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Abstract 

Summary:  This work provides a study of the natural frequencies of a nanobeam with tip mass, 

axial load and arbitrary boundary conditions.  

This aim of this investigation is to describe the mechanical performance of a beam (probe) 
used in dynamic atomic force microscopy (dAFM) which can be utilized in scanning the 
topographical features of biological samples or "pliable" samples in general. These nanobeams 
can also be used to modify samples by using high frequency oscillating contact forces to 
remove material or shape nano structures. A nanobeam with arbitrary boundary conditions is 
studied to investigate different configurations and the effects of the relevant parameters on the 
natural frequencies.  

The nano structure is modelled using the Euler-Bernoulli theory and Eringen's theory of 
nonlocal continuum or first order stress-gradient theory is incorporated to simulate the 
dynamics of the system.  This theory is effective at nanoscale because it considers the small-
scale effects on the mechanical properties of the material.  The theory of Nonlocal continuum 
is based on the assumption that the stress at a single point in the material is influenced by the 
strains at all the points in the material. This theory is widely applied to the vibration modelling 
of carbon nanotubes in several studies. 

The system is modelled as a beam with a torsional spring boundary condition that is rigidly 
restrained in the transverse direction at one end.  The torsional boundary condition can be 
tuned, by changing the torsional spring stiffness, such that the compliance of the system 
matches that of the sample to prevent mechanical damage of both the probe tip and the sample. 
When the torsional spring stiffness is zero, the beam is pinned and when the stiffness is infinite, 
the beam is a cantilever.  In the first case, a mass is attached to the tip and a linear transverse 
spring is attached to the nanobeam.  The mass and spring model the probe tip and contact force, 
respectively. 

In the second case, at the free end is a transverse linear spring attached to the tip.  The other 
end of the spring is attached to a mass, resulting in a single degree of freedom spring-mass 
system.  When the linear spring constant is infinite, the free end behaves as a beam with a 
concentrated tip mass.  When the mass is infinite, the boundary condition is that of a linear 
spring.  When the tip mass is zero, the configuration is that of a torsionally restrained cantilever 
beam.  When tip of the nanobeam vibrates, the system behaves like a hammer and chisel. 

The motion of the tip of the beam and tip mass can be investigated to observe the tip 
frequency response, force, acceleration, velocity and displacement.  The combined frequencies 
of the beam and spring-mass systems contain information about the maximum displacement 
amplitude and therefore the sample penetration depth.  

Keywords:  vibrations, nanobeam, stress-gradient theory, small-scale effects, surface effects, 
atomic force microscope (AFM), elastic restraints, tip mass. 
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Chapter 1  – Introduction 

1.1 Background and motivation. 
Carbon nanotubes and nanostructures have become prominent in a wide range of 

engineering applications and are starting to appear in commonplace devices like sensors and 

nano resonators.  Nanotubes in vibration can be used as probes for scanning surface topology 

in Atomic Force Microscopy (AFM) at molecular and atomic level.  Furthermore, advanced 

AFM devices can be used to manipulate the molecular and atomic composition of samples by 

using high frequency vibrations to dislodged molecules or atoms of interest [1-3].  The Atomic 

Force Microscope (AFM) follows the discovery of the Scanning Tunnel Microscope (STM) by 

Binnig et al [4].  The AFM produces 3D image whilst the STM produces 2D topological images 

at atomic level.  The STM measures the current that passes between the probe and the surface 

of interest and therefore limited to conductive materials.  The AFM measures the force between 

the probe and the surface and has enjoyed greater use because it can be used for all materials.  

The AFM has become the foremost scanning device with the discovery of carbon nanotubes 

which are used as sensor tips or chiselling tools in the form of a cantilever [5-8].  

The scanning process for AFM involves taking the measurement of force as the tip of the 

vibrating cantilever beam interacts with the surface of interest.  The measured value of the 

force at a distinct frequency contains information about the velocity and depth (topology) of 

the tip, see Figure 1-1.  These contact forces represent the dominant component of the forces 

when the interaction takes place.  In the process of fabrication of nano molecules and structures, 

high frequency oscillations of a tip mass are utilized with the purpose of deforming or shaping 

a material into a desired shape [9,10].  This process is popularly known as dynamic atomic 

force microscopy (dAFM)[7] or tapping mode atomic force microscopy (TM-AFM)[10].  For 

this reason, dynamic microscopy has become of great value in the field of biomolecular 

engineering, nanomedicine and nano-manufacturing. 

Nanotubes are also used as 

biosensors by observing the vibration 

patterns when different foreign masses 

are attached.  By analysing sensing 

data obtained, one can calculate the 

mass and several parameters of interest 

of the attached particle [12-16].    
Figure 1-1:  Atomic Force Microscope (AFM) 

configuration
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The use of sensors is crucial in environmental monitoring, detecting minute particles in the air 

i.e. pollution, bioterrorism, etc.   

These types of applications are generally referred to as nano-resonator sensors which are 

based on detecting shifts in resonant frequencies caused by a mass attached to the nanotube 

[17-24].  Carbon nanotubes are known to provide a high level of sensitivity and a significant 

improvement in the accuracy of measurement in comparison to conventional sensors.   

The vibration characteristics of nanoscale beams are examined within the framework of 

nonlocal continuum theory and this basis has been applied to the vibration modelling of carbon 

nanotubes in several studies [25-34].  Vibrations of carbon nanotubes with a tip mass have been 

studied extensively due to their use in sensor applications [18,21-23,35-38] and a number of 

studies presented vibrations of nanotubes with elastically restrained boundaries [39-42].  In the 

current research, an elastically restrained nanobeam with a tip mass is modelled as an Euler-

Bernoulli beam underpinned by Eringen’s nonlocal or stress-gradient theory [25,26] to account 

for the small scale effects [43,44].  When the beams reach nanoscale length, non-local 

continuum (stress gradient) and strain gradient theories are incorporated in the modelling 

[45,46].  These stress gradient theories include Eringen’s non-local theory (first order stress) 

and higher order theories like Reddy Beam Theory (RBT) and Levison Beam Theory (LBT).  

Eringen’s theory provides a unified foundation for field equations of non-local continuum and 

provides a basis for several stress-gradient theories [44]. Higher order stress/strain gradient 

theories are constructed such that the transverse stress at the surface vanish as required. Ansari 

et. al. [45] and Lu et. al. [46] investigated strain gradient theories for beams at nanoscale by 

considering only the local higher order strains. All these theories above provide very accurate 

results compared to Molecular Dynamics (MD) simulations. 

The boundary condition on one support (𝑥𝑥 = 0)  is stipulated as a torsional spring and pin 

which replaces the clamped boundary condition reported in numerous studies.  Two cases are 

reported in this investigation:   

1) A tip mass is attached to the free end (𝑥𝑥 = 𝐿𝐿)  of the beam and a transverse linear 

spring is attached to the tip of the beam.  In this configuration [47,48], the tip mass serves 

as a probe tip and the linear transverse spring models the interaction force between the 

probe and surface of interest.  The torsional spring is included to tune the system such 

that the compliance of the sample matches that of the vibrating beam [12,13].  These types 

of beams are generally referred to as torsional cantilevers and are much more versatile 

than conventional clamped cantilevers.  These torsional nanobeams can therefore be 
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appropriate for cutting-edge atomic force microscopy in applications involving 

topological scanning. 

2) A linear spring is attached to the free end (𝑥𝑥 = 𝐿𝐿)  and a mass is attached to the 

other end of the spring, to form a spring-mass system.  A torsional spring and pin are the 

boundary condition at the other end (𝑥𝑥 = 0) resulting in a torsional cantilever.  In this 

configuration [48, 49], the tip of the beam behaves like a forcing function applied 

(hammer) to a spring-mass as it vibrates.  In turn, the force is transmitted to the mass via 

the spring and the mass (chisel) is displaced in the lateral direction until it interacts with 

the sample.  In this system, the frequencies of the beam can be manipulated by varying 

the torsional and linear stiffness.  The frequencies of vibration are directly linked to the 

depth of penetration of the mass and the force induced.  These two parameters are the 

most vital in transforming and reshaping materials at molecular level e.g. by knocking off 

atoms to alter the material’s mechanical properties and nanofabrication in general. 

The theories mentioned above on vibrations exhibit what is known softening or hardening 

of the nanobeam, were there is a slight underestimation or overestimation of the natural 

frequencies of vibration compared to results obtained using molecular dynamics according to 

Pishkenari et. al [50].  It is known and well documented that the lateral natural frequency of a 

string or thin rod increases if a tensile load is applied and decrease if a compressive load is 

applied.  Moutlana and Adali [51] reported on the use of sandwiched piezoelectric actuators to 

alter the fundamental frequency of a cantilever by applying tensile and compressive loads.  This 

is very important because it allows us to increase the frequency gap between: 1) buckling 

frequency and fundamental frequency or 2) fundamental frequency and second natural 

frequency, such that we can increase the frequency spectrum of the applied external load and 

prevent resonance failure.  In the current investigation, an axial compressive/tensile load is 

applied at the free end (𝑥𝑥 = 𝐿𝐿) to simulate this softening/hardening effects exhibited by the 

piezo actuators. 

The beams contemplated in this investigation are regarded as slender i.e. the thickness of 

the beam is small compared to the length (ℎ ≪ 𝐿𝐿) and at nanoscale, could be made up of several 

layers of atoms [52].  In view of this, we can design a composite beam with a flexoelectric 

layer at the top and bottom surface and implement active piezoelectric control at nanoscale.  At 

these scales, the beams under investigation could be at minimum, three (3) atoms thick, and 

the bulk to surface volumes become comparable such that the surface energies have significant 

influence on the vibration of the system.  This influence on the natural frequencies of vibration 
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is borne out of the fact that the different layers of the beam experience different environments.  

The bulk material is typically surrounded by other atoms, whilst the surface atoms are in contact 

with the bulk atoms on one side and a different “environment” on the other side (i.e. air or 

viscous fluid).   In the present study Gurtin and Murdoch’s Linear Surface Elasticity Theory 

(LSET) [53] is adopted to model the influence of surface effects on the system.  The influence 

of the surface effects is studied in a system modelled as a nanobeam with a torsional boundary 

condition at one end and spring-mass at the free end and presented by Moutlana [54]. 

The lateral vibration of a beam is described using 4th order homogenous equations of motion 

that satisfy four boundary conditions.  The solution is determined by the method of separation 

of variables, made up of the modal and temporal domains.  The general solution to the modal 

domain has four constants which are calculated simultaneously by ensuring that the general 

solution conforms to the equation of motion and the boundary condition.   

 

1.2 Literature review. 
In 1981, Binnig and Rohrer [55] received a Nobel Prize in Physics for the development of 

the Scanning Tunnelling Microscope (STM).  The STM is the first instrument capable of 

directly obtaining images of solid surfaces.  The STM is limited to the study of surfaces of 

electrically conductive materials because it relies on a voltage potential difference between the 

surface and the probe.  One of the two electrodes is attached to a sharp metal tip at the end of 

the probe and the another is attached to the surface being scanned.  The sharp metal tip is 

brought very close to the surface of interest until it is at approximately 0.3 to 1nm from the 

surface.  After applying a voltage (10mV to 1V) a tunnelling current is observed between the 

probe and the surface, and this current can be measured to generate a topographic map of the 

surface [56, 57].  One of the greatest disadvantages is that if there are any different atomic 

species within the sample, the tunnelling current may not yield reliable results for the height of 

the specimen. Baratoff et. al.  introduced new improvements on the types of surfaces that could 

be effectively scanned by studying the topology of semiconducting materials using STM [56]. 

The Atomic Force Microscope (AFM) represents an improvement on the Scanning Tunnelling 

Microscope (STM) and produces high resolution 3D images of surface topology.   

Unlike the STM, the AFM probe comes into contact with the surface during scanning.  This 

can be likened to using one’s fingers to visualize a 3D object [58].  The AFM is presently the 

most powerful tool for determining surface topography of molecules at sub-nanometer 

resolution.  The measuring probe for an AFM is made from a cantilevered carbon nano tube 
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(CNT) with a sharp tip that is used to probe the surface.  The AFM measures the force induced 

at the tip of the cantilevered probe as it scans the surface and these forces are ultrasmall, on the 

order of 1nN (nano-Newton) [58].  The dynamic behaviour of the forces is extremely 

complicated and using precise analysis, the induced frequencies of vibration created by the 

interaction forces between the probe and surface can be detected and measured.  The measured 

frequencies allow us to predict the displacement of the tip which can be in turn be used to map 

the topology of the surface.  Furthermore, the information about the tip displacement can be 

used in nanofabrication and nanomanipulation of samples; because knowing the frequencies 

allows us to determine the penetration depth. 

Nanotubes have found applications [59] in medical research to detect bacteria and viruses.  

These sensors are modelled as cantilevered beams with a tip mass [16, 60, 21].  The tip mass 

could be the bacteria or virus attached to the tip of the nanotube which behaves as a cantilever.  

AFM have been also used for mechanically unfolding proteins for mapping of DNA sequence 

[4] and these DNA sequences can be used to develop therapies for deadly pandemics.  

Cantilevered nanotubes can also be used for many other applications ranging from 

environmental monitoring to fighting bioterrorism [61, 24, 62].  

Carbon nanotubes (CNT) were discovered in the early 1990’s by Ijima [63].  These materials 

have received significant interest in the scientific community due to their exceptional 

properties.  Carbon nanobeams cannot be modelled using classical beam theories such as Euler-

Bernoulli and Timoshenko [64, 65].  These theories are accurate only up to micrometer scale 

and will breakdown at nanoscale level because engineering material properties are sensitive to 

size.  The molecule size to bulk is small and therefore new theories were developed in order to 

take into account the small-scale effects. 

The vibration characteristics of nano scale beams can be analysed within several 

frameworks depending on the size of the beam [25, 26].  At macro and micro level, the Euler-

Bernoulli and Timoshenko bending theories are used with satisfactory results.  When the beam 

dimensions reach nanoscale length, nonlocal continuum (stress gradient) and strain gradient 

theories are incorporated in the modelling [33 - 48].  These stress gradient theories include 

Eringen’s non-local theory (first order stress) and higher order theories like Reddy Beam 

Theory (RBT) and Levison Beam Theory (LBT).  Eringen’s theory provides a unified 

foundation for field equations of nonlocal continuum and provides a basis for several stress-

gradient theories [66].  Eringen proposed a theory based on nonlocal continuum mechanics 

were the strain on any point on a body is dependent on the strains in the entire body.  This 

theory is suited to nanoscale modelling due to bulk to particle size ratio and the theory can 
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satisfactorily explain phenomenon at atomic and molecular scale such as vibrations and wave 

dispersion [25, 26].  Experimental findings and atomistic simulations have shown a significant 

size dependency in mechanical properties at nanoscale [67 - 70].  Higher order stress/strain 

gradient theories are constructed such that the transverse stress at the surface vanish as required. 

Ansari et al. [45] and Lu et. al. [46] investigated strain gradient theories for beams at nanoscale 

by taking into account only the local higher order strains.  All these theories above provide 

very accurate results compared to Molecular Dynamics (MD) simulations and calibration of 

the small-scale  parameters has been published by Pishkenari, H.N et. al.  and Hossein, N.P., 

et. al. [50, 69]. 

Two different methods of modelling can be applied in simulating the dynamic behaviour:  

1) atomistic modelling and 2) non-local continuum modelling.  Atomistic models are 

significantly more accurate and reliable but have the following disadvantages:  a) 

inapplicability of modelling for large number of atoms, b) requires very large amount of 

intensive computational analysis and c) model formulation is extremely complex and limited 

to small systems.  In nonlocal continuum modelling the following advantages are realized:  a) 

the influence of CNT chirality, intermolecular spacing and characteristic dimensions can be 

incorporated into the model, b) computational requirements are significantly lower and c) 

complex models can be constructed and evaluated within a shorter space of time.  Early 

developments and applications of these theories were presented by Peddieson and Buchanan 

[68] and further developed by Reddy and others [67, 70 - 80]. 

The transverse motion of a bean in vibration can be determined using 4th order differential 

equations of motion.  Fourth order differential equations can be solved by separation of 

variables [40-45, 64, 65, 74], finite element method [16, 21 , 29, 37, 71] and Lagrange 

formulation [72, 73].  Various boundary conditions can be associated with the transverse 

vibration frequencies of systems.  The majority of classic boundary conditions are studied 

extensively by Balachandran, Magrab and others [64, 65, 72, 73], and are used as the 

foundation to investigate nano electromechanical systems (NEMS) and micro 

electromechanical systems (MEMS).  The analytical solution to solve for the frequencies of 

vibration is complex and used extensively in solving of buckling and vibration problems.  

Eigenfunctions can be used as the building blocks to construct a solution that satisfies the non-

homogenous boundary condition.  The eigenfunctions are associated with the distinct modes 

of vibration [72, 73] and related eigenfrequencies.  The eigenfrequencies derived from the 

solution to the differential equations of motion are referred to as the natural frequencies of the 

system [64].  The natural frequencies of a structure are extremely important in engineering 
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design to prevent catastrophic failure due to resonance and to eliminate unwanted noises [72].  

Resonance is a phenomenon whereby the frequency of a dynamic applied external load matches 

the natural frequency of the system.  When that happens, the amplitude of vibration increases 

with every successive application of the external load until there is total collapse of the structure 

due to mechanical failure.   

Beam elements are used in many prominent engineering structures in NEMS and MEMS.  

These beam structures can be distinguished by the boundary condition, typically two or four 

boundary conditions are applied, but in general, the number of boundary conditions are equal 

to the number of constants in the general solution for the differential equation of motion.  Micro 

beams are modelled using classic continuum theory e.g. Euler-Bernoulli and Timoshenko beam 

theory.   These theories have been adapted to give accurate predictions for beams at nano scale 

in what is referred to as stress (nonlocal) and strain gradient theories.    

In Nonlocal theory, it is assumed that the stress at a single point in the material is influenced 

by the strains of all the points in the material.  This theory is widely applied to the vibration 

modelling of carbon nanotubes in several studies [33, 34] and in particular, vibrations of carbon 

nanotubes with a tip mass have been studied extensively due to their use in sensor applications 

[19, 41, 42]. 

In many studies, the elasticity of the boundaries is not taken into account and the classical 

clamped or free boundary conditions are considered. In several studies, vibrations of nanotubes 

with elastically restrained boundaries have been conducted [43, 44], but only as a stand-alone 

system, that cannot be decomposed into sub-systems.  The effects of the elastic restraints and 

tip mass on the frequencies have been investigated numerically and these problems have been 

solved in the case of beams based on the local (classical) theory of elasticity.  Elastically 

supported beams with a tip mass have been studied in [43, 44] and the beam with torsional and 

translational springs with a tip mass has been studied in [45, 46, 47] based on the classic theory 

of Euler-Bernoulli beams.   

The stiffness of a cantilever beam probe has been studied in the field of hydrodynamics and 

very important developments were reported by Basak et. al. [13] and Beyder et. al. [14].  

According to Beyder and Basak, the boundary condition for a cantilever clamp end can be 

modified using a torsional spring to create what is called a torsional cantilever.  This is very 

important when probing pliable or biological sample because the compliance of the probe can 

be matched to that of the sample.  By doing so, damage to the tool and the sample can be 

prevented [13, 14].  This torsional cantilever also allows researchers to utilize short cantilevers, 

and at the same time, achieve large tip displacements.  Natsuki et. al. [78] found that by 
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increasing the aspect ratio of a nanobeam, the sensitivity of measurement can be improved for 

nanomechanical mass sensors.  While Natsuki et. al. [78] used high aspect ratio nanobeams to 

improve the sensitivity of measurement, the same can be achieved by using a torsional 

cantilever with a low aspect ratio nanobeams.  Furthermore, torsional cantilevers can be utilized 

in applications requiring low force and high frequencies, such as topological mapping of 

biological samples embedded if a viscous medium [14].   

Moutlana and Adali [51] published an article on the vibration of a beam with extended tip-

mass subject to piezo control allowing one to alter the natural frequencies in order to actively 

prevent resonance.  In their investigation [51], it was determined that an extended mass has an 

influence on the second mode (2nd) of vibration and that the frequencies can give us information 

about the radius of the attached mass or radius of attached bacteria or virus.  The frequency 

shift in the 2nd mode allows us to determine the radius or diameter of the bacteria or virus, 

making it easier to identify.  Seyed [83] investigated a tapered beam with spring-mass system 

using continuum theory like some of the above investigations, but small-scale effects were not 

taken into account.   

Elastically restrained nanobeams with a tip mass are modelled as Euler-Bernoulli beams 

underpinned by Eringen’s nonlocal theory [25, 26] to take into consideration the small-scale 

effects [44].  Some of the earlier work was performed by Esteshami and Hajabasi [84] for the 

most basic boundary condition: clamped, simply supported and free for both single and double 

walled nanotubes.  In this work [84], the researchers recognised that, with the exception for a 

simply supported beam, the frequencies of vibration are influenced by the small-scale 

parameter.  Li et. al. [85] studied nanobeams with the classic clamped-free, clamped-clamped 

and simply supported beams with a mass attached to region of maximum displacement.  The 

modes shapes were also investigated by generating the shape functions from the natural 

frequencies and the initial conditions, which again showed that the small-scale parameter has 

an influence on the systems [86].  Ansari [45] has implemented strain gradient theory to solve 

similar problems with the results being in good agreement compared to Molecular Dynamics. 

Nanobeams with non-classic boundary conditions (e.g. linear and torsional springs, masses, 

etc.) have received wide acceptance in NEMS.  Nanobeams with tip mass can be used as 

accelerometers and nanobeams with piezo surface layers can readily be used as energy 

harvesters to create autonomous nanorobots according to an investigation by Managheb et. al. 

[86].  In their investigation, Managheb et. al. found that attaching a mass at the tip of a 

flexoelectric cantilever nanobeam improves the energy harvesting process.  Bahrami et. al. [87, 

88] studied a nanocantilever with tip mass and horizontal nonlinear spring that behaves like a 
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directed axial load on the beam and this research can be straightaway applied in NEMS.  Some 

of the configurations of the boundary conditions were studied by Moutlana and Adali, Berretta 

et. al. and Mahmoudpour et. al.  [49, 89, 90], where the clamped boundary condition is 

substituted by a torsional spring and the results were found to be consistent with Eringen’s 

nonlocal stress theory.  It was shown that the use of a torsional cantilever could benefit the 

process of scanning for AFM in viscous medium in studies conducted by Arda and Aydogdu 

[91], investigating biological nanomotors.  Moutlana and Adali [54] investigated a torsional 

cantilever with tip-mass and linear spring boundary condition and showed that with elastic 

boundary conditions, the natural frequencies of vibration can be manipulated to the desired 

requirement.  Most of the research above was conducted for a beam with discreet mechanical 

elements e.g. linear or torsional spring or concentrated mass attached to the boundaries. 

NEMS are usually made up of several coupled discreet systems.  These systems are expected 

to function simultaneously e.g. a cantilever coupled with a spring-mass system.  Many such 

systems are well documented at micro and macro scale in dynamics textbooks [64, 65] and 

many researchers are investigating the mechanical behaviour of such system at nanoscale 

[92 - 100].  Earlier work on coupled systems was presented by Gheshlaghi and Mirzaei [99] 

were they investigated the sensitivity of lateral vibrations due to small scale effects.  

Gheshlaghi and Mirzaei studied a cantilever beam with spring-mass attached to the free end 

but the force due to the spring mass is not included in the shear boundary conditions.  According 

to classic continuum theories, Magrab [65] maintains that the single degree system induces a 

force at the tip of the beam which manifests as a shear force.   

Moutlana and Adali [49] presented new improvements by coupling a torsional cantilever 

with a single degree spring mass system.  The model presented herein includes the induced 

force due to the spring-mass in the shear boundary condition, and therefore represents a more 

consistent treatment as opposed to Gheshlaghi and Mirzaei.  In this research [49], the model 

shows that there is a strong link between the natural frequency of the beam and the natural 

frequency of the spring mass system; and this can be used to predict the beam tip deflection 

and the deflection of the tip-mass.  This can be directly linked to the penetration depth of a tool 

like AFM for sample scanning or manipulation [49]. 

In most engineering applications the 1st natural frequency in the most important and 

dominant when the system undergoes vibrations and is typically referred to as the fundamental 

frequency of vibration [75, 76].  The frequencies of vibration for a beam under axial load are 

somewhat more complex in that the frequency parameter of the system are sensitive to 

compressive loads according to Pin et. al. [77].  This complication is brought about because if 
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the load becomes too big, the beam undergoes static buckling and thus fails. Further studies on 

a beam with axial load have been conducted by Natsuki et. al. [78] to determine the effects on 

the vibrations and they found that a tensile axial load increases the natural frequencies in 

concurrence with Moutlana and Adali [51].  Wang et. al. [101, 102] used an axially loaded 

nanobeam to determine or calibrate Eringen’s small-scale coefficients by using discreet beam 

model (DBM) and Eringen’s beam model (ENBM).  This is achieved by solving the discrete 

beam formulation using the theory of linear central finite differences and compare the buckling 

loads and natural frequencies of the DBM with those of the ENBM, where local continualized 

discrete boundary conditions are applied to neighboring elements. 

 

1.3 Research objectives. 
The aim of this investigation is to develop a model to simulate the vibration characteristics 

of a nanobeam with flexible restraints, tip mass and axial load.  The nanobeam is restrained by 

a torsional spring, carries a tip mass and linear spring .  The torsional and linear stiffness and 

mass are utilized to modify the vibration characteristics of the system.  To accomplish the aim 

of controlling and analyzing the vibration characteristics of the model, the following objectives 

must be met, 

1. Development of the equations of motion governing the vibration of the nanobeam. 

2. Development of the equations using the constitutive relations governing nonlocal 

continuum or stress-gradient theory. 

3. Derive the characteristic equations to determine the natural frequencies. 

4. Investigation of the effects of the critical parameters on the natural frequencies. 

5. Investigate the effects of the spring-mass system on the motion of the system. 

6. Investigate the vibration of the beam subject to axial loading. 

Euler-Bernoulli theory is employed because we assume the beam is slender (h/L<<1) and 

therefore the shear deformations are not accounted for, without losing accuracy.  To satisfy the 

stated objectives the research is divided into three major categories: (i) Problem formulation, 

(ii) Modelling and numerical solutions and (iii) Results and refinements. 

(i) Problem formulation:  This stage involves the assessment of the mechanical 

structure subjected to vibration.  It also involves formulating the stress strain 

relationships which are used for developing the 4th order differential equations 

of motion for the nanobeam and 2nd order differential equations for the            
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spring-mass system.  The differential equations of motion are coupled, and the 

total system dynamics can be determined.  

(ii) Modelling and numerical solutions:  At this stage, the analytical solution is 

developed using separation of variables and presented it in the form of an 

eigenfunction series expansion.  The natural frequencies are generated 

numerically by plotting the characteristic equations for the vibrations of the 

system.   

(iii) Results and refinements:  The results for the analytical solutions are 

generated using Wolfram Mathematica1 and wxMaxima2.  The results will be 

plotted and tabulated to indicate the influence of the different parameters on 

the frequencies.  The model is refined further to take into account surface 

effects because at nanoscale and pico-scale, “There is plenty of room at the 

bottom”-- Richard Feynman    
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Chapter 2  – Governing equations for a vibrating nanobeam 
2.1 Derivation of the governing equations for the nanobeam. 

2.1.1 Moment-curvature relation for beam. 
In Fig. 2.1, a uniform beam is vibrating freely under constant axial load 𝑁𝑁(𝑥𝑥, 𝑡𝑡). The left-

end of the beam is mechanically constrained by use of an elastic support i.e. torsional spring, 

while the right-hand side has mechanical elements i.e. a tip mass and elastic supports arranged 

in a desired configuration.  There are moments 𝑀𝑀(𝑥𝑥, 𝑡𝑡) and shear forces 𝑄𝑄(𝑥𝑥, 𝑡𝑡) along the beam 

and the mechanical elements contribute moments, 𝑀𝑀(0, 𝑡𝑡) and 𝑀𝑀(𝐿𝐿, 𝑡𝑡) and shear forces, 

𝑄𝑄(0, 𝑡𝑡) and 𝑄𝑄(𝐿𝐿, 𝑡𝑡) at the boundaries as indicated in the diagram [1, 2].  Let 𝑤𝑤(𝑥𝑥, 𝑡𝑡) be the 

transverse displacement of the beam anywhere along the x-dir. at any time (t).  The Euler-

Bernoulli theory can be applied to  the deformation of the beam, where the fiber along the 

neutral axis of the beam experiences zero strain.  The fibers above the neutral axis experience 

a contraction, whilst the fibers at the bottom of the neutral axis experience an extension. 

 

According to Euler-Bernoulli theory, when a slender beam experience’s bending:  

i. The neutral axis remains undeformed,   

ii. Plane sections normal to the neutral axis remain normal before and after bending, 

iii. The transverse normals experience zero strain along the normal direction.  

iv. The material obeys Hooke's law. 

A single fiber undergoing deflection can be isolated to form a basis for the discussion as 

shown in the Fig. (2.2),  
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For small deflection (𝑑𝑑𝑑𝑑) the fibers along the thickness of the beam create concentric arches 

and the fiber length (𝑠𝑠) is extended by a small length (𝑑𝑑𝑠𝑠) as shown above.  The relation 

between the deflection, the arc-length and radius of curvature (𝜌𝜌) can be deduced from 

Fig. (2.2) and presented as follows, 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

= 1
𝜌𝜌
 ………….………………………………. (2.1) 

and the strain relation is,  

𝜀𝜀𝑥𝑥(𝑦𝑦) = −𝑦𝑦 ⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

= −(𝑦𝑦/𝜌𝜌) ……………....……...………... (2.2) 

and therefore, the stress-strain relation can be expressed as, 

𝜎𝜎𝑥𝑥(𝑦𝑦) = 𝐸𝐸𝑐𝑐 ⋅ 𝜀𝜀𝑥𝑥 = −𝑦𝑦 ⋅ (𝐸𝐸𝑐𝑐/𝜌𝜌)………………….………..… (2.3) 

The resultant bending moment of curvature3 (𝑀𝑀𝑐𝑐) due to 𝜎𝜎𝑥𝑥  must equal the integral of the 

bending moment across the cross-sectional area and thus, 

𝑀𝑀𝑐𝑐 = −∫ 𝑦𝑦 ⋅ [𝜎𝜎𝑥𝑥𝑑𝑑𝐴𝐴]𝐴𝐴                                                   (2.4a)
  and, after combining Eqs. (2.3) and (2.4a), 

𝑀𝑀𝑐𝑐 = −(𝐸𝐸𝑐𝑐/𝜌𝜌) ⋅ ∫ 𝑦𝑦2𝑑𝑑𝐴𝐴𝐴𝐴                                             (2.4b) 
also, 

𝐼𝐼𝑐𝑐 = ∫ 𝑦𝑦2𝑑𝑑𝐴𝐴𝐴𝐴                                                              (2.4c) 
therefore, 

𝑀𝑀𝑐𝑐 = −𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐 ⋅
1
𝜌𝜌
        and        1

𝜌𝜌
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑠𝑠
                           (2.4d) 

It can be shown that the relation below holds for beam deflection, 

 
3 The subscript “c” denotes local or classic parameters e.g. moment, shear force and material constants  
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

=
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

�1+�𝑑𝑑𝑤𝑤𝑑𝑑𝑥𝑥�
2
�

3
2
                                                           (2.5) 

when �𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2

<< 1 the slope and the deflection are small it leads to the following moment 
curvature relation, 

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑥𝑥2

= −𝑀𝑀𝑐𝑐(𝑥𝑥)
𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐

 ……………………..……..……… (2.6) 

When the beam moves from its natural position; internal forces, shear forces and moments 

acting on each infinitesimal element of the beam are induced, as shown in Fig. (2.3). The 

element has a length 𝑑𝑑𝑥𝑥 along the beam in the x-direction.  

 

Taking the sum of the forces and moments in both co-ordinates (x and y) we derive the 

equilibrium conditions for the element in a form of these equations: 
𝜕𝜕𝑄𝑄𝑐𝑐(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
− 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑡𝑡2
= 0                                           (2.7) 

𝜕𝜕𝑀𝑀𝑐𝑐(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

+ 𝑁𝑁(𝑥𝑥) 𝜕𝜕𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− 𝑄𝑄𝑐𝑐(𝑥𝑥, 𝑡𝑡) = 0                                    (2.8) 

The local or classic moment and shear force are shown in Eqs. (2.9a) and (2.9b).   

𝑀𝑀𝑐𝑐 = −𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

                                                          (2.9a) 

𝑄𝑄𝑐𝑐 = 𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐
𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+𝑁𝑁𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

                                         (2.9b) 

After combining Eqs. (2.7) and (2.8) we can determine the local or classic differential equation 

of motion for the beam. 

𝐸𝐸𝑐𝑐𝐼𝐼𝑐𝑐
𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 𝐹𝐹0(𝑥𝑥)                           (2.10) 

where 𝐸𝐸𝑐𝑐 is the modulus of elasticity, 𝐼𝐼𝑐𝑐 is the moment of inertia, 𝜌𝜌 is the density, 𝐴𝐴 is the cross-

sectional area and )(0 xF  is the forcing function which is taken as 0)(0 =xF  for a free vibration 

of the beam.   
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2.1.2. Eringen’s nonlocal stress gradient theory for small-scale effects.  
The moment curvature relation derived for Euler-Bernoulli theory is valid for micro and 

macro scale beams but needs to be modified in order to be valid for nanoscale beams.  The 

Euler-Bernoulli beam theory [1, 2] can be applied to the transverse vibrations of nanobeams 

by applying the Eringen’s theory on nonlocal continuum [3], with consistent results.  Eringen’s 

nonlocal stress tensor σ at a point x is stated as, 

𝜎𝜎 = ∫ 𝐾𝐾(|𝐱𝐱′ −  𝐱𝐱|, 𝜏𝜏)𝐭𝐭(𝐱𝐱′)𝑑𝑑x′𝑉𝑉                                            (2.11) 

The integral above represents the weighted average of the influence of the strain field of all 

the points in the bulk to the stress field at a point.  The first term in the integral  𝐾𝐾(|𝐱𝐱′ −  𝐱𝐱|, 𝜏𝜏) 

is the kernel function and denotes the nonlocal modulus with �𝐱𝐱′ −  𝐱𝐱� being the distance.  The 

second term 𝐭𝐭(𝐱𝐱′) is the local or classic stress tensor at a point 𝐱𝐱, such that 𝐱𝐱 is the reference 

point in a body in which the stress tensor is calculated at any other point 𝐱𝐱′.  The material 

constant (τ), depends on the internal and external characteristic lengths.  The 4th order local or 

bulk stress tensor obeys Hookean Laws and is described as, 

𝐭𝐭(𝐱𝐱) = 𝐂𝐂𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖(𝐱𝐱)𝜀𝜀𝑘𝑘𝑖𝑖(𝐱𝐱)                                                       (2.12) 

The integral in Eq. (2.11) makes the linear elasticity problem challenging to resolve.  The 

integral equivalent can be expressed in differential form by, 

𝐭𝐭(𝐱𝐱) = �1 − 𝜏𝜏2𝑙𝑙𝑒𝑒2
𝜕𝜕2

𝜕𝜕𝑥𝑥2
� 𝜎𝜎   and   �̅�𝜇, 𝜏𝜏 =  𝑒𝑒𝑜𝑜𝑖𝑖𝑖𝑖

𝑖𝑖𝑒𝑒
                                  (2.13a) 

or, 
�1 − 𝜏𝜏2𝑙𝑙𝑒𝑒2

𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝑀𝑀𝑛𝑛𝑖𝑖 = 𝐸𝐸𝐼𝐼 𝜕𝜕

2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

                                       (2.13b) 

when written in terms of moments, where 𝑀𝑀𝑛𝑛𝑖𝑖 is the nonlocal (𝑛𝑛𝑙𝑙) moments, 𝑒𝑒𝑜𝑜 is a material 

constant that can be accurately estimated using molecular dynamics, 𝑙𝑙𝑖𝑖 and 𝑙𝑙𝑒𝑒 are the internal 

and external characteristic length which depend on lattice spacing and wavelength [4].  

Applying Eq. (2.13b) the nonlocal moment and shear force are, 

𝑀𝑀𝑛𝑛𝑖𝑖 = 𝐸𝐸𝐼𝐼 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

  − 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

�                                (2.14a) 

𝑄𝑄𝑛𝑛𝑖𝑖 = 𝐸𝐸𝐼𝐼 𝜕𝜕
3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+ 𝑁𝑁 𝜕𝜕𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− �̅�𝜇 �𝑁𝑁 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

  − 𝜌𝜌𝐴𝐴 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

�               (2.14b) 

Using Eqs. (2.7), (2.8)  and (2.13b) to incorporate the nonlocal effects, the equation of motion 

for a nonlocal nanobeam in transverse vibration is, 

𝐸𝐸𝐼𝐼 𝜕𝜕
4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

+ 𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁 𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

+ �̅�𝜇𝜌𝜌𝐴𝐴 𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

− 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡)             (2.15) 
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2.1.3 Surface energies consideration for nano and sub-nano beams. 
Scientists and engineers studying nano mechanical structures are now venturing into much 

smaller structures in the picometer(pm) or atomic range.  At this miniscule size, the beams 

under consideration could be composed of a minimum of three or four atomic layers as show 

in the Fig. (2.4) below.  

 

Figure 2-4:  Beam composed of four layers of atoms, two bulk layers and top and bottom  
surface layers. 

From the diagram it is noted that the bulk to surface volume are comparable and therefore 

the energies in the atoms at the surface will be comparable to the energies in the bulk.  In this 

case, the surface layers will have an influence on the natural frequencies of the beam.  The 

influence is bourne out the fact that the different atoms experience a different environment i.e.  

the surface is in contact with air and an atom on the other side, whereas the bulk material is 

surrounded by atoms. This leads to contact tractions in Eq. (2.16), at the interface between bulk 

and the surface layer. 

                  
                 Figure 2-5:  Internal shear forces, moments and external forces on the 

beam with traction forces at the surface. 

𝑇𝑇𝑧𝑧  – Normal Contact Traction  

𝑇𝑇𝑥𝑥  – Tangential Contact Traction 
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A section of the beam (𝑑𝑑𝑥𝑥) including the moments (𝑀𝑀𝑠𝑠), shear forces (𝑄𝑄𝑠𝑠), axial load( 𝑁𝑁), 

and the contact tractions (𝑇𝑇𝑥𝑥 and 𝑇𝑇𝑧𝑧), which are integrated over the surface, is shown in 

Fig. (2.5).  The sum of the forces and bending moments4 are,  

𝜕𝜕𝑀𝑀𝑠𝑠

𝜕𝜕𝑥𝑥
= 𝑄𝑄𝑠𝑠 + ∯𝑇𝑇𝑥𝑥𝑧𝑧𝑑𝑑𝑠𝑠 + �𝑁𝑁 𝜕𝜕𝑑𝑑

𝜕𝜕𝑥𝑥
�                                           (2.17) 

𝜕𝜕𝑄𝑄𝑠𝑠

𝜕𝜕𝑥𝑥
= −∯𝑇𝑇𝑧𝑧𝑑𝑑𝑠𝑠 + 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑

𝜕𝜕𝑡𝑡2
                                              (2.18) 

In order to capture more complex material behaviour, the Gurtin and Murdoch surface layer 

equilibrium equations [5] are introduced, Eqs. (2.19) and (2.20).  When the surface tractions 

are considered, a second-order tensor characterizing the surface stress is introduced [5,6]. The 

surface stress tensor is associated with the bulk stress tensor and the external loads by means of 

a force equilibrium equation created at the solid surface [5,6]. 

𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

− 𝑇𝑇𝑥𝑥 = 𝜌𝜌0
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

                                                    (2.19) 

𝜕𝜕𝜏𝜏𝑧𝑧𝑥𝑥
𝜕𝜕𝑥𝑥

− 𝑇𝑇𝑧𝑧 = 𝜌𝜌0
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑡𝑡2

                                                   (2.20) 

were the first terms in Eqs. (2.19) and (2.20) contain the derivative of the in-plane components 

of the surface stress tensor, 𝜏𝜏𝑥𝑥𝑥𝑥 and 𝜏𝜏𝑧𝑧𝑥𝑥.    

𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑜𝑜 + (2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜) 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

                                        (2.21a) 

𝑢𝑢𝑥𝑥 = −𝑧𝑧 𝜕𝜕𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥

                                                          (2.21b) 

𝜏𝜏𝑧𝑧𝑥𝑥 = 𝜏𝜏𝑜𝑜
𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑥𝑥

                                                              (2.21c) 

𝑢𝑢𝑧𝑧 = 𝑤𝑤(𝑥𝑥)                                                               (2.21d) 

The mechanical properties of the surface are contained in the constants 𝜇𝜇𝑜𝑜 and 𝜆𝜆𝑜𝑜, which are 

the Lamé's constants that arise in strain-stress relationships and can be determined using 

molecular dynamics (MD), 𝜏𝜏𝑜𝑜 is the residual surface stress and 𝜌𝜌0 is the surface density.  The 

constitutive equation for stress-strain can be written as, 

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜈𝜈𝜎𝜎𝑧𝑧𝑧𝑧                                                (2.22) 

where 𝜈𝜈 is the Poisson’s ratio and 𝜎𝜎𝑧𝑧𝑧𝑧 is the stress in the normal direction to 𝜎𝜎𝑥𝑥𝑥𝑥.  The strain is 

expressed as, 

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

                                                               (2.23) 
and the normal stress, 

𝜎𝜎𝑧𝑧𝑧𝑧 = 2𝑧𝑧
ℎ
�𝜏𝜏𝑜𝑜

𝜕𝜕2𝑑𝑑
𝜕𝜕𝑥𝑥2

− 𝜌𝜌𝑜𝑜
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑡𝑡2

�                                     (2.24) 

 
4 The bending moments and shear forces due to surface effects are denoted by “s” 
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Solving for 𝑇𝑇𝑥𝑥 and 𝑇𝑇𝑧𝑧 in Eqs. (2.19) and (2.20) and solving the moment equation in Eq. (2.25) 

below, the results can be substituted into Eqs. (2.17) and (2.18). 

𝑀𝑀 = −∫ 𝜎𝜎𝑥𝑥𝑥𝑥𝑑𝑑𝐴𝐴𝐴𝐴                                                     (2.25) 

This results in the moment and shear force equation for a nanobeam with axial load, small-scale 

and surface effects are conveyed in Eqs. (2.26a) and (2.26b) which are comparable to the 

equations developed by Juntarasaid et. al. [7]. 

𝑀𝑀𝑠𝑠 = 𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

−

𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

�                                                                                         (2.26a) 

𝑄𝑄𝑠𝑠 =   𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝜏𝜏𝑜𝑜𝑠𝑠∗
∂𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− 𝑁𝑁 ∂𝑑𝑑(𝑥𝑥,𝑡𝑡)
∂x

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

−

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)+
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

�                                                                          (2.26b) 

where,                   

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 = 𝐸𝐸𝐼𝐼 + (2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜)𝐼𝐼∗ −
2𝜈𝜈𝐼𝐼𝜏𝜏𝑜𝑜
𝐻𝐻

 

After solving for 𝑄𝑄𝑠𝑠in Eq. (2.17), differentiate 𝑄𝑄𝑠𝑠 with respect to x and substitute into 

Eq. (2.18) to derive the equation of motion for a nanobeam with , small-scale and surface 

effects.   

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ �̅�𝜇𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑡𝑡2
+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜

𝐻𝐻
𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

+

𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁 𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

+ (�̅�𝜇𝜌𝜌𝐴𝐴 + �̅�𝜇𝜌𝜌𝑜𝑜𝑠𝑠∗ )
𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

= 𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡)                             (2.27) 

The Young’s modulus of the bulk is 𝐸𝐸, 𝐼𝐼 is the moment of inertia of the bulk and 𝐼𝐼∗ is the 

perimeter moment of inertia of the surface.  The density of the bulk is 𝜌𝜌, 𝜌𝜌𝑜𝑜 is the surface 

density, 𝐴𝐴 is the cross-sectional area, 𝐻𝐻 is the height of the beam and 𝑠𝑠∗ = ∮𝑛𝑛𝑧𝑧2𝑑𝑑𝑠𝑠 is the cross-

sectional area/perimeter of the surface layer.  𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡) is the forcing function which is taken as 

𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡) = 0 for a nanobeam under free vibration.  
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Case 1: Topological scanning tool model. 

  
Figure 2-6:  Nanobeam with tip-mass and lateral linear spring. 

In bending and vibration, the nanobeam experiences displacements, velocity and 

acceleration which lead to forces and moments for every infinitesimal cross-section.  

Eqs. (2.26a), (2.26b) and (2.27) account for intermediate motion of the nanobeam for 0 < 𝑥𝑥 <

𝐿𝐿.  Different mechanical elements can be added to model actual applications.  In Fig. (2.6), a 

rectangular cross-section pin is included and acts as a torsional spring (𝑘𝑘1) at 𝑥𝑥 = 0.  The 

boundary conditions without surface effects are the following, 

  𝑤𝑤(0, 𝑡𝑡) = 0                                                       (2.28a) 

𝐸𝐸𝐼𝐼 𝑑𝑑
2𝑑𝑑(0,𝑡𝑡)
𝑑𝑑𝑥𝑥2

− �̄�𝜇2𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑘𝑘1
𝑑𝑑𝑑𝑑(0,𝑡𝑡)
𝑑𝑑𝑥𝑥

= 0                          (2.28b) 

𝑥𝑥 = 𝐿𝐿), taking into account the small-scale effects, the tip mass and the linear 

spring, the moment and shear boundary conditions can be expressed as, 

𝐸𝐸𝐼𝐼 𝑑𝑑
2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝑑𝑑𝑥𝑥2

+ �̄�𝜇2𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 0                                        (2.29a) 

𝐸𝐸𝐼𝐼 𝑑𝑑
3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝑑𝑑𝑥𝑥3

− �̄�𝜇2𝜌𝜌𝐴𝐴 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝑀𝑀𝑇𝑇𝑤𝑤(𝐿𝐿) + 𝑘𝑘2𝑤𝑤(𝐿𝐿) = 0                      (2.29b) 

where 𝑀𝑀𝑇𝑇 is the tip mass, 𝑘𝑘1 and 𝑘𝑘2 are the torsional and linear spring constants, respectively. 
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Case 2:  Sculpting and removal tool model. 

 
Figure 2-7:  Nanobeam with single degree spring-mass system. 

In this configuration the nanobeam has a linear spring attached to the tip and a mass attached 

to other end of the spring.  Once more, Eqs. (2.26a), (2.26b) and (2.27) are employed to derive 

the moment and shear boundary condition at 𝑥𝑥 = 0 and  𝑥𝑥 = 𝐿𝐿.  The boundary conditions with 

surface effects are, 

𝑤𝑤(0) = 0                              (2.30a) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

  − (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗) 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

−

𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� − 𝑘𝑘1
∂𝑑𝑑(𝑥𝑥,𝑡𝑡)
∂x

= 0                                                                (2.30b) 

At the free end (𝑥𝑥 = 𝐿𝐿), taking into account the small-scale effects, surface effects and the 

single degree of freedom spring-mass system, the moment and shear boundary conditions can 

be expressed as, 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝜏𝜏𝑜𝑜𝑠𝑠∗
∂𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− 𝑁𝑁 ∂𝑑𝑑(𝑥𝑥,𝑡𝑡)
∂x

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

 −

𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

− (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)+
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

� = 𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡)                                  (2.31b) 

In the system depicted in Fig. (2.7), 𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) in the shear boundary condition of Eq. (2.31b) 

is the force due to the compression or extension of the spring.  The linear spring force has the 

form of a spring constant times a displacement , 𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘2 ∗ 𝛾𝛾(𝐿𝐿, 𝑡𝑡), where 𝛾𝛾(𝐿𝐿, 𝑡𝑡) is the 

displacement calculated from solving a 2nd order differential equation of motion in 

Section 2.2.2 below.  
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2.1.4 Critical buckling load for nanobeams under axial load. 
The axial load is applied in both compression and tension and therefore we need to consider 

the magnitude of the force in order prevent failure.  The choice of axial load is made by 

referencing the applied load (𝑁𝑁) to the critical buckling load (𝑁𝑁𝑐𝑐𝑐𝑐) of the beam.   

𝑁𝑁 = 𝑘𝑘 ∙ 𝑁𝑁𝑐𝑐𝑐𝑐                                                          (2.32) 

where 𝑘𝑘 is the axial load fraction and allows the for the axial load to be selected in an acceptable 

range, 𝑘𝑘 = -0.8, -0.4, 0, +0.4, +0.8. To determine the critical buckling load of the system, the 

equation of motion Eq. (2.15) is written below with the terms involving time or derivative with 

respect to time set to zero. 

𝐸𝐸𝐼𝐼 𝜕𝜕
4𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥4

+ 𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥2

 − �̅�𝜇𝑁𝑁 𝜕𝜕
4𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥4

 = 0                                   (2.33) 

The 4th order differential equation of motion can be reduced to a 2nd order differential 

equation by integrating twice with respect to x, and after integration twice we derive an 

equation with two integration constants, 𝐸𝐸 and 𝐹𝐹. 

(𝐸𝐸𝐼𝐼 − �̅�𝜇𝑁𝑁) 𝜕𝜕
2𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥2

 + 𝑁𝑁𝑤𝑤(𝑥𝑥) = 𝐸𝐸𝑥𝑥 + 𝐹𝐹                                  (2.34) 

The LHS side of Eq. (2.34) has a homogeneous solution of the form, 
𝜕𝜕2𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥2

+ 𝜆𝜆2𝑤𝑤(𝑥𝑥) = 0                                             (2.35a) 

Let,                                           𝜆𝜆2 = 𝑁𝑁
(𝐸𝐸𝐼𝐼−𝜇𝜇�𝑁𝑁)    or    𝑁𝑁 = 𝜆𝜆2

(1+𝜇𝜇�𝜆𝜆2)𝐸𝐸𝐼𝐼                                 (2.35b) 

The solution for this second order differential equation of motion Eq. (2.34) has two 

solutions: 1) a homogenous solution and 2) a particular solution which is derived from the 

boundary conditions.  The total solution is a sum of the homogenous and particular solution 

and can be expressed as, 

𝑤𝑤(𝑥𝑥) = 𝐴𝐴𝑠𝑠𝐴𝐴𝑛𝑛(𝜆𝜆𝑥𝑥) + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠(𝜆𝜆𝑥𝑥) + 1
𝜆𝜆2

(𝐸𝐸𝑥𝑥 + 𝐹𝐹)                               (2.36) 

The constants can be determined to satisfy the displacement and moment boundary conditions.  
 
Displacement at 𝑥𝑥 = 0: 

𝑤𝑤(0) = 0                                                           (2.37) 
𝐴𝐴𝑠𝑠𝐴𝐴𝑛𝑛(0) + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠(0) + 1

𝜆𝜆2
(0 + 𝐹𝐹) = 0  

𝐹𝐹 = −𝜆𝜆2𝐵𝐵  

𝑤𝑤(𝑥𝑥) = 𝐴𝐴𝑠𝑠𝐴𝐴𝑛𝑛(𝜆𝜆𝑥𝑥) − 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠(𝜆𝜆𝑥𝑥) + 1
𝜆𝜆2

(𝐸𝐸𝑥𝑥−𝜆𝜆2𝐵𝐵)                    (2.38) 

Moment at 𝑥𝑥 = 0: 
𝐸𝐸𝐼𝐼 𝜕𝜕

2𝑑𝑑(0)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁 𝜕𝜕2𝑑𝑑(0)
𝜕𝜕𝑥𝑥2

− 𝑘𝑘1
∂𝑑𝑑(0)
∂𝑥𝑥

= 0                               (2.39) 
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(𝐸𝐸𝐼𝐼−𝜇𝜇�𝑁𝑁)
𝑘𝑘1

𝜕𝜕2𝑑𝑑(0)
𝜕𝜕𝑥𝑥2

− ∂𝑑𝑑(0)
𝜕𝜕𝑥𝑥

= 0  

�−𝐴𝐴𝜆𝜆2 sin(𝑥𝑥𝜆𝜆)−𝐵𝐵𝜆𝜆2 cos(𝑥𝑥𝜆𝜆)��1−𝛽𝛽2𝜇𝜇�
𝑘𝑘1

+ 𝐵𝐵𝜆𝜆 = 0  

𝐴𝐴 = 𝐵𝐵𝜆𝜆4�𝛽𝛽2𝜇𝜇−𝐵𝐵�−𝑘𝑘1𝐸𝐸
𝑘𝑘1𝜆𝜆3

  

𝑋𝑋(𝑥𝑥) = 𝐵𝐵𝛽𝛽2𝜆𝜆4 𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥𝜆𝜆)𝜇𝜇+�−𝐵𝐵𝜆𝜆4−𝑘𝑘1𝐸𝐸� 𝑠𝑠𝑖𝑖𝑛𝑛(𝑥𝑥𝜆𝜆)+𝑘𝑘1𝐵𝐵𝜆𝜆3 𝑐𝑐𝑜𝑜𝑠𝑠(𝑥𝑥𝜆𝜆)−𝑘𝑘1𝐵𝐵𝜆𝜆3+𝑘𝑘1𝐸𝐸𝑥𝑥𝜆𝜆
𝑘𝑘1𝜆𝜆3

                    (2.40) 

The general solution Eq. (2.40 ) is in terms of 𝐵𝐵 and 𝐸𝐸 alone.  This can then be inserted into 

the two boundary conditions for the moment and shear forces at 𝑥𝑥 = 𝐿𝐿.  There after the two 

equations Eqs. (2.42) and (2.44) can be solved for 𝐸𝐸.   The 𝐸𝐸 derived from the moment 

boundary condition can be equated to the 𝐸𝐸 derived from the shear boundary condition which 

leads to the characteristic equation for buckling of the system. 

