
Model and Solutions to Campus Parking
Space Allocation Problem

By

Luke Oluwaseye Joel

(211559858)

Submitted in fulfilment of the academic requirements

for the degree of Master of Science

in the School of Computer Science

University of Kwazulu-Natal

Westville Campus, South Africa.

Supervisor

Dr. A. O. Adewumi

June, 2013

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION

The work described by this thesis was carried out at the University of Kwazulu-Natal, School of

Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Westville Campus,

under the supervision of Dr. Adewumi A. O.

This thesis is entirely, unless specifically contradicted in the text, the work of the candidate and

has not been previously submitted, in whole or in part, to any other tertiary institution. Where

use has been made of the work of others, it is duly acknowledged in the text.

Signed: Student Name:

As the candidate’s supervisor I have/have not approved this dissertation for submission.

Signed: Supervisor Name:

ii

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE

DECLARATION - PLAGIARISM

I, . , declare that

1. The research reported in this dissertation, except where otherwise indicated, is my original

research.

2. This dissertation has not been submitted for any degree or examination at any other univer-

sity.

3. This dissertation does not contain other persons data, pictures, graphs or other information,

unless specifically acknowledged as being sourced from other persons.

4. This dissertation does not contain other persons’ writing, unless specifically acknowledged as

being sourced from other researchers. Where other written sources have been quoted, then:

(a) Their words have been re-written but the general information attributed to them has

been referenced

(b) Where their exact words have been used, then their writing has been placed in italics

and inside quotation marks, and referenced.

5. This dissertation does not contain text, graphics or tables copied and pasted from the Inter-

net, unless specifically acknowledged, and the source being detailed in the dissertation and

in the References sections.

Signed

. .

Declaration Plagiarism 22/05/08 FHDR Approved

iii

Dedication

This thesis is dedicated to the members of my family in memory of our loving and caring

mother.

iv

Acknowledgements

My ultimate thanks, praise, and honour go to the Omniscient, Omnipotent and Omnipresent God

who saw me through this study.

I owe gratitude to my supervisor, Dr. Adewumi Aderemi, for his guidance, support and pa-

tience towards me during my entire period of study. I am also grateful to Dr. B. A. Sawyerr and

Dr. Blamah for their programming assistance, and the optimization and modelling research group

members for their moral support and contributions.

I offer my profound gratitude to my family members for their spiritual, financial and moral sup-

port, may the Almighty God bless you abundantly.

I am thankful to the following people: the technical personnel- Mr Greenwood and Mr Jay, Mrs

Chairmaine, Mrs Moodley and Mrs Sheeren of the School of Mathematical, Statistics and Com-

puter Science.

A million thanks to the Deeper Life Bible Church leaders and workers in Westville, Howard, and

Edgewood campuses for their prayers. I also want to express my gratitude to my dear colleagues

in the masters’ LAN, and all my friends far and near.

Finally, I am indebted to every other person not mentioned here who might have in one way

or the other contributed to the success of this project and my overall stay in South Africa during

my masters’ study. May God in his infinite mercy bless you all abundantly (Amen).

v

Abstract

Parking is considered a major land use challenge in campus planning. The problem can be in

terms of scarcity (few available spaces compared to demand) or management (inefficient usage of

available facilities). Many studies have looked at the parking problem from the administrative

and management points of view. However, it is believed that mathematical models and optimiza-

tion can provide substantial solution to the parking problem. This study investigates a model for

allocating car parking spaces in the university environment and improves on the constraints to

address the reserved parking policy on campus. An investigation of both the exact and heuristic

techniques was undergone to provide solutions to this model with a case study of the University

of KwaZulu-Natal (UKZN), Westville Campus.

The optimization model was tested with four different set of data that were generated to mimic

real life situations of parking supply and demand on campus for reserved and unreserved parking

spaces. These datasets consist of the number of parking lots and office buildings in the case study.

The study also investigate some optimization algorithms that can be used to obtain solutions to

this problem. An exact solution of the model was generated with CPLEX solver (as incorporated

in AIMMS software). Further investigation of the performance of the three meta-heuristics to

solve this problem was done. A comparative study of the performance of these techniques was

conducted. Results obtained from the meta-heuristic algorithms indicate that the algorithms used

can successfully solve the parking allocation problem and can give solutions that are near optimal.

The parking allocation and fitness value for each of the meta-heuristic algorithms on the sets of

data used were obtained and compared to each other and also to the ones obtained from CPLEX

solver. The results suggest that PSwarm performs better and faster than the other two algorithms

and gives solutions that are close to the exact solutions obtained from CPLEX solver.

vi

Contents

Declaration ii

Declaration - Plagiarism iii

Dedication iv

Acknowledgements v

Abstract vi

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

Outcome of Research Work - Publication xv

1 Introduction 1

1.1 Background of Study . 1

1.1.1 Types of Parking . 2

1.1.2 Parking Restrictions . 3

1.2 Statement of Problem . 5

1.3 Motivation . 6

1.4 Objective of the Study . 6

1.5 Definition of Terms . 7

1.6 Thesis Overview . 8

2 Background and Related Works 9

2.1 Introduction to Optimization . 9

2.1.1 Optimization Process . 11

2.1.2 Classification of Optimization Problems . 11

2.2 Combinatorial Optimization Problem . 13

vii

2.2.1 Knapsack Problem . 14

2.2.2 Travelling Salesman Problem . 15

2.2.3 Assignment Problem . 16

2.2.4 Space Allocation Problem . 16

2.3 Optimization Techniques . 17

2.3.1 Exact Optimization Techniques . 18

2.3.1.1 Simplex Algorithm . 18

2.3.1.2 Interior Point Algorithm . 20

2.3.1.3 Branch and Bound Algorithm . 21

2.3.2 Meta-heuristic Optimization Techniques . 22

2.4 Genetic Algorithm . 22

2.4.1 Introduction . 22

2.4.2 GA Encoding . 23

2.4.2.1 Binary Encoding . 23

2.4.2.2 Value Encoding . 24

2.4.2.3 Permutation Encoding . 24

2.4.2.4 Tree Encoding . 24

2.4.3 GA Operator . 26

2.4.3.1 Selection . 26

2.4.3.2 Crossover . 27

2.4.3.3 Mutation . 28

2.4.4 Application of GA . 29

2.5 Pattern Search . 29

2.5.1 Introduction . 29

2.5.2 Application of PS . 30

2.6 Particle Swarm Pattern Search Algorithm . 31

2.6.1 Particle Swarm Optimization . 31

2.6.2 Particle Swarm Pattern Search . 32

2.7 Penalty Method for Constrained Optimization . 32

2.7.1 Death Penalty . 34

2.7.2 Static Penalty . 34

2.7.3 Dynamic Penalty . 34

2.7.4 Annealing Penalty . 36

2.7.5 Adaptive Penalty . 37

2.8 Conclusion . 38

viii

3 Campus Space Allocation Problem 39

3.1 Introduction . 39

3.2 Related Works on PSA . 39

3.3 Campus Parking Space Allocation Model . 44

3.4 Solution Idea . 47

3.5 Exact Optimization Solver . 49

3.6 Genetic Algorithm . 50

3.7 Pattern Search Algorithm . 53

3.8 Particle Swarm Pattern Search Algorithm . 55

3.9 Data Representation for the CPSA Model . 57

3.10 Conclusion . 59

4 Experimental Setting and Results 60

4.1 Dataset . 60

4.2 Experimental Settings . 61

4.2.1 GA Parameter Settings . 61

4.2.2 PS Parameter Settings . 62

4.2.3 PSwarm Parameter Settings . 62

4.3 Exact Results Using CPLEX Solver . 62

4.3.1 Fitness Values across Datasets . 62

4.3.2 Distribution of Parking Spaces . 64

4.3.2.1 Dataset 1 . 64

4.3.2.2 Dataset 2 . 65

4.3.2.3 Dataset 3 . 67

4.3.2.4 Dataset 4 . 69

4.4 Meta-heuristic Results Performances . 72

4.4.1 Fitness Values across Datasets . 72

4.4.2 Execution Time of the Algorithms for Different Datasets 72

4.4.3 Distribution of Parking Spaces . 76

4.4.3.1 Dataset 1 . 79

4.4.3.2 Dataset 2 . 79

4.4.3.3 Dataset 3 . 85

4.4.3.4 Dataset 4 . 91

4.5 Meta-heuristics Comparison with Exact Results . 98

4.6 Conclusion . 100

5 Conclusion and Future Research 102

5.1 Introduction . 102

ix

5.2 Organisation of Objectives . 102

5.3 Summary of Research Study . 103

5.4 Future Research . 104

5.5 Conclusion . 105

A Dataset 1 116

B Dataset 2 119

C Dataset 3 122

D Dataset 4 126

E Conference paper 130

x

List of Figures

1.1 Parallel parking of cars [123] . 2

1.2 Perpendicular parking of cars [124] . 3

1.3 Cars showing angle parking [123] . 4

2.1 The optimization process [114] . 12

2.2 Classification of optimization problems [8] . 13

2.3 Classification of optimization methods [82] . 19

2.4 The chromosome of a binary encoding . 23

2.5 The chromosome of a value encoding . 24

2.6 The chromosome of a permutation encoding . 25

2.7 The chromosome of a tree encoding . 26

2.8 An example of a single point crossover . 27

2.9 An example of a simple mutation . 28

3.1 An overview of the solution stages of CPSA . 48

3.2 The components of AIMMS software . 50

3.3 A flowchart explaining the structure of a genetic algorithm 52

3.4 The chromosome representation of the variables . 58

3.5 The fitness values representation . 58

4.1 Fitness values obtained by CPLEX solver for the datasets 63

4.2 Allocation done by CPLEX: Dataset 1 . 64

4.3 Allocation done by CPLEX: Dataset 2 . 66

4.4 Allocation done by CPLEX: Dataset 3 . 68

4.5 Allocation done by CPLEX: Dataset 3 continued 69

4.6 Allocation done by CPLEX: Dataset 4 . 70

4.7 Allocation done by CPLEX: Dataset 4 continued 71

4.8 Comparison of the objective values for 10000 iterations 73

4.9 Comparison of the objective values for 20000 iterations 74

4.10 Comparison of the objective values for 30000 iterations 75

xi

4.11 Comparison of the execution time for 10000 iterations 76

4.12 Comparison of the execution time for 20000 iterations 77

4.13 Comparison of the execution time for 30000 iterations 78

4.14 Allocation done by GA: Dataset 1 . 79

4.15 Allocation done by PS: Dataset 1 . 80

4.16 Allocation done by PSwarm: Dataset 1 . 80

4.17 Allocation done by GA: Dataset 2 . 82

4.18 Allocation done by PS: Dataset 2 . 83

4.19 Allocation done by PSwarm: Dataset 2 . 84

4.20 Allocation done by GA: Dataset 3 . 86

4.21 Allocation done by GA: Dataset 3 continued . 87

4.22 Allocation done by PS: Dataset 3 . 88

4.23 Allocation done by PS: Dataset 3 continued . 89

4.24 Allocation done by PSwarm: Dataset 3 . 90

4.25 Allocation done by PSwarm: Dataset 3 continued 91

4.26 Allocation done by GA: Dataset 4 . 92

4.27 Allocation done by GA: Dataset 4 continued . 93

4.28 Allocation done by PS: Dataset 4 . 94

4.29 Allocation done by PS: Dataset 4 continued . 95

4.30 Allocation done by PSwarm: Dataset 4 . 96

4.31 Allocation done by PSwarm: Dataset 4 continued 97

4.32 Comparing the fitness values with the CPLEX solver 99

4.33 Execution time of the CPLEX solver for each dataset 100

5.1 Connecting the objectives with each chapter . 103

xii

List of Tables

4.1 Different datasets . 61

4.2 Percentage relative error . 98

4.3 Additional datasets . 100

A.1 Available parking spaces in the parking lots . 116

A.2 Population of users to be allocated parking . 117

A.3 The distance cost . 117

A.4 Parking permit issued for each parking lot . 118

B.1 Available parking spaces in the parking lots . 119

B.2 Population of Users to be Allocated parking . 120

B.3 The Distance Cost . 121

B.4 Parking permit issued for each parking lot . 121

C.1 Available Parking Spaces in the Parking Lots . 122

C.2 Population of users to be allocated parking . 123

C.3 The distance cost . 124

C.4 Parking permit issued for each parking lot . 125

D.1 Available parking spaces in the Parking lots . 126

D.2 Population of users to be allocated parking . 127

D.3 The distance cost . 128

D.4 Parking permit issued for each parking lot . 129

xiii

List of Abbreviations

AIMMS Advanced interactive multidimensional modeling system

AP Assignment problem

BB Branch and bound

CPSA Campus parking space allocation

COP Combinatorial optimization problem

GA Genetic algorithm

GPS Generalised pattern search

IPM Interior point method

KP Knapsack problem

LP Linear programming

MATLAB Matrix laboratory

PS Pattern search

PSA Parking space allocation

PSO Particle swarm optimization

PSwarm Particle swarm pattern search

SA Simulated annealing

SAP Space allocation problem

TS Tabu search

TSP Travelling salesman problem

xiv

Outcome of Research Work - Publication

Details of publication that form part and/or include research presented in this thesis.

• Joel L. O., Adewumi A. O. and Sawyerr B. A.(2013). An Exact Solution for Allocating Car

Parking Spaces on Campus. Proceedings of the International Science, Technology,

Education, Arts, Management and Social Science (iSTEAMS) Research Nexus Conference.

University of Ibadan, Ibadan, Nigeria, May 30 - June 1(pp 463-472)

See Appendix E

xv

Chapter 1

Introduction

“I have sometimes thought of the modern university as a series of individual faculty

entrepreneurs held together by a common grievance over parking ”, [21].

1.1 Background of Study

Parking is an act of manoeuvring a vehicle into a location where it can be left temporarily. It is

a major concern in transportation planning and traffic management of organisations all over the

world. The problem of parking is more pronounced in urban areas [69] especially in closed commu-

nities like the university environment [58]. Parking poses a problem due to the limited supply of

parking spaces compared to demand [2] and in terms of the ineffective usage of parking facilities.

Experts estimate that 30 percent of traffic in the city is caused by people driving around looking

for parking [49, 17]. IBM [49, 50] conducted a survey of commuters in twenty international cities,

Johannesburg (South Africa) inclusive, on six continents, and found that about six out of every

ten drivers gave up their hunt for a parking space at one time or the other. It was also discovered

that, drivers, in pursuit of a desired parking space, spent about 20 minutes searching. A year-long

study that was also conducted [49] found that drivers in some of the districts in Los Angeles drove

in excess of 950,000 miles, produced 730 tons of carbon-dioxide, and used 47,000 gallons of gas in

search of parking spaces.

This problem of finding a suitable parking space now plagues university environments irrespec-

tive of where the university is located [2]. Parking is a big problem on campuses because of the

demand for parking by the faculty, staff, and a large numbers of students. This three-fold demand

for parking has brought about an acute shortfall of parking spaces and has become concern for

university planners [2]. Hence, an optimal solution to the allocation of these limited parking spaces

on campus needs to be investigated.

1

Figure 1.1: Parallel parking of cars [123]

Parking space is essentially influenced not only by the limited amount of space and the demand

for such but also by the way available spaces are organized and/or arranged. This determines the

number of vehicles that can be parked in a given space [37]. We discuss briefly below some types

of parking as presented in literature and some restrictions that are often put on them due to this

limited available spaces.

1.1.1 Types of Parking

• Parallel parking: Parked cars, in parallel parking, Figure 1.1, are arranged in a line [123].

This is most common on the street-side (also called on-street) parking where the front bumper

of one car is facing the back bumper of another adjacent car. Parallel parking works well in

extremely narrow, linear spaces but it is difficult to manoeuvre for most drivers and is an

inefficient use of on-street space [37, 123].

• Perpendicular parking: In perpendicular parking, Figure 1.2, cars are parked at a 90◦ angle

(perpendicularly) to an aisle, curb or wall. This type of parking is common in an off-street

parking lot where the driver can either park with a back-in or head-in parking style [37, 124].

The perpendicular parking handles most vehicles per square meter of pavement and works

well with either one- or two-way aisles [37, 124].

• Angle parking/echelon parking: Cars can also park at an angle less than 90◦, which could

be 30◦, 45◦ and 60◦, to an aisle, curb or wall. This type of parking, Figure 1.3, is known as

angle parking or echelon parking. Although this type of parking is common in an off-street

parking lot, it could also be used for on-street parking [37, 122]. As with perpendicular

parking, parking in an angle could be done in a head-in configuration (most common) or

back-in style. This mode of parking is known for its ease of manoeuvring in and out of

parking spaces with good visibility to the rear though it does not work well with two-way

aisles [37, 122]and it requires more pavements per vehicle than the perpendicular parking

configuration.

2

Figure 1.2: Perpendicular parking of cars [124]

Figure 1.3: Cars showing angle parking [123]

3

1.1.2 Parking Restrictions

Parking restrictions are the rules used in regulating parking activities. Parking is often with

restrictions due to the few available parking spaces compared to demand for such spaces. For

example, drivers could be allowed to park on the side of a street, or park in a location for a limited

period of time after which a certain amount of money would be paid. Following are some of the

parking restrictions [81].

• Smart Parking Meter: Payment for parking could be used to restrict both on- and off-

street parking spots [81]. The use of parking meter, smart parking meter or parking pay

station could be employed for parking payments. The use of these devices help in money

collection from customers. Parking meter serves on parking space per time while parking pay

station serves multiple parking spaces per time. On the other hand, smart parking meter

gives more payment options to customers other than cash payments.

• Time limits: Parking restrictions could also be enforced when drivers are allowed to park

for only a certain period of time [81]. In some circumstances, payments for parking are only

done within specific hours of the day, while the other hours are free. The time limit restriction

also determines whether the parking will be for a short or long period of time. Disk parking

allows for monitoring of the length of time a car has been parked.

• Permit: A permit is a licence to park in a given parking space. It could be a decal, hangtag,

or Radio-Frequency Identification (RFID) [81] showing that only people having these parking

permit can park in the designated areas.

1.2 Statement of Problem

The Parking Space Allocation (PSA) problem is concerned with the distribution of available park-

ing spaces to a set of people in order to minimize parking space misuse and to minimize the distance

walked by each user from the parking lot to their destination. The PSA problem affects the lives of

almost everyone who has a car in the society especially in the campus environment. The problem

could be in the time taken to get a parking space, the tedious effort exerted in getting a permit or

in the distance between the parking space and the desired destination.

The former President of the University of California, Clark Kerr once said [21] “I have sometimes

thought of the modern university as a series of individual faculty entrepreneurs held together by

a common grievance over parking”. It is this “grievance over parking”in the university campuses

that this study intends to investigate. Many studies have looked at the CPSA problem from

the administrative and management point of view, however this study will examine the problem

from an optimization point of view. The study addresses this problem of parking allocation in

4

the university environment by formulating an appropriate model of the problem which caters for

both reserved and unreserved parking policies in the campus environment and then applies three

different meta-heuristic algorithms for its solution.

1.3 Motivation

Parking is a vital part of transportation since vehicles have to be parked most of the time during

the day [109, 39, 6], hence it is essential to get a good management of parking spaces or optimize

the use of it. Parking problems, among other things, are major problems facing the society,

especially the university environment due to the cost of parking facilities and the limited number

of available parking spaces. Narragon et al. [7] explained that although building more parking

facilities appears to be the direct solution to the parking problem, it is difficult to do so due to

space and fund challenges. This only gives one an option of ensuring that the existing facilities are

effectively and efficiently utilized through policies that encourage such. Some compelling reasons

[109] to ensure efficient use of parking facilities are:

• It saves the parking managers or officials the cost of building more parking areas.

• It gives the users opportunity to explore other alternatives.

• It helps in having a more attractive and less congested environment since proper and effec-

tively managed parking leaves space in the environment for other use.

• It aids in revenue generation which could be used for better management of parking facilities

or for other purposes.

• It enables management to explore technologies and/or innovations that could be used in the

optimization of parking resources.

1.4 Objective of the Study

The objectives of this study are:

1. To study the existing CPSA problem.

2. To formulate the problem as a Combinatorial Optimization Problem(COP).

3. To develop an appropriate model for solving the CPSA problem.

4. To apply heuristic techniques such as Genetic Algorithm (GA), Pattern Search(PS), and

Particle Swarm Pattern Search(PSwarm) to solve the problem.

5. To compare the results in (4) with that obtained from CPLEX software.

5

6. To analyse the performance of each of the techniques

7. To draw valuable conclusion(s) from the results obtained.

1.5 Definition of Terms

Here are some related words and definitions.

• Allocation - Refers to an authorization for a specific parking assignment [22, 90].

• Campus - The buildings of a college or university and the land that surrounds them [22, 23].

• Building - A physical location to which a user goes after parking his car in the parking lot

[22, 57].

• Model - A simplified representation of a complex real-world event or structure [22, 8].

• Optimal solution - Alternative approach that best fits the situation, employs resources in

the most effective and efficient manner, and yields the highest possible return under the given

circumstances [22, 110].

• Optimization - Finding an alternative with the most cost effective or highest achievable

performance with the given constraints, by maximizing desired factors and minimizing un-

desirable ones [22, 8].

• Parking lot - A dedicated area that is intended for parking vehicles, having more than one

parking space [22, 124].

• Parking Space - A space indicated between two white lines where a vehicle or motorcycle

can park [22, 57].

• Parking permit - An official document which gives permission to a car owner to park in a

designated parking space [22, 58].

• Reserved space - A parking space designated for use by a particular user. A reserved space

is not meant to be shared with any other user [22, 84].

• Staff - The personnel employed by the University who assists in performing the business of

the university [22, 21].

• Unreserved space - A parking space designated for use by many users [22, 58].

• User - Anyone who is in need of a parking space [22, 21]. The term parking user could also

be used.

6

• Visitor - Any person who is NOT classified as a member of faculty staff, student, or vendor

at the University and will be at the university for short periods of time to conduct business

[22, 21]. If staying overnight, the visitor is then considered a guest and must be sponsored

by a student, staff or employee member.

1.6 Thesis Overview

The rest of the Thesis is organised as follows: An introduction to optimization, some similar exam-

ples of COP, classifications of optimization techniques used in addressing optimization problems

and the penalty method used for constrained optimization problems are discussed in Chapter

2. An introduction to the campus space allocation problem with a review of related works, the

formulated optimization model for the allocation problem, the solution idea employed in the study,

and the description of the exact optimization solver as well as the meta-heuristic algorithms used

in obtaining solutions to the problem are presented in Chapter 3. The dataset, experimental

settings and the results obtained from the exact solver and the meta-heuristic algorithms are dis-

cussed in Chapter 4. An overall conclusion and suggestion of areas for future research is given in

Chapter 5.

7

Chapter 2

Background and Related Works

“The essence of an optimization problem is: Catching a black cat in a dark room

in minimal time. A constrained optimization problem corresponds to a room full of

furniture ”, [12].

2.1 Introduction to Optimization

Optimization is a process of making a system or decision as functional or effective as possible. Due

to the significance of optimization, especially global optimization, its application is often used in

daily life. A desire to achieve optimality is one of the most underlying precepts in the world today

[110, 129]. Optimization problems can be found in the biological sciences, engineering, economics,

business, architecture, computer science, management and physical sciences. Optimization, also

known as mathematical programming, aids in finding solutions that give maximum performance,

profit, output or happiness; or minimum cost, waste or unhappiness [43, 129]. It solves the problem

of deciding how to optimally allocate scarce resources such as people, materials, spaces, money and

land.

An optimization model attempts to optimize an objective function by searching for the best set

of decision variables that obey the given constraints [71, 110, 67]. It is common to use the word

“optimize ”, which means to maximize or minimize, in any optimization problem. A mathematical

function, also known as an objective function, to be optimized could be a function of only one

variable, called single-objective problem, or a function of multiple variables, called multi-objective

problem. Furthermore, an objective function could also be constrained or unconstrained [8].

There are three essential components [8, 67] of an optimization model which are:

1. The objective function or cost function

8

2. The decision variables

3. The set of constraints to be satisfied

Optimization has practical applications in many fields of study and human endeavour including

natural sciences, engineering and social sciences. Hence, researchers across these fields often use

an optimization model for better presentation of the problem of interest. The structure of an

optimization model can be represented as follows:

Maximize f(x) (2.1)

subject to

gi(x) ≤ Gi where i = 1, 2, . . . ,m (2.2)

hj(x) = Hj where j = 1, 2, . . . , n (2.3)

x ≥ 0 (2.4)

where f(x) is the objective function of a single variable x; gi(x) and hj(x) are the constraint

functions of the variable x ∈ Rn. Gi and Hj are constants. A non-negative constraint, x ≥ 0,

is important for most real-world problems since they often deal with either maximizing profits or

minimizing costs which would be meaningless if they are negative. Given that x represents a vector

of variables, where ω = (x1, x2, ..., xk), the above model can be rewritten for multiple variables as

follows:

Maximize f(ω) (2.5)

subject to

gi(ω) ≤ Gi where i = 1, 2, . . . ,m (2.6)

hj(ω) = Hj where j = 1, 2, . . . , n (2.7)

ω ≥ 0 (2.8)

Optimization follows a step by step procedure in order to solve a given problem. There are different

types of a given optimization problem. Hence, we discuss the process of optimizing a given problem

below and the different types of optimization problems as given in literature.

9

2.1.1 Optimization Process

The optimization process helps decision-makers to determine realistic and practical outcomes to

complex management problems [8]. The process of optimization is shown in Figure 2.1. The op-

timization process begins by defining a real-world problem to extract some details and relevant

information necessary to create a mathematical model [114]. Then, an optimization technique or

method would be applied to the model with the aid of computer programs. From Figure 2.1, the

first process is analysis, as shown by the arrow moving from the real-world problem box to the

algorithm, model and solution techniques box. Here, the task of extracting relevant details that

is essential for building an efficient mathematical model takes place. The process of analysis is

important because it lays bare crucial elements of the problem and it gives insights as to how to

address the problem [114].

The second process, as shown by the arrow moving from the algorithm, model and solution tech-

nique box to the computer implementation box, is the use of optimization methods. The

knowledge of these optimization methods and their implementation procedure is essential in order

to obtain solution for the mathematical model. In order to be sure that the optimization method is

performing as expected, the verification process is used. The verification process is shown by the

arrow moving from the computer implementation box back to the algorithm, model and solution

technique box.

The optimization process is completed by moving from the algorithm, model, or solution technique

box to the real world problem box. This process is called validation and sensitivity analysis.

Here, the results obtained are compared with the real world situation. This process determines

whether the results are appropriate and whether there is need to modify the model or chose another

solution technique [114].

2.1.2 Classification of Optimization Problems

As earlier explained, optimization problems seek to find the best values of a certain number of

variables with a given set of constraints. Hence, an optimization problem can take different forms

and classifications [129]. The classification, given by Sarker et al [8] as seen in Figure 2.2 is based

on:

• Objective function: The optimization problem based on an objective function can either

be a single objective optimization problem or a multiple objective optimization problem

• Constraints: An unconstrained optimization problem only has the objective function to be

optimized without any set of constraints that have to be satisfied while the constrained opti-

mization problem must satisfy some set of equality and/or inequality constraints. Literature

reveals that the study of unconstrained optimization problem is essential, though most real

world optimization problems are constrained.

10

Figure 2.1: The optimization process [114]

• Variable: An optimization problem can only have integer or discrete variable values, known

as COP; a real variable value, known as continuous optimization problem; or a combination

of integer and continuous variable values, known as mixed optimization problem.

• Function: The classification of optimization problems based on function are: linear opti-

mization problem or non-linear optimization problem; convex optimization problem or non

convex optimization problem; differentiable (those with derivative) optimization problem or

non-differentiable (those without derivative) optimization problem.

Some common types of optimization problems are unconstrained non-linear optimization prob-

lems, constrained convex optimization problems, integer optimization problems (which is generally

known as COP) etc.

11

Figure 2.2: Classification of optimization problems [8]

2.2 Combinatorial Optimization Problem

COP is a subset of the general optimization problem in which its set of decision variables take

only discrete or integer values [13, 8, 59, 71]. It helps in the efficient allocation of limited resources

when the values of the variables are restricted to integral values. Gen and Cheng [71] classified the

characteristics of COP as:

1. Permutation of some set of items subject to some constraints. Examples are vehicle routing

problem or scheduling problem

2. Combination of some set of items subject to some constraints. Examples are set-covering or

grouping problem

3. Both permutation and combination of some set of items subject to some constraints. An

example is parallel machine scheduling problem

Hoffman and Padberg in [59] note that “The versatility of the combinatorial optimization model

stems from the fact that in many practical problems, activities and resources, such as machines,

airplanes and people, are indivisible [59].”Examples of COP include Knapsack Problem(KP), Trav-

elling Salesman Problem(TSP), Assignment Problem(AP), and Space Allocation Problem(SAP).

These are discussed below:

2.2.1 Knapsack Problem

KP is one of the NP-hard COPs that often appear in resource allocation with financial constraints.

It determines the items to include in a collection of items so that the total weight does not exceed

the given limit and the total value of the items taken is as large as possible. The integer program

formulation of the KP with the decision variable

12

xi =





1 if item i is picked

0 otherwise

(2.9)

is as follows:

Maximize

n∑

i=1

pixi (2.10)

subject to

n∑

i=1

aixi ≤ K (2.11)

xiε{0, 1} ∀ i = 1, 2, ..., n

where i = 1, ..., n is the number of items to be chosen, ai is the weight, pi is the profit attached to

choosing each item, and K is the capacity of the knapsack.

Common variations of KP are:

• 0-1 Knapsack problem: This is the most common type of KP which restricts the number

of copies of each kind of item that is taken to be zero(0) or one(1).

• Bounded knapsack problem: This restricts the number of copies of each kind of item to

be taken to a minimum integer value (say Ci)

• Unbounded knapsack problem: This type of KP puts no restriction on the number of

copies of each kind of item to be taken. It is also called the integer knapsack problem.

• Multiple-choice knapsack problem: This is another variant of a knapsack problem in

which the items are subdivided into classes and exactly one item must be taken from these

classes.

More information on KP can be found in [76, 66, 75].

2.2.2 Travelling Salesman Problem

This is an NP-Hard COP. It is a benchmark problem for many optimization methods. It determines

the shortest possible route that connects a given list of cities with their pairwise distances exactly

once. TSP is a minimization problem which can be modelled as an undirected weighted graph,

such that cities are the graph’s vertices, paths are the graph’s edges, and a path’s distance is the

edge’s length.

The mathematical formulation for the TSP is given as:

Minimize Z =

N∑

i

N∑

j

Cijxij (2.12)

13

subject to

N∑

i=1

xij = 1 for jε{2, 3, ..., N} (2.13)

N∑

j=1

xij = 1 for iε{2, 3, ..., N} (2.14)

∑

iεS

∑

jεS

xij ≤ |S| − 1 for S ⊂ V (2.15)

xijε{0, 1} for i, jε{2, 3, ..., N}

|S| denotes the number of elements in the subset S , V = {1, 2, ..., N}, N is the total number of

cities, Cij is the cost of travelling from node i to node j, and xij is the decision variable such that

xij =





1 if the salesman travels from node i to node j

0 otherwise

(2.16)

The objective function in Equation (2.12) is used to minimize the total distance travelled. The

constraints in Equation (2.13) and (2.14) ensure that each node must be visited exactly once. And

the constraint in Equation (2.15) eliminates the sub-tours. Some relevant literature on the TSP

can be found in [63, 56, 65, 101].

2.2.3 Assignment Problem

The assignment optimization problem seeks to minimize the total cost of assigning a number of

agents to some given tasks. A more applicable model [42] assigns several tasks to a single agent;

if and only if, these tasks assigned to the agent do not require more than the available resources.

The mathematical formulation of an assignment problem is given as:

Minimize

m∑

i

n∑

j

Cijxij (2.17)

subject to

n∑

j

rijxij ≤ bi ∀ i = 1, 2, ...,m (2.18)

m∑

i

xij = 1 ∀ j = 1, 2, ..., n (2.19)

where,

i = 1, 2, ...,m is the set of agent indices

j = 1, 2, ..., n is the set of task indices

14

Cij is the cost of assigning an agent i to task j

rij is the resource required by agent i to do task j

bi is the resource available to agent i

and

xij =





1 if agent i is assigned to task j

0 otherwise

(2.20)

A common type of this problem is the Linear Assignment Problem(LAP) which occurs when the

number of agents equals the number of tasks to be performed and the total cost of the assignment

for all the tasks equals the sum of the costs for each agent. Some relevant literature for the

assignment problem can be found in [97, 68, 38, 20].

2.2.4 Space Allocation Problem

SAP deals with the distribution of limited spaces among a certain number of entities with the

goal of finding the optimal use of the space while satisfying some constraints [31, 55]. The space

allocation problem basically has two objectives: Firstly, to minimize the misuse of the space so

that entities are allocated to spaces efficiently. Secondly, to minimize the penalty for the violation

of soft constraints in the problem. There are two types of constraints: the hard constraint and

the soft constraints. The hard constraint is required to obtain a feasible solution while the soft

constraint does not have to be satisfied, hence, it should be penalized.

The mathematical formulation of the space allocation problem is given as:

Minimize

n∑

i

m∑

j

CijXij (2.21)

subject to

n∑

i=1

Xij ≤ Tj ∀ j = 1, ...,m (2.22)

Li ≤
m∑

j

Xij ≤ Ui ∀ i = 1, ..., n (2.23)

where,

i = 1, ...,m is the set of entity indices

j = 1, ..., n is the set of space area indices

Cij is the cost of assigning an entity i to a space area j

Tj is the total space capacity

Li and Ui are the lower and upper bounds of the number of entities to be allocated

15

Equation (2.22) indicates that the total number of allocations must not exceed the space area

capacity. Equation (2.23) represents the constraints of the lower and upper bounds.

SAPs are NP-hard in nature and similar to scheduling problems. Instances of SAP in real life are

Shelf Space Allocation Problem (SSAP) [31, 26], Office Space Allocation Problem (OSAP) [92, 93]

and Hostel Space Allocation Problem (HSAP) [82, 31]. The CSPA problem considered in this

study is also an instance of the SAP. Details of this will be discussed in chapter 3.

2.3 Optimization Techniques

Optimization problems can be dated to the history of man. Humans tend to always search for opti-

mal solutions to problems encountered, this has led to a search for techniques and methods to solve

optimization problems. Before the twentieth century [129], a number of scientists and researchers

had been able to explore some techniques in solving many optimization problems. For example,

Johannes Kepler solved the so-called “marriage problem ”or “secretary problem ”to optimality in

1613. The problem was later developed into the field of probability optimization by its formal

introduction by Martin Gardner in 1960; Sir Isaac Newton also solved the problem of minimal

resistance of the body shape in 1685, which become the problem of calculus of variations. Gaspard

Monge looked into the transportation problem with known initial and final spatial distribution; L.

A. Cauchy in 1847 suggested a general iterative method for solving systems of equations which are

now known as the gradient method and the steepest descent method.

However, at the turn of the twentieth century [129], the use of optimization models and opti-

mization techniques became more obvious. A few milestones are: J. Jensen in 1906 introduced

the concept of convexity (a basis for convex optimization); L. Kantorovich in 1939 developed an

algorithm for linear programming; George Dantzig in 1947 invented the simplex method for solv-

ing large-scale linear programming problems; Harold Kuhn and A. W. Tucker in 1951 studied the

nonlinear optimization problem and re-developed the optimality condition (a necessary condition

in nonlinear programming for a solution to be optimal). Finally before the 1960s explosion of liter-

ature on optimization, Richard Bellman in 1957 developed the dynamic programming. Specifically,

after 1960, the field of optimization was further expanded with the introduction of more literature

on optimization.

Since there are different optimization problems, there are also different optimization techniques

that could be used to address these problems, this is because certain techniques are more suit-

able for some types of optimization problems than others[129]. The techniques for solving these

problems can be classified into two important groups: the exact (classical) optimization techniques

and the heuristic/meta-heuristic optimization techniques (See Figure 2.3 for an overview of these

techniques/methods). Some common exact techniques used by most optimization solvers and in

16

Figure 2.3: Classification of optimization methods [82]

literature will be discussed along with the meta-heuristic techniques used in this study.

2.3.1 Exact Optimization Techniques

The exact or classical optimization methods are useful in finding the optimum solution to a given

optimization problem. These methods obtain their optimum solution in an iterative manner by

starting from an initial solution. Three of such methods that are commonly used to provide solution

to real world optimization problems are discussed.

2.3.1.1 Simplex Algorithm

The simplex algorithm is a popular algorithm in optimization techniques for linear programming

[125, 8]. The algorithm was developed by George B. Dantzig in 1947. The algorithm is used to

determine the feasible solution space, which is the space bounded by the constraints and variables

bounds, of a given linear programming problem. This then helps in identifying the optimal point

from the solution space. The simplex method uses a search process [8] that evaluates solutions

obtained from the intersections of constraint equations, called corner points, to find the optimal

corner points through the boundary of feasible space. The search process often starts at the origin

and then moves to an adjacent corner point that gives a minimum (for minimization problem) ob-

jective function value. The process continues until there are no further improvements. Sometimes,

the number of the corner points might be an exponential function of the problem dimension which

17

would necessitate being visited by the simplex method. The basic steps of the algorithm can be

expressed briefly as follows [8]:

1. Standardize the problem into an LP tableau.

2. Generate an initial feasible solution, called a basis.

3. Test the solution for optimality.

• If not optimal, improve it (go to Step 4);

• Otherwise go to Step 6.

4. Generate an improved solution by identifying the leaving and entering variables to the basis

and updating the tableau.

5. Check for optimality (as in Step 3).

• If not optimal, repeat Steps 4 and 5.

• If optimal, go to Step 6.

6. Stop.

2.3.1.2 Interior Point Algorithm

Interior Point Method (IPM) is another classical optimization technique that can be used to solve

linear and nonlinear convex optimization problems. The method, which has its main idea to obtain

the optimal solution via the interior of the feasible space [72, 105], was proposed by Narendra

Karmarkar in 1984. It is also known as a class of barrier methods. Its variants are being used to

obtain solution to many real world optimization problems. There are three main classifications

[72] of IPM, which are projective methods, affine-scaling methods and primal-dual methods. The

popular and most efficient one among these classifications is the primal-dual method. The following

show some advantages of IPM over the simplex method: It is not affected by the problem of

degeneracies and it uses less number of iterations for larger LP problems than the simplex method

[72, 8]. However, the IPM is not able to detect a possible infeasible problem and each of its iteration

is computationally more expensive than the simplex method. The outline [72] of the IPM is as

follows:

1. Transform the inequality constraints in the given problem to equality constraints by intro-

ducing slack variables

2. Treat the non-negativity conditions by appending the logarithmic barrier functions to the

objective function

3. Choose a proper starting point such that the non-negativity conditions are satisfied.

18

4. Compute the barrier parameter that was introduced in step 2

5. Solve the system of equations by some iterative methods

6. Determine the step size that preserves the non-negativity condition and update the solution.

7. If the solution meets the convergence criterion, optimal solution is found, otherwise go back

to step 4.

2.3.1.3 Branch and Bound Algorithm

Branch and Bound(BB) method is one of the efficient methods used to solve discrete and COPs [89].

It uses partial enumeration, since total enumeration in most real world COPs are computationally

infeasible [89, 8], to explore its solutions and for finding the optimal solution to a given problem.

The method uses a tree structure with nodes and edges to represent its partial solutions. A partial

solution has some fixed discrete variables and others are free. The partial solutions on the same

level are compared with each another and the minimum of solution is picked. Then, the process

continues vertically downwards until all the partial solutions are examined which often leads to

the discovery of the overall optimum solution. Each node or partial solution is expanded to the

end of it (called fathoming). Those nodes that are good enough are investigated further (called

branching), while those that are not good enough to be investigated further due to the bounding

conditions are terminated (called pruning). The BB method was proposed in 1960 by A.H. Land

and A.G. Doig [120]. The Branch and Bound algorithm [8] is explained as follows:

1. Solve the problem as a continuous relaxation problem

2. Use the solution obtained to compute the bound conditions for the node. The continuous

solution obtained will always be better than the integer solution

3. The bound condition in step 2 is used to branch the original problem into two sub-problems

4. Each of the sub-problems are solved as a continuous relaxation problem

5. If its optimum solution satisfies the integrality condition then stop. Otherwise each sub-

problem is branched further.

6. Repeat this process of branching until all the sub-problems are explored or the stopping

criteria is met.

2.3.2 Meta-heuristic Optimization Techniques

Heuristic means “to find”or “to discover by trial and error”. Heuristics are computational meth-

ods use to find good and feasible solutions to complex optimization problems, especially many

real-world problems that are combinatorial in nature [116]. It has been proven from literature

19

that heuristics algorithms usually perform best for real-world problems given real-world time lim-

itations. However, meta-heuristics are further development over the heuristic algorithms. Al-

though, some use the two words interchangeably in literature. In recent literature, meta-heuristic

is the general name given to all stochastic algorithms with randomness and local search. The

word “meta-heuristic”was first introduced in [32], and was previously called modern heuristics

[94]. The word “meta”before the heuristic simply means ’beyond’ or ’higher level’ which implies

that meta-heuristics perform better than simple heuristics. Two essential components of meta-

heuristics which determine their behaviours are intensification and diversification [13, 33, 130], but

the balance between these two components is pivotal to the quality of any meta-heuristic solution.

Figure 2.3 still gives an overview of the different meta-heuristic algorithms and their classifications.

Examples of meta-heuristic algorithms are GA, Ant Colony Optimization(ACO), PS, Bee Algo-

rithm(BA), Particle Swarm Optimization(PSO), Simulated Annealing(SA), Harmony Search(HS)

and Firefly Algorithm(FA). The meta-heuristic algorithms used in this study are further explained

in the next sections.

2.4 Genetic Algorithm

2.4.1 Introduction

GA was developed by John Holland and his partners in the 1960s and 1970s [27] [129]. GAs mimic

the biological evolution of Charles Darwin’s theory of natural selection. Holland was the first to

use the genetic operators in his study of adaptive and artificial systems. The genetic operators

which are selection, crossover and mutation form an important part of a GA to solve optimization

problems. GA has these two noticeable advantages [129], aside many other advantages over tradi-

tional optimization algorithms, which are: the ability to tackle complex optimization problems and

parallelism. GAs can be used to solve any type of optimization problems whether the objective

function is linear or non-linear, changes with time or not, continuous or discontinuous.

However, an appropriate choice of the important parameters is essential for the algorithm to con-

verge [129]. Some of these issues that can affect the performance of GA borders on the formulation

of fitness function, the value of the population size, the rate of mutation and crossover, and the

type of selection. This section gives a brief explanation of the various types of encoding structures

that are often used in GA, the operators in GA, the pseudo-code for the GA and some applications

of GA as presented in various literature.

2.4.2 GA Encoding

Encoding solutions of an optimization problem into chromosomes is a central issue in GA. GA

cannot be implemented without a method to encode potential solutions of the problem to a form

a computer can process. There are different encoding methods that have been created for certain

20

Figure 2.4: The chromosome of a binary encoding

Figure 2.5: The chromosome of a value encoding

optimization problems for effective implementation of the GAs. The following are some of the

classification of encoding methods used in GAs as presented in literature.

2.4.2.1 Binary Encoding

Binary encoding, a string of 0s and 1s which represent the value of each solution, is the most

common type of encoding in use. This can be attributed to the fact that Holland and his students

in their earliest work focused on such encoding or partly because many of the existing GA theories

are centered on the premises of using binary encoding. However, binary encoding is not natural

for some optimization problems. Hence, the need to sometimes make corrections after the genetic

operation is completed [80]. An example of that is given in Figure 2.4

2.4.2.2 Value Encoding

Every chromosome in value encoding is a string of values. The values are connected to the problem

at hand which makes the use of binary encoding for these type of problems difficult. Value encoding

gives better results than binary encoding on some class of optimization problems such as function

optimization and COPs. However, this type of encoding often requires a new genetic operator to

be used. Figure 2.5 gives some examples of value encoding.

2.4.2.3 Permutation Encoding

Permutation encoding is best used for problems that search for the best permutation or combination

of items subject to some constraints. This type of encoding is only useful for ordering problems

such as the TSP and the eight queen problem. Since the order of items is important, it is necessary

to use some type of crossover and mutation operator to keep the chromosome consistent or feasible.

An example of permutation encoding is shown in Figure 2.6

21

Figure 2.6: The chromosome of a permutation encoding

Figure 2.7: The chromosome of a tree encoding

2.4.2.4 Tree Encoding

Tree encoding represents every chromosome as a tree of some objects. This type of encoding is

useful for evolving programs or structures that could be encoded in trees. Lisp and other functional

programming languages are suitable for this encoding. See Figure 2.7 for an example of this.

2.4.3 GA Operator

Genetic operators are used to maintain genetic diversity which are essential for evolutionary pro-

cesses in GAs. These genetic operators are similar in operation to the ones in nature. The following

explains briefly the selection, crossover and mutation operators.

2.4.3.1 Selection

In selection, individuals are taken to be parents and they are recombined to produce children for

the next generation. This selection is done to favour the chosen of fitter individuals. The fitter

individuals have better solutions than the other ones. Better solutions mate more often than the

poor solutions, if at all they mate. Hence, a mating pool is formed. Then offspring are produced

using the crossover and mutation operators by the recombination of these solutions in the mating

pool. One important issue in selection operators is the selection pressure. The selection pressure

is the degree to which the fitter individuals are favoured. The higher the selection pressure, the

more the fitter individuals are chosen. GAs improve the population fitness using this selection

22

Figure 2.8: An example of a single point crossover

pressure over the subsequent generations. The magnitude of the selection pressure influences the

convergence rate of GA, with higher selection pressures resulting in higher convergence rates [80].

On the other hand, the genetic diversity will be much higher if the selection pressure is too low,

which will cause the algorithm to take a longer time to converge to an optimal solution. Hence, it

is important to set the selection pressure appropriately.

The selection operator determines the manner in which individuals are chosen for the mating

pool [41]. Many selection operators exist in literature [80]. Although, they vary in complexity,

they are essentially doing the same thing. They pick from the current population in a random

way the strings that have fitter individuals and introduce their multiples into the mating pool.

The most commonly used selection methods are: Stochastic Universal Sampling, Roulette Wheel

Selection, Sigma Scaling, Elitism, Boltzmann Selection, Rank Selection, and Tournament Selection.

2.4.3.2 Crossover

Two individuals that are selected at random from the mating pool are acted upon by the crossover

operator to give some new offsprings. The crossover operators provide exploration of the search

space by introducing some new individuals into the population. Similar to the evolution in nature,

crossover uses the idea that new offspring may be better than their parents if they take the

best features from each of the parents [14]. Crossover occurs according to pre-defined crossover

probability. A simple example of a crossover technique is the single-point crossover, also called one

point crossover. This crossover technique has the chromosome of each parent cut randomly at a

defined position and the tail part of the chromosome are swapped to produce two new offsprings

(see Figure 2.8). The simple crossover technique is usually effective but not as effective as other

more complicated operators in some problems.

Crossover ensures that the genes of individuals from the mating pool are recombined to produce

new solutions to the problem. Some genes or parts of genes from each parent are introduced into

23

Figure 2.9: An example of a simple mutation

each of the offsprings. In order to maintain an evolutionary analogy that is competitive from one

generation to another, the crossover operator is only applied to a mating couple with a probability

pc, which is often a real number between 0.6 and 1.0 [41]. Other types of crossover operators aside

the single-point crossover are: Two Point Crossover, Uniform Crossover, Arithmetic Crossover,

and Heuristic Crossover.

2.4.3.3 Mutation

Mutation operator is usually applied after crossover to each offspring. Mutation keeps the algorithm

from being trapped in a local optimum. It helps to recover lost genetic materials and to introduce

new genetic structures in the population by randomly disturbing the genetic information [80].

It also ensures that there is a non-zero probability of obtaining a solution from the population.

Mutation is used to maintain genetic diversity in the search space in order to ensure that all the

points are reached [41]. A simple mutation operator has a gene changed with some small probability

pm to each child for binary coding. This is called flip bit mutation and it is shown in Figure 2.9.

The mutation operators are of different methods which are selected according to the way the chro-

mosomes are encoded. Other types of mutation operators are Boundary mutation, Non-Uniform

mutation, Uniform mutation, Gaussian mutation, and Adaptive Feasible Mutation.

2.4.4 Application of GA

GAs have been used in different fields due to its nature-inspired capability to find some promising

regions in a large search space. Various areas of study where GAs have been applied and are

still being applied include the following: In optimization, GAs have been used for multiple choice

optimization problems [112], as a decision support tool to optimally allocate available resources

[119], to search for near-optimum solution of the resource allocation and levelling simultaneously

[108]; in robotics, GAs were used to address the problem of automatic parking by a back-wheel drive

vehicle [19], for robot navigation controller (Neural-network based) optimization [98]; in point-to-

point trajectory planning for a 3-link (redundant) robot arm [46]; in machine learning, GAs have

been used for designing neural networks [104], for classification and prediction [107], to optimize

the board evaluation function of the game of draughts (checkers) [51], for data optimization of

24

efficient results estimation alongside back propagation neural network algorithm [131]; in signal

processing, GAs have been used for optimizing the coefficients of recursive digital filters [106], to

choose appropriate values for the parameters of the modified varri signal segmentation method

[44], for the improvement of the fidelity of the watermarking scheme [86], to address the problem

in control engineering and signal processing [35]; in design, GAs have been used to generate the

topological arrangement of spaces in an architectural layout [61], to determine a set of unknown

parameters that best matches the Blaze II chemical laser model with experimental data [64], for

the optimization of 66 setup parameters for a simulation of a formula one car [62], to develop neural

reinforcement controller [77], to obtain near optimal solutions to the vehicle routing with time and

capacity constraints [54]; in automatic programming, GAs have been used to search an extremely

large solution space of all possible Module Dependency Graphs (MDGs)[18], to synthesize circuits

to meet any specification [11]; in Economics, GAs have been used to model resource exploitation

under bounded rationality [99], to find the most profitable trading rule and to calculate the most

appropriate trade time [29, 4], to investigate economic evolution[100].

2.5 Pattern Search

2.5.1 Introduction

PS is a direct search or derivative-free optimization method for solving a given optimization prob-

lem. As a derivative-free algorithm, it works well on objective functions that are non-differentiable,

stochastic, and discontinuous. It could also be used to find a global optimum of a function. PS has

been proved to be efficient, less computationally expense, and to converge in its implementation

to optimization problems [73, 113, 1, 47]. Hence, it is gaining more attention among researchers

working on various optimization problems. PS algorithm searches a set of points known as patterns

around the current point, looking for one where the value of the objective function is minimum

than the value at the current point [73, 113, 1]. These set of points expand or shrink depending

on the objective function value at the current point [79, 1, 78]. The search stops after a minimum

pattern size is reached. As a heuristic method, PS provides good approximate solutions for many

optimization problems although it could fail on others. Hooke and Jeeves coined the name pattern

search in 1961 [91]. The PS method is often referred to as the Generalized Pattern Search(GPS)

method in literature [3]. The following two definitions [16, 1] are essential in understanding the

search directions of PS algorithm.

Definition 2.1. A positive combination of the set of vectors D = {di}ri=1 is a linear combination
r∑
i=1

λidi, where λi ≥ 0, i = 1, 2, ..., r.

Definition 2.2. A finite set of vectors D = {di}ri=1, n + 1 ≤ r ≤ 2n, forms a positive spanning

set for <n if any v ∈ <n can be expressed as a positive combination of vectors in D. The set of

25

vectors D is said to positively span <n. The set D is said to be a positive basis for <n if no proper

subset of D spans <n

With the understanding of these definitions, the search directions used by PS algorithm is described

next. The simplest search direction is made up of r = 2n vectors and it is given by

D = {e1, ..., en,−e1, ...,−en} (2.24)

where ei is the ith unit coordinate vector in <n and D is a set with a maximal positive spanning

direction.

2.5.2 Application of PS

The PS optimization method could be applied to solve a diverse number of optimization prob-

lems that might not be solved by some standard optimization methods [96]. It is easy in concept

and computationally inexpensive. A detailed review of direct search methods is given in [74] for

unconstrained optimization. The following are few of the applications of PS algorithm to real

world optimization problems. Alsumait et al. [96] applied the PS algorithm to solve power system

Economic Load Dispatch problem (ELD) with a valve-point effect. The algorithm was used to min-

imize the power generation cost function, estimated as a quadratic function, subject to some given

constraints. The results suggested that the PS algorithm could obtain a better optimal solution

within a reasonable time than Evolutionary Programming(EP) and GA. Nicosia and Stracquadanio

[40] also used the generalized PS algorithm in predicting the tertiary structure of small molecules,

called peptides. The study explained that proteins are organized in a three-dimensional structure

called the tertiary structure[40]. And that the understanding of this could make the treatment

of diseases easier. This is one of the leading problems in structural bio-informatics. The peptide

structure prediction was modeled as a nonlinear optimization problem which minimizes the poten-

tial energy function called the Ecepp/3 function. The results obtained were compared with the

PEPstr algorithm, a state-of-the-art algorithm, and was found to be 21.17% better in terms of the

average root mean-square deviation.

Furthermore, Song et al. [128] implemented the PS algorithm to enhance the performance of

high-frequency surface wave dispersion curves which are highly nonlinear and multimodal. The

study investigated the PS algorithms and found them to be better in their application to rayleigh

wave inversion compared to GAs. It was suggested that the implementation of PS using the GP-

SPositiveBasis2N as the inversion strategy could improved the performance of the rayleigh wave

dispersion curves [128]. Setting the expansion factor to 1 and contraction factor to 0.5 can improve

calculation efficiency. Shabanzadeh et al. [88] investigated the problem of pattern classification in

data mining which could be formulated as a non-smooth and non-convex optimization problem.

26

The unsupervised classification of patterns is known as clustering and is very useful in data anal-

ysis [88]. The study applied the PS algorithm to solve the partition clustering problem and was

considered to give better results than the other algorithms.

2.6 Particle Swarm Pattern Search Algorithm

2.6.1 Particle Swarm Optimization

PSO is a population based stochastic optimization method developed by Eberhart and Kennedy

[129] in 1995. PSO is inspired by the social behavior of bird flocking or fish schooling [126, 129]. It

shares some similarities with GA, an evolutionary technique. However, PSO does not use evolution

operators like most evolutionary computation techniques. The particles, which are the potential

solutions of the PSO, search through the problem space by following the best current particle [126].

The algorithm starts by generating a population of candidate solutions, called the swarm. Each

individual particle of the swarm moves within the search space, using both its knowledge and that

of the swarm to search for a better solution and find an optimum value to the given problem.

Hence, the knowledge of previous successful solutions is essential to the migration of the swarm.

The position of each particle as well as the swarm is expressed in terms of its previous position,

x(t), at time t and the velocity, v(t+ 1), of the particle which describes the direction in which they

move. The position and velocity of a particle is defined as follows:

x(t+ 1) = x(t) + v(t+ 1) (2.25)

v(t+ 1) = v(t) + c1r1(y(t)− x(t)) + c2r2(ŷ(t)− x(t)) (2.26)

where c1 and c2 are positive real parameters called the cognition and the social parameters, r1

and r2 are random numbers on the interval (0,1) which ensure the exploration of the search space,

y(t) is the best previous position of that particle called the pbest, and ŷ(t) is the best previous

position of the swarm called the gbest. PSO has been widely used in literature due to the following

reasons: it is faster than many other methods, it gives better results in a cheaper way, and it has

few parameters to adjust. More details of PSO and other variants can be found in [129, 95, 127]

2.6.2 Particle Swarm Pattern Search

The Particle Swarm Pattern Search (PSwarm) algorithm, which was developed by Vaz and Vi-

cente [47] in 2007, integrates the PSO into the PS framework that gives a better fitting for global

optimization due to its high capability to explore the search space [47, 36]. The algorithm is a

PS method which converges to stationary points from any arbitrary starting points with a par-

ticle swarm method applied in the search phase of the PS method for more aggressive global

exploration of the objective function. It was shown from the numerical experiment performed in

27

[47, 36] that a larger part of the computational work is done in the search phase by the particle

swarm. The resulting PSwarm algorithm still takes the basic structure of the PS algorithm which

produces sequences of iterates along the conventional requirements for this class of method [47, 36].

Vaz et al. [36], broadened the PSwarm algorithm to handle general linear constraints. The poll

step for the PSwarm contains positive generators for the tangent cone of the approximated active

constraints, which also addresses the degenerate instance. An ellipsoid of maximum volume en-

graved to the feasible set is used to compute the initial population of the particle swarm in the

search step. Each iterate of the PSwarm algorithm is divided into two steps namely: the search

and the poll step. The coordinate search was applied in the poll step while the particle swarm was

applied in the search step to generate points in the feasible region and equip the overall method

to find a global minimizer. Particle swarm was used for this purpose due to the fact that it is a

population-based method with fewer parameters to adjust and because it can be easily parallelized.

The use of a population in the search step also helps in polling around the best particle in the poll

step which enhances the robustness of the algorithm. The poll step reduces the number of particles

by removing particles that are too close to each other in order to enhance their overall efficiency.

2.7 Penalty Method for Constrained Optimization

Constrained optimization problems are often converted to unconstrained ones to make it easier

to solve such problems [8]. The CSPA problem is one of such constrained optimization problems.

Hence, we shall discuss the penalty function method which is the oldest and more popular method

for solving constrained optimization problems [15]. The penalty method converts the constrained

optimization problems into equivalent unconstrained problems by adding to or subtracting from the

objective function some positive terms called penalty terms whenever the constraints are violated,

and adding or subtracting zero when the constraints are not violated [15, 70, 83]. This makes

the solution of unconstrained problems to eventually converge to the solution of the constrained

problems. The penalty functions were initially proposed by Richard Courant 1940s and were

later extended by Caroll and Fiacco & McCormick. The rest of this section gives a detailed but

brief explanation of different types of penalty function methods used for constrained optimization

problems. Given a constrained minimization problem of this form

Maximize f(x) (2.27)

subject to

gi(x) ≤ Gi where i = 1, 2, . . .m (2.28)

28

hj(x) = Hj where j = 1, 2, . . . n (2.29)

x ≥ 0 (2.30)

A penalty function method can transform the constrained optimization problem into an uncon-

strained problem using the additive form or the multiplicative form.

1. The additive form

Fitness(x) =




f(x) if x is feasible

f(x) + α1p(x) otherwise

(2.31)

2. The multiplicative form

Fitness(x) =




f(x) if x is feasible

f(x) ∗ α2p(x) otherwise

(2.32)

where p(x) is the penalty function, and α1, α2 are penalty factors.

Although the additive form is the popular type used in literature, the multiplicative form can also

converge to a solution for the constrained problems. There are different types of penalty methods

as seen in literature. A brief explanation and mathematical implementation of these different types

of penalty methods are presented as follows.

2.7.1 Death Penalty

The death penalty is a type of penalty method in which infeasible solutions are out-rightly rejected

[15, 83]. It does not use any information from the infeasible solution of the problem, hence, if there

are no feasible individuals at the first population, the process will not continue [115, 132, 135, 134].

The formulation could be written as

Fitness(x) =




f(x) if x is feasible

0 otherwise

(2.33)

This method can only work better when a reasonable portion of the search space or the whole

search space is convex.

2.7.2 Static Penalty

Unlike the death penalty method, the static penalty method does not reject the infeasible solutions

but uses a constant penalty factor which does not change with the iteration number throughout

29

the entire computational process to penalize infeasible solutions. The most popular of this function

was proposed in [5] as follows

Fitness(x) = f(x) +

m∑

i=1

(Rij ∗max[0, gi(x)]2) (2.34)

where Rij represents the coefficient corresponding to the jth constraints and ith violation level, m

is the number of constraints. Some other static penalty methods used in literature can be seen in

[34, 24]. Although, the major disadvantages of the static penalty method is that high number of

parameters need to be set to get a good feasible solution, this study uses the static penalty method

to convert the constrained CPSA problem to an unconstrained one. The reasons for this are: (1)

The static penalty method is simple and easy to implement, (2) It is one of the most popular

types of penalty function methods used in literature and (3) It is believed that if the static penalty

method works well with this problem, then other complex types of penalty function methods would

also work.

2.7.3 Dynamic Penalty

This type of penalty method is dynamic due to the changing nature of the penalty factor over time.

As the generation number of the algorithm increases, the penalty factor also increases, making it

difficult for infeasible solutions to be present as the generation number increases. In [52], the

dynamic penalty was formulated as follows

Fitness(x) = f(x) + (C ∗ t)α ∗ SV C(β, x)) (2.35)

where

SV C(β, x) =

n∑

i=1

Dβ
i (x) +

p∑

j=1

Dj(x) (2.36)

and

|x| =




x if x ≥ 0

−x if x ≤ 0

(2.37)

Di(x) =





0 gi(x) ≤ 0, 1 ≤ i ≤ q

|gi(x)| otherwise

(2.38)

Dj(x) =





0 −ε ≤ hi(x) ≤ ε, q + 1 ≤ j ≤ m

|hi(x)| otherwise

(2.39)

The constants C, α and β are to be determined by the user. However, the values suggested to

be used in [52] were C = 0.5, α = 1 or 2 and β = 1 or 2.

30

The dynamic penalty method was also implemented in [102] using

Fitness(x) = f(x) + V (g)[A

m∑

i=1

(δiWiφ(di(S))) +B]δs (2.40)

where

A = severity factor

m = total number of constraints

δi =





1 if constraint i is violated

0 otherwise

(2.41)

Wi = weight factor for constraint i

di(S) = the degree of violation of constraints i introduced by solution S

φ(di(S)) = function for the degree of violation of constraints i introduced by solution S

B = penalty threshold factor

δs =





1 if S is feasible

0 otherwise

(2.42)

V(g) = an increasing function of the current generation g in the range(0,..,1) with the best

performing function designed as V(g) = (gG)2 and G is the total number of generations.

2.7.4 Annealing Penalty

The annealing penalty method was developed in [133] based on the idea of simulated annealing

[103]. This method is also called GENECOP II, which means the second version of the GEnetic

algorithm for Numerical Optimization for COnstrained Problems. The steps of this method as

outlined in [132] are as follows:

• Dissever the constraints into four subsets: linear equations, linear inequalities, non-linear

equations and non-linear inequalities

• Choose a random initial point that satisfies the linear constraints as the starting point. The

initial population will consist of copies of this point

• Set τ = τ0 which is the initial temperature

• The population is evolved using the formula

fitness(x, τ) = f(x) +
1

2τ

∑

jεA

f2j (2.43)

• if τ < τf stop

31

• else

– reduce τ

– use the best solution as a starting point for the next generation

– reiterate the previous steps

The values of the initial temperature, next temperature and the freezing point was set in [133] as

τ0 = 1, τi+1 = 0.1 τi , τf = 0.000001. This method deals with active constraints only at each

iteration. The pressure on the feasible solutions increase as the temperature τ decreases.

Carlson [25] also suggested the evaluation of the fitness value using the formula

fitness(x) = A.f(x) (2.44)

where

A = exp
−M
T (2.45)

and

T =
1√
(t)

(2.46)

The annealing function, A, depends on M, which is the measure of the amount constraint

violation and T, the cooling schedule which depends on the running time of the algorithm.

2.7.5 Adaptive Penalty

The adaptive penalty method was developed in [10]. The method updates the penalty parameters

based on the feedback it gets from the search process. Each individual is evaluated by the following

formula as suggested in [10]

fitness(x) = f(x) + λ(t)[

q∑

i=1

g2i (x) +

m∑

j=q+1

|hj(x)|] (2.47)

where

λ(t) is obtained for each generation using

λ(t+ 1) =





1
β1
λ(t) if all the best individuals are feasible

β2λ(t) if all the best individuals are infeasible

λ(t) otherwise

(2.48)

This means that if all the best individuals of the last generation are feasible, the penalty factor

λ(t+ 1) for the next generation decreases. But if they are not feasible, the penalty factor λ(t+ 1)

32

increases. However, if the best individual consists of both feasible and infeasible solutions, then the

penalty factor remains the same. It also has the conditions that β1, β2 > 1, β1 > β2 and β1 6= β2

Other earlier works on adaptive penalty function method can be seen in [28] using the formula

fitness(x) = f(x) + (fall − ffeas)
m∑

i=1

(
∆bi(x)

∆bnefi

)k (2.49)

where

∆bi(x) = value of violation for constraint i

∆bnefi = near feasibility threshold for constraint i

k = severity parameter

fall = objective value of the best unpenalized solution found

ffeas = objective value of the best feasible solution found

Further work on this can be seen in [111] where the multiplicative form of the adaptive penalty

method in [28] was considered and is given by the formula

fitness(x) = f(x) + (1− 1

m

m∑

i=1

(
∆bi(x)

bi(x)
)) (2.50)

where

∆bi(x) = max{0, gi(x)− bi} (2.51)

And in [70], the multiplicative form of this method was improved by giving high penalties for

infeasible solutions.

2.8 Conclusion

This chapter started with an introduction to optimization; a simple definition of an optimization

model which comprises of three essential components namely: the objective function, decision

variables and a set of constraints to be satisfied; and a classification of the optimization problems

as suggested in [8] was discussed. Following this, some common examples of COPs were briefly

explained as presented in literature. Classifications of techniques explored by scientists and re-

searchers in solving optimization problems were also discussed. While some of these techniques

can obtain optimal solutions (such as the exact techniques) to a given problem, others can simply

obtain a good solution, though not optimal, examples of such are the heuristic techniques. Finally,

a constraint handling techniques commonly used for constrained optimization problems in litera-

ture were also examined. In the next chapter, the campus space allocation problem with respect to

33

the optimization model employed in addressing the problem as well as the solution steps developed

for the problem are discussed.

34

Chapter 3

Campus Space Allocation Problem

“In a competitive world, only the best (safest, cheapest, fastest, ...) is good enough ”,

[110].

3.1 Introduction

The problem of allocating parking spaces to users on campus is a difficult one especially when it

is to be done for a large number of users. Like any other COPs, it is a NP-hard problem. It is

difficult in the sense that the allocation must not be done in an indiscriminate way [7], but rather

on a selective basis so as not to deny many users the privilege of having parking spaces close to

their destinations [7]. Hence, an optimization model is employed for this problem since it ensures

efficient use of parking facilities by determining the optimal allocation of parking spaces to users

[118]. This chapter reviews similar study on campus parking and presents the optimization model

for addressing the campus parking allocation problem. It also explains the solution ideas that

will be used in addressing the problem and gives a description of the exact method as well as the

pseudocode of the meta-heuristic algorithms employed for the solution of the problem.

3.2 Related Works on PSA

In the previous studies on parking problem, Goyal and Gomes [58] formulated a linear program-

ming model for determining the optimum allocation of existing car parking facilities on campus

for multiple classes of users. The model was a minimization model for the distance walked by

different users from their allocated parking lot to their office destination. The paper explained

that the previous models on campus parking spaces allocation assumed a single class of user which

was not so in a real life situation. But the model proposed was for multi-class users in a closed

community like the university environment. Three different cases for the model were considered.

35

The first case is when the number of users is greater than the number of available parking spaces

on campus. The second case is when the number of parking spaces is greater than the number of

users. And the third case is when the number of users equals the number of parking spaces on

campus. While a user can be sure of getting a parking space on campus for both the second and

third cases, the user is not sure of getting a place for parking in the first case. Hence, a suggestion

on how to calculate the parking permit for the first case is given.

Batabyal et al. [2] discussed the probabilistic nature of parking demands and the violation of

parking rules. The paper further explained that it is important to understand this probability

nature of parking demands and parking rules violation due to the tripartite demand for parking by

the faculty, staff and students which has created a limited supply of parking spaces in the university

and is a major source of concern for parking planners and managers on how best to allocate these

limited parking spaces to users in the university. The paper focused on two parking issues in the

university environment namely: short term and long term parkers, and parking rules violators.

For the short term and long term parkers, the mean parking time was determined and was used to

calculate the probability distribution function of the number of occupied parking spaces at a given

time. And for the parking rules violators, the probability distribution function of the number of

violators who were given a fine at inspection for violating the parking rules was calculated. The

study did not differentiate the academic staff from the non-academic staff. The study considered

the length of the parking time as a measure of whether a user is a long term or short term parker.

Narragon et al. [7] developed a probability model that allows different classes of users to be

considered at the same time so as to assess alternative policies for issuing a higher number of

parking permits than the number of available spaces in the parking lots. The model was imple-

mented with data from a case study. The paper explained that the model could also be applied to

an inventory problem, staffing of maintenance facilities problem and staffing a stenographic pool

problem. It was further expatiated that the policy of allocating one space per user in many institu-

tions will only lead to more parking problems resulting in many vacant spaces that cannot be used

by others. Hence, drivers are left with the option of parking in parking lots that are very far from

their destinations (if at all they find one). The paper emphasized that there are only two major

ways of addressing the demand for parking spaces on campuses; building more parking facilities

or the efficient utilization of parking facilities. However, while the former appears to be a better

solution to the problem, it is difficult to implement due to limited spaces and funds, this leaves the

second option of ensuring that the existing facilities are effectively and efficiently utilized through

policies that encourage such. Issuing more parking permits than the available parking spaces is

called lot over-issuance or lot overselling [7]. The study emphasized that lot overselling has a po-

tential of improving the use of parking spaces since it is based on the principle that all the spaces

36

in a parking lot are not totally occupied at any given time. Hence, it is possible to allocate more

users to a parking lot without causing any parking conflict.

Mouskos et al. [17] formulated a deterministic dynamic Parking Reservation System (PRS) for

performing parking space assignment on the minimization of parking costs in order to aid users

in securing a parking space either before or during their trip. The mathematical model is formu-

lated as an assignment binary integer linear program which can be solved by any standard linear

programming software. It was noted that searching for parking spaces in urban areas often results

in the loss of substantial amount of time, congestion, environmental pollution and frustration by

drivers. Searching for parking spaces adds more vehicles on the road and this impedes the speed of

the drivers because the drivers would continue driving round “in circles ”until they get a convenient

parking space. Hence, the need for the development of the PRS to address this problem. The paper

also explained that the previous methods such as the use of Parking Guidance and Information

(PGI) systems or the Advanced Parking Information(API) systems that were used in addressing

this problem could only help the drivers identify the parking lot they desire and the route they

could take to get to the parking space. However, the PRS helps the drivers secure parking spaces

before they leave their current position to the parking lot or when they are on the way to the

parking lot.

As a follow up work to [17], Sun et al. [117] described how to improve the performance of terminal

parking facilities and park-and-ride facilities by developing an on-line parking reservation system

(PRS). It was emphasized that an improvement in terminal parking facilities will significantly re-

duce vehicles’ congestion on the road and the travel time of drivers. While an improvement in

park-and-ride will reduce the drivers’ inconvenience, ease parking payment and reduce travel time.

In implementing the web based system, the users were allowed to enter their information into the

system, and then the system solved the parking reservation problem. After that, a shortest path

problem was also solved using the Dijkstra’s shortest path algorithm to determine the shortest

walking path between the users’ allocated parking lots and their destinations. A C language based

ILOG CPLEX 9 optimizer integrated into a Java-based system using Extensible Markup Language

(XML) files called Web-PRS, was used to solve the model. The Web-PRS is used to help both

the subscribers (registered users) and the non-subscribers (non registered users) to make parking

reservations on-line.

Brown-West [37] discussed the difficulties of finding a parking space near activity centres espe-

cially on campuses that are close to central business districts. An optimization model that con-

siders some necessary parameters needed to obtain optimal parking by the traffic engineers and

campus planners was developed and was used to determine the usage of existing land in a policy-

37

driven campus environment. The major objective of the optimization model was to determine

the optimal arrangement of stalls that will maximize the number of parking spaces which will

give minimum interference and travel discomfort to every user of the parking space. The paper

explained that an increase in the size of a campus tends to increase the problem. Furthermore,

other institutional needs on the campus were often given more attention than the need for parking

spaces [37]. The study explained what the parking problem in the campus environment means,

presented a generic optimization method that could help in managing parking spaces, introduced

a multi-factor optimization model and created an awareness of the usefulness of the model to cam-

pus planners and traffic engineers. It was further expatiated that factors such as internal factors,

external factors, campus size and growth, land availability, financial consideration, inappropriate

design, and parking supply were the major influence on parking problems on campus. But some

of these factors were often overlooked by the hired engineers when formulating the campus master

plan and other planning documents.

Gracia et al. [90] applied an intelligent organizer of objects using a GA and a Hill Climbing(HC)

algorithm to address the space allocation problem in a warehouse, a car parking and a land for

cultivation. The study explained that the space allocation problem in a warehouse environment

has a discontinuous available space because of some obstacles such as walls in the search space. In

a car parking environment, it has a discrete available space. And in a land for cultivation envi-

ronment, there is no restriction on the available space. However, the proposed intelligent system

takes into consideration these restrictions in each of the three environments and it gave positive

results when implemented.

Wang and Zhou [136] investigated some features of parking behaviour in Chang’an University

campus which is similar to other chinese universities. They analysed some of the parking problems

and recommended strategies for improving parking planning and management. The paper em-

phasized that the goal of managing parking facilities was to ensure that academic activities were

carried out conveniently, since all the activities on campus were towards teaching and research.

Some of the problems [136] identified were: limited parking places compared to parking demand,

impediment of traffic due to the number of roadside parking, poor management of parking and

gross parking facilities. Finally, the study suggested that the parking situation on campus could be

improved by including parking planning into the campus planning, rationally distributing parking

spaces using the principles in economics to control parking in order to find a good balance between

demand and supply of parking spaces, and also by regulating parking behaviour to ensure users

abide by the parking rules on campus.

Young et al. [118] presented a review of parking models to help in the understanding of the

38

interaction between traffic systems and parking systems. The parking models were grouped into

three - choice, allocation and interaction models, in accordance with their objectives. The study

discussed the connection between these three objectives leading to hierarchical models for parking

analysis which help in the use of each model to address a particular policy situation. The first

group in the parking model is the parking choice model which is further classified as the mode

choice model and the location choice model. The study explained that drivers react to changes

in parking policies and the availability or non-availability of parking spaces by finding alternative

parking locations, changing the time of their trips, abandoning the trip entirely or changing their

parking destinations [118]. It was further explained that the parking choice models help to model

the behaviour of individuals or groups of people, this model makes use of available data, reduces

data collection problems and transfers the observation made from one location to another. How-

ever, these models do not include the supply constraints which makes them limited to local optimal

conditions, since they only investigate rates of parking demand within a particular parking supply.

The second group is the parking allocation model which is classified as the optimization model,

constraint model, gravity model and traffic assignment model. The allocation models are concerned

with allocating a given number of drivers to parking spaces. Among these parking allocation mod-

els, it should be noted that it is the optimization model that ensures the efficient use of parking

facilities and that determines the optimal allocation of parking spaces or parking lots. The parking

allocation models use supply constraints to direct traffic flows to the available parking spaces. This

makes parking allocation models suitable for satisfying many parking policy requirements [118].

The third type of parking model is the parking interaction model [118]. The parking interaction

models addresses the responses of drivers to parking policies. Two essential models that describe

the parking interaction models are CLAMP (Computer-based Local Area Model of Parking be-

haviour) and ORIENT.

Sattayhatewa el al. [87] considered the use of three major factors, which are driving time, parking

cost, and walking time, to evaluate the choice of parking lot in special occasions and analysed the

consequence of such choices on the costs to everyone on the transportation network. The logit

function is used in the formulation of the model for the parking lot choice while the user equilib-

rium and entropy maximization for trip distribution is used in the formulation of the joint parking

lot choice and assignment model. The model was used to analyse the existing traffic conditions

in such special events and to improve on the traffic conditions by efficient assignment of parking

spaces for special events. The men’s basketball at kohl centre in Madison, Wisconsin was used as

the case study for the application of this model. The paper emphasized that in special occasions

or events, the attendees of such events often seek to park their vehicles as close as possible to

the location where the event is taking place. This often leads to overcrowding of the parking lots

39

close to such event’s location while other parking lots, farther away, are not completely occupied.

Many attendees spend valuable amount of time looking parking spaces. The results suggest that

although the three factors are significantly important in parking lot choice, walking time is the

dominant factor for initial preference for a parking lot.

3.3 Campus Parking Space Allocation Model

The model to allocate parking spaces on campus taking into consideration the reserved policy in a

university environment is formulated as a linear programming problem. The model is an instance

of the mathematical formulation given in [58] but with two classes of users: reserved users and

unreserved users. A constraint to cater for the reserved allocation was introduced to the model in

[58] where the number of users, TU , is greater than the available parking spaces, TS . The model is

formulated as a linear programming model and it is given as:

Minimize Z =

n∑

k=1

m∑

j=1

l∑

i=1

DjkXijk (3.1)

subject to:

n∑

k=1

Xijk = Pij for i = 1, 2, ..., l and j = 1, 2, ...,m (3.2)

m∑

j=1

l∑

i=1

Xijk = Ak for k = 1, 2, ..., n (3.3)

m∑

j=1

Xijk ≥Mik for i = 1, 2, ..., l and k = 1, 2, ..., n (3.4)

Xijk ≥ 0 ∀ i, j, k ≥ 0 (3.5)

and

Xijk ∈ Z+ (3.6)

Where,

l = the total number of permit types (with index i)

m = the total number of users’ buildings (with index j)

n = the total number of parking lots (with index k)

TS =

n∑

k=1

Nk =

n∑

k=1

l∑

i=1

Mik (3.7)

40

TS = the total number of available parking spaces

Nk = the number of available spaces in the kth parking lot excluding the spaces for handicapped

users

Mik = the number of parking places available with permit type i in kth parking lot

Ak = the number of permits issued to the kth parking lot

Djk = the distance between the jth building and the kth parking lot

Xijk = the number of people having permit type i, working in building j and allocated to the kth

parking lot

TU =

l∑

i=1

Bi =

m∑

j=1

l∑

i=1

Pij (3.8)

TU = the total number of users demanding parking

Bi = the number of permit type i users

Pij = the number of permit type i users working in building j

The objective function in Equation (3.1) minimizes the total distance walked by all the users from

each parking lot to their respective buildings. Equation (3.2) is the permit type users constraint

which ensures that the sum of the parking allocation in each parking lot is equal to the number of

users with the permit type for the parking lot. Since several parking permits are issued for different

parking lots, the constraint in Equation (3.3) ensures that the sum of parking allocation for users

with permit type i working in building j is equal to the parking permit issued for the parking

lot. The optimization model in Equation (3.1) - (3.3) is formulated in [58] but our model uses an

added constraint which is Equation (3.4) for allocating reserved parking spaces in the university

environment. Equation (3.4) is called the reserved spaces constraint. The constraint ensures that

the sum of the parking allocation, Xijk, for all users is equal to the number of available reserved

spaces, Mik, for reserved and greater than the number of available unreserved spaces. The non-

negativity and integer constraint in Equation (3.5 and 3.6) keeps the variables equal to or greater

than zero and to be integers.

With the following assumptions:

1. The shortest walking distance between each parking lot and the user’s destination is known

and it is taken by all users [58];

2. A user will either have a reserved parking permit type or unreserved parking permit type

(that is l = 2).

3. The parking tariff for a similar parking permit type is the same whether the users are allocated

to a parking space closer to their building or not;

41

4. The probability of a user bringing his car on a particular day and the probability of the user

finding a space on that day is the same for all users [57, 58].

5. The criterion for determining the optimal solution is the minimization of the total distance

walked by all the users [57].

Constrained CPSA Model into Unconstrained Model

The CPSA constrained problem must be transformed into an unconstrained optimization problem

in order to conveniently obtain solutions to the problem using the meta-heuristics algorithms. The

static penalty method is used, as explained in section 2.7.2, to transform the constrained CPSA

model to unconstrained CPSA model because it does not totally discard an infeasible solution

and it is easy to implement. A penalty is incurred if the solution violates any of the constraints.

This, however, moves the infeasible solutions to feasible ones (as noted in section 2.7.2). The

mathematical model in section 3.3 is transformed into an unconstrained optimization as follows:

Minimize Z =

n∑

k=1

m∑

j=1

2∑

i=1

DjkXijk + αtC1 + βtC2 + γtC3 (3.9)

where:

C1 =

2∗m∑

t=1

αt ∗max(0, |
n∑

k=1

Xijk − Pij |)2

for i = 1, 2 , j = 1, 2, ...,m and t = 1, 2, ..., 2 ∗m (3.10)

C2 =

n∑

t=1

βt ∗max(0, |
m∑

j=1

2∑

i=1

Xijk −Ak|)2

for k = 1, 2, ..., n and t = 1, 2, ..., n (3.11)

C1 =

2∗n∑

t=1

γt ∗max(0, (Mik −
m∑

j=1

Xijk))2

for i = 1, 2 , k = 1, 2, ..., n and t = 1, 2, ..., 2 ∗ n (3.12)

αt, βt, γt are known penalty factors and are used when the constraints are violated. Different

values for these penalty factors were experimented with to ensure feasible results and a penalty

value of 200 was finally used for each of the three penalty factors. Equation (3.9) becomes the

fitness function of the CPSA problem which will be implemented later in the study using some

meta-heuristic algorithms in MATLAB programming language.

42

3.4 Solution Idea

The solution to the CPSA problem consists of four different stages, as shown in Figure 3.1. These

stages are followed sequentially with stage 1 being the users application information stage. In this

stage, applications for parking spaces are received from different users and the applications are

divided into reserved or unreserved categories [30]. The users are asked to provide details of their

rank and time spent in the university as part of the information in the application. Stage 2 is

where the users weights are computed and data is sorted for further use. Often times, the number

of users demanding for reserved parking are more than the number of available reserved spaces.

Hence, the number of users to be considered for reserved parking are selected using the computed

weight values. The other users who demanded for reserved parking but were not selected will be

added to the number of users to be allocated unreserved parking while still keeping them on the

waiting list [30]. Stage 3 is the development of the optimization model for the parking space allo-

cation problem and the determining of the appropriate methods to use in addressing the problem

are carried out at this stage. Lastly, Stage 4 collates the sorted data in stage 2 alongside other

necessary data, implements the data using the optimization model and methods shown in stage 3

and yields output of the solution and allocation for each user.

However, it is difficult to illustrate stages 1 and 2 for large number of users especially when the

number of users are greater than fifty (50). Hence stages 1 and 2 are carried out on a computer

system. This study only focuses on stages 3 and 4, given that stages 1 and 2 have already been

carried out on a computer system to save time and space of listing all the users greater than 50

for each dataset that will be considered in this study. Stage 3 is the focus of this Chapter while

stage 4 is the focus of Chapter 4. Highlights of these four stages are given below as illustrated in

Figure 3.1.

Stage 1

Stage 1 consists of the following items as noted in [30]

• Consider the N number of users’ applications

• Divide the N users into categories - reserved and unreserved

• Consider the rank ri of each user according to their categories

• Consider the time ti each user had spent in the system

Stage 2

The following items are steps in stage 2 some of which are noted in [30]

43

Figure 3.1: An overview of the solution stages of CPSA

• Calculate the weight wi of each user using

wi = ri ∗ ti

• Determine the total number of available parking spaces for reserved and unreserved parking

• Select M (where M is the total number of available reserved parking spaces) users with the

highest values of weights from the reserved category

• The remaining users that are not selected from the reserved category are added to the number

of users for the unreserved category while still being kept on the waiting list.

Stage 3

• Developing an optimization model for the parking space allocation problem

• Determining the optimization method(s) to be used in solving the parking space allocation

model

Stage 4

This stage is the data implementation stage and is where the model is actually solved, it consists

of:

• Collating the complete data which consists of:

– The available number of parking spaces in each parking lot

– The distance Djk from the office building Bj to the parking lots Nk for all users

44

– The data sorted in Stage 2, which shows the number of users selected for reserved

parking based on their weight and the number of users to be allocated unreserved

parking (including the users being kept on the waiting list)

– The number of parking permits to be issued for each parking lot

• Solving the CPSA model with the optimization method(s) decided in stage 3

• Allocation of users in each building to parking spaces. Users are allocated to the nearest

parking lot according to their weights, wi. The users with the higher weights are assigned to

the nearer parking lots than those with lower weights.

3.5 Exact Optimization Solver

CPLEX solver is one of the fastest and most advanced optimization solvers in the world. It is a

high performance software package that can be used to solve Linear Programming (LP), Mixed

Integer Programming (MIP) and quadratic programming problems. The CPLEX solver can solve

optimization problems ranging from hundreds to thousands to millions of variables. It was devel-

oped by Robert E. Bixby and was available commercially in 1988 by CPLEX Optimization Inc.,

which was acquired by ILOG in 1997; and was later taken over by IBM in January, 2009 [121].

The IBM ILOG CPLEX optimization solver (simply called CPLEX version 12.4) uses a variant

of simplex method or the barrier interior point method to solve different kinds of optimization

problems, see the IBM ILOG CPLEX website [121, 48] for more details. The CPLEX solver can

either be used as a stand-alone interactive optimizer or can be called from a modeling layer that

provides interfaces to the C++, C], Java, MATLAB and Python languages. It can also be ac-

cessed through some other independent modeling systems such as AIMMS, AMPL, GAMS, MPL,

OpenOpt, OptimJ and TOMLAB.

AIMMS (Advanced Interactive Multidimensional Modeling System) is a modelling language [9]

with a sophisticated Integrated Development Environment (IDE) and a well-developed user-friendly

interface that fulfils the following criteria:

• Availability for MS Windows.

• A callable library or Application Programming Interface (API) that adds connectivity with

other languages/environments.

• Reading or saving data from or to spreadsheets.

• Direct link to CPLEX and Gurobi solvers.

• Special ordered sets type 2 that make formulating piecewise linear functions easier.

45

Figure 3.2: The components of AIMMS software

• Branching priorities of binary variables that can be manually set.

Figure 3.2 presents an overview of the components of AIMMS software. The CPLEX solver incor-

porated into AIMMS was used to obtain solution for each dataset.

3.6 Genetic Algorithm

GA is one of the population-based stochastic algorithms which generates near optimal solutions to

optimization problems specifically to COPs using nature-inspired techniques such as inheritance,

mutation, selection and crossover [112, 71, 27]. It belongs to the class of Evolutionary Algorithms

(EA) [119, 27, 53]. GAs work on a population of individuals and consists of a string of genes called

chromosomes to represent the candidate solution to the problem at hand. The genes could be a

bit, an integer number, a real value or an alphabet character depending on the problem. GAs

operators are then applied on these individuals to get new individuals. An important principle for

developing and implementing GA for peculiar real word optimization problems is to find a good

balance between exploration and exploitation of the search space. The Algorithm 1 represents the

pseudo code of a GA [129].

GA generates a population of individuals, say P (t), for generation t. Each individual is a possible

solution to the given optimization problem. Each individual is evaluated to determine how fit it is

to survive into the next generation. Two major types of transformations are performed on some

selected individuals, they are: crossover, which creates new individuals by combining the genes

from at least two individuals; and mutation, which creates new individuals by mutating some

genes in a single individual. The new individuals that are created are called offspring C(t) which

46

Algorithm 1 Genetic Algorithm

Objective function f(x), x = (x1, ..., xn)T

Encode the solution into chromosomes (binary strings)

Define fitness F

Generate the initial population

Initialize the probabilities of crossover (pc) and mutation (pm)

while t < Max number of generations do

new solution by crossover and mutation

if pc >rand then

Crossover

end if

if pm >rand then

Mutate

end if

Accept the new solutions if their fitness increase

Select the current best for new generation (elitism)

end while

Decode the results and visualization

are also evaluated. Then, a new and better population is formed by selecting fitter individuals

from the parent population and offspring population. This process continues until after several

generations or a stopping criteria is specified, to obtain the best individual that converges to an

optimal or suboptimal solution of the problem. The flowchart in Figure 3.3 gives an overview of

the GA structure. We implemented GA in MATLAB programming language making use of the

capability of the MATLAB global optimization toolbox version 7.10 [78] to minimize the fitness

function defined in Equation (3.9).

47

Figure 3.3: A flowchart explaining the structure of a genetic algorithm

48

3.7 Pattern Search Algorithm

This section presents an explanation of the PS algorithm. The algorithm generates a sequence

of iterates {x1, x2, ...xk, ...} with non-increasing objective function values. There are two essential

steps of the PS algorithm for each iteration k, which are the SEARCH step and the POLL step.

Taking the value r = 2n as earlier mentioned. The SEARCH step, which is the first step, evaluates

the objective function at a finite number of points (say a maximum of V points) on a mesh (a

discrete subset of <n) in order to improve the current iterate. The mesh at the current iterate, xk,

is given by

Mk = {y ∈ <n|y = xk +4kDq : q ∈ Zr+} (3.13)

where y is a mesh trial point, 4k > 0 is a step size control or mesh size parameter which depends

on the iteration k, and Z+ is the set of non-negative integers.

Generating trial points of the SEARCH step has no specific rules. Any strategy (including none)

could be used to find a new point with a better function value than the current point [1]. The ulti-

mate goal of the SEARCH step is to find a feasible trial point (on a mesh Mk) that gives a minima

objective function value than the function value at xk. The SEARCH step is tagged successful if

there exists a feasible trial point y ∈Mk , where y is one of the V points, such that f(y) < f(xk).

Hence, y becomes the new iterate and the step size 4k is increased. Then the next trial point

is chosen on a magnified mesh than the previous mesh. If the SEARCH step is unsuccessful, the

second step, called the POLL step, is implemented before going out of the current iteration with

the aim of decreasing the objective function value.

The POLL step is executed when the SEARCH step is unsuccessful. The POLL step searches

the function about the current iterate xk to generate trial points that give a new and better iter-

ate. This produces a poll set, Pk. The poll set is made up of trial points that are placed at a step

4k away from the current iterate xk, in the direction specified by the columns of D. The poll set,

Pk, can be defined as:

Pk = {pi ∈ <n|pi = xk +4kdi ∈ D, i := 1, ..., r} (3.14)

where pi is a trial point in the POLL step. The order taken by the points in Pk could be different

and it makes no changes on its convergence. The pseudo code for the PS Algorithm [85] with

both the SEARCH and POLL step is presented in Algorithm 2 below. We implemented the PS

algorithm in MATLAB programming language making use of the capability of the MATLAB global

optimization toolbox version 7.10 [78] to minimize the fitness function defined in Equation (3.9).

49

Algorithm 2 Pattern Search

Step 1. Initialization

Given x0 (initial point in <n), 40 > 0 (initial step size)

Where D is a finite set of positive spanning directions, xk is the current iterate

Z is the set of non-negative integers

while Max number of generations not reached do

Step 2. SEARCH step

Evaluate f at points in the mesh Mk as defined by (3.13)

Search y ∈Mk such that f(y) < f(xk)

if f(y) < f(xk) then

Set xk+1 = y

Mesh expansion: Let 4k+1 = θk4k (with θk > 1)

Increase k = k + 1

The SEARCH step is successful, restart the search from this improved point

else

The SEARCH step is unsuccessful

Go to POLL step

end if

Step 3. POLL Step

Evaluate f at points in the poll set Pk as defined by (3.14)

if f(pi) < f(xk) then

Set xk+1 = pi

Mesh expansion: Let 4k+1 = θk4k (with θk > 1)

Increase k = k + 1

The POLL step is successful, go to step 2 for a new iteration

else

Set xk+1 = xk

Mesh reduction: Let 4k+1 = φk4k (with 0 < φk < 1)

Increase k = k + 1

The POLL step is unsuccessful, go to step 2 for a new iteration

end if

end while

50

3.8 Particle Swarm Pattern Search Algorithm

The PSwarm algorithm starts with an initial population and then applies one step of the particle

swarm at each search step. If the search step succeeds, then more iterations of the particle swarm

is performed so as to identify a neighbourhood for global minima. However, if the search step

fails, the poll step is used to perform a local search at this point to the best position over all

particles. The stopping criterion of the algorithm is the stopping criteria for both the particle

swarm and PS methods. To obtain solutions with some degree of precision in PSwarm, particles

that do not push the search towards global minima are removed. Particles are removed from the

swarm whenever they are close to the ŷ , that is, when ‖yi − ŷ(t)‖ ≤ α(0). This means that they

cannot further explore the search to a global optimum. Algorithm 3 gives the pseudo code of the

PSwarm algorithm as implemented by [47, 36]

The hybrid algorithm combines the ability of particle swarm algorithm for global optimization

with the PS rigorous method for local optimization which fosters global convergence from any

starting point. The results obtained from the PSwarm solvers were compared with other global

optimization solvers and found to be better in efficiency and robustness [47, 36]. This study also

implemented the PSwarm solver, written in MATLAB m-files, as given by [36] to minimize the

fitness function defined in Equation (3.9).

51

Algorithm 3 PSwarm algorithm

Choose the stopping tolerances αtol > 0 and vtol > 0

Choose the initial population size s , set I = 1, ..., s

Calculate (randomly)the initial feasible swarm position x1(0), ..., xs(0) and the initial swarm

velocities v1(0), ..., vs(0)

Set yi(0) = xi(0) , i = 1, ..., s and ŷ(0) ∈ argminz∈{y1(0),...,ys(0)}f(z)

Let t = 0

SEARCH Step

Set ŷ(t+ 1) = ŷ(t)

For all i ∈ I (for all particles) do:

if f(xi(t)) < f(yi(t)) then

Set yi(t+ 1) = xi(t) (update the particle i best position)

if f(yi(t+ 1)) < f(ŷ(t+ 1)) then

Set ŷ(t + 1) = yi(t + 1) (update the particle best position, search space and iteration)

successful

Set α(t+ 1) = φ(t)α(t) (optionally expand the mesh size parameter)

end if

else

Set yi(t+ 1) = yi(t)

end if

POLL Step

if there exist d(t) ∈ D such that f̂(ŷ(t) + α(t)d(t)) < f̂(ŷ(t)) then

Set ŷ(t + 1) = ŷ(t) + α(t)d(t) (update the leader particle position; poll step and iteration

successful)

Set α(t+ 1) = φ(t)α(t) (optionally expand the mesh size parameter)

else

Set ŷ(t + 1) = ŷ(t) (no change in the leader particle position; poll step and iteration unsuc-

cessful)

Set α(t+ 1) = θ(t)α(t) (contract the mesh size parameter)

end if

Compute vi(t+ 1), and xi(t+ 1) , i ∈ I
if α(t+ 1) < αtol and ‖vi(t+ 1)‖ < vtol then

Stop

else

Increment t by one

Go to the SEARCH Step

end if

52

3.9 Data Representation for the CPSA Model

The data representation for the CPSA problem are based on the number of parking lots and the

number of buildings in the campus location under consideration. A real value encoding is used

for each of the variables. For example, if there are n parking lots and m buildings in a particular

campus following the assumption that users can only demand for either reserved or unreserved

parking spaces (that is, parking permit type is either reserved or unreserved, l = 2), then the total

variable for such a case will be given as:

n ∗m ∗ 2

Taking n = 3, m = 5 , then the total number of variables for this instance will be 30. The

chromosome representation for this instance is given in Figure 3.4. Where each row represents

individual solutions to the CPSA problem.

This data structure shown in Figure 3.4 is used for all three algorithms. The operations on the

data structure depend on the operation and procedure of each of the algorithms. For GA, the

crossover operator and mutation operator are performed on the data structure. While for PSwarm

algorithm, the particle swarm is applied on the data structure in the search step which will also be

polled upon by the poll step, if the search step fails. However, for PS algorithm, the population

of solutions is not permitted because PS evaluates a single solution at a time. Hence, the PS

algorithm, unlike the other two, only takes an initial individual solution to work with.

The fitness value of each individual solution in the data representation is computed using the

optimization model explained earlier and this is evaluated to determine how good each solution

is. This structure of the fitness value is shown in Figure 3.5. This is only for GA and PSwarm

algorithm. PS algorithm evaluates the fitness value of the initial solution with another solution

obtained, the solution which minimizes the distance better is taken for comparison with the next

solution.

Figure 3.4: The chromosome representation of the variables

53

Figure 3.5: The fitness values representation

3.10 Conclusion

Previous related researches on campus space allocation problem have not implemented the heuristic

algorithms for this kind of problem. Review of some of these literature were given at the beginning

of the chapter. Then, the optimization model with an improvement in the constraints, to cater

for the allocation of reserved spaces to demanded reserved users on campus, was presented. An

overview of the stages involved in the approach to the CPSA was introduced, with the first stage

being the receipt of parking space allocation requests from users in order of preference. Following

this, the number of users to be given reserved parking allocations are selected using their weights

based on the number of available reserved spaces in the university. Others that are not selected

for reserved parking are added to those who initially demanded for unreserved spaces. The opti-

mization model will then be implemented using the sorted data. The exact optimization solver -

CPLEX incorporated in AIMMS sofware and the pseudo-code for the meta-heuristic algorithms

- GA, PS and PSwarm, that will be used to address the CPSA problem were presented and ex-

plained in this chapter. The meta-heuristic algorithms do not require the derivative of the problem

and PSwarm is the only hybrid algorithm among the three algorithms. The next chapter gives

the experimental settings and the results of the CPSA problem using the CPLEX solver and the

outlined meta-heuristic algorithms.

54

Chapter 4

Experimental Setting and Results

“In particular, if algorithm A outperforms algorithm B on some cost functions, then

loosely speaking there must exist exactly as many other functions where B outperforms

A ”, [45].

4.1 Dataset

Although the data in [57] did not include reserved parking, the dataset in this study follows some

of its pattern. The data generated for this study are random variants of real life datasets collected

from the risk management services of the University of Kwazulu-Natal [84] which take into con-

sideration the reserved policy on campus. The motivation for using a random variant of a real life

dataset is that: (1) They are good for research-oriented experiments because instances of every

size and type can be generated, (2) They still preserve the main structure of the real life data

with random changes in details, and (3) The real datasets are time consuming to collect. The

University of Kwazulu-Natal made a new policy for staff parking fees and allocation of reserved

spaces in 2006, which states that the percentage of open spaces to be considered reserved status

would be 35.06% [84]. This parking reserved policy was put into consideration when writing the

code for the generated datasets in all cases.

There are four different datasets used for this experiment. Each dataset has the distance between

the parking lots and the users’ building, the number of users demanding parking for reserved and

unreserved spaces from each building, and the number of available parking spaces in each parking

lot. Associated with each dataset is the number of parking permits to be issued for each parking

lot. Data were generated for the number of available parking spaces in each parking lot(see Table

A.1, B.1, D.1 and C.1), the number of users demanding parking in each building (see Table A.2,

B.2, D.2 and C.2) and the distance between each building and each parking lot (see Table A.3,

55

B.3, D.3 and C.3). However, the number of parking permits issued for each parking lot as shown

in Table A.1, B.1, D.1 and C.1 were calculated as suggested by [57, 58] using Equation (4.1).

Equation (4.1) must be satisfied in order to get equal probability for all users. Where p is the

probability of a user bringing his car on a particular day and it is taken as 0.7 [57], p.Ak is the

mean of the distribution and
√

(p(1− p)Ak) is the standard deviation of the distribution.

Nk − p.Ak√
(p(1− p)Ak)

= Ψ (4.1)

The value of Ψ in Equation (4.1) that gives the total number of parking permits issued, Ak, that will

be equal to the number of users demanding parking, TU , can be calculated by squaring Equation

(4.1), rearranging the terms for the kth parking lot, ignoring small terms and then equating it to

the total number of users demanding parking. The resulting equation is the quadratic equation in

(4.2).

nΨ2 − 2Ψ

n∑

k=1

√
Nk − 2(p.TU −

n∑

k=1

Nk) = 0 (4.2)

Solving the quadratic equation in (4.2), the value of Ψ is obtained and is used to get the number

of the parking permits issued, Ak, for each parking lot in Equation (4.3).

Ak =
(2Nk + Ψ2)− 2Ψ

√
(Nk)

2p
(4.3)

Table 4.1 gives the number of buildings and parking lots in each dataset while a detailed history

is found in appendix A - D.

Table 4.1: Different datasets

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Number of buildings 12 15 12 25

Number of parking lots 8 10 17 18

4.2 Experimental Settings

Experiments were performed on a PC using Windows XP 32-bit operating system with Intel(R)

Core 2 Duo CPU @ 2.20 GHz, 0.98GB of RAM. This section gives a description of the dataset used

for the experiment and the experimental setting for each of the algorithms that was implemented

to solve the CPSA problem. The algorithms were in MATLAB codes.

4.2.1 GA Parameter Settings

The parameters were encoded as double vectors to reduce the computational overhead of encoding

into binary strings and converting back into double values. A population size of 100 was used

56

to get a trade-off between speed and accuracy. The roulette wheel selection, which gives the

good individuals the better chance to be selected than the weak ones based on the fitness of each

individual, was used for the selection operator. To ensure that the best solution is not lost, the

elite count of 2 was used. The heuristic crossover, which returns offspring of two parents that are

at close distance to the parent with better fitness value than the parent with a worse fitness value,

was used for the crossover operator with a crossover fraction of 0.8 as recommends in [27]. And

to ensure feasible points are generated in the mutation operator, we used the adaptive feasible

mutation.

4.2.2 PS Parameter Settings

The parameters used in PS are as follows: the initial mesh size was 1.0, mesh expansion value of 2

after each successful poll and mesh contraction value of 0.5 after each unsuccessful poll were used,

no search method was specified and GPS positive basis 2N was used for the poll method which

consists of 2N directions, where N is the number of independent variables.

4.2.3 PSwarm Parameter Settings

The following parameter settings were used to obtain solution for the PSwarm. The population

size, called the swarm size was set to 40 as used in [36] while all other swarm parameters were as

used in [47, 36]. The cognitial parameter, υ, and the social parameter, µ were set to 0.5, the initial

weight and the final weight were linearly interpolated between 0.9 and 0.4.

4.3 Exact Results Using CPLEX Solver

4.3.1 Fitness Values across Datasets

The exact solution approach is well known for obtaining optimal solution to optimization problems

when it is capable of solving such problems. The CPLEX solver was used to obtained the fitness

values as shown in Figure 4.1. Dataset 1 has the fitness function value of 56747 with 49 constraints

and 192 variables, dataset 2 has the fitness value of 61524 with 61 constraints and 300 variables,

dataset 3 has the fitness value of 196500 with 76 constraints and 408 variables, and dataset 4 has

the fitness value of 199480 with 105 constraints and 900 variables. Although the fitness values

increase as the number of datasets increase for this study however, it is not dependent on the

number of datasets but on the value of the distances between the parking lots and the buildings

given in the datasets. If a given distance matrix has large numbers then the value of the fitness

function will consequently be large.

57

Figure 4.1: Fitness values obtained by CPLEX solver for the datasets

4.3.2 Distribution of Parking Spaces

This section presents the distribution of users to parking spaces as obtained by the CPLEX solver.

The distribution gives the best minimization of the total distance walked by the users. The distance

tables in Figure A.3, B.3, D.3 and C.3 will be used to evaluate how far or close a building is to

a given parking lot. The word ’Rv’ in the figure stands for reserved and the word ’UnRv’ stands

for unreserved. For each parking lot, the number of users allocated for reserved and unreserved

parking spaces from each buildings are presented side by side. For each dataset, the consideration

would be: (1) the number of buildings, in percentage, that have users that are allocated to parking

lots around the three closest parking lots to them; (2) the number of buildings, in percentage,

that have users that are partly allocated farther away and partly allocated within the three closest

parking lots to them, either with a higher number of users farther away or a higher number of

users closer by; and (3) the number of buildings in percentage that have no user allocated to any

of the three closest parking lots.

4.3.2.1 Dataset 1

There are 8 parking lots and 12 buildings in dataset 1. This represents a fairly small campus

situation case study. The data for this case study are given in appendix A, which has a total

of 1267 users demanding for parking from all the buildings and a total of 1118 available parking

spaces. The total number of reserved spaces on campus for this study is 391 while the total number

of unreserved spaces is 727. Figure 4.2 gives the exact allocation for dataset 1. The distribution

of the parking spaces to users from each building shown in Figure 4.2 suggests that 83% of the

buildings has users allocated to three of the closest parking lots and 17% has users allocated to

parking lots that are partly closer and partly far away.

58

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 27 65

2 9 28

3 5 15 22 51

4 14 26 37 76

5 50 100

6 7 6 36 83

7 25 62

8 25 50 5 20

9 28 67

10 33 75

11 12 23 5 11 12 34

12 19 40 20 44

Figure 4.2: Allocation done by CPLEX: Dataset 1

4.3.2.2 Dataset 2

Dataset 2 consists of 10 parking lots and 15 buildings. This represents a bigger campus than the

case considered in dataset 1. The data in appendix B gives details of this. The task is to allocate

1345 users to 1018 available parking spaces. Figure 4.3 gives the exact allocation for dataset 2.

For this dataset, the allocation distribution in Figure 4.3 suggests that 80% of the buildings has

users allocated to three of the closest parking lots, 13% has users allocated to parking lots that are

partly closer and partly far away, and 7% has users that are allocated to parking lots not close to

their buildings.

59

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 31 72

2 17 51

3 2 39 43 78

4 32 73

5 3 2 5 30

6 13 13 26 76

7 29 72

8 2 35 5

9 27 75 14 36

10 14 22 7 38

11 15 48

12 9 35

13 2 13 31 7 22

14 15 48

15 27 75 12

Figure 4.3: Allocation done by CPLEX: Dataset 2

60

4.3.2.3 Dataset 3

The case study of the campus considered in dataset 3 has a large number of parking lots than

the number of buildings. For dataset 3, there are 17 parking lots and 12 buildings where users go

after parking their cars. This could be seen in appendix C. Here, a total of 2541 users are to be

allocated to 2025 parking spaces. Figure 4.4 and 4.5 give the exact solution for dataset 3. The

distribution shown in Figure 4.4 and 4.5 indicates that 50% of the buildings has users allocated to

three of the closest parking lots and 50% has users allocated to parking lots that are partly close

and partly far away from the buildings.

61

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 38 97 22 53 3

2 36 33 41 114

3 11 57

4 4 19 3 42

5 19 46

6 43 110

7 11 24 27

8 35 118

9

10 59 157

11 13

12 79 185

Figure 4.4: Allocation done by CPLEX: Dataset 3

62

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 15 29 5

2 33 84

3 31 73

4 18 41

5 1 45

6 15 34 9 21

7 17 55

8

9 13 57

10 12 16

11 44 86 62 164

12 21 41

Figure 4.5: Allocation done by CPLEX: Dataset 3 continued

4.3.2.4 Dataset 4

Dataset 4 has the highest number of buildings and parking lots used for this study which consists

of 18 parking lots and 25 buildings. This case represents a fairly large campus situation. The

problem is to allocate a total of 2334 users to 1979 available parking spaces. See appendix D for

the details of other data associated with this case study. Figure 4.6 and 4.7 give the exact allocation

for dataset 4. The distribution shown in Figure 4.6 and 4.7 suggest that 72% of the buildings has

users allocated to three of the closest parking lots, 24% has users allocated to parking lots that are

partly closer and partly far away, and 4% had users that are allocated to parking lots not close to

their buildings.

63

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 14 40

2 15 42

3 6 15 9 22

4 17 43

5 21 56

6

7 25 62

8

9 2 22 39

10 6

11

12 11 34

13 21 43

14 1 44 92

15 16 49

16 43 89

17 11 6 13

18 3 1

19 2 16

20 19 53

21

22 31 72

23

24 15 50 15 22 17 25

25 8

Figure 4.6: Allocation done by CPLEX: Dataset 4

64

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17 ParkingLot18

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1

2

3 19 41 1

4 6

5

6 25 61

7 1

8 2 3 19 61

9 12 40

10 12 35

11 14 45

12

13 13

14

15

16

17 29 66

18 42 93

19 26 50 11 23 10 9

20

21 20 55

22

23 21 56

24 1

25 26 60 21 27

Figure 4.7: Allocation done by CPLEX: Dataset 4 continued

65

4.4 Meta-heuristic Results Performances

4.4.1 Fitness Values across Datasets

The aim of this study was to determine how well the three meta-heuristic algorithms could solve

the CPSA problem. The optimization model presented in Chapter 3 focused on the minimization

of the total distance walked by the users. Hence, the comparison of the algorithms’ performances

are determined by how well they can minimize the fitness function defined in Equation (3.9). The

results in Figure 4.8, 4.9 and 4.10 show the different performances of the algorithms for 10000,

20000 and 30000 number of iterations. The essence of comparing the performances over different

number of iterations is to ascertain the consistency of the solution of the algorithms as the number

of iterations increase.

The results indicate that an increase in the number of iterations would lead to an improvement

in the fitness function values, which in turn minimizes the overall distance walked by the users.

Taking the performances across the dataset used, it was observed that as the dataset increased in

size, the fitness values for the PS and PSwarm algorithms tend to be closer to each other while

that of the GA increased in its deviation from the other two algorithms. This is due to the fact

that as the number of data increases in the dataset, the basic GA is incapable of efficiently solving

the problem, leading to its inability to obtain results that are of close range to the other two

algorithms.

In terms of minimizing the fitness function value, the results in Figure 4.8, 4.9 and 4.10 indicate

that PSwarm outperforms the GA and PS algorithms. Since PSwarm is the only hybrid algorithm

of the three algorithms, its superior performance suggests that hybrid algorithms could be more

suitable for addressing the CPSA problem. Following the PSwarm algorithm in performance is the

PS algorithm. The PS algorithm obtains good results which are close to the ones obtained by the

PSwarm algorithm. It outperforms the standard GA, hence, it offers an improvement over the GA

in terms of its allocation of users to various parking spaces. With regards to the performance of

the GA, it is observed that the standard GA performs poorly compared to the PS and PSwarm

algorithms. This actually shows the limitation of the standard GA when it is used to solve a

constrained optimization problem that has a large amount of data.

4.4.2 Execution Time of the Algorithms for Different Datasets

Associated with the results compared, as extracted from the three algorithms, is the execution

time. The essence of comparing their execution times is to identify which of the three algorithms

is the fastest and which one is the slowest to converge. The results in Figure 4.11, 4.12 and 4.13

show the execution time taken by each algorithm across the dataset for the number of iterations of

10000, 20000 and 30000. The results indicate that the execution time increases as the number of

data increases. Since the number of parking lots and buildings on campus increase as the number

66

Figure 4.8: Comparison of the objective values for 10000 iterations

Figure 4.9: Comparison of the objective values for 20000 iterations

Figure 4.10: Comparison of the objective values for 30000 iterations

67

Figure 4.11: Comparison of the execution time for 10000 iterations

Figure 4.12: Comparison of the execution time for 20000 iterations

of each dataset increases, as shown in Table 4.1, the function evaluations of the algorithms take

longer to complete for large number of datasets compared to the smaller ones.

The results also indicate that the PSwarm algorithm was the fastest overall, this makes the PSawrm

algorithm better than the other two algorithms in terms of efficiency and quality of the solution

as discussed in the previous section. Although, the PSwarm algorithm is the fastest of the three,

it can be observed in Figure 4.11 that the PS algorithm was faster than the PSwarm algorithm in

dataset 1; and in Figure 4.12, it is also faster than the PSwarm algorithm in dataset 1 and 2. On

the other hand, GA is the slowest of the three algorithms for each number of iterations in all the

datasets under consideration. This is attributed to the number of computational operations that

are usually performed by the GA operators.

68

Figure 4.13: Comparison of the execution time for 30000 iterations

4.4.3 Distribution of Parking Spaces

The comparison done earlier was in terms of the fitness function values and execution time taken

by the three algorithms. However, the fitness function value is the value of the total distance

minimized. Hence, it is a function of the allocation done by these algorithms. The allocation

solution by the algorithms for each dataset is presented in this section. The discussion of the

various allocations will centre on the three closest parking lots to any building of interest. Since

the objective is to minimize the total distance walked by the users to their various buildings, it

is expected that the algorithms would allocate parking spaces that are as close as possible to the

users’ buildings. Hence, the three closest parking lots to each building and how the algorithms

allocate users from the buildings to these parking lots would be considered. This will help to know

how optimal or close to optimal the allocations are.

4.4.3.1 Dataset 1

The allocation distribution by each algorithm for dataset 1 is shown in Figure 4.14 for GA, Figure

4.15 for PS and Figure 4.16 for PSwarm. Comparing the distributions of the algorithms in terms of

the number of buildings that have users allocated to closer parking lots or not, it was observed that

in the GA allocation distribution (Figure 4.14), 100% of the buildings has users allocated to parking

lots that are partly close and partly far from their buildings with most of the users allocated to

parking lots that are far from their buildings than the closer ones. In the PS allocation distribution

(Figure 4.15), 42% of the buildings has users allocated to parking spaces within the three closest

parking lots and 58% has users allocated to parking lots that are partly close and partly far from

their buildings. While in the PSwarm allocation distribution (Figure 4.16), 83% of the buildings

has users allocated to parking lots within the three closest parking lots and 17% has users allocated

to parking lots that are partly close and partly far from their buildings. The allocations suggest

69

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 6 2 2 7 3 12 6 8 3 12 2 10 1 8 4 6

2 1 4 5 2 3 9 1 1 5 6

3 3 14 5 5 7 18 7 13 4 5 6 1 5

4 13 12 5 21 4 12 15 4 4 5 11 8 9 12 18

5 3 4 10 3 8 15 23 3 15 6 10 13 21 6 10

6 1 9 6 5 13 8 1 16 6 8 2 9 25 5 18

7 10 17 1 13 1 3 2 9 9 5 5 6 6

8 2 8 10 16 15 2 10 8 10 15 4

9 7 6 3 11 16 5 15 1 6 2 13 2 8

10 1 7 11 19 3 11 8 9 14 1 4 6 3 2 9

11 3 6 16 5 4 14 8 9 8 8 9 7

12 2 5 7 22 2 4 9 18 10 7 6 6 1 9 2 13

Figure 4.14: Allocation done by GA: Dataset 1

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 27 65

2 9 28

3 6 1 65 11 1

4 18 25 41 8 61

5 50 31 69

6 6 16 4 87 17 2

7 25 6 17 39

8 7 50 20 23

9 28 31 19 17

10 33 28 47

11 5 68 24

12 7 47 3 1 36 29

Figure 4.15: Allocation done by PS: Dataset 1

that PSwarm minimizes better the total distance walked by the users compared to the PS and GA.

4.4.3.2 Dataset 2

Figure 4.17, 4.18 and 4.19 give the allocation distribution by the three algorithms for dataset 2.

In the GA allocation distribution (Figure 4.17), the percentage of buildings which has users partly

allocated to parking lots that are close and far from the buildings is still 100% with the number

of those that are far being higher than the number of those that are close in most cases. In the

PS allocation distribution (Figure 4.18) 53% of the buildings has users allocated to parking spaces

within the three closest parking lots with more allocations being made to the second and third

closest parking lots, 40% has users partly allocated to parking lots that were closer and partly

allocated to farther parking lots, and 7% has users allocated to parking lots that are not within

the closest parking lots. While in the PSwarm allocation distribution (Figure 4.19), 47% of the

buildings has users allocated to one of the three closest parking lots with more allocations to the

70

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 27 65

2 9 28

3 9 34 18 32

4 4 28 18 45 29 29

5 50 100

6 12 31 35 54

7 25 48 14

8 21 22 1 8 48

9 28 66 1

10 3 30 75

11 9 38 3 20 27

12 22 40 17 44

Figure 4.16: Allocation done by PSwarm: Dataset 1

first and second closest parking lots, 46% has users allocated to parking lot that are partly close

and partly far from their buildings with a higher number to the closer parking lots and 7% has users

allocated to parking lots outside the three closest parking lots. The PSwarm algorithm minimizes

the total distance walked by the users better than the PS and GA.

71

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 5 1 2 1 4 9 6 9 5 1 45 1 8 1 2 3

2 2 4 1 1 1 4 27 2 6 1 1 1 6 9 2

3 1 6 2 3 2 39 7 13 12 1 4 1 28 7 7 12 16 1

4 1 11 1 9 55 1 1 9 1 2 8 1 1 4

5 1 1 4 2 5 1 1 19 1 5

6 4 3 12 23 25 1 5 3 18 4 12 9 2 4 1 2

7 4 6 2 3 2 3 14 32 6 12 9 1 7

8 3 1 26 1 5 5 1

9 22 2 33 1 1 2 7 1 6 3 31 43

10 1 1 1 3 1 4 1 9 1 53 2 4

11 1 8 2 42 2 6 2

12 1 1 1 3 2 6 5 18 1 7 1 2

13 1 1 6 1 1 46 6 5 5 1 2

14 9 2 1 4 3 14 4 9 2 12 2 1

15 6 5 3 1 1 3 1 5 2 2 4 81

Figure 4.17: Allocation done by GA: Dataset 2

72

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 25 31 47

2 5 12 51

3 18 19 41 8 76

4 20 26 4 8 34 13

5 17 5 3 14 1

6 12 26 19 62 8 1

7 6 29 66

8 5 9 2 26

9 27 69 3 3 11 39

10 11 10 60

11 10 9 15 29

12 16 17 9 6

13 27 20 28

14 15 48

15 66 27 21

Figure 4.18: Allocation done by PS: Dataset 2

73

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 3 38 28 34

2 14 27 3 24

3 3 4 27 38 90

4 2 30 27 31 15

5 21 8 11

6 23 33 16 56

7 41 29 31

8 4 9 3 26

9 24 34 17 77

10 11 40 3 7 20

11 4 5 3 8 29 14

12 4 33 5 6

13 4 20 51

14 2 47 13 1

15 24 75 3 12

Figure 4.19: Allocation done by PSwarm: Dataset 2

74

4.4.3.3 Dataset 3

The results of the allocation by the algorithms for dataset 3 can be seen in Figure 4.20 and 4.21

for the GA, Figures 4.22 and 4.23 for PS, and Figures 4.24 and 4.25 for PSwarm. The findings for

the various allocations are as follows: in the GA allocation distribution (Figures 4.20 and 4.21),

100% of the buildings still has users allocated to parking lots that are partly close and partly far

from their buildings with more of the users being allocated to the far parking lots. In the PS

allocation distribution (Figures 4.22 and 4.23), 8% of the buildings has users allocated within the

three closest parking lots and 92% has users allocated to parking lots that partly close and partly

far from their buildings. While in the PSwarm allocation distribution (Figures 4.24 and 4.25), 17%

of the buildings has users that are allocated to the three closest parking lots and 83% has users

that are allocated to parking lots that are partly close and partly far from their buildings. For this

dataset, PSwarm algorithm minimizes the total distance walked by the users better than PS and

GA.

75

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 3 20 4 7 1 1 9 14 4 12 9 18 3 15 2 15 2 11

2 7 7 24 7 17 3 4 2 10 1 20 4 15 10 23 6 8 13 7

3 10 1 3 7 14 6 6 6 12 11 20 1 2 8

4 5 8 10 7 8 4 6 14 16 4

5 3 13 1 4 1 1 12 2 15 4 3

6 5 14 11 10 2 10 1 10 7 8 3 13 13 1 4 5 16

7 1 7 5 4 1 8 2 10 1 6 1 6 9 17 1 3

8 3 1 18 2 6 1 7 7 6 8 2 5 1 4 12 1 9

9 1 1 4 4 2 1 3 7 1 2 4

10 4 2 12 1 11 3 9 10 1 12 6 14 11 20 2 5 1 21

11 7 9 19 19 11 20 2 4 5 24 5 23 6 16 18 25 8 9 8

12 3 7 13 2 7 6 8 3 23 5 14 8 10 8 29 9 2 12 23

Figure 4.20: Allocation done by GA: Dataset 3

76

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 1 9 9 22 3 16 22 3 5 13 9

2 13 2 6 19 7 19 1 13 9 16 14 9 7 18

3 10 13 2 9 16 1 8 6

4 5 1 4 7 4 1 10 1 12

5 3 4 8 6 10 6 4 9 2

6 1 11 11 14 15 1 1 4 18 7 2 14

7 10 5 12 11 1 1 12

8 2 7 3 2 25 1 6 1 13

9 1 1 3 7 2 21 2 3

10 1 2 7 10 23 2 14 11 5 4 4 16

11 7 6 11 28 8 11 3 11 2 19 6 19

12 2 10 13 7 18 1 4 8 13 7 14 12 25

Figure 4.21: Allocation done by GA: Dataset 3 continued

77

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 38 40 10 53 2 84

2 77 8 40 16 42 30

3 1 19 10 115

4 7 46 1

5

6 11

7 11 23 4 33 12

8 6 30 2 5 110

9 3 54

10 59 80

11 51 19 46 2 35 48

12 6 79 131

Figure 4.22: Allocation done by PS: Dataset 3

78

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 28 7

2 32 20 76

3 12 8 1 6

4 14 18 41

5 19 87 1 4

6 1 25 56 139

7 1 50

8

9 1 2 10

10 12 93

11 15 21 68 62 2

12 15 95

Figure 4.23: Allocation done by PS: Dataset 3 continued

79

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 27 63 22 42

2 12 41 17 42 114

3 9 2 2

4 7 43 18

5 3 9 32

6 4 43 70

7 8 16 62 11

8 3 97 32 20

9 11

10 59 145 28

11 8 8 10 10 2 41 12 95

12 33 79 87

Figure 4.24: Allocation done by PSwarm: Dataset 3

80

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 26 45 3 34

2 4 27 84

3 6 25 128

4 18 41

5 8 59

6 15 19 60 9 12

7 4 19 5 1 8

8 1

9 2 57

10 12

11 34 43 84 22

12 15 21 80 11

Figure 4.25: Allocation done by PSwarm: Dataset 3 continued

4.4.3.4 Dataset 4

The allocations for this case are shown in Figures 4.26 and 4.27 for GA solution, Figures 4.28 and

4.29 for PS algorithm, and Figures 4.30 and 4.31 for PSwarm algorithm. In the GA allocation

distribution (Figures 4.26 and 4.27), which is still the same as observed in other datasets, 100%

of the buildings has users allocated to parking lots that are partly close and partly far from the

buildings with a good number of them allocated to the far parking lots. In the PS allocation

distribution (Figures 4.28 and 4.29), 16% of the buildings has users allocated to parking spaces

within the three parking lots and 84% has users allocated to parking lots that are partly close

and partly far from the buildings. While in the PSwarm allocation distribution (Figures 4.30 and

4.31), 40% of the buildings has users allocated to parking lots within the three closest parking lots,

56% has users allocated to parking lots that are partly close and far from the buildings, and 4%

has users that were not allocated to any of the three closest parking lots. The PSwarm algorithm

minimizes the total distance walked by the users better than the PS and GA in this dataset.

81

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 2 1 2 1 2 1 4 1 2 1 3 5 5

2 1 8 1 1 2 2 1 1 1 3 3 5 2 1

3 3 3 2 2 4 2 2 7 2 2 2 5 3 5 5

4 2 5 1 6 1 6 2 1 2 1 3 3 7 2 2 1 1

5 3 3 1 1 5 3 1 1 1 3 3 3 7

6 1 1 1 3 4 6 1 1 2 4 2 6 3 6 4

7 4 6 3 3 4 3 2 3 3 8 1 3 7

8 2 6 2 1 6 7 2 1 2 2 1 4 6 2 5 1 3

9 7 1 4 6 2 3 1 4 9 3 5 5 5 2 5 5

10 3 2 5 3 1 1 3 3 3

11 1 2 1 1 4 2 2 2 4 2 2 6 5 2 2

12 2 2 1 1 2 2 6 7

13 1 2 5 1 2 2 1 2 5 3 4 4 1 1 6

14 2 4 1 5 3 3 3 3 2 1 6 6 5 9 2 8 1 9

15 4 1 7 5 5 1 4 4 1 2 1

16 7 5 3 4 5 5 1 2 6 6 6 2 3 1 5 1 5

17 3 5 2 4 8 2 1 2 3 4 5 8 1 6 3 7 3 4

18 4 2 2 8 1 2 5 4 1 7 1 2 2 1 5 3 2 4 3 7

19 1 6 3 7 6 1 1 4 6 2 8 2 5 5 5 12 5 13

20 1 2 3 2 3 3 1 3 5 1 3 2 4 2 2

21 6 3 1 2 3 3 3 1 4 4 4 6

22 3 2 1 2 2 4 4 2 2 5 6 5 6 2 3 5

23 2 1 2 1 4 2 6 6 3 4 3 4 4 5

24 3 7 1 4 3 4 1 2 1 8 6 2 2 5 3 13 3 7 5 11

25 1 5 2 1 1 7 4 3 1 5 2 4 2 7 4 9 3 4 5 3

Figure 4.26: Allocation done by GA: Dataset 4

82

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17 ParkingLot18

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 3 3 2 3 1 2 2 2 6

2 5 1 3 1 2 5 3 2 3

3 2 1 1 5 1 2 2 8 6 8 4 9 3 7 5

4 1 1 4 1 1 1 2 2 4 1 2

5 1 1 3 2 7 2 7 6 1 4 8

6 1 2 6 3 6 2 4 2 6 2 1 6

7 4 1 5 1 1 2 3 2 2 5 4 5 3

8 1 2 1 2 3 1 5 2 3 1 1 5 5

9 1 4 3 2 1 1 3 11 5 5 2 6 1 3

10 1 3 6 1 3 2 2 3 5 3

11 2 2 3 4 2 2 2 4

12 2 3 1 1 1 2 5 1 3 1 2

13 1 1 4 1 2 6 4 2 7 2 1 1 5

14 1 3 6 6 1 3 2 3 3 2 4 2 17 5 6

15 3 2 1 1 3 3 4 1 2 6 4

16 1 7 2 6 2 8 5 1 7 1 8 6 4 3 4

17 1 1 7 2 5 5 3 1 2 8 3 7 3 6

18 1 2 4 1 4 4 11 6 3 12 5 5 2 13

19 1 2 5 1 3 3 7 1 3 5 4 2 7 6 5

20 2 1 2 2 5 1 1 2 9 10

21 6 2 1 2 1 1 2 5 3 1 2 5 4

22 5 4 1 3 2 5 6 3 2 2 7 2 7

23 1 1 1 3 1 1 7 1 1 1 2 1 5 4

24 2 1 2 5 1 6 7 2 3 2 6 1 6 4 6

25 10 1 7 1 3 5 3 5 8 7 3 11 3 2

Figure 4.27: Allocation done by GA: Dataset 4 continued

83

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 21 7 15

2 3 36

3 17 61

4 10 10

5 3 51 3

6 26

7 33 7 1

8

9 27 14 7 2 63

10 14 27

11 8 14 12

12 11 34

13 7 12

14 6 35 19 57

15 1 10 1 3 37

16 1 25 49 38

17 21

18 38 3 5

19 19 14 28

20 45 14 8

21 10 20 1

22 31 60

23 13 1

24 26 8 50 11

25 14

Figure 4.28: Allocation done by PS: Dataset 4

84

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17 ParkingLot18

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 7 3 1

2 12 6

3 18 17

4 3 39 4

5 15 5

6 3 35 22

7 18 29

8 16 15 8 46

9 2

10 12

11 25

12

13 14 44

14 20

15 13

16 18 1

17 8 8 24 64

18 7 62 24

19 2 17 10 41 4 9 3

20 3 2

21 44

22 12

23 1 6 56

24 1 2 47

25 3 95 30

Figure 4.29: Allocation done by PS: Dataset 4 continued

85

Buildings ParkingLot1 ParkingLot2 ParkingLot3 ParkingLot4 ParkingLot5 ParkingLot6 ParkingLot7 ParkingLot8 ParkingLot9 ParkingLot10

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1 14 40

2 13 25 11

3 15 8 27

4 8 17

5 4 13 30 4 9

6

7 7 9 11 5

8

9 25 11 20

10 8 17

11 28

12 11 34

13 16 30

14 1 44 92

15 16 34

16 31 1 7 4 29

17 8 1 7

18 10 49

19 4 40 71

20 8 11 10 2 1 39

21

22 22 56 16

23 3 17

24 1 17 56 3

25 1 29 31 36

Figure 4.30: Allocation done by PSwarm: Dataset 4

86

Buildings ParkingLot11 ParkingLot12 ParkingLot13 ParkingLot14 ParkingLot15 ParkingLot16 ParkingLot17 ParkingLot18

Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv Rv UnRv

1

2 2 6

3 5 28 6 23 1

4 4 20 5 12

5 17

6 25 61

7 7 49

8 4 45 10 8 10 8

9 25 34

10 4 16 8

11 6 8 17

12

13 5 16 10

14

15 15

16 15 5 33 7

17 15 4 1 16 73

18 35 45

19 17 6 6 3

20 1

21 20 55

22 9

23 40 1 16

24 17 11 40

25 1 9 5 27 3

Figure 4.31: Allocation done by PSwarm: Dataset 4 continued

87

4.5 Meta-heuristics Comparison with Exact Results

This section compares the results obtained from the meta-heuristic algorithms with the ones ob-

tained from the CPLEX solver in terms of their fitness function values. The result in Figure 4.32

suggests that the solutions of the PSwarm and PS algorithms are closer to the best than those

of the GA. Since the solutions obtained by the CPLEX solver give an exact solution which is the

best, it can be observed that the algorithms, especially the PSwarm and PS algorithms performed

well in addressing the CPSA problem. The fitness values for the PSwarm and PS algorithms are

much closer to the fitness values of the CPLEX solver for dataset 1 and 2 than those obtained in

datasets 3 and 4. However, as earlier stated, the solutions obtained by the GA for each dataset

are farther from the best solution than the solutions obtained from the other two algorithms.

Percentage Relative Error

An error is a measure of the accuracy of the solution obtained in an experiment. The error in this

study will be the meta-heuristic objective function value minus the best value obtained from the

exact method. While the relative error will be the error divided by the best value. The formula in

Equation (4.4) was used to obtain the percentage relative error of the heuristics solution for the

dataset as seen in Table 4.2.

%Error =
(HeuristicsSolution−BestSolution)

BestSolution
∗ 100% (4.4)

Table 4.2: Percentage relative error

Dataset 1 Dataset 2 Dataset 3 Dataset 4

GA 103% 117% 115% 158%

PS 20% 9% 14% 18%

PSwarm 4% 6% 10% 9%

Table 4.2 suggests that the percentage error obtained in the standard GA for all the datasets was

greater than 100, this is a source of concern. The percentage error for PSwarm only falls between

0 - 10, while that of PS falls between 0 - 20.

The exact solution was expanded and tested with more larger datasets and the observations noticed

from the experiments is as follows. The details of the additional datasets are as shown in Table

4.3, with the first one having a total number of 50 buildings and 40 parking lots, and the last one

having a total number of 1000 buildings and 900 parking lots. It was observed that as the size of the

dataset increases, the time taken by CPLEX to solve the problem also increases (see Figure 4.33).

However, the CPLEX solver in AIMMS failed to generate a result when the number of parking

lots increases to 900 and the number of buildings increases to 1000, hence, the proposed use of

88

Figure 4.32: Comparing the fitness values with the CPLEX solver

meta-heuristics especially the PSwarm algorithm for the CPSA problem. The comparison studies

of how close the heuristics are to the best solution are essential for further complex modeling of

the CPSA problem which invariably will have no solution using the exact methods.

Table 4.3: Additional datasets

Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 9

Number of buildings 50 100 250 550 1000

Number of parking lots 40 80 200 500 900

89

Figure 4.33: Execution time of the CPLEX solver for each dataset

4.6 Conclusion

This chapter describes the random variants of real life datasets that were used in the study and

how they were generated. The machine and each algorithm settings in obtaining the solutions for

the CPSA were also given. Following this, the fitness function values and allocation distributions

of users to parking spaces for each dataset was obtained using the CPLEX solver. This was later

used to calculate the percentage relative error for the three algorithms. The results obtained from

the three algorithms were presented and compared in terms of their fitness function values, time

taken, and the allocation distribution that was done for each building. It was observed that the

PSwarm outperformed the PS and GA algorithms, perhaps due to the combined abilities of the

PSO and PS algorithms. The PSwarm algorithm was the fastest overall. The GA performed poorly

and was the slowest of the three algorithms.

90

Chapter 5

Conclusion and Future Research

“All progress is precarious, and the solution of one problem brings us face to face with

another problem ”, [60].

5.1 Introduction

This chapter embodies the concluding remarks for this thesis. The research work addresses the

CPSA problem. The problem is how to efficiently allocate parking spaces to different types of users

in order to minimize the distance walked by each user. Two of the key objectives of this study

are to formulate an optimization model for the parking allocation problem and to proffer different

approaches to its solution.

Section 5.2 presents how each objective of the study is addressed in the various chapters of the

study. Section 5.3 gives a summary of the research work. Section 5.4 gives possible directions that

future research could take. Section 5.5 contains the conclusion of this chapter and the significance

of the study.

5.2 Organisation of Objectives

This study has seven objectives as discussed in section 1.4 that give an overview of the work done

in this study. Figure 5.1 shows how each of the objectives of the study is connected to each chapter

in the study. Objective 1 is to study the existing CPSA problem which is covered in chapters 1

and 3. Objective 2 is to formulate the problem as a COP which is covered in chapters 2 and

3. Objective 3 is to develop an appropriate model for solving the problem which is presented

in chapter 3. Objective 4 is to apply some heuristic algorithms to solve the problem which is

described in chapters 2 and 3. Objective 5 is to compare the results obtained from the heuristics

with that obtained from the CPLEX software discussed in chapter 4. Objective 6 is the analysis of

91

Figure 5.1: Connecting the objectives with each chapter

the performance of the techniques which is presented in chapter 4. Finally, objective 7 is to draw

valuable conclusions from the results obtained in chapters 4 and 5.

5.3 Summary of Research Study

An investigation of the mathematical model formulated in [58] was done and an improvement of

the constraints to cater for the parking reserved policy in the university environment was made.

The resulting model was more suited for the parking allocation on campus for both reserved and

unreserved parking spaces. Some variants of real world data were generated and were used to eval-

uate the optimization model. The datasets ranged from parking data for a fairly small campus to

parking data for a fairly large campus. Following this, the optimization model was implemented us-

ing the CPLEX solver to obtain exact solutions for each dataset. The model was also implemented

using three meta-heuristic algorithms which are the GA, PS and PSwarm. The meta-heuristic

algorithms used were in their simple form.

The results obtained from these algorithms were compared, this is because previous researches

or literature along this particular line of study are not available for comparison, in terms of the

value of the fitness functions, execution times and the allocation output for the different datasets.

The results obtained for the three meta-heuristic algorithms were also compared to the results

obtained from the CPLEX solver. The results obtained using these datasets indicate that the

meta-heuristic algorithms can successfully solve the CPSA problem and give solutions that are

near optimal. It was observed that the PSwarm had the best solutions of the three algorithms and

92

that it is the fastest overall. This can be partly due to the fact that PSwarm is the only hybrid

algorithm of the three algorithms and partly because the PSO that is hybridised with the PS

possesses a higher capability of finding global optimal. Following the PSwarm algorithm is the PS

algorithm which attained some results that are close to those obtained by the PSwarm algorithm.

However, the GA could not outperform the other algorithms in this study.

5.4 Future Research

The optimization model for the CPSA can be extended further to accommodate multiple types of

users either for reserved or unreserved parking such as the short term parkers, long term parkers

and visitors . Some additional constraints to address this can be included in the model. Other

possible objectives, such as maximizing the revenue generated by the university or maximizing

parking usage can also be considered. The model can be formulated as a multi-objective optimiza-

tion model considering simultaneously more than one possible objective subject to the same set of

constraints or with additional constraints. It is believed that the quality of the solution obtained

as well as the speed of the GA can be improved upon. The basic GA used in this study could be

hybridized with other heuristic algorithms such as HC, Tabu Search(TS) and SA for significant im-

provements. Further parameter tuning can be examined for both the PS and PSwarm algorithms

to improve the quality of their solutions.

The solution approaches outlined in this study can be developed into a standalone software ap-

plication for ease of entry of users’ information and for better parking space distribution for the

campus parking managers.The solution approaches can be embedded in a web application software

that allows users enter their details from the comfort of their offices and get their parking allocation

immediately.

5.5 Conclusion

This study is important for campus parking managers and traffic planners, such as the Risk Man-

agement Services (RMS) at the University of KwaZulu-Natal, and for other universities. The study

will help parking managers and traffic planners efficiently allocate parking spaces to users which

in turns saves time and increases the productivity of research and academic work by minimizing

the distance walked by the users from their buildings to the parking lots and vice versa. It will

also help in the determination of the number of parking permits to issue for each parking lot based

on the number of users demanding for parking, this avoids indiscriminate allocation of parking

permits and decreases overcrowding at particular parking lots while other parking lots (often those

that are far away) are less crowded.

93

List of References

[1] Abramson M. A. Pattern Search Algorithms for Mixed Variable General Constrained Opti-

mization Problems. PhD thesis, Department of Computational and Applied Mathematics,

Rice University, 2002.

[2] Batabyal A. A and Nijkamp P. A probabilistic analysis of two university parking issues. The

Annals of Regional Science, 44(1):111–120, 2010.

[3] Charles A. and Dennis Jr. J. E. Analysis of generalized pattern searches. SIAM Journal on

Optimization, 13(3):889–903, 2002.

[4] Hirabayashi A., Aranha C., and Iba H. Optimization of the trading rule in foreign exchange

using genetic algorithm. In Proceedings of the 11th Annual conference on Genetic and evo-

lutionary computation, pages 1529–1536. ACM, 2009.

[5] Homaifar A., Qi C. X., and Lai S. H. Constrained optimization via genetic algorithms.

SIMULATION, 62(4):242–253, 1994.

[6] Hulme-Moir A. Making Way for the Car: Minimum Parking Requirements and Porirua City

Centre. Victoria University of Wellington, 2010.

[7] Narragon E. A., Dessouky M. I., and DeVor R. E. A probabilistic model for analyzing campus

parking policies. Operations research, pages 1025–1039, 1974.

[8] Sarker R. A. and Newton C. Optimization Modelling: A practical approach. 2008.

[9] AIMMS. Aimms @ONLINE. http://business.aimms.com/. Accessed: 2012-01-30.

[10] Hadj alouane A. B. and Bean J. C. A genetic algorithm for the multiple-choice integer

program. Operations Research, 1992.

[11] Grimbleby J. B. Automatic analogue circuit synthesis using genetic algorithms. Circuits,

Devices and Systems, IEE Proceedings, 147(6):319–323, 2000.

[12] Andrej C. Topics in applied math: Methods of optimization @ONLINE.

http://www.math.utah.edu/ cherk/teach/opt/course.html. Accessed: 2011-12-08.

94

[13] Blum C. and Roli A. Metaheuristics in combinatorial optimization: Overview and conceptual

comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[14] Chakraborty R. C. Artificial intelligence @ONLINE.

http://www.myreaders.info/html/artificial-intelligence.html. Accessed: 2012-10-09.

[15] Coello C. A. C. Theoretical and numerical constraint-handling techniques used with evolu-

tionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics

and Engineering, 191(11-12):1245–1287, 2002.

[16] Davis C. Theory of positive linear dependence. American Journal of Mathematics, 76:733–

746, 1954.

[17] Mouskos K. C., Tvantzis J., Bernstein D., and Sansil A. Mathematical formulation of a de-

terministic parking reservation system(prs) with fixed costs. In Electrotechnical Conference,

2000. MELECON 2000. 10th Mediterranean, volume 2, pages 648–651. IEEE, 2000.

[18] Doval D., Mancoridis S., and Mitchell B. S. Automatic clustering of software systems using a

genetic algorithm. In International Conference on Software Tools and Engineering Practice

(STEP’99), pages 73–81, Pittsburgh, PA, 1999.

[19] Maravall D. and De Lope J. Multi-objective dynamic optimization with genetic algorithms

for automatic parking. Soft Computing - A Fusion of Foundations, Methodologies and Ap-

plications, 11:249–257, 2007.

[20] Pentico D. Assignment problems: A golden anniversary survey. European Journal of Oper-

ational Research, 176(2):774–793, 2007.

[21] Shoup D. The politics and economics of parking on campus. Technical report, University of

California Transportation Center, 2011.

[22] The Free Dictionary. @ONLINE. www.thefreedictionary.com. Accessed: 2012-04-24.

[23] Barata E., Cruz L., and Ferreira J. P. Parking at the uc campus: Problems and solutions.

Cities, 2011.

[24] Carlson S. E. A general method for handling constraints in genetic algorithms. In In Pro-

ceedings of the Second Annual Joint Conference on Information Science, pages 663–667,

1995.

[25] Carlson S. E. Annealing a genetic algorithm over constraints. In Proceedings of 1998 IEEE

International Conference on Systems, Man, and Cybernetics, pages 3931–3936, 1998.

[26] Coskun M. E. Shelf space allocation: A critical review and a model with price changes and

adjustable shelf heights. 2012.

95

[27] Goldberg D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

[28] Smith A. E. and Tate D. M. Genetic optimization using a penalty function. In Proceedings

of the 5th International Conference on Genetic Algorithms, pages 499–505, San Francisco,

CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[29] Allen F. and Karjalainen R. Using genetic algorithms to find technical trading rules. Journal

of Financial Economics, 51(2):245 – 271, 1999.

[30] Charpin J. P. F., Mbebi A., Moepya O., Kamga M., Hocking G., Ali M., and Adewumi A.

Optimizing parking assignment. Technical report, Mathematics in Study Group, 2011.

[31] Djeumou F., Adewumi A., and Montaz A. Metaheuristics for space allocation problems:

Comprehensive survey and review. 2010.

[32] Glover F. Future paths for integer programming and links to artificial intelligence. Computers

and Operations Research, 13(5):533–549, 1986.

[33] Glover F., Laguna M., and Rafael M. Tabu search, 1997.

[34] Hoffmeister F. and Sprave J. Problem-independent handling of constraints by use of metric

penalty functions. In Evolutionary Programming, pages 289–294, 1996.

[35] Man K. F. and Tang K. S. Genetic algorithms for control and signal processing. In Industrial

Electronics, Control and Instrumentation, 1997. IECON 97. 23rd International Conference

on, volume 4, pages 1541–1555, 1997.

[36] Vaz A. I. F. and Vicente L. N. Pswarm: a hybrid solver for linearly constrained global

derivative-free optimization. Optimization Methods Software, 24(4-5):669–685, 2009.

[37] Brown-West O. G. Optimization model for parking in the campus environment. Trans-

portation Research Record: Journal of the Transportation Research Board, 1564(1):46–53,

1996.

[38] Caron G., Hansen P., and Jaumard B. The assignment problem with seniority and job

priority constraints. Operational Research, 47(3):449–453, 1999.

[39] Marsden G. The evidence base for parking policiesa review. Transport Policy, 13(6):447 –

457, 2006.

[40] Nicosia G. and Stracquadanio G. Generalized pattern search algorithm for peptide structure

prediction. Biophysical Journal, 95(10):4988–99, 2008.

96

[41] Telfar G. Generally applicable heuristics for global optimisation: An investigation of algo-

rithm performance for the euclidean traveling salesman problem. Master’s thesis, Victoria

University of Wellington, 1994.

[42] Terry R. G. and Soland R. M. A branch and bound algorithm for the generalized assignment

problem. 3:91–103, 1975.

[43] Arsham H. Deterministic modeling: Linear optimization with applications @ONLINE.

http://home.ubalt.edu/ntsbarsh/opre640a/partviii.htm. Accessed: 2013-04-16.

[44] Azami H., Mohammadi K., and Hassanpour H. An improved signal segmentation method

using genetic algorithm. International Journal of Computer Applications, 29(8):5–9, 2011.

[45] Wolpert D. H. and Macready W. G. No free lunch theorems for search, 1995.

[46] Kazem B. I., Mahdi A. I., and Oudah A. T. Motion planning for a robot arm by using genetic

algorithm. Jordan Journal of Mechanical and Industrial Engineering, pages 131–136, 2008.

[47] Vaz A. I. and Vicente L. N. A particle swarm pattern search method for bound constrained

global optimization. Journal of Global Optimization, 39(2):197–219, 2007.

[48] IBM. Cplex optimizer @ONLINE. http://www-01.ibm.com/software/commerce/optimization/cplex-

optimizer/. Accessed: 2013-05-30.

[49] IBM. Ibm and streetline address one of the great unsolved city problems: Parking @ONLINE.

http://www-03.ibm.com/press/us/en/pressrelease/35514.wss. Accessed: 2013-04-26.

[50] IBM. Ibm global commuter pain survey: Traffic congestion down, pain way up @ONLINE.

http://www-03.ibm.com/press/us/en/pressrelease/35359.wss. Accessed: 2013-04-26.

[51] Chisholm K. J. and Bradbeer P. V. G. Machine learning using a genetic algorithm to

optimise a draughts program board evaluation function. In Proceedings of IEEE International

Conference on Evolutionary Computation, (ICEC’97), pages 715–720, 1997.

[52] Joines J. and Houck C. R. On the use of non-stationary penalty functions to solve nonlinear

constrained optimization problems with ga’s. In In, pages 579–584. IEEE Press, 1994.

[53] Millin J. J. An investigation into the use of intelligent systems for currency trading analysis.

2008.

[54] Blanton Jr., Joe L., and Wainwright R. L. Multiple vehicle routing with time and capacity

constraints using genetic algorithms. In Proceedings of the 5th International Conference

on Genetic Algorithms, number 8, pages 452–459, San Francisco, CA, USA, 1993. Morgan

Kaufmann Publishers Inc.

97

[55] Burke E. K. and Cowling P. Combining hybrid metaheuristics and populations for the

multiobjective optimisation of space allocation problems. In in the Proceedings of the GECCO

2001, Genetic and Evolutionary Computation Conference 2001, pages 1252–1259. Morgan

kaufmann, 2001.

[56] Fagerholt K. and Christiansen M. A travelling salesman problem with allocation, time win-

dow and precedence constraints an application to ship scheduling. International Transactions

in Operational Research, 7(3):231–244, 2000.

[57] Goyal S. K. Two models for allocating car parking spaces. Traffic Engineering and Control,

19(2):83–85, 1978.

[58] Goyal S. K. and Gomes L. F. A. M. A model for allocating car parking spaces in universities.

Transportation Research Part B: Methodological, 18(3):267–269, 1984.

[59] Hoffman K. and Padberg M. Lp-based combinatorial problem solving. Annals of Operations

Research, 4(1):145–194, 1985.

[60] Martin L. K. Dr martin luther king @ONLINE. http://www.drmartinlutherking.net/martin-

luther-king-quotes.php. