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ABSTRACT 

Estuaries are one of the most productive ecosystems on earth and are essential as they provide 

a home to various aquatic plant and animal species. However, heavy metal contamination of 

estuaries associated with urbanisation and industrialisation is of particular concern as these 

heavy metals persist in the environment causing harmful effects in the aquatic organisms that 

inhabit these ecosystems. Therefore, regular assessment of heavy metal concentrations is 

imperative for managing the health of the estuary. Thus, this study explores remote sensing 

methods that facilitate the regular monitoring of heavy metal concentrations in the water and 

sediment of the uMgeni Estuary. Water and sediment samples were collected and analysed for 

aluminium, arsenic, cadmium, chromium, copper, iron, lead, magnesium, nickel, and zinc. A 

remote sensing analytical spectral device, FieldSpec 3 spectroradiometer, was used to record 

spectral measurements of the water and sediment samples in the 350-2500 nm wavelength 

range. Thereafter, a partial least squares regression was used to develop calibration models to 

predict the metal concentrations in the water and sediment from the visible and near-infrared 

reflectance spectra.  

The results indicated that the sediment of the uMgeni Estuary contained higher concentrations 

of heavy metals than the water. The calibration models performed better in predicting heavy 

metals in the sediment than in water. The best model for predicting heavy metals in sediment 

was obtained for nickel with calibration and cross-validation R2 values of 0.96 and 0.83, 

respectively, and RMSE values of 1.88 mg/kg and 4.34 mg/kg, respectively. The significant 

wavelengths of the VNIR spectrum for the detection of nickel in the sediment were 1090 nm, 

1279 nm, 1398 nm, 1473 nm and 1676 nm. The best model for predicting heavy metals in water 

was obtained for arsenic with calibration and cross-validation R2 values of 0.05 and 0.02, 

respectively, and RMSE values of 0.005 mg/L and 0.006 mg/L, respectively. The significant 

wavelengths of the VNIR spectrum for the detection of arsenic were 715 nm, 1137 nm, 1663 

nm and 1731 nm. 

It can be concluded that reflectance spectroscopy has shown potential in the prediction of heavy 

metals, especially from sediments; however, a limitation is a reduced accuracy in the prediction 

of heavy metals with a greater variability in their concentrations. Therefore, visible and near-

infrared reflectance spectroscopy should not be used to replace conventional methods of 

analysing heavy metals in water and sediment entirely but rather to complement them.  
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CHAPTER 1: GENERAL INTRODUCTION 

1.1) Introduction  

According to Day (1980, p. 198), an estuary can be defined as “a partially enclosed coastal 

body of water which is either permanently or periodically open to the sea and within which 

there is a measurable variation of salinity due to the mixture of seawater with freshwater 

derived from land drainage”. In other words, estuaries are bodies of water located at the 

interface between land and sea and form transitional zones from freshwater to saltwater 

environments (Cochran et al., 2019; Harris et al., 2016). In recent years, with expansions in 

anthropogenic activities globally, the location of estuaries has made them highly susceptible to 

severe anthropogenic impacts (NOAA, 2020). Furthermore, the climate change implications 

resulting from increased anthropogenic activities have put an additional strain on estuaries 

(Glamore et al., 2016). In South Africa, there are 300 functional estuaries categorised into 46 

types, of which 39% are classified as critically endangered, 2% as endangered, 2% as 

vulnerable and 57% as at least threatened (Van Niekerk and Turpie, 2012).  

Estuaries are coastal bodies of water that occur where a river meets the sea. There are different 

types of estuaries, each of which are classified in different ways. A common method of 

classifying them is according to how they formed geomorphologically (NOAA, 2020). 

Estuaries that exist today were formed due to the sea level rising approximately 120 m when 

major continental glaciers began melting 18 000 years ago (Trujillo and Thurman, 2011). 

According to Trujillo and Thurman (2011), based on their geomorphological origin, there are 

four main classes of estuaries, including coastal plain estuaries, fjord, bar-built estuaries and 

tectonic estuaries. The most prevalent estuary type is the coastal plain estuary, which formed 

due to sea-level rise, which initiated the drowning of an existing river valley (NOAA, 2020). 

Fjords are deep U-shaped estuaries that formed when sea-level rise during the Pleistocene 

Epoch caused the flooding and erosion of glaciated valleys (Trujillo and Thurman, 2011; 

Finlayson et al., 2018).  The melting of these glaciers resulted in the formation of lower valleys, 

facilitating seawater inflow into river valleys, thereby forming an estuary (Finlayson et al., 

2018). Bar-built estuaries are formed when the connection with the sea is occasionally 

restricted by a sand bar forming a shallow estuary behind the bar (Clark and O'Connor, 2019). 

Tectonic estuaries form when faulting, and folding occurs on land surfaces, causing a basin to 

form onto which freshwater or seawater flows (NOAA, 2020).  
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Estuarine ecosystems are influenced by seawater and freshwater derived from rivers and land 

runoff (Harris et al., 2016). The freshwater from rivers carries abundant supplies of nutrient-

rich sediment into estuaries enabling them to support high levels of biological productivity 

(Geyer, 2004). Therefore, estuaries are considered as one of the most productive ecosystems 

on earth (Colloty et al., 2002; Forbes and Demetriades, 2008; Cloern et al., 2016). The 

conditions within an estuary are also highly dynamic, ranging from fresh to hypersaline, 

depending on the amount of fluvial and seawater inflow into the estuary (Day et al., 1990; 

Harris et al., 2016). For this reason, estuarine organisms need to have unique adaptations to 

survive and thrive in these ecosystems (Forbes and Demetriades, 2008; Sisitka, 2008). 

Estuaries are essential as they provide ecosystem services that are vital to both humans and 

aquatic life; therefore, it is crucial that we ensure our estuaries are protected and conserved (Hu 

et al., 2004; Dunn et al., 2019). Ecosystem services can be defined as “the conditions and 

processes through which natural ecosystems, and the species that make them up, sustain and 

fulfil human life" (Daily, 1997). These services include provisioning services such as food and 

water, regulating services such as climate regulation and purification of air and water, and 

cultural services such as cultural, educational, and recreational benefits (Van Niekerk and 

Turpie, 2012). Some examples of the ecosystem services provided by estuaries include a 

nursery function, storm protection, flood regulation and carbon sequestration (Van Niekerk and 

Turpie, 2012).  These services are critical to both humans and aquatic life alike; however, 

estuaries have been increasingly subject to degradation due to human activities such as estuary 

mouth manipulation, land-use changes and pollution (Sisitka, 2008). Therefore, it is critical to 

ensure measures are put in place to monitor anthropogenic activities and assess their impacts 

on the health of estuaries in order to prevent further deterioration.  

The advancements in technology, particularly within remote sensing, have enabled the 

introduction of innovative ways to assess the expansions in anthropogenic activities and assess 

water quality (Arnous and Hassan, 2015). According to Campbell and Wynne (2011, p. 6), 

remote sensing is defined as “the practice of deriving information about the earth’s land and 

water surfaces using images acquired from an overhead perspective, using electromagnetic 

radiation in one or more regions of the electromagnetic spectrum, reflected or emitted from 

the earth’s surface.” It is a science that involves acquiring and recording information about 

objects from a distance, such as using satellites (Gibson, 2000; Jensen, 2015). The use of 

remote sensing technology is particularly useful in monitoring the water and sediment quality 
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of various water bodies such as rivers and estuaries, as it is an inexpensive method (Melesse et 

al., 2007). Remote sensing is thus extremely useful as it enables us to understand the 

relationships and interactions between humans and the natural environment, enabling us to 

improve our decision-making (Jensen, 2015).  

Hyperspectral remote sensing deals with reflectance spectroscopy, whereby light is studied as 

a function of the wavelength that is reflected or scattered from a solid, liquid or gas (Rostom 

et al., 2017). It refers to the science of acquiring information about the earth’s surface in many 

narrow spectral bands (Borengasser et al., 2007). Multispectral remote sensing makes use of 

several broadly defined spectral regions, whereas hyperspectral remote sensing examines many 

narrowly defined spectral channels (Campbell and Wynne, 2011). Hyperspectral data are 

obtained in many extremely narrow, contiguous spectral bands enabling the detailed 

assessment of earth’s surface materials with no gaps through which essential information may 

be overlooked (Govender et al., 2007; Goetz, 2009). Hyperspectral data is useful in assessing 

the quality of water and sediments; however, several factors can also influence the spectral 

reflectance of these surfaces (Lillesand et al., 2015). The factors influencing the spectral 

reflectance of water include the presence of suspended sediments and chlorophyll content 

(Lillesand et al., 2015). The factors influencing the spectral reflectance of sediments include 

soil moisture content, particle size, organic matter content, and the amount of iron oxide 

(Cierniewski and Kuśnierek, 2010). 

1.2) Contextualisation of the problem and motivation of the study 

As the global population rapidly increases, many land-use practices, such as agriculture, 

residential areas, and industries, will also have to expand to support the growing populations 

(Sukdeo, 2010).  These expansions bring about significant threats to natural resources, as well 

as the quality of the environment (McGrane, 2016). Industrial and agricultural activities are 

critical land-use practices that form the backbone of our economy. They enable a growth in the 

Gross Domestic Product (GDP) of our country and job creation, which is essential to the 

country's development. Therefore, urban expansion is unavoidable and inevitable. However, 

this is not without an environmental problem, such as a deterioration in the water and sediment 

quality of estuaries.  

Estuaries have many benefits, including ecological and socio-economic benefits (Edgar et al., 

2000; Van Niekerk and Turpie, 2012). Ecologically, these ecosystems are essential as they are 
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home to various plant and animal species that rely on estuaries for food, with many animal 

species using estuaries as breeding grounds and a nursery for their young (Van Niekerk and 

Turpie, 2012; NOAA, 2018). Socio-economically, estuaries are essential to humans as they 

have an excellent aesthetic appeal, and they provide a place for recreational activities for locals 

and tourists (Edgar et al., 2000; Cochran et al., 2019). These activities include boating, fishing, 

swimming and contact sports, and sightseeing which aid in the generation of money and the 

creation of job opportunities for the locals (Pinto et al., 2010). Therefore, estuaries help in 

increasing the GDP of our economy (Van Niekerk and Turpie, 2012; Cochran et al., 2019). 

However, as a result of urbanisation and industrialisation, which exacerbates the effects of 

climate change, estuaries are increasingly subjected to degradation (Cloern et al., 2016).  

Urbanisation severely affects the health of aquatic habitats as it alters the physical landscape 

resulting in increased impermeable surfaces such as roads and pavements (Riley, 2008). Urban 

runoff, due to the presence of these impermeable surfaces, causes an increase in the levels of 

pollutants being discharged into rivers and estuaries (Riley, 2008). Impermeable surfaces result 

in a significant reduction in the natural infiltration process of soils and vegetation cover, which 

increases runoff after heavy rains, thus decreasing the quality of aquatic ecosystems (Karakus 

et al., 2015). In addition, rapid industrialisation leads to excessive amounts of heavy metals 

being discharged into rivers and estuaries, which degrades the water and sediment quality 

(Ebenstein, 2012). This is consistent with a study conducted by Ebenstein (2012), where 

China's rapid industrialisation led to a significant increase in the number of heavy metals being 

discharged into rivers, which severely deteriorated the water quality of these rivers. 

Furthermore, rapid urbanisation and industrialisation cause an excessive increase in carbon 

dioxide emissions, which exacerbates the effects of climate change (Sisitka, 2008; Whitfield et 

al., 2012). According to Glamore et al. (2016), climate plays a significant role in the functioning 

of estuarine environments. The changes in rainfall patterns resulting from climate change could 

alter freshwater inflows and sedimentation and erosion rates (Glamore et al., 2016). This could, 

in turn, lead to excess amounts of sediment and other pollutants such as heavy metals derived 

from land runoff flowing into the estuary. 

Heavy metals are described as metals with a density higher than 5g/cm3 and occurs naturally 

in the environment (Hui, 2008). Heavy metals can be found in nearly all parts of the biotic and 

abiotic environment, including water, sediments, plants, animals and humans (Hui, 2008). 

Heavy metals enter the environment naturally through the weathering of existing rocks 
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containing these heavy metals and anthropogenically through the use of heavy metals in 

industrial and agricultural activities (Pati et al., 2013; Wuana and Okieimen, 2011). Some 

heavy metals, such as zinc and iron, are required by living organisms to aid growth and 

development (Sukdeo, 2010). However, when in excess, these can become toxic and cause 

health deteriorations in organisms (Hui, 2008). Pollution from land-use practices such as 

urbanisation and industrialisation pose significant threats to the water quality of rivers and 

estuaries as this can lead to an increase in heavy metal contamination (Cloern et al., 2016).  

Heavy metal contamination endangers not only aquatic life within that habitat but also human 

life and is of particular concern as these heavy metals tend to be persistent in the environment 

for a long time, even after the sources of these heavy metals have been removed (Cloern et al., 

2016; Javed and Usmani, 2017). The increase in industrial and agricultural activities have led 

to an increase in the discharge of effluents containing heavy metals into rivers and estuaries 

(Riley, 2008). Most heavy metals in water tend to adsorb onto the surfaces of sediments and 

settle to the bottom of the river or estuary (Mann et al., 2011). Industrial effluents can alter 

physicochemical parameters such as electrical conductivity, pH and dissolved oxygen levels of 

estuaries, which can cause the water to become toxic (Van Niekerk and Turpie, 2012). In 

addition, fluctuations in these parameters can also cause the remobilisation of the heavy metals 

adsorbed onto sediments, making them available for uptake by aquatic organisms (Li et al., 

2013). These heavy metals tend to accumulate in aquatic organisms over time, causing damage 

to their organs and respiratory functions, a reduction in the rates of reproduction and even death 

(Verma and Dwivedi, 2013; Bisht, 2019). 

It is for this reason; the heavy metal concentrations of estuaries need to be regularly assessed 

so that there can be adequate intervention if need be. However, conventional methods of 

assessing heavy metals in water and sediments can be costly, making it infeasible to monitor 

their concentrations regularly. Therefore, it is necessary to explore alternative ways to assess 

heavy metal concentrations that are more cost-effective, thus facilitating the regular monitoring 

of their concentrations. Remote sensing can be used to assess heavy metals in water and 

sediment and has been used in many international studies as an alternative to conventional 

methods of heavy metal assessment. According to Monaledi et al. (2019), remote sensing has 

become popular in water quality assessments as it offers a cost-effective way of assessing larger 

datasets and providing temporal and spatial coverage. A study conducted by Mouazen et al. 

(2021), involved the use of Landsat 7 and regression methods in the spatiotemporal prediction 



6 

 

and mapping of heavy metals in soil. The results of the study indicated a good link between 

Landsat 7 imagery and the prediction of heavy metals. The prediction models performed well 

in predicting heavy metal concentrations from the spectral reflectance data obtained from the 

Landsat 7 imagery (Mouazen et al., 2021). In recent years, the rapid advancement in 

hyperspectral remote sensing facilitated the use of hyperspectral data in water and sediment 

quality studies which yielded promising results with high accuracies (Dierssen et al., 2021). 

Hyperspectral remote sensing has thus been favoured by many researchers over multispectral 

remote sensing (Dierssen et al., 2021).  

Hyperspectral data contain the detail and accuracy that enables one to examine phenomena on 

the earth’s surface that far exceed the capabilities of traditional remote sensing (Campbell and 

Wynne, 2011). The capabilities of hyperspectral remote sensing enable the field of remote 

sensing to extend into the field of spectroscopy which is the science of obtaining accurate data 

on the spectral reflectance of earth’s surface materials from a remote location (Milton et al., 

2009). An analytical spectral device (ASD) spectroradiometer is an optical device commonly 

used in field spectroscopy that uses detectors to measure radiation distribution in a particular 

wavelength region (Rostom et al., 2017). It measures the spectral behaviour in the visible near-

infrared (VNIR) and shortwave infrared (SWIR) spectra between 350 and 2500 nm with a 

precision of 1 nm (Janse et al., 2018). ASD makes use of a portable PC to control the scans 

collected by the instrument, and it also allows for the on-screen visualisation of the data 

collected in real-time (Danner et al., 2015). The use of hyperspectral data to assess water and 

sediment quality is particularly advantageous as it is inexpensive, more efficient and less time-

consuming (Brando and Dekker, 2003; Rostom et al., 2017). It is for this reason; hyperspectral 

remote sensing will be used to analyse the heavy metal concentrations of the uMgeni Estuary.  

1.3) Aim and Objectives 

Aim: To assess the use of visible and near-infrared reflectance spectroscopy in the detection 

of heavy metals in the water and sediment of the uMgeni Estuary.  

Objectives: 

1. To assess heavy metal concentrations in the water and sediment of the uMgeni Estuary. 

2. To assess the relationship between heavy metals and physicochemical parameters of 

water. 



7 

 

3. To assess the spectral reflectance of the water and sediment using an analytical spectral 

device (ASD) FieldSpec 3 spectroradiometer. 

4. To develop a calibration model to predict the heavy metal concentrations from the 

visible and near-infrared spectral reflectance measurements. 

5. To assess the relationship between the heavy metals and the visible and near-infrared 

spectral reflectance of the samples. 

 

1.4) Structure of the dissertation 

The introduction, contextualisation of the problem, aims and objects are discussed in chapter 

one, while chapter two of the dissertation covered the theoretical concepts relating to the 

research carried out in this study. Chapter three provides information about the study area 

including the location and physical characteristics, geology and soils, topography, climate, 

biology and the land-use occurring within the study area. Chapter four describes the 

methodology adopted to carry out this study and includes information on the field and 

laboratory data collection as well as descriptions of the data analyses performed on the acquired 

data. In chapter five, the results of the data analyses are presented in the form of tables and 

graphs. Finally, chapter six provides a detailed discussion of the results obtained in chapter five 

as well as provides the conclusion and recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1) Introduction 

Water is a precious natural resource that is required for the survival of all forms of life on earth. 

Without water, all life on earth would cease to exist; therefore, we must ensure that all water 

resources are protected and that our use of aquatic ecosystems such as estuaries is sustainable. 

This chapter provides a review of the theoretical concepts central to this study. It begins by 

highlighting the general features of estuaries, their formation and classification, as well as the 

importance of estuaries and threats to these ecosystems. Thereafter, the review focuses on 

heavy metals, their impacts on estuaries, and the traditional and remote sensing methods used 

to extract and analyse the concentrations of these heavy metals. 

2.2) Estuaries 

2.2.1) General characteristics of estuaries 

According to Day (1980, p. 198), an estuary can be defined as “a partially enclosed coastal 

body of water which is either permanently or periodically open to the sea and within which 

there is a measurable variation of salinity due to the mixture of seawater with freshwater 

derived from land drainage”. Estuaries are found at the interface of land and sea where 

freshwater meets saltwater. Estuaries are, thus, influenced by the tidal inflow from the sea and 

the discharge of freshwater from rivers and land runoff (Whitfield, 1992; Chili, 2008; 

Miththapala, 2013). Estuaries are considered highly dynamic environments as the physical, 

chemical, and biological components of estuaries are often subjected to rapid and sometimes 

extreme changes (Forbes and Forbes, 2012). 

Estuaries may be permanently or temporarily opened to the sea, and due to the mixture of 

seawater and freshwater, they have measurable variations in their salinities (Whitfield, 1992). 

According to Miththapala (2013), estuaries generally consist of three main zones; the first zone 

is where the freshwater from the river begins to meet the saltwater and contains primarily 

freshwater. The subsequent zone, towards the ocean, contains freshwater and saltwater of 

approximately equal amounts.  The last zone is the point at which the water flows into the sea 

and contains mostly saltwater (Miththapala, 2013). In addition, according to Forbes and 

Demetriades (2008), a reduction in fluvial input could cause an estuary to become a lagoon, 
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leading to fresh or hypersaline conditions. The increase in the fluvial input, on the other hand, 

could cause an estuary to become a river mouth with very little to no saline input (Forbes and 

Demetriades, 2008).  

The geographic location of estuaries enables them to host a variety of unique habitats from the 

sea to the land, thus enabling them to support a high level of biodiversity (Harrison, 2004; 

Moyle, 2020). Estuaries serve many functions, including a nursery to many fish and 

invertebrates, a place of recreation, and a source of food and income (Cisneros, 2013). 

Therefore, estuaries are critical ecosystems, and they need to be protected to maintain their 

functioning. However, these estuaries are increasingly adversely affected by human activities 

(Harris et al. 2016). As a result of these activities, many South African estuaries have become 

functionally degraded. According to Turpie et al. (2002), this is often accompanied by a loss 

of species or a decline in populations. It is, therefore, crucial that the health status of estuaries 

be continuously monitored to ensure the conservation of these precious ecosystems.  

2.2.2) Classification of estuaries 

There are many different types of estuaries, each of which can be classified in different ways. 

One method is the geomorphological classification, proposed by Harrison et al. (2000), 

classifying estuaries according to their geomorphological origin. According to Turpie (2004), 

this classification includes six types of estuaries based on the mouth status, whether it is opened 

or closed, the size of the estuary, and the presence of a sand bar. Estuaries that exist today were 

formed due to the sea level rising approximately 120 m when major continental glaciers began 

melting 18 000 years ago (Trujillo and Thurman, 2011). According to Trujillo and Thurman 

(2011), based on their geomorphological origin, there are four main classes of estuaries, 

including coastal plain estuaries, fjord, bar-built estuaries and tectonic estuaries. The most 

common type of estuary is the coastal plain estuary formed due to sea-level rise, which initiated 

the drowning of an existing river valley (NOAA, 2020). Fjords are deep U-shaped estuaries 

formed when sea-level rise during the Pleistocene Epoch caused the flooding and erosion of 

glaciated valleys (Trujillo and Thurman, 2011; Finlayson et al., 2018).  Presently, these glaciers 

have melted, resulting in lower valleys that facilitate seawater inflow into river valleys, thereby 

forming an estuary (Finlayson et al., 2018). Bar-built estuaries also referred to as lagoon-type 

estuaries, are formed when the connection with the sea is occasionally restricted by a sand bar, 

forming a shallow estuary behind the bar (Clark and O'Connor, 2019). This sand bar is formed 

when sediments are continuously deposited parallel to the coast due to wave action (Trujillo 
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and Thurman, 2011; Clark and O'Connor, 2019). Tectonic estuaries form when faulting, and 

folding occurs on land surfaces, causing a depression or a basin to form onto which freshwater 

or seawater flows (NOAA, 2020). The mixing of seawater and freshwater thus forms a tectonic 

estuary.   

 

Figure 2.1: Diagram illustrating the classification of estuaries by geomorphological origin 

(Source: Trujillo and Thurman, 2011). 

Another method of estuarine classification is based on water circulation and how the river and 

tidal flows interact within an estuary (Finlayson et al., 2018). Freshwater is less dense and 

flows across the upper layer of the estuary towards the sea, whereas the denser saltwater flows 

in a layer just below toward the head of the estuary (Trujillo and Thurman, 2011). However, 

tidal movement within an estuary can cause the freshwater and saltwater to become mixed 

despite having varying densities (Finlayson et al., 2018). This, in turn, results in a more 

significant variation in physicochemical parameters within an estuary. According to Trujillo 

and Thurman (2011), four types of estuaries can be classified based on water circulation and 

the physical characteristics of the estuary. These include vertically mixed estuaries, slightly 

stratified estuaries, highly stratified estuaries, and salt wedge estuaries. A vertically mixed 

estuary is a shallow, low-volume estuary and occurs when the tidal flows are more prevalent 
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(Finlayson et al., 2018). Freshwater mixes uniformly with seawater, resulting in salinity levels 

being evenly distributed from the surface to the bottom of the estuary (Trujillo and Thurman, 

2011). Across the estuary, salinity levels increase from the head to the mouth; therefore, 

salinities are lowest at the head due to freshwater inflow and highest at the mouth due to 

seawater inflow (Webb, 2019). A slightly stratified or partially mixed estuary is usually a 

deeper estuary and occurs when the river and tidal flows are equal (Finlayson et al., 2018). 

Waves and currents mix surface waters; however, mixing may not extend to the lower layers 

resulting in, the lower layers of the estuary having higher salinity levels than the surface layers. 

(Webb, 2019). Salinity levels are highest near the mouth and decrease as one move upstream 

(NOAA, 2020). A highly stratified estuary is a deep estuary, and as a result of the deeper 

depths, freshwater and saltwater only mix close to the surface (Webb, 2019). The upper layer 

salinity levels increase from the head to the mouth, reaching levels near to that of the open sea 

(Trujillo and Thurman, 2011; Webb, 2019). The lower layer salinity levels, on the other hand, 

are uniform at any depth throughout the estuary (Trujillo and Thurman, 2011). Mixing 

occurring at the interface of the upper and lower waters forms a net movement of water from 

the bottom to the surface, with the surface waters becoming more saline as the deep waters mix 

with it (Trujillo and Thurman, 2011). This results in the formation of strong haloclines at the 

interface of the upper and lower waters. A salt wedge estuary occurs when the river flows 

dominate tidal flows (Finlayson et al., 2018) and results from a wedge of saltwater intruding 

the estuary beneath the freshwater (Trujillo and Thurman, 2011). The freshwater is less dense 

and flows out along the surface, and saltwater flows in at depth, creating a wedge of saltwater 

flowing at the bottom (Webb, 2019). The freshwater flows over the denser saltwater leading to 

a sharp horizontal salinity gradient or pycnocline at depth and a pronounced vertical salinity 

gradient or halocline at any point throughout the estuary (Trujillo and Thurman, 2011; 

Finlayson et al., 2018).  
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Figure 2.2: Diagram illustrating the classification of estuaries by water circulation (Source: 

Trujillo and Thurman, 2011). 

The Whitfield classification is another method that is widely used to classify estuaries in 

southern Africa. It classifies estuaries into five main types: permanently open estuaries, 

estuarine bays, river mouths, temporarily open/closed estuaries and estuarine lakes (Sisitka, 

2008). These five types can be characterised by the tidal prism size, which is the amount of 

tidal water exchange, mixing process, as well as their average salinity levels (Turpie, 2004). 

Permanently open estuaries, estuarine bays and river mouths tend to be permanently open to 

the sea, whereas all temporarily open/closed estuaries (TOCEs) and many estuarine lakes close 

periodically (Turpie, 2004). Permanently open estuaries are typically large systems with the 

river catchments of the estuaries having a perennial flow in their natural condition and a 

moderate tidal exchange with the sea (Whitfield, 1992; Sisitka, 2008). They have a moderate 

tidal prism (1-10 x 106 m3), a tidal or riverine mixing process, and a mean salinity ranging 

between 10 - >35 ppt (Turpie, 2004). Wetlands or salt marshes can be found within 

permanently open estuaries, and the fauna is primarily marine and estuarine (Whitfield, 1992; 

Turpie, 2004). Estuarine bays have wide mouths with a strong tidal exchange with the sea, 
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leading to a permanently open mouth (Sisitka, 2008). They have a large tidal prism (>10 x 106 

m3), resulting in the regular replacement of estuarine water in the lower and middle reaches 

(Whitfield, 1992; Sisitka, 2008), tidal mixing process, and mean salinity ranging between 20-

35 ppt (Turpie, 2004). Estuarine bays are usually associated with extensive wetland and 

mangrove swamps, and marine and estuarine species dominate these estuaries without 

freshwater species in the lower and middle reaches (Whitfield, 1992; Turpie, 2004). River 

mouths have large river catchments, with the river typically dominating the physical processes 

within the estuary (Whitfield, 1992). These estuaries are associated with strong riverine 

outflow, which inhibits marine inflow. They have a small tidal prism (<1 x 106 m3), riverine 

mixing process, and mean salinity of <10 ppt (Turpie, 2004). Freshwater species dominate 

these estuaries, with marine and estuarine species generally confined to the lower reaches 

(Whitfield, 1992). Temporarily open/closed estuaries or TOCEs generally have small river 

catchments and are often closed for many months of the year and sometimes for many years at 

a time (Sisitka, 2008). The formation of sand bars at the mouth, which inhibits the connection 

with the sea, is characteristic of these estuaries (Turpie, 2004). This occurs due to low river 

flow conditions and longshore sand movement on the adjacent coast (Whitfield, 1992). They 

have a small tidal prism (<1 x 106 m3); however, the prism is absent when the sand bar is fully 

developed (Whitfield, 1992). The mixing process is driven by wind and the mean salinity levels 

range between 1 - > 35 ppt (Turpie, 2004). TOCEs are dominated by marine and estuarine 

species; however, during oligohaline conditions, the abundance of some freshwater species 

increases (Whitfield, 1992). Estuarine lakes occur where a coastal lake is connected to the sea 

by a channel of variable length and width (Sisitka, 2008). Most estuarine lakes in southern 

Africa formed due to a drowned river valley that was primarily infilled by reworked sediments 

and is now separated from the ocean by vegetated dunes (Whitfield, 1992). These dunes can 

completely divide the lake and the sea leading to a loss of estuarine characteristics, forming a 

system known as a coastal lake. They have a small tidal prism (<0.1 x 106 m3), a mixing process 

that is wind-driven and mean salinity levels ranging between 1 - > 35 ppt (Turpie, 2004). 

Depending on the salinity conditions, marine, estuarine and freshwater species can all be found 

within these estuaries (Turpie, 2004). 

2.2.3) Importance of estuaries  

Estuaries are essential as they provide a home to various plant and animal species and provide 

various ecosystem services (Barbier et al., 2011). The concept of ecosystem services was 
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established to illustrate how the goods and services provided by natural ecosystems benefit 

society and create awareness for biodiversity conservation (Birkhofer et al., 2015). These 

services can be divided into three primary categories: provisioning services, regulating 

services, and cultural services (Van Niekerk and Turpie, 2012).  

Provisioning services refer to the products derived from ecosystems for basic human needs and 

include food, raw materials, and medicines (Thrush et al., 2013; Daborn and Redden, 2016; 

Trettin et al., 2019). Estuaries are home to a variety of fish and shellfish that can be harvested 

by recreational and commercial fishers (Thrush et al., 2013). The raw materials derived from 

estuaries include sand and aggregate for construction, salt, and hydrocarbons, including oil and 

gas (Daborn and Redden, 2016). In terms of medicine, the biological and chemical compounds 

from estuarine plants and animals have been researched for their potential pharmaceutical and 

nutritional benefits (Thrush et al., 2013; Daborn and Redden, 2016).  

Regulating services refer to the ecosystem functions that provide value and include regulation 

of waste and carbon sequestration (Van Niekerk and Turpie, 2012; Trettin et al., 2019). These 

services are essential to humans as it aids in producing the air we breathe and mitigating 

anthropogenic impacts (Thrush et al., 2013). Estuarine organisms aid in removing harmful 

pollutants discharged into the water from human activities, thus aiding in water purification 

(De Groot et al., 2002). Bacteria found in bottom estuarine sediments are capable of detoxifying 

heavy metals, and some species of shellfish are capable of sequestering heavy metals, thus 

reducing the risk of toxicity to other aquatic species (Thrush et al., 2013). According to Igiri et 

al. (2018), microbes such as bacteria use up heavy metals and metalloids present in the water 

for generating energy, thus reducing their concentrations in the water. In addition, microbes 

are also capable of converting heavy metal ions from one oxidation state to another, thus 

minimising their harmfulness (Igiri et al., 2018).  

Carbon sequestration refers to the process of capturing and storing carbon dioxide to reduce 

the amount available in the atmosphere, thus contributing to climate regulation (Heckbert et 

al., 2011; Perera and Amarasinghe, 2019). Estuarine ecosystems can sequester carbon dioxide 

within biomass and soil (Van Niekerk and Turpie, 2012; Perera and Amarasinghe, 2019). All 

primary producers use carbon dioxide for photosynthesis; however, large estuarine vegetation 

such as mangroves and seagrasses can store carbon dioxide over a more extended period 

(Thrush et al., 2013). According to Schmidt et al. (2011), the carbon found in soil organic 

matter accounts for more than three times the carbon found in the atmosphere or terrestrial 
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vegetation. The ability of estuaries to store significant amounts of carbon in sediment and 

biomass aids in reducing the effects of climate change and global warming due to increased 

carbon dioxide emissions (Nellemann et al., 2009).  

Cultural services refer to the value obtained from the existence of an ecosystem such as an 

estuary (Cochran et al., 2019). Cultural services include aesthetic experiences, ecotourism, and 

recreational and educational benefits (Trettin et al., 2019). Culturally, estuaries are essential to 

humans as they contribute to human well-being and overall quality of life (Edgar et al., 2000). 

