daily stock returns, closing price, daily volume, number of shares outstanding and sic codes. 

Moreover, Kenneth French Data Library is used to retrieve risk-free rates and Fama-French 

Factors (Market Risk Premium, Size, Value, Operating Profitability and Investment), to run 

regressions presented in later sections. Beta Suite by WRDS is used to retrieve the betas of the 

Fama French 3 Factors, as well as the idiosyncratic volatilities (ivol) and alphas associated with 

the models for the US market. Those WRDS computations assumed an estimation window of 

252 days and a minimum window of 126 days. 

 

3.2 Variable Construction 

In order to make an extensive analysis into earnings predictions past financial variables, 

macroeconomic variables and market movement variables are used. 

 

3.2.1 Financial Variables 

For each quarter earnings of each firm, 31 financial ratios are retrieved corresponding to the 

ratios of the firm in the corresponding quarter of the previous year, lagging 4 quarters to the 

present. To add to that, an additional 6 financial ratios for the previous quarter are also 

retrieved. These financial ratios were chosen to include a complete diversity of the firm 

fundamentals, such as cash flows, dividends, margins, return on assets, inventory, debt, interest 

and current ratio. In order to choose the variables to lag one quarter, the correlation between 

all financial variables from t-4 and EPS growth is computed, choosing the 6 most correlated 

variables to construct a similar measure, but only lagged one quarter. A complete set of variable 

definitions can be found in appendix 1. 
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3.2.2 Macroeconomic Variables 

The economy can have an overwhelming effect on company earnings, in some industries more 

than another’s and in specific periods. Economic data is most of the times only known in the 

quarter after the occurrence, same as EPS. For that reason, all macroeconomic data used in the 

research is lagged one period, for the information available at the moment of the prediction to 

be the same as the one at the public hands of investors and analysts. These variables are: 

 

3.2.3 Market Movement Variables 

The market may have more information than past information about the firm financials or the 

economy. Then, it is imperative to have information related to the stock market movements 

before company earnings. This research uses the ones detailed in table 2:  

 

The day of the report is not considered, having too much volatility, making it difficult to drive 

conclusions from the data. 

 

3.2.4 Dependent Variable and Analyst’s variables 

The models are defined to use a modificated version of EPS growth as the dependent variable, 

defined as EPS in quarter t minus EPS in quarter t-1, all divided by the absolute value of EPS 

in quarter t-1. EPS growth is defined that way to capture both the effect of the magnitude of 

the earnings announcement and the direction of the change. For instance, a firm with a negative 

EPS in quarter t-1 of -10 followed by a change to a positive EPS value of 5 in quarter t would 

give a negative EPS growth of -300% when in fact the result would be extremely positive for 

Variable Computation 

GDP 
US Personal Consumption Expenditures: Durable 

Goods (PCDG) data from t-1 

PC US GDP data from t-1 

Table 1 | Macroeconomic variables used and their computation: In this table the construction of the variable is 

described alongside their names. 

Variable Computation 

volume 
5 trading days cumulative volume (from day 6 to day 

1)/ number of shares outstanding 

pre_earnigs_return 5 trading days cumulative return (from day 6 to day 1) 

Table 2 \ Market Movement variables used and their computation: In this table the construction of the 

variable is described alongside their names. 
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the firm in that scenario. The modified growth formula would give a contrasting result of 300% 

growth. On all occasions referring to EPS growth in this research, in fact, the modified EPS 

growth is always the one being referred to. 

After the computation of EPS growth, this variable is then divided in 3, 6 and 9 equal size bins 

in each quarter, based on the values of EPS growth of each firm in each quarter. All firms with 

EPS information and analysts’ predictions are considered at this stage. The final sample has 

different bin sizes, because even though some EPS do not have other crucial information and 

were deleted after, bins were still computed on this stage not to create a bias towards firms with 

more information. This way the class of earnings used are even closer to the true classes for all 

observations. The different bin size EPS variables are used in the respective prediction for 

different class sizes. The same is done with analyst predictions. First, analyst predictions done 

until the end of each quarter are taken into account and used to compute the mean EPS analyst 

forecast. From there, in each quarter, it’s subtracted the EPS in the quarter before, dividing all 

by the absolute value of EPS in quarter t-1. Then the values are divided in similar class sizes 

to the actual EPS growth, meaning in a prediction of 6 classes all variables divided in bins have 

6 classes. Also related to EPS, the values for EPS growth from quarter t-1 and quarter t-4 are 

also computed (using the absolute value of EPS growth in t-2 and t-5 respectively in the 

division part of the growth formula). The difference between the actual earnings bin and analyst 

prediction bin in the previous quarter is also computed.  

 

3.3 Data Treatment  

Variable standardisation is a common practice in ML, it is normally done by subtracting the 

mean and dividing by the unit variance, though this is prone to some outlier influence. Thus, 

all variables suffer a process named Standardisation using the Scikit-Learn Scale method. The 

analysis for all models is conducted on a four-year rolling window basis. With this, 68 

overlapping out-off-sample windows are analysed, and the metrics’ results are averaged for 

each model. In order not to contaminate the train set with test set information, the variable 

standardization is done on the train set first and then the parameters of the procedure are used 

on the test set.  

Variable deletion was used on variables with over 75% missing rate (dpr_t-4, Intcov_ratio_t-

4, Fcf_ocf_t-4, Int_debt_t-4, efftax_t-4). Although some high missing variables can be 

significant to earnings prediction, it would be a waste of resources to investigate repetitive 

missing values due to multiple formats. To be able to make the predictions and for the data to 
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be comparable, only firms with Q1 to Q4 ending in month 3,6, 9 and 12 of each year are 

considered. All earnings reports before market open are considered as if the report was 

announced in the previous trading day after market close. The price of the firm stock needs to 

be higher than 5 in the end of the quarter that is going to be reported in order to be considered 

in the analysis. Dividend variable was turned into a dummy equal to 1 if the firm pays 

dividends, 0 otherwise. All observations with missing information remaining are not 

considered in the analysis. Then a correlation matrix is computed. Variables with high 

correlation with each other and low correlation to the dependent variable are deleted. In total 8 

variables were deleted (ps_t-4, Debt_at_t-4, Debt_invcap_t-4, GProf_t-4, Invt_act_t-4, 

Cash_debt_t-4, Totdebt_invcap_t-4, Debt_capital_t-4). The remaining variables correlation 

matrix can be found in appendix 2. In the end there were 59715 observations, with an average 

of 711 earnings studied per quarter. Those earnings were associated with 2663 firms that 

remained in the analysis, trading on NASDAQ (50.29%), NYSE (48.85%) and AMEX 

(0,86%). 

 

3.4 Data Exploration 

For further understanding of the data at hand, data exploration techniques had to be applied 

and their results analysed before transforming the EPS into bins. The first method is to conduct 

a summary statistics analysis which is displayed in Figures 1 and 2.  

Figure 1 | Analyst Error in EPS Forecast per quarter: This graph represents the magnitude of analyst errors 

per quarter in the dataset throughout the out-of-sample time period studied. 
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The magnitude of analyst errors consistently along the entire sample for the one quarter ahead 

shows huge error, with expectations far away from reality, on average. There was a peak in this 

discrepancy during covid in 2020, in which the errors were at the highest ever. In 2009 during 

the financial crisis there was another peak at 70% error, but still lower than covid. Although 

these values seem to be higher during crisis, the lowest analyst error periods show a median 

miss of about 40%, with an overall mean of 48.98%. This indicates the need for a more accurate 

earnings prediction than analysts.  

 

Figure 2 | Analyst Error in EPS Forecast per quarter by over and under estimation: This graph represents the 

magnitude of analyst errors per quarter in the dataset throughout the out-of-sample time period studied, when 

analysts under and over estimate EPS, Under(over)prediction is defined as EPS Analyst predictions below(above) 

the true values. 

About 2/3 of analyst misses correspond to overestimations (38935 observations), with only 1/3 

of observations (20629 observations) presenting as underestimations. For most of the sample 

the median magnitude of the misses was much higher for underestimations of earnings than 

overestimation (55.20% and 35.76% respectively), suggesting earnings surprises are much 

bigger when analysts are proven wrong in the favor of the firm, than when the firms cannot 

keep up with analysts’ expectations. 

To further develop the analysis, all EPS variables are analyzed in classes, which is what is used 

in the analysis. The reference class for the analysis is the class of six bins, although the results 

for the three and nine classes can also be found in the appendix. The questions remain, are 

investors expecting analyst errors, since they occur on a frequent basis, or is there a shock 

between expectations and reality? Are analyst errors more important than EPS growth in the 
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post-earnings return? Is the evolution of EPS growth relevant? To help to answer those 

questions the correlation between analyst class error/EPS growth/EPS evolution and returns in 

the trading day after earnings is computed. The linear correlation is high for analyst errors and 

lower for the class representing earnings growth, even lower for EPS class evolution from the 

previous quarter (0.1569, 0.1290 and 0.0892 respectively). Then the Spearman non-linear 

correlation was computed, and it was substantially higher for analyst errors than earnings 

classes, even lower for EPS class evolution from the previous quarter (0.1530, 0. 1222 and 

0.0638), all significant at the 1% significance level.  

 

In Figure 3 it is possible to observe the positive effect that higher EPS growth, bigger 

differences between EPS growth compared to the past and better results than analyst 

predictions have on the 1-day return in the day after earnings, on average across the entire 

sample. EPS growth class appears to have the most straightforward relation between the true 

class and stock returns, although having a low difference of returns from the lowest to highest 

class. Next the evolution of the EPS class growth from the previous quarter appears to also 

have a very strong relation with higher returns associated with a positive class progression. The 

same can be observed for analyst class errors, except with a much higher magnitude of returns 

showing a clear difference between the lowest and highest classes. The increasing relation from 

class to class is somewhat broken for when analysts predict 1 and the EPS growth class is 5 

and when the difference between analysts’ predictions and the EPS growth class is -4. The 

Figure 3 | Return of classes of EPS variables: This graph represents the average return of each true class of 

EPS variables after the earnings announcements for all the sample. 
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returns are still in line with class expectations in terms of sign but break the trajectory of the 

trendline. This could be explained by other factors affecting a huge miss by analysts (e.g., very 

high growth but close to 0 from a company that started to increase EPS from a very small 

number could have other factors interfere with returns such as long-term guidance.). 
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4. Methodology  

4.1 Dependent variable type decision & Train/Test procedure  

EPS growth classes are the chosen target variable of the research. Focusing on a categorical 

variable instead of numerical continuous variable may come with advantages and some 

disadvantages. Financial markets are very volatile, especially around earnings announcements. 

This instability makes it very challenging to compute a robust earnings forecast, especially 

without recurring to analyst’s predictions as a baseline. Moreover, percentage error of analysts’ 

predictions or EPS growth measures need to take into consideration the overall performance of 

the other firms. For instance, earnings growth of 2% when the average quarterly firm growth 

is 2% is nothing extraordinary. If the average was 0.5%, 2% growth would be appreciated. 

Following the method of dividing earnings into classes introduced by Xinyue et al. (2020) on 

one hand more focus is given to EPS growth out of the ordinary and on the other hand analyst 

percentage errors are minimized by the class division. Class of 3 is divided into 1 

(underperform), 2 (Neutral) and 3 (overperform). Class of size 6 and 9 do not have names but 

follow the same logic. In order to be able to train and test time-series data out-of-sample a 4-

year rolling window was adopted, illustrated by figure 4: 

.

.

.

.

.

.

.

.

.

Data

Subset 1

Subset 67

Subset 68

Train/Validate (16 quarters) Test One Quarter Ahead: 2004 Q1

Train/Validate (16 quarters) Test One Quarter Ahead: 2020 Q3

Train/Validate (16 quarters) Test One Quarter Ahead: 2020 Q4

2000

Q1

2003

Q4

2016 

Q2
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Q2

2016 
Q3

2020 
Q3

Figure 4 | Rolling-Window illustration: This figure represents the 68 overlapping Rolling-Windows from the 

beginning of 2000 to the end of 2020. 
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  The first rolling window had quarterly data from Q1 2000 to Q4 2003. This data is used to 

train the ML models to compute the forecast for Q1 2004. Then the window moves one period 

and the process starts again. The procedure is done until reaching the forecast for 2020 Q4. 

 

4.2 Event Study  

In research from Binder (1998) event study methodology and advances of the past 20 years 

were summarized. In the end, this methodology compares the normal return that a firm would 

expect in a certain event to the actual return perceived during that period. This research studies 

Earnings announcements as an event study to understand the significance of the abnormal 

returns of EPS growth classes compared to analyst error classes to EPS class progression, but 

more importantly if the aggregation of EPS growth in classes would generate abnormal returns 

and how significant. Then it is tested how well this variable could explain the returns on the 

day after earnings announcements. Many papers focus on different time windows since even 

before the event until some time after. This research only focused on 1 day, the day after the 

event. There are many models to estimate the abnormal return, but the one chosen is illustrated 

in the equation bellow: 

                              Rai,t  =  Ri,t  - αit - β1 (RMt−Rft) - β2 SMBt - β3 HML                           (4.1) 

Where Rai,t  is the abnormal return, since it is the difference between the actual excess return 

(Ri,t) and the Fama and French Three Factor Model.  

 

4.3. Introduction to ML Applied in the Research 

ML, an application of artificial intelligence (AI), is a category of algorithms that provides 

systems the ability to automatically learn and improve from experience without being explicitly 

programmed. The process of learning begins with observations, such as financial ratios 

observed after earnings, lagged one period and four periods, in this paper. Then the models 

look for patterns in the data in order to make predictions for the future, such as earnings 

predictions for the next quarter in the case of this paper. The primary aim is to allow the 
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computer to learn automatically without human intervention or assistance and adjust actions 

accordingly. 

Supervised ML algorithms can apply what has been learned in the past to new data using 

labeled examples to predict future events. Starting from the analysis of a known training 

dataset, the learning algorithm produces an inferred function to make predictions about the 

output values. The system is able to provide targets for any new input after sufficient training. 

The learning algorithm can also compare its output with the correct, intended output and find 

errors in order to modify the model accordingly. In contrast, unsupervised ML algorithms are 

used when the information used to train is neither classified nor labeled. Unsupervised learning 

studies how systems can infer a function to describe a hidden structure from unlabeled data. 

This thesis focuses, however, on supervised learning as the best method to predict earnings 

from carefully chosen variables. 

All the following models are conducted on a 4-year rolling window analysis with a robust 

standardisation of the variables.  

 

4.3.1 Shared ML Techniques and Concepts 

4.3.1.1 Validation 

Validation is a procedure used to evaluate ML models on unseen data. It is essential for model 

validation and hyperparameter tuning. Its goal is to test the model's ability to predict new data 

that is not used in estimating it, in order to give insight on how the model will generalize to an 

independent dataset and find problems such as overfitting. For each different rolling window 

there is a distinct train, validation, and test sets. The dataset is a time-series model. We decided 

to use the Hold-Out Validation Mechanism, in which the last quarter of the training set is used 

exclusively for validation (15 quarters of training, one of validation and one of testing). 

 

4.3.1.2 Hyperparameter Tuning 

ML models have parameters, which are the internal coefficients set by training or optimizing 

the model on a training dataset, but they also have hyperparameters. Hyperparameters are 
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points of configuration that allow a ML model to be customized to guide the learning process 

for a specific dataset. Further, many ML models have a range of hyperparameters and they may 

interact in nonlinear ways. An optimization procedure involves defining a search space. This 

can be thought of geometrically as an n-dimensional volume, where each hyperparameter 

represents a different dimension and the scale of the dimension are the values that the 

hyperparameter may take on. The goal of the optimization procedure is to find a vector that 

results in the best performance of the model after learning, such as maximum accuracy or 

minimum error. A range of different optimization algorithms may be used, although two of the 

simplest and most common methods are: 

• Random Search. Define a search space as a bounded domain of hyperparameter values 

and randomly sample points in that domain. 

• Grid Search. Define a search space as a grid of hyperparameter values and evaluate 

every position in the grid. 

 

 

 

 

 

 

 

 

 

The RandomizedSearchCV tool from the Scikit-Learn library is applied for this tuning process. 

This tool conducts a random search of pre-specified hyperparameter values for a certain model 

to find the one that results in the best score for a certain pre-determined metric. The metric used 

for every following hyperparameter tuning is the score. RandomizedSearchCV also 

incorporates cross-validation into the procedure. 

 

Figure 5 | Grid Search vs Random Search: This figure is a visual representation 

of the Grid Search and Random Search procedures. From analyticsindiamag.com 
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4.3.2 Benchmark 

To provide a benchmark for the performance of the models, the Logistic Regression 

classification model is selected. The selection of this method as a benchmark arises from the 

fact that it is relatively simple and easy to implement, does not need many hyperparameters 

tunning and is known to achieve good results in classification tasks. 

 

4.3.2.1 Logistic Classification- Benchmark 

Logistic classification is a classification algorithm, used when the value of the target variable 

is categorical in nature. Logistic classification is most commonly used when the data in 

question has binary output, so when it belongs to one class or another, or is either a 0 or 1. 

Logistic classification, by default, is limited to two-class classification problems. Some 

extensions like one-vs-rest can allow logistic classification to be used for multi-class 

classification problems, although they require that the classification problem first be 

transformed into multiple binary classification problems. Expectations are low and we expect 

it to be the worst performing model because it was not naturally built for multi class 

classification. For multinomial classification the loss minimised is the multinomial loss fit 

across the entire probability distribution. LogisticRegression from library sklearn was used 

with max_iter equal to 100 (Maximum number of iterations of the optimization algorithm). 

Using solver equal to 'saga' allows for the benefits of performing better in bigger libraries and 

still handle multinomial loss. Hyperparameter tuning is performed to penalty and C values. 

Penalty represents the regularization of the model variables to ensure overfitting does not 

happen, penalizing the use of unimportant variables to the prediction in the loss function. The 

main difference between regularization methods is the type of norm used, per table 3: 

 

Regularization Name Formula 

L1 ∑|𝑤𝑖|

𝑁

𝑖=1

 

L2 ∑𝑤𝑖2
𝑁

𝑖=1

 

Elasticnet Combines L1 & L2 methods 

Table 3 \ Regularization: This table represents the different methods for regularization in the Logistic model. 
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4.3.3 KNN 

The k-nearest neighbors (KNN) algorithm is a simple, easy-to-implement supervised ML 

algorithm that can be used to solve classification problems. The KNN algorithm assumes that 

similar things exist in close proximity. In other words, similar things are near to each other. 

 

 

 

 

 

 

 

 

 

 

 

It can be noticed in the image above that most of the time, similar data points are close to each 

other. The KNN algorithm hinges on this assumption being true enough for the algorithm to be 

useful. KNN captures the idea of similarity, calculating the distance between points on a graph. 

First,  let’s understand the working of the KNN classification algorithm. In the classification 

problem, the K-nearest neighbor algorithm essentially said that for a given value of K algorithm 

will find the K nearest neighbor of unseen data point and then it will assign the class to unseen 

data point by having the class which has the highest number of data points out of all classes of 

K neighbors. KNeighborsClassifier from library sklearn.neighbors is applied to the research.   

We decided to consider different hyperparameters for n_neighbors, weights, and the metric. 

Hyperparameter n_neighbors represent the number of neighbors to use by default for queries. 

A range of values between 1 and 21 is chosen to be tested, with too little not being able to make 

an accurate distinction either for the three, six or nine classes and too many divisions resulting 

in overfitting.  The weights can be uniform or distance. In the case of uniform weights all points 

in each neighborhood are weighted equally. Weight points by the inverse of their distance. in 

this case, closer neighbors of a query point will have a greater influence than neighbors which 

are further away. For distance metrics, the research will test Euclidean,  Manhattan and  

Minkowski Distance with formulas: 

Figure 6 | KNN classification in three different classes: This figure 

represents the visual representation of KNN classification, dividing the data 

into three different classes based on their relative position. From wikipedia 
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4.3.4 CatBoost Classifier 

Decision Trees (DTs) are a non-parametric supervised learning method used for classification 

A decision tree is a decision support technique that forms a tree-like structure. A decision tree 

consists of three components: decision nodes, leaf nodes, and a root node. A decision tree 

algorithm divides a training dataset into branches, which further segregate into other branches. 

This sequence continues until a leaf node is attained. The leaf node cannot  be segregated 

further. The nodes in the decision tree represent attributes that are used for predicting the 

outcome. Decision nodes provide a link to the leaves. The following diagram shows the three 

types of nodes in a decision tree: 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 \ KNN classification metrics: This table represents the different metrics for classification in 

the KNN model. 

Figure 7 | Decision Tree structure: This figure represents the three 

different elements of decision trees (Nodes, Leaf Nodes and the Root 

Node) and their place in the tree. From datacamp.com 
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Random forests is a supervised learning algorithm used for classification. A forest is comprised 

of trees. The more trees it has, the more robust a forest is. A Random Forest system relies on 

various decision trees. Every decision tree consists of decision nodes, leaf nodes, and a root 

node. The leaf node of each tree is the final output produced by that specific decision tree. The 

selection of the final output follows the majority-voting system. In this case, the output chosen 

by the majority of the decision trees becomes the final output of the rain forest system. In 

general, the more trees used the better get the results. However, the improvement decreases as 

the number of trees increases, i.e. at a certain point the benefit in prediction performance from 

learning more trees will be lower than the cost in computation time for learning these additional 

trees. 

In the case of random forests, the collection is made up of many decision trees. Random forests 

are considered “random” because each tree is trained using a random subset of the training data 

(referred to as bagging in more general ensemble models), and random subsets of the input 

features (coined feature bagging in ensemble model speak), to obtain diverse trees. Bagging 

decreases the high variance and tendency of a weak learner model to overfit a dataset. For 

random forests, both types of bagging are necessary. Without both types of bagging, many of 

the trees could create similar “if” conditions and essentially highly correlated trees. Instead of 

bagging and creating many weak learner models to prevent overfitting, often, an ensemble 

model may use a so-called boosting technique to train a strong learner using a sequence of 

weaker learners. In the case of decision trees, the weaker learners are underfit trees that are 

strengthened by increasing the number of “if” conditions in each subsequent model. 

XGBoost, CatBoost, and LightGBM have emerged as the most optimized boosting techniques 

for gradient-boosted tree algorithms, all based on the Random Forest. The algorithms differ 

from one another in the implementation of the boosted trees algorithm and their technical 

compatibilities and limitations. XGBoost was the first to try improving GBM’s training time, 

followed by LightGBM and CatBoost, each with their own techniques, mostly related to the 

splitting mechanism. Some important aspects of the algorithm: 

• Splits: Catboost offers a new technique called Minimal Variance Sampling (MVS), which 

is a weighted sampling version of Stochastic Gradient Boosting. In this technique, the 

weighted sampling happens in the tree-level and not in the split-level. The observations for 

each boosting tree are sampled in a way that maximizes the accuracy of split scoring. 
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• Leaf growth: Catboost grows a balanced tree. In each level of such a tree, the feature-split 

pair that brings to the lowest loss (according to a penalty function) is selected and is used 

for all the level’s nodes.  