Moment at 𝑥𝑥 = 𝐿𝐿: 
𝐸𝐸𝐼𝐼 𝜕𝜕

2𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁 𝜕𝜕2𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥2

= 0                                          (2.41) 

(𝐸𝐸𝐼𝐼 − �̅�𝜇𝑁𝑁)
𝜕𝜕2𝑤𝑤(𝐿𝐿)
𝜕𝜕𝑥𝑥2

= 0 

Then,                                 −−𝐵𝐵𝛽𝛽2𝜆𝜆6 sin(𝑥𝑥𝜆𝜆)𝜇𝜇−𝜆𝜆2�−𝐵𝐵𝜆𝜆4−𝑘𝑘1𝐸𝐸� sin(𝑥𝑥𝜆𝜆)−𝑘𝑘1𝐵𝐵𝜆𝜆5 cos(𝑥𝑥𝜆𝜆)
𝑘𝑘1𝜆𝜆3

= 0 

𝐸𝐸 = 𝐵𝐵𝛽𝛽2𝜆𝜆4 sin(𝐿𝐿𝜆𝜆)𝜇𝜇−𝐵𝐵𝜆𝜆4 sin(𝐿𝐿𝜆𝜆)+𝑘𝑘1𝐵𝐵𝜆𝜆3 cos(𝐿𝐿𝜆𝜆)
𝑘𝑘1 sin(𝐿𝐿𝜆𝜆)                           (2.42) 

Shear at 𝑥𝑥 = 𝐿𝐿: 
𝐸𝐸𝐼𝐼 𝜕𝜕

3𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥3

− �̅�𝜇𝑁𝑁 𝜕𝜕3𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥3

− 𝑁𝑁 ∂𝑑𝑑(𝐿𝐿)
∂x

= 0                               (2.43) 

𝜕𝜕3𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥3

− 𝑁𝑁
(𝐸𝐸𝐼𝐼−𝜇𝜇�𝑁𝑁)

∂𝑑𝑑(𝐿𝐿)
∂x

= 0   

𝜕𝜕3𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥3

− 𝜆𝜆2 ∂𝑑𝑑(𝐿𝐿)
∂x

= 0  

then,              −
𝛽𝛽2�𝐵𝐵𝛽𝛽

2𝜆𝜆2 cos(𝑥𝑥𝜆𝜆)𝜇𝜇
𝑘𝑘1

−𝐵𝐵𝜆𝜆sin(𝑥𝑥𝜆𝜆)−𝐵𝐵𝜆𝜆
2 cos(𝑥𝑥𝜆𝜆)
𝑘𝑘1

−𝐸𝐸cos(𝑥𝑥𝜆𝜆)
𝜆𝜆2

+ 𝐸𝐸
𝜆𝜆2
�

1−µ𝛽𝛽2
+ 𝐵𝐵𝛽𝛽2𝜆𝜆4 cos(𝑥𝑥𝜆𝜆)𝜇𝜇

𝑘𝑘1
−

𝐵𝐵𝜆𝜆3 sin(𝑥𝑥𝜆𝜆) − 𝐵𝐵𝜆𝜆4 cos(𝑥𝑥𝜆𝜆)
𝑘𝑘1

− 𝐸𝐸 cos(𝑥𝑥𝜆𝜆) = 0 

𝐸𝐸 = ((𝐵𝐵µ𝛽𝛽4−𝐵𝐵𝛽𝛽2)𝜆𝜆6+𝐵𝐵𝛽𝛽4𝜆𝜆4) cos(𝑥𝑥𝜆𝜆)𝜇𝜇+((𝑘𝑘1𝐵𝐵−𝑘𝑘1𝐵𝐵µ𝛽𝛽2)𝜆𝜆5

�(𝑘𝑘1µ𝛽𝛽2−𝑘𝑘1)𝜆𝜆2+𝑘𝑘1𝛽𝛽2� cos(𝑥𝑥𝜆𝜆)−𝑘𝑘1𝛽𝛽2
+

−𝑘𝑘1𝐵𝐵𝛽𝛽2𝜆𝜆3) sin(𝑥𝑥𝜆𝜆)+((𝐵𝐵−𝐵𝐵µ𝛽𝛽2)𝜆𝜆6−𝐵𝐵𝛽𝛽2𝜆𝜆4) cos(𝑥𝑥𝜆𝜆)
�(𝑘𝑘1µ𝛽𝛽2−𝑘𝑘1)𝜆𝜆2+𝑘𝑘1𝛽𝛽2� cos(𝑥𝑥𝜆𝜆)−𝑘𝑘1𝛽𝛽2

                         (2.44) 

After inserting the general solution into the boundary conditions, only three constants can 

be determined, and we therefore set 𝐵𝐵 = 1, and this results in a transcendental equation with 

roots corresponding to the various buckling modes.  The lowest root of Eq. (2.45) corresponds 

to the critical buckling load and the transcendental equation is, 
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−sin(𝜆𝜆𝐿𝐿)
𝑘𝑘1

+ 𝜆𝜆 cos(𝜆𝜆𝐿𝐿) = 0                                             (2.45) 

The lowest buckling load, 𝜆𝜆 = 0 is a trivial solution and therefore the transcendental 

equation is solved numerically for the non-trivial solutions.  When 𝜆𝜆 → 0 the transcendental 

equation is that of a simply supported beam, sin(𝜆𝜆𝐿𝐿) = 0 and when 𝜆𝜆 → ∞ the equation is that 

of a cantilever beam, 𝜆𝜆 cos(𝜆𝜆𝐿𝐿) = 0.  The 1st root of the equation is substituted into Eq. (2.35b) 

to obtain the critical buckling load of the system (𝑁𝑁𝑐𝑐𝑐𝑐). 

 
Figure 2-8:  Transcendental equation for buckling of a single degree spring mass system. 

Figure (2.8) shows the plots of the transcendental equations in buckling for varying torsional 

stiffness (𝑘𝑘1).  The blue graph  2  is for the lowest torsional spring ratio (𝑘𝑘1 = 10) and pink 

graph  1  highest spring ratio (𝑘𝑘1 = 106), i.e. a cantilever nanobeam.  The highest buckling 

load is associated with the pink graph, and this is the critical buckling load used in this 

investigation. 

 
 

  

 

Buckling frequency for a torsional cantilever 

1 

2 

λ – (radians) 
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2.2 Solution of the governing equations of motion by separation of 
variables. 
2.2.1 Solution of the governing equations for nanobeam. 

In free vibration the external transverse load is set to zero, 𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡) = 0, in Eq. (2.27) and 

the axial force 𝑁𝑁(𝑥𝑥, 𝑡𝑡), is kept the constant along the length of the beam.  This problem can be 

solved by obtaining the eigenvalues and taking the sum of the eigenfunctions.  The solution of 

the governing Eq. (2.27) is obtained by eigenfunction expansion of the displacement function 

using separation of variables.  The displacement functions 𝑤𝑤(𝑥𝑥, 𝑡𝑡) and 𝛾𝛾(𝐿𝐿, 𝑡𝑡) for the nanobeam 

and the tip-mass are dynamic and can be split into modal and temporal components. 

𝑤𝑤(𝑥𝑥, 𝑡𝑡) = ∑ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=1

                                              
(2.46a) 

𝛾𝛾(𝐿𝐿, 𝑡𝑡) = ∑ 𝑧𝑧𝑜𝑜𝑇𝑇𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=1

                                                    
(2.46b) 

�̈�𝑇𝑛𝑛(𝑡𝑡) + 𝜔𝜔𝑛𝑛2𝑇𝑇𝑛𝑛(𝑡𝑡) = 0
                                                       

(2.46c) 
Inserting Eq. (2.46a) into Eq. (2.27) and using Eq. (2.46c), we obtain the differential 

equation of motion for the beam in the modal domain5.   

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
4𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)

𝜕𝜕𝑥𝑥4
− �̅�𝜇𝑁𝑁 𝜕𝜕4𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)

𝜕𝜕𝑥𝑥4
+ 𝑁𝑁 𝜕𝜕2𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)

𝜕𝜕𝑥𝑥2
− 𝜏𝜏𝑜𝑜𝑠𝑠∗

𝜕𝜕2𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)
𝜕𝜕𝑥𝑥2

+

�̅�𝜇𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕4𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)

𝜕𝜕𝑥𝑥4
(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)

𝜕𝜕2𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕4𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

+ (�̅�𝜇𝜌𝜌𝐴𝐴 +

�̅�𝜇𝜌𝜌𝑜𝑜𝑠𝑠∗ )
𝜕𝜕4𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2
= 0                                                                                           (2.47a) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒𝑋𝑋′′′′𝑇𝑇 − �̅�𝜇𝑁𝑁𝑋𝑋′′′′𝑇𝑇 + �̅�𝜇𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′′′𝑇𝑇 + 𝑁𝑁𝑋𝑋′′𝑇𝑇 −  𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′𝑇𝑇 + (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝑋𝑋�̈�𝑇 +
2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝑋𝑋′′�̈�𝑇 + (�̅�𝜇𝜌𝜌𝐴𝐴 + �̅�𝜇𝜌𝜌𝑜𝑜𝑠𝑠∗ )𝑋𝑋′′�̈�𝑇 = 0                                                                   (2.47b) 

divide Eq. (2.47b) by 𝑇𝑇. 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝑋𝑋
′′′′𝑇𝑇
𝑇𝑇

− �̅�𝜇𝑁𝑁 𝑋𝑋′′′′𝑇𝑇
𝑇𝑇

+ 𝑁𝑁 𝑋𝑋′′𝑇𝑇
𝑇𝑇

+ �̅�𝜇𝜏𝜏𝑜𝑜𝑠𝑠∗
𝑋𝑋′′′′𝑇𝑇
𝑇𝑇

−  𝜏𝜏𝑜𝑜𝑠𝑠∗
𝑋𝑋′′𝑇𝑇
𝑇𝑇

+ (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝑋𝑋�̈�𝑇
𝑇𝑇

+
2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝑋𝑋′′�̈�𝑇
𝑇𝑇

+ (�̅�𝜇𝜌𝜌𝐴𝐴 + �̅�𝜇𝜌𝜌𝑜𝑜𝑠𝑠∗ )
𝑋𝑋′′�̈�𝑇
𝑇𝑇

= 0                                                                      (2.47c) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒𝑋𝑋′′′′ − �̅�𝜇𝑁𝑁𝑋𝑋′′′′ + 𝑁𝑁𝑋𝑋′′ + �̅�𝜇𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′′′ −  𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′ + (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝑋𝑋
�̈�𝑇
𝑇𝑇

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝑋𝑋′′ �̈�𝑇
𝑇𝑇

+

(�̅�𝜇𝜌𝜌𝐴𝐴 + �̅�𝜇𝜌𝜌𝑜𝑜𝑠𝑠∗ )𝑋𝑋′′
�̈�𝑇
𝑇𝑇

= 0                                                                                        (2.47d) 

solving Eq. (2.46c) for the angular velocity (𝜔𝜔𝑛𝑛2 = −�̈�𝑇 𝑇𝑇⁄ ) and substituting into Eq. (2.47d). 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒𝑋𝑋′′′′ − �̅�𝜇𝑁𝑁𝑋𝑋′′′′ + 𝑁𝑁𝑋𝑋′′ + �̅�𝜇𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′′′ −  𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′ + (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)(−𝜔𝜔𝑛𝑛2)𝑋𝑋 +
2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

(−𝜔𝜔𝑛𝑛2)𝑋𝑋′′ + (�̅�𝜇𝜌𝜌𝐴𝐴 + �̅�𝜇𝜌𝜌𝑜𝑜𝑠𝑠∗ )(−𝜔𝜔𝑛𝑛2)𝑋𝑋′′ = 0                                                  (2.47e) 

The natural frequency 𝜔𝜔𝑛𝑛 is the frequency of the 𝑛𝑛𝑡𝑡ℎ mode of vibration.  The differential 

equation in the modal mode then becomes 

𝑃𝑃 ∙ 𝑋𝑋′′′′ + Q ∙ 𝑋𝑋′′ − 𝑅𝑅 ∙ 𝑋𝑋 = 0                                          (2.48) 

 
5 The subscript “n” and input variables (x,t) are dropped for clarity of presentation. 
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where,          𝑃𝑃 =  1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈𝜏𝜏𝑐𝑐
𝛼𝛼
� 𝛼𝛼
𝐻𝐻
− 𝜇𝜇𝛽𝛽2 + �̅�𝜇𝜏𝜏𝑜𝑜𝑠𝑠∗ 

𝑄𝑄 = 2𝜈𝜈
𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4 + 𝜇𝜇 �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
�  𝑎𝑎𝑛𝑛4 + 𝛽𝛽2 − 𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
  

𝑅𝑅 = �1 + 𝜌𝜌𝑐𝑐
𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4  

and,             

𝛼𝛼 = 𝐼𝐼∗

𝐼𝐼
𝐻𝐻   ,   𝜏𝜏𝑐𝑐 = 𝜏𝜏0

𝐸𝐸𝐿𝐿
   ,   𝜇𝜇 = ��̄�𝜇

𝑖𝑖𝑖𝑖
�
2
𝐿𝐿2   ,   𝜌𝜌𝑐𝑐 = 𝜌𝜌𝑜𝑜

𝜌𝜌𝐿𝐿
 

𝑁𝑁𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐼𝐼
𝐿𝐿2
� 𝜋𝜋2

4+𝜇𝜇𝜋𝜋2
�   ,   𝑁𝑁 = 𝑘𝑘 ∙ 𝑁𝑁𝑐𝑐𝑐𝑐   ,   𝛽𝛽2 = 𝑁𝑁

𝐸𝐸𝐼𝐼
𝐿𝐿2   and   𝑎𝑎𝑛𝑛4 = 𝜌𝜌𝐴𝐴𝜔𝜔2

𝐸𝐸𝐼𝐼
 

The ratio alpha (𝛼𝛼) that depends on the cross-sectional geometry [9, 10] is introduced to 

determine change of bending stiffness due to surface effects on the local or classic bending 

stiffness. 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 = 𝐸𝐸𝐼𝐼 + (2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜)𝐼𝐼∗ − 2𝜈𝜈𝐼𝐼𝜏𝜏𝑜𝑜
𝐻𝐻

  
therefore, 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒−𝐸𝐸𝐼𝐼
𝐸𝐸𝐼𝐼

 =
�(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)−2𝜈𝜈𝜈𝜈𝜏𝜏𝑜𝑜𝛼𝛼 �

𝐸𝐸
∙ 𝛼𝛼
𝐻𝐻

= 𝛼𝛼 𝐻𝐻0
𝐻𝐻

  

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒−𝐸𝐸𝐼𝐼
𝐸𝐸𝐼𝐼

 =  α 𝐸𝐸𝑠𝑠

𝐸𝐸
1
𝐻𝐻

= α𝐻𝐻o
𝐻𝐻

  

where 𝛼𝛼 is a non-dimensional constant that is dependents on the structural geometry of the 

element, 𝐻𝐻 is a height of the size of the structure.  The parameter, 𝐻𝐻0 = 𝐸𝐸𝑠𝑠/𝐸𝐸 is a dimension 

at which the effect of the free surfaces become significant and for a square or circular cross-

section, 𝛼𝛼 = 8.  The quantity 𝐸𝐸𝑠𝑠 is the elastic constant of the surface of the nanobeam and 𝐸𝐸 is 

the corresponding elastic modulus of the bulk material. For 𝐻𝐻>> 𝐻𝐻0, the bulk properties 

dominate, but as 𝐻𝐻, approaches  𝐻𝐻0,  the effect of the surface cannot be ignored and 𝐻𝐻0 =

[(2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜) − 2𝜈𝜈𝐼𝐼𝜏𝜏𝑜𝑜/ 𝛼𝛼] /𝐸𝐸 is referred to as the intrinsic length for bending [9, 10].  The ratio 

above shows that if 𝛼𝛼𝐻𝐻0 ≅ 𝐻𝐻 the surface effects need to be considered for improved model 

accuracy.  

The frequency parameter 𝑎𝑎𝑛𝑛 is associated with the natural frequency 𝜔𝜔𝑛𝑛 of vibration, 𝛼𝛼 is a 

constant ratio that depends on the moment of inertia of  the cross-section geometry of the bulk 

and surface, 𝜏𝜏𝑐𝑐, 𝜇𝜇 , 𝛽𝛽2, and 𝜌𝜌𝑐𝑐 are the dimensionless constants corresponding to the residual 

stress, small-scale parameter, axial load and bulk to surface density ratio, respectively. The 

maximum axial load is taken to be 80% of the critical buckling load (𝑁𝑁𝑐𝑐𝑐𝑐) and therefore          

𝑘𝑘 = -0.8, -0.4, 0, +0.4, +0.8, with (-ve) being the tensile load and (+ve) compressive load. The 

general solutions of the differential equation Eq. (2.48) is given by, 

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐴𝐴𝑛𝑛cos𝑝𝑝2𝑛𝑛 + 𝐵𝐵𝑛𝑛sin𝑝𝑝2𝑛𝑛 + 𝐶𝐶𝑛𝑛cosh𝑝𝑝1𝑛𝑛 + 𝐷𝐷𝑛𝑛sinh𝑝𝑝1𝑛𝑛           (2.49) 

and, 
𝑇𝑇𝑛𝑛(𝑡𝑡) = 𝐸𝐸𝑛𝑛 𝑠𝑠𝐴𝐴𝑛𝑛 𝜔𝜔𝑛𝑛 𝑡𝑡 + 𝐹𝐹𝑛𝑛 𝐵𝐵𝐵𝐵𝑠𝑠 𝜔𝜔𝑛𝑛 𝑡𝑡                                       (2.50) 
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𝑝𝑝1𝑛𝑛 and 𝑝𝑝2𝑛𝑛 are the roots of the 4th order differential equation or the wave numbers, 

𝑝𝑝1𝑛𝑛 = �𝑄𝑄+�𝑄𝑄2+4𝑃𝑃𝑃𝑃
2𝑃𝑃

   and   𝑝𝑝2𝑛𝑛 = �𝑄𝑄−�𝑄𝑄2+4𝑃𝑃𝑃𝑃
2𝑃𝑃

                            (2.51) 

where 𝐴𝐴𝑛𝑛, 𝐵𝐵𝑛𝑛, 𝐶𝐶𝑛𝑛, and 𝐷𝐷𝑛𝑛 , are constants to be determined from the boundary conditions; and 

𝐸𝐸𝑛𝑛 and 𝐹𝐹𝑛𝑛 from the initial conditions. The characteristic equation can be used to determine the 

natural frequencies from the stipulated boundary conditions. 

2.2.2 Governing equations for spring-mass system. 
The spring mass system is a discreet system that is coupled to the tip of the nanobeam as 

indicated in Fig. (2.7).  This system is governed by 2nd order differential equation of motion 

Eq. (2.52a), 

𝑀𝑀𝑇𝑇
𝜕𝜕2𝑧𝑧(𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ 𝑘𝑘2𝑧𝑧(𝑡𝑡) = 𝑘𝑘2𝑤𝑤(𝐿𝐿, 𝑡𝑡)                                    (2.52a) 

𝑀𝑀𝑇𝑇
𝜕𝜕2𝑧𝑧(𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 𝑘𝑘2�𝑤𝑤(𝐿𝐿, 𝑡𝑡) − 𝑧𝑧(𝑡𝑡)�  
let,   
                                                            𝛾𝛾(𝐿𝐿, 𝑡𝑡) = 𝑤𝑤(𝐿𝐿, 𝑡𝑡) − 𝑧𝑧(𝑡𝑡)  

                                                            𝑧𝑧(𝑡𝑡)  = 𝑤𝑤(𝐿𝐿, 𝑡𝑡)  −  𝛾𝛾 (𝐿𝐿, 𝑡𝑡)  

      𝑀𝑀𝑇𝑇
𝜕𝜕2�𝑑𝑑(𝐿𝐿,𝑡𝑡) – 𝛾𝛾(𝐿𝐿,𝑡𝑡)�

𝜕𝜕𝑡𝑡2
= 𝑘𝑘2𝛾𝛾(𝐿𝐿, 𝑡𝑡) 

 𝑀𝑀𝑇𝑇
𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 𝑘𝑘2𝛾𝛾(𝐿𝐿, 𝑡𝑡) +𝑀𝑀𝑇𝑇
𝜕𝜕2𝛾𝛾(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

 

substitute Eqs. (2.46b) and (2.46c) dropping the subscript “n” and input variables (x,t) for 

clarity of presentation. Divide by 𝑀𝑀𝑇𝑇 and then by 𝑇𝑇. 

𝑀𝑀𝑇𝑇
𝜕𝜕2(𝑋𝑋𝑇𝑇)
𝜕𝜕𝑡𝑡2

= 𝑘𝑘2𝑧𝑧𝑜𝑜𝑇𝑇 + 𝑀𝑀𝑇𝑇
𝜕𝜕2(𝑧𝑧𝑜𝑜𝑇𝑇)
𝜕𝜕𝑡𝑡2

  

𝑀𝑀𝑇𝑇
𝑀𝑀𝑇𝑇
𝑋𝑋 �̈�𝑇
𝑇𝑇

= 𝑘𝑘2
𝑀𝑀𝑇𝑇
𝑧𝑧𝑜𝑜

𝑇𝑇
𝑇𝑇

+ 𝑀𝑀𝑇𝑇
𝑀𝑀𝑇𝑇
𝑧𝑧𝑜𝑜

�̈�𝑇
𝑇𝑇
  

𝑋𝑋(−𝜔𝜔𝑛𝑛2) = 𝑘𝑘2
𝑀𝑀𝑇𝑇
𝑧𝑧𝑜𝑜 + 𝑧𝑧𝑜𝑜(−𝜔𝜔𝑛𝑛2)  

𝑋𝑋(−𝜔𝜔𝑛𝑛2) = 𝑧𝑧𝑜𝑜 �
𝑘𝑘2
𝑀𝑀𝑇𝑇

− 𝜔𝜔𝑛𝑛2�  

𝑧𝑧𝑜𝑜 = 𝑋𝑋�−𝜔𝜔𝑛𝑛
2�

� 𝑘𝑘2𝑀𝑀𝑇𝑇
−𝜔𝜔𝑛𝑛

2�
                                                      (2.52b) 

Let 𝑚𝑚� = 𝜌𝜌𝐴𝐴 and multiply Eq. (2.52b) numerator and denominator  by 𝑚𝑚�/𝐸𝐸𝐼𝐼  
𝑧𝑧𝑜𝑜
𝑋𝑋

= �−𝜔𝜔𝑛𝑛
2�

� 𝑘𝑘2𝑀𝑀𝑇𝑇
−𝜔𝜔𝑛𝑛

2�

𝑚𝑚�  
𝐸𝐸𝐼𝐼�

𝑚𝑚�
𝐸𝐸𝐼𝐼�  

                                               (2.52c) 

𝑧𝑧𝑜𝑜
𝑋𝑋

= −
�𝑚𝑚���𝜔𝜔𝑛𝑛

2

𝐸𝐸𝜈𝜈 �

� 𝑚𝑚���𝑀𝑀𝑇𝑇
 𝑘𝑘2𝐸𝐸𝜈𝜈−

𝑚𝑚���𝜔𝜔𝑛𝑛
2

𝐸𝐸𝜈𝜈 �
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𝑧𝑧𝑜𝑜
𝑋𝑋

= − 𝑎𝑎𝑛𝑛4

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�

                                                       (2.52d) 

were the nondimensional parameters are:  𝜅𝜅2 = 𝑘𝑘2
𝐸𝐸𝐼𝐼

  ,  𝜂𝜂 = 𝑀𝑀𝑇𝑇
𝑚𝑚�𝐿𝐿

  and  𝑎𝑎𝑘𝑘4 =  𝜅𝜅2
𝜂𝜂

 .  We obtain the 

equation of motion of the tip mass in the modal domain and time domain:   

𝛾𝛾(𝐿𝐿, 𝑡𝑡) = 𝑎𝑎𝑛𝑛4𝑋𝑋(𝐿𝐿)

𝑎𝑎𝑘𝑘
4�1−𝑎𝑎𝑛𝑛

4

𝑎𝑎𝑘𝑘
4�
𝑇𝑇𝑛𝑛(𝑡𝑡)                                              (2.53) 

where 𝑎𝑎𝑘𝑘4 = 𝜅𝜅2 𝜂𝜂⁄  is frequency parameter for the spring-mass system; 𝜅𝜅2 and 𝜂𝜂 represent the 

linear spring constant ratio and  the tip-mass ratio, respectively.   
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Chapter 3  - Computation of the characteristic equation for 
the fundamental frequencies of the system 

3.1 Natural frequencies for a torsional cantilever beam (without 
surface effects). 

Discreet elements can be attached to the ends of the beam to influence the vibration profile 

of the beam.  For one end of the beam, 𝑥𝑥 = 0, a rectangular cross-section pin is used to keep 

the beam in a fixed position as indicated in Fig. (2.6).  The pin prevents lateral motion and 

allows angular motion depending on the material’s Hookean strength of the pin, resulting in a 

torsional spring (𝑘𝑘1) effect, see Fig. (3.1).  On the other end of the beam, 𝑥𝑥 = 𝐿𝐿,  a tip mass is 

attached such that the centre of gravity of the mass coincides with the tip of the beam (rotary 

effects of the mass are neglected).  A linear spring (𝑘𝑘2) is attached to the mass to simulate the 

contact force. 

  
Figure 3-1:  Geometry of the nano beam with concentrated mass and linear spring at 

free end. 

Therefore, the boundary condition at 𝑥𝑥 = 0 are zero lateral displacement in Eq. (3.1) and a 

state of equilibrium for the sum of moments in Eq. (3.2). 

  𝑤𝑤(0) = 0                                                               (3.1) 

𝐸𝐸𝐼𝐼 𝑑𝑑
2𝑑𝑑(0)
𝑑𝑑𝑥𝑥2

− �̄�𝜇2𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑘𝑘1
𝑑𝑑𝑑𝑑(0)
𝑑𝑑𝑥𝑥

= 0                                    (3.2) 

and at 𝑥𝑥 = 𝐿𝐿, the moment and shear boundary conditions can be expressed as, 

𝐸𝐸𝐼𝐼 𝑑𝑑
2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝑑𝑑𝑥𝑥2

+ �̄�𝜇2𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

= 0                                           (3.3) 

𝐸𝐸𝐼𝐼 𝑑𝑑
3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝑑𝑑𝑥𝑥3

− �̄�𝜇2𝜌𝜌𝐴𝐴 𝜕𝜕3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝑀𝑀𝑇𝑇
𝜕𝜕3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

+ 𝑘𝑘2𝑤𝑤(𝐿𝐿, 𝑡𝑡) = 0                    (3.4) 

The above boundary conditions are 2nd and 3rd order differential equations which are 

decomposed into the modal and temporal domains by separation of variables using the 

displacement function, 𝑤𝑤(𝑥𝑥, 𝑡𝑡) = ∑ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=1 . 
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Displacement at 𝑥𝑥 = 0: 

𝑤𝑤(0) = 0 

𝑋𝑋𝑛𝑛(0)𝑇𝑇𝑛𝑛(𝑡𝑡) = 0 

divide by 𝑇𝑇𝑛𝑛(𝑡𝑡) and therefore in the modal domain, 

𝑋𝑋𝑛𝑛(0) = 0                                                           (3.5) 
 
Moment at 𝑥𝑥 = 0: 

𝐸𝐸𝐼𝐼
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

− �̄�𝜇2𝜌𝜌𝐴𝐴
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑡𝑡2
− 𝑘𝑘1

𝜕𝜕𝑤𝑤(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0 

𝐸𝐸𝐼𝐼
𝜕𝜕2𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)

𝜕𝜕𝑥𝑥2
− �̄�𝜇2𝜌𝜌𝐴𝐴

𝜕𝜕2𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑘𝑘1
𝜕𝜕𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)

𝜕𝜕𝑥𝑥
= 0 

𝐸𝐸𝐼𝐼
𝜕𝜕2𝑋𝑋𝑛𝑛(𝑥𝑥)
𝜕𝜕𝑥𝑥2

𝑇𝑇𝑛𝑛(𝑡𝑡) − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋𝑛𝑛(𝑥𝑥)
𝜕𝜕2𝑇𝑇𝑛𝑛(𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑘𝑘1
𝜕𝜕𝑋𝑋𝑛𝑛(𝑥𝑥)
𝜕𝜕𝑥𝑥

𝑇𝑇𝑛𝑛(𝑡𝑡) = 0 

𝐸𝐸𝐼𝐼𝑋𝑋𝑛𝑛′′(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡) − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋𝑛𝑛(𝑥𝑥)�̈�𝑇𝑛𝑛(𝑡𝑡) − 𝑘𝑘1𝑋𝑋𝑛𝑛′ (𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡) = 0 

𝐸𝐸𝐼𝐼𝑋𝑋𝑛𝑛′′(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡) − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋𝑛𝑛(𝑥𝑥)�̈�𝑇𝑛𝑛(𝑡𝑡) − 𝑘𝑘1𝑋𝑋𝑛𝑛′ (𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡) = 0 

Insert �̈�𝑇𝑛𝑛(𝑡𝑡) = −𝜔𝜔𝑛𝑛2𝑇𝑇(𝑡𝑡), 

𝐸𝐸𝐼𝐼𝑋𝑋𝑛𝑛′′(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡) − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋𝑛𝑛(𝑥𝑥)�−𝜔𝜔𝑛𝑛2𝑇𝑇(𝑡𝑡)� − 𝑘𝑘1𝑋𝑋𝑛𝑛′ (𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡) = 0 

divide by 𝑇𝑇𝑛𝑛(𝑡𝑡) and reduce the equation to the modal domain, 

𝐸𝐸𝐼𝐼𝑋𝑋𝑛𝑛′′(𝑥𝑥) + �̄�𝜇2𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛2𝑋𝑋𝑛𝑛(𝑥𝑥) − 𝑘𝑘1𝑋𝑋𝑛𝑛′ (𝑥𝑥) = 0 

divide by 𝐸𝐸𝐼𝐼 and simplify to non-dimensional constants. 

𝑋𝑋𝑛𝑛′′(𝑥𝑥) + �̄�𝜇2
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛2

𝐸𝐸𝐼𝐼
𝑋𝑋𝑛𝑛(𝑥𝑥) −

𝑘𝑘1
𝐸𝐸𝐼𝐼
𝑋𝑋𝑛𝑛′ = 0 

𝑋𝑋𝑛𝑛′′(𝑥𝑥) + 𝜇𝜇𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝑥𝑥) − 𝜅𝜅1𝑋𝑋𝑛𝑛′ = 0                                        (3.6) 

Where 𝑎𝑎𝑛𝑛4  , 𝜇𝜇 , and 𝜅𝜅1 are the dimensionless constant for the frequency parameter, the           

small-scale parameter and torsional spring ratio. 

𝑎𝑎𝑛𝑛4 = 𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛
2

𝐸𝐸𝐼𝐼
   ,   𝜇𝜇 = ��̄�𝜇

𝑖𝑖𝑖𝑖
�
2
𝐿𝐿2   ,   𝜅𝜅1 = 𝑘𝑘1𝐿𝐿

𝐸𝐸𝐼𝐼
         (dimensionless constants) 

In a similar manner, the boundary conditions at 𝑥𝑥 = 𝐿𝐿 can be reduced to the modal domain with 

dimensionless constants.6 

 
Moment at 𝑥𝑥 = 𝐿𝐿: 

𝐸𝐸𝐼𝐼
𝑑𝑑2𝑤𝑤(𝑥𝑥, 𝑡𝑡)
𝑑𝑑𝑥𝑥2

− �̄�𝜇2𝜌𝜌𝐴𝐴
𝜕𝜕2𝑤𝑤(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑡𝑡2
= 0 

𝐸𝐸𝐼𝐼
𝑑𝑑2𝑋𝑋𝑇𝑇
𝑑𝑑𝑥𝑥2

− �̄�𝜇2𝜌𝜌𝐴𝐴
𝜕𝜕2𝑋𝑋𝑇𝑇
𝜕𝜕𝑡𝑡2

= 0 

 
6 The subscript “n” and input variables (x,t) are dropped for clarity of presentation. 
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𝐸𝐸𝐼𝐼𝑋𝑋′′𝑇𝑇 − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋�̈�𝑇 = 0 
𝐸𝐸𝐼𝐼𝑋𝑋′′𝑇𝑇 − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋(−𝜔𝜔𝑛𝑛2𝑇𝑇) = 0 

𝑋𝑋′′𝑇𝑇 + �̄�𝜇2
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛2

𝐸𝐸𝐼𝐼
𝑋𝑋𝑇𝑇 = 0 

𝑋𝑋′′ + 𝜇𝜇𝑎𝑎𝑛𝑛4𝑋𝑋 = 0                                                         (3.7) 
Shear at 𝑥𝑥 = 𝐿𝐿: 

𝐸𝐸𝐼𝐼
𝑑𝑑3𝑤𝑤(𝐿𝐿, 𝑡𝑡)
𝑑𝑑𝑥𝑥3

− �̄�𝜇2𝜌𝜌𝐴𝐴
𝜕𝜕3𝑤𝑤(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝑀𝑀𝑇𝑇
𝜕𝜕3𝑤𝑤(𝐿𝐿, 𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

+ 𝑘𝑘2𝑤𝑤(𝐿𝐿) = 0 

𝐸𝐸𝐼𝐼
𝑑𝑑3𝑋𝑋𝑇𝑇
𝑑𝑑𝑥𝑥3

− �̄�𝜇2𝜌𝜌𝐴𝐴
𝜕𝜕3𝑋𝑋𝑇𝑇
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝑀𝑀𝑇𝑇
𝜕𝜕3𝑋𝑋𝑇𝑇
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

+ 𝑘𝑘2𝑋𝑋𝑇𝑇 = 0 

𝐸𝐸𝐼𝐼𝑋𝑋′′′𝑇𝑇 − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋′�̈�𝑇 − 𝑀𝑀𝑇𝑇𝑋𝑋′�̈�𝑇 + 𝑘𝑘2𝑋𝑋𝑇𝑇 = 0 

𝐸𝐸𝐼𝐼𝑋𝑋′′′𝑇𝑇 − �̄�𝜇2𝜌𝜌𝐴𝐴𝑋𝑋′(−𝜔𝜔𝑛𝑛2𝑇𝑇) −𝑀𝑀𝑇𝑇𝑋𝑋′(−𝜔𝜔𝑛𝑛2𝑇𝑇) + 𝑘𝑘2𝑋𝑋𝑇𝑇 = 0 

𝐸𝐸𝐼𝐼𝑋𝑋′′′𝑇𝑇 + �̄�𝜇2𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛2𝑋𝑋′𝑇𝑇 + 𝑀𝑀𝑇𝑇𝜔𝜔𝑛𝑛2𝑋𝑋𝑇𝑇 + 𝑘𝑘2𝑋𝑋𝑇𝑇 = 0 
divide by 𝑇𝑇 and 𝐸𝐸𝐼𝐼, 

𝑋𝑋′′′ + �̄�𝜇2
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛2

𝐸𝐸𝐼𝐼
𝑋𝑋′ +

𝑀𝑀𝑇𝑇

𝜌𝜌𝐴𝐴
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛2

𝐸𝐸𝐼𝐼
𝑋𝑋 +

𝑘𝑘2
𝐸𝐸𝐼𝐼
𝑋𝑋 = 0 

𝑋𝑋′′′ + 𝜇𝜇𝑎𝑎𝑛𝑛4𝑋𝑋′ − 𝜂𝜂𝑎𝑎𝑛𝑛4𝑋𝑋 + 𝜅𝜅2𝑋𝑋 = 0                                    (3.8) 
where, 

𝜂𝜂 = 𝑀𝑀𝑇𝑇𝐿𝐿
𝜌𝜌𝐴𝐴

   and   𝜅𝜅2 = 𝑘𝑘2𝐿𝐿3

𝐸𝐸𝐼𝐼
                    (dimensionless constants) 

where 𝜂𝜂 is the tip mas ratio and 𝜅𝜅2 is the linear spring ratio. 

The general solution to the modal domain of the 4th order differential equation of motion 

Eq. (2.15) is expressed as, 

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐴𝐴𝑛𝑛cos𝑝𝑝2𝑛𝑛𝑥𝑥 + 𝐵𝐵𝑛𝑛𝑠𝑠𝐴𝐴𝑛𝑛𝑝𝑝2𝑛𝑛𝑥𝑥 + 𝐶𝐶𝑛𝑛𝐵𝐵𝐵𝐵𝑠𝑠ℎ𝑝𝑝1𝑛𝑛𝑥𝑥 + 𝐷𝐷𝑛𝑛𝑠𝑠𝐴𝐴𝑛𝑛ℎ𝑝𝑝1𝑛𝑛𝑥𝑥            (3.9) 

This order of equation requires four constants 𝐴𝐴𝑛𝑛 , 𝐵𝐵𝑛𝑛 , 𝐶𝐶𝑛𝑛 and 𝐷𝐷𝑛𝑛 which are determined from 

the boundary conditions were, the boundary conditions. 

 
Displacement at 𝑥𝑥 = 0: 

𝑋𝑋𝑛𝑛(0) = 0                                                        (3.10a) 

𝐴𝐴𝑛𝑛cos(0) + 𝐵𝐵𝑛𝑛sin(0) + 𝐶𝐶𝑛𝑛cosh(0) + 𝐷𝐷𝑛𝑛sinh(0) = 0 

𝐴𝐴𝑛𝑛(1) + 𝐶𝐶𝑛𝑛(1) = 0 

𝐴𝐴𝑛𝑛 = −𝐶𝐶𝑛𝑛 
therefore,  

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐵𝐵 sin(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(cosh(𝑝𝑝1𝑥𝑥) − cos(𝑝𝑝2𝑥𝑥)) + 𝐷𝐷 sinh(𝑝𝑝1𝑥𝑥)
𝑋𝑋𝑛𝑛′ (𝑥𝑥) = +𝑝𝑝2𝐵𝐵 cos(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(𝑝𝑝2 sin(𝑝𝑝2𝑥𝑥) + 𝑝𝑝1 sinh(𝑝𝑝1𝑥𝑥)) + 𝑝𝑝1𝐷𝐷 cosh(𝑝𝑝1𝑥𝑥)
𝑋𝑋𝑛𝑛′′(𝑥𝑥) = −𝑝𝑝22𝐵𝐵 sin(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(𝑝𝑝22 cos(𝑝𝑝2𝑥𝑥) + 𝑝𝑝12 cosh(𝑝𝑝1𝑥𝑥)) + 𝑝𝑝12𝐷𝐷 sinh(𝑝𝑝1𝑥𝑥)
𝑋𝑋𝑛𝑛′′′(𝑥𝑥) = −𝑝𝑝23𝐵𝐵 cos(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(𝑝𝑝13 sinh(𝑝𝑝1𝑥𝑥) − 𝑝𝑝23 sin(𝑝𝑝2𝑥𝑥)) + 𝑝𝑝13𝐷𝐷 cosh(𝑝𝑝1𝑥𝑥)
𝑋𝑋𝑛𝑛′′′′(𝑥𝑥) = 𝑝𝑝24𝐵𝐵 sin(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(𝑝𝑝14 cosh(𝑝𝑝1𝑥𝑥) − 𝑝𝑝24 cos(𝑝𝑝2𝑥𝑥)) + 𝑝𝑝14𝐷𝐷 sinh(𝑝𝑝1𝑥𝑥)

   (3.10b) 

 

Moment at 𝑥𝑥 = 0: 
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𝑋𝑋𝑛𝑛′′(0) + 𝜇𝜇𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(0) − 𝜅𝜅1𝑋𝑋𝑛𝑛′ (0) = 0                                     (3.11a) 

−𝑝𝑝22𝐵𝐵 sin(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(𝑝𝑝22 cos(𝑝𝑝2𝑥𝑥) + 𝑝𝑝12 cosh(𝑝𝑝1𝑥𝑥)) + 𝑝𝑝12𝐷𝐷 sinh(𝑝𝑝1𝑥𝑥) +
 𝜇𝜇𝑎𝑎𝑛𝑛4 [𝐵𝐵 sin(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(cosh(𝑝𝑝1𝑥𝑥) − cos(𝑝𝑝2𝑥𝑥)) + 𝐷𝐷 sinh(𝑝𝑝1𝑥𝑥)] −
 𝜅𝜅1[𝑝𝑝2𝐵𝐵 cos(𝑝𝑝2𝑥𝑥) + 𝐶𝐶(𝑝𝑝2 sin(𝑝𝑝2𝑥𝑥) + 𝑝𝑝1 sinh(𝑝𝑝1𝑥𝑥)) + 𝑝𝑝1𝐷𝐷 cosh(𝑝𝑝1𝑥𝑥)] = 0  

−𝑝𝑝22𝐵𝐵 sin(0) + 𝐶𝐶(𝑝𝑝22 cos(0) + 𝑝𝑝12 cosh(0)) + 𝑝𝑝12𝐷𝐷 sinh(0) +
 𝜇𝜇𝑎𝑎𝑛𝑛4 [𝐵𝐵 sin(0) + 𝐶𝐶(cosh(0) − cos(0)) + 𝐷𝐷 sinh(0)] −  𝜅𝜅1[𝑝𝑝2𝐵𝐵 cos(0) +
𝐶𝐶(𝑝𝑝2 sin(0) + 𝑝𝑝1 sinh(0)) + 𝑝𝑝1𝐷𝐷 cosh(0)] = 0  

−0 + 𝐶𝐶�𝑝𝑝22(1) + 𝑝𝑝12(1)� + 0 +  𝜇𝜇𝑎𝑎𝑛𝑛4�0 + 𝐶𝐶�(1) − (1)� + 0� −
 𝜅𝜅1[𝑝𝑝2𝐵𝐵(1) + C(0 + 0) + 𝑝𝑝1𝐷𝐷(1)] = 0  

𝐶𝐶�𝑝𝑝22(1) + 𝑝𝑝12(1)� − 𝜅𝜅1[𝑝𝑝2𝐵𝐵(1) + 𝑝𝑝1𝐷𝐷(1)] = 0 
therefore,   

𝐵𝐵 = �𝑝𝑝22+𝑝𝑝12�𝐶𝐶−𝑘𝑘1𝑝𝑝1𝐷𝐷
𝜅𝜅1𝑝𝑝2

                                                 (3.11b) 
and 𝐵𝐵 is substituted into Eq. (3.10b) and the general solution can be stated in terms of 𝐶𝐶 and 𝐷𝐷 

in Eq. (3.12), and procced to solve the boundary conditions at 𝑥𝑥 = 𝐿𝐿.  

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐶𝐶 �(cosh(𝑝𝑝1𝑥𝑥)− cos(𝑝𝑝2𝑥𝑥)) + �𝑝𝑝22+𝑝𝑝12�
𝜅𝜅1𝑝𝑝2

sin(𝑝𝑝2𝑥𝑥)� + 𝐷𝐷 �sinh(𝑝𝑝1𝑥𝑥)− 𝑝𝑝1
𝑝𝑝2

sin(𝑝𝑝2𝑥𝑥)�    (3.12) 
 
Moment at 𝑥𝑥 = 𝐿𝐿: 

𝑋𝑋𝑛𝑛′′(𝐿𝐿) + 𝜇𝜇𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝐿𝐿) = 0                                           (3.13a) 

−�
��𝑝𝑝22+𝑝𝑝12�𝐶𝐶−𝜅𝜅1𝑝𝑝1𝐷𝐷� sin(𝑝𝑝2𝐿𝐿)

𝜅𝜅1𝑝𝑝2
− 𝐶𝐶 cos(𝑝𝑝2𝐿𝐿) + 𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿) + 𝐶𝐶 cosh(𝑝𝑝1𝐿𝐿)�𝑎𝑎𝑛𝑛4µ −

𝑝𝑝2��𝑝𝑝22+𝑝𝑝12�𝐶𝐶−𝑘𝑘1𝑝𝑝1𝐷𝐷� sin(𝑝𝑝2𝐿𝐿)

𝜅𝜅1
+ 𝑝𝑝22𝐶𝐶 cos(𝑝𝑝2𝐿𝐿) + 𝑝𝑝12𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿) + 𝑝𝑝12𝐶𝐶 cosh(𝑝𝑝1𝐿𝐿) = 0  

After substituting the general solution and it is derivatives from Eq. (3.12) into Eq. (3.13a), the 

above equation is solved for 𝐶𝐶 which we rename 𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡, 

𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 = 𝐶𝐶 = 𝐶𝐶11
𝐶𝐶12

                                               (3.13b)  

𝐶𝐶11 = (𝜅𝜅1𝑝𝑝1𝐷𝐷 sin(𝑝𝑝2𝐿𝐿) − 𝜅𝜅1𝑝𝑝2𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿))𝑎𝑎𝑛𝑛4µ + 𝜅𝜅1𝑝𝑝1𝑝𝑝22𝐷𝐷 sin(𝑝𝑝2𝐿𝐿) +
𝜅𝜅1𝑝𝑝12𝑝𝑝2𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿)  

𝐶𝐶12 = �(𝑝𝑝22 + 𝑝𝑝12) sin(𝑝𝑝2𝐿𝐿) − 𝜅𝜅1𝑝𝑝2 cos(𝑝𝑝2𝐿𝐿) + 𝜅𝜅1𝑝𝑝2 cosh(𝑝𝑝1𝐿𝐿)�𝑎𝑎𝑛𝑛4µ +
(𝑝𝑝24 + 𝑝𝑝12𝑝𝑝22) sin(𝑝𝑝2𝐿𝐿) − 𝜅𝜅1𝑝𝑝23 cos(𝑝𝑝2𝐿𝐿) − 𝜅𝜅1𝑝𝑝12𝑝𝑝2 cosh(𝑝𝑝1𝐿𝐿)  

For the shear moment at 𝑥𝑥 = 𝐿𝐿 the same operations are applied as above to solve for 𝐶𝐶 =

𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒. 

Shear at 𝑥𝑥 = 𝐿𝐿: 

𝑋𝑋𝑛𝑛′′′(𝐿𝐿) + 𝜇𝜇𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛′ (𝐿𝐿) − 𝜂𝜂𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝐿𝐿) + 𝜅𝜅2𝑋𝑋𝑛𝑛(𝐿𝐿) = 0                           (3.14a) 
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−�𝑝𝑝2𝐶𝐶 sin(𝑝𝑝2𝐿𝐿) +
��𝑝𝑝22+𝑝𝑝12�𝐶𝐶−𝑘𝑘1𝑝𝑝1𝐷𝐷�cos(𝑝𝑝2𝐿𝐿)

𝜅𝜅1
+ 𝑝𝑝1𝐶𝐶 sinh(𝑝𝑝1𝐿𝐿) +

𝑝𝑝1𝐷𝐷 cosh(𝑝𝑝1𝐿𝐿)�𝑎𝑎𝑛𝑛4µ − �
��𝑝𝑝22+𝑝𝑝12�𝐶𝐶−𝜅𝜅1𝑝𝑝1𝐷𝐷� 𝑠𝑠𝑖𝑖𝑛𝑛(𝑝𝑝2𝐿𝐿)

𝜅𝜅1𝑝𝑝2
− 𝐶𝐶 𝐵𝐵𝐵𝐵𝑠𝑠(𝑝𝑝2𝐿𝐿) + 𝐷𝐷 𝑠𝑠𝐴𝐴𝑛𝑛ℎ(𝑝𝑝1𝐿𝐿) +

𝐶𝐶 𝐵𝐵𝐵𝐵𝑠𝑠ℎ(𝑝𝑝1𝐿𝐿)� 𝜂𝜂𝑎𝑎𝑛𝑛4 + 𝜅𝜅2 �
��𝑝𝑝22+𝑝𝑝12�𝐶𝐶−𝜅𝜅1𝑝𝑝1𝐷𝐷� sin(𝑝𝑝2𝐿𝐿)

𝜅𝜅1𝑝𝑝2
− 𝐶𝐶 cos(𝑝𝑝2𝐿𝐿) + 𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿) +

𝐶𝐶 cosh(𝑝𝑝1𝐿𝐿)� − 𝑝𝑝23𝐶𝐶 sin(𝑝𝑝2𝐿𝐿) −
𝑝𝑝22��𝑝𝑝22+𝑝𝑝12�𝐶𝐶−𝑘𝑘1𝑝𝑝1𝐷𝐷�cos(𝑝𝑝2𝐿𝐿)

𝜅𝜅1
+ 𝑝𝑝13𝐶𝐶 sinh(𝑝𝑝1𝐿𝐿) +

𝑝𝑝13𝐷𝐷 cosh(𝑝𝑝1𝐿𝐿) = 0  

𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒 = 𝐶𝐶 = 𝐶𝐶21
𝐶𝐶22

                                                 (3.14b) 

𝐶𝐶21 = (𝜅𝜅1𝑝𝑝1𝑝𝑝2𝐷𝐷 cos(𝑝𝑝2𝐿𝐿) − 𝜅𝜅1𝑝𝑝1𝑝𝑝2𝐷𝐷 cosh(𝑝𝑝1𝐿𝐿))𝑎𝑎𝑛𝑛4µ + (𝜅𝜅1𝑝𝑝1𝐷𝐷 sin(𝑝𝑝2𝐿𝐿) −

𝜅𝜅1𝑝𝑝2𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿))𝜂𝜂𝑎𝑎𝑛𝑛4 − 𝜅𝜅1𝑝𝑝1𝜅𝜅2𝐷𝐷 sin(𝑝𝑝2𝐿𝐿) + 𝜅𝜅1𝑝𝑝1𝑝𝑝23𝐷𝐷 cos(𝑝𝑝2𝐿𝐿) +

𝜅𝜅1𝜅𝜅2𝑝𝑝2𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿) + 𝜅𝜅1𝑝𝑝13𝑝𝑝2𝐷𝐷 cosh(𝑝𝑝1𝐿𝐿)  

𝐶𝐶22 = (𝜅𝜅1𝑝𝑝22 sin(𝑝𝑝2𝐿𝐿) + (𝑝𝑝23 + 𝑝𝑝12𝑝𝑝2) cos(𝑝𝑝2𝐿𝐿) + 𝜅𝜅1𝑝𝑝1𝑝𝑝2 sinh(𝑝𝑝1𝐿𝐿))𝑎𝑎𝑛𝑛4µ +
�(𝑝𝑝22 + 𝑝𝑝12) sin(𝑝𝑝2𝐿𝐿) − 𝜅𝜅1𝑝𝑝2 cos(𝑝𝑝2𝐿𝐿) + 𝜅𝜅1𝑝𝑝2 cosh(𝑝𝑝1𝐿𝐿)�𝜂𝜂𝑎𝑎𝑛𝑛4 +
(𝜅𝜅1𝑝𝑝24 − 𝜅𝜅2𝑝𝑝22 − 𝑝𝑝12𝜅𝜅2) sin(𝑝𝑝2𝐿𝐿) + (𝑝𝑝25 + 𝑝𝑝12𝑝𝑝23 + 𝜅𝜅1𝜅𝜅2𝑝𝑝2) cos(𝑝𝑝2𝐿𝐿) −
𝜅𝜅1𝑝𝑝13𝑝𝑝2 sinh(𝑝𝑝1𝐿𝐿) − 𝜅𝜅1𝜅𝜅2𝑝𝑝2 cosh(𝑝𝑝1𝐿𝐿)    

 

The dummy constants 𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 and 𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒 are in terms of 𝐷𝐷 alone, which can be set 

to unity.  The new constants are equated (𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 = 𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒) to generate the 

characteristics equation for the natural frequency of the system.  Therefore, the characteristic 

equation is,  

𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 − 𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒 = 0 
𝐶𝐶11 ∙ 𝐶𝐶22 − 𝐶𝐶21 ∙ 𝐶𝐶12

𝐶𝐶12 ∙ 𝐶𝐶22
 = 0 

𝐶𝐶11 ∙ 𝐶𝐶22 − 𝐶𝐶21 ∙ 𝐶𝐶12 = 0                                          (3.15) 
To find the roots of the characteristic equation Eq. (3.15), let 𝑅𝑅𝑛𝑛4 = 𝑎𝑎𝑛𝑛4𝐿𝐿4 , such that 𝑅𝑅𝑛𝑛 

becomes a non-dimensional constant, then 𝑎𝑎𝑛𝑛 = 𝑅𝑅𝑛𝑛/𝐿𝐿.  Therefore, 

�𝑃𝑃𝑛𝑛
𝐿𝐿
�
4

= 𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛
2

𝐸𝐸𝐼𝐼
                                                     (3.16) 

therefore, 

𝜔𝜔𝑛𝑛 = �𝑃𝑃𝑛𝑛
𝐿𝐿
�
2
�𝐸𝐸𝐼𝐼
𝜌𝜌𝐴𝐴

                                              (3.17) 

using the relationship in Eq. (3.17) 𝑅𝑅𝑛𝑛 can be determined numerically and thus the characteristic 

value for the nanobeam (𝑎𝑎𝑛𝑛4). 
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3.2 Natural frequencies for a cantilevered beam (with surface 
effects). 

Complex mechanical systems are usually made of several assemblies that are coupled 

together to function in unison.  These coupled systems will have their own unique natural 

frequencies and when acting together, they produce another set of universal natural frequencies.  

When the systems interact, the dynamics of each system behavior produces an external force 

that is experienced by the other systems.  In the previous section we added mechanical elements 

(e.g. tip mass and linear spring) and in this instance, we add a mechanical system in the form 

of a spring-mass as indicated in Fig. (3.2).    

 
Figure 3-2:  Geometry of the elastically restrained nanobeam with spring-mass at the 

free end. 

Therefore, the boundary condition at 𝑥𝑥 = 0 are zero lateral displacement and a state of 

equilibrium for the moments, 

  𝑤𝑤(𝑥𝑥) = 0                                                         (3.18) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

  − (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗) 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

−

𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� − 𝑘𝑘1
𝜕𝜕𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0                                                                  (3.19) 

and at 𝑥𝑥 = 𝐿𝐿, the moment and shear boundary conditions can be expressed as, 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗) 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

−

𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� = 0                                                                                      (3.20) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝜏𝜏𝑜𝑜𝑠𝑠∗
∂𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− 𝑁𝑁 ∂𝑑𝑑(𝑥𝑥,𝑡𝑡)
∂x

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

 +

𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

 − (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

� = 𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡)                                     (3.21) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 = 𝐸𝐸𝐼𝐼 + (2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜)𝐼𝐼∗ −
2𝜈𝜈𝐼𝐼𝜏𝜏𝑜𝑜
𝐻𝐻

 

The shear boundary condition contains a term 𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) that is the force due to the spring effect, 

𝛾𝛾(𝐿𝐿, 𝑡𝑡) 
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𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘2 ∙ 𝛾𝛾(𝐿𝐿, 𝑡𝑡)                                            (3.22) 

and the displacement function 𝛾𝛾(𝐿𝐿, 𝑡𝑡) is derived in detail in Section (2.2.2) and is express as, 
 

𝛾𝛾(𝐿𝐿, 𝑡𝑡) = 𝑎𝑎𝑛𝑛
4𝑋𝑋(𝐿𝐿)

𝑎𝑎𝑘𝑘
4�1−𝑎𝑎𝑛𝑛

4

𝑎𝑎𝑘𝑘
4�
𝑇𝑇𝑛𝑛(𝑡𝑡)                                          (3.23) 

Displacement at 𝑥𝑥 = 0: 
The general solution for the 4th order differential equations (Eq. (2.10), (2.33) and (2.47a)) is, 

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐴𝐴𝑛𝑛cos𝑝𝑝2𝑛𝑛𝑥𝑥 + 𝐵𝐵𝑛𝑛𝑠𝑠𝐴𝐴𝑛𝑛𝑝𝑝2𝑛𝑛𝑥𝑥 + 𝐶𝐶𝑛𝑛𝐵𝐵𝐵𝐵𝑠𝑠ℎ𝑝𝑝1𝑛𝑛𝑥𝑥 + 𝐷𝐷𝑛𝑛𝑠𝑠𝐴𝐴𝑛𝑛ℎ𝑝𝑝1𝑛𝑛𝑥𝑥            (3.24a) 

After inserting the value of 𝑥𝑥 = 0 into Eq. (3.24a), 

𝑋𝑋𝑛𝑛(0) = 𝐴𝐴𝑛𝑛cos𝑝𝑝2𝑛𝑛(0) + 𝐵𝐵𝑛𝑛𝑠𝑠𝐴𝐴𝑛𝑛𝑝𝑝2𝑛𝑛(0) + 𝐶𝐶𝑛𝑛𝐵𝐵𝐵𝐵𝑠𝑠ℎ𝑝𝑝1𝑛𝑛(0) + 𝐷𝐷𝑛𝑛𝑠𝑠𝐴𝐴𝑛𝑛ℎ𝑝𝑝1𝑛𝑛(0)       (3.24b) 

Substitute Eq. (3.24a) into the boundary condition Eq. (3.18), 

𝑋𝑋𝑛𝑛(0) = 0                                                          (3.25a) 

𝐴𝐴𝑛𝑛 = −𝐶𝐶𝑛𝑛                                                     (3.25b) 
substituting Eq. (3.25b) into Eq. (3.24a) the displacement function gives, 

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐵𝐵𝑛𝑛sin𝑝𝑝2𝑛𝑛(𝑥𝑥) + 𝐷𝐷𝑛𝑛sinh𝑝𝑝1𝑛𝑛(𝑥𝑥) + (cos𝑝𝑝2𝑛𝑛(𝑥𝑥) − cosh𝑝𝑝1𝑛𝑛(𝑥𝑥))𝐶𝐶𝑛𝑛            (3.25c) 
 
Moment at 𝑥𝑥 = 0: 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� −

𝑘𝑘1
∂𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0                                                                                                         (3.26a) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒𝑋𝑋′′𝑇𝑇 + 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝑋𝑋�̈�𝑇  − �̅�𝜇�𝑁𝑁𝑋𝑋′′𝑇𝑇 − (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝑋𝑋�̈�𝑇 − 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′𝑇𝑇� − 𝑘𝑘1𝑋𝑋′𝑇𝑇 = 0  

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒𝑋𝑋′′𝑇𝑇 + 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝑋𝑋(−𝜔𝜔𝑛𝑛2𝑇𝑇)  − �̅�𝜇[𝑁𝑁𝑋𝑋′′𝑇𝑇 − (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝑋𝑋(−𝜔𝜔𝑛𝑛2𝑇𝑇) − 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′𝑇𝑇] −
𝑘𝑘1𝑋𝑋′𝑇𝑇 = 0  

divide by 𝑇𝑇, 

�𝐸𝐸𝐼𝐼 + (2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜)𝐼𝐼∗ − 2𝜈𝜈𝐼𝐼𝜏𝜏𝑜𝑜
𝐻𝐻
� 𝑋𝑋′′ − 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜

𝐻𝐻
𝜔𝜔𝑛𝑛2𝑋𝑋 − �̅�𝜇[𝑁𝑁𝑋𝑋′′ + (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝜔𝜔𝑛𝑛2𝑋𝑋 −

𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′] − 𝑘𝑘1𝑋𝑋′ = 0  

divide by 𝐸𝐸𝐼𝐼 and non-dimensionalize the material constants, 

�1 + (2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

𝐼𝐼∗

𝐼𝐼
− 2𝜈𝜈𝐼𝐼

𝐻𝐻𝐼𝐼
𝜏𝜏𝑜𝑜
𝐸𝐸
�𝑋𝑋′′ − 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜

𝐻𝐻
𝜔𝜔𝑛𝑛
2

𝐸𝐸𝐼𝐼
𝑋𝑋 − �̅�𝜇 �𝑁𝑁

𝐸𝐸𝐼𝐼
𝑋𝑋′′ + �𝜌𝜌𝐴𝐴

𝐸𝐸𝐼𝐼
+ 𝜌𝜌𝑜𝑜𝑠𝑠∗

𝐸𝐸𝐼𝐼
�𝜔𝜔𝑛𝑛2𝑋𝑋 −

𝜏𝜏𝑜𝑜
𝐸𝐸
𝑠𝑠∗

𝐼𝐼
𝑋𝑋′′� −

𝑘𝑘1
𝐸𝐸𝐼𝐼
𝑋𝑋′ = 0  

�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑜𝑜
𝐸𝐸
� 𝛼𝛼
𝐻𝐻
� 𝑋𝑋′′ − �̅�𝜇 𝑁𝑁

𝐸𝐸𝐼𝐼
𝑋𝑋′′ + �̅�𝜇 𝜏𝜏𝑜𝑜

𝐸𝐸
𝑠𝑠∗

𝐼𝐼
𝑋𝑋′′ − 2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑜𝑜
𝜌𝜌
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛

2

𝐸𝐸𝐼𝐼
𝑋𝑋 − �̅�𝜇 𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛

2

𝐸𝐸𝐼𝐼
𝑋𝑋 −

�̅�𝜇 𝜌𝜌𝑜𝑜
𝜌𝜌
𝑠𝑠∗

𝐴𝐴
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛

2

𝐸𝐸𝐼𝐼
𝑋𝑋 − 𝑘𝑘1

𝐸𝐸𝐼𝐼
𝑋𝑋′ = 0  
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�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑜𝑜
𝐸𝐸
� 𝛼𝛼
𝐻𝐻
− �̅�𝜇 𝑁𝑁

𝐸𝐸𝐼𝐼
+  �̅�𝜇 𝜏𝜏𝑜𝑜

𝐸𝐸
𝑠𝑠∗

𝐼𝐼
� 𝑋𝑋′′ − �2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑜𝑜
𝜌𝜌
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛

2

𝐸𝐸𝐼𝐼
− �̅�𝜇 𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛

2

𝐸𝐸𝐼𝐼
−

�̅�𝜇 𝜌𝜌𝑜𝑜
𝜌𝜌
𝑠𝑠∗

𝐴𝐴
𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛

2

𝐸𝐸𝐼𝐼
� 𝑋𝑋 − 𝑘𝑘1

𝐸𝐸𝐼𝐼
𝑋𝑋′ = 0  

�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
− �̅�𝜇𝛽𝛽2 +  �̅�𝜇𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
� 𝑋𝑋′′ − �2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4 − �̅�𝜇 �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4� 𝑋𝑋 −

𝜅𝜅1𝑋𝑋′ = 0                                                                                                                (3.26b) 

𝛼𝛼 = 𝐼𝐼∗

𝐼𝐼
𝐻𝐻   ,   𝜏𝜏𝑐𝑐 = 𝜏𝜏0

𝐸𝐸𝐿𝐿
   ,   𝜇𝜇 = ��̄�𝜇

𝑖𝑖𝑖𝑖
�
2
𝐿𝐿2   ,   𝜌𝜌𝑐𝑐 = 𝜌𝜌𝑜𝑜

𝜌𝜌𝐿𝐿
 

𝑁𝑁𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐼𝐼
𝐿𝐿2
� 𝜋𝜋2

4+𝜇𝜇𝜋𝜋2
�   ,   𝑁𝑁 = 𝑘𝑘 ∙ 𝑁𝑁𝑐𝑐𝑐𝑐   ,   𝛽𝛽2 = 𝑁𝑁

𝐸𝐸𝐼𝐼
𝐿𝐿2   and   𝑎𝑎𝑛𝑛4 = 𝜌𝜌𝐴𝐴𝜔𝜔2

𝐸𝐸𝐼𝐼
 

Let,                                    Γ1 = 1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
− �̅�𝜇𝛽𝛽2 +  �̅�𝜇𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
 

and,                                    Γ2 = �2𝜈𝜈
𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐 − �̅�𝜇 �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
�� 𝑎𝑎𝑛𝑛4  

therefore,                                  Γ1𝑋𝑋′′ − Γ2𝑋𝑋 − 𝜅𝜅1𝑋𝑋′ = 0                                                  (3.26c) 

and, after using the general solution Eq. (3.25b) the constant 𝐵𝐵 is determined in terms of 𝐶𝐶 

and 𝐷𝐷, 

𝐵𝐵 = −𝑝𝑝1𝜅𝜅1𝐷𝐷+�−𝛤𝛤1𝑝𝑝22−𝑝𝑝12𝛤𝛤1�𝐶𝐶
𝜅𝜅1𝑝𝑝2

                                           (3.26d) 
and the general equation is, 

𝑋𝑋𝑛𝑛(𝑥𝑥) =
𝐶𝐶�𝛤𝛤1𝑝𝑝2 sin(𝑝𝑝2𝑥𝑥)+𝑝𝑝1

2𝛤𝛤1 sin(𝑝𝑝2𝑥𝑥)
𝑝𝑝2

�

𝜅𝜅1
+ 𝐷𝐷 �sinh(𝑝𝑝1𝑥𝑥) − 𝑝𝑝1 sin(𝑝𝑝2𝑥𝑥)

𝑝𝑝2
�+

𝐶𝐶(cosh(𝑝𝑝1𝑥𝑥) − cos(𝑝𝑝2𝑥𝑥))                                                   (3.26e) 
 

Moment at 𝑥𝑥 = 𝐿𝐿: 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥2

� = 0 (3.27a) 

The same procedures used above to calculate the modal domain function for the moment at 𝑥𝑥 =

𝐿𝐿 and leads to the following, 

�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
− 𝜇𝜇𝛽𝛽2 + �̅�𝜇𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
� 𝑋𝑋′′ − �2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4 − �̅�𝜇 �1 + �̅�𝜇𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4� 𝑋𝑋 = 0  

therefore,                                           Γ1𝑋𝑋′′ − Γ2𝑋𝑋 = 0                                                     (3.27b) 

From Eq. (3.28b) we determine the constant 𝐶𝐶 in terms of 𝐷𝐷 for the moment boundary condition 

at 𝑥𝑥 = 𝐿𝐿,  

𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 = 𝐶𝐶 = 𝐶𝐶11
𝐶𝐶12

                                            (3.27c) 

𝐶𝐶11 = (𝑝𝑝1𝜅𝜅1𝛤𝛤2 + 𝑝𝑝1𝛤𝛤1𝜅𝜅1𝑝𝑝22)𝐷𝐷 sin(𝑝𝑝2𝐿𝐿) + (𝑝𝑝12𝛤𝛤1𝜅𝜅1𝑝𝑝2 − 𝜅𝜅1𝑝𝑝2𝛤𝛤2)𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿)  

𝐶𝐶12 = �(𝛤𝛤1𝑝𝑝22 + 𝑝𝑝12𝛤𝛤1)𝛤𝛤2 + 𝛤𝛤12𝑝𝑝24 + 𝑝𝑝12𝛤𝛤12𝑝𝑝22� 𝑠𝑠𝐴𝐴𝑛𝑛(𝑝𝑝2𝐿𝐿) + (−𝜅𝜅1𝑝𝑝2𝛤𝛤2 −
𝛤𝛤1𝜅𝜅1𝑝𝑝23) 𝐵𝐵𝐵𝐵𝑠𝑠(𝑝𝑝2𝐿𝐿) + (𝜅𝜅1𝑝𝑝2𝛤𝛤2 − 𝑝𝑝12𝛤𝛤1𝜅𝜅1𝑝𝑝2) cosh(𝑝𝑝1𝐿𝐿)  

 
Shear at 𝑥𝑥 = 𝐿𝐿: 
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The shear boundary condition is reduced to the modal domain in Eq. (3.28) and Eq. (3.26e), 

with the constants 𝐶𝐶 and 𝐷𝐷, is used to solve for the constant 𝐶𝐶. 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒 𝜕𝜕
3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+ 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

𝜕𝜕3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

− 𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥

− 𝑁𝑁 𝜕𝜕𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥3

 +

𝜏𝜏𝑜𝑜𝑠𝑠∗
𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

− (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)
𝜕𝜕3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

� = 𝑘𝑘2 ∙ 𝛾𝛾(𝐿𝐿, 𝑡𝑡)                                            (3.28a) 

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒𝑋𝑋′′′𝑇𝑇 + 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

 𝑋𝑋′�̈�𝑇 − 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′𝑇𝑇 − 𝑁𝑁𝑋𝑋′𝑇𝑇 + �̅�𝜇�𝑁𝑁𝑋𝑋′′′𝑇𝑇 + 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′′𝑇𝑇 −

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝑋𝑋′�̈�𝑇� = 𝑘𝑘2 ∙
𝑎𝑎𝑛𝑛4𝑋𝑋𝑇𝑇

𝑎𝑎𝑘𝑘
4�1−𝑎𝑎𝑛𝑛

4

𝑎𝑎𝑘𝑘
4�

  

𝐸𝐸𝑒𝑒𝐼𝐼𝑒𝑒𝑋𝑋′′′𝑇𝑇 + 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜
𝐻𝐻

 𝑋𝑋′(−𝜔𝜔𝑛𝑛2𝑇𝑇) − 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′𝑇𝑇 − 𝑁𝑁𝑋𝑋′𝑇𝑇 + �̅�𝜇[𝑁𝑁𝑋𝑋′′′𝑇𝑇 + 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′′𝑇𝑇 −

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝑋𝑋′(−𝜔𝜔𝑛𝑛2𝑇𝑇)] = 𝑘𝑘2 ∙
𝑎𝑎𝑛𝑛4𝑋𝑋𝑇𝑇

𝑎𝑎𝑘𝑘
4�1−𝑎𝑎𝑛𝑛

4

𝑎𝑎𝑘𝑘
4�

  

�𝐸𝐸𝐼𝐼 + (2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜)𝐼𝐼∗ − 2𝜈𝜈𝐼𝐼𝜏𝜏𝑜𝑜
𝐻𝐻
� 𝑋𝑋′′′𝑇𝑇 + 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜

𝐻𝐻
 𝑋𝑋′(−𝜔𝜔𝑛𝑛2𝑇𝑇) − 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′𝑇𝑇 − 𝑁𝑁𝑋𝑋′𝑇𝑇 +

�̅�𝜇[𝑁𝑁𝑋𝑋′′′𝑇𝑇 + 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′′𝑇𝑇 − (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝑜𝑜𝑠𝑠∗)𝑋𝑋′(−𝜔𝜔𝑛𝑛2𝑇𝑇)]− 𝑘𝑘2
𝑎𝑎𝑛𝑛4𝑋𝑋𝑇𝑇

𝑎𝑎𝑘𝑘
4�1−𝑎𝑎𝑛𝑛

4

𝑎𝑎𝑘𝑘
4�

= 0  

divide by 𝑇𝑇 and 𝐸𝐸𝐼𝐼 then non-dimensionalize parameters, 

�𝐸𝐸𝐼𝐼 + (2𝜇𝜇𝑜𝑜 + 𝜆𝜆𝑜𝑜)𝐼𝐼∗ − 2𝜈𝜈𝐼𝐼𝜏𝜏𝑜𝑜
𝐻𝐻
� 𝑋𝑋′′′ − 2𝜈𝜈𝐼𝐼𝜌𝜌𝑜𝑜

𝐻𝐻
 𝜔𝜔𝑛𝑛2𝑋𝑋′ − 𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′ − 𝑁𝑁𝑋𝑋′ + �̅�𝜇[𝑁𝑁𝑋𝑋′′′ +

+𝜏𝜏𝑜𝑜𝑠𝑠∗𝑋𝑋′′′ + (𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛2 + 𝜌𝜌𝑜𝑜𝑠𝑠∗𝜔𝜔𝑛𝑛2)𝑋𝑋′] − 𝑘𝑘2
𝑎𝑎𝑛𝑛4𝑋𝑋

𝑎𝑎𝑘𝑘
4�1−𝑎𝑎𝑛𝑛

4

𝑎𝑎𝑘𝑘
4�

= 0  

�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
� 𝑋𝑋′′′ − 2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4𝑋𝑋′ − 𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
𝑋𝑋′ − 𝛽𝛽2𝑋𝑋′ + �̅�𝜇 �𝛽𝛽2𝑋𝑋′′′ +

𝜏𝜏𝑐𝑐
𝑠𝑠∗

𝐼𝐼
𝑋𝑋′′′ + �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4𝑋𝑋′� −

𝜅𝜅2𝑎𝑎𝑛𝑛4𝑋𝑋
𝜅𝜅2
𝜂𝜂 �1−

𝑎𝑎𝑛𝑛
4

𝑎𝑎𝑘𝑘
4�

= 0  

�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
� 𝑋𝑋′′′ − 2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4𝑋𝑋′ − 𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
𝑋𝑋′ − 𝛽𝛽2𝑋𝑋′ + �̅�𝜇 �𝛽𝛽2𝑋𝑋′′′ +

𝜏𝜏𝑐𝑐
𝑠𝑠∗

𝐼𝐼
𝑋𝑋′′′ + �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4𝑋𝑋′� −

𝜂𝜂𝑎𝑎𝑛𝑛4𝑋𝑋

�1−𝑎𝑎𝑛𝑛
4

𝑎𝑎𝑘𝑘
4�

= 0  

�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
� 𝑋𝑋′′′ − 2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4𝑋𝑋′ − 𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
𝑋𝑋′ − 𝛽𝛽2𝑋𝑋′ + �̅�𝜇 �𝛽𝛽2𝑋𝑋′′′ +

𝜏𝜏𝑐𝑐
𝑠𝑠∗

𝐼𝐼
𝑋𝑋′′′ − �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4𝑋𝑋′� −

𝜂𝜂𝑎𝑎𝑛𝑛4𝑋𝑋
1
𝑎𝑎𝑘𝑘
4�𝑎𝑎𝑘𝑘

4−𝑎𝑎𝑛𝑛4�
= 0                                                  (3.28b) 

The form of the last term in the equation above i.e. 1/(𝑎𝑎𝑘𝑘4 − 𝑎𝑎𝑛𝑛4), indicates that 𝑎𝑎𝑘𝑘4 ≠ 𝑎𝑎𝑛𝑛4 because 

that will lead to a divide by zero (1/0) or infinity which is notoriously referred to as resonance.  

This phenomenon arises when the nanobeam system frequency approaches the spring-mass 

system frequency, or vice-versa.  This knowledge is essential for NEMS and MEMS electro-

mechanical system performance improvement. 
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�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
� 𝑋𝑋′′′ − �̅�𝜇𝛽𝛽2𝑋𝑋′′′ + �̅�𝜇𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
𝑋𝑋′′′ ± 2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4𝑋𝑋′ − 𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
𝑋𝑋′ −

𝛽𝛽2𝑋𝑋′ + �̅�𝜇 �1 + 𝜌𝜌𝑐𝑐
𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4𝑋𝑋′ −  𝜂𝜂𝑎𝑎𝑘𝑘

4𝑎𝑎𝑛𝑛4𝑋𝑋
�𝑎𝑎𝑘𝑘

4−𝑎𝑎𝑛𝑛4�
= 0  

�1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)
𝐸𝐸

− 2𝜈𝜈
𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
− �̅�𝜇𝛽𝛽2 + �̅�𝜇𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
� 𝑋𝑋′′′ − �2𝜈𝜈

𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐𝑎𝑎𝑛𝑛4 − �̅�𝜇 �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
� 𝑎𝑎𝑛𝑛4� 𝑋𝑋′ −

�𝜏𝜏𝑐𝑐
𝑠𝑠∗

𝐼𝐼
+ 𝛽𝛽2�𝑋𝑋′ −  𝜂𝜂𝑎𝑎𝑘𝑘

4𝑎𝑎𝑛𝑛4𝑋𝑋
�𝑎𝑎𝑘𝑘

4−𝑎𝑎𝑛𝑛4�
= 0                                                                           (3.28c) 

Let,                                    
 Γ1 = 1 + �(2𝜇𝜇𝑜𝑜+𝜆𝜆𝑜𝑜)

𝐸𝐸
− 2𝜈𝜈

𝛼𝛼
𝜏𝜏𝑐𝑐�

𝛼𝛼
𝐻𝐻
− �̅�𝜇𝛽𝛽2 + �̅�𝜇𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
 

 Γ2 = �2𝜈𝜈
𝐴𝐴
𝐼𝐼∗

𝛼𝛼
𝜌𝜌𝑐𝑐 − �̅�𝜇 �1 + 𝜌𝜌𝑐𝑐

𝑠𝑠∗

𝐴𝐴
�� 𝑎𝑎𝑛𝑛4  

and,                                    
 Γ3 = 𝜏𝜏𝑐𝑐

𝑠𝑠∗

𝐼𝐼
+ 𝛽𝛽2 

therefore,                                  

Γ1𝑋𝑋′′′ − Γ2𝑋𝑋′ − Γ3𝑋𝑋′ −  𝜂𝜂𝑎𝑎𝑘𝑘
4𝑎𝑎𝑛𝑛4𝑋𝑋

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�

= 0                                   (3.28d) 

𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒 = 𝐶𝐶 = 𝐶𝐶21
𝐶𝐶22

  

𝐶𝐶21 = �(𝑝𝑝1𝜅𝜅1𝐷𝐷 sin(𝑝𝑝2𝐿𝐿) − 𝜅𝜅1𝑝𝑝2𝐷𝐷 sinh(𝑝𝑝1𝐿𝐿))𝜂𝜂𝑎𝑎𝑘𝑘4 + (𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤3 − 𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤2 −
𝑝𝑝1𝛤𝛤1𝜅𝜅1𝑝𝑝23)𝐷𝐷 cos(𝑝𝑝2𝐿𝐿) + (−𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤3 + 𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤2 −
𝑝𝑝13𝛤𝛤1𝜅𝜅1𝑝𝑝2)𝐷𝐷 cosh(𝑝𝑝1𝐿𝐿)�𝑎𝑎𝑛𝑛4 + �(−𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤3 + 𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤2 +
𝑝𝑝1𝛤𝛤1𝜅𝜅1𝑝𝑝23)𝐷𝐷 cos(𝑝𝑝2𝐿𝐿) + (𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤3 − 𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤2 +
𝑝𝑝13𝛤𝛤1𝜅𝜅1𝑝𝑝2)𝐷𝐷 cosh(𝑝𝑝1𝐿𝐿)�𝑎𝑎𝑘𝑘4  