Estuaries have an excellent aesthetic appeal, act as tourist attractions as they provide a place 

for people to enjoy leisure-time as well as partake in numerous recreational activities, including 

fishing, swimming, boating, canoeing, sight-seeing as well as picnics (De Groot et al., 2002; 

Pinto et al., 2010). In addition, estuarine ecosystems allow for educational opportunities such 

as academic research and environmental programmes (Hutcheson et al., 2018). This provides 

people with the opportunity to study them and information on their importance, thus aiding in 

their conservation (Hutcheson et al., 2018). 

Estuaries also have ecological and socio-economic benefits. Ecologically, estuaries are among 

the most productive ecosystems in the world. This productivity can be attributed to the 

interaction between marine and riverine environments (NOAA, 2019). They receive nutrients 

and sediments from these environments enabling them to support a wider variety of life 

(NOAA, 2019). According to Van Niekerk and Tupie (2012), ecological benefits provided by 

estuaries include nursery function, filtration, flood regulation and storm protection. 

Estuaries are commonly referred to as "nurseries of the sea" as they provide nesting and 

breeding grounds for several animal species (NOAA, 2019). Daily tidal fluctuations result in 

changes to the water depth and chemistry of estuaries, creating a wide range of habitats within 

the estuary (NOAA, 2020). Seagrass beds present in estuaries create a safe ground for juvenile 

fish and invertebrates to feed and avoid predation until they grow big enough to survive in the 

open sea (Hughes et al., 2014). Estuaries also serve as a major stopover for migratory animal 

species, including waterfowl and salmon (NOAA, 2020). Wetland and salt marsh habitats that 

fringe estuaries aid in filtering out sediment and pollutants derived from land runoff (Nelson 

and Zavaleta, 2012). This results in cleaner and more transparent water entering the estuaries, 

which benefit aquatic life. Estuarine plants such as mangroves, reeds and seagrasses also act as 

a natural buffer against floods and storms (Barbier et al., 2011). They absorb and provide a 

barrier against floodwaters from land and storm surges from the sea. 
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Economically, estuaries are extremely valuable to communities and businesses along the coast.  

They provide many benefits and opportunities and make significant contributions to the local 

and national economy (Van Niekerk and Turpie, 2012). Estuaries bring in substantial revenue 

for local governments as they increase the value of the property developed along the estuaries 

(Van Niekerk and Turpie, 2012). Estuaries also provide a host of recreational activities and act 

as tourist attractions, enabling them to create job opportunities for the locals as well as generate 

significant income for the local economy (Pinto et al., 2010). 

2.2.4) Threats to estuaries 

There has been an increasing concern for the health status of South African estuaries since the 

1970s, when it was discovered that only a few estuaries remain in their natural state. According 

to Turpie (2004), most of the estuaries in South Africa have been altered and impacted by 

human activities. In addition, climate change exacerbated by increased anthropogenic activities 

has severely impacted estuarine ecosystems. The present ecological state refers to a set of 

categories (A – F) that describe the ecological condition of estuaries and was developed by the 

department of water and sanitation (Van Niekerk et al., 2019). Category A refers to estuaries 

in their natural state, category B refers to estuaries with a few changes and are largely natural. 

Categories C and D refer to moderately modified and largely modified estuaries, respectively 

and categories E and F refer to highly degraded and extremely degraded estuaries, respectively 

(Van Niekerk et al., 2013).  According to Van Niekerk et al. (2019), the uMgeni Estuary is in 

a poor condition and the present ecological state of the uMgeni Estuary is highly degraded. 

The increase in the global population of the world has resulted in a significant increase in 

human activities. This, in turn, has resulted in the negligent use of water resources, and the 

outcome of this is water pollution (Pillay, 2002). Pollution can be described as the addition of 

substances into the environment at a faster rate than it can be recycled, decomposed or stored 

in a harmless form (Nathanson, 2010). Therefore, pollution is most likely to cause negative 

impacts on the environment and the organisms that inhabit it (Nathanson, 2010). 

Pollutants can be in the form of gases or organic and inorganic compounds, and according to 

Sukdeo (2010), these can be either natural or synthetic compounds. As a result of human 

activities, the amount of these compounds increases. This can lead to the environment 

becoming toxic, which has detrimental effects on the organisms that inhabit the environment 

(Pillay, 2002). Pollution can be emitted from either a point source or a non-point source 
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(Nathanson, 2010). Point source pollution is the pollution emitted from a single, known source 

and is usually easier to control as it only has one source (Pillay, 2002). Non-point source 

pollution, on the other hand, refers to the pollution that is emitted from various sources, and 

this type of pollution is more difficult to pinpoint and control as it has many sources (Sukdeo, 

2010). Therefore, non-point source pollution has a higher level of pollutants than point source 

pollution (Nathanson, 2010).  

According to Showalter et al. (2000), non-point source pollution occurs from either the 

atmosphere, such as acid rain entering a watercourse or when surface water is drained into a 

river. Non-point pollution can occur due to expansions in activities such as urban, residential 

and agricultural land-use practices. According to Pillay (2002), this makes it difficult to control 

and manage non-point source pollution. In point source pollution, the concentrations of 

pollutants in the environment decrease with distance from the source (Pillay, 2002). However, 

for non-point source pollution, the impact on the environment is more severe (Sukdeo, 2010).  

According to Sukdeo (2010), the water quality of rivers and estuaries of a country has a strong 

link to the uses of water and the levels of economic development. The economic sectors which 

have the most impacts on estuaries in South Africa include the following: 

2.2.4.1) Urban sector  

The rapidly increasing world population has resulted in rapid urbanisation. The significant 

expansion in urban areas has, in turn, led to an increase in the demand for infrastructure such 

as roads to allow for easy accessibility in and around the area (Azevedo et al., 2016). The 

clearing of land to make way for this new infrastructure puts a strain on aquatic ecosystems. 

Urbanisation has resulted in an increase in non-permeable surfaces associated with 

development, which has resulted in a decrease in the amount of rain that can penetrate the 

surface to contribute to groundwater supplies (Riley, 2008). These non-permeable surfaces 

have increased urban runoff, consisting of a mixture of petrol, hydrocarbons, and organic 

compounds such as heavy metals and other nutrients (Wuana and Okieimen, 2011). These 

substances can enter a river system and be transported into estuaries can accumulate, causing 

highly toxic conditions within the estuary (Sukdeo, 2010). There have not been many studies 

done on the impacts of urban runoff on aquatic life. However, according to Nunkumar (2002), 

the effects of urban runoff being discharged into river systems and eventually estuaries is 

approximately equal to the effects of secondarily treated domestic sewage. 
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Urbanisation can also be linked to a significant increase in the amount of waste and sewage 

production (Pires et al., 2015). If there are no proper disposal and treatment procedures in place 

or if there are any faults with the structures put in place to treat the sewage, it can be discharged 

into rivers (Sukdeo, 2010). The waste can, in turn, be transported into estuaries resulting in 

contamination and eutrophication of the water (Anderson et al., 2002).  

2.2.4.2) Commercial agriculture 

Commercial agriculture, such as sugarcane farming in and around river catchments and 

estuaries, is one of the main threats to estuaries (Forbes and Forbes, 2012). Chemicals such as 

fertilisers, pesticides, and herbicides commonly used in agriculture may make their way into 

rivers through surface runoff (Jeppesen et al., 2015). In order to grow and complete their 

lifecycles, plants require both macronutrients (mainly nitrogen, phosphorous and potassium) 

and micronutrients (heavy metals such as iron, chromium and zinc). However, some soils are 

deficient in heavy metals; therefore, fertilisers have been introduced to these soils to aid in 

plant growth (Wuana and Okieimen, 2011). As a result of increased commercial agricultural 

activities, large quantities of fertilisers are continuously applied to croplands leading to 

significant increases in heavy metals in soils (Wuana and Okieimen, 2011). 

Furthermore, pesticides and herbicides also contain heavy metals, and the increased use of 

these chemicals in agriculture also results in heavy metal accumulation in soils. This is 

consistent with a study conducted by Tariq et al. (2016), where soil samples from cotton fields 

treated with pesticides were tested for heavy metals. The results indicated an increase in heavy 

metals such as copper, nickel and cadmium with an increase in the use of certain pesticides 

(Tariq et al., 2016).  Surface runoff causes large amounts of sediments and soils to be washed 

into rivers, and when these chemicals get into the water, they can cause nutrient and heavy 

metal levels to increase (Forbes and Forbes, 2012). Increases in nutrients and heavy metals can, 

in turn, alter the functioning of the ecosystem and cause a decline in aquatic biodiversity 

(Forbes and Forbes, 2012).  

The conversion of land for agricultural purposes has led to severe impacts on the water quality 

of rivers and estuaries. A riparian buffer zone is a portion of land with vegetation and is found 

along the boundaries of a waterway (Mackenzie, 2015). Riparian vegetation provides a barrier 

between the water and the land. This type of vegetation is essential as when contaminants from 

runoff flow towards the river, they become trapped in the roots of the vegetation, enabling the 
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contaminated water to infiltrate the soil (Mackenzie, 2015). When natural vegetation is cleared 

for commercial farming, it results in high levels of erosion, as the soil becomes less stable and 

is exposed to the effects of wind and water erosion (Sukdeo, 2010). These types of erosion can 

lead to high levels of sediment being discharged into rivers and estuaries, resulting in siltation 

and sedimentation (Hubbard et al., 2004; Sukdeo, 2010).  

Siltation occurs when fine sediment particles transported into rivers and estuaries remain in 

suspension and causes the water to become murky (Bell et al., 2000).  On the other hand, 

sedimentation occurs when these suspended particles settle at the bottom of the river or estuary 

(Bell et al., 2000). Siltation is especially common in areas where riparian vegetation has been 

replaced by agricultural practices (Hubbard et al., 2004). Siltation can cause the turbidity of 

the water to increase due to the excess sediments, which has further implications. Some of these 

implications include reduced visibility in fish and a reduction in the depth at which light can 

penetrate the estuary (Mackenzie, 2015). Siltation can also be caused by an increase in built-

up areas and activities such as sand mining and dredging in and around river banks and estuaries 

(Azevedo et al., 2016). Sand mining is particularly detrimental to the river and estuarine 

systems as this cause a widening of the floodplain, which reduces the stability of the river and 

its natural functioning (Sukdeo, 2010). Dredging refers to the process by which silt, sediments 

and other debris are removed from the bottom of water bodies (NOAA, 2020). However, 

sediment spills often occur during the dredging process, which causes an increase in suspended 

sediment particles resulting in siltation (Smith et al., 2019). Furthermore, the clearing of land 

for development exposes the soil to wind and water erosion, elevating the rates of 

sedimentation and siltation of rivers and estuaries (Pillay, 2002).   

Additionally, the abstraction of water from river systems to be used in the irrigation of 

agricultural land can lead to a significant reduction in the flow rates of a river and freshwater 

inflow into estuaries (Du Preez and Hosking, 2010; Jeppesen et al., 2015). This can severely 

impact the functioning of estuaries. Habitat loss for a variety of fish, bird and vegetation 

species, and a reduction in the area available for boating activities are some of the consequences 

of a reduction in freshwater inflow into estuaries (Du Preez and Hosking, 2010).  

2.2.4.3) Industrial sector 

The industrial sector is regarded as a critical component as it aids in developing the economy 

of a country. Industries are associated with generating large amounts of money through the sale 
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of manufactured goods and providing job opportunities and skills, thus contributing to 

economic growth (Sukdeo, 2010). However, the industrialisation of a country is not without 

environmental impacts. Industrial activities often result in the pollution of the environment and 

water resources, leading to the subsequent degradation of the environment.  

According to Adekunle and Eniola (2008), rivers are usually seen as a means to dispose of 

wastewater and effluents, especially from industries found close to rivers.  The effluents from 

industries usually contain large amounts of chemicals containing heavy metals which 

significantly increases the level of pollution within a water body (Hsu et al., 2016). They can 

cause changes to the physical, biological and chemical properties of the water (Adekunle and 

Eniola, 2008). According to Sukdeo (2010), industrial effluents are currently among the most 

common sources of water pollution, and the amounts of these effluents constantly increase as 

countries are becoming more and more industrialised.     

Industrial effluents initially alter a water body's physical and chemical properties, and these 

alterations lead to the biological deterioration of that water body (Sukdeo, 2010). These 

effluents are toxic to aquatic life as they tend to accumulate in fish leading to adverse health 

impacts including poisoning, diseases and death (Zeitoun and Mehana, 2014). This is consistent 

with a study conducted by Fatima and Usmani (2013) where the ecological impacts of heavy 

metal accumulation in fish tissue were investigated. The results indicated that fish living in 

waters containing excessive levels of chromium, nickel and lead from industrial effluents had 

severe liver and kidney damage due to the bioaccumulation of these heavy metals (Fatima and 

Usmani, 2013). As a result of the rapid industrialisation of countries, it is becoming 

increasingly difficult to reduce the negative impacts of these effluents and protect aquatic 

ecosystems such as estuaries. 
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 Table 2.1: Estuary pressure assessment for the uMgeni Estuary (Sourced from: Van Niekerk 

et al., 2018). 

 

 

 

 

 

 

 

 

 

 

2.3) Sediment processes 

Sediment refers to the fragmented material produced by the physical or chemical weathering 

of rocks and includes deposits such as gravel, sand, mud, minerals and shells (Colby, 1963). 

Sediments typically consist of loose fragments of rocks or minerals broken of bedrock, mineral 

crystals precipitated out of the water, and shells (Marshak, 2008). Sediment can be categorised 

into three broad groups based on their grain size, namely gravel, sand and mud (Colby 1963; 

Marshak, 2008). A commonly used scale to determine grain size is the Wentworth scale that 

was first proposed by Wentworth (1922). Based on this scale, gravel has grains larger than 2 

mm in diameter, sand has grains that fall between 2 mm and 0.0625 mm, and mud has grains 

smaller than 0.0625 mm in diameter (Wentworth, 1922; Sukdeo, 2010). Mud can be further 

divided into silt with grains ranging from 0.0625 mm to 0.0039 mm in diameter and clay with 

grains smaller than 0.0039 mm in diameter (Sukdeo, 2010).  

Gravel is a loose aggregate of rock fragments ranging from granule to boulder-sized fragments 

(Marshak, 2008). Sand is a loose granular material comprising finely divided rock and mineral 

fragments (Valentine, 2019). Sand is formed by the weathering of rocks and is composed of 

finer particles than gravel but coarser than silt (Marshak, 2008; Valentine, 2019). Silt comprises 

Key estuarine pressures Levels 

Flow modification Very high 

Pollution Very high 

Habitat loss Very high 

Fishing effort Very high 

Artificial breaching Low 

Invasive aliens: Plants Medium 

Invasive aliens: Fish Very high 
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particles that range between very fine sand and clay (McNally and Mehta, 2004). Silt particles 

are similar in appearance to sand; however, silt particles are smaller, have a larger surface area 

per unit mass and are frequently coated with clay (Ural, 2018). Therefore, they may display 

some physio-chemical properties of clay (Pather, 2014). Clay is a plate-like, very fine-grained 

material composed of clay minerals (Marshak, 2008). Clay minerals are formed by the 

disintegration of primary rock-forming minerals and are also known as secondary silicates 

(Ural, 2018). The combination of silts and clays is referred to as mud and tend to dominate the 

bed and banks of most estuaries (Pather, 2014).  

While rainfall and surface runoff are the forces that drive soil erosion, highly turbulent fluvial 

streams are the driving force of stream erosion, which is the primary transport agent of 

sediments (Ouillon, 2018). In the aquatic environment, sediments can either be transported as 

suspended load, where they remain in the water column, wash load where they remain in 

suspension even when the water is not flowing or bedload where they settle to the bottom of 

the water body (Abed, 2009; Fondriest Environmental, 2014). Sediment transport depends on 

the size of particles and the velocity and turbulence of the system (Sukdeo, 2010). Generally, 

finer particles are transported as suspended load, with larger particles transported as bed load 

(Sukdeo, 2010). Sediments in water also undergo many periods of resuspension, transport and 

deposition as they move from the source of rivers to the river mouth or estuary (Ouillon, 2018). 

In addition, the decreasing slope of the watercourse from the source to the mouth introduces 

grain sorting leading to finer particles being transported into estuaries (Ouillon, 2018). In 

studies related to pollution, sediment is often referred to as the fine fraction, consisting of 

particles smaller than 63 µm and is the fraction to which pollutants adsorb (Villars and 

Delvigne, 2001). Estuarine sediments, thus, have a great potential to fix and accumulate most 

heavy metals from the river and estuarine water (He et al., 2019). 

Estuaries provide a route for sediments to be transported from land to coastal and marine 

ecosystems (Pather, 2014). In addition to the sediments originating in the estuary itself, 

sediments are constantly transported into and out of estuaries via fluvial and marine systems 

(Sukdeo, 2010). The sediments found within estuaries are derived from either fluvial or marine 

ecosystems (Abed, 2009). Sediments in these environments are essential as they provide 

habitats for benthic organisms and suitable spawning grounds. In addition, sediments provide 

nutrients to aquatic plants and vegetation in nearshore ecosystems such as marshes (Fondriest 

Environmental, 2014). The transport and deposition of sediments are thus critical as they 
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provide many benefits to aquatic ecosystems. However, the transport and deposition of 

excessive amounts of sediment can negatively impact aquatic life. For example, excessive 

levels of suspended sediment can hinder the amount of light from reaching submerged aquatic 

plants and clog fish gills (Fondriest Environmental, 2014).  

2.4) Sediment transport   

 To adequately understand surface water quality issues, it is crucial to understand the transport 

of particulate material and pollutants in rivers, lakes, and oceans. Grain size plays an essential 

role in transporting sediments within the water from the fluvial environment to the estuarine 

environment (McNally and Mehta, 2004). Coarse sediment, including gravel and sand, are 

transported as bed load within a river system. According to Pather (2014), the amount of bed 

load carried by a river influences its channel geometry and ability to recover from natural or 

human interferences, including floods and upstream impoundments. Finer sediments, including 

silts and clays, are less dense, thus remain in suspension within the water column (Bell et al., 

2000). These sediments are thus transported as suspended load within rivers (Villars and 

Delvigne, 2001). Suspended load is important for depositional processes as it carries the 

required sediment to develop and maintain deltaic and estuarine environments (Pather, 2014).  

Cohesive sediment transport processes are introduced when fine sediment particles enter an 

estuary (Villars and Delvigne, 2001). Cohesive sediment is a mixture of silts, clays, organic 

materials, and colloidal particles transported from fluvial and marine environments to 

depositional environments (Bruens et al., 2002). Fine-grained sediments are primarily 

responsible for transporting chemicals within aquatic ecosystems due to their high surface-to-

mass ratios (Bruens et al., 2002). In addition, fine-grained sediments become more chemically 

and biologically active due to their surface electrical charges, which better facilitate the 

adsorption of pollutants onto these sediments (Bisht, 2019). These sediments can facilitate the 

transportation of contaminants and impact the optical properties of the water column (Keen 

and Furukawa, 2007).  

When river sediment is transported into estuaries and comes into contact with saline water, a 

process known as flocculation occurs (Villars and Delvign, 2001). Flocculation is the process 

by which particle aggregates are formed from individual particles, usually fine-grained 

particles, for example, clay particles (Villars and Delvigne, 2001). As a result of their size, 

shape, and electrical charge distribution, clay mineral particles introduce cohesion. Clay tends 
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to coagulate into aggregates due to Van der Waal's forces (Ural, 2018). When this process 

occurs, the collision between two particles results in the formation of an aggregate, and this 

process continues until an equilibrium is reached (Ural, 2018). According to Pather (2014), all 

clay particles suspended in the water column become cohesive when salinities exceed 2-3 ppt. 

However, salinities greater than 10 ppt result in inter-particle cohesion, affecting the structure 

of the aggregates formed. Flocculation is influenced by both physical hydrodynamic forces and 

biological activities (Wang et al., 2013). In addition, flocculation influences the settling 

velocity of suspended particles and the rate of deposition within an estuary (Wang et al., 2013; 

Pather, 2014). 

2.5) Deposition of sediments 

Stream velocity refers to the speed of the water within a stream, and settling velocity can be 

described as the rate of settling in still water (Nelson, 2015). Sediment particles have a tendency 

to settle with respect to the velocity of the water. At a low velocity, streams display laminar 

flow where the water flows in parallel paths (Salles, 2020). At a high velocity, streams display 

turbulent flow where the water flows haphazardly (Salles, 2020). In aquatic systems with 

turbulent flow, fine sediments will remain in suspension, whereas in aquatic systems with 

laminar flow, suspended particles will slowly settle to the bed (Nelson, 2015). This process is 

referred to as deposition. When the flow of water slows down or becomes still, coarse fluvial 

sediments that are heavier cannot be supported by the river turbulence; therefore, they become 

deposited on the river and stream beds (Bell et al., 2000).  

Sediment deposition is primarily regulated by hydrodynamic processes that circulate and mix 

estuarine waters (Tinmouth, 2010). The mixing of seawater and freshwater creates a brackish 

environment within estuaries, enhancing deposition (Bell et al., 2000). Sediment deposition is, 

thus, greatest near the head of an estuary where seawater enters the estuary and flocculation 

occurs (Bell et al., 2000).  The rise and fall of the water levels resulting from tides and the 

occurrence of turbidity maxima during slack tides or low-energy phases also enhance particle 

settling (Chapman and Wang, 2001). The larger settling velocities of flocs enhance deposition 

during slack tides, resulting in the formation of prominent mud reaches in the central portion 

of estuaries (Chapman and Wang, 2001; Flemming, 2011). Fine sediments such as muds are 

thus, deposited on the fringes of the central part of an estuary by river processes, tides and 

waves (Bell et al., 2000). This occurs due to enhanced flocculation, coagulation and 

aggregation of suspended particles due to the mixing of freshwater and saltwater (Flemming, 
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2011). In addition, deposition can also be enhanced by vegetation such as marshes. According 

to Loaiza and Findlay (2008), the plant stems on a marsh surface can trap sediment particles 

by reducing the velocity of the water and providing a surface for sediment to adhere to.  

Periods of high velocities, such as after flood events, subsequently cause erosion of the 

estuarine bed. When the turbulent waters flow over the deposited sediments, it can cause some 

sediment particles to be removed from the bed and become suspended once again (McNally 

and Mehta, 2004). According to Whitfield and Bate (2007), a single large-scale flood event can 

result in the scouring out of sediments that were deposited over decades. Flood events result in 

sediments being flushed out of estuaries and into the ocean thus, facilitating the removal of 

pollutants trapped in the sediment (Whitfield and Bate, 2007). However, these events also 

transport large volumes of sediment from the river system, deposited when the flow velocity 

decreases.  

2.6) Water quality and sediment quality guidelines 

Rivers and estuaries play a significant role in linking the land to the sea. They can be described 

as a transport system, as they provide pathways that carry sediments and pollutants from inland 

to the coast (Pillay, 2002). They also support a wide range of activities, including the supply 

of water for agricultural use, industrial use, and recreational use (Pillay, 2002). As a result of 

rapid urbanisation and industrialisation, it has led to the increase in the discharge of effluents 

carrying heavy metals and metals into rivers and estuaries (Sukdeo, 2010). The significant 

increase in pollution has led to the increased need for thorough and continuous evaluation of 

the water and sediment quality of rivers and estuaries (Pillay, 2002). Regular water and 

sediment quality assessments are required to monitor the health of aquatic ecosystems and 

protect them from further degradation.     

To evaluate whether the water and sediment quality of an aquatic ecosystem is acceptable or 

unacceptable, there has to be a set of guidelines to check against (DWAF 1996). The South 

African water quality guidelines are expressed as a range of values known as the target water 

quality range (TWQR). Water quality parameters that remain within this TWQR will pose little 

to no adverse effects on the health of the aquatic life, thus ensuring their protection (DWAF, 

1996).  

South Africa does not have its own set of sediment quality guidelines (SQG) for its aquatic 

ecosystems as these are still being developed (Gordon and Muller, 2010). As a result, 
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international guidelines are used to assess the sediment quality of aquatic ecosystems in South 

Africa.  SQGs are a crucial tool in evaluating the degree of contamination in estuarine and 

marine sediments (Hübner et al., 2009). The National Oceanic and Atmospheric 

Administration (NOAA) undertakes numerous studies on the chemical concentrations of 

marine and estuarine sediments annually, and their scientists developed a set of numerical 

SQGs (Hartwell et al., 2018). Long and Morgan (1990) developed a set of SQGs for NOAA 

based on the responses of biological organisms to chemical concentrations in their aquatic 

environments. They developed two threshold ranges, including effects range low (ERL) and 

effects range median (ERM) values. According to Long et al. (1995), ERL refers to the 

concentration below which toxic effects are scarcely observed, and ERM refers to the 

concentrations above which adverse effects frequently occur. The DWAF (1996) TWQR for 

aquatic ecosystems, and the NOAA (1999) SQGs were used in this study. 

2.7) Heavy metals 

Heavy metals are metallic chemical elements naturally found in the earth's crust (Jaishankar et 

al., 2014). They are referred to as heavy metals as they have a high atomic weight and a density 

that is greater than 5 g/cm3 (Hui, 2008; Tchounwou et al., 2012). Heavy metals can be found 

in nearly all parts of the biotic and abiotic environment, including water, sediments, plants, 

animals and humans (Hui, 2008). These heavy metals are naturally occurring in the 

environment, and some heavy metals such as iron and zinc are essential for various biochemical 

and physiological functions of living organisms (Sukdeo, 2010; Jaishankar et al., 2014). 

However, when their concentrations exceed naturally occurring levels, it can be potentially 

harmful to both humans and aquatic life (Moodley et al., 2014). 

Heavy metals are present in aquatic systems in various chemical species (de Souza Machado 

et al., 2016). Total heavy metals refer to the concentration of heavy metals measurable in water 

or sediment after acid digestion and include heavy metal precipitates, heavy metals within 

mineral lattices, heavy metals adsorbed onto sediment and organic matter, as well as dissolved 

heavy metals (de Souza Machado et al., 2016). Dissolved heavy metals can be defined as the 

portion of total heavy metals that pass through a 0.45 µm filter, such as colloids (Guéguen and 

Dominik, 2003). Particulate heavy metals can be defined as the portion of nonfilterable heavy 

metals that are mobile to the dissolved phase and can be recorded in water after acid extraction 

(de Souza Machado et al., 2016). It includes heavy metals in inorganic precipitated or co-

precipitated forms such as carbonates and hydrous Fe- Mn oxides and adsorbed onto sediment 
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and organic matter particles (Namieśnik, and Rabajczyk, 2010). Bioaccumulated heavy metals 

describe the portion of heavy metals ingested by organisms. Bioavailable heavy metals, on the 

other hand, include heavy metal species that are bioaccessible and can be distributed, 

metabolised, eliminated, and bioaccumulated by an organism (Drexler et al., 2003). Heavy 

metals are of particular concern due to their environmental persistence, toxicity, and ability to 

be integrated into food chains (Pati et al., 2013). Heavy metals are not biodegradable and can 

persist in the environment for an extended period of time, even after the sources of these heavy 

metals have been removed (Javed and Usmani, 2017).  

2.7.1) Sources of heavy metals 

According to Pati et al. (2013), heavy metals have a geogenic origin, such as from the leaching 

or weathering of rocks and an anthropogenic origin, such as mining and other industrial 

activities. In aquatic ecosystems, these heavy metals are transported in dissolved or particulate 

form, where sediment and other suspended particles are crucial in heavy metal adsorption, 

desorption and sedimentation processes (de Souza Machado et al., 2016). Heavy metals present 

in estuaries are typically derived from riverine particulate and dissolved heavy metals, point 

sources such as harbour activities, land runoff, sewage, and industrial effluents (de Souza 

Machado et al., 2016).  

2.7.1.1) Natural sources 

The natural sources of heavy metals include volcanic eruptions and the disintegration of metal-

bearing rocks (Ali et al., 2019). Heavy metals naturally occur within the earth's crust 

(Tchounwou et al., 2012). The earth's crust comprises three primary rocks, namely, igneous, 

sedimentary and metamorphic rocks. Magma refers to molten rock that originates from the 

earth's mantle and consists of various chemical elements such as heavy metals (Bradl, 2005). 

When magma rises to the earth's surface as a result of volcanic eruptions or plate tectonics and 

cools, it solidifies to form igneous rocks (Marshak, 2008). As magma rises and cools, it causes 

chemical reactions to occur, producing various minerals in a process referred to as magmatic 

differentiation (Nelson, 2012). Heavy metals are integrated as trace elements into the crystal 

lattice of these minerals that form when the magma cools (Bradl, 2005). During the final stages 

of magmatic differentiation, magmatic-hydrothermal fluids are produced, containing many 

heavy metals and other elements (Sharma and Srivastava, 2014). As these hot fluids intrude 
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into the surrounding rock, chemical reactions occur that cause minerals to precipitate as ores 

comprising a high concentration of heavy metals and other elements (Bradl, 2005).  

The physical weathering of pre-existing rocks, such as igneous rocks, results in the formation 

of fine-grained sediment particles that undergo transportation and deposition (Marshak, 2008). 

The continued deposition of these particles over time causes them to become compacted and 

cemented, resulting in the formation of sedimentary rocks (Marshak, 2008). Hydrothermal 

fluids may also be produced during sedimentary processes. According to Sharma and 

Srivastava (2014), pore fluids may become heated in the sedimentary sequence, which may 

also lead to hydrothermal fluid circulation occurring within basins. When a sill which is a sheet-

like intrusion of igneous rock, intrudes sedimentary rocks, heat can be transferred either 

through conduction or convection of fluids (Haile et al., 2019). The porous and permeable 

nature of sedimentary rocks enables them to hold and transport fluids such as water, gasses and 

oils (Bradl, 2005). According to Haile et al. (2019), igneous sills that have intruded highly 

porous sedimentary rocks have led to the mobility of hydrothermal fluids. As a result, 

sedimentary rocks may also contain ore deposits of many heavy metals if they were infiltrated 

with these hydrothermal fluids (Bradl, 2005). Metamorphic rocks are formed when igneous, 

sedimentary or other metamorphic rocks are exposed to increased temperature and pressure 

conditions deep within the earth's crust (Marshak, 2008). These primary rocks contain various 

amounts of different heavy metals, and the physical weathering of these rocks at the earth's 

surface can naturally introduce heavy metals and other elements into the environment (Ali et 

al., 2019).  

2.7.1.2) Anthropogenic sources 

The most common anthropogenic sources of heavy metals include industrial activities, urban 

areas and agriculture. Industrial activities such as mining of heavy metal ores, steel processing, 

manufacturing of paints and dyes, smelting, combustion emissions, and petrochemical plants 

either use or produce heavy metals (Wuana and Okieimen, 2011). These heavy metals are often 

directly discharged into rivers and eventually estuaries through industrial effluents and can 

cause adverse effects on aquatic organisms inhabiting rivers and estuaries (Wuana and 

Okieimen, 2011). In addition, heavy metals can be emitted into the atmosphere from industrial 

emissions. These heavy metals are subsequently deposited onto soils as the metal-bearing dust 

falls (Chen et al., 2005). These heavy metals can also accumulate in soils and be washed into 
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rivers and estuaries through surface runoff (Nadal et al., 2004). Industries broadly use heavy 

metals, making them a primary anthropogenic source of heavy metals (Nadal et al., 2004). 

Urban areas are another primary anthropogenic source of heavy metals (Chen et al., 2005). 

Traffic emissions are a significant contributor to heavy metal pollution on urban surfaces, 

which can eventually be transported into aquatic environments through surface runoff (Ferreira 

et al., 2016). The traffic pollutants are emitted from the engines of vehicles via internal 

combustion, by tyre, brake and road wear, as well as fuel evaporation (Ferreira et al., 2016). 

Residential areas are another source of heavy metal pollution in urban areas through the release 

of heavy metal-containing household wastes and sewage (Huang et al., 2020). The concrete 

surfaces of urban areas result in a decrease in permeability and an increase in surface runoff 

(Riley, 2008). This facilitates the transportation of different pollutants, including heavy metals, 

into stormwater drains which are subsequently discharged into rivers and estuaries (McGrane, 

2016). An additional potential source of heavy metals to rivers and estuaries from urban areas 

are landfills. Municipal waste can consist of cleaning products, batteries, pesticides, and oils 

and paints, which can all consist of various amounts of heavy metals and other metals (Brand 

et al., 2018). The contaminated leachate of landfills can thus, release heavy metals into 

groundwater which can be subsequently discharged into surface waters leading into estuaries 

(Brand et al., 2018). According to a study conducted by Yang et al. (2011) that assessed the 

heavy metal contamination of topsoil in urban areas in China, it was found that areas 

concentrated with industrial areas, residential areas, and roads had highly elevated levels of 

heavy metals. These areas account for the most elevated concentrations of heavy metals being 

released into the natural environment (Nadal et al., 2004; Yang et al., 2011).     