CatBoost distinguishes itself from LightGBM and XGBoost by focusing on optimizing 

decision trees for categorical variables, or variables whose different values may have no 

relation with each other (eg. cars and airplanes). To compare cars and airplanes in XGBoost, it 

would be needed to split them into two one-hot encoded variables representing “is car” and “is 

airplane,” but CatBoost determines different categories automatically with no need for 

preprocessing (LightGBM does support categories, but has more limitations than CatBoost). 

Catboostclassifier is used as part of the library catboost. The loss fuction (loss_function in the 

model) defines the metric to use in training. The specified value also determines the ML 

problem to solve. It was used the MultiClass loss_function. Number of interactions are set to 

500. Hyperparameter tuning is performed on the depth (Depth in the model) and learning rate 

(learning_rate in the model). Depth represents the depth of the tree and values between 1 and 

10 are applied. The learning rate is used for reducing the gradient step, defining the trade-off 

between the rate of convergence and overshooting. Values between 0.01 and 2 were tested. 

 

4.3.5 SVM 

Support Vector Machine is a supervised ML algorithm that can be used for both classification 

and regression challenges. However, it is mostly used in classification problems 

The objective of the support vector machine algorithm is to find a hyperplane in an N-

dimensional space (N — the number of features) that distinctly classifies the data points. 

To separate the two classes of data points, there are many possible hyperplanes that could be 

chosen. The objective is to find a plane that has the maximum margin, i.e the maximum 

distance between data points of all classes. Maximizing the margin distance provides some 

reinforcement so that future data points can be classified with more confidence. Hyperplanes 

are decision boundaries that help classify the data points. Data points falling on either side of 

the hyperplane can be attributed to different classes. Also, the dimension of the hyperplane 

depends upon the number of features. If the number of input features is 2, then the hyperplane 

is just a line. If the number of input features is 3, then the hyperplane becomes a two-

dimensional plane. It becomes difficult to imagine when the number of features exceeds 3. A 

kernel transforms an input data space into the required form. SVM uses a technique called the 
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kernel trick. Here, the kernel takes a low-dimensional input space and transforms it into a 

higher dimensional space.  

Poly kernel is chosen in this research. In order to improve the performance of the model 

hypermeter tuning is performed to C and to the degree of the model. C is the regularization 

parameter and degree is the degree of the polynomial kernel function. 

 

4.3.6 Neural Networks 

Neural networks, also known as artificial neural networks (ANNs) are a subset of ML and are 

at the heart of deep learning algorithms. Their name and structure are inspired by the human 

brain, mimicking the way that biological neurons signal to one another. Artificial neural 

networks (ANNs) are comprised of a node layers, containing an input layer, one or more hidden 

layers, and an output layer. Each node, or artificial neuron, connects to another and has an 

associated weight and threshold. If the output of any individual node is above the specified 

threshold value, that node is activated, sending data to the next layer of the network. Otherwise, 

no data is passed along to the next layer of the network. 

A multilayer perceptron (MLP) is a class of feedforward artificial neural network. In a 

feedforward network, information always moves one direction, it never goes backwards. A 

MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output 

layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation 

function. MLP utilizes a supervised learning technique called backpropagation for training. Its 

multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can 

distinguish data that is not linearly separable. In the research MLP is used with hyperparameter 

optimization. The number of neurons in the hidden layer is an arbitrary design decision tested 

empirically to find the optimal design. The design chosen is comprised of two hidden layers 

with 30 and 15 neurons, respectively. The maximum number of iterations is set to 200 not to 

overfit. Hyperparameter tuning is performed regarding values of alpha representing the 

magnitude of the L2 penalty, solver for the type of weight optimization, activation function 

type of the hidden layers and the learning rate for the schedule of the weights updates. 

 

4.3.7 Alternative Methods and Other Improvements 

Time Series data, such as earnings results by quarter imply there could be temporal relations 

between quarterly observations and more specifically between the different periods in the 4-

year rolling window. On the other hand, 5-Fold cross-validation allows for better validation 
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and possibly generalization of the model. In cross-validation the train set is divided into five 

equal size bins of observations, with five train and validation methods performed for each 

rolling-window. All ML models are also computed with cross-validation and results presented 

in the appendix. 

Although a possible method to predict earnings would be to start from technical, fundamental, 

and macro variables and past earnings information, it’s a difficult task to predict the earnings 

class only from past information. An alternative method could be to start from a biased analyst 

earnings prediction and use all the previous variables discussed to detect and discard the analyst 

bias towards a more unbiased estimate. 

 

4.3.8 Evaluation 

The main measure to classify the performance of each classification model is the accuracy of 

the prediction, but the accuracy alone is not even half of the picture. A multi-class confusion 

matrix is computed to represent the performance of each class prediction in each model. A 

confusion matrix shows the combination of the actual and predicted classes. Each row of the 

matrix represents the instances in a predicted class, while each column represents the instances 

in an actual class. It is a good measure of whether models can account for the overlap in class 

properties and understand which classes are most easily confused. Additional measures are 

computed based on the confusion matrix values adapted to multiple class predictions: 

 

Metric Formula Evaluation focus 

Average 

Accuracy 
 

The average per-class effectiveness 

of the classifier 

PrecisionM 
 

Average per-class agreement of the 

true class labels with those of the 

classifier’s 

RecallM 
 

Average per-class effectiveness of a 

classifier to identify class labels 
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Metric Formula Evaluation focus 

F1-scoreM 
 

The harmonic mean of the macro-

average precision and recall 

 

Table 5 | Result Performance metrics in classification: This table presents the different metrics in 

classification to assess the performance of the models. Note: In the formulas below, k = total number of classes; 

μ and M indices represent micro- and macro-averaging, respectively 

             

4.3.9 Variable Predictive Power 

For further understanding of the predictive power of each variable, different methods are 

applied to assess such information depending on the model at hand. For each of the five types 

of model (Logistic Classification, KNN and CatBoostClassifier, SVM and Neural Networks) 

only one evaluation was conducted, as each model variations are rather similar. This is done 

on the best predicting model.   
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5. Results and Discussions 

This section is divided in the results for the proof that the difference between earnings 

prediction by analysts and the actual values present abnormal returns, the results for multi-class 

earnings prediction, results for the models used as a confirmation for analyst earnings 

prediction and investment strategies. 

 

5.1 Earnings Event Study  

From the literature is clear that earnings announcements generate abnormal returns and that 

there is a clear relation between the information the firm presents, and the return generated 

after earnings. In this research, earnings are divided into bins from the EPS growth to analyst 

predictions. The first necessary step in this research is to realize whether the created bins and 

variables create clusters of returns significant. In order to achieve that goal a 1-day event study 

is computed for the day of earnings, only with data that is going to be out-of-sample in the 

earnings ML forecasts, from 2004-03 until the end of 2020. To compute the abnormal returns 

the 3-Fama-French model is computed for an estimated window of 252 days with a minimum 

of 126 days of data for every firm in the day after they are going to present earnings. To the 

return in the day after earnings is subtracted the “normal” return given by the 3-Fama-French 

model. First, it’s important to take a look at the earnings growth class represented by table 6: 

      Percentiles  

Sample Mean  Std Skew Kurt T test 1% 25% Median 75% 99% #obs 

            

EC= 1 -1,30% 7,03% -0,76 4,64 (-14,95)*** -24,34% -3,96% -0,66% 1,81% 16,85% 6503 

EC= 2 -0,80% 6,60% -0,66 5,91 (-11,46)*** -22,02% -3,26% -0,42% 2,04% 16,21% 8861 

EC= 3 -0,17% 6,17% -0,31 6,40 (-2,51)** -18,81% -2,60% -0,11% 2,44% 17,24% 8422 

EC = 4 0,45% 6,14% -0,14 5,05 (6,84)*** -17,25% -2,26% 0,19% 3,07% 18,24% 8674 

EC = 5 1,05% 6,51% 0,15 5,26 (14,39)*** -16,40% -1,98% 0,34% 3,73% 20,78% 8021 

EC = 6 1,36% 7,30% 0,76 6,23 (15,62)*** -17,21% -2,06% 0,55% 3,98% 23,65% 7034 

                        

Table 6 \ EPS Growth Class: This table presents a one-day event study in the day after earnings announcement 

for different classes of EPS growth (EC). Kurt refers to kurtosis. The t-statistics are in parenthesis. *, **, *** 

indicates significance at 10%, 5%, 1%, respectively. The t-statistics are in parenthesis. *, **, *** indicates 

significance at 10%, 5%, 1%, respectively. 

 

Looking at the table 6, the mean return in each class increases with every class increase, from 

almost negative 1.30% in class 1 to more than 1.30% in class 6. The standard deviation is very 

high across all classes, which would be expected around earnings.  The bigger and lower classes 

are more significant than the classes in the middle, with lower returns by firms that were 
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classified to a more neutral position. Although the extreme positive observations increase from 

classes 1 to 6 and the opposite occurs to extreme negative observations, it’s still possible to 

observe extreme returns in all classes in the 1% and 99% percentiles. This shows that earnings 

growth is far from being the only factor influencing firm returns after earnings. The next table 

looks at the class evolution of EPS from the last quarter until the present. 

      Percentiles  

Sample Mean Std Skew Kurt T test 1% 25% Median 75% 99% #obs 

            

EQ = -5 -1,14% 7,01% -0,67 4,99 (-7,65)*** -23,37% -3,80% -0,57% 1,76% 17,32% 2216 

EQ = -4 -0,78% 7,04% -0,53 6,05 (-5,51)*** -24,18% -3,44% -0,45% 2,04% 18,54% 2472 

EQ = -3 -0,61% 6,77% -0,81 6,54 (-5,25)*** -22,68% -3,05% -0,28% 2,24% 16,61% 3391 

EQ = -2 -0,64% 6,78% -0,52 6,14 (-6,27)*** -22,55% -3,18% -0,31% 2,18% 17,75% 4460 

EQ = -1 -0,21% 6,45% -0,48 5,77 (-2,71)*** -19,55% -2,85% -0,11% 2,60% 17,92% 7192 

EQ = 0 0,11% 6,63% 0,11 7,74 (-1,58) -20,23% -2,66% -0,02% 2,82% 19,49% 9608 

EQ = 1 0,54% 6,51% 0,09 4,98 (6,44)*** -18,16% -2,27% 0,17% 3,22% 19,97% 6051 

EQ = 2 0,91% 6,14% 0,00 5,09 (9,08)*** -15,58% -1,85% 0,39% 3,42% 19,03% 3792 

EQ = 3 0,86% 6,18% 0,53 3,55 (7,65)*** -15,39% -2,00% 0,19% 3,45% 20,86% 2997 

EQ = 4 1,09% 6,99% 0,52 3,61 (7,40)*** -16,82% -2,15% 0,33% 3,81% 22,03% 2263 

EQ = 5 0,95% 7,02% 0,50 4,00 (7,51)*** -17,72% -2,31% 0,32% 3,38% 22,69% 3073 

                        

Table 7 \ EPS Growth Class evolution from t-1 quarters: This table presents a one-day event study in the day 

after earnings announcement for all EPS class progressions from the previous quarter (EQ). Kurt refers to 

kurtosis. The t-statistics are in parenthesis. *, **, *** indicates significance at 10%, 5%, 1%, respectively.  

Looking at the table 7, the mean return in each class evolution increases with every class 

increase, from around negative 1% in class evolution -5 to more than 1% in class evolution 4, 

with the exception of class evolution 5. The standard deviation is very high across all classes, 

which would be expected around earnings. Class evolution 0 is not significant at the 10% level. 

The number of observations is much higher in the middle showing that an extreme evolution 

in both directions is not the most likely scenario. The next table looks at the Analyst EPS class 

error. 

      
Percentiles 

 

Sample Mean  Std Skew Kurt T test 1% 25% Median 75% 99% #obs 
            

EA = -5 -3,15% 9,16% -0,79 3,06 (-5,98)*** -33,71% -6,56% -2,14% 1,36% 19,82% 307 

EA = -4 -1,77% 7,61% -0,82 2,99 (-4,23)*** -28,55% -4,77% -0,86% 2,01% 16,16% 334 

EA = -3 -3,15% 8,55% -1,22 3,71 (-9,00)*** -31,55% -5,94% -1,31% 1,29% 16,57% 601 

EA = -2 -2,48% 7,31% -0,86 6,40 (-11,77)*** -24,86% -5,19% -1,39% 1,08% 15,69% 1210 

EA = -1 -1,40% 6,34% -0,76 6,17 (-16,80)*** -22,14% -3,77% -0,74% 1,57% 15,34% 5787 

EA = 0 0,00% 6,26% -0,17 7,16 (-0,06) -18,94% -2,48% -0,05% 2,51% 18,21% 27650 

EA = 1 1,44% 6,77% 0,38 3,99 (19,86)*** -15,86% -1,93% 0,67% 4,37% 21,52% 8773 

EA = 2 2,20% 7,62% 0,28 2,08 (12,22)*** -17,50% -1,92% 1,31% 5,94% 22,91% 1801 

EA = 3 2,69% 7,85% 0,36 2,56 (8,48)*** -14,32% -1,60% 1,12% 5,92% 24,98% 615 

EA = 4 3,37% 8,26% 0,44 1,91 (6,83)*** -16,48% -1,69% 2,08% 7,95% 26,83% 285 

EA = 5 1,95% 8,66% 0,65 3,13 (2,74)*** -17,55% -2,33% 0,98% 5,98% 29,88% 152 
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Table 8 \ EPS Growth Analyst error: This table presents a one-day event study in the day after earnings 

announcement for all differences between analyst class predictions and the true class of earnings (EA). Kurt refers 

to kurtosis. The t-statistics are in parenthesis. *, **, *** indicates significance at 10%, 5%, 1%, respectively. 

Looking at the table 8, the mean return shows a tendency to increase from the bottom to the 

top classes, from more than negative 3% in analyst error class -5 to more than 3% in class 

evolution 4, with the exception of analyst error class 5, with a return around 2%. The table 

shows that positive surprises from analyst expectations are perceived as positive by the markets 

and negative news compared to analyst predictions are accompanied by negative returns. The 

standard deviation is very high across all classes, which would be expected around earnings. 

Class evolution 0 is not significant at the 10% level and all other classes are significant at the 

1% level, although having a very high number of observations. The number of observations is 

much higher in the middle showing that an extreme surprise relatively to analysts in both 

directions is not the most likely scenario. The very low number of observations may explain 

the drop from the trend of returns in class error 5 and -4. 

What the previous tables also suggest is that the initial and ending class of earnings may be 

very important to mitigate to fewer extreme returns in certain clusters of returns (e.g. it’s very 

different to increase from class 1 to 2 or 3 to 5). Now let’s look at the explanatory power of 

this variables in the day after earnings return: 

Table 9 | EPS Growth Analyst error: This table presents a regression of the after earnings return to the subsets 

of predictors chosen.  In each row, the table reports the averages of the regression slope coefficients and their 

associated Newey-West (1987) adjusted t-statistics. The t-statistics are in parenthesis. *, **, *** indicates 

significance at 10%, 5%, 1%, respectively. R-squared is in percentage. 