𝐶𝐶22 = 𝑎𝑎𝑘𝑘4(𝛤𝛤1𝑝𝑝22 sin(𝑝𝑝2𝐿𝐿)𝜂𝜂𝑎𝑎𝑛𝑛4 + 𝑝𝑝12𝛤𝛤1 sin(𝑝𝑝2𝐿𝐿)𝜂𝜂𝑎𝑎𝑛𝑛4 − 𝜅𝜅1𝑝𝑝2 cos(𝑝𝑝2𝐿𝐿) 𝜂𝜂𝑎𝑎𝑛𝑛4 +
𝜅𝜅1𝑝𝑝2 cosh(𝑝𝑝1𝐿𝐿) 𝜂𝜂𝑎𝑎𝑛𝑛4 − 𝜅𝜅1𝑝𝑝22𝛤𝛤3 sin(𝑝𝑝2𝐿𝐿) + 𝜅𝜅1𝑝𝑝22𝛤𝛤2 sin(𝑝𝑝2𝐿𝐿) +
𝛤𝛤1𝜅𝜅1𝑝𝑝24 sin(𝑝𝑝2𝐿𝐿) − 𝛤𝛤1𝑝𝑝23𝛤𝛤3 cos(𝑝𝑝2𝐿𝐿) − 𝑝𝑝12𝛤𝛤1𝑝𝑝2𝛤𝛤3 cos(𝑝𝑝2𝐿𝐿) +
𝛤𝛤1𝑝𝑝23𝛤𝛤2 cos(𝑝𝑝2𝐿𝐿) + 𝑝𝑝12𝛤𝛤1𝑝𝑝2𝛤𝛤2 cos(𝑝𝑝2𝐿𝐿) + 𝛤𝛤12𝑝𝑝25 cos(𝑝𝑝2𝐿𝐿) +
𝑝𝑝12𝛤𝛤12𝑝𝑝23 cos(𝑝𝑝2𝐿𝐿) − 𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤3 sinh(𝑝𝑝1𝐿𝐿) + 𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤2 sinh(𝑝𝑝1𝐿𝐿) −
𝑝𝑝13𝛤𝛤1𝜅𝜅1𝑝𝑝2 sinh(𝑝𝑝1𝐿𝐿)) + 𝜅𝜅1𝑝𝑝22𝛤𝛤3 sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 − 𝜅𝜅1𝑝𝑝22𝛤𝛤2 sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 −
𝛤𝛤1𝜅𝜅1𝑝𝑝24 sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 + 𝛤𝛤1𝑝𝑝23𝛤𝛤3 cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 + 𝑝𝑝12𝛤𝛤1𝑝𝑝2𝛤𝛤3 cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 −
𝛤𝛤1𝑝𝑝23𝛤𝛤2 cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 − 𝑝𝑝12𝛤𝛤1𝑝𝑝2𝛤𝛤2 cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 − 𝛤𝛤12𝑝𝑝25 cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 −
𝑝𝑝12𝛤𝛤12𝑝𝑝23 cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4 + 𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤3 sinh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4 −
𝑝𝑝1𝜅𝜅1𝑝𝑝2𝛤𝛤2 sinh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4 + 𝑝𝑝13𝛤𝛤1𝜅𝜅1𝑝𝑝2 sinh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4   

𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 − 𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒 =0  
𝐶𝐶11
𝐶𝐶12

− 𝐶𝐶21
𝐶𝐶22

= 0  

𝐶𝐶11𝐶𝐶22 − 𝐶𝐶12𝐶𝐶21
𝐶𝐶12𝐶𝐶22

= 0  

𝐶𝐶11𝐶𝐶22 − 𝐶𝐶12𝐶𝐶21 = 0                                               (3.28e) 

The constants, 𝐶𝐶−𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 and 𝐶𝐶−𝑠𝑠ℎ𝑒𝑒𝑎𝑎𝑒𝑒 are equated and Eq. (3.28e) provides the 

eigenfrequencies of the system.  These eigenfrequencies are used to construct eigenfunctions 

for the different modes of vibration of the system. The calculation for the frequencies of 

vibration is detailed in subsequent Chapters.
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Chapter 4  – Paper 1: International Journal of Acoustics and 
Vibration 

 

4.1 Effects of Elastic Restraints on the Fundamental Frequency of 
Nonlocal Nanobeams with Tip Mass. 

In this Section, Case 1 is studied in more detail and the findings are published in the 

International Journal of Acoustics and Vibration, Vol. 24, No. 3, 2019.   

 

 
 
 
 
 



 61 



 62 



 63 



 64 



 65 



 66 



 67 



 68 



 69 



 70 



 71 

 



 72 

Chapter 5  – Paper 2: Microsystem Technologies 
 

5.1  Fundamental frequencies of a torsional cantilever nano beam 
for dynamic atomic force microscopy (dAFM) in tapping mode. 

In this Section, Case 2 is studied in more detail and the findings are published in Microsystem 

Technologies, Received: 15 May 2018 / Accepted: 1 October 2018. 
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Chapter 6 – Paper 3: MRS Advances 
 

6.1 Fundamental frequencies of a nano beam for atomic force 
microscopy (AFM) in tapping mode. 

In this Section, Case 2 is studied, and the findings are published in MRS Advances © 2018 

Materials Research Society,  11 Apr 2018. 
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Chapter 7  – Paper 4: Proceedings 26th International 
Congress on Sound and Vibration (ICSV26) 

 

7.1 Fundamental frequencies of a cantilevered nanobeam with 
arbitrary boundary conditions including surface effects.   

In this Section, Case 2 is studied in more detail with surface effects and the findings are 

published in the  Proceedings 26th International Congress on Sound and Vibration (ICSV26),  

7 – 11 July 2019, Montreal, Canada. 
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Chapter 8  – Paper 5: Computation of the natural 
frequencies and dynamic behavior of the 
nanobeam subject to various boundary 
conditions 

8.1 Natural frequencies of a torsional cantilever nanobeam with spring-
mass system and longitudinal linear spring, including buckling. 

 

In this Section, Case 2 is studied in more detail with the inclusion of a directed axial load 

induced via a  linear spring. (Sent for publication). 
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Frequencies of a torsional cantilever nanobeam with 
arbitrary boundary conditions under axial load 
including buckling. 

 

MALESELA K. MOUTLANA 

Department of Mechanical Engineering, Durban University of Technology, Durban, 4001, 
South Africa 
 

 Abstract. 
Torsional cantilevers are gaining prominence in the field of nano-manufacturing at atomic 

scale, nano-biomedicine, hydrodynamics, etc.  This class of cantilever (torsional) allows for 
greater control of the system and improved sensitivity of for scanning surfaces immersed in 
viscous environments.  This report is concerned with the motion of a beam used in dynamic 
atomic force microscopy (dAFM).  The AFM was discovered by Binnig and is used to scan the 
topographical features of samples at atomic level and this has led to the ability to manipulate 
and create structures with sub-nano building blocks.  Manipulating of biological or pliable 
samples in general has led to great advances in the biomedicine and hydrodynamic nano 
sciences.  These beams can be used to scan and modify samples by using high frequency 
oscillations to remove material or shape these structures at nanoscale.  The scanning process is 
achieved by contact as a result of tapping the sample surface to determine the topographical 
profile of the sample.  The tapping contact force can also be used to deform the sample surface 
and/or remove material using high frequency oscillations.    

A nanobeam with arbitrary boundary conditions is studied to model different configurations 
and the effects on the parameters of interest for application in dAFM.  Euler-Bernoulli theory 
is generally used to model beams and is exceedingly reliable at micro and micro level.  At nano 
level, the theory is not reliable, and the modelling must be augmented with other modern 
theories to accurately describe the transverse motion in vibration.  In this study Eringen’s 
theory of nonlocal continuum or stress gradient theory is incorporated to consider the small-
scale effects that are brought about due to size. 

The classic cantilever has a clamped boundary condition called the fixed end with zero 
freedom to allow rotary and linear motion.  In a torsional cantilever the boundary condition can 
be adjusted, by altering the torsional spring stiffness, to influence the natural frequencies.  The 
boundary condition at the free end is a transverse spring with the other end attached to a mass 
i.e. a spring-mass system.  A longitudinal linear spring is also attached to tip of the beam. 

The motions of the tip of the beam and the tip-mass is investigated to determine the 
frequency response and force interaction at the contact point with the sample.  The tip response 
frequency contains information about the maximum displacement amplitude and acceleration, 
and therefore the sample penetration depth and contact force.  

 
Keywords: atomic force microscope, tip mass, elastic restraints, vibrations, nanobeam, small 

scale effects.
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8.1.1 Introduction.  
Carbon nano tubes/material have assumed a prominent role in engineering structures.  

Advanced research has resulted in the creation of nano electromechanical systems (NEMS) 

which have led to application that improve many aspects of life including research into sub-

micron robotics, biomedicine, nano-resonator sensors, etc.  Vibrations of nanobeam have found 

expression in atomic force microscopy for scanning and manufacturing.   
The vibration characteristics of nano scale beams are examined within the Euler-Bernoulli 

framework underpinned by Eringen’s nonlocal continuum theory due to the size of the beam 

[1-12].  At macro and micro level classic bending theories are used with a satisfactory result.  

When the beams reach nanoscale dimensions, modern advanced theories are employed i.e. 

nonlocal continuum (stress gradient) and strain gradient theories are incorporated in the 

modelling [3-8].  These stress gradient theories include Eringen’s non-local theory (first order 

stress) and higher order theories like Reddy Beam Theory (RBT) and Levison Beam Theory 

(LBT).  Eringen’s theory postulates a unified groundwork for field equations of nonlocal 

continuum and provides a foundation for several stress-gradient theories [9]. Higher order 

stress/strain gradient theories are structured to allow the transverse stress at the surface 

approach zero as required.  Lu et. al. [11-12] and Gholami et. al. [10] investigated strain gradient 

theories for beams at nanoscale by considering only the local higher order strains. All these 

theories above provide very accurate results compared to Molecular Dynamics (MD) 

simulations. 

The nanobeam under investigation is restrained by a torsional spring to at 𝑥𝑥 = 0 and is 

typically referred to as a torsional cantilever.  This class of cantilevers have been shown to 

improve sensitivity in application for low aspect ratio beam according Sriramshankar and 

Jayanth [15], whereas comparable levels of sensitivity can be achieved by using long or high 

aspect ratio beams for conventional cantilevers.  Furthermore, high aspect ratio beams are 

disadvantageous for applications in viscous medium because of the associated damping.  

In the present investigation, the nanobeam carries a single degree lateral spring-mass system 

and a longitudinal constant force spring at  𝑥𝑥 = 𝐿𝐿.  This configuration is appropriate for 

manipulation of samples or structures at nanoscale i.e.  removal of atoms or molecules to 

functionally grade nanomaterials for specific behaviour.  The beam and spring-mass operate as 

a hammer and chisel, and the depth of penetration can be adjusted by tuning the elastic 

restraints to influence the vibration frequencies.  The vibration frequencies contain information 

about the dynamic behaviour for the entire system i.e. displacements of beam tip and mass, 
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velocity and acceleration.  The longitudinal spring provides a constant axial that is assumed to 

be directed in the horizontal direction for small deflection, in conformity with the theories 

mentioned above.   

8.1.2 Nanobeam with spring–mass and axial load at x = L. 
The nanobeam in this investigation is restrained by a torsional spring (𝑘𝑘1) at 𝑥𝑥 = 0  and is 

modelled as a cantilever with a flexible restraint in Fig. (8.1a) and (8.1b).  The stiffness of the 

spring can be adjusted to simulate an elastic beam support, with the spring providing a torsional 

force.  At the other end of the beam 𝑥𝑥 = 𝐿𝐿, a constant axial load 𝑁𝑁(𝑥𝑥, 𝑡𝑡) is applied in 

compression (+ve) and tension (-ve), and a single degree of freedom spring-mass system is 

attached.  The lateral linear spring stiffness (𝑘𝑘2) can be adjusted to achieve the desired 

penetration depth by using the information contained in the frequencies of vibration. 

 

 
 

(a)                                                                                     (b) 
Figure 8-1:  Elastically restrained beam with concentrated axial load and spring-mass 

attached at free end. 
The above diagrams are simplified in Fig. (8.2) to indicate the tip displacement of the 

nanobeam structure and the tip-mass.  The displacement of the beam is indicated by 𝑤𝑤(𝑥𝑥, 𝑡𝑡), 

where 𝑤𝑤(𝑥𝑥, 𝑡𝑡) contains the temporal domain and the modal domain function, which includes 

the sum of the infinite numbers of modes in the modal domain.  

 
Figure 8-2:  Deflection of the beam with constant axial load and spring-mass attached at 

free end. 
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The motion of the tip-mass is indicated by 𝑧𝑧(𝑡𝑡) and is dependent on time and the position 

of the spring-mass system along the beam is 0 < 𝑥𝑥 < 𝐿𝐿.  The amplitude of vibration for the 

tip-mass is 𝑧𝑧𝑜𝑜 and is coupled to the beam displacement.  Attached to the free end of the beam 

at 𝑥𝑥 = 𝐿𝐿 is a sculpting/scanning tool which can be modelled as a mass with a sharp tip, attached 

to the beam by means of a linear spring (𝑘𝑘2) and the centre of gravity of the tip mass coincides 

with the tip of the beam and this constitutes the spring-mass-system.  Fig. (8.3a) shows the 

dAFM tip approaching the sample and Fig. (8.3b) shows the dAFM interacting with the sample 

in a viscous medium.  

 
 
 
 
 
 
 

(a)                                                       (b) 
Figure 8-3:  Nanobeam probe with spring-mass approaching sample of interest 

(a) sample in open air (b) stubby probe in viscous fluid medium. 
During the scanning process, a contact force is produced between the tip mass and the 

sample to be profiled.  The spring-mass system is excited by the displacement  of the tip of the 

nanobeam during motion, generating a multiplicative effect on the displacement of the mass.  

In order to proceed with the solution, the constitutive relation of stress-strain for the beam based 

on nonlocal theory of elasticity can be expressed as, 

𝜎𝜎𝑥𝑥𝑥𝑥 − �̅�𝜇 𝜕𝜕2𝜎𝜎𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥2

= 𝐸𝐸ℰ𝑥𝑥𝑥𝑥                                                     (1) 

Where 𝐸𝐸 is the effective Young’s modulus, ℰ𝑥𝑥𝑥𝑥 is the longitudinal strain, �̅�𝜇 = 𝑒𝑒𝑜𝑜𝑙𝑙𝑖𝑖 is the small-

scale parameter with 𝑒𝑒𝑜𝑜 denoting a material constant and 𝑙𝑙𝑖𝑖 the characteristic length, which are 

determined using Molecular Dynamics(MD) simulations.  The nonlocal expression for moment 

𝑀𝑀(𝑥𝑥) is given by, 

𝑀𝑀(𝑥𝑥) – �̅�𝜇 𝜕𝜕2𝑀𝑀(𝑥𝑥)
𝜕𝜕𝑥𝑥2

= 𝐸𝐸𝐼𝐼 𝜕𝜕
2𝑑𝑑
𝜕𝜕𝑥𝑥2

                                                (2) 

where 𝐼𝐼 is the effective moment of inertia.  The equation of motion for a nonlocal nano beam 

undergoing transverse motion with axial load is given by Reddy [9] and can be expressed as, 

𝐸𝐸𝐼𝐼 𝜕𝜕
4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

+ 𝑁𝑁(𝑥𝑥, 𝑡𝑡) 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁(𝑥𝑥, 𝑡𝑡) 𝜕𝜕
4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

+ 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+

�̅�𝜇𝜌𝜌𝐴𝐴 𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

= 𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡)                                                                                   (3) 

and the equation of motion for the spring mass system at 𝑥𝑥 = 𝐿𝐿 is, 
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𝑀𝑀𝑇𝑇
𝜕𝜕2𝑧𝑧(𝑡𝑡)
𝜕𝜕𝑥𝑥2

 𝑘𝑘2𝑧𝑧(𝑡𝑡) =  𝑘𝑘2𝑤𝑤(𝐿𝐿, 𝑡𝑡)                                              (4) 

The density of the nanobeam is 𝜌𝜌 and 𝐴𝐴 is the cross-sectional area.  𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡) stands the 

external forcing function which is taken as 𝐹𝐹𝑜𝑜(𝑥𝑥, 𝑡𝑡) = 0 for a nanobeam undergoing free 

vibration.  The applied axial load, 𝑁𝑁(𝑥𝑥, 𝑡𝑡), is kept constant during vibration and simply referred 

to as 𝑁𝑁 in the equations below.  The dynamic motion of the tip mass is stated in Eq. (4) and the 

two discreet systems in Eqs. (3) and (4) are coupled through the motion of the tip 𝑤𝑤(𝐿𝐿, 𝑡𝑡). 

 
Figure 8-4:  Infinitesimal section of beam showing forces and moments for beam 

displaced from equilibrium position. 

An infinitesimal section (∆𝑥𝑥) of the nanobeam is indicated in Fig. (8.4) and by taking the sum 

of the forces and moments we derive the governing equations of motion. 

𝑀𝑀 = 𝐸𝐸𝐼𝐼 𝜕𝜕
2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

  − 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

�                                (5) 

𝑄𝑄 = 𝐸𝐸𝐼𝐼 𝜕𝜕
3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

+ 𝑁𝑁 𝜕𝜕𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− �̅�𝜇 �𝑁𝑁 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥3

  − 𝜌𝜌𝐴𝐴 𝜕𝜕3𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

�                (6) 

Using Eqs. (5) and (6) incorporating the nonlocal effects, the equation of motion for a nonlocal 

nanobeam in transverse vibration is, 

𝐸𝐸𝐼𝐼 𝜕𝜕
4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

+ 𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁 𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥4

− 𝜌𝜌𝐴𝐴 𝜕𝜕2𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

+ �̅�𝜇𝜌𝜌𝐴𝐴 𝜕𝜕4𝑑𝑑(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2

= 0          (7) 

 

8.1.3 Critical buckling due directed axial load at x = L. 
The axial load is applied in both compression and tension and the magnitude of the force in 

compression should be limited in order prevent buckling failure.  The choice of axial load is 

made by referencing the applied load (𝑁𝑁) to the critical buckling load (𝑁𝑁𝑐𝑐𝑐𝑐) of the nanobeam.   

𝑁𝑁 = 𝑘𝑘 ∙ 𝑁𝑁𝑐𝑐𝑐𝑐                                                           (8) 

where 𝑘𝑘 is the axial load fraction and allows the for the axial load to be selected in an 

appropriate range, 𝑘𝑘 = +0.8, +0.4,0,−0.4,−0.8.  To determine the critical buckling load of 
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the system, the equation of motion Eq. (7) is written below with the terms involving the time 

derivative equal to zero. 

𝐸𝐸𝐼𝐼 𝜕𝜕
4𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥4

+ 𝑁𝑁 𝜕𝜕2𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥2

 − �̅�𝜇𝑁𝑁 𝜕𝜕
4𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥4

 = 0                                  (9) 

The above Eq. (9) is a 4th order differential equation of motion can be reduced to a 2nd order 

differential equation by integrating twice with respect to x.  After integration twice we derive 

an equation with two integration constants, 𝐸𝐸 and 𝐹𝐹. 

(𝐸𝐸𝐼𝐼 − �̅�𝜇𝑁𝑁) 𝜕𝜕
2𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥2

+ 𝑁𝑁𝑤𝑤(𝑥𝑥) = 𝐸𝐸𝑥𝑥 + 𝐹𝐹                                     (10) 

The LHS side of Eq. (6) has a homogeneous solution of the form 
𝜕𝜕2𝑑𝑑(𝑥𝑥)
𝜕𝜕𝑥𝑥2

+ 𝜆𝜆2𝑤𝑤(𝑥𝑥) = 0                                              (11a) 

𝜆𝜆2 = 𝑁𝑁
(𝐸𝐸𝐼𝐼−𝜇𝜇�𝑁𝑁)    or    𝑁𝑁 = 𝜆𝜆2

(1+𝜇𝜇�𝜆𝜆2)𝐸𝐸𝐼𝐼                                    (11b) 

The solution for this second order differential equation of motion has two solutions, a 

homogenous and a particular solution which is derived from the boundary conditions.  The 

total solution is a sum of the homogenous and particular solution and can be expressed as, 

𝑤𝑤(𝑥𝑥) = 𝐴𝐴𝑠𝑠𝐴𝐴𝑛𝑛(𝜆𝜆𝑥𝑥) + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠(𝜆𝜆𝑥𝑥) + 1
𝜆𝜆2

(𝐸𝐸𝑥𝑥 + 𝐹𝐹)                              (12) 

The constants, 𝐴𝐴, 𝐵𝐵, 𝐸𝐸 and 𝐹𝐹 can be determined from the displacement and moment boundary 

conditions at  𝑥𝑥 = 0: 

𝑤𝑤(0) = 0                                                             (13) 

𝐸𝐸𝐼𝐼 𝜕𝜕
2𝑑𝑑(0)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁 𝜕𝜕2𝑑𝑑(0)
𝜕𝜕𝑥𝑥2

− 𝑘𝑘1
∂𝑑𝑑(0)
∂x

= 0                                   (14) 

and, the moment and shear forces at 𝑥𝑥 = 𝐿𝐿: 

𝐸𝐸𝐼𝐼 𝜕𝜕
2𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥2

− �̅�𝜇𝑁𝑁 𝜕𝜕2𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥2

= 0                                                  (15) 

𝐸𝐸𝐼𝐼 𝜕𝜕
3𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥3

− �̅�𝜇𝑁𝑁 𝜕𝜕3𝑑𝑑(𝐿𝐿)
𝜕𝜕𝑥𝑥3

− 𝑁𝑁 ∂𝑑𝑑(𝐿𝐿)
∂x

= 0                                        (16) 

After inserting the general solution into the boundary conditions, only three constants can 

be determined and the fourth constant is set to unity, and this results in a transcendental 

equation with roots corresponding to the various buckling modes.  The lowest root of the 

transcendental equation corresponds to the critical buckling load and is written as follows for 

a torsional cantilever, 

− sin(𝜆𝜆𝐿𝐿)
𝑘𝑘1

+ 𝛾𝛾 cos(𝜆𝜆𝐿𝐿) = 0                                               (17) 

for the lowest buckling load, 𝜆𝜆 = 0 is a trivial solution and therefore the transcendental 

equation is solved numerically for the non-trivial solutions.  When 𝑘𝑘1 → 0 the transcendental 
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equation is that of a simply supported beam, sin(𝜆𝜆𝐿𝐿) = 0 and when 𝑘𝑘1 → ∞ the equation is 

that of a cantilever beam, cos(𝜆𝜆𝐿𝐿) = 0 in concurrence with Reddy [10].  The 1st root of the 

equation is substituted into Eq. (11b) to obtain the critical buckling load of the system (𝑁𝑁𝑐𝑐𝑐𝑐). 

8.1.4 Method of solution for the governing equations. 
Solution of the governing Eq. (3) is obtained by eigenfunction expansion of the 

displacement function as, 

𝑤𝑤(𝑥𝑥, 𝑡𝑡) = ∑ 𝑋𝑋𝑛𝑛(𝑥𝑥)𝑇𝑇𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=1

                                              
(18a) 

𝑧𝑧(𝑡𝑡) = ∑ 𝑧𝑧𝑜𝑜𝑇𝑇𝑛𝑛(𝑡𝑡)∞
𝑛𝑛=1

                                                    
(18b) 

�̈�𝑇𝑛𝑛(𝑡𝑡) + 𝜔𝜔𝑛𝑛2𝑇𝑇𝑛𝑛(𝑡𝑡) = 0
                                                     

(18c) 
Inserting Eq. (18a) into Eq. (7) and using Eq. (18c), the differential equation of motion for 

the beam in the modal domain is obtained.  For the spring-mass, after inserting Eq. (18b) into 

Eq. (4) and using Eq. (18c), the equation of motion of the tip mass is reduced to the modal 

domain.  The natural frequency 𝜔𝜔𝑛𝑛 is the frequency of the 𝑛𝑛𝑡𝑡ℎ mode of vibration for the 

nanobeam which is directly related to the frequency parameter, 𝑎𝑎𝑛𝑛4 .  The differential equation 

in the modal mode becomes, 

𝑃𝑃 ∙ 𝑋𝑋′′′′ + Q ∙ 𝑋𝑋′′ − 𝑅𝑅 ∙ 𝑋𝑋 = 0                                          (19a) 
where, 

𝑃𝑃 =  1 − 𝜇𝜇𝛽𝛽2                                                     (19b) 

𝑄𝑄 = 𝜇𝜇𝑎𝑎𝑛𝑛4 + 𝛽𝛽2                                                    (19c) 

𝑅𝑅 = 𝑎𝑎𝑛𝑛4                                                                (19d) 

and,                        𝜇𝜇 = 𝜇𝜇�
𝐸𝐸𝐼𝐼
𝐿𝐿  ,  𝛽𝛽2 = 𝑁𝑁

𝐸𝐸𝐼𝐼
𝐿𝐿2   ,    𝑁𝑁 = 𝑘𝑘 ∙ 𝑁𝑁𝑐𝑐𝑐𝑐  ,  𝑁𝑁𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐼𝐼

𝐿𝐿2
� 𝜋𝜋2

4 + 𝜇𝜇�𝜋𝜋2
� 

                                                     𝑎𝑎𝑛𝑛4 = 𝜌𝜌𝐴𝐴𝜔𝜔𝑛𝑛
2

𝐸𝐸𝐼𝐼
  and  𝑎𝑎𝑛𝑛 = 𝑃𝑃𝑛𝑛

𝐿𝐿
 

The motion of the tip-mass can also be written in the modal domain and the modal displacement 

of the system is, 

𝑧𝑧(𝐿𝐿, 𝑡𝑡) = 𝑎𝑎𝑛𝑛4 X(𝐿𝐿) �1 − 𝑎𝑎𝑛𝑛4

𝑎𝑎𝑘𝑘
4��                                                (20) 

where 𝑎𝑎𝑘𝑘4 = 𝜅𝜅2 𝜂𝜂⁄  is frequency parameter for the spring-mass system; 𝜅𝜅2 and 𝜂𝜂 represent the 

linear spring constant ratio and the tip-mass ratio, respectively.   