Agricultural activities are another source of heavy metals as they involve the use of fertilisers 

and pesticides in order to improve crop yields and productivity (Wuana and Okieimen, 2011). 

These fertilisers and pesticides often contain various heavy metals such as arsenic, zinc and 

copper, and their excessive use can introduce elevated levels of these heavy metals into the 

natural environment (Wuana and Okieimen, 2011). These heavy metals can accumulate in soils 

and be washed into rivers and estuaries through surface runoff after heavy rains and cause 

adverse effects on the organisms inhabiting these ecosystems. 
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2.7.2) Factors affecting the accumulation of heavy metals in sediment 

Sediments have a strong affinity for heavy metals, and within the natural environment, 

sediments typically contain the majority of heavy metals through the process of adsorption 

(Hsu et al., 2016). Adsorption refers to the accumulation of ions at the interface between a solid 

phase and an aqueous phase (McLean and Bledsoe, 1992). Heavy metals have a tendency to 

adsorb more onto sediment particles as compared to water and become temporarily trapped 

(Hsu et al., 2016; Huang et al., 2020). Once bound to sediment and soils, heavy metals become 

persistent as elemental contaminants are not biodegradable (Mann et al., 2011). The ability of 

heavy metals to bind to sediment particles depends on several factors, including grain size, 

organic matter content and cation exchange capacity (Parker, 1983; Lin and Chen, 1998). These 

factors aid in removing heavy metals from the water column which inhibits their mobility; 

however, this is temporary and can be reversible (Mann et al., 2011). 

2.7.2.1) Grain size 

Grain size plays a significant role in sediment entrainment, transport and deposition 

(Maslennikova et al., 2012). Fine-grained sediments are known to contain more heavy metals 

than coarse-grained sediments, as finer sediments have a larger surface-to-volume ratio 

(Maslennikova et al., 2012). In addition, fine sediment particles such as silts and clays are 

negatively charged, which facilitates the adsorption of heavy metals onto their surface (Huang 

et al., 2020). Therefore, fine-grained sediments act as sinks for heavy metals and with estuaries 

being a sink for fine-grained sediments, the level of heavy metal contamination in estuaries is 

typically high (Abed, 2009).  

2.7.2.2) Organic matter 

Organic matter refers to materials initially produced by living plants and animals that return to 

the soil and undergo the process of decomposition (Bot and Benites, 2005). It consists of 

residues of plants and animals as well as living and dead microorganisms such as bacteria, 

fungi and algae (Magdof and Van Es, 2021). Estuarine ecosystems are significant zones for 

organic matter processing and provide a ground for the mixing of land- and marine-derived 

organic matter (Canuel and Hardison, 2016). Estuaries acquire organic matter from terrestrial 

materials bearing organic matter which enter rivers leading into estuaries, and marine materials 

containing organic matter which are carried into estuaries through the action of tides 

(Remeikaite-Nikiene et al., 2016). In addition, mangroves also play a role in supplying organic 
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matter to estuaries as these environments contain a large number of decaying leaves and other 

plant material (Canuel and Hardison, 2016). According to Lin and Chen (1998), organic matter 

present in the water column act as scavengers for heavy metals and these heavy metals can be 

subsequently adsorbed onto bottom sediments. Organic matter consists of a net negative charge 

and will attract positively charged particles such as heavy metal cations (Brady and Weil, 

2007). These heavy metals adsorb onto the surface of the organic matter, thus inhibiting the 

mobility and bioavailability of the heavy metals (Brady and Weil, 2007).  

2.7.2.3) Cation exchange capacity 

Cations that are adsorbed onto clay and organic matter can be replaced by other cations. The 

ability of soil colloids, including clay and organic matter particles, to adsorb and exchange 

cations refers to cation exchange capacity (Meetei et al., 2020). The cation exchange of heavy 

metals is influenced by the amount of negative charge on the surface of sediment particles 

(Rieuwerts et al., 1998). The higher the cation exchange capacity of sediment, the higher the 

negative charge, and the more cations can be adsorbed (Lin and Chen, 1998). The cation 

exchange capacity thus influences the mobility of heavy metals in sediments as increases in 

cation exchange capacity facilitates their adsorption onto sediments which subsequently 

inhibits the mobility of heavy metals in sediments (de Matos et al., 2001).  

2.7.3) Factors affecting the remobilisation of heavy metals  

The adsorption of heavy metals onto sediments is a temporary process as these heavy metals 

are removed from the water column only and not the estuarine environment (Mann et al., 2011). 

According to Mann et al. (2011), heavy metals bound to sediments can undergo various 

reversible changes depending on the chemistry of the aquatic environment, such as changes in 

pH. Heavy metals can be released back into the water column as a result of resuspension or 

desorption (Sojka et al., 2019).  

Heavy metals stored in sediments can be remobilised and resuspended into the water column 

due to changes in chemical and physical conditions (Sojka et al., 2019). Chemical processes 

such as the oxidation of organic matter in the upper sediments by bacteria can cause trace 

metals to dissolve into pore waters (Superville et al., 2014). This can, in turn, lead to the partial 

mobilisation of these heavy metals, which can be subsequently released into the overlying 

water column (Superville et al., 2014). Physical processes such as flooding, human 

disturbances, and bioturbation caused by benthic organisms can cause sediment to be disturbed 
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and resuspended into the water column (Zhang et al., 2014). According to Zhang et al. (2014), 

the release of heavy metals into the water column is enhanced by these disturbances to the 

sediment. For example, bioturbation can cause heavy metals from pore water and iron and 

manganese hydroxides to be released into the overlying water column (Atkinson et al., 2007). 

This, in turn, increases the bioavailability of these heavy metals to aquatic life.   

Desorption of heavy metals refers to the process by which heavy metals are released from their 

binding site. Heavy metals tend to desorb more rapidly when sediments become resuspended 

in the water column (Superville et al., 2014). Desorption can be caused by competition with 

other cations for adsorption sites which can cause certain heavy metals to be released into the 

overlying water column (Riba et al., 2003). Complexation reactions play a vital role in heavy 

metal speciation in water which also impacts the desorption of heavy metals (Noegrohati, 

2005). Heavy metals that can form strong complexes or ligands in water have an affinity to 

form the same complexes on sediment particles (Noegrohati, 2005). Organic and inorganic 

ligands can interact with the surfaces of heavy metal cations and form stable negatively charged 

complexes with these cations. These subsequently block adsorption sites which inhibit heavy 

metal retention in sediments and soils, thus resulting in their release into the overlying water 

column (Caporale and Violante, 2016).  

The processes of adsorption and desorption of heavy metals between sediment and the water 

column significantly impact their bioavailability to aquatic organisms and their toxicity (Gao 

et al., 2003). In addition, any changes to the physical and chemical conditions can influence 

the mobility of heavy metals and facilitate the release of heavy metals stored in sediments to 

the overlying water column (Gao et al., 2003). The physicochemical parameters used in this 

study include conductivity, pH and dissolved oxygen. Each of these parameters and how they 

influence heavy metals is discussed in the sections below. 

2.7.3.1) Electrical conductivity 

The electrical conductivity of water refers to the ability of water to conduct heat or electricity 

and is generally measured in Siemens per metre (S/m) or micro-Siemens per centimetre 

(µS/cm). The conductivity of water is dependent on the current number of ions found in the 

water (Alam et al., 2007). The source of these conductive ions is dissolved salts and inorganic 

substances, including chlorides, sulphides and carbonates (DWAF, 1996; Alam et al., 2007). 
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An increase in the number of ions in the water will cause the conductivity of the water to 

increase.  

The electrical conductivity of water is an essential indicator of water quality as it is an early 

indicator of changes in the water column. It estimates the presence of ionic substances in water 

and is often used as a substitute measure of total dissolved solids present in the water (Pal et 

al., 2015). Events including flooding, evaporation or pollution from anthropogenic activities 

can cause significant changes to the conductivity of water (Pal et al., 2015). The conductivity 

can increase drastically by pollution from human activities such as agricultural runoff and 

sewage contamination, which leads to an increase in chloride, phosphate and nitrate ions in the 

water (Fashae et al., 2019). The addition of organic compounds into rivers can cause a decrease 

in conductivity as these compounds do not disintegrate into ions (Hacısalihoğlu and Karaer, 

2016). Both cases will lead to an increase in dissolved solids in the water, which severely 

impacts the water quality (Pal et al., 2015). The electrical conductivity of water impacts the 

levels of heavy metals as high electrical conductivity levels result in a decrease in the 

adsorption of heavy metals onto sediment (Hacısalihoğlu and Karaer, 2016). This, in turn, 

increases the mobility of heavy metals. The electrical conductivity can also be used to estimate 

the total dissolved solids (TDS) and salinity levels of water. In South Africa, only water quality 

guidelines for the TDS levels in aquatic ecosystems have been developed and there are no 

guidelines specific for electrical conductivity or specific to each salt ion (Griffin et al., 2014). 

According to the USEPA (2012), the normal background levels of electrical conductivity for 

most rivers in the United States range from 50-1500 µS/cm and waters with high levels of 

electrical conductivity have levels ranging from 1000 – 10000 µS/cm and these levels indicate 

saline conditions. Industrial waters can have electrical conductivities of up to 10000 µS/cm 

(USEPA, 2012). 

2.7.3.2) pH 

pH is a common index of the water quality of an aquatic ecosystem and is a measure of the 

hydrogen ion activity in a water body (Brijlal, 2005). It is a measure of how acidic or alkaline 

the water is. When the number of hydrogen ions in the water increases, the pH will decline, 

making the water more acidic (Naidoo, 2005). Alternatively, when the hydrogen ions in the 

water decrease, this will cause the pH levels to increase, which causes the water to be more 

basic (Naidoo, 2005). The pH scale ranges from 0-14, where 7 is a neutral pH, a pH of 0-7 

indicates acidic conditions, and a pH of 7-14 indicates basic conditions (Sukdeo, 2010). 
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According to DWAF (1996), the pH of most freshwater systems in South Africa ranges 

between 6 and 8. The pH of estuarine ecosystems ranges from 7.0 to 7.5 in the freshwater 

portion of estuaries near the head, whereas the more saline portion of estuaries near the mouth 

has a pH range between 8.0 and 8.6 (USEPA, 2006). 

The photosynthetic activities of plants alter the carbon dioxide concentrations in the water at 

different times of the day (Pedersen et al., 2013). During the day, photosynthesis occurs where 

carbon dioxide is taken up, and oxygen is released. However, at night respiration occurs where 

oxygen is taken up, and carbon dioxide is expelled by aquatic plants and animals (Mack, 2003). 

Carbon dioxide dissolves in water forming carbonic acid, which breaks up to form bicarbonate 

and hydrogen ions. Therefore, this process will increase hydrogen ion concentrations in the 

water, thus causing a decrease in pH (DWAF, 1996; Pedersen et al., 2013). The changes in pH 

levels at different times of the day will have direct and indirect effects on aquatic life and 

bacterial processes. Human activities such as agriculture have led to excessive amounts of 

nutrients being discharged into aquatic environments, leading to algal blooms. This, in turn, 

can cause drastic fluctuations in pH over a short period of time which causes stress in the 

aquatic organisms (USEPA, 2006). Extremely high and extremely low pH levels can cause 

damage to the gills, skin, and eyes of fish species and make them more vulnerable to diseases, 

such as red spot disease (NOAA, 2021).  

Low pH levels may also corrode the heavy metals present in the water, leading to toxic and 

highly acidic waters (NOAA, 2021). Low pH levels can encourage the solubility of heavy 

metals (Zhang et al., 2018). pH is also important in terms of mobility as the availability of 

heavy metals is relatively low when the pH range is between 6.5 to 7 (Hacısalihoğlu and Karaer, 

2016). According to Li et al. (2013), low pH levels in the range of 4-7 cause an increase in the 

competition between hydrogen ions and dissolved heavy metals for ligands. Subsequently, the 

adsorption capabilities and bio-availabilities of the heavy metals decrease, increasing the 

mobility of heavy metals. In addition, soluble and carbon-bound heavy metals precipitate more 

easily under low pH conditions (Li et al., 2013). According to Hacısalihoğlu and Karaer (2016), 

trace metals that have been adsorbed onto sediments can be resuspended into the overlying 

water column under low pH conditions. Low pH levels weaken the strength of heavy metal 

association, which inhibits sediment from retaining heavy metals (Hacısalihoğlu and Karaer, 

2016).   
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2.7.3.3) Dissolved oxygen 

Dissolved oxygen forms one of the most critical water quality parameters because all forms of 

aquatic life require sufficient dissolved oxygen levels to survive. The level of dissolved oxygen 

in aquatic environments is thus the main factor that determines the type and abundance of 

organisms that inhabit them (Dean, 2018). All forms of aquatic life can thrive in water within 

a specific range of dissolved oxygen. Dissolved oxygen levels outside the normal ranges that 

organisms can tolerate results in physiological and behavioural stress which can be devastating 

to aquatic life (Sukdeo, 2010). Dissolved oxygen refers to the free oxygen molecule (O2) found 

in the water and is not chemically bonded to the water (Mack, 2003). Dissolved oxygen moves 

freely into and out of the water at constant concentrations. The concentration of dissolved 

oxygen is dependent on oxygen sources, oxygen sinks and oxygen solubility (Mack, 2003). 

There are two primary sources of dissolved oxygen in water, including internal and external 

sources. The internal source of dissolved oxygen is through the photosynthetic activity of 

aquatic plants (Dean, 2018). When algae and aquatic plants undergo photosynthesis during the 

day, they release pure oxygen gas directly into the water (Mack, 2003). The external source of 

dissolved oxygen is oxygen diffusion from the atmosphere (Dean, 2018). Water has the ability 

to absorb different types of gasses at different rates. The mixing of surface waters by wind and 

waves increases the surface area to volume, which increases the rate at which oxygen can be 

dissolved in water (Mack, 2003).  

The oxygen sinks include the aquatic organisms that consume dissolved oxygen.  The levels of 

dissolved oxygen are steadily used up by respiring aquatic organisms such as fish, algae, 

aquatic plants and microorganisms (Mack, 2003). In addition, decomposers, including bacteria 

and fungi, require oxygen to break down organic matter, reducing dissolved oxygen levels. 

Oxygen solubility refers to the ease with which oxygen can dissolve in water and is dependent 

on atmospheric pressure, water temperature and salinity (Dean, 2018). The solubility of oxygen 

increases with increasing atmospheric pressure. The higher atmospheric pressure will result in 

a force being exerted on the surface of the water, which will inhibit dissolved oxygen from 

escaping (Dean, 2018). Lower elevations have higher atmospheric pressure than higher 

elevations; therefore, water at low elevations contain more dissolved oxygen than water at 

higher elevations (Mesner and Geiger, 2010). The solubility of oxygen increases as temperature 

decreases; therefore, colder water will contain more dissolved oxygen than warmer water 
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(Mack, 2003). The solubility of oxygen increases as salinity decreases; therefore, freshwater 

contains more dissolved oxygen than saltwater (Mack, 2003; Mesner and Geiger, 2010).  

The levels of dissolved oxygen in water fluctuate daily due to changes in tides, temperature 

and the photosynthetic activity of plants. Excessively high levels of dissolved oxygen in 

estuaries can cause deleterious effects in fish as it can cause the capillaries in the gills of fish 

to rupture (Dean, 2018). However, low levels of oxygen, also known as hypoxia, is of more 

significant concern. Hypoxic conditions in estuarine environments resulting from increased 

nutrient enrichment from anthropogenic activities cause many species of fish and aquatic plants 

to die (Dean, 2018). Furthermore, the amount of dissolved oxygen also plays a role in the 

release of heavy metals from sediments. A study conducted by Kang et al. (2019) that assessed 

the effects of dissolved oxygen on the concentrations of heavy metals in river sediments, 

indicated that certain heavy metals are released from river sediments into the overlying water 

column under anoxic conditions (low oxygen levels). However, increased dissolved oxygen 

levels caused heavy metals to adsorbed onto sediment from the overlying water column (Kang 

et al., 2019). Dissolved oxygen levels below 3 mg/L are considered low and a cause for concern 

(Dean, 2018). 

2.7.4) Toxicity of heavy metals 

Heavy metals are naturally occurring substances in the environment; however, the rapid 

increase in human activities has resulted in these heavy metals exceeding their natural levels, 

which has severe implications on living organisms (Cheung et al., 2003). Heavy metals are a 

threat to living organisms as they are persistent in the environment and tend to accumulate in 

living organisms over time (Verma and Dwivedi, 2013). Trace elements refer to elements that 

naturally occur in low concentrations and range from parts per billion (ppb) to less than 10 

parts per million (ppm) in various environments (Tchounwou et al., 2012). Trace elements are 

vital for life functions, and plants and animals have various methods of accumulating adequate 

amounts of trace elements from their environment (Mann et al., 2011). Heavy metals can be 

found in trace amounts; however, they are still toxic even at low concentrations (Sukdeo, 2010). 

This is because they tend to bioaccumulate in biological organisms over some time (Verma 

and Dwivedi, 2013). As a result of their ability to be transported by various environmental 

mediums, heavy metals can bioaccumulate and biomagnify in aquatic organisms and food webs 

(Sukdeo, 2010).  
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According to Verma and Dwivedi (2013), bioaccumulation refers to the build-up of elements 

in biological organisms over time resulting in higher concentrations found within the organism 

in comparison to the element's concentration in the environment. These elements accumulate 

in living organisms through ingestion from their environment and are stored quicker than they 

are broken down or excreted (Verma and Dwivedi, 2013). Bioaccumulation of elements 

depends on the chemical availability of the elements within the environment and the organism's 

ability to ingest and excrete them (Mann et al., 2011). Biomagnification refers to the process 

whereby pollutants are transferred to organisms from the food they ingest, resulting in higher 

concentrations in comparison to the source (Mann et al., 2011). Biomagnification occurs along 

food chains. The levels of these pollutants are amplified as they move up different trophic 

levels (Sukdeo, 2010). This is because successive trophic levels consume large amounts of 

food to sustain metabolic functioning, and if the food is contaminated, that contaminant will 

be ingested in significant quantities by the consumer (Mann et al., 2011). Therefore, higher-

order consumers will receive a higher level of that pollutant (Sukdeo, 2010). 

The following describes the sources of the heavy metals that were assessed in this study and 

their implications on the health of aquatic organisms as a result of their elevated concentrations. 

2.7.4.1) Aluminium (Al) 

Aluminium naturally occurs in the air, water and soil and is the third most abundant element 

present within the earth's crust (Ingerman et al., 2008; Gupta et al., 2013). Aluminium enters 

the environment naturally through the physical weathering of rocks. Anthropogenic sources of 

aluminium include solid waste linked to industrial activities such as paper, metal construction, 

textile, leather industries and other aluminium processing industries (DWAF, 1996). 

Aluminium is considered a non-essential metal as aquatic organisms do not require this metal 

to function (Jaishankar et al., 2014). The pH of water and organic matter content significantly 

influences aluminium toxicity, with low pH levels increasing aluminium's toxicity. The 

mobilisation of toxic aluminium ions due to changes in pH leads to plant poisoning, crop 

decline or failure, and the death of aquatic life (Jaishankar et al., 2014). Aluminium that 

accumulates in plants can impede root growth, cause cellular modifications in leaves, and 

yellowing and death of leaves (Gupta et al., 2013). Excessive levels of aluminium can have 

deleterious effects on aquatic biota. This includes impacting the ability of certain fish to 

regulate ions and accumulating on the gills of fish, subsequently impeding respiratory functions 

and causing them to die (Jaishankar et al., 2014). High levels of aluminium also affect birds 
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and other animals that consume fish contaminated with aluminium, such as the thinning of 

eggshells and low birth weights in young (DWAF, 1996). The target water quality range 

(TWQR) for aluminium should be ≤ 5 µg/L when pH is below 6.5, and TWQR should be ≤ 10 

µg/L when pH is greater than 6.5 (DWAF, 1996).  

2.7.4.2) Arsenic (As) 

Arsenic is a naturally occurring metalloid element and is the twentieth most abundant element 

on earth. Arsenic occurs in both inorganic and organic forms; however, the inorganic forms are 

considered more toxic to the environment and living organisms (Jaishankar et al., 2014). The 

natural sources of arsenic include volcanic eruptions and soil erosion. The anthropogenic 

sources include the industrial manufacturing of agricultural products such as insecticides, 

herbicides and fungicides (Tchounwou et al., 2012). Other anthropogenic sources include dye 

and detergent manufacturers, mining industries, metal processing industries, and manufacturers 

of glass and ceramics (DWAF, 1996). Arsenic occurs in many oxidation states, including III, 

IV and V depending on the pH and redox potential of water, with arsenic (III) and arsenic (V) 

being the most common forms (DWAF, 1996; Abbas et al., 2018). The carcinogenic nature of 

arsenic makes it toxic to animal and plant life even at low concentrations. However, arsenic's 

effects on living organisms depend on its chemical state, the nature of the environment, and 

the organism’s biological sensitivity (Pather, 2014). Arsenic exposure has a variety of adverse 

effects on vertebrates and invertebrates. These effects include a decline in the growth and 

reproduction of fish and invertebrate species and a reduced migration in fish (Pather, 2014). In 

terms of the toxic effects of arsenic on plants, arsenic (V) is more toxic to plants than arsenic 

(III) (DWAF, 1996). It inhibits plant growth and nutrient absorption and decreases the ability 

of cells to produce adenosine triphosphate (ATP) and carry out metabolic processes (Finnegan 

and Chen, 2012; Abbas et al., 2018). According to the SQGs proposed by NOAA (1999), the 

ERL for arsenic is 8.2 mg/kg and the ERM for arsenic is 70 mg/kg. According to DWAF 

(1996), TWQR for arsenic should be ≤ 10 µg/L.  

2.7.4.3) Cadmium (Cd) 

Cadmium is a heavy metal present in the earth's crust at an average concentration of 0.2 mg/kg 

(DWAF, 1996). According to the ATSDR (2012) ranking, cadmium is regarded as the seventh 

most toxic heavy metal. Cadmium enters the environment naturally through the weathering of 

rocks containing cadmium (DWAF, 1996). The anthropogenic sources of cadmium include 
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wastes produced by industries involved in the manufacturing of alloys, paints, batteries and 

plastics, and mining activities (Tchounwou et al., 2012). In addition, another anthropogenic 

source of this heavy metal includes the use of fertilisers and pesticides containing cadmium in 

agricultural activities, which can be discharged into rivers and estuaries through surface runoff 

(DWAF, 1996). Cadmium readily adsorbs onto clay minerals and organic matter, and once 

cadmium enters the natural environment, it can remain in soils and sediments for several 

decades (Estifanos, 2006; Jaishankar et al., 2014). Cadmium at low concentrations is toxic to 

all forms of life (Levit, 2010). Plants gradually take up cadmium which can accumulate in them 

and be transferred across the food chain (Jaishankar et al., 2014). According to DWAF (1996), 

cadmium is chemically similar to zinc and can easily replace zinc in some enzymes. The 

replacement of zinc by cadmium can adversely impact enzyme activity, leading to 

physiological effects in plants and animals (Jaishankar et al., 2014). In aquatic ecosystems, 

cadmium can bioaccumulate in macrophytes, phytoplankton, zooplankton, invertebrates and 

fish (DWAF, 1996). When exposed to cadmium, it can accumulate in the gills, liver and 

kidneys of fish, leading to toxic effects (Levit, 2010). Cadmium accumulation in aquatic 

animals has also been found to cause iron deficiency, liver disease, and nerve or brain damage 

(Levit, 2010). The toxicity of cadmium is dependent on its chemical speciation and hardness. 

The chemical speciation of cadmium is influenced by the pH and temperature of the water and 

the ligands and metal cations present in the water (DWAF, 1996). Hardness can be described 

as the sum of calcium and magnesium concentrations which are both expressed as calcium 

carbonate in mg/L (DWAF, 1996). According to the SQGs proposed by NOAA (1999), the 

ERL for cadmium is 1.2 mg/kg and the ERM for cadmium is 9.6 mg/kg.  

Table 2.2: The TWQR for cadmium at different water hardness in aquatic ecosystems (Adapted 

from DWAF, 1996). 

Hardness (mg CaCO3/L) < 60 

(soft) 

60-119 

(medium) 

120-180 (hard) > 180 (very 

hard) 

TWQR - Cadmium 

concentration (µg/L) 

0.15 0.25 0.35 0.40 
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2.7.4.4) Chromium (Cr) 

Chromium is a relatively scarce metal, and its presence in aquatic ecosystems is generally very 

low (DWAF, 1996). Chromium occurs in several oxidation states ranging from chromium (II) 

to chromium (VI), with the most common forms being chromium (III) and chromium (VI) 

(Tchounwou et al., 2012). However, chromium (VI), the hexavalent form, is a highly oxidised 

state and highly soluble at all pH levels, which is more toxic than the other reduced chromium 

forms (DWAF, 1996; Jaishankar et al., 2014). The equilibrium between chromium (III) and 

chromium (VI) in natural waters is influenced by pH and redox potential, and their toxicity is 

influenced by hardness and pH (DWAF, 1996).  Chromium enters aquatic ecosystems in 

minimal amounts naturally through the physical degradation of rocks bearing chromium. 

However, elevated levels of chromium in aquatic ecosystems can be attributed to 

anthropogenic activities such as industries (Tchounwou et al., 2012). Industries contributing to 

these elevated levels of chromium include metal processing factories, pulp and paper 

production, steel welding, chromate manufacturing, and the production of ferrochrome and 

chrome pigments (Jaishankar et al., 2014). Chromium released into the environment from 

anthropogenic sources is usually in the hexavalent form, which has become an increasing 

concern as it is highly toxic and is considered a carcinogen (Tchounwou et al., 2012). The use 

of chromium in agriculture has led to soil contamination which impacts plants by reducing root 

growth and inhibiting the germination of seeds (Jaishankar et al., 2014). Fish are more resistant 

to chromium concentrations; however, in young fish, low concentrations of chromium have 

been known to cause a reduction in the growth phase (DWAF, 1996). In addition, invertebrates 

and algae show the least resistance to chromium concentrations. According to the SQGs 

proposed by NOAA (1999), the ERL for chromium is 81 mg/kg and the ERM for chromium is 

370 mg/kg. According to DWAF (1996), for dissolved chromium (VI), the TWQR should be 

≤ 7 µg/L, and for dissolved chromium (III), TWQR should be ≤ 12 µg/L.  

2.7.4.5) Copper (Cu) 

Copper is a common metallic element found in the rocks and minerals of the earth's crust and 

is one of the world's most extensively used heavy metal (DWAF, 1996). The natural sources 

of copper include the weathering of rocks or the dissolution of copper minerals and native 

copper. The anthropogenic sources of copper include effluents from sewage treatment plants, 

the corrosion of copper pipes, the agricultural use of copper in fungicides and pesticides, and 

atmospheric fallout from mining, refining, coal-burning and iron- and steel-manufacturing 
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industries (DWAF, 1996). Copper is regarded as an essential trace metal as it plays a role in 

enhancing the biochemical and physiological functioning of plants and animals (Tchounwou 

et al., 2012). In vertebrates such as fish, copper forms an essential constituent of several key 

enzymes and is important for nervous system function and haemoglobin synthesis (Woody and 

O'Neal, 2012). However, elevated levels of copper are toxic to plants and animals and are one 

of the most toxic elements to aquatic organisms (Woody and O'Neal, 2012). Copper occurs in 

four oxidation states, including 0, I, II and III, with copper (II) being the most toxic to aquatic 

life (DWAF, 1996). The toxicity of copper is dependent on water quality parameters. It 

increases with a decrease in water hardness, a decrease in dissolved oxygen and when it occurs 

in combination with other heavy metals (DWAF, 1996). According to Woody and O'Neal 

(2012), excessive levels of copper in water cause a reduced ability to resist diseases, alter 

migration, impede respiration, and impede brain functions in fish. In addition, copper, even at 

low concentrations, reduces nitrogen-fixation by blue-green algae (DWAF, 1996). According 

to the SQGs proposed by NOAA (1999), the ERL for copper is 34 mg/kg and the ERM for 

copper is 270 mg/kg.     

Table 2.3: The TWQR for copper at different water hardness in aquatic ecosystems (Adapted 

from DWAF, 1996). 

Hardness (mg CaCO3/L) < 60 

(soft) 

60-119 

(medium) 

120-180 (hard) > 180 (very 

hard) 

TWQR – Copper 

concentration (µg/L) 

0.3 0.8 1.2 1.4 

 

2.7.4.6) Iron (Fe) 

Iron is the fourth most abundant element in the earth's crust; however, its concentration in water 

is usually low due to low solubility (Xing and Liu, 2011). Iron naturally enters the environment 

through the degradation of sulphide ores such as pyrite and igneous, metamorphic and 

sedimentary rocks (DWAF, 1996). The anthropogenic sources of iron include acid mine 

drainage, corrosion of iron and steel, processing of minerals, landfill leachates, and sewage 

(DWAF, 1996; Javed and Usmani, 2017). Iron is the most vital element for the growth and 

survival of all life forms (Jaishankar et al., 2014). Iron is essential for chlorophyll and protein 

biosynthesis in plants, and in iron-deficient conditions, photosynthesis productivity may be 
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reduced (Rout and Sahoo, 2015). In animals, iron is a vital component of respiratory pigments 

such as haemoglobin and several enzymes (DWAF, 1996). However, elevated levels of iron 

can become toxic to both plants and animals. Iron occurs in two primary forms in water, 

including the ferrous (Fe2+) state and the ferric (Fe3+) state, with the ferric state being the most 

common form found in surface waters (Javed and Usmani, 2017). In addition, the toxicity of 

iron is dependent on whether it is in the ferrous or ferric state (Xing and Liu, 2011). Elevated 

iron levels are known to impair the growth and healthy functioning of plant cells (Rout and 

Sahoo, 2015). In aquatic animals, high levels of iron are known to cause clogging of the gills 

of fish and cause damage to the eggs of many fish species (Vuori, 1995). The TWQR for iron 

should not vary by more than 10% of the background dissolved iron concentration for a 

particular site at a specific time (DWAF, 1996).     

2.7.4.7) Lead (Pb) 

Lead can be described as a bluish-grey metal that naturally occurs in the earth's crust in 

negligible amounts (Tchounwou et al., 2012). Lead naturally enters the environment through 

the degradation of sulphide ores (DWAF, 1996). Anthropogenic activities such as mining, 

milling and smelting of lead, burning of fossil fuels, manufacturing of batteries and paint, as 

well as industrial and municipal discharge of wastewater all contribute to elevated levels of 

lead in the natural environment (DWAF, 1996; Lee et al., 2019). Lead occurs in organic and 

inorganic forms that are toxic to the environment; however, the organic forms of lead are more 

toxic to aquatic life (Kumar et al., 2020). The organic forms of lead are primarily found in dust, 

soil and old paint, whereas the inorganic form occurs in leaded gasoline (Kumar et al., 2020). 

Lead also occurs in several oxidation states, including 0, I, II and IV, with lead (II) thought to 

be the state in which most lead is bioaccumulated in aquatic organisms (DWAF, 1996). Low 

pH levels in water cause an increase in the bioavailability of lead accumulated by aquatic life. 

Elevated levels have adverse impacts on aquatic plant and animal life. Lead toxicity in plants 

inhibits root growth and photosynthesis and impedes seed germination (Nas and Ali, 2018). 

Lead toxicity also affects membrane permeability and causes a histological change in leaves 

(Nas and Ali, 2018). As a result of bioaccumulation, exposure to lead even at low 

concentrations can be lethal to aquatic animals (Lee et al., 2019).  Lead accumulation in the 

various tissues of fish is toxic to target organs and triggers oxidative stress, which causes 

synaptic damage and neurotransmitter malfunction (Lee et al., 2019). In addition, low 

concentrations of lead impact fish species by inducing the formation of a film of coagulated 
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mucus over the gills and entire body. This causes suffocation leading to higher fish mortalities 

(DWAF, 1996). Lead uptake by aquatic organisms is dependent on the amount of calcium 

present; therefore, water hardness influences the toxicity of lead in aquatic ecosystems 

(DWAF, 1996). According to the SQGs proposed by NOAA (1999), the ERL for lead is 46.7 

mg/kg and the ERM for lead is 218 mg/kg.  

Table 2.4: The TWQR for lead at different water hardness in aquatic ecosystems (Adapted 

from DWAF, 1996). 

Hardness (mg CaCO3/L) < 60 

(soft) 

60-119 

(medium) 

120-180 (hard) > 180 (very 

hard) 

TWQR – Lead 

concentration (µg/L) 

0.2 0.5 1.0 1.2 

 

2.7.4.8) Magnesium (Mg) 

Magnesium is the eighth-most abundant element in the earth's crust and is an essential 

macronutrient to all life forms (Gregersen and Hanusa, 2012). Magnesium enters the 

environment naturally through the physical weathering of rocks bearing magnesium ions. The 

anthropogenic sources of magnesium include industrial processes involving the addition of 

magnesium to plastics and other materials, fertilisers containing magnesium as well as organic 

compounds discharged from wastewater treatment plants (Potasznik and Szymczyk, 2015). 

Magnesium is an essential element in animals as it plays a significant role in protein synthesis, 

enzyme activation, energy transfer and cellular homeostasis in animals (Van Dam et al., 2010). 

Magnesium is also essential to plants as it is a central atom of the chlorophyll molecule; 

therefore, it plays a vital role in primary production (Van Dam et al., 2010).  Magnesium 

deficiency in plants affects photosynthesis and inhibits plant growth (Jezek et al., 2015). 

Magnesium deficiency in aquatic organisms such as fish adversely affects growth and 

development (Luo et al., 2016). However, elevated levels of magnesium are also known to be 

detrimental to aquatic animals. Water hardness refers to the sum of calcium and magnesium 

concentrations in water, and an imbalance between these ions due to an increase in magnesium 

ions is toxic to aquatic species (DWAF, 1996). According to Luo et al. (2016), increased water 

hardness and high magnesium levels can lead to low fertilisation rates in some species of fish. 
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In addition, an increase in water hardness results in an increase in the toxicity of other heavy 

metals such as lead and cadmium (Luo et al., 2016).  

2.7.4.9) Nickel (Ni) 

Nickel is a transition metal present in the environment only in small amounts (Wuana and 

Okieimen, 2011).  Nickel exists in several oxidation states, including II, III and IV, with nickel 

(II) being the most stable form and is dominant in natural waters with a pH range of 5-7 (Javed 

and Usmani, 2017). Nickel occurs naturally in plants, soils and water, with the most significant 

accessible natural source of nickel being the ocean (Ahmad and Ashraf, 2012). Anthropogenic 

sources of nickel include nickel mining and electroplating, metal plating industries, burning of 

fossil fuels, and air emissions from power plants (Wuana and Okieimen, 2011).  Nickel is 

essential in small doses. In plants such as legumes, nickel forms part of the vital component of 

some enzymes involved in nitrogen assimilation (Ahmad and Ashraf, 2012). However, 

elevated levels of nickel can cause adverse effects on plants and animals. Nickel toxicity on 

plants causes a reduction in the growth of shoots and roots, poor development of branches, 

reduced biomass production, and the impairment of germination processes (Ahmad and Ashraf, 

2012). Nickel toxicity is also known to cause various cancers in the bodies of animals and a 

growth decline in microorganisms (Wuana and Okieimen, 2011). According to the SQGs 

proposed by NOAA (1999), the ERL for nickel is 20.9 mg/kg and the ERM for nickel is 51.6 

mg/kg.     

2.7.4.10) Zinc (Zn) 

Zinc is a metallic element that naturally occurs on earth. This element occurs in two oxidation 

states in aquatic ecosystems, including zinc metal and zinc (II) (DWAF, 1996). Zinc naturally 

occurs in crustal rocks and ores and enters the environment naturally through the weathering 

of these rocks (Wuana and Okieimen, 2011). Anthropogenic sources of zinc include its use in 

industrial activities such as mining, combustion of coal and waste, steel processing, and 

fertiliser and insecticides used in agriculture (Wuana and Okieimen, 2011). Zinc is an essential 

micronutrient for all life forms; however, elevated levels can harm both plants and animals. In 

plants, zinc plays a vital role in photosynthesis, growth, and plant resistance against diseases 

(Rudani et al., 2018). According to Rudani et al. (2018), a deficiency in zinc severely impedes 

the growth and yield of plants. However, zinc toxicity has been found to inhibit metabolic 

activity and root growth in plants (Rout and Das, 2009) and inhibit photosynthesis in algae and 
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other aquatic plants (DWAF, 1996). In animals, zinc is a central component in many 

biochemical processes that support life, including cellular respiration, protein and lipid 

metabolism, and the maintenance of cell membrane integrity (Akram et al., 2019). A zinc 

deficiency can lead to reduced growth rate, increases in mortality, low body weight, cataracts, 

and erosion of the fin and skin of fish (Akram et al., 2019). However, elevated levels of zinc 

are known to be toxic to fish and other aquatic organisms even at low concentrations (DWAF, 

1996). Zinc can accumulate in the bodies of fish and can biomagnify up the food chain and 

affect other organisms that consume the fish (Wuana and Okieimen, 2011). In addition, zinc 

can induce the formation of insoluble compounds in the mucus covering the gills of fish which 

can be lethal (DWAF, 1996). The sub-lethal effects of zinc toxicity in aquatic organisms 

include a decline in the rates of shell growth, oxygen uptake, and larval development (DWAF, 

1996). According to the SQGs proposed by NOAA (1999), the ERL for zinc is 150 mg/kg and 

the ERM for zinc is 410 mg/kg.     

2.8) Remote sensing  

All objects on the surface of the earth emit electromagnetic radiation, and they also reflect 

radiation emitted from other objects (Campbell and Wynne, 2011). Remote sensing analysts 

can better understand the characteristics of vegetation, soils or water bodies on the earth's 

surface by recording emitted and reflected radiation and analysing the behaviour and 

interactions it has with objects (Campbell and Wynne, 2011). It is, therefore, imperative to 

have a good understanding of the electromagnetic spectrum, to be able to interpret remote 

sensing data. The electromagnetic spectrum comprises a range of different wavelengths of light 

energy ranging from gamma rays with the highest frequency and shortest wavelength to radio 

waves that have the lowest frequency and longest wavelength and include visible light (Ashraf 

et al., 2011). Remote sensing instruments collect light energy within specific regions of the 

electromagnetic spectrum to derive information (Richards and Jia, 2006). The main regions 

used in remote sensing are visible light, reflected and emitted infrared, and microwave regions, 

and this radiation is measured in spectral bands (Ashraf et al., 2011). Remote sensing, therefore, 

involves developing a relationship between the amount of electromagnetic energy reflected or 

emitted in specific bands and the chemical, biological and physical characteristics of the 

phenomena investigated (Jensen, 2015).  

Remote sensing has three primary forms depending on the wavelengths of energy detected and 

the purpose of the study. According to Campbell and Wynne (2011), the first is to record the 
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reflection of solar radiation from the earth's surface. Here, energy in the visible and near-

infrared portions of the electromagnetic spectrum are used. The second form of remote sensing 

involves recording radiation emitted from the earth's surface (Campbell and Wynne, 2011). 

Emitted energy from the earth's surface mainly originates from shortwave energy from the sun 

that was absorbed, then emitted back into the atmosphere at longer wavelengths (NASA, 2010). 

The emitted energy is strongest in the far-infrared spectrum; therefore, this type of remote 

sensing needs special instruments to record these wavelengths (Campbell and Wynne, 2011). 

This type of remote sensing is known as passive remote sensing as it involves the use of an 

instrument to sense the energy emitted by the earth instead of the energy produced by the sensor 

(Richards and Jia, 2006). The third form of remote sensing involves using instruments that 

generate their own energy before recording the reflection of that energy from the earth's surface 

(Campbell and Wynne, 2011). This type of remote sensing is referred to as active remote 

sensing as the sensors provide their own energy, making them independent of solar and 

terrestrial radiation (Richards and Jia, 2006). The remote sensing instruments measure the 

electromagnetic radiation reflected or emitted from the earth's surface, which can help us 

determine information about the surface features (Ashraf et al., 2011). The patterns of 

reflectance and absorption over different wavelengths for soil, water and vegetation are very 

distinctive from each other (Goetz, 2009). The spectral reflectance from one feature varies over 

the range of wavelengths in the electromagnetic spectrum, and this can be referred to as the 

spectral signature of that feature (Goetz, 2009; Ashraf et al., 2011). 

2.8.1) Hyperspectral remote sensing 

According to Goetz (2009, p. S5), hyperspectral remote sensing or imaging spectrometry can 

be defined as “the acquisition of images in hundreds of contiguous, registered, spectral bands 

such that for each pixel a radiance spectrum can be derived.”. Multispectral remote sensing 

makes use of several broadly defined spectral regions. Hyperspectral remote sensing imagers, 

on the other hand, examines many narrowly defined spectral channels (Campbell and Wynne, 

2011). Hyperspectral imaging is advantageous over multispectral imaging. The narrower and 

contiguous bands of hyperspectral data enable the detailed assessment of earth's surface 

materials with no gaps through which important information may be overlooked (Govender et 

al., 2007; Goetz, 2009; Campbell and Wynne, 2011).   

Hyperspectral data contain the detail and accuracy that enables one to examine phenomena on 

the earth’s surface that far exceed the capabilities of traditional remote sensing (Campbell and 
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Wynne, 2011). These capabilities of hyperspectral remote sensing enable the field of remote 

sensing to extend into the field of spectroscopy, which is the science of examining very accurate 

spectral data at a laboratory or field scale. Reflectance spectroscopy refers to the study of light 

as a function of the wavelength reflected from materials on the earth’s surface (Aggarwal, 

2004). The solar energy that is incident on earth’s surface features can be absorbed or reflected 

and features absorb and reflect differently at different wavelengths of the electromagnetic 

spectrum (Ashraf et al., 2011). Wavelength-dependent absorptions distinguish different 

features on earth, and these images of reflected solar radiation are referred to as spectral 

signatures (Govender et al., 2007). According to Aggarwal (2004, p. 32), spectral reflectance 

can be described as “a ratio of reflected energy to incident energy as a function of wavelength 

and is used to quantify these spectral signatures.” The spectral signatures of hyperspectral data 

are contiguous, which facilitates the in-depth analysis of surface materials and biological and 

chemical processes (Govender et al., 2007). 

Spectroradiometers are useful tools in the analysis of the spectral reflectance of materials 

(Goetz, 2009). An analytical spectral device (ASD) spectroradiometer is an optical remote 

sensing device that uses detectors to record the distribution of radiation in a particular 

wavelength region (Rostom et al., 2017). It measures the spectral behaviour in the visible near-

infrared (VNIR) and shortwave infrared (SWIR) spectra between 350 and 2500 nm with a 

precision of 1 nm. ASD is a full-range spectroradiometer and is computer-controlled (Danner 

et al., 2015). A portable PC is used to control the scans collected by the instrument, and it also 

allows for the on-screen visualisation of the data collected in real-time (Danner et al., 2015). 

The ASD spectroradiometer needs to be warmed up for at least 90 minutes prior to its use. This 

is necessary as the three arrays of the spectroradiometer warm up at different rates, thus when 

given ample time to warm up, they will reach an equivalent internal instrument temperature 

(ASD, 2000). ASD obtains all wavelength and radiometric calibrations after a 90-minute 

warm-up; therefore, adhering to the appropriate warm-up period will increase the quality of 

your data significantly as well as minimise errors (ASD, 2000). Hyperspectral data acquired 

from ASD spectroradiometers will first need to be pre-processed to exclude the effect of 

atmospheric components, which may change the observed spectral reflectance patterns 

(Rostom et al., 2017).  

The signals obtained from analytical devices such as ASD are subject to spectral noise, which 

may be caused by physical and chemical factors as well as inaccuracies in the experimental 
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procedures (Xu et al., 2008). These noises in the spectra can cause low signal-to-noise ratios 

and low spectral resolutions (Xu et al., 2008). Another factor that can also degrade the spectra 

is baselines or background signals which influence the peak area and height of the spectra, 

leading to inaccuracies (Gholizadeh et al., 2016). Therefore, pre-processing is necessary to 

maintain the precision and accuracy of the spectral reflectance data acquired from 

spectroradiometers. 

The spectral reflectance of a feature as a function of wavelength can be graphically displayed 

and is referred to as the spectral reflectance curve (Lillesand et al., 2015). These spectral 

reflectance curves provide us with more information on the spectral characteristics of the object 

of interest (Lillesand et al., 2015). The spectral reflectance curves of earth's surface features 

are useful in analysing transparent water bodies as well as sediments or soils. However, certain 

factors may influence the spectral reflectance of water and sediments. 

2.8.1.1) Factors affecting the spectral reflectance of water 

The most distinctive trait of water is the absorption in the NIR region and beyond. Most of the 

radiation is absorbed by water in the NIR and mid-infrared regions (Navalgund, 2001). These 

wavelengths comprise complex interactions between energy and matter that depend on several 

factors (Lillesand et al., 2015). The reflectance in the visible portion of the spectrum depends 

on the reflectance of the surface water and the bottom and suspended material within the water 

column (Navalgund, 2001). According to Lillesand et al. (2015), clear water displays the 

greatest reflectance at 600 nm. In addition, the presence of organic and inorganic material has 

a significant effect on the transmittance of the water, which in turn affects the reflectance 

(Karabulut and Ceylan, 2005). For example, a water body consisting of high amounts of 

suspended sediments resulting from soil erosion will have higher visible reflectance than other 

'clear' water within the same area (Lillesand et al., 2015). Furthermore, when looking at the 

chlorophyll content of a water body, an increase in chlorophyll will cause a decrease in the 

reflectance in the blue wavelengths and increase the green wavelengths (Navalgund, 2001). 

This is particularly useful in detecting algae using remote sensing (Lillesand et al., 2015). 

2.8.1.2) Factors affecting the spectral reflectance of sediments 

Several factors influence the spectral reflectance of sediments and soils, including soil moisture 

content, particle size, organic matter content, and the amount of iron oxide. The higher the 

moisture content of the soil, the lower the spectral reflectance will be as water is a stronger 
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absorber of light as compared to soil (Bogrekci and Lee, 2004). Water surrounds soil particles 

and easily fills the air spaces between them, which causes a decrease in reflectance as water is 

a strong absorber (Cierniewski and Kuśnierek, 2010). The size of soil particles influences their 

reflectance as light is scattered differently by coarse-grained particles compared to fine-grained 

particles (Kaleita et al., 2005). The larger the soil particles, the lower the spectral reflectance 

will be. This is because coarse particles have irregular shapes with many gaps in between, 

enabling incident light to be trapped (Cierniewski and Kuśnierek, 2010). The higher the soil 

organic matter content, the lower the spectral reflectance will be. Soil organic matter influences 

the colour of soils with darker soils comprising of higher organic matter content, which lowers 

the reflectance of the soil (Galvao and Vitorello, 1998; He et al., 2009). 

Similarly, iron oxides present in soils also influence the soil colour; however, this depends on 

the type of iron oxide present (Sahwan et al., 2020). For example, soil rich in hematite displays 

darker colours, such as deep red, whereas soil rich in goethite displays lighter colours ranging 

from yellow to light brown (Sahwan et al., 2020). According to Pereira et al. (2019), goethite 

has higher spectral reflectance in comparison to hematite, with hematite displaying higher 

absorption of light energy in the spectral region between 300 nm and 800 nm. Therefore, soils 

rich in the iron oxide goethite will cause an increase in the spectral reflectance of the soil, 

whereas soils rich in hematite will cause a decrease in the soil spectral reflectance (Pereira et 

al., 2019).     

2.8.2) Remote sensing for the prediction of heavy metals in water and sediment  

A study conducted by Monaledi (2019), involved the use of an ASD spectroradiometer to 

record the spectral reflectance of 78 water samples collected from the Mooi River in 

Carletonville, South Africa. In the study, water samples were poured into petri dishes and 

placed on a black surface to avoid background reflectance. Thereafter, the spectral reflectance 

of the water samples was recorded under clear sky conditions. The spectral noisy regions were 

removed and a support vector machine regression model was used to estimate the 

concentrations of the water quality parameters from the spectral reflectance data. It was found 

that the model performed well in the prediction of magnesium concentrations with R2 and 

RMSE values of 0.98 and 2%, respectively. However, the model performed poorly in the 

prediction of iron concentrations with R2 and RMSE values of 0.51 and 102%, respectively 

(Monaledi, 2019).  
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Another study conducted by Rostom et al. (2017) involved the use of hyperspectral remote 

sensing to evaluate the water quality of the Mariut Lake, Egypt. In the study, 22 water samples 

were collected from the Mariut Lake and the heavy metal concentrations of the water samples 

were determined using chemical analyses in a laboratory. In addition, an ASD FieldSpec 3 

spectroradiometer was used to measure the spectral reflectance patterns of the lake water. 

Statistical tools were used to develop prediction models to determine the relationship between 

the laboratory-measured heavy metal concentrations and the estimated heavy metal 

concentrations using the spectroradiometer. It was found that the correlation coefficient R2 

values for the prediction of chromium, nickel, copper, cadmium, lead, iron and zinc were 0.86, 

0.82, 0.97, 0.27, 0.88, 0.87 and 0.27, respectively. It was also found that the significant 

wavelengths for the prediction of heavy metals were 945 nm, 989 nm and 990 nm for 

chromium, 989 nm and 1013 nm for nickel, 704 nm for copper, 887 nm, 952 nm and 1001 nm 

for cadmium, 989 nm and 990 nm for lead, 366 nm for iron and 977 nm, 996 nm and 1001 nm 

for zinc (Rostom et al., 2017).  

In another study conducted by Seifi et al. (2019) that investigated the visible-infrared 

spectroscopy and chemical properties of water near the Darrehzar porphyry copper mine in the 

Kerman Province, Iran. Sampling was done in winter and summer from different parts of the 

mine with eight water samples collected in winter and two water samples collected in summer. 

Two samples were collected from each sample point and one was used to test for pH, electrical 

conductivity and spectroscopy analysis and the other was used for the assessment of elements. 

The spectral measurements of the samples were recorded using an ASD FieldSpec 3 

spectroradiometer. The spectral noise was removed from the spectra using ViewSpec Pro and 

Spectral Analysis and Management System (SAMS) software.  The relationship between pH, 

EC and heavy metals were determined through regression coefficient (R). It was found that 

there were three absorption features at 650 nm, 975 nm and 1165 nm and two reflectance peaks 

at 804 nm and 1070 nm. The absorption features of the spectra were analysed, and it was found 

that the absorption features related to pH and electrical conductivity were found in the 

wavelength regions close to 975 nm. The total element concentrations displayed a negative 

correlation with the absorption feature at 650 nm and a positive correlation with the absorption 

features at 975 nm and 1165 nm. Significant correlations were found between the absorption 

feature at 975 nm and cobalt, manganese, nickel, lead and sulphur. This was attributed to 

electronic processes that occur in transition metals which occur around 800 nm. In addition, 

the regions between the absorption features at 650 nm and 975 nm were attributed to the 
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indicator spectral regions for zinc and the regions between the absorption features at 975 nm 

and 1165 nm were attributed to the indicator spectral regions for manganese. Iron showed a 

significant correlation with the absorption feature at 1165 nm and this was attributed to crystal 

field transitions of ferrous iron which occurs in the 900-1100 nm region (Seifi et al., 2019).  

In a study conducted by Yang et al. (2021), multispectral satellite imagery was used to estimate 

heavy metal concentrations including arsenic, copper and lead in the topsoil of the Daxigou 

mining area in the Shaanxi Province, China. 44 soil samples were collected and the samples 

were sieved and dried before chemical analyses. 24 Landsat 8 images were downloaded from 

the USGS Earth Explorer website and were corrected for atmospheric effects using ENVI 

software. The Landsat 8 images were characterised by strong absorption between the 400 nm 

and 500 nm wavelength regions. The spectral reflectance increased between 500 nm and 780 

nm and decreased between 780 nm and 900 nm. The reflectance of the images associated with 

contaminated soils displayed an increasing spectral reflectance between 1200 nm and 2500 nm 

indicating these four spectral ranges were suitable in distinguishing between heavy metal-

contaminated soil and uncontaminated soil. In addition, the reflectance of bands B2-B7 showed 

strong correlations with the lead concentrations and the reflectance of bands B2-B4 showed 

strong correlations with the copper and arsenic concentrations and the spectral values of bands 

B2-B7 from the Landsat 8 images were selected. A linear model, a rule-based M5 model tree 

and a genetic algorithm-back propagation (GA-BP) model were developed to estimate the 

heavy metal concentrations from the Landsat 8 images. It was found that the GA-BP model 

improved the accuracy of estimating arsenic, copper and lead concentrations in the soil as the 

RMSE for the GA-BP model was lower than that of the linear model and the M5 model tree 

(Yang et al., 2021). 

Another study conducted by Mouazen et al. (2021) involved the use of regression methods and 

Landsat 7 for spatiotemporal prediction and mapping of heavy metals between Ghent and 

Antwerp, Belgium. 435 soil sampling stations were selected and the corresponding heavy metal 

concentrations were extracted from the Land-Use/Cover Area Frame Survey (LUCAS) 

database. Four Landsat 7 images dated 2009, 2013, 2016 and 2020 were downloaded from 

USGS Earth Explorer and the digital number (DN) value of pixels corresponding to the soil 

sampling locations in each band was converted to spectral reflectance, using ArcMap. Partial 

least squares regression (PLSR), random forest (RF) and support vector machine (SVM) 

regression models were used to predict the 10 soil heavy metal concentrations (antimony, lead, 
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nickel, manganese, mercury, copper, chromium, cobalt, cadmium and arsenic) from the 

spectral features of the Landsat 7 images. It was found that the RF machine learning algorithm 

performed better in the prediction of the 10 heavy metals than the PLSR and SVM models for 

2009. The R2 of prediction and the residual prediction deviation (RPD) of prediction values 

were used to assess the accuracy of the models and the R2 of prediction and the residual 

prediction deviation (RPD) of prediction values obtained for the prediction of the 10 heavy 

metals using the RF algorithm ranged from 0.62 to 0.92 and 1.23 to 2.79, respectively.  

In another study conducted by Todorova et al. (2014), the near-infrared spectroscopy was used 

to estimate heavy metal concentrations in 124 soil samples collected from crop fields in the 

Stara Zagora Region, Bulgaria. The soil samples were air-dried, crushed and sieved using a 2 

mm sieve and the samples were divided into two sets where one set was used for chemical 

analyses and the other set was used to record spectral measurements. A Spectrum One NTS, 

FT-NIR Spectrometer (Perkin Elmer, Waltham, MA, USA) was used to record spectral 

reflectance measurements in the near-infrared spectral regions. 300 scans were recorded and 

averaged to obtain the final reflectance spectrum for each soil sample. The noisy spectral 

regions were removed and the spectra were pre-processed before a PLS regression model was 

used to predict the heavy metals from the reflectance spectra. The samples were divided into 

calibration and prediction sets and the prediction set was used to test the accuracy of the model. 

It was found that the best model was obtained for the prediction of copper and the predictions 

of zinc, lead and nickel were found to be less accurate. In addition, it was found that the 

important wavelengths for the prediction of copper were 1500 nm, 2184 nm and 2244 nm. The 

important wavelengths for the prediction of zinc were 1500 nm, 2217 nm, 2295 nm and 2354 

nm. The important wavelengths for the prediction of lead were 1894 nm, 2295 nm and 2142 

nm and the important wavelengths for the prediction of nickel were 1904 nm, 2168 nm and 

2245 nm. 

In another study conducted by Choe et al. (2008), field spectroscopy and hyperspectral remote 

sensing were used to map the heavy metal pollution in the stream sediments of the Rodalquilar 

mining area, Spain. 49 dry sediment samples were collected from stream channels in the 

Rodalquilar area and were analysed for heavy metals. The spectral measurements of the 

sediment samples were recorded using an ASD FieldSpec Pro spectroradiometer in a dark room 

to avoid interference from stray light. Each sediment sample was poured into a 60 x 15 mm 

dish with a sample depth of 8 mm and the spectral measurements were recorded using a contact 
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probe. Continuum removal and normalisation was performed on the spectra obtained to 

enhance the absorption features and the relationships between the spectral absorption features 

and heavy metal concentrations were assessed using the Pearson correlation coefficient. The 

relationship between the spectral parameter values and metal levels were assessed using two 

types of multiple linear regression (MLR) including stepwise and enter. Three parameters 

including spectral ratios, continuum removal and band-depth analysis were derived from the 

spectral variations associated with heavy metals in the sediment. It was found that band ratios 

between 500 nm and 610 nm and between 778 nm and 1344 nm was caused by spectral 

variations associated with iron oxide. It was also found that the absorption depth near 500 nm 

increased with high concentrations of heavy metals. In addition, the absorption depth and area 

values around 2200 nm, associated with lattice OH minerals, decreased with high heavy metal 

concentrations. It was found that the enter MLR performed better than the stepwise MLR. R2 

and RPD values were used to assess the accuracy of the MLR prediction models. The R2 values 

obtained for lead, zinc and arsenic were 0.615, 0.596 and 0.876, respectively and the RPD 

values obtained for lead, zinc and arsenic were 1.39, 1.387 and 2.562, respectively. 

Another study conducted by Kemper and Sommer (2002) used reflectance spectroscopy to 

estimate the heavy metal contamination in soils after a mining accident in the west of Seville, 

Spain. A total of 214 soil samples were collected and chemically analysed for heavy metals. 

The soil samples were air-dried and sieved using a 2 mm sieve before the spectral reflectance 

of the samples were measured using an ASD FieldSpec 2 spectroradiometer. The spectra were 

pre-processed using a Gaussian model which resulted in a resampled spectra with a reduction 

in the wavelengths (from 2151 to 108), producing smooth spectra with less over-fitting. The 

data was then transformed to absorption (log 1/R) to account for scattering effects before first- 

and second-order derivatives were applied using the Savitzky-Golay method. The samples 

were divided into calibration and validation sets with 119 samples in the calibration set and 

118 samples in the validation set. The prediction models to predict the laboratory-measured 

heavy metal concentrations from the spectral reflectance measurements were built using 

stepwise MLR and an artificial neural network (ANN). R2 and RPD values were used to assess 

the accuracy of the MLR and ANN prediction models. It was found that for the MLR, the R2 

values for arsenic, cadmium, copper, iron, mercury, lead, sulphur, antimony and zinc were 

0.837, 0.51, 0.54, 0.721, 0.957, 0.944, 0.839, 0.929 and 0.234, respectively and the RPD values 

were 3.83, 1.23, 1.23, 1.92, 5.77, 5.30, 2.38, 4.66 and 0.59, respectively. It was found that for 

the ANN, the R2 values for arsenic, cadmium, copper, iron, mercury, lead, sulphur, antimony 
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and zinc were 0.858, 0.494, 0.446, 0.714, 0.929, 0.940, 0.845, 0.927, 0.220, respectively and 

the RPD values were 3.28, 0.96, 0.84, 1.98, 4.30, 5.89, 2.66, 4.55 and 0.51, respectively. In 

addition, a correlogram was developed to analyse the correlation between the heavy metals and 

spectral reflectance information. It was found that there was a high positive correlation (or 

peak) at around 550 nm which was caused by the charge transfer band in the ultraviolet region 

of the spectrum. The area with the highest negative correlations (or absorption features) 

between 700-1400 nm was linked to the strong absorption of the ferrous ion at around 1000 

nm. Three peaks were observed between 1400 nm and 2200 nm which was attributed to strong 

molecular water bands at 1400 nm and 1900 nm in combination with hydroxyl absorptions 

centred at 1400 nm and 2200 nm. An absorption feature was also observed at 2350 nm which 

was caused by carbonate absorption and similar to the features associated to OH-bearing 

secondary minerals, its depth was negatively correlated with heavy metal concentrations 

(Kemper and Sommer, 2002).  
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CHAPTER 3: DESCRIPTION OF THE STUDY AREA 

 

3.1) Introduction 

The uMgeni River and Estuary is the chosen study area for this research. The uMgeni River 

catchment is an extensive system (Cooper, 1993); therefore, the study was focused only on the 

lower uMgeni system near the coast as seen in Figure 3.2. This chapter aims at introducing the 

selected study area. It entails a detailed description of the study area, including location and 

physical characteristics, geology and soils, topography, climate, biology, as well as information 

about the land-use and land cover in and around the area.  

3.2) Location and physical characteristics 

The eThekwini Municipality is located in the province of KwaZulu-Natal, along the east coast 

of South Africa (Figure 3.1). This municipality covers an area of 2291 km2 and includes the 

city of Durban, which is the third-largest city in South Africa (Pather, 2014).  The eThekwini 

Municipality consists of 16 estuaries, of which the uMgeni Estuary falls and is the chosen study 

area for this study.  

The uMgeni Estuary is located at 29°48ʹ36ʺS 31°02ʹ08ʺE and is situated 5 km north of the 

centre of Durban (Forbes and Demetriades, 2008). The uMgeni Estuary is regarded as a 

permanently open estuary and is the only estuary of this type that falls within the eThekwini 

municipal boundary (Forbes and Demetriades, 2008). The uMgeni Estuary is a coastal system 

with a river length of 230 km long and a catchment area of approximately 5000 km2 (Glennie, 

2001; Olaniran et al., 2014). This makes uMgeni the largest catchment in KwaZulu-Natal. The 

uMgeni Estuary is a river-dominated estuary extending from the Indian Ocean into the uMgeni 

River catchment (Glennie, 2001).  The main urban centres of Durban and Pietermaritzburg are 

located within the uMgeni catchment, and over 3.5 million people from Howick towards the 

coast receive their water from this catchment (WRC, 2002; Umgeni Water, 2017).  

The uMgeni River originates in the foothills of the Drakensberg area in KwaZulu-Natal at an 

elevation of 1889 m and flows eastwards towards the Indian Ocean at the mouth (Chili, 2008; 

Tinmouth, 2010; Banda and Kumarasamy, 2020). The river flows from the Valley of a 

Thousand Hills with a gentle gradient for 24 km before it enters the Indian Ocean through the 

northern suburbs of Durban (Olaniran et al., 2014). According to the UEIP (2016), 42% of 
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KwaZulu-Natal’s population depends on the uMgeni River catchment for their water supply. 

The river flow is regulated by four dams built upstream and downstream of the catchment, 

namely, Midmar, Albert Falls, Nagle and Inanda dams (Namugize, 2017). These dams supply 

water for agricultural purposes and to the residential areas and informal settlements of both 

Pietermaritzburg and Durban (Namugize, 2017). The land cover found within the uMgeni 

catchment is regarded as heterogeneous, comprising urban areas, forests, subsistence and 

commercial agriculture, and the Port of Durban (Banda and Kumarasamy, 2020). There are 

five bridges constructed across the uMgeni Estuary. These bridges include the Ellis Brown 

viaduct located at the mouth, the Athlone bridge about 1.4 km from the mouth, the Connaught 

Interchange about 2.5 km from the mouth, a railway bridge a further 150 m upstream and lastly, 

the bridge on the N2 freeway (Forbes and Demetriades, 2008). The uMgeni catchment is also 

boarded by Beachwood mangroves that extend to the mouth (Glennie, 2001).  

The uMgeni Estuary is funnel-shaped with the mouth positioned towards the south as a result 

of a sandbar that expands southward (Tinmouth, 2010). An artificial groyne was established 

on the southern bank of the uMgeni Estuary to minimise scour due to tides and the northerly 

movement of sediment due to longshore drift (Njoya, 2002). In addition, the salinity levels of 

the estuary fluctuate, depending on the tides and the volume of freshwater inflow (Tinmouth, 

2010). During high tides, the estuary is dominated by saltwater, and during low tides, a salt 

wedge forms in the zone between the estuary's head and Athlone Bridge (Tinmouth, 2010). 
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Figure 3.1: Locality map of uMgeni: a) South Africa; b) KwaZulu-Natal, and c) the eThekwini Municipality.

a) b) 

c) 
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Figure 3.2:  Satellite image illustrating the study area (Source: Google Earth, date accessed: 

March 2021). 

3.3) Geology and Soils 

Hinterland geology and the soils developed on it are important as they influence the nature and 

volume of sediment available for transport by rivers to the coasts (Cooper, 1991). The coast of 

KwaZulu-Natal has a variety of geological formations. According to Marshall and von Brunn 

(1999), the dominant geology found along the KwaZulu-Natal coastal belt includes the Natal 

Group Sandstone, Ecca Shale and Dwyka Tillite beds with intrusions of basic igneous rock 

dolerite as well as igneous outcrops of granite. The Archaean and Proterozoic basements in 

KwaZulu-Natal consist of granites and greenstones (Schlüter, 2008). These are superimposed 

by the Natal Group, which are Phanerozoic sedimentary rocks consisting of conglomerates, 

sandstones, siltstones and mudrocks (Marshall and von Brunn, 1999; Hicks, 2009). The Natal 

Group is overlain by the Karoo Supergroup, namely the basal Dwyka Group covered by the 

Ecca Group (Schlüter, 2008). The Dwyka Group predominantly comprises diamictites, 

conglomerates, sandstones and mudrocks, whereas the Ecca Group primarily consists of 

mudrocks, sandstones, siltstones and mudstones (Hicks, 2009). Figure 3.3 illustrates KwaZulu-

Natal's geology and depicts the geology that falls within the eThekwini Municipality.   

The uMgeni catchment comprises a wide variety of rock types. The upper reaches of the 

catchment comprise Ecca and Beaufort Group lithologies comprising fine-grained lacustrine 
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and fluvial sedimentary rocks (Cooper, 1993). These lithologies are intruded by Late Jurassic 

Karoo Dolerite, which is underlain by Dwyka tillite (Cooper, 1991). Archaean granite is found 

in the middle of the catchment. According to Begg (1978), this is the source of most sands 

found within the catchment and the pink sands found within the estuary. Downstream of the 

catchment near the Connaught Interchange, the river flows over Ecca and Dwyka rocks (Abed, 

2009). The alluvium is found near the coast on the Springfield Flats, with Tertiary and 

Pleistocene coastal deposits exposed on the sides of the valley (Cooper, 1991).   

The uMgeni Estuary is underlain by shale that is fractured towards the surface and comprises 

dolerite intrusions (Pather, 2014). According to Begg (1978), in 1972, the head of the estuary 

consisted of fine sands, and sand and gravel were characteristic of the middle reaches. The 

lower reaches were primarily made up of black anaerobic silt beneath deposits of sand, with 

the Beachwood mangroves comprising sand of uniform composition, and the mouth of the 

estuary predominantly consisted of sand (Begg, 1978). According to the results of the sediment 

analyses undertaken between 2007 and 2008 by Forbes and Demetriades (2008), the estuary's 

mouth primarily consisted of fine to medium sands, the middle reaches comprised uniform 

medium sands, and the upper reaches consisted of very fine sands.   
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Figure 3.3: Map depicting the geology of the study area within the eThekwini Municipality in 

KwaZulu-Natal (map created with data sourced from www.gis.durban.co.za and accessed on 

18/02/2021). 

 

http://www.gis.durban.co.za/
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3.4) Topography 

According to Cooper (1993), the topography of KwaZulu-Natal province can be characterised 

by steep hinterland and a lack of coastal plains in the southern parts of the province. Coastal 

plains dominate the northern areas of the province near Zululand and beyond the border 

towards Mozambique (Cooper, 1993). According to Abed (2009), the Drakensberg Mountain 

range forms a large watershed from which the main perennial rivers flow towards the Indian 

Ocean. There are approximately 74 rivers, including 9 major perennial rivers, 55 minor 

perennial rivers and 10 secondary rivers, flowing towards the Indian Ocean (Cooper, 1990).  

The topography and climate of KwaZulu-Natal result in high sediment yields and erosion, 

being experienced near the coast (Abed, 2009). In addition, the KwaZulu-Natal coastline is 

dominated by sandy beaches due to the high fluvial sediment loads that maintain beaches and 

barrier environments that develop across the inlets of estuaries (Abed, 2009; Pather, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Map of the topography of KwaZulu-Natal (Source: Turpie et al., 2020). 
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3.5) Climate 

The coast of KwaZulu-Natal experiences a subtropical climate with warm and rainy summers 

and cool and dry winters (Njoya, 2002). The influence of the warm Aghulus current promotes 

annual average temperatures ranging from warm to hot in summer and mild in winter (Glennie, 

2001; Pather, 2014). The temperatures experienced in KwaZulu-Natal Durban in summer range 

from 23 ºC to 33 ºC, with winter temperatures ranging from 16 ºC to 25 ºC (SA-Venues, 2021). 

The average annual temperatures experienced within the uMgeni catchment range between 14 

ºC and 22 ºC (Umgeni Water, 2017).  

The uMgeni River catchment is subjected to increased variability and extreme weather events, 

including more flood and drought events (Hay, 2017). Increased temperatures resulting from 

global warming and climate change lead to heat stress on people, livestock and wildlife (Hay, 

2017). The higher temperatures have also resulted in an increase in evaporation which reduces 

the efficacy of dams as water storage facilities (Umgeni Water, 2013). In addition, the rise in 

temperatures has also impacted the distribution of fauna and flora and facilitated the spread of 

alien invasive plants. According to Hay (2017), alien invasive wattle trees found within the 

uMgeni catchment consume approximately 7.2 million cubic metres of water which is well 

over the amounts consumed by indigenous vegetation. This is particularly problematic during 

periods of drought as this amount consumed by the alien species is equivalent to the annual 

water requirements of 100 000 people (Hay, 2017).  

The rainfall experienced by the uMgeni catchment is seasonal, with a higher amount of rainfall 

experienced in the summer months (October to March). According to Cooper (1993), 80% of 

annual rainfall in KwaZulu-Natal is experienced during the summer months. Winter rainfall is 

substantially lower and usually occurs as a result of the northward-moving coastal low-pressure 

systems (Pather, 2014).  The amount of rainfall across the uMgeni catchment is highly variable, 

increasing from the western to the eastern part of the catchment (Banda and Kumarasamy, 

2020). The coastal portion of the catchment experiences rainfall ranging between 1000 mm to 

1500 mm annually, whilst the more inland areas of the catchment experience rainfall ranging 

between 800 mm to 1000 mm annually (Warburton et al., 2012).  

Occasionally, KwaZulu-Natal experiences periods of intense rainfall leading to extensive 

flooding throughout the province (Cooper, 1993). These flood events alter sediment patterns 
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and lead to the erosion and transportation of high sediment loads from rivers into estuaries 

(Njoya, 2002). 

3.6) Biology 

Biologically, the type and abundance of species found within estuaries are strongly influenced 

by the mouth state (Van Niekerk and Turpie, 2012). The permanently open mouth state of the 

uMgeni Estuary enables it to be easily accessible to marine species that use estuaries for 

reproduction and nurseries (Van Niekerk and Turpie, 2012). According to Forbes and 

Demetriades (2008), the open mouth state and strong salinities enable the uMgeni Estuary to 

support a wide variety of fish species. The uMgeni Estuary is also home to 24 taxa of benthic 

invertebrates, and bird communities were also found to be in high abundance and reasonably 

diverse (Forbes and Demetriades, 2008). In addition, the uMgeni Estuary is surrounded by 

Beachwood mangroves which are also home to a wide variety of plant and animal species 

(WRC, 2002). These include red data fish, reptiles, birds, invertebrates, and three species of 

mangroves, including the white, black and red mangroves (Beachwood Mangroves Nature 

Reserve, 2013). 

3.7) Land-use 

Land-use can be described as the human activities that occur on the earth's surface and include 

agriculture, forestry, and urban development (Kercival, 2015). Land-use change can be defined 

as the process through which anthropogenic activities change the natural environment, such as 

deforestation (Liang et al., 2012). According to Jewitt et al. (2015), between the years 2005-

2011, the KwaZulu-Natal province has lost 7.6% of its natural landscape due to anthropogenic 

transformations such as agriculture, timber plantations, the built environment and the 

establishment of dams and mines. The uMgeni River catchment comprises a wide variety of 

land-uses. The uMgeni River is responsible for approximately 65% of the total economic 

production in KwaZulu-Natal (WRC, 2002). However, according to Olaniran et al. (2014), the 

uMgeni River near the mouth has been significantly modified over the years with alterations 

in riparian vegetation and flow direction to make way for anthropogenic activities. The increase 

in anthropogenic activities and the subsequent alterations in land-use and land cover have 

significantly reduced the water quality of the river and estuary (Olaniran et al., 2014). 

Abed (2009) states that the predominant land-use in the uMgeni catchment is intensive farming 

of tropical fruits, sugar, crops, and dairy farming. A golf course, yacht club, restaurants, and 
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other recreational facilities have also been established on the southern bank of the uMgeni 

Estuary. Residential and commercial areas have been developed on the northern bank of the 

estuary (Begg, 1978). Figure 3.5 below depicts the land-use and land cover found along the 

uMgeni catchment between 2013 and 2014. As seen in Figure 3.5, the lower uMgeni catchment 

near the mouth, a majority of the land-use is occupied by urban township, urban village and 

urban built-up areas. The land cover includes natural vegetation such as dense trees, open trees, 

low vegetation and grass, and bare land, which facilitates expansions in urban development in 

the future. The Beachwood Mangroves Nature Reserve is also found at the mouth of the 

uMgeni Estuary and is a 76-hectare protected area (Beachwood Mangroves Nature Reserve, 

2013).
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Figure 3.5: Land-use and land cover map of the uMgeni catchment between the years 2013-2014 (Source: Umgeni Water, 2017). 
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CHAPTER 4: METHODOLOGY 

 

4.1) Introduction 

This chapter provides details on the materials and methods used in this study in order to achieve 

the aim and objectives of the study. It includes information on how data collection of the water 

and sediment samples in the field and laboratory were carried out. The types of statistical 

techniques employed on the water and sediment data obtained and the accuracy assessments 

are also discussed. The results obtained following the methodology employed in this chapter 

are presented in the results chapter of the dissertation.  

4.2) Data collection 

4.2.1) Field sampling  

Field data collection involved the collection of water and sediment samples from the uMgeni 

Estuary. The field sampling was undertaken on the 8th April 2021, during the wet season. The 

weather was calm with partly cloudy conditions experienced in the morning and sunny 

conditions at noon. Sampling was conducted between 9:30 am and 12:30 pm during low tide.  

The water samples were collected in a systematic pattern along a line transect from three 

designated sampling locations A, B and C as seen in Figure 4.1. Systematic sampling involves 

selecting a random starting point and each sample is collected at regularly spaced intervals in 

a particular pattern (Bellhouse, 2005). The sampling locations were randomly selected and at 

each location, five samples were collected along transect lines approximately 10 m apart across 

the estuary, collecting a total of 15 water samples. The systematic technique is a widely used 

sampling technique and was selected as it is simple, efficient and less time-consuming 

(Bellhouse, 2005). 500 ml plastic bottles were used to collect the water samples to be analysed 

for their heavy metal content as heavy metals can adsorb irreversibly on other surfaces, such 

as glass (Kaflé, 2019). Samples were taken from just below the water’s surface. The sampling 

bottles were rinsed three times with the sample water before the final sample was taken. Upon 

collecting the final sample, the bottles were allowed to fill whilst completely submerged in the 

water and capped underwater to avoid contamination (Wilde and Radtke, 1998; Bartram and 

Ballance, 2020). This process was repeated at each sampling point. The water samples were 

immediately placed in a cooler box and away from the sun. 
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The sediment samples were collected along the banks of the estuary. Five samples were 

collected from each sampling location A, B and C collecting a total of 15 sediment samples. 

The sediment samples were collected from top horizon sediments, at 0-2 cm depth. These 

samples were collected using a spade and were collected at a specified distance of 

approximately 10 m a part and stored in plastic zip lock bags. The samples were immediately 

placed in a cooler box and away from the sun to preserve the samples (Kianpoor Kalkhajeh et 

al., 2019). The GPS locations of each sampling point was also recorded. The samples were then 

transported on ice to the laboratory for analysis; the water samples were stored in a cold room 

at 4°C prior to analysis.
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Figure 4.1: Map of the sampling points of the uMgeni estuary with images depicting the areas close to the three main sampling sites A, B and C.
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4.2.2) Laboratory data collection 

At the laboratory the samples were tested for pH, dissolved oxygen and electrical conductivity 

using a multi-parameter device as seen in Figure 4.2. The pH meter was first calibrated with 

pH 4, pH 7 and pH 9 buffer solutions before any readings were taken. The pH electrode was 

rinsed with distilled water before using each buffer solution. Thereafter, water samples were 

poured into 60 ml beakers and placed on a magnetic stirrer with a stir bar set at a steady pace 

to ensure homogenisation of the water samples. The pH, dissolved oxygen and electrical 

conductivity electrodes were then dipped into each sample and the readings were recorded 

three times and averaged. All electrodes were rinsed with distilled water before each reading 

was recorded. This procedure was repeated for the 15 water samples.  

pH is important in terms of mobility as the availability of heavy metals is relatively low when 

the pH range is between 6.5 to 7 (Hacısalihoğlu and Karaer, 2016). Low pH levels can 

encourage the solubility of heavy metals (Zhang et al., 2018). According to Li et al. (2013), 

low pH levels cause an increase in the competition between hydrogen ions and dissolved heavy 

metals for ligands. Subsequently, the adsorption capabilities and bio-availabilities of the heavy 

metals decrease resulting in an increase in the mobility of heavy metals. In addition, soluble 

and carbon-bound heavy metals precipitate more easily under low pH conditions (Li et al., 

2013).  Electrical conductivity (EC) gives an estimate of the presence of ionic substances in 

water. It is often used as a surrogate measure of total dissolved solids present in the water. An 

increase in the EC results in a decrease in the adsorption of heavy metals on sediment 

(Hacısalihoğlu and Karaer, 2016). The amount of dissolved oxygen also plays a role in the 

release of heavy metals. A study conducted by Kang et al. (2019), indicated that certain heavy 

metals are released from river sediments into the overlying water column in anoxic conditions 

(low oxygen levels) and adsorbed by sediment from the overlying water column in aerobic 

conditions. The samples were stored in a cold room in the laboratory at 4 °C until further 

analysis. 
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Figure 4.2: Multi-parameter device apparatus used to record pH, dissolved oxygen and 

electrical conductivity measurements of the water samples. 

The water samples were centrifuged with a centrifuge machine at a rotation speed of 5000 rpm 

for 10 minutes in order to separate the solid and liquid phases. Thereafter, the samples were 

carefully filtered into 50 mL ICP tubes using a 0.45 µm syringe filter. A multi-element standard 

solution was included with the samples and transported to the chemistry department on the 

Pietermaritzburg Campus to be analysed for the heavy metals of interest using inductively 

coupled plasma optical emission spectroscopy (ICP-OES). ICP-OES is a traditional analytical 

method used to determine the number and concentration of elements that are present in a 

particular sample (Boss and Fredeen, 1997). ICP-OES is based on the principle that when 

plasma energy is introduced to a sample from the outside, the elements or atoms move from 

the ground state to an excited state (Ghosh et al., 2013). When these excited atoms revert to a 

low energy position, emission rays are discharged, and the emission rays that correspond to the 

photon wavelength are recorded (Ghosh et al., 2013). The type of element is determined based 

on the position of the photon rays. The concentration of each element detected is subsequently 

determined based on the intensity of the rays (Kiran and Raja, 2017).  The samples were 
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analysed for the following ten heavy metals, aluminium (Al), arsenic (As), cadmium (Cd), 

chromium (Cr), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), nickel (Ni) and zinc (Zn). 

These heavy metals were chosen as they are commonly found in effluent discharge and are a 

cause of concern even if they are found in trace amounts (Akpor et al., 2014).  

For solid samples such as sediments, the samples first need to be converted into an aqueous 

phase in a process known as acid digestion in order to be analysed spectroscopically (Güven 

and Akinci, 2011). In the laboratory, the sediment samples were first air-dried at room 

temperature for three weeks before being crushed with a pestle and mortar in order to obtain 

fine particles. Fine sediment particles act as metal sinks owing to their net negative charge and 

involvement in sorption and cation exchange processes (Adeogun et al., 2012; Arnous and 

Hassan, 2015). Thereafter, the sediment samples were placed into clean plastic zip lock bags 

and transported in a cooler box, away from the sun, to the ALS Analysis and Inspection 

Laboratory in Durban for acid digestion and heavy metal analysis. The acid digestion involved 

the use of a combination of hydrochloric acid and nitric acid and the samples were digested by 

heating them on a hotplate. The digested samples were then analysed for the heavy metals of 

interest using ICP-OES. 

4.2.3) Remote sensing data collection  

The remote sensing data collection involved the collection of spectral characteristics of the 

water and sediment samples using an analytical spectral device (ASD) FieldSpec 3 

spectroradiometer. An analytical spectral device (ASD) spectroradiometer is an optical device 

that uses detectors to measure the distribution of radiation in a particular wavelength region 

(Rostom et al., 2017). It measures the spectral behavior in the visible near-infrared (VNIR) and 

shortwave infrared (SWIR) spectra between 350 and 2500 nm in a precision of 1 nm. ASD is 

a full-range spectroradiometer and is computer-controlled (Danner et al., 2015). A portable PC 

is used to control the scans collected by the instrument and it also allows for the on-screen 

visualisation of the data collected in real-time. All analyses were done in a dark room to 

eliminate interference by stray light and diffusion radiation (Choe et al., 2008).  

The ASD spectroradiometer was first allowed to warm up for at least 90 minutes before use. 

The dark current and radical was first collected and then optimisation was done before any data 

was collected. This process ensures the appropriate light settings are set for the source of light 

that is used to record the spectra (Salisbury, 1998). If the light source does not change 
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significantly, then re-optimisation is not necessary. However, if the measurements recorded 

reaches saturation, to decrease the saturation level of the detectors, optimisation is necessary 

(Janse et al., 2018). In order to acquire radiometric data in reflectance, a Spectralon plate or 

white reference panel was used as a standard reference (white reference) of the reflectance 

(Eitelwein et al., 2015), and these white reference measurements were recorded. The white 

reference is a calibration panel which gives a 100 % reflectance of incident illumination to 

calibrate the target reflectance (Hatchell, 1999; Eitelwein et al., 2015). When spectral 

measurements are recorded, it is recommended to take white reference readings every 10-15 

minutes for better reflectance spectra (Janse et al., 2018). White reference measurements were 

recorded every 15 minutes to obtain spectral information. 

Field of View (FOV) refers to the solid angle through which light incident on the target material 

enters the spectroradiometer (Mac Arthur et al., 2012). When collecting spectral measurements, 

it is important to set the FOV and other factors such as height, distance and angle from the 

target material (Mac Arthur et al., 2012; Janse et al., 2018). In most cases, however, the spectral 

signatures are captured using the nadir position. Spectral scanning involved the use of a 1.5 nm 

or 25° field of view bare fibre optic placed at a specific height from the sample. This was done 

to ensure that spectra outside the petri dish was not captured by the sensor (Monaledi, 2019). 

The FOV was calculated using the following formulae: 

r = tan (
α

2
) x H                                                                            (1)  

Where, r = radius of circular FOV with area A.  

H = height of spectrometer held above the object surface. 

α = angular FOV for spectrometer. 

A = πr2                                                                                      (2) 

Where, A = sampled area. 

Spectral measurements were then recorded using ASD which records reflectance in the spectral 

range of 350-2500 nm (Kemper and Sommer, 2002). The spectral resolution of the ASD 

spectroradiometer is 3 nm @ 700 nm and 10 nm @ 1400/2100 nm with spectral intervals 1.4 

nm @ 350-1050 nm and 2 nm @ 1000-2500 nm (ASD., 2000). The electrons inside the ASD 

generates an amount of electrical current that is always added to the incoming photons of light, 

this signal then generates false data known as dark current (DC) (Agrawal and Deshmukh, 
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2018). DC refers to the amount of electrical current inherent in the electrical components of 

the spectroradiometer (Janse et al., 2018). It is the systematic noise from the electronics and 

detectors of the instrument (Hatchell, 1999). DC reflects variations due to changes in 

temperature as well as time variations and is automatically collected during every optimisation 

(Janse et al., 2018). It is stored and applied for every spectral measurement, however, in order 

to acquire accurate data, the DC at each channel should be subtracted from the total DC for that 

channel (Janse et al., 2018). The ASD FieldSpec spectroradiometer software automatically 

recorded and subtracted the DC from the spectral measurements which ensured accurate data 

was recorded (Hatchell, 1999).  

The reflectance measurements can be affected by atmospheric factors such as scattering of 

atmospheric gases and particles (Salisbury, 1998; Janse et al., 2018). Light energy gets 

refracted by these small particles and if any of these conditions are present during spectral 

measurements, they should be recorded in the spectral metadata (Janse et al., 2018). This is 

done so that any loss in the signal identified during post-processing can be attributed to these 

factors and the measurement can be excluded. All reflectance values were plotted graphically 

and the noisy spectral regions were excluded. 

In the laboratory, the sediment samples were first air-dried and sieved using a 2 mm mesh sieve 

to obtain fine particles. Thereafter, each water and sediment sample were poured into a circular 

petri dish with a diameter of 9 cm and placed on a black surface to avoid background 

interference in the reflectance. The Field of view (FOV) for the water and sediment samples 

were calculated as follows:  

r = tan (
α

2
) x H 

4.5 = tan (
25

2
) x H 

H = 
4.5

tan(
25

2
)
 

   = 20.3 cm  

A = πr2 

    = π(4.5)2 

    = 63.62 cm2             
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The ASD spectroradiometer was warmed up for 90 minutes before use and a quartz-halogen 

lamp was warmed up for 30 minutes before use. Thereafter, once the instrument was warmed 

up, DC and radical measurements were recorded and then optimisation was done before a bare 

fibre optic cable was used to record the spectral reflectance of each sample. The bare optical 

fibre cable was placed 20.3 cm from the sample and a quartz-halogen lamp was used as a source 

of illumination. The lamp was placed on a tripod at a 50 cm height from the surface to reduce 

interference fringes at a zenith angle of 45 degrees from the surface and at a horizontal distance 

of 50 cm. The position of the tripod was fixed to ensure a constant illumination distance and 

angle orientation so that the flux density was the same. Ten measurements were taken for each 

sample and averaged. 

 

 

Figure 4.3: ASD laboratory set up for the collection of spectral measurements of the water 

samples. 
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Figure 4.4: ASD laboratory set up for the collection of spectral measurements of the sediment 

samples. 

4.3) Data analysis 

Data analysis of the water and sediment data involved the pre-processing of the spectral 

reflectance data of the water and sediment samples obtained from the ASD spectroradiometer, 

descriptive statistics of the laboratory measured water and sediment data to describe the 

characteristics of the data and statistical analyses of the water and sediment data performed to 

identify outliers, build calibration models and assess the prediction accuracies of the models 

using cross-validation. 

4.3.1) Data pre-processing  

4.3.1.1) Water data 

The spectral reflectance data and the laboratory measured data of the 15 water samples were 

imported into the Unscrambler®X 10.4 software. The spectral reflectance data were first 

plotted graphically to identify noisy spectral regions. The 350-549 nm, 951-1129 nm and 

beyond 1800 nm spectral regions were removed prior to further analyses as these regions were 

noisy and could cause a deterioration in the quality of the results. In data pre-processing, when 

the spectral plots are recorded a slope in the spectra may occur and to reduce these effects 

Savitzky-Golay first and second derivative transformations can be performed (ASD., 2000). 
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The Savitzky-Golay technique of derivative transformations rely on a least-squares fit of a 

polynomial through the data points (Mark and Workman, 2010).  

According to Aggarwal (2004), the spectral reflectance of surface features is equivalent to the 

proportion of reflected energy to incident energy as a function of wavelength. If we let the 

spectral reflectance xi be a function of wavelength λ, the spectral reflectance can be given by: 

Xi (λ) = [ER (λ) / EI (λ)] x 100                                  (3) 

Where,  

Xi (λ) = Spectral reflectance at a specific wavelength 

ER (λ) = Energy of wavelength reflected from object 

EI (λ) = Energy of wavelength incident on the object 

 

The derivative of the function can be given by:  

Zero order: 

xi = f(λ)                                                   (4) 

First order: 

d(xi)

dλ
 = f′(λ)                                              (5) 

Second order: 

d2(xi)

dλ2  = f′′(λ)                                                         (6) 

According to Hatchell (1999), depending on the data, more noise can be introduced to the 

spectra with each derivative transformation done. The use of the Savitzky-Golay second 

derivative resulted in more noise being added to the data; therefore, the Savitzky-Golay first 

derivative using a 1st order polynomial with 43 smoothing points was used. A first order 

derivative is equivalent to the rate of change of reflectance with respect to wavelength (Owen, 

1995). The first derivative is effective in smoothing the data, enhancing spectral features and 
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removing baseline effects from the scattering of light (do Nascimento et al., 2017; González-

Fernández et al., 2019).  

4.3.1.2) Sediment data 

The concentrations of laboratory measured sediment data were provided in mg/kg for most 

heavy metals, however, the concentrations of aluminium, iron and magnesium were provided 

in percentage mass (%m/m). In order to work with uniform units and to facilitate the 

comparability between the heavy metals, the mass percentages of aluminium, iron and 

magnesium were converted into mg/kg. According to Strawn et al. (2015), one percent by mass 

is equal to 10000 mg/kg and can be given by: 

1% 𝑥 
10000 𝑚𝑔/𝑘𝑔

%
= 10000 𝑚𝑔/𝑘𝑔                          (7) 

The spectral reflectance data and the laboratory measured data of the 15 sediment samples were 

imported into the Unscrambler®X 10.4 software. The spectral reflectance data were first 

plotted graphically to identify noisy spectral regions. The 350-599 nm, 861-1069 nm and 

beyond 1760 nm spectral regions were removed prior to further analyses as these regions were 

extremely noisy. Thereafter, the Savitzky-Golay smoothing pre-processing treatment with 25 

smoothing points and a zero-order polynomial was used. The Savitzky-Golay smoothing filter 

is also known as the least squares digital polynomial smoothing filter and is the most commonly 

used smoothing filter in spectroscopy (Bromba and Ziegler, 1981). Savitzky and Golay 

demonstrated in their research that least squares smoothing filters are efficient in reducing 

spectral noise while preserving the shape and height of spectral peaks (Schafer, 2011). 

According to Press and Teukolsky (1990), these filters make spectral lines in noisy spectral 

data smooth and more visible without a loss of resolution. The Savitzky-Golay smoothing filter 

is thus a useful pre-processing technique that can be used in spectroscopic analyses as it 

minimises noise and smooths out the spectra without altering the shape of the spectra (Člupek 

et al., 2007).  

According to Schafer (2011), in the Savitzky-Golay smoothing filter technique, if we let a 

window of N = 2M + 1 samples be centred at n = 0, where M denotes the half width of the 

calculation interval, the polynomial coefficients can be given by: 

𝑝(𝑛) = ∑ 𝑎𝑘𝑛𝑘𝑁

𝑘=0
                                                                          (8) 
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To reduce the mean-squared calculation error for 2M + 1 samples centred at n = 0: 

𝜀𝑁 = ∑ (𝑝(𝑛) − 𝑥[𝑛])2 = ∑ (∑ 𝑎𝑘𝑛𝑘 − 𝑥[𝑛]𝑁
𝑘=0 )2𝑀

𝑛=−𝑀
𝑀

𝑛=−𝑀
                           (9) 

According to Krishnan and Seelamantula (2012), once the polynomial is fitted, the smoothed 

output value, y [0], can be computed at the central index 0, resulting in the zeroth polynomial 

coefficient: 

𝑦[0] = 𝑝(0) = 𝑎0                                                                                                                      (10) 

The output value at the next sample is calculated by shifting the interval to the right by one 

sample so that the origin becomes the middle sample of the new set of 2M + 1 samples (Schafer, 

2011). This process is known as data centring as the polynomial fitting is repeated at the central 

location and this can be done for each input sample resulting in a new polynomial and a new 

output sequence, y[n]. (Schafer, 2011).  

According to Savitzky and Golay (1964), the new output value at each position is equivalent 

to a linear combination of the set of input samples. To determine if the least squares polynomial 

smoothing for all shifts of the 2M + 1 sample interval is equal to filtering with a finite impulse 

response, the optimal coefficients of equation (8) must be calculated by differentiating equation 

(9) with respect to each of the N + 1 unknown coefficients and equating the derivative to zero 

(Krishnan and Seelamantula, 2012).  

For i = 0, 1,…, N, 

𝑑 𝜀𝑁

𝑑 𝑎𝑖
= ∑ 2𝑛𝑖(∑ 𝑎𝑘𝑛𝑘 − 𝑥[𝑛]𝑁

𝑘=0 ) = 0𝑀
𝑛=−𝑀                                                (11) 

According to Schafer (2011), the set of N + 1 equations in N + 1 unknowns can be obtained by 

interchanging the order of (10) and can be given by: 

∑ (∑ 𝑛𝑖+𝑘)𝑎𝑘 = ∑ 𝑛𝑖𝑥[𝑛]     𝑖 = 0,1, … , 𝑁.𝑀
𝑛=−𝑀

𝑀
𝑛=−𝑀

𝑁
𝑘=0                                         (12) 

In order to obtain optimal smoothing results, it is important to ensure that N ≤ 2M, that is, there 

needs to be as many data samples as there are coefficients in the polynomial calculation.                                                                              
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4.3.2) Descriptive statistics of the water and sediment data 

The laboratory measured water and sediment data were analysed for descriptive statistics in 

Microsoft Excel to summarise the data and describe the characteristics of the data. The 

minimum and maximum variables, mean and standard deviations were assessed for both the 

water and sediment data. 

4.3.3) Statistical analyses of the water and sediment data 

4.3.3.1) Correlation analyses of the water data 

The laboratory measured water quality data were imported into IBM SPSS 27 software and 

analysed for correlation analyses. Prior to running the correlation analysis, the data was first 

checked to ensure it did not violate the assumptions of the correlation statistical test. For 

example, if the data are normally distributed a Pearson correlation may be used as this 

correlation analysis assumes normality in the data (Schober et al., 2018). However, one of the 

assumptions of the Pearson correlation is violated in the case of datasets that do not follow a 

normal distribution (Schober et al., 2018). Therefore, the Pearson correlation cannot be used to 

determine correlations between these variables and to resolve this, a transformation can be done 

on the dataset to make the data follow a normal distribution. However, if the transformation 

still does not result in a normal distribution, a nonparametric test that does not assume 

normality in the datasets should be used.  The one-sample Kolmogorov-Smirnov test is 

generally used to determine if a given set of data follows a particular distribution such as a 

normal distribution (Singh et al., 2013).  

A one-sample Kolmogorov-Smirnov test was first conducted to test for normality in the 

datasets. The laboratory measured water quality data did not follow a normal distribution; 

therefore, a log transformation was performed in SPSS to try and make the data follow a normal 

distribution. However, the transformation still resulted in a non-normal distribution; therefore, 

a nonparametric test was used. A Spearman rank correlation also known as Spearman’s Rho 

analysis was undertaken to assess the relationships between each heavy metal detected in the 

water and pH, electrical conductivity and dissolved oxygen.  The Spearman rank correlation is 

the nonparametric statistic alternative to the Pearson correlation and it does not assume 

normality in the data (Schober et al., 2018). This type of correlation analysis uses the ranked 

values of the variables instead of the raw data itself and assumes monotonic relationships which 

can be robust against outliers (Schober et al., 2018). A monotonic relationship is one where 
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either one variable increases and the other variable also increases or one variable increases and 

the other variable decreases (Ramzai, 2020). This is similar to the Pearson correlation, 

however, in monotonic relationships the rates of increase or decrease are not always constant 

as in the case of linear relationships (Ramzai, 2020).  

In order to run the Spearman rank correlation, the original data for the 15 samples were first 

converted into ordered ranks where 1 represented the lowest concentration and 15 represented 

the highest concentration. This process was done in SPSS using the rank cases function.  The 

Spearman correlation coefficient (rs) values range from -1 to +1, where positive values indicate 

positive monotonic correlations, negative values indicate negative monotonic correlations and 

a value of zero indicates no monotonic correlation. According to Evans (1996), the strength of 

the correlation between two variables can be described by the following ranges, absolute r 

values between 0.00-0.19 are regarded as very weak, 0.20-0.39 as weak, 0.40-0.59 as moderate, 

0.60-0.79 as strong and absolute r values between 0.80-1.00 are regarded as very strong. 

4.3.3.2) Principal components analysis  

Outliers occur as a result of spectral measurement errors as well as instrument errors and if 

these are present in the data they should be removed (Hatchell, 1999). A principal components 

analysis (PCA) was performed on the first derivative pre-processed spectra of the water data 

and the Savitzky-Golay smoothing pre-processed spectra of the sediment data using the 

Unscrambler®X software in order to identify outliers in the dataset. PCA refers to the statistical 

technique that is used to minimise the dimensionality of large datasets. It reduces the number 

of variables of a large dataset of correlated variables, while retaining most of the important 

information (Jolliffe and Cadima, 2016). The PCA produces principal components which are 

new uncorrelated variables that contain most of the variation from the initial variables retained 

in the first few components (Jolliffe and Cadima, 2016). The new variables are generated as 

weighted averages of the initial variables. The PCA equation in matrix notation is given by: 

Y = W′X                                                                                                          (13) 

Where W is a matrix of coefficients generated by the PCA. 

The first principal component (PC1) is computed so that it accounts for the largest variance 

possible in the data. Let principal components = Y and variables = X, PC1 (Y1) is given by the 

linear combination of variables X1, X2,..,Xp and is mathematically expressed as: 



81 

 

Y1 = a11 X1 + a12 X2 +…a1pXp                                                                            (14) 

The second principal component (PC2) is similarly computed, it is uncorrelated with PC1 and 

it accounts for the second highest variance in the data. The mathematic equation for PC2 is 

given by: 

Y2 = a21X1 + a22X2 + a2pXp                                                                                (15) 

This procedure continues until p principal components are calculated, where the number of 

PCs equals the initial number of variables. The data is initially mean-centred to ensure that the 

data is centred around the origin of the principal components (Dunn, 2021). The data points 

that are positioned close to the origin of the PCA scores plot indicate the data points that are 

closer to the mean and those found further away are potential outliers (Dunn, 2021). PCA is 

thus, effective in detecting outliers in the data and any outliers detected by the PCA was 

removed prior to further analyses. 