All variables related to EPS were significant when tested individually with the return after 

earnings as the dependent variable. Analyst errors is the most significant variable explaining 

earnings, followed by EPS class and EPS evolution from the previous quarter class, 

respectively, looking at the single regressions. The multiple regression using all the variables 

EPS Growth class  EPS Growth analyst error prediction  EPS Growth evolution from t-1 quarters IVOL TVOL R² 

0,0056     

1,90% 
(30,20)***     

  0,0098    

2,70% 
  (36,06)***    

   2,40E-03   

0,90% 
   (20,56)***   

    -0,0166  

0,00% 
    (-0,47)  

     -0,0092 
0,00% 

     (-0,31) 

0,004 7,90E-03 -1,00E-04 0,0231 -0,0399 
2,40% 

(11,99)*** (23,24)*** (-0,55) (0,20) (-0,43) 
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shows the negligent effect of the evolution of EPS growth from the previous quarter class of 

EPS growth. A possible explanation is that EPS growth already represents the EPS growth 

from the previous quarter. In the EPS growth evolution in the end EPS of the current quarter 

are being compared to the two previous quarters. The multiple regression only explains 2.4% 

of the variation in returns in the day after earnings. This low number could be an effect of the 

choice of using the class variables as quantitative variables when they have very low variability 

compared to returns. Idiosyncratic Volatility (IVOL) is not significant in explaining the return 

after earnings, showing that these returns have no business with the return in the firm stocks 

that usually cannot be explained by models like the 3 Fama-French model.  

5.2 Multi-class Prediction Results 

A summary of the results is presented in the table and graph bellow where the models are 

compared to analyst prediction accuracy for each class of prediction (3, 6 and 9). 

Number of 

Classes  

Model 

Logistic Classification KNN CatBoost SVM NN Analysts Consensus (Mean) 

3 58,00% 57,06% 60,95% 56,70% 59,02% 75,28% 

6 35,70% 36,96% 42,62% 33,92% 40,13% 59,50% 

9 24,69% 27,08% 31,96% 24,56% 30,01% 48,75% 

 

Table 10 | Classification accuracy using ML models and analysts’ predictions, by class. 

As the number of classes increases the accuracy of all the models decrease. The volatility of 

the models increases as well. Higher analyst accuracy suggest that they have information not 

present in the markets. All the analysis will be done on the groups of six.  

Other metrics were computed regarding the performance of the ML models, besides overall 

accuracy. Other metrics were computed not focusing on the size of each class, but on the 

average class performance, which can be seen in table 11: 

  Logistic Classification KNN CatBoost SVM NN Analysts Consensus 

Accuracy (%) 31,39% 38,33% 41,67% 35,00% 41,67% 60,00% 

Precision (%) 34,37% 41,78% 42,73% 36,35% 39,89% 64,77% 

Recall (%) 33,70% 38,13% 42,59% 34,09% 40,93% 65,51% 

F1-Score (%)  34,04% 39,87% 42,66% 35,18% 40,40% 65,14% 

 

Table 11 \ Metrics of ML prediction classification when stratified by 6 classes. 
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5.2.1 Logistic Classification 

The Logistic Classification with hyperparameter tunning showed a low overall accuracy of 

35.70%. The multiclass average accuracy was lower at 31.39% and the Precision (true positives 

among all positives predicted) and Recall (true positives predicted among all positives) were 

higher, but still lower than the overall accuracy. Although having low accuracy the average 

class error is 1.25, implying that in most of the cases even when the prediction is wrong the 

prediction is not too far off from the true class. This makes the Logistic Classification a good 

benchmark for the prediction. The model performs the best when classifying extreme classes 

(1 and 6). The same can be said about analysts, being able to better identify extremes and still 

be better than the Logistic Classification model. Classes from 2 to 5 present a very high number 

of misclassifications, with class 3 showing predictions almost equally spread along all class of 

predictors. 

 

Figure 8 | Confusion matrix for the Logistic Classification model (left) vs. Analyst Forecasts confusion matrix (right). 

 

5.2.2 KNN 

KNN has a very similar performance compared to Logistic Classification with an overall 

accuracy of 36.96% and it’s still worse than analysts’ performance. These measures improve 

in the metrics per class with the surprising result of the second highest precision (41.78%) 

among all the ML models used. KNN improves the classification of the middle classes from 3 

to 4 and performs worse classifying extreme events that are represented by the class 1 and 6. 
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This reality is exemplified by the average of the error across the out-of-sample data with an 

average of 1.21, lower than Logistic Classification. 

 

Figure 9 | Confusion matrix for the KNN Classification model (left) vs. Analyst Forecasts confusion matrix (right). 

 

5.2.3 CatBoost 

The CatBoost Classification with hyperparameter tunning, which is ultimately based on 

Random Forest, showed the highest overall accuracy of 42.62% from all ML models, still far 

away from analyst mean of 59.50%. Among the multiclass measures it’s also the best model 

for all of them. The lowest value comes in the multiclass accuracy at 41.67%, although this 

measure consistently sees lower values. The average class error decreases to 1.15, implying 

that in most of the cases even when the prediction is wrong the prediction is not too far off 

from the true class, with most predictions within one class of the true class value. The model 

performs the best when classifying extreme classes (1 and 6), with an accuracy of 50% and 

70% considering a one class error as still accurate. The same can be said about analysts, being 

able to better identify extremes and still be better than the CatBoost Classification model. The 

model performs as good as Logistic Classification for extreme EPS growth classification and 

as good as KNN for the intermediate observations. Since CatBoost is the best model, it was 

chosen to be used with analyst prediction and volatility of those predictions as an input to the 

model forecast.  
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Figure 10 | Confusion matrix for the CatBoost Classification model (left) vs. Analyst Forecasts confusion matrix (right). 

 

5.2.4 SVM 

SVM is a model capable of capturing non-linear relationships between the independent 

variables and the dependent variable. SVM low average accuracy of 33.92% is surprising 

having in consideration the complexity of the model and the amount of computational power 

used in multiple hyperparameter tunings. A possible explanation could be the kernel used (), 

being a Polynomial Kernel to distinguish non-linear relations. The model performs better than 

Logistic Classification when looked at the multiclass measures, but it’s still far behind all the 

other models. 

 

Figure 11 | Confusion matrix for the SVM Classification model (left) vs. Analyst Forecasts confusion matrix (right). 
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5.2.5 Neural Networks 

The second-best performing model is a MLP with an overall accuracy of 40.13%, still behind 

analysts. The average error 1.16 is slightly higher than Catboost Classification, making the 

model perform slightly worse in the situations in which the prediction is wrongly classified. 

The model has a very similar performance to Catboost in terms of multiclass accuracy. 

Precision and recall are lower, meaning lower true positives among all positive predicted values 

for each class and lower true positives predicted among all positive values for each class of 

values. 

 

Figure 12 | Confusion matrix for the NN Classification (left) model vs. Analyst Forecasts confusion matrix (right). 

5.2.6 Analyst forecasts incorporation into model 

Putting together analyst expectations into the model the performance of the model 

underperforms analysts (57.46% versus 59.50% from analysts), but not by much, suggesting 

that analysts could already be taking into account the information used as input by the models 

(macro, financial and technical variables). 

 

5.3 Can ML models confirm analysts’ expectations? 

In addition, further research was conducted on how the results of the models can be utilized to 

advance the consensus predictions, where we calculated the conditional accuracy rate of 
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prediction under the circumstances that the result of each model converges (i.e., having the 

same forecast) or diverge with the consensus. Results are presented in the table below: 

Number of 

Class  

Analysts & Model agree 

Logistic Classification KNN CatBoost SVM NN Analysts Consensus (Mean) 

3 82,25% 81,87% 82,72% 81,89% 82,13% 75,28% 

6 68,63% 68,95% 70,72% 67,10% 69,56% 59,50% 

9 58,46% 59,81% 61,62% 56,79% 60,40% 48,75% 

Number of 

Class  

Analysts & Model disagree 

Logistic Classification KNN CatBoost SVM NN Analysts Consensus (Mean) 

3 64,71% 65,81% 62,59% 65,73% 64,45% 75,28% 

6 52,19% 51,80% 48,63% 53,39% 50,05% 59,50% 

9 44,01% 43,02% 40,75% 44,63% 41,84% 48,75% 

Table 12 \ Analyst Prediction accuracy when ML models and analysts agree on class classification. 

 

It is easily recognizable that when the consensus prediction has converged with our model 

results, the conditional accuracy rate is relatively higher than the normal average. 