The frequency parameter 𝑎𝑎𝑛𝑛 is associated with the circular frequency 𝜔𝜔𝑛𝑛 of vibration, 𝜇𝜇 and 

𝛽𝛽2 are the dimensionless constants corresponding to the small-scale parameter and axial load, 

respectively.  The general solutions of Eq. (19a) is given by, 

𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐴𝐴𝑛𝑛cos(𝑝𝑝2𝑛𝑛𝑥𝑥) + 𝐵𝐵𝑛𝑛sin(𝑝𝑝2𝑛𝑛𝑥𝑥) + 𝐶𝐶𝑛𝑛cosh(𝑝𝑝1𝑛𝑛𝑥𝑥) + 𝐷𝐷𝑛𝑛sinh(𝑝𝑝1𝑛𝑛𝑥𝑥)     (21) 
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where the wave numbers 𝑝𝑝1𝑛𝑛 and 𝑝𝑝2𝑛𝑛 are,  

𝑝𝑝1𝑛𝑛 = �𝑄𝑄+�𝑄𝑄2+4𝑃𝑃𝑃𝑃
2𝑃𝑃

      and      𝑝𝑝2𝑛𝑛 = �𝑄𝑄−�𝑄𝑄2+4𝑃𝑃𝑃𝑃
2𝑃𝑃

                              (22) 

After substituting 𝑃𝑃,  𝑄𝑄 and 𝑅𝑅  from Eqs. (19b), (19c) and (19d) into Eq. (22), the following 

two equations  are obtained. 

𝑝𝑝1𝑛𝑛 = � 𝛽𝛽2+𝜇𝜇𝑎𝑎𝑛𝑛4

2(1−𝛽𝛽2𝜇𝜇) + 1
2
�(𝛽𝛽2 )2+4𝑎𝑎𝑛𝑛4−2𝛽𝛽2𝜇𝜇𝑎𝑎𝑛𝑛4+𝜇𝜇2𝑎𝑎𝑛𝑛8

(1−𝛽𝛽2𝜇𝜇 )2
                                    (23) 

𝑝𝑝2𝑛𝑛 = � 𝛽𝛽2+𝜇𝜇𝑎𝑎𝑛𝑛4

2(1−𝛽𝛽2𝜇𝜇 )
− 1

2
�(−𝛽𝛽2 )2+4𝑎𝑎𝑛𝑛4−2𝛽𝛽2𝜇𝜇𝑎𝑎𝑛𝑛4+𝜇𝜇2𝑎𝑎𝑛𝑛8

(1− 𝛽𝛽2𝜇𝜇 )2
                                  (24) 

The constants 𝑝𝑝1𝑛𝑛 and 𝑝𝑝2𝑛𝑛 are derived from the roots of the differential equation, Eq. (19a).  

The first and second term in Eq. (19a) contain the axial load ratio (𝛽𝛽2) which implicitly 

included in 𝑃𝑃 and 𝑄𝑄 in Eq. (22) as indicated in Eqs. (23) and (24).  For the roots of the 

differential equation to be real, the internal radical  �𝑄𝑄2 + 4𝑃𝑃𝑅𝑅  must necessarily be positive 

and the external radical must also be real.  Since the axial load ratio (𝛽𝛽2) can be both positive 

(compressive) or negative (tensile), we must observe critical limits on the values of the axial 

load ratio (𝛽𝛽2) to ensure acceptable results.  Moreover, (1 − 𝛽𝛽2𝜇𝜇 ) ≠ 0 because that would 

cause the terms under the radical to tend towards infinity.  Furthermore,  if the internal radical 

is positive, the first term under the radical must the greater than the second term and positive, 

to avoid imaginary roots. 

The constants 𝐴𝐴𝑛𝑛 , 𝐵𝐵𝑛𝑛 , 𝐶𝐶𝑛𝑛 and 𝐷𝐷𝑛𝑛 are determined from the boundary conditions where, the 

boundary conditions at 𝑥𝑥 = 0  are zero displacement and moment and can be expressed as, 

𝑤𝑤(0) = 0                                                            (25a) 

𝐸𝐸𝐼𝐼 𝜕𝜕
2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑥𝑥2

 − (𝜌𝜌𝐴𝐴) 𝜕𝜕
2𝑑𝑑(0,𝑡𝑡)
𝜕𝜕𝑡𝑡2

� − 𝑘𝑘1
∂𝑑𝑑(0,𝑡𝑡)
∂x

= 0                   (25b) 

where 𝑘𝑘1 is the torsional spring constant.  Using Eqs. (18a) and (18b) the moment boundary 

condition can the transformed and written in the modal mode in Eqs. (26a) and (26b), where 

𝜅𝜅1 the torsional is spring constant ratio. 

𝑋𝑋(0) = 0                                                           (26a) 
(1 − 𝜇𝜇𝛽𝛽2)𝑋𝑋′′ + 𝜇𝜇𝑎𝑎𝑛𝑛4  𝑋𝑋 −  𝜅𝜅1𝑋𝑋′ = 0                                           (26b) 

At the free end, taking into consideration the small-scale effect, tip mass, the linear spring 

and axial load, the moment and shear boundary condition at Lx =  can be expressed as, 
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𝐸𝐸𝐼𝐼 𝜕𝜕
2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥2

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥2

 − (𝜌𝜌𝐴𝐴) 𝜕𝜕
2𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑡𝑡2

� = 0                        (27a) 

𝐸𝐸𝐼𝐼 𝜕𝜕
3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥3

− 𝑁𝑁 𝜕𝜕𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥

+ �̅�𝜇 �𝑁𝑁 𝜕𝜕3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥3

 − (𝜌𝜌𝐴𝐴) 𝜕𝜕
3𝑑𝑑(𝐿𝐿,𝑡𝑡)
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡2

� = 𝐹𝐹𝐿𝐿(𝐿𝐿, 𝑡𝑡)              (27b) 

where 𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘2 ∙ 𝑧𝑧(𝑡𝑡)  is force due to the spring-mass system and  𝑘𝑘2 is the linear spring 

constant ratio.  Equation (20) is the solution to Eq. (4) is used to represent 𝑧𝑧(𝑡𝑡) in the shear 

boundary.  Using Eqs. (18a) and (18b) in the moment and shear boundary conditions in 

Eq. (27a) and (27b), the transformed boundaries are written in the modal mode.  

(1 − 𝜇𝜇𝛽𝛽2)𝑋𝑋′′ + 𝜇𝜇𝑎𝑎𝑛𝑛4  𝑋𝑋 = 0                                  (28a) 

(1 − 𝜇𝜇𝛽𝛽2)𝑋𝑋′′′ + (𝜇𝜇𝑎𝑎𝑛𝑛4 + 𝛽𝛽2)𝑋𝑋′ − 𝑎𝑎𝑛𝑛4𝜂𝜂

�1−𝑎𝑎𝑛𝑛
4

𝑎𝑎𝑘𝑘
4�
𝑋𝑋 = 0                                  28b) 

where 𝜂𝜂 is the dimensionless tip-mass ratio which can be expressed as, 𝜂𝜂 = 𝑀𝑀𝑇𝑇 𝜌𝜌𝐴𝐴𝐿𝐿⁄ ,  and 𝑀𝑀𝑇𝑇 

is the mass which is specified as 𝜂𝜂 = 0.1 or 10% of the mass of the nanobeam.  Substitution of 

Eq. (21) into the boundary condition Eq. (25a), we obtain, 

𝐴𝐴𝑛𝑛 + 𝐶𝐶𝑛𝑛 = 0                                                      
 
(29) 

The general solution Eq. (30) can now be expressed as, 

 𝑋𝑋𝑛𝑛(𝑥𝑥) = 𝐵𝐵𝑛𝑛sin(𝑝𝑝2𝑛𝑛𝑥𝑥) + 𝐷𝐷𝑛𝑛sinh(𝑝𝑝1𝑛𝑛𝑥𝑥) + (cos (𝑝𝑝2𝑛𝑛𝑥𝑥) − cosh(𝑝𝑝1𝑛𝑛𝑥𝑥))𝐶𝐶𝑛𝑛        (30) 

substituting Eq. (30) into Eq. (25b) gives, 

𝐵𝐵𝑛𝑛 = 𝐶𝐶𝑛𝑛
𝜅𝜅1
�𝑝𝑝1𝑛𝑛

2

𝑝𝑝2
+ 𝑝𝑝2𝑛𝑛� 𝜇𝜇𝛽𝛽2 +   𝐶𝐶𝑛𝑛

𝜅𝜅1
�𝑝𝑝1𝑛𝑛

2

𝑝𝑝2
+ 𝑝𝑝2𝑛𝑛� −

𝑝𝑝1𝑛𝑛
𝑝𝑝2𝑛𝑛

𝐷𝐷𝑛𝑛                      (31) 

and substituting 𝐵𝐵𝑛𝑛 in Eq. (31) into Eq. (30) gives the general solution expressed in terms of 
constants 𝐶𝐶𝑛𝑛 and 𝐷𝐷𝑛𝑛 alone.  This result can be substituted into the moment boundary conditions 
Eq. (28a) at 𝑥𝑥 = 𝐿𝐿 to obtain, 

𝐶𝐶𝑛𝑛 ∙ Γ1𝑛𝑛 + 𝐷𝐷𝑛𝑛 ∙ Γ2𝑛𝑛 = 0                                                     (32) 
where, 

Γ1𝑛𝑛 = −𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝12 + 𝛽𝛽2𝜇𝜇2sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝12 − 𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝22 +
𝛽𝛽2𝜇𝜇2sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝22 + sin(𝑝𝑝2𝐿𝐿)𝑝𝑝12𝑝𝑝22 − 2𝛽𝛽2𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑝𝑝12𝑝𝑝22 +
𝛽𝛽4𝜇𝜇2sin(𝑝𝑝2𝐿𝐿)𝑝𝑝12𝑝𝑝22 + sin(𝑝𝑝2𝐿𝐿)𝑝𝑝24 − 2𝛽𝛽2𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑝𝑝24 +
𝛽𝛽4𝜇𝜇2sin(𝑝𝑝2𝐿𝐿)𝑝𝑝24 + 𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝2𝜅𝜅1 − 𝜇𝜇cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝2𝜅𝜅1 −
cosh(𝑝𝑝1𝐿𝐿)𝑝𝑝12𝑝𝑝2𝜅𝜅1 + 𝛽𝛽2𝜇𝜇cosh(𝑝𝑝1𝐿𝐿)𝑝𝑝12𝑝𝑝2𝜅𝜅1 − cos(𝑝𝑝2𝐿𝐿)𝑝𝑝23𝜅𝜅1 +
𝛽𝛽2𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑝𝑝23𝜅𝜅1  

Γ2𝑛𝑛 = (𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝1 − 𝜇𝜇sinh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝2 − sinh(𝑝𝑝1𝐿𝐿)𝑝𝑝12𝑝𝑝2 +
𝛽𝛽2𝜇𝜇sinh(𝑝𝑝1𝐿𝐿)𝑝𝑝12𝑝𝑝2 − sin(𝑝𝑝2𝐿𝐿)𝑝𝑝1𝑝𝑝22 +
𝛽𝛽2𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑝𝑝1𝑝𝑝22)𝜅𝜅1  

  where Γ1𝑛𝑛 and Γ1𝑛𝑛 are the dummy constants introduced from applying the moment boundary 

condition, Eq. (27a).  After substituting Eq. (31) into the shear boundary condition Eq. (28b) 

at 𝑥𝑥 = 𝐿𝐿, the transformed equation can be expressed as, 



117 

 

𝐶𝐶𝑛𝑛 ∙ Γ3𝑛𝑛 + 𝐷𝐷𝑛𝑛 ∙ Γ4𝑛𝑛 = 0                                                   (33) 
where,  

Γ3𝑛𝑛  = (𝑎𝑎𝑘𝑘4 − 𝑎𝑎𝑛𝑛4)𝑝𝑝2 �
𝜂𝜂cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘

4𝑎𝑎𝑛𝑛4

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�

− 𝜂𝜂cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑘𝑘
4𝑎𝑎𝑛𝑛4

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�

− 𝛽𝛽2sinh(𝑝𝑝1𝐿𝐿) −

𝜇𝜇sinh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝1 − sinh(𝑝𝑝1𝐿𝐿)𝑝𝑝13 + 𝛽𝛽2𝜇𝜇sinh(𝑝𝑝1𝐿𝐿)𝑝𝑝13 −
𝛽𝛽2sin(𝑝𝑝2𝐿𝐿)𝑝𝑝2 − 𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝2 + sin(𝑝𝑝2𝐿𝐿)𝑝𝑝23 − 𝛽𝛽2𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑝𝑝23 −
𝛽𝛽2cos(𝑝𝑝2𝐿𝐿)𝑝𝑝12

𝜅𝜅1
+ 𝛽𝛽4𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑝𝑝12

𝜅𝜅1
− 𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝12

𝜅𝜅1
+ 𝛽𝛽2𝜇𝜇2cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝12

𝜅𝜅1
−

𝜂𝜂sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘
4𝑎𝑎𝑛𝑛4𝑝𝑝12

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�𝑝𝑝2𝜅𝜅1

+ 𝛽𝛽2𝜂𝜂𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘
4𝑎𝑎𝑛𝑛4𝑝𝑝12

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�𝑝𝑝2𝜅𝜅1

− 𝜂𝜂sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘
4𝑎𝑎𝑛𝑛4𝑝𝑝2

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�𝜅𝜅1

+

𝛽𝛽2𝜂𝜂𝜇𝜇sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘
4𝑎𝑎𝑛𝑛4𝑝𝑝2

�𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4�𝜅𝜅1

− 𝛽𝛽2cos(𝑝𝑝2𝐿𝐿)𝑝𝑝22

𝜅𝜅1
+ 𝛽𝛽4𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑝𝑝22

𝜅𝜅1
− 𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝22

𝜅𝜅1
+

𝛽𝛽2𝜇𝜇2cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝22

𝜅𝜅1
+ cos(𝑝𝑝2𝐿𝐿)𝑝𝑝12𝑝𝑝22

𝜅𝜅1
− 2𝛽𝛽2𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑝𝑝12𝑝𝑝22

𝜅𝜅1
+

𝛽𝛽4𝜇𝜇2cos(𝑝𝑝2𝐿𝐿)𝑝𝑝12𝑝𝑝22

𝜅𝜅1
+ cos(𝑝𝑝2𝐿𝐿)𝑝𝑝24

𝜅𝜅1
− 2𝛽𝛽2𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑝𝑝24

𝜅𝜅1
+ 𝛽𝛽4𝜇𝜇2cos(𝑝𝑝2𝐿𝐿)𝑝𝑝24

𝜅𝜅1
�  

and,  

Γ4𝑛𝑛 = −𝜂𝜂sin(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘4𝑎𝑎𝑛𝑛4𝑝𝑝1 + 𝜂𝜂sinh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑘𝑘4𝑎𝑎𝑛𝑛4𝑝𝑝2 − 𝛽𝛽2cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘4𝑝𝑝1𝑝𝑝2 +
𝛽𝛽2cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑘𝑘4𝑝𝑝1𝑝𝑝2 + 𝛽𝛽2cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝1𝑝𝑝2 − 𝛽𝛽2cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝1𝑝𝑝2 −
𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘4𝑎𝑎𝑛𝑛4𝑝𝑝1𝑝𝑝2 + 𝜇𝜇cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑘𝑘4𝑎𝑎𝑛𝑛4𝑝𝑝1𝑝𝑝2 + 𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛8𝑝𝑝1𝑝𝑝2 −
𝜇𝜇cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛8𝑝𝑝1𝑝𝑝2 + cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑘𝑘4𝑝𝑝13𝑝𝑝2 − 𝛽𝛽2𝜇𝜇cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑘𝑘4𝑝𝑝13𝑝𝑝2 −
cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝13𝑝𝑝2 + 𝛽𝛽2𝜇𝜇cosh(𝑝𝑝1𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝13𝑝𝑝2 + cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘4𝑝𝑝1𝑝𝑝23 −
𝛽𝛽2𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑘𝑘4𝑝𝑝1𝑝𝑝23 − cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝1𝑝𝑝23 + 𝛽𝛽2𝜇𝜇cos(𝑝𝑝2𝐿𝐿)𝑎𝑎𝑛𝑛4𝑝𝑝1𝑝𝑝23  

where Γ3𝑛𝑛 and Γ4𝑛𝑛 are the dummy constants introduced from applying the shear boundary 

condition, Eq. (28b) at 𝑥𝑥 = 𝐿𝐿.  The results from the moment and shear boundary conditions 

given in Eqs. (32) and (33) can be expressed in matrix form as, 

�Γ1𝑛𝑛 Γ2𝑛𝑛
Γ3𝑛𝑛 Γ4𝑛𝑛

� �𝐶𝐶𝑛𝑛𝐷𝐷𝑛𝑛
� = �00�                                       (34) 

and the characteristic equation can be obtained from the determinant of Eq. (34) as, 

Γ1𝑛𝑛 ∙ Γ4𝑛𝑛 − Γ2𝑛𝑛 ∙ Γ3𝑛𝑛 = 0                                       (35) 

The characteristic Eq. (35) can be solved numerically to compute the roots where 𝜅𝜅1, 𝜅𝜅2, 𝜂𝜂, 4
na

, 𝛽𝛽2, 𝜇𝜇 and 𝑎𝑎𝑘𝑘4 are the dimensionless constants for the nanobeam and the spring-mass system. 

8.1.5. Frequency equations for arbitrary boundary conditions. 
The structure shown in Fig. (8.1), indicate a torsional spring (𝜅𝜅1) at 𝑥𝑥 = 0.  When the spring 

constant approaches zero (𝜅𝜅1 → 0), the restraint at 𝑥𝑥 = 0 behaves as that of a pin support where 

there is zero resisting moment and the nanobeam spins freely.  When the spring constant is not 

zero (𝜅𝜅1 ≠ 0), there is a resisting moment at the boundary and consequently the torsional spring 

influences the vibrations of the system.  On the other hand, when the spring constant 
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approaches infinity (𝜅𝜅1 → ∞) the support is rigid, and the boundary condition is that of a 

cantilevered beam.  In Eq. (31), when 𝜅𝜅1 → ∞ the first two terms vanish in 𝐵𝐵𝑛𝑛 above, and 

consequently in the characteristic equation too. 

At 𝑥𝑥 = 𝐿𝐿, a tip mass is attached to the beam by means of a transverse linear spring.  When the 

linear spring constant is zero (𝜅𝜅2 → 0) the effect of the tip mass is not realized at the tip of the 

beam and therefore the tip-mass has no influence on the natural frequencies.  

Table 8.1:  Classical boundary condition derived from the system. 

Boundary Conditions  𝜅𝜅1 𝜅𝜅2 𝜂𝜂 
Clamped-Free CF  0 or  0 

Simply supported-Free SF 0 0 or  0 
Simply supported SS 0   

Clamped-Simply supported CS    

However, as the linear spring constant increases (𝜅𝜅2 → ∞), the effect of the tip-mass 

become pronounced and when 𝜅𝜅2 is extremely large, the tip-mass is rigidly attached to the tip 

of the nanobeam.  By varying the torsional spring constant, linear spring constant and tip-mass 

ratio, we derive the classic boundary conditions shown in Table 8.1.  The frequency equation 

for the total system including torsional spring and spring-mass is given below in Eq. (39).  By 

applying the limiting value in Table (8.1) the following characteristic equations are derived for 

the boundary conditions. 

(i) Clamped-Free (CF) with constant axial load: 

sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) � 2𝛽𝛽
2

𝑝𝑝1𝑝𝑝2
− 𝑝𝑝2

𝑝𝑝1
+ 𝑝𝑝1

𝑝𝑝2
� + cosh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) �𝛽𝛽2 � 1

𝑝𝑝22
− 1

𝑝𝑝12
� − 2� −

𝛽𝛽2 � 1
𝑝𝑝22

+ 1
𝑝𝑝12
� − 𝑝𝑝22

𝑝𝑝12
− 𝑝𝑝12

𝑝𝑝22
= 0                      (36) 

 
(ii) Simply supported-Free (SF): 

1
𝜅𝜅1
��𝑝𝑝2 + 𝑝𝑝12

𝑝𝑝2
� cosh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) + �− 𝑝𝑝22

𝑝𝑝1
− 𝑝𝑝1� sinh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿)� + �𝑝𝑝1

𝑝𝑝2
−

𝑝𝑝2
𝑝𝑝1
� sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) − 2 cosh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) − 𝑝𝑝22

𝑝𝑝12
− 𝑝𝑝12

𝑝𝑝22
= 0                                           (37) 

 
(iii) Clamped-Simply supported (CS): 

1
𝜅𝜅1𝜂𝜂

�− 𝑝𝑝1𝑝𝑝23 cosh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿)
𝑎𝑎𝑛𝑛4

− 𝑝𝑝13𝑝𝑝2 cosh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿)
𝑎𝑎𝑛𝑛4

�+ 1
𝜅𝜅1𝜂𝜂

�𝑝𝑝2
4 sinh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿)

𝑎𝑎𝑛𝑛4
+

𝑝𝑝12𝑝𝑝22 sinh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿)
𝑎𝑎𝑛𝑛4

�+ 1
𝜅𝜅1𝜂𝜂

�𝑝𝑝1
3𝑝𝑝2 cosh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿)

𝑎𝑎𝑘𝑘
4 − 𝑝𝑝24 sinh(𝑝𝑝1𝐿𝐿)cos(𝑝𝑝2𝐿𝐿)

𝑎𝑎𝑘𝑘
4 −

𝑝𝑝12𝑝𝑝22 sinh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿)
𝑎𝑎𝑘𝑘
4 �+ 1

𝜂𝜂𝑎𝑎𝑛𝑛4
�(𝑝𝑝23 − 𝑝𝑝12𝑝𝑝2) sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) +

∞ ∞
∞

∞ ∞
∞ ∞ ∞
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2𝑝𝑝1𝑝𝑝22 cosh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) + 𝑝𝑝24

𝑝𝑝1
+ 𝑝𝑝13� + 1

𝜂𝜂𝑎𝑎𝑘𝑘
4 �(𝑝𝑝12𝑝𝑝2 − 𝑝𝑝23) sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) −

2𝑝𝑝1𝑝𝑝22 cosh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) − 𝑝𝑝24

𝑝𝑝1
− 𝑝𝑝13� + 1

𝜅𝜅1
�𝑝𝑝2

3 sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿)
𝑝𝑝12

+

2𝑝𝑝2 sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) + 𝑝𝑝12 sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿)
𝑝𝑝2

�+ �𝑝𝑝2
𝑝𝑝1

+ 𝑝𝑝1
𝑝𝑝2
� cosh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) −

�𝑝𝑝2
2

𝑝𝑝12
+ 1� sinh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) = 0                             (38) 

 
(iv) Torsional cantilever with spring mass system and axial load: 

1
𝜅𝜅1
�cosh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) �𝑝𝑝2

3𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝14𝑎𝑎𝑘𝑘
4 − 𝑝𝑝23𝛽𝛽2

𝑝𝑝14
+ 𝑝𝑝2𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝12𝑎𝑎𝑘𝑘
4 − 𝑝𝑝2𝛽𝛽2

𝑝𝑝12
+ 𝑝𝑝23𝑎𝑎𝑛𝑛4

𝑝𝑝12𝑎𝑎𝑘𝑘
4 −

𝑝𝑝23

𝑝𝑝12
+ 𝑝𝑝2𝑎𝑎𝑛𝑛4

𝑎𝑎𝑘𝑘
4 − 𝑝𝑝2�� +

1
𝜅𝜅1
�sinh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) �𝑝𝑝2

2𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝1
3𝑎𝑎𝑘𝑘

4 − 𝑝𝑝22𝛽𝛽2

𝑝𝑝1
3 + 𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝1𝑎𝑎𝑘𝑘
4 −

𝛽𝛽2

𝑝𝑝1
− 𝑝𝑝24𝑎𝑎𝑛𝑛4

𝑝𝑝1
3𝑎𝑎𝑘𝑘

4 + 𝑝𝑝24

𝑝𝑝1
3 −

𝑝𝑝22𝑎𝑎𝑛𝑛4

𝑝𝑝1𝑎𝑎𝑘𝑘
4 + 𝑝𝑝22

𝑝𝑝1
�� +

cosh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) �− 𝑝𝑝22𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝14𝑎𝑎𝑘𝑘
4 + 𝑝𝑝22𝛽𝛽2

𝑝𝑝14
+ 𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝12𝑎𝑎𝑘𝑘
4 −

𝛽𝛽2

𝑝𝑝12
− 2𝑝𝑝22𝑎𝑎𝑛𝑛4

𝑝𝑝12𝑎𝑎𝑘𝑘
4 + 2𝑝𝑝22

𝑝𝑝12
� + 1

𝑎𝑎𝑘𝑘
4 �

𝑝𝑝22𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝14
−

𝑎𝑎𝑛𝑛4𝛽𝛽2

𝑝𝑝12
− 𝑝𝑝24𝑎𝑎𝑛𝑛4

𝑝𝑝14
− 𝑎𝑎𝑛𝑛4� + 1

𝑎𝑎𝑘𝑘
4 �sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) �2𝑝𝑝2𝑎𝑎𝑛𝑛

4𝛽𝛽2

𝑝𝑝1
3 − 𝑝𝑝23𝑎𝑎𝑛𝑛4

𝑝𝑝1
3 + 𝑝𝑝2𝑎𝑎𝑛𝑛4

𝑝𝑝1
�� +

sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) �− 2𝑝𝑝2𝛽𝛽2

𝑝𝑝1
3 + 𝑝𝑝23

𝑝𝑝1
3 −

𝑝𝑝2
𝑝𝑝1
� − 𝑝𝑝22𝛽𝛽2

𝑝𝑝14
+ 𝛽𝛽2

𝑝𝑝12
+

1
𝜅𝜅1
�sinh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) �𝑝𝑝2

3𝜂𝜂𝑎𝑎𝑛𝑛4

𝑝𝑝1
5 + 2𝑝𝑝2𝜂𝜂𝑎𝑎𝑛𝑛4

𝑝𝑝1
3 + 𝜂𝜂𝑎𝑎𝑛𝑛4

𝑝𝑝1𝑝𝑝2
�� + sinh(𝑝𝑝1𝐿𝐿) cos(𝑝𝑝2𝐿𝐿) �− 𝑝𝑝22𝜂𝜂𝑎𝑎𝑛𝑛4

𝑝𝑝1
5 −

𝜂𝜂𝑎𝑎𝑛𝑛4

𝑝𝑝1
3 � + cosh(𝑝𝑝1𝐿𝐿) sin(𝑝𝑝2𝐿𝐿) �𝑝𝑝2𝜂𝜂𝑎𝑎𝑛𝑛

4

𝑝𝑝14
+ 𝜂𝜂𝑎𝑎𝑛𝑛4

𝑝𝑝12𝑝𝑝2
� + 𝑝𝑝24

𝑝𝑝14
+ 1 = 0                                     (39) 

The above characteristic equations (36 to 39) above are for classic local beam and do not 

take small-scale effects into account and can be used as a baseline.  The small-scale effects are 

taken into consideration in the nonlocal characteristic equation, Eq. (35).  The natural 

frequencies of the system 𝑅𝑅𝑛𝑛 are obtained by making a substitution, 𝑎𝑎𝑛𝑛 = 𝑅𝑅𝑛𝑛 𝐿𝐿⁄ , into the into 

Eq. (35).  The values of 𝑅𝑅𝑛𝑛 are dimensionless natural frequencies used below to analyze the 

numerical results.  When 𝜅𝜅1 → ∞ the torsional spring becomes rigid, the boundary condition 

behaves like that of a cantilevered beam.  The classic cantilever configure can be obtained by 

setting the mass to zero and the fundamental natural frequency of the system is 𝑅𝑅1 = 1.8750 

which corresponds to the results obtained by Magrab [17] 𝑅𝑅1 = 0.5969π.  Furthermore, when 

𝜅𝜅2 → ∞ the linear spring is rigid and the system behaves like a cantilevered beam with 

concentrated tip mass because the center of gravity of the attached mass coincides with the tip 

of the beam , see Fig. (8.5). 

8.1.6. Numerical results:  fundamental frequencies for arbitrary boundary 
conditions. 

Elastic boundary conditions allow us to simulate different configuration by altering the 

stiffness of the supports.  In Fig. (8.5), for each plot, the torsional spring stiffness ratio is varied 
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for a range 𝜅𝜅1 = 101, 101.5, 102 and 103 and the linear spring stiffness is chosen for a range 

𝜅𝜅2 =101, 101.5, 102 and 103 with the tip-mass kept constant at 𝜂𝜂 = 0.1 or 10% of the beam mass.  

In the Fig. (8.5) the bottom most contour represents 𝜅𝜅1 = 101 which is the lowest stiffness ratio 

for the torsional spring and the upper most contour plot represents 𝜅𝜅1 = 103.  It is noted here 

that the natural frequencies increase with increasing torsional spring ratio and the lowest     

𝑅𝑅1 = 0.6873, occurs at maximum compressive load 𝛽𝛽2 =+0.8, minimal spring stiffness 𝜅𝜅1 =10 

and 𝜅𝜅2 =10 exclusive of small-scale (𝜇𝜇 = 0).  When the small-scale parameter increases 

steadily to 𝜇𝜇 =0.6, the frequency of the system increases.  This change is not prominent when 

the axial load is compressive (+0.4 ≤ 𝛽𝛽2 ≤+0.8) but is clearly visible when the load is tensile 

𝛽𝛽2 ≤ 0. 

 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

Figure 8-5:  Fundamental frequency plotted for linear spring (𝜿𝜿𝟐𝟐 - constant) and torsional 
spring (𝜿𝜿𝟏𝟏 - varying) with tip mass ratio  𝜼𝜼 = 𝟎𝟎.1 and axial load (𝜷𝜷𝟐𝟐) vs. small-
scale parameter (𝝁𝝁). 

In Fig(8.6), the 2D contour plots are presented  for the parameters of interest i.e. 𝛽𝛽2 =-0.8, 

0, +0.8, tip-mass ratio 𝜂𝜂 = 0.1 and the spring contact ratios are varied over a range, 101 ≤ (𝜅𝜅1 

and 𝜅𝜅2) ≤ 103.  In Fig. (8.5a) it is noted that that the contours are linear with respect to the 

linear spring ratio (𝜅𝜅2) because once we set the linear spring ratio and vary the torsional spring 



121 

 

constant (𝜅𝜅1), the changes in the natural frequency are minimal at best and close of null.  This 

indicates that the axial load dominates the dynamics when it reaches a value close to the critical 

buckling load.  Not only that, in Eqs. (23) and (24) we note that if frequency parameter of the 

nanobeam is zero (𝑎𝑎𝑛𝑛4 = 0 – null dynamic motion) and the small-scale parameter is zero 

(𝜇𝜇 = 0), the wave numbers, 𝑝𝑝1 and 𝑝𝑝2 are non-zero. 

𝑝𝑝1𝑛𝑛 = � 𝛽𝛽2

2(1) + 1
2
�(𝛽𝛽2 )2

(1 )2
       or      𝑝𝑝1𝑛𝑛 = �𝛽𝛽2

2
+ 𝛽𝛽2

2
= 𝛽𝛽                           (40) 

𝑝𝑝2𝑛𝑛 = � 𝛽𝛽2

2(1) −
1
2
�(−𝛽𝛽2 )2

(1 )2
       or      𝑝𝑝2𝑛𝑛 = �𝛽𝛽2

2
− −𝛽𝛽2

2
= 𝛽𝛽                         (41) 

This shows that for a non-zero compressive axial load, the wave numbers are non-zero 

(𝑝𝑝1𝑛𝑛 ≠ 0 and 𝑝𝑝2𝑛𝑛 ≠ 0) for zero frequency parameter.  This implies that the low order vibrations 

below critical value of the wave numbers are suppressed, and unable to be exited for a 

nanobeam under axial compressive load [11].  If the above conditions, with respect to the 

frequency and small-scale parameter are met, and the axial load is zero (𝛽𝛽2 = 0), the 

characteristic equation for determining the natural frequencies (Eq. 35) vanishes. Earlier in the 

text we noted that (1 − 𝛽𝛽2𝜇𝜇 ) ≠ 0 or 𝛽𝛽2 ≠ 1/𝜇𝜇  and that the term under the radicals in 

Eqs. (23) and (24) need to be positive to avoid imaginary roots. Therefore, in the selection of 

the axial load, one needs to pay attention to the range of values of all relevant parameters 

selected in order to obtain meaningful results.  

Fig. (8.6d) shows the frequencies of a nanobeam under compressive axial load and small-

scale parameter 𝜇𝜇 = 0.6 and we note that in the presence of nonlocal effects the frequencies 

tend to increase. At maximum torsional spring ratio (𝜅𝜅2 = 103) the natural frequencies are 

maximum, and effect of the small-scale effects have a stiffening effect of the nanobeam as 

observed by Reddy and Wang [14].  For zero axial load ratio (𝛽𝛽2 = 0) in Figs. (8.6b) and 

maximum torsional and linear spring ratio (𝜅𝜅1 and 𝜅𝜅2 = 103), the system behaves like a 

cantilever beam with concentrated tip-mass (𝜂𝜂 = 0.1) and the natural frequencies are widely 

published, 𝑅𝑅1 = 1.7227 [4, 16, 17, 18] as indicated in the plot.  As expected, when the torsional 

spring ratio increases (𝜅𝜅1 → ∞), the frequencies increase and in Fig. (8.6e) a further increase 

in the frequencies is attributed to the small-scale parameter.  In Figs. (8.6c) and (8.6f) the 

nanobeam is under tensile load and the frequencies are higher than in the other two instances 

(𝛽𝛽2 = +0.8 and 0). 
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Compression                                                                                                                                                            Tension 
 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 8-6:  Contour plots for torsional (𝜿𝜿𝟏𝟏) vs. linear spring (𝜿𝜿𝟐𝟐) with axial load (𝜷𝜷𝟐𝟐) and small scale-effects (𝝁𝝁). 
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Table 8.2:  Frequency parameter (ak) of 
spring-mass system. 

 𝑎𝑎𝑘𝑘4 = 𝜅𝜅2/𝜂𝜂 
κ2   η 0 0.1 0.5 1 

101 ∞ 3.1623 2.1147 1.7783 
101.5 ∞ 4.2170 2.8201 2.3714 
102 ∞ 5.6234 3.7606 3.1623 
103 ∞ 10 6.6874 5.6234 

 
Figure 8-7:  Spring-mass system at x = L 

The spring-mass system can be isolated as shown in Fig. (8.7).  This represents a single 

degree of freedom system and the frequency value for different combinations of linear spring 

constant and tip mass ratio is tabulated in Table (8.2).  The frequencies of the beam are directly 

coupled to the frequencies of the spring-mass system and the data in Table (8.2) reveals 

pertinent details about the vibration characteristics of the entire system.  Eq. (20) can be 

rearranged and written in the form below, where the left-hand side represents the ratio of the 

displacement of the mass from its equilibrium position to the displacement of the tip of the 

beam. 
𝑧𝑧(𝐿𝐿,0)
𝑋𝑋𝑛𝑛(𝐿𝐿) = � 𝑎𝑎𝑛𝑛4

𝑎𝑎𝑘𝑘
4−𝑎𝑎𝑛𝑛4

�                                                      (42) 

It is clear from the relationship above that this ratio depends entirely on the frequency 

parameters of the beam (an) and the frequency parameters of the single degree of freedom 

system (ak).  Therefore, information about sample penetration depth can be obtain using the 

frequencies in Figs. (8.5) and (8.6) and Table (8.2).  It is noted that when the rigidity of the 

linear spring increases (𝜅𝜅2 → ∞) the ratio is non-zero meaning that the tip-mass moves in synch 

with the nanobeam tip displacement.  
𝑧𝑧(𝐿𝐿,0)
𝑋𝑋𝑛𝑛(𝐿𝐿) = 1

𝑎𝑎𝑘𝑘
4 �

𝑎𝑎𝑛𝑛4

1−𝑎𝑎𝑛𝑛4 𝑎𝑎𝑘𝑘
4�
�  

after factoring out 𝑎𝑎𝑘𝑘4, substitute 𝑎𝑎𝑘𝑘4 = 𝜅𝜅2 𝜂𝜂⁄ . 
𝑧𝑧(𝐿𝐿,0)
𝑋𝑋𝑛𝑛(𝐿𝐿) = 1

𝜅𝜅2 𝜂𝜂⁄
� 𝑎𝑎𝑛𝑛4

1−𝑎𝑎𝑛𝑛4 (𝜅𝜅2 𝜂𝜂⁄ )⁄ �  

𝑧𝑧(𝐿𝐿,0)
𝑋𝑋𝑛𝑛(𝐿𝐿) = 𝜂𝜂

𝜅𝜅2
� 𝑎𝑎𝑛𝑛4

1−𝜂𝜂𝑎𝑎𝑛𝑛4 𝜅𝜅2⁄ �  

therefore, 𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘2 ∙ 𝑧𝑧(𝐿𝐿, 𝑡𝑡)  in Eq. (27b) can be written as, 

𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝜅𝜅2 ∙
𝜂𝜂
𝜅𝜅2
� 𝑎𝑎𝑛𝑛4

1−𝜂𝜂𝑎𝑎𝑛𝑛4 𝜅𝜅2⁄ �𝑋𝑋𝑛𝑛(𝐿𝐿)  
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                                  ⸫     𝐹𝐹𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝜂𝜂𝑎𝑎𝑛𝑛4𝑋𝑋𝑛𝑛(𝐿𝐿)
1−�𝜂𝜂𝑎𝑎𝑛𝑛4� 𝜅𝜅2⁄                                                        (43) 

When (𝜅𝜅2 → ∞), the second term in the denominator vanishes and the shear boundary 

condition Eq. (27b) reduce to that of a beam with tip mass in concurrence with [16,18,19, 20].  

To achieve maximum tip-mass deflection, the transverse spring constant ratio (𝜅𝜅2) must be 

small.  For example, we can achieve more than double additional tip-mass deflection by 

allowing 𝜅𝜅2 → 1 and at maximum torsional spring ratio, and that is demonstrated by Moutlana 

and Adali [4],  This means that the penetration depth in nanomanufacturing using dynamic 

atomic force microscopy (dAFM) can be controlled.  Lastly, if 𝑎𝑎𝑘𝑘4 < 𝑎𝑎𝑛𝑛4  in Eq. (42) the 

denominator is negative, and consequently the displacement ratio is negative which indicated 

that the tip of the nanobeam motion is out of synch with the tip-mass displacement (they move 

in opposite directions). 

Equation (42) articulates the relation between the frequency parameter (an) of the beam and 

the frequency parameter (ak) of single degree of freedom system.  The form of the equation 

shows that if the denominator on the right-hand side is equal to zero (an = ak), this term tends 

to infinity, i.e. 𝑎𝑎𝑛𝑛4/(𝑎𝑎𝑘𝑘4 − 𝑎𝑎𝑛𝑛4) → ∞.  When this occurs, the term on the left-hand side must be 

infinite by necessity.  Either the numerator tends to infinity, or the denominator tends to zero 

in the limit.  When displacement of the mass from the equilibrium 𝑧𝑧(𝐿𝐿, 0) is infinite, the system 

undergoes the phenomenon of resonance which should be avoided in manufacturing tools.  

When plotting the characteristic equation, the resonance frequencies of the whole system can 

be identified, and the information is key to the design of mechanical systems. 

8.1.7. Conclusions. 
In the present paper, small scale and surface effects on the fundamental frequency are 

investigated for a nanobeam with elastically restrained end conditions and carrying a tip mass 

attached via a linear spring to the end of the beam. The solution for the beam is obtained 

analytically by expanding the deflection in terms of its eigenfunctions and solving the resulting 

characteristic equation numerically.  Furthermore, the characteristic equations are presented 

for parametric studies of the effect of support elasticity and tip mass on the fundamental 

frequencies of the nanobeam. 

It is observed that the boundary conditions may lead to an increase or decrease of the 

fundamental frequency depending on the support flexibility.  Boundary conditions can be 

expressed in terms of a torsional spring at 𝑥𝑥 = 0, linear spring and tip mass at 𝑥𝑥 = 𝐿𝐿.  The 

classical boundary conditions correspond to setting the torsional and linear spring constants to 
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zero �𝜅𝜅1,2 → 0� or infinity �𝜅𝜅1,2 → ∞�.  It was observed that low torsional spring stiffness 

leads to a decrease in the fundamental frequency and high torsional spring stiffness to an 

increase in the fundamental frequency as the small-scale parameter increases.  The rates of 

decrease and increase depend on the relative values of the spring constants.  The effect of the 

tip mass on the frequencies is to lower the natural frequencies as observed in [16, 18, 21]. 
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Chapter 9  – Conclusion and future research. 

9.1 Conclusion. 
In this study, the effects of elastic and inertia elements on the boundary conditions of a 

nanobeam are investigated.  These effects are very profound and are manifested in the natural 

frequencies of sub-systems and the entire combined system.  Discreet systems, such as a 

nanobeam and a spring-mass system can be coupled to fabricate a tool that can be used in nano-

manufacturing and hence, the natural frequencies are important for constructing robust devices.  

The system under investigation is a torsional cantilever with a spring-mass system at the other 

boundary.  The stiffnesses of the springs can be varied to manipulate the natural frequencies of 

the system and this class of nanobeams demonstrates that there is room for improvement in 

applications such as AFM, nano-resonators and other novel NEMS devices.   

Nano scale materials are known to have different properties as opposed to micro and macro 

scale materials due to size and this results in altered behaviour when modelled using classic 

tools like Euler-Bernoulli or Timoshenko beam theory.  Modern theories integrating Eringen’s 

nonlocal concepts i.e. stress gradient and strain gradient theories have been developed to model 

mechanical behaviour, and these have been shown to be consistent when compared to 

molecular dynamic simulations.  The success of these theories relies on the fact that they take 

into consideration the small-scale effects.  In this study small-scale effects are incorporated 

into the modelling to study a transversely vibrating nanobeam with torsional spring at 𝑥𝑥 = 0 

and a concentrated tip-mass that is laterally restrained at 𝑥𝑥 = 𝐿𝐿.  The 1st [Paper 1] model helps 

us to understand the dynamic forces that occur between the probe of an AFM and a sample of 

interest.   

This model explores further understanding the bounds nonlocal stress gradient theories, 

where we note coalescence of successive mode eigenvalues when the small-scale parameter is 

beyond a specific value e.g. when 𝜇𝜇 = 0.565, the natural frequency is 𝑅𝑅𝑛𝑛 = 2.5954 and the 

when 𝜇𝜇 > 0.565,  there appears to be no real or non-trivial eigenvalues for cantilevered nanobeam 

with tip-mass and elastic restraint.  This indicates that beyond certain bounds, nonlocal theories 

might not yield satisfactory results and scientist are further extending their scholarships into bulk 

to surface ratios of nano and sub-nano structures to gain a better appreciation of NEMS.  It is 

also noted that when the stiffness ratio of the restraints increases, the natural frequencies 

increase.  The mass has the opposite effects, the mass is inversely proportional to the increase 

in the natural frequency.  Furthermore, it is noted that small-scale parameter has the effect of 
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stiffening or softening the nanobeam depending on the boundary conditions i.e.  the natural 

frequencies of a simply supported beam and clamped-pinned support beam decrease as the 

small-scale parameter increases, exhibiting a softening effect.  The opposite in seen for the 

cantilever because the natural frequencies increase as the small-scale parameter increases, 

exhibit a stiffening effect. 

The 2nd  model [Paper 2, 3, 4 and 5] is composed of a torsional spring at 𝑥𝑥 = 0 and a spring-

mass system at 𝑥𝑥 = 𝐿𝐿.  This model combines two systems with their own unique natural 

frequencies into a single system with universal natural frequencies.  The universal frequencies 

can be altered by tuning the natural frequencies of the sub-systems.  The frequency of the 

universal system tends to reside between the frequencies of the individual systems and this 

ability to tune each sub-system can be useful to prevent external force from inducing resonant 

behaviour.  This model can be viewed as a hammer and chisel and is most suitable for removing 

or shaping nanomaterial.  These types of nano tools are seen in applications for unfolding of 

DNA and RNA molecules or removing atoms to optimize material properties.   

The torsional cantilever is critical development in that it allows more freedom in the design 

of probes for AFM.  For example,  when scanning in a viscous medium, thin lengthy probe are 

required to receive accurate reading but the force required can also be inadequate.  The torsional 

cantilever allows us to use short stubby probes with adequate accuracy and the scanning AFM 

can be designed to be compact.  Torsional cantilevers also have the capability of matching the 

compliance of the probe to the compliance of the sample of interest, thereby preventing damage 

to probe and sample during research.  The additional advantage offered by the model with 

spring-mass system is the multiplicative effect it has on the displacement of the tip-mass i.e. 

the distance traveled by the mass for a standalone spring-mass can be increase by a factor of 

approximately 1.14 to 3.1 which means that the penetration depth of the tool can be 

manipulated, resulting in greater effectiveness for material optimization instruments.  This can 

be achieved by setting the relevant parameters, including the elasticity of the springs, small-

scale and tip-mass parameters. 

Lastly, [Paper5], the 2nd model is further developed to include a longitudinal axial load.  The 

axial load has real application in modern devices, and these is noted with emergence of piezo 

sandwiched nanobeam.  In these applications, flexo-electricity is used to induce an axial load 

on the top and bottom of the beam surface resulting in moments at the boundaries.  The 

moments are used to control the vibration frequencies, and this was studied extensively by 

Moutlana and Adali.  The axial load exhibits complex behaviour for a beam under compression 
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and the buckling phenomenon must be carefully considered.  The buckling phenomenon is 

explored as far as 1st mode is concerned.  It is found that the compressive axial load decreases 

the natural frequencies, and a tensile load increases the frequencies of the system.  This system 

offers even more control over the frequencies of vibration compared to the two systems 

mentioned above, where the axial load offers an additional degree of freedom.   

The inclusion of the axial load provides us with information about the behaviour under 

longitudinal loading which could manifest as a result of flexo-electricity (in composite piezo 

nanobeams) or residual stress at the surface of the nanobeam.  Scientist have recognized that 

at nano and sub-nano scale, the bulk to surface ratio could have a significant influence on the 

frequencies.  The governing equation are therefore developed to include small-scale effects as 

well as surface effects.  These effects involve the tractions normal to the surface and across the 

surface and the surface is assumed to experience a different environment compared to the bulk. 

9.2 Future research. 
Further studies will be undertaken to analyze a beam with elastic restraints, tip mass, axial 

load, flexo-electricity and surface effects.  This will lead to exploring beams that are sub-nano 

scale to learn the behaviour and develop application to conduct further research.  The governing 

equations developed in this research will be used to study the frequencies for nano/pico beams 

with surface effects. 
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Appendix 
A.  Natural frequencies for nanobeam with spring-mass system under axial load. 
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Figure A 8:  Contour plot for compressive axial load 𝜷𝜷 = +0.8 and 𝜷𝜷 = +0.4. 

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.8 and  = 0.6 

1.1333 1.1333
1.1467 1.1467

1.16 1.16
1.1733 1.1733
1.1867 1.1867

1.2 1.2
1.2133 1.2133
1.2267 1.2267

1.24 1.24

1.2533
1.2533

1.2667 1.2667

1.28 1.28

1.2933
1.2933

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.8 and  = 0.4 

0.98667 0.98667

1.0133 1.0133

1.04 1.04

1.0667 1.0667

1.0933 1.0933

1.12 1.12

1.1467 1.1467

1.1733 1.1733

1.2 1.2

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1

1.05

1.1

1.15

1.2

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.8 and  = 0.2 

0.82667 0.82667
0.85333 0.85333

0.88 0.88
0.90667 0.90667
0.93333 0.93333

0.96 0.96
0.98667 0.98667

1.0133 1.0133
1.04 1.04

1.0667 1.0667

1.0933 1.0933

1.12 1.12

1.1467 1.1467

1.1733 1.1733

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

0.85

0.9

0.95

1

1.05

1.1

1.15

Linear (  k
1 ) vs Torsional (  k 2 ) ,  = +0.8 and  = 0 

0.69333 0.69333
0.72 0.72

0.74667 0.74667
0.77333 0.77333

0.8 0.8
0.82667 0.82667
0.85333 0.85333

0.88 0.88
0.90667 0.90667
0.93333 0.93333

0.96 0.96
0.98667 0.98667

1.0133 1.0133
1.04 1.04

1.0667 1.0667

1.0933 1.0933

1.12 1.12

1.1467 1.1467

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

0.7

0.8

0.9

1

1.1

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0.6 

1.52
1.5333 1.5333

1.5467 1.5467

1.56 1.56

1.5733 1.5733

1.5867 1.5867

1.6 1.6

1.6133 1.6133

1.6267
1.6267

1.64
1.64

1.6533
1.6533

1.6667

1.6667

1.68

1.68

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0.4 

1.4267
1.44 1.44

1.4533 1.4533

1.4667 1.4667

1.48 1.48

1.4933 1.4933

1.5067 1.5067

1.52 1.52

1.5333
1.5333

1.5467
1.5467

1.56
1.56

1.5733

1.5733

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.44

1.46

1.48

1.5

1.52

1.54

1.56

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0.2 

1.3867 1.3867

1.4 1.4

1.4133 1.4133

1.4267 1.4267

1.44 1.44

1.4533 1.4533

1.4667 1.4667

1.48 1.48

1.4933
1.4933

1.5067
1.5067

1.52
1.52

1.5333

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0 

1.36 1.36
1.3733 1.3733

1.3867 1.3867
1.4 1.4

1.4133 1.4133

1.4267 1.4267

1.44 1.44

1.4533 1.4533

1.4667 1.4667

1.48 1.48

1.4933 1.4933

1.5067
1.5067

1.52
1.52

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52



132 

 

 

 
Figure A. 9:  Contour plot for compressive axial load 𝜷𝜷 = +0.4 and load 𝜷𝜷 = 0 (zero axial load). 

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0.6 

1.52
1.5333 1.5333

1.5467 1.5467

1.56 1.56

1.5733 1.5733

1.5867 1.5867

1.6 1.6

1.6133 1.6133

1.6267
1.6267

1.64
1.64

1.6533
1.6533

1.6667

1.6667

1.68

1.68

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0.4 

1.4267
1.44 1.44

1.4533 1.4533

1.4667 1.4667

1.48 1.48

1.4933 1.4933

1.5067 1.5067

1.52 1.52

1.5333
1.5333

1.5467
1.5467

1.56
1.56

1.5733

1.5733

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.44

1.46

1.48

1.5

1.52

1.54

1.56

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0.2 

1.3867 1.3867

1.4 1.4

1.4133 1.4133

1.4267 1.4267

1.44 1.44

1.4533 1.4533

1.4667 1.4667

1.48 1.48

1.4933
1.4933

1.5067
1.5067

1.52
1.52

1.5333

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = +0.4 and  = 0 

1.36 1.36
1.3733 1.3733

1.3867 1.3867
1.4 1.4

1.4133 1.4133

1.4267 1.4267

1.44 1.44

1.4533 1.4533

1.4667 1.4667

1.48 1.48

1.4933 1.4933

1.5067
1.5067

1.52
1.52

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = 0 and  = 0.6 

1.7067
1.72 1.72

1.7333 1.7333

1.7467 1.7467

1.76 1.76

1.7733 1.7733

1.7867
1.7867

1.8
1.8

1.8133
1.8133

1.8267
1.8267

1.84

1.84

1.8533

1.8533

1.8667

1.8667

1.88

1.88

1.8933

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.7

1.75

1.8

1.85

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = 0 and  = 0.4 

1.64 1.64

1.6533 1.6533

1.6667 1.6667

1.68 1.68

1.6933 1.6933

1.7067 1.7067

1.72 1.72

1.7333
1.7333

1.7467

1.7467

1.76

1.76

1.7733

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.64

1.66

1.68

1.7

1.72

1.74

1.76

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = 0 and  = 0.2 

1.6
1.6

1.6133 1.6133

1.6267 1.6267

1.64 1.64

1.6533 1.6533

1.6667 1.6667

1.68 1.68

1.6933
1.6933

1.7067
1.7067

1.72

1.72

1.7333

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.6

1.62

1.64

1.66

1.68

1.7

1.72

Linear (  k
1 ) vs Torsional (  k 2 )  ,  = 0 and  = 0 

1.5867
1.6 1.6

1.6133 1.6133

1.6267 1.6267

1.64 1.64

1.6533 1.6533

1.6667 1.6667

1.68
1.68

1.6933
1.6933

1.7067

1.7067

1.72

10 1 10 1.5 10 2 10 3

Torsional spring -  k
1

10 1

10 1.5

10 2

10 3

L
in

ea
r 

sp
ri

ng
 -

 
 k

2

1.6

1.62

1.64

1.66

1.68

1.7

1.72



133 

 

 
Figure A 10:  Contour plot for zero axial load 𝜷𝜷 = 0 and 𝜷𝜷 = -0.4 (tensile axial load).
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Figure A 11:  Contour plot for tensile axial load 𝜷𝜷 = -0.4 and 𝜷𝜷 = -0.8.
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Figure A 12:  Contour plots for nanobeam with axial load and spring-mass system. 
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