4.3.3.3) Partial least squares regression analysis 

Building a calibration model is one of the most important steps in the prediction of analytes of 

interest from reflectance spectra and involves calculating a regression equation based on the 

spectra recorded and the known analyte information, such as heavy metals (ASD., 2000). This 

model can then be used to predict future unknown parameters. The partial least squares (PLS) 

regression method was used to build a calibration model to predict heavy metal concentrations 

in the water and sediment from visible near-infrared (VNIR) spectra using laboratory measured 

concentrations as a reference. The PLS regression for the water data was built using 14 samples 

as the outlier sample detected by the PCA was removed. The PLS regression for the sediment 

data was built using all 15 samples as the PCA did not detect any outliers in the sediment data. 

PLS regression is a multivariate regression technique and works efficiently in regression cases 

where there are multiple correlated predictor variables and a small sample size (Abdi, 2003; 

Mevik and Wehrens, 2020).  

The aim of a PLS regression is to model a linear relationship between predictor (X) and 

response (Y) variables and to predict Y from X (Abdi, 2003). PLS regression operates by 

creating uncorrelated latent variables using the present correlations between predictor and 

response variables while retaining most of the variance of the predictor variables (Rosipal and 

Trejo, 2001). These latent variables are linear combinations of the initial predictor variables 

and the weights used to calculate these linear combinations are equivalent to the covariance 
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among predictor and response variables (Rosipal and Trejo, 2001). Thereafter, a least squares 

regression is calculated on the subset of the extracted latent variables.  

According to Pirouz (2006), simplified mathematical equations underlying a PLSR can be 

given by: 

N = W′Y                                                                                                             (16) 

Y = PN + E                                                                                                         (17) 

Substituting Y = PW′Y + E = PW′Y + (I-PW′) Y                                              (18) 

Where, N represents a PC, Y represents the observed scores, W represents the composing 

weights, P represents the PC loadings and E represents the residual variance.  

The matrix is based on singular value decomposition (SVD) which is the factorisation of a 

complex matrix that does not necessitate matrix inversions and is given by: 

R = W′DP                                                                                                            (19) 

Where, W represents an orthogonal matrix with left singular vectors, W′ represents I which is 

the identity matrix, P represents an orthogonal matrix with right singular vectors, and D 

represents a diagonal matrix of singular vectors. An eigenvalue represents how much variance 

there is in the data in a particular direction. If D represents a diagonal of eigenvalues, then the 

rows in the P matrix represents the PC loadings and the columns in the W′D matrix represents 

the PC scores (Pirouz, 2006). 

4.3.3.4) Accuracy assessment 

Once the calibration model is built, the validity of the model should be tested. The leave-one-

out (LOO) cross-validation method also known as a full cross-validation was used to test the 

validity of the calibration models for both the water and sediment data as the sample size for 

both datasets were small and the LOO cross-validation method is suitable for small datasets 

(Hatchell, 1999). This cross-validation method uses the same dataset for both calibration and 

validation (Estifanos, 2006).  In the LOO cross-validation method, one sample is left out and 

the rest of the samples are used to build the calibration model (Campbell and Wynne, 2011). 

This PLS regression model can then be used to predict the one sample that was left out, which 

is advantageous as it allows for the model to be tested independently (Hatchell, 1999). This 

procedure continues by leaving out other samples and predicting them and is repeated until 
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every sample is excluded once and then included in the next round (Estifanos, 2006). The 

accuracies of the models were evaluated using the coefficient of determination (R2) and the 

root mean square error (RMSE) for both the calibration and cross-validation.  

According to Renaud and Victoria-Feser (2010), R2 represents the percentage of variance of 

the dependent variable that is explained by its linear relationship with the independent variable 

and is given by: 

R2 = 
ESS

TSS
 = 1 - 

RSS

TSS
                                                                                      (20) 

Where, ESS represents the explained sum of squares, TSS represents the total sum of squares 

and RSS represents the residual sum of squares. 

The RMSE is a standard system of measurement that is often used to evaluate how well a 

regression model performs (Chai and Draxler, 2014). It measures the error of a regression 

model in predicting the response variables and assumes unbiased and normally distributed 

errors (Chai and Draxler, 2014). Mathematically, the RMSE is given by:  

RMSE = √∑
(ŷi−yi)2

n

n

i=1
                                                                   (21) 

Where, ŷi represents the predicted values, yi represents the measured values and n represents 

the number of observations. 

According to Todorova et al. (2014), an accurate PLS regression model is one that has high R2 

values and low RMSE values and would indicate that the model performed well in predicting 

the response variables. According to Henseler et al. (2009), R2 values less than 0.19 for a 

prediction model is considered as very low accuracies, R2 values between 0.19 and 0.33 are 

considered low accuracies, R2 values between 0.33 and 0.67 are considered as moderate 

accuracies and R2 values greater than 0.67 are considered as high predictive accuracies. In 

addition, according to Veerasamy et al. (2011), the difference between the calibration and 

cross-validation R2 values should not be more than 0.3 as differences greater than 0.3 would 

indicate a poor predictive model, leading to less reliable results.  
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CHAPTER 5: RESULTS 

 

5.1) Introduction 

This chapter provides the results obtained from the data analyses undertaken in this study. It 

includes the descriptive statistics of the laboratory-measured water and sediment data. It also 

includes the statistical analyses performed on the laboratory-measured water and sediment data 

and spectral reflectance measurements of the water and sediment data including correlation 

analyses, principal components analyses and partial least squares regression analyses. The 

results are presented in the form of tables and graphs. 

5.2) Descriptive statistics 

5.2.1) Water data 

5.2.1.1) Sample statistics of the laboratory-measured water quality parameters 

In table 5.1, it can be seen that the levels of pH, electrical conductivity, dissolved oxygen, 

arsenic, cadmium, iron and magnesium ranged from 7.36-7.86, 4.1960-1744.34 µS/cm, 5.22-

7.53 mg/L, 0-0.0193 mg/L, 0-0.0017 mg/L, 0-0.0186 mg/L and 28.9-167 mg/L, respectively. 

Cadmium recorded the lowest concentration in the water column in comparison to the other 

heavy metals with a mean concentration of 0.0007 mg/L. Magnesium recorded the highest 

concentrations within the water column with a mean concentration of 53.01 mg/L compared to 

arsenic, cadmium and iron. The pH concentrations recorded for the uMgeni Estuary was 

slightly alkaline with a mean concentration of 7.57. Electrical conductivity recorded the highest 

maximum concentration with a concentration of 1744.34 µS/cm. Electrical conductivity also 

displayed the highest mean concentration of 661.61 µS/cm. The coefficient of variation (CV) 

results indicated the variation in the data were relatively low for pH, electrical conductivity, 

dissolved oxygen, and arsenic with CV values <1. Therefore, indicating the data does not 

deviate much from the mean. However, the CV values were high for cadmium, iron and 

magnesium with CV values closer to 1, indicating greater variation in the data in comparison 

to the other water quality parameters. 
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Table 5.1: Descriptive statistics of the laboratory-measured water quality parameters. 

Parameters N Minimum Maximum Mean Standard 

Deviation 

CV 

pH                15 7.36 7.86 7.57 0.16 0.02 

Electrical 

conductivity 

(µS/cm)        

15 4.1960  1744.34  661.61  398.51 0.6 

Dissolved 

oxygen (mg/L) 

15 5.22  7.53  6.7  0.54 0.08 

Arsenic (mg/L)

  

15 0  0.0193  0.0092  0.0055 0.6 

Cadmium 

(mg/L)   

15 0  0.0017  0.0007  0.0007 1 

Iron (mg/L) 

  

15 0  0.0186  0.005  0.0049 1 

Magnesium 

(mg/L)  

15 28.9  167  53.01  47.22 0.9 

 

5.2.1.2) Mean pH concentrations 

The pH levels for site A, B and C of the study area were all within the neutral range of pH. In 

Figure 5.1, it can be seen that there was a decline in the mean pH levels from site A which is 

located more upstream of the river, to site C which is located at the mouth. Site A recorded 

higher levels of pH overall in comparison to sites B and C.  The mean pH levels for sites A, B 

and C were ~7.78, ~7.47 and ~7.46, respectively. 
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Figure 5.1: Showing the mean pH levels at each water sampling site of the uMgeni Estuary. 

5.2.1.3) Mean electrical conductivity concentrations 

In Figure 5.2, it can be seen that the electrical conductivity levels for the uMgeni Estuary 

generally increased from sites A to C. Site C recorded higher electrical conductivity levels 

overall in comparison to sites A and B. The mean electrical conductivity levels for site A, B 

and C were ~603.10 µS/cm, ~674.01 µS/cm and ~707.72 µS/cm, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Showing the mean electrical conductivity levels (µS/cm) at each water sampling 

site of the uMgeni Estuary. 
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5.2.1.4) Mean dissolved oxygen concentrations 

In Figure 5.3 below, it can be seen that site C recorded the lowest overall dissolved oxygen 

levels in comparison to sites A and B. The dissolved oxygen levels for sites A and B were 

similar with site B recording slightly higher dissolved oxygen levels overall in comparison to 

site A. The mean dissolved oxygen levels for sites A, B and C were ~6.87 mg/L, ~6.9 mg/L 

and ~6.34 mg/L, respectively. 

 

Figure 5.3: Showing the mean dissolved oxygen levels (mg/L) at each water sampling site of 

the uMgeni Estuary. 

5.2.1.5) Mean arsenic concentrations  

In Figure 5.4, it can be seen that the arsenic concentrations in the water column of the uMgeni 

Estuary fluctuated from site A to site C. Site B recorded lower arsenic concentrations in 

comparison to sites A and C with site C recording higher arsenic concentrations overall. The 

mean arsenic concentrations for sites A, B and C were ~0.00903 mg/L, ~0.00661 mg/L and 

~0.01185 mg/L, respectively. 
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Figure 5.4: Showing the mean concentrations of arsenic (mg/L) at each water sampling site of 

the uMgeni Estuary. 

5.2.1.6) Mean cadmium concentrations  

In Figure 5.5, it can be seen that site B recorded higher cadmium concentrations overall in 

comparison to sites A and C. Sites A and C recorded similar cadmium concentrations with site 

C recording slightly lower cadmium concentrations than site A. The mean cadmium 

concentrations for sites A, B and C were ~0.00064 mg/L, ~0.00093 mg/L and ~0.00063 mg/L, 

respectively. 
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Figure 5.5: Showing the mean concentrations of cadmium (mg/L) at each water sampling site 

of the uMgeni Estuary. 

5.2.1.7) Mean iron concentrations  

In Figure 5.6, it can be seen that site B recorded higher iron concentrations overall in 

comparison to sites A and C. Sites A and C recorded similar iron concentrations with site C 

recording higher iron concentrations than site A. The mean iron concentrations for sites A, B 

and C were ~0.0042 mg/L, ~0.0059 mg/L and ~0.0049 mg/L, respectively. 
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Figure 5.6: Showing the mean concentrations of iron (mg/L) at each water sampling site of the 

uMgeni Estuary. 
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Figure 5.7: Showing the mean concentrations of magnesium (mg/L) at each water sampling 

site of the uMgeni Estuary. 
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excluded from the analyses. The CV values were low for all the heavy metals with values <1 

indicating the data does not deviate much from the mean.  
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Table 5.2: Descriptive statistics of the laboratory-measured heavy metal concentrations in the 

sediment. 

 

5.2.2.2) Mean arsenic concentrations 

Arsenic had the lowest concentrations overall in the sediments of the uMgeni Estuary in 

comparison to the other heavy metals. In figure 5.8, it can be seen that the arsenic 

concentrations fluctuated from sites A to C with site C recording higher arsenic concentrations 

in comparison to sites A and B. The mean arsenic concentrations for sites A, B and C were 

~1.64 mg/kg, ~1.1 mg/kg and ~2.88 mg/kg, respectively. 

Heavy 

metal 

N Minimum Maximum Mean Standard 

deviation 

CV 

Arsenic 

(mg/kg) 

15 0 3.4 1.87 1.12 0.6 

Iron 

(mg/kg) 

15 1600 28600 17853.33 8571.20 0.5 

Magnesium 

(mg/kg) 

15 400 3400 2306.67 1021.53 0.4 

Aluminium 

(mg/kg) 

15 200 2700 1740 710.94 0.4 

Chromium 

(mg/kg) 

15 6.5 65 42.03 19.36 0.5 

Copper 

(mg/kg) 

15 2.1 53 34.23 17.23 0.5 

Lead 

(mg/kg) 

15 2.2 40 24.12 11.72 0.5 

Nickel 

(mg/kg) 

15 1.8 32 20.31 10.12 0.5 

Zinc 

(mg/kg) 

15 29 232 153 65.57 0.4 
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Figure 5.8: Showing the mean concentrations of arsenic (mg/kg) at each sediment sampling 

site of the uMgeni Estuary. 

5.2.2.3) Mean iron concentrations 

In figure 5.9, it can be seen that the iron concentrations in the sediments of the uMgeni Estuary 

were the highest in comparison to the other heavy metals. Site B recorded lower concentrations 

in comparison to sites A and C. Sites A and C had similar iron concentrations with site C 

recording higher iron concentrations than site A. The mean iron concentrations recorded at sites 

A, B and C were ~20700 mg/kg, ~11420 mg/kg and ~21440 mg/kg, respectively. 
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Figure 5.9: Showing the mean concentrations of iron (mg/kg) at each sediment sampling site 

of the uMgeni Estuary. 

5.2.2.4) Mean magnesium concentrations 

In figure 5.10, it can be seen that the magnesium concentrations were also relatively high in 

the sediments of the uMgeni Estuary in comparison to the other heavy metals. The magnesium 

concentrations fluctuated from sites A to C with site C recording higher magnesium 

concentrations in comparison to sites A and B. The mean magnesium concentrations recorded 

at sites A, B and C were ~2260 mg/kg, ~1480 mg/kg and ~3180 mg/kg, respectively.   
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Figure 5.10: Showing the mean concentrations of magnesium (mg/kg) at each sediment 

sampling site of the uMgeni Estuary. 

5.2.2.5) Mean aluminium concentrations 

In figure 5.11, it can be seen that aluminium concentrations were relatively high for the uMgeni 

Estuary with site C recording higher aluminium concentrations in comparison to sites A and 

B. The mean aluminium concentrations for sites A, B and C were ~1680 mg/kg, ~1400 mg/kg 

and ~2140 mg/kg, respectively. 
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Figure 5.11: Showing the mean concentrations of aluminium (mg/kg) at each sediment 

sampling site of the uMgeni Estuary. 

5.2.2.6) Mean chromium concentrations 

In figure 5.12, it can be seen that the chromium concentrations fluctuated from sites A to C 

with site C recording higher chromium concentration overall in comparison to sites A and B. 

The mean chromium concentrations for sites A, B and C were ~43.2 mg/kg, ~27.5 mg/kg and 

~55.4 mg/kg, respectively. 
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Figure 5.12: Showing the mean concentrations of chromium (mg/kg) at each sediment 

sampling site of the uMgeni Estuary. 

5.2.2.7) Mean copper concentrations 

In figure 5.13, it can be seen that the copper concentrations fluctuated from sites A to C with 

site C recording higher copper concentrations overall in comparison to sites A and B. The mean 

copper concentrations recorded at sites A, B and C were ~38 mg/kg, ~22.7 mg/kg and ~42 

mg/kg, respectively. 
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Figure 5.13: Showing the mean concentrations of copper (mg/kg) at each sediment sampling 

site of the uMgeni Estuary. 

5.2.2.8) Mean lead concentrations 

In figure 5.14 it can be seen that the lead concentrations fluctuated from sites A to C with site 

C recording higher copper concentrations overall in comparison to sites A and B. The mean 

lead concentrations recorded at sites A, B and C were ~25.4 mg/kg, ~14.76 mg/kg and ~32.2 

mg/kg, respectively. 
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Figure 5.14: Showing the mean concentrations of lead (mg/kg) at each sediment sampling site 

of the uMgeni Estuary. 

5.2.2.9) Mean nickel concentrations 

In figure 5.15, it can be seen that the nickel concentrations fluctuated from sites A to C with 

site C recording higher nickel concentrations overall for the estuary in comparison to sites A 

and B. The mean nickel concentrations recorded at sites A, B and C were ~21.94 mg/kg, ~12.2 

mg/kg and ~26.8 mg/kg, respectively.   

 

 

 

0

5

10

15

20

25

30

35

A B C

Le
ad

 c
o

n
ce

n
tr

at
io

n
s 

(m
g/

kg
)

Sediment sampling sites



100 

 

 

Figure 5.15: Showing the mean concentrations of nickel (mg/kg) at each sediment sampling 

site of the uMgeni Estuary. 

5.2.2.10) Mean zinc concentrations 

In figure 5.16, it can be seen that the zinc concentrations fluctuated from sites A to C with site 

C recording higher zinc concentrations in comparison to sites A and B. The mean zinc 

concentrations recorded at sites A, B and C were ~160.2 mg/kg, ~104.2 mg/kg and ~194.6 

mg/kg, respectively.   
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Figure 5.16: Showing the mean concentrations of zinc (mg/kg) at each sediment sampling site 

of the uMgeni Estuary. 

5.2.3) Comparison between heavy metal concentrations in water and sediment 

The descriptive statistic results observed in tables 5.1 and 5.2 indicate that more heavy metals 

were found in the sediment samples than the water samples. In addition, it can be seen from 

figures 5.4-5.16 that the metal concentrations in the water and sediment of the uMgeni Estuary 

were higher at site C near the river mouth compared to the sites further upstream, with the 

exception of iron concentrations in the water which displayed higher concentrations at site B. 

Furthermore, from figures 5.4-5.10 it can also be seen that the sediment samples contained 

significantly higher concentrations of arsenic, iron and magnesium heavy metals than the water 

samples.  

5.3) Statistical analyses 

5.3.1) Water data 

5.3.1.1) Correlations between heavy metals and physicochemical parameters 

The results of the one-sample Kolmogorov-Smirnov test indicated the data were not normally 

distributed, violating one of the Pearson correlation analysis assumptions. Therefore, Spearman 

rank correlation analyses were undertaken to determine the relationships between the 

concentrations of each metal and pH, electrical conductivity and dissolved oxygen 
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concentrations. Figures 5.17, 5.18, 5.19, and 5.20 depict scatterplots with cubic regression 

lines, which provided a better fit for the data than the linear function.  

The Spearman rank correlation coefficient (rs) values between arsenic concentrations and pH, 

electrical conductivity and dissolved oxygen were 0.100, 0.129 and -0.179, respectively with 

p values 0.723, 0.648 and 0.524, respectively. These results indicate weak positive correlations 

between arsenic concentrations and pH and electrical conductivity and a weak negative 

relationship between arsenic concentrations and dissolved oxygen. As pH and electrical 

conductivity increased, arsenic concentrations in the water slightly increased and as dissolved 

oxygen levels increased, arsenic concentrations in the water decreased. The p values for the 

correlation between arsenic concentrations and pH, electrical conductivity and dissolved 

oxygen were all greater than 0.05 indicating the results were not statistically significant. Figure 

5.17 depicts the scatterplots with cubic regression lines of arsenic and pH, electrical 

conductivity and dissolved oxygen. The cubic R2 values were 0.126, 0.028 and 0.211, 

respectively. These results indicate weak relationships between the concentrations of arsenic 

and the water quality parameters. The variations in pH, electrical conductivity and dissolved 

oxygen explains very little of the variation in arsenic concentrations. The variations in pH, 

electrical conductivity and dissolved oxygen only explained 12.6%, 2.8% and 21.1% of the 

variation in arsenic concentrations, respectively. 
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Figure 5.17: Scatterplots with cubic regression lines depicting the relationship between arsenic 

concentrations (mg/L) and pH, electrical conductivity (µS/cm) and dissolved oxygen (mg/L). 

The Spearman rank correlation coefficient (rs) values between cadmium concentrations and 

pH, electrical conductivity and dissolved oxygen were -0.117, -0.584 and 0.318, respectively 

and p values 0.678, 0.022 and 0.248, respectively. The results indicate a weak negative 

correlation between cadmium concentrations and pH, a moderate negative correlation between 

cadmium concentrations and electrical conductivity and a weak positive relationship between 

cadmium concentrations and dissolved oxygen. As pH and electrical conductivity increased, 

cadmium concentrations in the water decreased and as dissolved oxygen levels increased, 

cadmium concentrations in the water also increased. The p value was greater than 0.05 for the 

correlation between cadmium concentrations and pH and dissolved oxygen indicating the 

results were not statistically significant. However, the p value for the correlation between 
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cadmium concentrations and electrical conductivity was less than 0.05 indicating that this result 

was statistically significant. Figure 5.18 depicts the scatterplots with cubic regression lines of 

cadmium and pH, electrical conductivity and dissolved oxygen. The cubic R2 values were 

0.102, 0.326 and 0.270, respectively. These results indicate weak relationships between the 

concentrations of cadmium and the water quality parameters. The variations in pH, electrical 

conductivity and dissolved oxygen explains very little of the variation in cadmium 

concentrations. The variations in pH, electrical conductivity and dissolved oxygen explains 

10.2%, 32.6% and 27% of the variation in cadmium concentrations, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18: Scatterplots with cubic regression lines depicting the relationship between 

cadmium concentrations (mg/L) and pH, electrical conductivity (µS/cm) and dissolved oxygen 

(mg/L). 

The Spearman rank correlation coefficient (rs) values between iron concentrations and pH, 

electrical conductivity and dissolved oxygen were -0.061, 0.339 and 0.197, respectively and p 
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values 0.829, 0.216 and 0.480, respectively. The results indicate a very weak negative 

correlation between iron concentrations and pH, and weak positive correlations between iron 

concentrations and electrical conductivity and dissolved oxygen. As pH increased, iron 

concentrations in the water decreased and as electrical conductivity and dissolved oxygen 

levels increased, iron concentrations in the water increased. The p values for the correlation 

between iron concentrations and pH, electrical conductivity and dissolved oxygen were all 

greater than 0.05 indicating the results were not statistically significant. Figure 5.19 displays 

the scatterplots of iron concentrations and pH, electrical conductivity and dissolved oxygen. 

The cubic R2 values were 0.134, 0.316 and 0.192, respectively. These results indicate weak 

relationships between the concentrations of iron and the water quality parameters. The 

variations in pH, electrical conductivity and dissolved oxygen explains very little of the 

variation in iron concentrations. The variations in pH, electrical conductivity and dissolved 

oxygen explains 13.4%, 31.6% and 19.2% of the variation in iron concentrations, respectively. 
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Figure 5.19: Scatterplots with cubic regression lines depicting the relationship between iron 

concentrations (mg/L) and pH, electrical conductivity (µS/cm) and dissolved oxygen (mg/L). 

The Spearman rank correlation coefficient (rs) values between magnesium concentrations and 

pH, electrical conductivity and dissolved oxygen were -0.446, -0.254 and -0.339, respectively 

and p values 0.095, 0.362, 0.216, respectively. The results indicate a moderate negative 

correlation between magnesium concentrations and pH and weak negative correlations 

between magnesium concentrations and electrical conductivity and dissolved oxygen. As pH, 

electrical conductivity and dissolved oxygen levels increased, magnesium concentrations in the 

water decreased. The p values were greater than 0.05 for the correlations between magnesium 

concentrations and pH, electrical conductivity and dissolved oxygen indicating the results were 

not statistically significant. Figure 5.20 displays the scatterplots of magnesium concentrations 

and pH, electrical conductivity and dissolved oxygen. The cubic R2 values were 0.103, 0.996 

and 0.136, respectively. These results indicate weak relationships between the concentrations 

of magnesium and pH and dissolved but a strong relationship between magnesium 

concentrations and electrical conductivity. The variations in pH and dissolved oxygen explains 
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very little of the variation in magnesium concentrations and the variations in electrical 

conductivity explains much of the variation in magnesium concentrations. The variations in 

pH, electrical conductivity and dissolved oxygen explains 10.3%, 99.6% and 13.6% of the 

variation in magnesium concentrations, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Scatterplots with cubic regression lines depicting the relationship between 

magnesium concentrations (mg/L) and pH, electrical conductivity (µS/cm) and dissolved 

oxygen (mg/L). 

5.3.1.2) Spectral reflectance curves of heavy metals from water samples  

Figure 5.21 depicts the spectral reflectance curve of the raw spectral data obtained from the 

ASD spectroradiometer scanning of the water samples across the visible and near-infrared 

spectrum (VNIR). From figure 5.21 it can be observed that there is a baseline offset and the 

spectra is noisy which needs to be accounted for before subsequent analyses.  
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Figure 5.21: Raw spectral reflectance curve of the water samples. 

Figure 5.22 below, illustrates the spectral reflectance curve of the first-derivative pre-processed 

spectral reflectance data obtained for the water samples. It can be seen that this pre-treatment 

resulted in a significant reduction in noisy spectra as well as removed baseline offsets and 

smoothed the data well. The derivative transformations are also useful as they indicate the 

reflectance peaks and absorption features in the spectra more clearly. Absorption features can 

be observed near 900 nm, 1131 nm, and 1309 nm with a reflectance peak occurring near 720 

nm.  
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Figure 5.22: First derivative pre-processed spectral reflectance curve of the water samples.  

5.3.1.3) Principal components analysis 

A principal components analysis (PCA) was carried out on the first derivative pre-processed 

reflectance spectra for the 15 water samples in order to identify sample outliers in the data prior 

to further analyses. The scores plot results identified one sample outlier which is indicated in 

green as seen in figure 5.23 below and this sample was excluded from the partial least squares 

regression model. The closer the sample points are to the origin of the scores plot, the closer 

these sample points are to the mean. In addition, the results of the PCA scores plot also 

indicated that principal component 1 (PC-1) explained 73% of the variance in the data whilst 

principal component 2 (PC-2) explained only 12% of the variance in the data. 
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Figure 5.23: Principal components analysis (PCA) of the first derivative pre-processed VNIR 

reflectance spectra of all water samples (n=15) with the outlier sample indicated in green.  

5.3.1.4) Partial least squares regression analysis 

Figure 5.24 shows the scatterplots of the different water quality parameters measured in the 

laboratory against the values predicted by the partial least squares (PLS hereafter) regression 

model. Table 5.3 summarises the coefficient of determination (R2 hereafter) and root mean 

square error (RMSE hereafter) values for both the calibration and cross-validation data 

produced by the PLS regression model. From table 5.3, it can be seen that the PLS regression 

model developed to predict heavy metals, pH and electrical conductivity parameters from 

VNIR reflectance spectra produced predictive accuracy results ranging from very low to high. 

The calibration and cross-validation R2 and RMSE results were analysed and the best result 

was obtained for pH. The model predicted pH concentrations from VNIR reflectance spectra 

with moderate predictive accuracies for both the calibration and cross-validation data with 

calibration and cross-validation R2 values of 0.33 and 0.35, respectively. The calibration and 

cross-validation RMSE values for pH were 0.126 and 0.134, respectively. The best result 

obtained for the prediction of heavy metals in the water was obtained for the prediction of 

arsenic (As). The model predicted arsenic concentrations from VNIR reflectance spectra with 

low predictive accuracies for both the calibration and cross-validation data with calibration and 

cross-validation R2 values of 0.05 and 0.02 respectively. The calibration and cross-validation 

RMSE values for arsenic were 0.005 mg/L and 0.006 mg/L, respectively. The worst result was 

obtained for the prediction of iron (Fe) concentrations. The model predicted iron concentrations 
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from VNIR reflectance spectra with a very low prediction accuracy for the calibration data and 

a moderate accuracy for the cross-validation data with calibration and cross-validation R2 

values of 0.01 and 0.33, respectively. The calibration and cross-validation RMSE values for 

iron were 0.0046 mg/L and 0.0052 mg/L, respectively. The model predicted magnesium 

concentrations from VNIR reflectance spectra with moderate accuracies for both the calibration 

and cross-validation data with calibration and cross-validation R2 values of 0.67 and 0.56, 

respectively. However, the calibration and cross-validation RMSE values for magnesium were 

high with calibration and cross-validation RMSE values of 26.93 mg/L and 33.51 mg/L, 

respectively. The model predicted electrical conductivity (EC) concentrations from VNIR 

reflectance spectra with low accuracies for both the calibration and cross-validation data with 

calibration and cross-validation R2 values of 0.31 and 0.19, respectively. Furthermore, the 

calibration and cross-validation RMSE values for electrical conductivity were high with 

calibration and cross-validation RMSE values of 217.78 µS/cm and 255.29 µS/cm, 

respectively. The model predicted cadmium (Cd) concentrations from VNIR reflectance 

spectra with very low accuracies for both the calibration and cross-validation data with 

calibration and cross-validation R2 values of 0.13 and 0.06, respectively. The calibration and 

cross-validation RMSE values for cadmium were 0.00060 mg/L and 0.00067 mg/L, 

respectively. The differences in calibration R2 and cross-validation R2 for pH, electrical 

conductivity, arsenic, cadmium, iron and magnesium were 0.02, 0.12, 0.03, 0.07, 0.32 and 0.11, 

respectively. 
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Figure 5.24: Scatterplots depicting the concentrations of pH, electrical conductivity (EC), 

arsenic (As), cadmium (Cd), iron (Fe) and (Mg) of the water samples measured in the 

laboratory against the concentrations predicted using ASD and PLS regression.   
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Table 5.3: R2 and RMSE values for the calibration and cross-validation data produced by the 

PLS regression model of the water data. 

Parameter N Calibration R2 Cross-validation R2 Calibration 

RMSE 

Cross-validation 

RMSE 

pH 14 0.33 0.35 0.126 0.134 

EC 14 0.31 0.19 217.78 255.29 

As 14 0.05 0.02 0.005 0.006 

Cd 14 0.13 0.06 0.00060 0.00067 

Fe 14 0.01 0.33 0.0046 0.0052 

Mg 14 0.67 0.56 26.93 33.51 

 

Figure 5.25 displays the graphs of the regression coefficients of the heavy metals and water 

quality parameters produced by the PLS regression model. The regression coefficients are used 

to determine the response value from the predictor measurements and can be used to identify 

which independent variables have a significant impact on the dependent variables. It provides 

an idea for which wavelengths are important for the modelling of the concentrations of the 

heavy metals and water quality parameters. From figure 5.25, it can be seen that for pH, the 

significant regions of the VNIR spectrum are 725 nm, 929 nm, 1136 nm and 1708 nm. The 

significant regions of the VNIR spectrum for electrical conductivity are 719 nm, 929 nm, 1134 

nm and 1707 nm. The significant regions of the VNIR spectrum for arsenic are 715 nm, 1137 

nm, 1663 nm and 1731 nm. The significant regions of the VNIR spectrum for cadmium are 

718 nm, 1136 nm, 1666 nm and 1731 nm. The significant regions of the VNIR spectrum for 

iron are 717 nm, 929 nm, 1135 nm and 1709 nm and the significant regions of the VNIR 

spectrum for magnesium are 715 nm, 1137 nm, 1667 nm and 1730 nm.  
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Figure 5.25: Regression coefficients for pH, electrical conductivity (EC), arsenic (As), 

cadmium (Cd), iron (Fe), and magnesium (Mg) concentrations acquired from the PLS 

regression analysis. 
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5.3.2) Sediment data 

5.3.2.1) Spectral reflectance curves of heavy metals from sediment samples 

Figure 5.26 shows the spectral reflectance curve of the raw spectral data obtained from the 

ASD spectroradiometer scanning of the sediment samples across the VNIR spectrum. From 

figure 5.26, it can be observed that the spectra of the sediment samples were noisy and the 

spectral noise needed to be minimised before further analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Raw spectral reflectance curve of the sediment samples.  

Figure 5.27 below shows the spectral reflectance curve of the Savitzky-Golay smoothing pre-

processed spectral reflectance data obtained for the sediment samples. It can be seen that this 

pre-treatment significantly reduced the spectral noise and smoothed the data well making the 

spectral lines clear and more visible.  Absorption features can be observed around 1090 nm, 

1420 nm and 1670 nm. 
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Figure 5.27: Savitzky-Golay smoothing pre-processed spectral reflectance curve of the 

sediment samples.  