Disagreements in predictions show the oppositive effect with lower analyst’s accuracy than 

their average accuracy. 

 

5.4 Investment Strategy 

In order to take advantage of the previous results two investment strategies were computed. 

The first strategy is based on the situations in which the Catboost forecast, and Analysts agree 

on the prediction, which increases the accuracy of the prediction. In the beginning of each day 

equal amounts of capital are going to be employed in the number of earnings in each class. 

Daily returns are computed and based on the chronologic unfold of events monthly returns are 

computed. Other investment strategy consists in investing only in earnings events with 

Catboost predicting with more than 70% of probability a class of earnings from the 6. In that 

situation mean analyst prediction is going to be used, because analysts were always superior to 

the ML models. The assumption is that when the ML model is certain about an earnings event, 

then analysts are also more certain in their predictions. In a way this investment strategy tries 

to predict analyst errors, in order to minimize the earnings class forecast error. 

 



 43 

Panel A: 3FF Portfolios  C1 C2 C3 C4 C5 C6 C6-C1 

        

3FF alpha  -0,02 -0,01 0,01 0,01 0,02 0,06 0,08 

 (-2,28)** (-1,36) (1,60) (0,75) (1,86)* (4,05)*** (4,74)*** 

Mkt  0,76 0,50 0,40 0,03 0,18 0,48 -0,23 

 (2,93)*** (2,11)** (1,76)* (0,11) (0,66) (1,32) (-0,55) 

SMB  0,02 0,71 -0,25 0,99 0,47 0,28 0,27 

 -0,05 (1,61) (-0,60) (2,22)** (0,92) (0,42) (0,34) 

HML  -0,41 0,31 0,93 -0,35 -0,16 0,96 1,28 

 (-1,05) -0,87 (2,74)*** (-0,95) (-0,39) (1,76)* (2,03)** 

R-squared 5,00% 7,00% 7,60% 3,20% 1,10% 4,00% 2,20% 

Panel B: Performances  C1 C2 C3 C4 C5 C6 C6-C1 

        

Return (%) -18,69% -12,42% 17,54% 10,87% 26,34% 72,13% 89,91% 

Standard Deviation (%) 48,81% 46,27% 42,59% 46,05% 50,86% 70,00% 80,85% 

Sharpe Ratio -0,38 -0,27 0,41 0,24 0,52 1,03 1,11 

Skewness 0,14 0,30 0,89 0,64 1,05 2,20 0,94 

Kurtosis  1,05 1,56 4,57 1,88 5,39 11,00 2,67 

Panel C: Characteristics C1 C2 C3 C4 C5 C6 C6-C1 

Average number of firms  55,81 57,04 37,90 46,38 38,07 66,16 121,97 

Average Book to Market of firms 0,63 0,46 0,38 0,35 0,43 0,59 0,61 

Table 13 \ Investment strategy based on analysts and Catboost models agreeing: In Panel A, 3FF alphas (in 

percentage) and betas are calculated by running time-series regressions of the EPS growth class prediction on 

the excess returns of the market, size and value factors. In Panel B, Excess Returns, Standard Deviation, Sharpe 

Ratio, Skewness and Kurtosis are computed for each quintile. First three measures are annualized. Panel C firm 

characteristics are computed. The t-statistics are in parenthesis. *, **, *** indicates significance at 10%, 5%, 

1%, respectively. R-squared is in percentage. 

In Table 13, regarding the lowest EPS growth stocks (C1), the research finds an annualized 

excess return of -18.69% with a volatility of 48.81%. The annualized SR is found to be at -

0.38, meaning that these stocks underperform, making them potential candidates for entering a 

short position. In direct comparison with the 3FF, we can observe that C1 yields negative 

abnormal returns of -0.01, respectively, being statistically significant (5%) with a t-stat of -

2.28. Moving to long portfolio, including the highest forecasted EPS growth stocks (C5), there 

is a positive excess return of 72.13% with an annualized volatility of 70.00%. The SR yields 

1.03 and is therefore extremely better compared to C1. In the regression with the 3FF, C6 gives 

statistically significant results with t-stat of 4,05, being significant at the 1% level. Moving to 

long-short portfolio (C6-C1) there is a positive excess return of 89.91% with an annualized 

volatility of 80.85%. The SR yields 1.11 and is therefore marginally better compared to C6. 
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The skewness of 0.94 and kurtosis of 2.67 are a good indication. In the regression with the 3FF, 

C6-C1 gives statistically significant results with t-stat of 4,74, significant at the 1% level. 

Panel A: 3FF Portfolios  C1 C2 C3 C4 C5 C6 C6-C2 

        

3FF alpha  -0,01 -0,03 0,00 0,02 0,03 0,05 0,08 

 
(-1,11) (-2,39)** (0,25) (1,63) (2,52)** (3,47)*** (4,05)*** 

Mkt  0,49 0,40 0,29 0,30 0,13 0,32 -0,08 

 
(1,72)* (1,48) (1,07) (1,00) (0,43) (0,83) (-0,17) 

SMB  0,54 0,64 0,51 1,19 0,56 0,77 0,09 

 
(1,05) (1,29) (1,01) (2,19)** (1,04) (1,07) (0,11) 

HML  -0,42 -0,30 0,58 0,01 0,41 0,85 1,16 

 
(-0,98) (-0,75) (1,44) (0,03) (0,92) (1,45) (1,58) 

R-squared 3,20% 3,10% 3,70% 4,60% 1,80% 3,30% 1,30% 

Panel B: Performances  C1 C2 C3 C4 C5 C6 C6-C2 

Return (%) -8,19% -26,31% 3,99% 27,32% 35,89% 65,53% 91,12% 

Standard Deviation (%) 53,63% 51,56% 52,30% 57,28% 56,20% 75,00% 93,77% 

Sharpe Ratio -0,15 -0,51 0,08 0,48 0,64 0,87 0,97 

Skewness 0,31 0,45 0,51 0,66 0,45 1,38 1,02 

Kurtosis  1,39 0,87 1,85 0,95 1,17 5,00 3,71 

Panel C: Characteristics C1 C2 C3 C4 C5 C6 C6-C2 

Average number of firms  13,26 3,50 2,08 2,31 3,94 21,19 34,46 

Average Book to Market of firms  0,69 0,66 0,62 0,65 0,64 0,68 0,68 

Table 14 \ Investment strategy based on analysts predictions for high confidence Catboost predictions: In Panel 

A, 3FF alphas (in percentage) and betas are calculated by running time-series regressions of the EPS growth 

class prediction on the excess returns of the market, size and value factors. In Panel B, Excess Returns, Standard 

Deviation, Sharpe Ratio, Skewness and Kurtosis are computed for each quintile. First three measures are 

annualized. Panel C firm characteristics are computed. The t-statistics are in parenthesis. *, **, *** indicates 

significance at 10%, 5%, 1%, respectively. R-squared is in percentage. 

In the second strategy, regarding the predicted second lowest EPS growth stocks (C2), the 

research finds an annualized excess return of -26.31% with a volatility of 51.56%. The 

annualized SR is found to be at -0.51, meaning that these stocks underperform, making them 

potential candidates for entering a short position. In direct comparison with the 3FF, we can 

observe that C2 yields negative abnormal returns of -0.03, respectively, being statistically 

significant (5%) with a t-stat of -2.39. Moving to long portfolio, including the highest 

forecasted EPS growth stocks (C6), there is a positive excess return of 65.53% with an 

annualized volatility of 75.00%. The SR yields 0.87 and is therefore extremely better compared 

to C2. In the regression with the 3FF, C6 gives statistically significant results with t-stat of 

3,47, being significant at the 1% level. Moving to long-short portfolio (C6-C2) there is a 

positive excess return of 91.12% with an annualized volatility of 93.77%. The SR yields 0.97 
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and is therefore marginally better compared to C6. Looking at the cumulative performance of 

the two strategies, the first is characterized by moments of extreme volatility making it not 

perform consistently. During the same period the S&P 500 increased by more than 6-fold. This 

strategy would bring investors funds almost to zero twice and finished 2020 with shy of a 10% 

return.  