5.3.2.2) Principal components analysis 

A PCA was undertaken on the Savitzky-Golay smoothing pre-processed spectra of the 

sediment samples in order to determine if there were any sample outliers that needed to be 

removed prior to subsequent analyses. The results of the scores plot seen in Figure 5.28 did not 

indicate any outlier samples; therefore, all 15 sediment samples were used in the PLS 

regression analysis. The sample points that were found closer to the origin of the scores plot 

indicated that these sample points were closer to the mean. In addition, the results of the PCA 

scores plot also indicated that principal component 1 (PC-1) explained 93% of the variance in 

the data whilst principal component 2 (PC-2) only explained 6% of the variance in the data. 
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Figure 5.28: Principal components analysis (PCA) of the Savitzky-Golay smoothing pre-

processed VNIR reflectance spectra of all sediment samples (n=15). 

5.3.2.3) Partial least squares regression analysis 

Figure 5.29 illustrates the scatterplots of the different heavy metal concentrations measured in 

the laboratory against the values predicted by the PLS regression model. Table 5.4 summarises 

the R2 and RMSE values for both the calibration and cross-validation data produced by the 

PLS regression model. From table 5.4, it can be seen that the PLS regression model developed 

to predict the metal concentrations from VNIR reflectance spectra produced predictive 

accuracy results ranging from low to high. The calibration and cross-validation R2 and RMSE 

results were analysed and the best result was obtained for Nickel (Ni) concentrations. The 

model predicted nickel concentrations from VNIR reflectance spectra with a high predictive 

accuracy for both the calibration and cross-validation data and low RMSE values with 

calibration and cross-validation R2 values of 0.96 and 0.83, respectively. The calibration and 

cross-validation RMSE values for nickel were 1.88 mg/kg and 4.34 mg/kg, respectively. The 

worst result was obtained for the prediction of aluminium (Al) concentrations. The model 

predicted aluminium concentrations from VNIR reflectance spectra with a moderate prediction 

accuracy for the calibration data and a low prediction accuracy for the cross-validation data 

with calibration and cross-validation R2 values of 0.67 and 0.19, respectively. In addition, the 

RMSE values obtained for aluminium were high with calibration and cross-validation RMSE 

values 395.77 mg/kg and 662.19 mg/kg, respectively. The model predicted arsenic (As) 
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concentrations from VNIR reflectance spectra with a high predictive accuracy for the 

calibration data and a moderate predictive accuracy for the cross-validation data with 

calibration and cross-validation R2 values of 0.86 and 0.61, respectively. The calibration and 

cross-validation RMSE values for arsenic were 0.41 mg/kg and 0.72 mg/kg, respectively. The 

model predicted chromium (Cr) concentrations from VNIR reflectance spectra with high 

accuracies for both the calibration and cross-validation data with calibration and cross-

validation R2 values of 0.94 and 0.77, respectively. The calibration and cross-validation RMSE 

values for chromium were 4.41 mg/kg and 9.61 mg/kg, respectively. The model predicted 

copper (Cu) concentrations from VNIR reflectance spectra with high accuracies for both the 

calibration and cross-validation data with calibration and cross-validation R2 values of 0.86 

and 0.68, respectively. The calibration and cross-validation RMSE values for copper were 6.16 

mg/kg and 10.06 mg/kg, respectively. The model predicted iron (Fe) concentrations from 

VNIR reflectance spectra with a high predictive accuracy for the calibration data and a 

moderate predictive accuracy for the cross-validation data with calibration and cross-validation 

R2 values of 0.96 and 0.67, respectively. However, the RMSE values obtained for iron were 

high with calibration and cross-validation RMSE values 1678.67 mg/kg and 5079.12 mg/kg, 

respectively. The model predicted lead (Pb) concentrations from VNIR reflectance spectra with 

high accuracies for both the calibration and cross-validation data with calibration and cross-

validation R2 values of 0.94 and 0.72, respectively. The calibration and cross-validation RMSE 

values for lead were 2.87 mg/kg and 6.43 mg/kg, respectively. The model predicted magnesium 

(Mg) concentrations from VNIR reflectance spectra with a high predictive accuracy for the 

calibration data and a moderate predictive accuracy for the cross-validation data with 

calibration and cross-validation R2 values of 0.88 and 0.66, respectively. However, the RMSE 

values obtained for magnesium were high with calibration and cross-validation RMSE values 

346.42 mg/kg and 613.57 mg/kg, respectively. The model predicted zinc (Zn) concentrations 

from VNIR reflectance spectra with high accuracies for both the calibration and cross-

validation data with calibration and cross-validation R2 values of 0.92 and 0.70, respectively. 

The calibration and cross-validation RMSE values for zinc were 17.46 mg/kg and 37.43 mg/kg, 

respectively. The differences in calibration R2 and cross-validation R2 for aluminium, arsenic, 

chromium, copper, iron, lead, magnesium, nickel and zinc were 0.48, 0.25, 0.17, 0.18, 0.29, 

0.22, 0.22, 0.13 and 0.22, respectively.  
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Figure 5.29: Scatterplots depicting the concentrations of aluminium (Al), arsenic (As), 

chromium (Cr), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), nickel (Ni) and zinc (Zn) 

of the sediment samples measured in the laboratory against the concentrations predicted using 

ASD and PLS regression.   

Table 5.4: R2 and RMSE values for the calibration and cross-validation data produced by the 

PLS regression model of the sediment data. 

Metal N R2 

calibration 

R2 cross-

validation 

RMSE 

calibration 

RMSE cross-

validation 

Aluminium 15 0.67 0.19 395.77 662.19 

Arsenic 15 0.86 0.61 0.41 0.72 

Chromium 15 0.94 0.77 4.41 9.61 

Copper 15 0.86 0.68 6.16 10.06 

Iron 15 0.96 0.67 1678.67 5079.12 

Lead 15 0.94 0.72 2.87 6.43 

Magnesium 15 0.88 0.66 346.42 613.57 

Nickel 15 0.96 0.83 1.88 4.34 

Zinc 15 0.92 0.70 17.46 37.43 
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Figure 5.30 below displays the graphs of the regression coefficients of the heavy metals 

produced by the PLS regression model. From Figure 5.30, it can be seen that the important 

regions of the VNIR spectrum for the detection of aluminium are 1284 nm, 1396 nm, 1474 nm 

and 1677 nm. The important regions of the VNIR spectrum for the detection of arsenic are 

1090 nm, 1278 nm, 1398 nm, 1471 nm and 1678 nm. The important regions of the VNIR 

spectrum for the detection of chromium are 1279 nm, 1397 nm, 1473 nm and 1676 nm. The 

important regions of the VNIR spectrum for the detection of copper are 1091 nm, 1280 nm, 

1395 nm, 1474 nm and 1677 nm. The important regions of the VNIR spectrum for the detection 

of iron are 1090 nm, 1283 nm, 1395 nm, 1476 nm and 1676 nm. The important regions of the 

VNIR spectrum for the detection of lead are 1091 nm, 1278 nm, 1392 nm, 1472 nm and 1676 

nm. The important regions of the VNIR spectrum for the detection of magnesium are 1090 nm, 

1281 nm, 1397 nm, 1474 nm and 1675 nm. The important regions of the VNIR spectrum for 

the detection of nickel are 1090 nm, 1279 nm, 1389 nm, 1473 nm and 1676 nm. The important 

regions of the VNIR spectrum for the detection of zinc are 1090 nm, 1278 nm, 1395 nm, 1479 

nm and 1677 nm. 
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Figure 5.30: Regression coefficients for aluminium (Al), arsenic (As), chromium (Cr), copper 

(Cu), iron (Fe), lead (Pb), magnesium (Mg), nickel (Ni) and zinc (Zn) concentrations acquired 

from the PLS regression analysis. 
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CHAPTER 6: DISCUSSION AND CONCLUSION 
 

6.1) Introduction  

This chapter involves a critical discussion of the results obtained in this study in order to make 

inferences on the use of visible near-infrared reflectance spectra in the prediction of heavy 

metals in water and sediments. The results are discussed in conjunction with the results attained 

from previous literature. Thereafter, the limitations of this study will be discussed along with 

the conclusion of the study and possible recommendations for future research.  

6.2) Discussion 

6.2.1) Factors influencing the concentrations of physicochemical parameters and heavy metals 

in the water of estuaries 

The water quality parameters of a river and estuary vary spatially. According to Walling and 

Webb (1975), several factors contribute to spatial variations in physicochemical parameters 

and heavy metal concentrations, including natural factors such as chemical weathering and 

anthropogenic factors such as land-use changes. However, one of the main reasons for the 

observed variation in these concentrations in recent years is the significant increase in the land-

use practices associated with aquatic ecosystems (Kaushal et al., 2013).  

The pH levels were alkaline at all sampling sites of the uMgeni Estuary and fell within the 

permissible levels for aquatic ecosystems of 6 - 8 as proposed by DWAF (1996). This is 

consistent with the results obtained in a previous study conducted by Singh (2013), where a 

portion of the study focused on the analysis of the physicochemical parameters of water 

samples collected from the uMgeni River and Estuary. However, it was noticeable that the pH 

levels were more alkaline further upstream at site A from the estuary in comparison to the 

mouth at site C. A reason for the alkaline pH could be the photosynthetic activity of the plants 

in and around the estuary. The pH of water becomes alkaline when the hydroxide ions exceed 

the hydrogen ions in the water (Barker and Ridgwell, 2012). When the process of 

photosynthesis occurs, carbon dioxide is taken up from the water, which causes an increase in 

pH (Grzywna and Bronowicka-Mielniczuk, 2020). Carbon dioxide dissociates in water to 

produce carbonic acid, which partially dissolves to produce hydrogen, bicarbonate and 

carbonate ions (Barker and Ridgwell, 2012). According to Boyd (2015), when carbon dioxide 

is removed from the water during photosynthesis, the bicarbonate ions dissolve and form more 
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carbon dioxide and carbonate ions. The hydrolysis of carbonate ions will, in turn, cause the pH 

to increase, leading to more alkaline or basic waters (Boyd, 2015). Another reason for this 

could be an increase in alkaline substances released from industrial effluents, and agricultural 

and urban runoff discharged into the river further upstream (Munjal and Singh, 2020). Ionic 

compounds or salts such as sodium hydroxide consist of alkali metals that produce hydroxide 

ions when they dissolve in water (Munjal and Singh, 2020). Therefore, an increase in industrial 

effluents consisting of these ionic compounds discharged into rivers can cause an increase in 

the pH levels of the water. Agricultural runoff from practices such as the use of lime or calcium 

carbonate and bicarbonate in increasing the soil pH required for specific crops can increase the 

alkalinity of rivers. This is consistent with a study conducted by Raymond et al. (2008) that 

assessed the human impacts on water and carbon fluxes for the Mississippi River in the United 

States. The results of the study concluded that an increase in agricultural practices increases 

river discharge; therefore, agricultural practices that make use of high calcium carbonate and 

bicarbonate concentrations can cause more alkaline waters (Raymond et al., 2008).  Urban 

infrastructure consisting of cement and calcium can lead to the alkalinisation of rivers (Davies 

et al., 2010). The impermeable surfaces present in urban areas leads to urban runoff into rivers 

and estuaries containing these substances, which raises the pH of rivers (Kaushal et al., 2013). 

This is consistent with a study conducted by Davies et al. (2010) that assessed the impact of 

two drainage materials, concrete and PVC pipes on, urban water chemistry. Water samples 

were collected from an underdeveloped catchment and an urban catchment and were compared, 

and then the water samples were passed through a concrete and PVC pipe. The results indicated 

bicarbonate and carbonate concentrations were significantly higher in the urban river samples 

and had slightly alkaline conditions compared to the slightly acidic natural river samples. The 

water exposed to a concrete pipe also displayed increased bicarbonate concentrations and 

slightly alkaline conditions.  

The electrical conductivity measures the ability of water to conduct an electric current and is a 

proxy for the concentrations of ions dissolved in the water (Elkhorn Slough Reserve, 2017). 

Ions such as calcium, sodium, magnesium and chloride dissolved in water are in a charged state 

and conduct electric currents (Elkhorn Slough Reserve, 2017). Electrical conductivity can also 

provide information on the salinity of an aquatic ecosystem, which measures the total salts 

dissolved in the water (Ratnayake et al., 2017). The electrical conductivity levels obtained from 

sampling sites A, B and C for the uMgeni Estuary were within the normal background levels 

for rivers as proposed by USEPA (2012). The results from the study showed an increasing 
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trend of conductivity levels from upstream at site A of the uMgeni Estuary towards site C at 

the mouth, with higher conductivity levels recorded near the mouth. This is consistent with the 

results obtained in a previous study conducted by Singh (2013), where the electrical 

conductivity levels of the uMgeni River were analysed and the levels ranged from 21.6-5150 

mS/m with the maximum electrical conductivity level recorded near the mouth. A reason for 

this is that the levels of electrical conductivity are generally highest near the mouth of a river, 

where there is a more significant influence from saltwater. Seawater has high salinity levels 

and thus, contains high amounts of dissolved salts such as sodium and chloride, leading to 

higher electrical conductivity levels (Griffin et al., 2014; Nthunya et al., 2018). This is 

consistent with a study conducted by Ratnayake et al. (2017), where the sediment and 

physicochemical characteristics of the Madu-Ganga Estuary in Sri Lanka were investigated. It 

was found that the electrical conductivity of the water decreased from the mouth of the estuary 

to more upstream as a result of the dilution of seawater by freshwater (Ratnayake et al., 2017). 

The electrical conductivity levels were also slightly elevated at site B near the middle reaches 

of the uMgeni Estuary. A reason for these elevated conductivity levels can be attributed to the 

industrial and residential areas located along the estuary. According to Kinuthia et al. (2020), 

industrial and domestic effluents discharged into rivers causes an increase in the electrical 

conductivity of the water. This is in line with the results obtained from a study conducted by 

Kinuthia et al. (2020) that investigated the heavy metal concentrations in the wastewater of 

open drainage channels in Nairobi, Kenya. The results indicated higher levels of electrical 

conductivity at the sampling sites located near residential and industrial areas. This is also 

consistent with another study conducted by Moroşanu et al. (2017) that investigated different 

methodologies to identify the leading factors of the electrical conductivity of the Jiu catchment 

in Romania. The results indicated a strong positive correlation between electrical conductivity 

and human activities such as mining, urbanisation and industrialisation. Land-uses such as 

urbanisation, and industrial activities can cause an increase in ionisable substances such as 

pollutants to be discharged into rivers (Moroşanu et al., 2017).  

Dissolved oxygen levels are crucial for the survival of all aquatic organisms, and most 

organisms have a specific range of dissolved oxygen levels that are tolerable; however, 

dissolved oxygen levels outside this range can lead to physiological and behavioural stress 

(Pearce and Schumann, 2003; Wenner et al., 2004). The dissolved oxygen levels at sampling 

sites A, B and C of the uMgeni Estuary fell within the permissible limits of not below 5 mg/L 

99% of the time, as proposed by DWAF (1996). However, it was noticeable that the highest 
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levels of dissolved oxygen were recorded at site B, with a mean of 6.9mg/L, and the lowest 

levels were recorded at site C near the mouth, with a mean of 6.34 mg/L. A reason for this 

could be that the mouth contains higher salinity levels and dissolved salts than the upper 

reaches of the estuary, and according to Sherwood et al. (1991), waters that consist of high 

amounts of dissolved salts contain lower dissolved oxygen levels. This is consistent with a 

study undertaken by O'Boyle et al. (2009) that investigated dissolved oxygen levels in the 

estuarine and coastal waters of Ireland. It was found that the lowest levels of dissolved oxygen 

were recorded in the lower reaches of the estuaries investigated in their study. The ions from 

salts tend to attract water molecules to hydrate the ions, which lowers the affinity of nonpolar 

oxygen molecules to water (Brini et al., 2017). The dissolved oxygen gets displaced from the 

water with the addition of salts which is a process known as salting out; therefore, increases in 

ionic salts leads to a decrease in the solubility of gases such as dissolved oxygen (Brini et al., 

2017). Another factor that impacts dissolved oxygen levels is land-use activities occurring 

along estuaries (Wenner et al., 2004). This is consistent with a study conducted by Lerberg et 

al. (2000) that investigated the effects of watershed development on tidal creek microbenthic 

organisms of the Charleston Harbour in the United States. In this study, water samples were 

also analysed for dissolved oxygen, and it was found that estuaries impacted by 

industrialisation and urbanisation had lower dissolved oxygen levels. Nutrients such as 

nitrogen and phosphorous used in anthropogenic activities are often washed into rivers and 

estuaries from surface runoff. These nutrients drive excessive growth in phytoplankton which 

lowers dissolved oxygen levels due to the respiration and decomposition processes of these 

organisms (O'Boyle et al., 2009).  

The water samples were analysed for aluminium, arsenic, cadmium, chromium, copper, iron, 

lead, magnesium, nickel and zinc; however, the levels of aluminium, chromium, copper, lead, 

nickel and zinc were all found to be below the detection limit. A reason for this could be that 

arsenic, cadmium, iron and magnesium are more mobile heavy metals than the others and were 

easily displaced from sediments they were adsorbed to under certain environmental conditions 

(Smedley and Kinniburgh, 2001). The concentrations of all heavy metals at sites A, B and C 

were within the permissible levels as proposed by DWAF (1996) for aquatic ecosystems. In 

addition, the concentrations of arsenic, cadmium and iron were very low at all sampling sites, 

and a reason for this could be the dilution of the heavy metals in the water due to a recent 

rainfall event (Perveen et al., 2017). A noticeable trend in the data was that the concentrations 

of arsenic, cadmium and magnesium showed a general increase from site A to C except for 
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iron which had slightly higher levels recorded at site B. A reason for the increases in these 

levels towards site C at the mouth of the estuary could be due to the land-use activities 

occurring along the estuary. The land-use along the uMgeni Estuary includes industrial 

activities and residential and commercial areas, which are the primary sources of heavy metals 

(Masindi and Muedi, 2018). The major stormwater drainage system leading into the estuary is 

located near site B, facilitating the easy transport of these heavy metals and other substances 

from these land-uses into the river system. This is consistent with a study conducted by Perveen 

et al. (2017) that assessed the levels of heavy metals in the water near an industrial area in 

Islamabad, Pakistan. The results showed that water samples collected near the industrial site 

had higher heavy metal concentrations than the water samples collected from other sampling 

sites. This is also in line with another study conducted by Kinuthia et al. (2020), where the 

levels of heavy metals in the wastewater were investigated in open drainage channels in 

Nairobi, Kenya. It was found that the wastewater near an industrial area in Nairobi had higher 

mercury and lead concentrations than other sampling areas, and this was attributed to the 

intense land-use activities occurring near the river catchment (Kinuthia et al., 2020). In 

addition, the cadmium results obtained for the uMgeni Estuary in this study is consistent with 

the cadmium results obtained in a previous study conducted by Olaniran et al. (2014) that 

assessed the physicochemical qualities and heavy metal concentrations of the uMgeni River. 

The water samples were collected seasonally from five sampling sites along the uMgeni River 

from the mouth to the Inanda dam. The results indicated that cadmium levels in the water of 

the uMgeni River ranged from 0.073 mg/L to 0.416 mg/L with the maximum cadmium 

concentration recorded at the mouth (Olaniran et al., 2014).  

6.2.2) The effects of physicochemical parameters on the concentrations of heavy metals in 

water 

With time, heavy metals that enter rivers and estuaries adsorb onto sediment particles and settle 

to the river bed. However, changes to the chemical environment of the river can result in these 

heavy metals being released into the overlying water column leading to deteriorations in the 

water quality (Zhang et al., 2018). The levels of pH of water have a significant impact on the 

mobility of heavy metals. According to Appel and Ma (2002), pH levels significantly influence 

the adsorption of heavy metals and control the solubility of hydroxides, carbonates and 

phosphates of heavy metals. High amounts of hydrogen ions due to lower pH levels encourage 

the cations of many heavy metals to be released into the overlying water column. 
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In contrast, alkaline pH conditions will favour the adsorption of the heavy metals onto 

sediments reducing the heavy metal concentrations in the water column (Edmunds et al., 2015). 

The correlation analyses between pH and each of the heavy metals indicated that an increase 

in pH was accompanied by decreases in the concentrations of cadmium, iron and magnesium 

in the water column. This is consistent with the results obtained in a previous study conducted 

by Olaniran et al. (2014) that assessed the physicochemical parameters and heavy metal 

concentrations of the uMgeni River. The results obtained for the cadmium and pH 

concentrations indicated generally lower cadmium concentrations at sites with higher pH levels 

in comparison to sites that had lower pH levels (Olaniran et al., 2014).  This is also consistent 

with the results obtained in a study conducted by Zhang et al. (2018) that analysed the effects 

of pH on the release of heavy metals from contaminated sediment. Leaching tests were 

performed using river water as leachate, and it was found that the release of heavy metals from 

the contaminated sediment decreased with an increase in pH (Zhang et al., 2018). However, 

the positive correlation between pH and arsenic indicated that an increase in pH leads to 

increased arsenic concentrations. A reason for this could be that arsenic is an oxyanion-forming 

metalloid and the ability of oxyanions to adsorb onto sediments tend to weaken as the pH 

increases (Smedley and Kinniburgh, 2001). This can lead to an increase in the mobility of 

arsenic and thus its persistence in the water column even in neutral to slightly alkaline 

conditions (Smedley and Kinniburgh, 2001; Edmunds et al., 2015). This is consistent with a 

study conducted by Lerda and Prosperi (1996) that investigated the water quality of a river in 

Cordoba, Argentina. It was found that arsenic concentrations were relatively high at sampling 

sites that recorded high pH levels. This is also in line with the findings of another study 

conducted by Antelo et al. (2005) that assessed the effects of pH on the adsorption of arsenate, 

a chemical form of arsenic, at the goethite-water interface. The results also showed a decrease 

in the adsorption of arsenic onto sediments with an increase in pH levels. In addition, the results 

of the correlation analyses between the levels of pH and each of the heavy metals were not 

statistically significant. A reason for this could be insufficient evidence to explain the changes 

in the metal concentrations with respect to the pH levels (Lane et al., 2013). Therefore, the null 

hypothesis of pH has no effect on the concentrations of arsenic, cadmium, iron and magnesium 

in the water is not rejected. However, the null hypothesis is not accepted either as there is also 

no evidence to support the hypothesis that pH has no effect on these heavy metal concentrations 

(Lane et al., 2013).   
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Electrical conductivity measures the ability of water to conduct electric currents and is 

dependent on the concentrations of salts dissolved in the water as salts are ionic and are capable 

of conductive electric currents (USEPA, 2021).  Therefore, electrical conductivity gives a good 

indication of the salinity levels, which indicates the concentrations of salts in the water. The 

higher the electrical conductivity levels of an aquatic environment, the higher the number of 

dissolved salts and thus the higher salinity levels (Du Laing et al., 2008; USEPA, 2021). The 

salinity levels of aquatic ecosystems can cause the solubility and bioavailability of heavy 

metals to either increase or decrease depending on the composition of the solution (Usman, 

2015). According to Hacısalihoğlu and Karaer (2016), an increase in electrical conductivity 

causes a decrease in the adsorption of heavy metals onto sediment. High conductivity levels 

indicate high amounts of salts in the water, and these salts are cations that can be exchanged 

with heavy metals stored in sediment in a process known as cation exchange (Keniston, 2015). 

This, in turn, releases the heavy metals into the overlying water column; thus, higher electrical 

conductivity levels lead to an increase in the desorption of heavy metals from sediments 

(Keniston, 2015). The correlation analyses between electrical conductivity and each of the 

heavy metals indicated that as electrical conductivity increased, arsenic and iron concentrations 

in the water column of the uMgeni Estuary increased. This is consistent with a study conducted 

by Hacısalihoğlu and Karaer (2016) that assessed the relationships between heavy metals in 

sediment and water in Lake Uluabat, Turkey. The results of the study also indicated positive 

correlations between heavy metals and electrical conductivity. However, the opposite was 

observed for cadmium and magnesium, where an increase in electrical conductivity caused a 

decrease in cadmium and magnesium concentrations in the water column. 

A reason for this could be high levels of organic matter discharged into the estuary from land-

use activities (Johansson, 2014). The organic matter causes heavy metals to readily adsorb onto 

their surface, reducing the heavy metals' mobility and bioavailability (Brady and Weil, 2007; 

Kumar et al., 2015). According to Karaca (2004), organic matter has a high cation exchange 

capacity, which facilitates the formation of chelating complexes with heavy metals such as 

cadmium, which immobilises the heavy metals. According to Johansson (2014), cadmium 

adsorbs onto the organic matter in aerobic conditions, forming hydroxide complexes, reducing 

the number of free cadmium ions in the water column. The adsorption of heavy metals under 

high organic matter conditions is enhanced provided the organic ligands form a strong complex 

with the heavy metal ion and has a strong affinity with the surface (Narwal and Singh, 1998). 

These results were in line with the findings obtained in a study conducted by Kumar et al. 
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(2015) that assessed the relationship between the concentrations of heavy metals and salinity 

gradients and the accumulation of heavy metals in mussels. It was found that the concentrations 

of heavy metals, including cadmium, were lower in sampling sites with high salinity levels. 

The sampling sites with high salinities also had high electrical conductivity; therefore, heavy 

metal concentrations also decreased with increasing electrical conductivity. In addition, the 

results of the correlation analyses between the levels of electrical conductivity and arsenic, iron 

and magnesium were not statistically significant. A reason for this could be inadequate 

evidence to explain the changes in the heavy metal concentrations with respect to the electrical 

conductivity levels (Lane et al., 2013). Therefore, the null hypothesis of the electrical 

conductivity has no effect on the arsenic, iron and magnesium concentrations in the water is 

not rejected. However, the null hypothesis is not accepted either as there is no evidence to 

support the null hypothesis that electrical conductivity has no effect on these heavy metal 

concentrations (Lane et al., 2013). However, the results were statistically significant for the 

correlation between cadmium concentrations in the water and electrical conductivity. 

The desorption of heavy metals from sediments and into the overlying water column occurs in 

aerobic conditions, and anaerobic or anoxic conditions typically favour adsorption of the heavy 

metals onto sediments (Li et al., 2013). The correlation analyses between dissolved oxygen and 

each of the heavy metals indicated that as dissolved oxygen levels increased, cadmium and iron 

concentrations in the water increased. This is in line with the results obtained from a study 

conducted by Li et al. (2013) that investigated the effects of dissolved oxygen on the release of 

heavy metals from storm sewer sediments. It was found that the release of zinc, chromium, 

copper and lead heavy metals from sediments and into the overlying water column increased 

in sampling sites with high dissolved oxygen levels in comparison to hypoxic sites. However, 

the opposite was observed for arsenic and magnesium, where the arsenic and magnesium 

concentrations in the water decreased with increasing dissolved oxygen levels. A reason for 

this could be the formation of ionic bonds by reducible heavy metals and iron and manganese 

hydroxides which facilitate the adsorption of heavy metals onto sediments (Atkinson et al., 

2007). According to Huang et al. (2017), the oxidation of iron and manganese ions is more 

rapid under high dissolved oxygen conditions, facilitating the formation of hydroxides that 

adsorb dissolved heavy metals, subsequently decreasing desorption.  This can explain the trend 

of a decrease in heavy metal concentrations in the water column with increasing dissolved 

oxygen levels (Huang et al., 2017). This is consistent with a study conducted by Atkinson et 

al. (2007) that assessed the effects of dissolved oxygen in the overlying water on metal release 
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from marine sediments polluted with heavy metals. The results indicated lower heavy metal 

concentrations in the water column in sites that contained high dissolved oxygen levels. In 

addition, the results of the correlation analyses between the levels of dissolved oxygen and 

arsenic, cadmium, iron and magnesium were not statistically significant. A reason for this could 

be insufficient evidence to explain the changes in the heavy metal concentrations with respect 

to the dissolved oxygen levels (Lane et al., 2013). Therefore, the null hypothesis that dissolved 

oxygen has no effect on the arsenic, cadmium, iron and magnesium concentrations in the water 

is not rejected. However, the null hypothesis is not accepted either as there is no evidence to 

support the null hypothesis that dissolved oxygen has no effect on these heavy metal 

concentrations (Lane et al., 2013).   

6.2.3) The effects of certain constituents on the spectral reflectance of water 

When a ray of light incident on a non-opaque surface is redirected, a process known as 

reflection occurs (Aggarwal, 2004). The spectral reflectance of an object on the earth’s surface 

is the ratio of reflected energy to incident energy as a function of wavelength (Navalgund, 

2001). With respect to the spectral reflectance of water, the majority of the energy striking the 

water's surface is either absorbed or transmitted, and very little of this energy is reflected 

(Aggarwal, 2004). However, according to Aggarwal (2004), some factors may influence the 

reflection characteristics of a water body, including the depth of the water body, roughness of 

the water’s surface and the chemical and physical constituents present in the water column. 

According to Navalgund (2001), constituents such as dissolved gases and most inorganic salts 

do not influence the spectral reflectance of water. In contrast, constituents such as turbidity and 

organic and inorganic material cause an increase in the spectral reflectance of water, and the 

reflectance peaks occur along longer wavelengths.  

The raw spectral reflectance curve obtained for the water samples in this study displays high 

spectral reflectance peaks occurring over longer wavelengths, indicating that some constituents 

present in the water are responsible for the higher reflectance. The constituents that could be 

responsible for the observed higher reflectance include suspended sediment particles as well as 

organic and inorganic matter (Navalgund, 2001).  This is consistent with the results obtained 

by a study conducted by Lodhi et al. (1998), where water spectral reflectance containing 

different suspended sediment concentrations was analysed. The results indicated that water 

samples containing high levels of suspended sediments displayed higher reflectance across all 

wavelengths, with clear water displaying the lowest reflectance across all wavelengths. It was 
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also observed that the reflectance peaks of samples with higher suspended sediment 

concentrations occurred over longer wavelengths than the reflectance peaks for clear water 

(Lodhi et al., 1998). The results are also in line with the results obtained in a study conducted 

by Karabulut and Ceylan (2005), where a portion of the study focused on the spectral 

reflectance of water with varying levels of organic matter. In the experiments, the sediment 

samples were analysed for organic matter and were added to different tanks filled with water, 

each with sediments of different organic matter content. The water was then mixed to allow 

the sediments to remain in suspension, and the spectral reflectance was recorded to observe the 

differences in the reflectance of the water with respect to varying organic matter levels. The 

results indicated that water containing suspended sediment with higher organic matter content 

displayed higher reflectance than the water containing suspended sediment with lower organic 

matter content (Karabulut and Ceylan, 2005).  

6.2.4) Effects of outliers on the results of calibration models 

The results of the PCA scores plot identified an outlier sample that was scattered further away 

from the rest of the samples on the PCA plot. This outlier sample was removed prior to the 

development of the calibration model in order to improve the prediction results. The resulting 

model without the outlier sample increased the R2 and decreased the RMSE values leading to 

better prediction results. This is consistent with the results obtained in a study conducted by 

Todorova et al. (2014) that analysed the potential of near-infrared spectroscopy for estimating 

heavy metals in soil. The results of the PCA scores plot identified six outlier samples, and 

calibration models were developed on all the samples as well as on the remaining samples after 

the outliers were removed. It was found that the model produced better results on the exclusion 

of the outlier samples (Todorova et al., 2014). These results were also consistent with the 

results obtained in a study conducted by Siebielec et al. (2004) that assessed the use of near- 

and mid-infrared reflectance spectroscopy in estimating the metal concentrations of soil. It was 

found that removing sample outliers improved the prediction results for the remaining samples 

in the dataset. According to Siebielec et al. (2004), removing sample outliers improves the 

predictions as the calibration model is not impacted by less useful information.  
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6.2.5) Prediction of the concentrations of heavy metals and water quality parameters in the 

water samples using visible and near-infrared spectroscopy 

The fourth objective of this study was to develop calibration models for the prediction of heavy 

metals from spectral reflectance measurements. The calibration and cross-validation R2 and 

RMSE values were evaluated to determine the predictive accuracies of the models. The 

calibration R2 indicates how well the model performs in predicting the calibration data, and the 

cross-validation R2 indicates how well the model performs in predicting new data (Bevilacqua 

and Bro, 2020). The prediction results for the parameters in water from the most accurate to 

the least accurate in terms of R2 calibration were magnesium, pH, electrical conductivity, 

cadmium, arsenic and iron. The prediction results for the parameters in water from the most 

accurate to the least accurate in terms of R2 cross-validation were magnesium, pH, iron, 

electrical conductivity, cadmium and arsenic.  

However, according to Scott (2019) and Bevilacqua and Bro (2020), a good Q2 value, which 

is the R2 of the prediction data or the R2 of the cross-validation data in this study, is a value 

that is close to the R2 of the calibration data. This indicates that the model works independently 

of the data used in the calibration (Scott, 2019). In addition, according to Veerasamy et al. 

(2011), the difference between R2 calibration and R2 cross-validation should not be large and 

should not be more than 0.3. The larger the difference between R2 calibration and R2 cross-

validation, the more inaccurate and less reliable the results are (Bevilacqua and Bro, 2020). 

The R2 calibration and R2 cross-validation results obtained for the predictions of this study's 

heavy metals and water quality parameters were close to each other. The differences between 

the R2 calibration and R2 cross-validation were <0.3 for all parameters except iron which had 

a difference of 0.32. Therefore, the least accurate prediction overall was obtained for iron. 

There is very limited research done on the use of spectroradiometers in water quality 

assessments; therefore, the comparison of all the water quality parameters observed in this 

study with the results of previous studies was difficult. The results obtained for iron is 

consistent with a study conducted by Monaledi (2019), where remote sensing was used to 

assess the water quality of the Mooi River in Carletonville, South Africa. In the study, an ASD 

spectroradiometer was also used to assess the spectral reflectance of the water samples, and a 

support vector machine regression model was used to estimate the concentrations of the water 

quality parameters from the spectral reflectance data. The model also produced poor prediction 

accuracies for iron, where the model overestimated the laboratory-measured low iron 
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concentrations, and the laboratory-measured high iron concentrations were underestimated by 

the model (Monaledi, 2019).  

The prediction results for arsenic, cadmium, iron, and electrical conductivity obtained in this 

study ranged between very low and low accuracies with R2 calibration and R2 cross-validation 

ranging from below 0.19 to between 0.19 and 0.32. A reason for the very low and low 

accuracies achieved for arsenic, cadmium, and iron could be the low concentrations of these 

heavy metals observed in the water column. This is consistent with a study conducted by Hively 

et al. (2011) that assessed the use of airborne hyperspectral imagery in mapping soil parameters 

of tilled agriculture soil on the Eastern Shore of Chesapeake Bay, United States. In this study, 

reflectance spectra were extracted from hyperspectral imagery of the study area, and soil 

samples were collected and analysed for carbon content and specific elements. A PLS 

regression was then performed to predict the concentrations of the soil parameters from the 

reflectance spectra. It was found that the model predicted soil parameters with low 

concentrations poorly in comparison with the results of the other parameters (Hively et al., 

2011). Therefore, the low predictive accuracies obtained for these heavy metals were likely 

associated with the low concentrations of these heavy metals in the water. 

The low predictive accuracy obtained for electrical conductivity could be associated with 

greater variability in the data and the small sampling size used in this study (Todorova et al., 

2014). According to Kuang and Mouazen (2013), for parameters with high variability in their 

datasets, a higher number of samples is required in order to account for the variability. This is 

consistent with a study conducted by Todorova et al. (2014), where near-infrared spectroscopy 

was used to estimate heavy metal concentrations in soils. The study also evaluated the effect 

of sample size on the PLS regression model results, and it was found that an increase in the 

sample size led to an improvement in the prediction accuracies (Todorova et al., 2014). The 

prediction results for pH and magnesium, on the other hand, achieved moderate accuracies. A 

reason for this could be the smaller variability in the data for pH and the higher concentrations 

of magnesium in the water compared to the other parameters (Kuang and Mouazen, 2013). 

This is also in line with the results of the study conducted by Monaledi (2019), where the model 

also produced good results for magnesium and pH as both parameters were predicted with high 

accuracies.  

In addition to evaluating the calibration and cross-validation R2 values, it is also essential to 

note the RMSE values of the models. A model with low RMSE values is generally desired as 
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this would indicate a good quality model as the RMSE represents the concentrations of the 

heavy metals that may not be described by the model (Estifanos, 2006). If these values are 

high, despite having relatively good calibration and cross-validation R2 results, it could lead to 

wrongful assumptions of the heavy metal contamination in the area under study (Estifanos, 

2006). The RMSE values were low for pH, arsenic, cadmium and iron, indicating that these 

model results are reliable. However, the RMSE values for electrical conductivity and 

magnesium were higher and indicate that these model results are less accurate and reliable. A 

reason for the higher RMSE values for electrical conductivity and magnesium could be the 

greater variability in the data for these parameters and the small sample size; thus, a larger 

sample size would be required to improve the accuracies of these results (Kuang and Mouazen, 

2013). The best model for the prediction of water quality parameters was achieved for the 

prediction of pH levels as the calibration and cross-validation R2 values achieved were 

moderate with low RMSE values. In terms of the prediction of heavy metals in water from the 

VNIR spectrum, the best model was obtained for arsenic. Although the model for arsenic 

produced very low calibration and cross-validation R2 values, the difference between the 

calibration and cross-validation R2 values was the lowest compared to the other heavy metals 

and it also had low calibration and cross-validation RMSE values. 

6.2.6) Important wavelengths for the prediction of heavy metals and water quality parameters 

in water 

The fifth objective of this study was to assess the relationship between the heavy metals and 

the VNIR reflectance spectra. When a particular wavelength region in a spectral reflectance 

curve displays high amounts of reflectance, it forms a peak in the curve (Srivastava, 2021). 

When there is low reflectance at a particular wavelength region, this causes a trough or valley 

in the curve; thus, the peaks represent a strong reflection of incident energy, and the troughs 

represent the predominant absorption of energy (Srivastava, 2021). Therefore, a decrease in 

reflectance at a particular wavelength region will form absorption features.  

In statistics, the regression coefficient is the slope of the regression of the response variable on 

the predictor variable and provides information on the change in the response variable per 

change in the predictor variable (Mark and Workman, 2018). The regression coefficients plot 

displays the positive and negative peaks of the predictor variable; that is, the VNIR spectra and 

the heights of these peaks represent the significance of those wavelengths in the prediction 

model (Estifanos, 2006). The positive peaks indicate a positive correlation between the heavy 
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metal or water quality parameter and the VNIR spectra, while the negative peaks indicate a 

negative correlation between the heavy metal or water quality parameter and the VNIR spectra 

(Mark and Workman, 2018). The positive peaks can thus indicate reflectance peaks, and the 

negative peaks can indicate absorption features. Therefore, the regression coefficients plots 

from the PLS regression model can be used to identify the significant wavelengths in the VNIR 

spectra for the prediction of heavy metals and water quality parameters (Todorova et al., 2014).  

According to Gómez (2014), absorption and backscattering coefficients are impacted by the 

optical properties of pure water and the dissolved substances in the water column. Therefore, 

absorption and backscattering of water and the particles dissolved in the water essentially make 

up reflectance spectra (Gómez, 2014). Absorption features present in the VNIR and SWIR 

spectral regions occur due to electronic and vibrational processes (Fang et al., 2018). Electronic 

processes occur in isolated ions where absorption of photons at certain wavelength regions 

occurs, causing the ion's energy state to move to a higher state (Fang et al., 2018). In contrast, 

the reduction of the energy state to a lower energy state leads to a photon being emitted 

(Estifanos, 2006). Crystal field transitions in mineral spectra are responsible for electronic 

transitions as a result of vacant electron shells (Estifanos, 2006). In the case of transition metals, 

ions located in a crystal field have split orbital energies compared to isolated ions, resulting in 

the absorption of a photon that moves an electron from a lower to a higher energy state (Fang 

et al., 2018). The splitting of orbital energies differs from mineral to mineral, causing an ion to 

display different absorption features. In addition, the energy levels of an electron are influenced 

by the valence state of an element, the type of ligands, and the distance between the heavy 

metal and ligand (Fang et al., 2018). In vibrational processes, a molecule is subject to vibrations 

depending on the strength of the bonds between the molecule and the molar mass of the 

elements in the molecule (Estifanos, 2006). The vibrational processes of water and hydroxides 

lead to overtone absorptions (Sakudo et al., 2006). In addition, certain minerals display 

absorption features in the VNIR spectral region due to overtones and vibrational processes 

associated with the stretching and bending of molecular bonds, including O-H, C-H, C-C and 

N-H (Fang et al., 2018). For example, according to Crowley et al. (2003), photons close to 

1400 nm are absorbed by water molecules for O-H stretching.  

Water displays absorption features in the 400-2500 nm spectral range, which occurs due to 

three vibrational modes of the water molecule, including symmetrical stretching, bending and 

asymmetrical stretching (Davies and Calvin, 2016).  Pure heavy metals display no absorption 
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in the NIR spectral region, and reflectance peaks observed in the spectral reflectance curves 

can be attributed to the presence of dissolved substances such as heavy metals (Putra et al., 

2012; Seifi et al., 2019). However, the formation of heavy metal complexes with organic matter 

containing O-H bonds can indicate the presence of heavy metals (Nomngongo et al., 2017). 

The absorption properties of water, particularly the O-H overtones, can be altered due to the 

binding reaction with the heavy metal ion. According to Putra et al. (2012), the absorption 

features of heavy metals related to the stretching and bending of organic molecules, hydroxyl 

and carboxyl groups in water can be detected from the 780–2500 nm spectral region.  

The absorption features between 715 and 718 nm for arsenic, cadmium and magnesium heavy 

metals, as seen in figure 5.25, can be attributed to those absorption features being close to the 

water band. According to Sakudo et al. (2006), the third overtone of the hydroxide-stretching 

mode of water is assigned to the absorption features close to 760 nm.  Therefore, the absorption 

features for these heavy metals located between 715 and 718 nm may result from absorbed 

water (Sakudo et al., 2006). The absorption features located between 1134 and 1136 nm for 

pH, electrical conductivity and iron, as depicted in figure 5.25, can be attributed to hydroxide 

activity (Heiman and Licht, 1999). This is consistent with a study conducted by Seifi et al. 

(2019) that investigated the visible-infrared spectroscopy and chemical properties of water near 

a mining area. The absorption features were analysed, and it was also found that the absorption 

features related to pH and electrical conductivity were found in the wavelength regions close 

to 975 nm. Another study conducted by Estifanos (2006) that analysed the spectral indicators 

for assessing pollution in a gold mining area in Rodalquilar, Spain. Sediment samples were 

collected from the study area, and one portion of the study involved dissolving 10 g of each 

sample in water and analysing the heavy metal, pH and electrical conductivity levels as well 

as the spectral reflectance of the water samples using ICP-OES and ASD, respectively. The 

results indicated that the absorption features in the spectra related to pH and electrical 

conductivity occurred in the regions 825-1036 nm (Estifanos, 2006). According to Zabcic 

(2008) and Seifi et al. (2019), the causes of absorption features at 450 nm and between the 

regions 550-650 nm, 750-950 nm and 900-1100 nm are a result of crystal field electronic 

transitions in ferrous (Fe2+) and ferric (Fe3+) iron oxidation states. Ferrous iron crystal field 

transitions generally occur at longer wavelengths in comparison to ferric iron crystal field 

transitions (Estifanos, 2006). This accounts for the absorption feature located at 1135 nm for 

iron, indicating an electronic transition of ferrous iron. These results are also consistent with 



139 

 

the findings of Putra et al. (2012), where absorption features for heavy metals were found 

between the 780-2500 nm wavelength range. 

6.2.7) Factors influencing the concentrations of heavy metals in the sediments of estuaries 

The sediment samples of the uMgeni Estuary were analysed for ten heavy metals, including 

aluminium, arsenic, cadmium, chromium, copper, iron, lead, magnesium, nickel and zinc. 

However, cadmium levels in the sediment were found below the detection limit at all sampling 

sites; thus, cadmium was excluded from further analyses. A reason for no detection of cadmium 

in the sediment could be that cadmium is a highly mobile heavy metal compared to other 

transition metals (Smedley and Kinniburgh, 2001). Another reason could be an anthropogenic 

source of cadmium being discharged into the water instead of the source being in situ sediment 

(Srivastava, 2016). The arsenic, chromium, and lead levels fell within the permissible ERL and 

ERM limits of the SQGs set by NOAA (1999). However, the permissible ERL limits for 

copper, nickel and zinc were exceeded at sampling sites A and C, but still fell within the ERM 

limits. A reason for the higher levels of copper, nickel and zinc in the sediment could be the 

land-use practices taking place along the uMgeni Estuary (Zheng et al., 2016). In addition, 

according to Cui et al. (2019), a higher level of copper in the sediment of rivers could be 

associated with traffic emissions. Furthermore, the concentrations of aluminium, iron and 

magnesium in the sediment samples displayed significantly higher levels in comparison to the 

other heavy metals and a reason for this could be that these heavy metals are highly abundant 

in the earth’s crust (Jain et al., 2005). 

According to Gabrielyan et al. (2018), the spatial distribution of heavy metals in the water and 

sediments of rivers is very similar. As with the heavy metal concentrations in the water 

samples, it was also noticeable that site C showed higher heavy metal concentrations for all 

heavy metals in the sediment samples compared to sites A and B. A similar trend was observed 

in a previous study conducted by Dikole (2014) that assessed the heavy metal concentrations 

in the sediment of the uMgeni River at various sampling sites along the river from the Inanda 

dam to the estuary. In the study, lead, chromium, copper and zinc concentrations in the 

sediments ranged from 12.1-601.7 mg/kg, 28.6-135.1 mg/kg, 11.9-168.5 mg/kg and 29.5-602.1 

mg/kg, respectively. The results indicated generally higher lead, chromium, copper and zinc 

concentrations in the sediment at sampling sites closer to the mouth of the river in comparison 

to other sampling sites (Dikole, 2014). These results are also consistent with the findings of a 

study conducted by Gabrielyan et al. (2018) that investigated the distribution of the sources of 
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heavy metals in the Voghji River Basin, Armenia. It was also found that the heavy metal 

concentrations measured in the sediments were significantly higher at sampling sites near the 

mouth of the river in comparison to sampling sites further upstream. A reason for this could be 

the industrial, residential and commercial land-use activities taking place along the uMgeni 

Estuary (Dikole, 2014; Zheng et al., 2016). This is consistent with the results obtained in a 

study carried out by Cui et al. (2019), where the heavy metals in the sediment of the urban and 

rural rivers in Harbin City, Northeast China, were investigated. It was found that the sediments 

located near urban areas consisting of industrial activities contained significantly higher levels 

of heavy metals than suburban and rural rivers. 

6.2.8) Prediction of the concentrations of heavy metals in the sediment samples using visible 

and near-infrared spectroscopy 

The calibration and cross-validation R2 and RMSE values were evaluated to determine the 

predictive accuracies of the models produced to predict heavy metal concentrations from the 

VNIR reflectance spectra. The predictions obtained for the heavy metals in the sediments from 

the most accurate to the least accurate in terms of R2 calibration were nickel, iron, chromium, 

lead, zinc, magnesium, arsenic, copper and aluminium. The prediction results from the most 

accurate to the least accurate predictions in terms of R2 cross-validation were nickel, chromium, 

lead, zinc, copper, iron, magnesium, arsenic and aluminium. As previously mentioned, an 

accurate prediction model has a small difference between its R2 calibration and R2 cross-

validation values (Bevilacqua and Bro, 2020). The differences between the R2 calibration and 

R2 cross-validation results obtained for the predictions of the heavy metals from the spectral 

reflectance readings of the sediment samples in this study were small for most heavy metals. 

The differences between the R2 calibration and R2 cross-validation were <0.3 for all heavy 

metals except aluminium which had a difference of 0.48. Therefore, the least accurate 

prediction overall was obtained for aluminium. A reason for the poor predictive accuracy 

obtained for aluminium could be greater variability in the data and the small sample size used 

in this study (Todorova et al., 2014). In order to account for this variability and possibly 

produce better prediction results for aluminium, a larger dataset is required. According to 

Delwiche and Reeves (2010), the higher number of samples used will result in a more accurate 

representation of the relationships between the laboratory-measured heavy metals and the 

spectral responses.   
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The high prediction accuracies obtained for lead and nickel in this study is consistent with the 

prediction results obtained for lead and nickel in a study conducted by Pawar and Deshmukh 

(2021). The study involved predicting the concentrations of lead and nickel in contaminated 

soil of agricultural fields in Aurangabad, Maharashtra, India, using an ASD FieldSpec 4 

spectroradiometer. A PLS regression model was built, and the R2 results obtained for the 

prediction of lead and nickel were 0.96 and 0.95, respectively. A reason for the high predictive 

accuracies obtained for heavy metals including arsenic, chromium, copper, lead, nickel and 

zinc, despite the small sample size, could be a smaller variability in the dataset for these heavy 

metals (Kuang and Mouazen, 2013). However, the sample size could affect the reliability of 

these results; therefore, it is also important to evaluate the RMSE values for the models 

(Estifanos, 2006; Delwiche and Reeves, 2010). 

The RMSE values obtained for arsenic, chromium, copper, lead, nickel and zinc were relatively 

low, indicating that the prediction results obtained for these heavy metals were accurate and 

reliable. The low RMSE results obtained for the prediction of copper, nickel and zinc is 

consistent with the low RMSE values obtained for these heavy metals in a study conducted by 

Wang et al. (2017). The study involved the estimation of heavy metals in soils of a metal tailing 

pond in the Anhui Province of China using multispectral remote sensing imagery. The spectral 

reflectance was extracted from the imagery, and soil samples were collected and analysed for 

copper, nickel and zinc. Thereafter, a PLS regression was developed to predict the 

concentrations of these heavy metals, and the model resulted in good predictions for copper, 

nickel and zinc with low RMSE values (Wang et al., 2017). However, the RMSE values 

obtained for aluminium, iron and magnesium were high; therefore, these models are less 

accurate and reliable. A reason for this could be that there was greater variability in the data 

for aluminium, iron, and magnesium compared to the other heavy metals, and the sample size 

was too small to account for the greater variability (Delwiche and Reeves, 2010; Kuang and 

Mouazen, 2013).  According to Xu et al. (2021), to accurately estimate heavy metals in soils 

using VNIR spectroscopy, it is crucial to ensure that the soil samples are representative and the 

sample size is sufficient. Therefore, to improve the accuracy and reliability of these results, a 

larger dataset would be required. The best model overall was achieved for the prediction of 

nickel levels as the calibration and cross-validation R2 values achieved were high with low 

RMSE values. 
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6.2.9) Important wavelengths for the prediction of metals and water quality parameters in 

sediment 

The spectral reflectance of soil is impacted by soil moisture content, iron oxides and organic 

matter content. Soils with high moisture content and high concentrations of iron oxides and 

organic molecules tend to cause the soil to become darker in colour, causing an increase in the 

absorption of light in the soil and a decrease in reflectance (Tekin et al., 2012). According to 

Tekin et al. (2012), the absorption of light in the near-infrared (NIR) spectral region by organic 

molecules is caused by overtones and combination bands of C-H, N-H and O-H groups that are 

associated with molecular stretching in the mid-infrared spectral region. The amount of energy 

absorbed is specific to the type of bond and is also influenced by the chemical matrix and 

factors, including the kind of functional group, adjacent molecules and hydrogen bonds 

(Armenta and de la Guardia, 2014). Heavy metals do not display absorption features in the NIR 

spectral region; however, heavy metal detection in the NIR region is possible due to covariation 

with other active spectral components such as organic matter, hydroxides, oxides and 

carbonates (Wu et al., 2007; Armenta and de la Guardia, 2014).  

The significant wavelengths for the prediction of arsenic, chromium, copper, lead and zinc 

obtained from the regression coefficient plots of this study were similar to the results obtained 

by Estifanos (2006) and Xu et al. (2021). According to the results obtained in the study 

previously mentioned conducted by Estifanos (2006), where another portion of the study 

investigated the use of the VNIR spectral region in predicting heavy metals in sediment. The 

results of this study indicated the spectral indicator regions important for the prediction of 

arsenic included 876-973 nm, 1397-1474 nm, 1882-1992 nm and 2125-2160 nm, the spectral 

indicator regions for zinc included 413-513 nm, 573-765 nm, 873-1101 nm and 2041-2139 nm 

and the spectral indicator regions for lead included 452-572 nm and 1190-1243 nm. According 

to the results obtained by a study conducted by Xu et al. (2021), where the VNIR spectroscopy 

was used to estimate heavy metals in the agricultural soils of the Suzi River Basin of the 

Liaoning Province, Northeast China. It was found that the important wavelengths for the 

estimation of chromium were 547 nm, 714 nm, 866 nm, 955 nm, 1137 nm, 2342 nm and 2346 

nm, and the important wavelengths for the estimation of copper were 667 nm, 923 nm, 980 nm, 

1015 nm, 1129 nm and 1562 nm.  
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The absorption features occurring from 900-1100 nm can be attributed to the crystal field 

electronic transitions in ferrous (Fe2+) and ferric (Fe3+) iron oxidation states with ferrous iron 

crystal field transitions occurring at longer wavelengths (Estifanos, 2006; Zabcic, 2008; Zheng 

et al., 2019) Therefore, the absorption features observed near 1090 nm for the heavy metals 

can be attributed to the crystal field electronic transitions of ferrous iron. According to 

Todorova et al. (2014), the absorption features located close to 1500 nm are associated with 

the absorption of amine N-H vibrational processes in organic components. Absorption features 

occurring near 1550-1650 nm are associated with the N-H bending vibrations of primary 

amines (Reusch, 2013). Therefore, the absorption feature located between 1675 nm and 1678 

nm for the heavy metals could be linked to the absorption of N-H bending vibrations of primary 

amines.  

6.3) Limitations  

A significant limitation to this study was the time constraints imposed by the ongoing 

Coronavirus Pandemic that caused devastating effects worldwide. As a result of the many 

lockdowns imposed in South Africa to try and slow down the spread of the virus, field data 

collection was difficult to conduct and could not be conducted in 2020. Field sampling could 

only be conducted in 2021, and due to the limited time remaining, field sampling was only 

done once. In addition to time constraints, another limitation of the study was cost constraints; 

thus, a small number of water and sediment samples were collected and analysed. Another 

limitation was the lockdown imposed in 2020 caused universities to be closed for many months 

of the year, and laboratory testing machines were not used for a prolonged period. This resulted 

in the unprecedented breakdown of many machines making it difficult to analyse the samples 

for heavy metals, which imposed further time constraints. It is for this reason that an 

independent laboratory had to be used to analyse the sediment samples. 

6.4) Conclusion and recommendations 

The rapid increase in industrialisation and urbanisation has put a severe strain on the quality of 

our aquatic ecosystems. The increased use of heavy metals in several human activities has led 

to increased concentrations of these heavy metals entering watercourses and eventually leading 

to estuaries. These heavy metals in excess can cause severe health complications in the 

organisms that inhabit aquatic ecosystems, thus making it imperative to ensure the frequent 

monitoring of the levels of heavy metals so that there can be intervention if need be. However, 

conventional methods of testing water and sediment for heavy metals are extremely costly 
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when required regularly; therefore, it is necessary to include alternate methods that are more 

cost-effective.  

The aim of this study was to assess the use of visible and near-infrared reflectance spectroscopy 

in the detection of heavy metals in the water and sediment of the uMgeni Estuary. The results 

obtained for the water and sediment analyses indicated that the heavy metal concentrations 

were much higher in the sediment than in the water of the uMgeni Estuary. Furthermore, the 

heavy metals fell within the permissible limits of the target water quality range guidelines and 

sediment quality guidelines. However, the concentrations of copper, nickel and zinc exceeded 

the effects range low limit of the sediment quality guidelines, which indicate the levels below 

which toxic effects rarely occur. Therefore, copper, nickel and zinc could potentially cause 

toxic effects in aquatic organisms inhabiting the estuary. Thus, the concentrations of these 

heavy metals in the uMgeni Estuary should be regularly monitored so that there can be proper 

intervention should the concentrations of these heavy metals continue to increase.  

Heavy metals are featureless in the visible and near-infrared region; however, their indirect 

detection is possible by association with other detectable constituents. The results of the 

calibration models indicated that the models performed much better in predicting the heavy 

metal concentrations in the sediment compared to the heavy metal concentrations in the water. 

Most of the heavy metals in the sediments were predicted with high accuracy compared to the 

low accuracy predictions obtained for most of the water quality parameters and heavy metals. 

The best model for the prediction of heavy metals in the sediment was obtained for nickel with 

high calibration and cross-validation R2 values and low RMSE values. The best model for the 

prediction of water quality parameters was obtained for pH with moderate calibration and 

cross-validation R2 values and low RMSE values. The best model for the prediction of heavy 

metals in the water was obtained for arsenic. Although the model for arsenic produced very 

low calibration and cross-validation R2 values, the difference between the calibration and cross-

validation R2 values was the lowest compared to the other metals and it also had low calibration 

and cross-validation RMSE values. A reason for the lower prediction accuracies obtained for 

the heavy metals in the water could be that the calibration models are sensitive to analytes with 

very low concentrations, as observed for the metals in the water. In addition, greater variability 

in datasets also impacts the accuracies of calibration models. The results of previous studies 

indicated that using larger datasets could improve the prediction accuracies of the models as 

the larger sample size can account for the large variations in the data. The results of the 
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regression coefficients plots indicated that the important wavelengths for the detection of pH, 

electrical conductivity, arsenic, cadmium, iron and magnesium in the water were from 715-725 

nm, at 929 nm, and from 1134-1137 nm, 1663-1667 nm and 1707-1731 nm.  The regression 

coefficient plots also indicated that the important wavelengths for the detection of aluminium, 

arsenic, chromium, copper, iron, lead, magnesium, nickel and zinc in the sediment were from 

1090-1091 nm, 1278-1284 nm, 1392-1398 nm, 1471-1479 nm and 1675-1678 nm. 

The visible and near-infrared spectrum provides a time- and cost-effective way to predict heavy 

metals and their concentrations, especially from sediments, as it facilitates the analysis of a 

large number of samples and reduces the need for lengthy chemical processes and the need to 

purchase chemicals. However, a limitation to using the visible and near-infrared spectrum in 

predicting heavy metals is a reduced accuracy in the prediction of heavy metals with a greater 

variability in their concentrations. For this reason, visible and near-infrared reflectance 

spectroscopy should not be used to replace conventional methods of analysing heavy metals in 

water and sediment entirely but rather to complement them. Reflectance spectroscopy as a tool 

to analyse heavy metals in environmental samples is still relatively new, and more research 

needs to be conducted to improve the accuracy of predictions.  

In terms of recommendations for future research on the use of the visible and near-infrared 

spectrum in predicting heavy metals in water and sediment, it is recommended that a larger 

dataset be used to minimise the effects of highly variable data on prediction results. It is also 

recommended to determine the effects of low analyte concentrations on the performance of the 

calibration models in predicting heavy metals. The effects of other soil constituents such as 

organic matter and soil organic carbon on the spectral reflectance of soil and how these 

constituents impact the detection of spectral indicator regions to predict heavy metals should 

also be explored further. In addition, it is recommended to determine the effects of the valency 

of ions in detecting spectral indicator regions for the prediction of heavy metals as valency may 

influence the interaction of ions with water and sediment. 
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Appendix 
 

Table 1: Raw pH, electrical conductivity and dissolved oxygen concentration data of the water samples.  

Sample pH  Electrical Conductivity Dissolved oxygen 

AW1 7.79 532.2 6.34 

7.89 488.5 7.06 

7.9 573.4 7.19 

AW2 7.75 572 6.94 

7.82 586.5 7.11 

7.84 553.2 7.28 

AW3 7.81 611.2 6.41 

7.86 614.4 6.61 

7.85 620.8 6.74 

AW4 7.73 684.6 6.78 

7.69 686 6.9 

7.71 685 7.06 

AW5 7.64 612.1 6.81 

7.67 611.5 6.87 

7.68 615 6.96 

BW1 7.42 606.8 7.32 

7.44 606.1 7.67 

7.43 607 7.58 

BW2 7.42 677.4 6.29 

7.44 666.4 6.43 

7.45 674.4 6.52 

BW3 7.49 698.5 6.85 

7.5 708.7 6.93 

7.49 708.2 7.02 
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BW4 7.45 702.7 6.85 

7.46 701.2 6.87 

7.49 706 7.21 

BW5 7.46 683.3 6.48 

7.56 679.2 6.66 

7.51 684.2 6.73 

CW1 7.46 1040 6.3 

7.44 1032 6.38 

7.47 1044 6.47 

CW2 7.5 744.2 6.8 

7.43 747.1 7.01 

7.42 749.6 6.97 

CW3 7.38 1751 5.08 

7.34 1740 5.24 

7.34 1742 5.34 

CW4 7.55 4.209 7.03 

7.56 4.193 7.11 

7.55 4.185 7.12 

CW5 7.5 4.427 5.95 

7.46 4.424 6.08 

7.46 4.428 6.16 
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Table 2: Mean pH, electrical conductivity, and dissolved oxygen concentrations of the water samples. 

Sample 

  

pH  

  

Electrical Conductivity 

  

Dissolved oxygen 

  
AW1   

  

7.86 

  

531.37 

  

6.87 

  
AW2 

  

7.81 

  

570.57 

  

7.11 

  
AW3 

   

7.84 

  

615.47 

  

6.59 

  
AW4 

   

7.71 

  

685.2 

  

6.92 

  
AW5  

  

7.67 

  

612.87 

  

6.88 

  
BW1  

  

7.43 

  

606.64 

  

7.53 

  
BW2 

  

7.44 

  

672.74 

  

6.42 

  
BW3 

  

7.5 

  

705.14 

  

6.94 

  
BW4 

  

7.47 

  

703.3 

  

6.98 

  
BW5 

  

7.51 

  

682.24 

  

6.63 

  
CW1 

  

7.46 

  

1038.67 

  

6.39 

  
CW2 

  

7.45 

  

746.97 

  

6.93 

  
CW3 

  

7.36 

  

1744.34 

  

5.22 

  
CW4 

  

7.56 

  

4.196 

  

7.09 

  
CW5 

  

7.48 

  

4.427 

  

6.07 
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Table 3: Results of the Spearman correlation analyses between each metal and the water quality parameters.      

 pH EC DO 

As Spearman's rho Correlation Coefficient .100 .129 -.179 

Sig. (2-tailed) .723 .648 .524 

N 15 15 15 

Cd Spearman's rho Correlation Coefficient -.117 -.584* .318 

Sig. (2-tailed) .678 .022 .248 

N 15 15 15 

Fe Spearman's rho Correlation Coefficient .061 .339 .197 

Sig. (2-tailed) .829 .216 .480 

N 15 15 15 

Mg Spearman's rho Correlation Coefficient -.446 .254 -.339 

Sig. (2-tailed) .095 .362 .216 

N 15 15 15 

  

* Correlation is significant at the 0.05 level (2-tailed). 
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Table 4: Raw data of sediment samples. 

Samples Al (%) As (mg/kg) Cd (mg/kg) Cr (mg/kg) Cu (mg/kg) Fe (%) Pb (mg/kg) Mg (%) Ni (mg/kg) Zn (mg/kg) 

AS1 0.17 1.7 <1 42 42 2.47 28 0.24 20 182 

AS2 0.24 

 

2.3 <1 54 48 2.19 31 0.27 27 199 

AS3 0.07 <1 <1 17 13 0.90 10 0.11 7.7 69 

AS4 0.15 1.8 <1 45 38 2.11 26 0.23 24 162 

AS5 0.21 2.4 3.2 58 49 2.68 32 0.28 31 189 

BS1 0.20 <1 <1 6.5 2.1 0.16 2.2 0.04 1.8 29 

BS2 0.02 <1 <1 7.0 3.4 0.22 2.6 0.04 2.2 31 

BS3 0.23 2.3 <1 52 46 2.11 29 0.28 24 190 

BS4 0.08 1.1 <1 26 20 0.95 14 0.14 11 100 

BS5 0.17 2.1 <1 46 42 2.27 26 0.24 22 171 

CS1 0.24 2.9 <1 63 53 2.86 35 0.34 32 204 
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CS2 0.14 2.3 <1 38 31 1.39 21 0.25 18 133 

CS3 0.21 3.0 <1 54 50 2.07 33 0.34 28 202 

CS4 0.21 2.8 <1 57 48 1.98 32 0.33 26 202 

CS5 0.27 3.4 <1 65 28 2.42 40 0.33 30 232 

 

* Values of <1 indicate the metal concentrations found below the detection limit that was set. 
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Table 5: Showing the concentrations of aluminium, iron and magnesium in mg/kg. 

Samples Al (mg/kg) Fe (mg/kg) Mg (mg/kg) 

AS1 1700 24700 2400 

AS2 2400 21900 2700 

AS3 700 9000 1100 

AS4 1500 21100 2300 

AS5 2100 26800 2800 

BS1 2000 1600 400 

BS2 200 2200 400 

BS3 2300 21100 2800 

BS4 800 9500 1400 

BS5 1700 22700 2400 

CS1 2400 28600 3400 

CS2 1400 13900 2500 

CS3 2100 20700 3400 

CS4 2100 19800 3300 

CS5 2700 24200 3300 

* 1% by mass or weight is equivalent to 10000 mg/kg; therefore, the % concentrations of each metal were converted into a mg/kg concentration 

by multiplying each % concentration by 10000.    