 

Figure 13 | Cumulative return of the Investment Strategy 1 

The second strategy is characterized by an initial period with a bad performance until gaining 

consistency and reaching an incredible performance overall, but still very volatile. 

 

 

 

 

 

 

 

 

 

Figure 14 / Cumulative return of the Investment Strategy 2, namely the Long-short strategy and its two legs (long and 

short) 
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6. Conclusion 

With the goal of creating a methodically and exhaustive research around earnings, collating 

pieces from different models discussed in different previous research, this research had the 

main goal to predict earnings and compare this prediction to analyst errors of prediction.  

More specifically, it aimed at answering the following three questions:  

• Can returns following earnings reports be explained by the growth class of earnings, 

the evolution of the class of earnings, or analysts’ mistakes?  

• Can ML models outperform analyst accuracy in earnings prediction?  

• Can ML models confirm analysts’ predictions? 

Looking at the first step, it is clear that EPS growth is fundamental in explaining the markets’ 

reaction to earnings reports. This can be explained by two effects – the magnitude of growth 

and the sign of earnings. We conclude that when analysts are right and EPS growth is small, 

no abnormal returns are captured in the day following earnings announcement. The same 

applies when EPS growth has been stable for at least one year. For EPS growth class, analyst 

class errors, and EPS class progression from the previous quarter, we capture abnormal returns 

when firms are stratified into six EPS growth classes. Of note, EPS class progression loses 

significance when considered in aggregate with the remaining two variables. The heightened 

volatility after earnings reports suggests that the market’s reaction to earnings is a much more 

complex phenomenon than a linear relation between high EPS and high returns. 

The answer pertaining to the second question is consistent across all ML models. Indeed, 

analysts’ predictions are more accurate than ML models. One possible explanation could be 

the extensive research analysts perform in each prediction combined with the use of non-public 

information. In addition, the results suggest that perhaps analysts incorporate ML inputs in 

their computations, once we find low gains in accuracy when joining analysts’ expectations 

with ML models. Either way, among all ML models used, the Catboost classification method 

is consistently the best performing model for all metrics. Actually, for predictions with high 

conviction, accuracy is much higher, and that fact is used in an investment strategy. 

The results related to the last question indicate ML models’ predictions as a good confirmation 

for analysts’ predictions, consistent with existent literature. This study complements Xinyue et 
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al. (2020) findings by adding investment strategies with satisfactory results. The ML models 

can identify situations in which analyst’s accuracy is higher and lower, which indirectly can be 

used to identify situations on analysts’ errors. 

Finally, the study is not without limitations and improvements can be made upon this research 

in some respects. First, the research is limited by firms with analysts’ predictions. In fact, there 

is an issue with sample selection bias, since it is only reasonable to predict earnings of firms 

targeted by analysts. Therefore, for further research in this topic to correctly predict earnings 

of firms, it should be included the ones without analysts’ coverage. Second, the research could 

use more technical analysis variables and be tested for longer timeframes, rather than quarterly 

predictions. Third, the research could be replicated for a continuous EPS growth prediction, 

instead of dividing EPS in classes. Lastly, other ML models could be applied such as more 

complex neural network models and more extensive hyperparameter tuning could also be 

performed. 
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7. Appendix 

 

Appendix 1- variable names and description 

 

Variable Formula 
Lagged 1 

year 

Lagged 1 

quarter 

Lagged 5 

days 

Dividend_ 

dummy 
1 if paid dividend, 0 otherwise - 

 
- 

Current Quarter 1, if 1st quarter, 2 if 2nd quarter… - - - 

roa Return on Assets 
  

- 

roce Return on Capital Employed 
  

- 

pe_exi P/E (Diluted, Excl. EI) 
  

- 

bm Book/Market 
 

- - 

pcf Price/Cash flow 
  

- 

gpm Gross Profit Margin 
 

- - 

Rect_act Receivables/Current Assets 
 

- - 

Debt_ebitda Total Debt/EBITDA 
 

- - 

Lt_debt Long-term Debt/Total Liabilities 
 

- - 

Dltt_be Long-term Debt/Book Equity 
 

- - 

De_ratio Total Debt/Equity 
 

- - 

Curr_ratio Current Ratio 
 

- - 

At_turn Asset Turnover 
  

- 

Rect_turn Receivables Turnover 
 

- - 

Pay_turn Payables Turnover 
 

- - 

Staff_sale Labor Expenses/Sales 
 

- - 

Ptb Price/Book 
 

- - 

efftax Effective Tax Rate 
  

- 
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dpr Dividend Payout Ratio  
 

- - 

Intcov_ratio Interest Coverage Ratio 
 

- - 

Fcf_ocf 
Free Cash Flow/Operating Cash 

Flow  
- - 

Int_debt Interest/Average Long-term Debt 
 

- - 

ps Price/Sales 
 

- - 

Debt_at Total Debt/Total Assets 
 

- - 

Debt_invcap Long-term Debt/Invested Capital 
 

- - 

GProf Gross Profit/Total Assets 
 

- - 

Invt_act Inventory/Current Assets 
 

- - 

Cash_debt Cash Flow/Total Debt 
 

- - 

Totdebt_invcap Total Debt/Invested Capital 
 

- - 

Debt_capital Total Debt/Capital 
 

- - 

GDP 
US gross domestic product (GDP) 

data 
- 

 
- 

PC 

US Personal Consumption 

Expenditures: Durable Goods 

(PCDG) data 

- 
 

- 

volume 

5 trading days cumulative volume 

(from day 6 to day 1)/ number of 

shares outstanding 

- - 
 

pre_earnigs_return 
5 trading days cumulative return 

(from day 6 to day 1) 
- - 

 

EPS_EVOLUTION 
EPS growth class (t) - EPS growth 

class (t-1)   
- 

Error Past 

EPS growth class (t-1) - EPS 

Analyst growth class Forecast for 

(t-1) 

- 
 

- 
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Industry 
Industries information based on the 

first 2 digits of the NAICS code 
- - - 

Actual value EPS growth class - - - 

 

 

 

Appendix 2 – Correlation matrix of the independent variable 
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Appendix 3 – Event Study for number of classes equal to 3 

 

 

 

 

 

 

 

Appendix 4 – Average accuracy using Cross-Validation 

 

 

 

Appendix 5 – Variable importance 

 

 

 

 

 

Logistic Classification KNN CatBoost SVM NN

3 57,89% 56,83% 59,64% 48,22% 56,83%

6 35,74% 36,91% 42,80% 27,59% 40,73%

9 24,59% 31,02% 31,02% 19,33% 29,70%

Number of Class 
Model

Variable Importance

EPS_EVOLUTION_t-4 1

EPS_EVOLUTION_t-1 2

roce_t_1 3

roa_t_1 4

pcf_t_1 5
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Appendix 6- Confusion matrices for the Logistic Classification for 3 classes of prediction on 

the left and 9 classes on the right 

 

 

 

 

Appendix 7- Confusion matrices for the KNN Classification for 3 classes of prediction on the 

left and 9 classes on the right 
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Appendix 8- Confusion matrices for the Catboost Classification for 3 classes of prediction on 

the left and 9 classes on the right 

 

 

 

 

 

 

 

Appendix 9- Confusion matrices for the Neural Networks Classification for 3 classes of 

prediction on the left and 9 classes on the right 
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Appendix 10- Confusion matrices for the SVM Classification for 3 classes of prediction on the 

left and 9 classes on the right 

 

 

Appendix 11- Temporal accuracy of the Logistic, KNN Catboost, SVM and NN models for 

number of classes equal to 3 
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Appendix 12- Temporal accuracy of the Logistic, KNN Catboost, SVM and NN models for 

number of classes equal to 9 
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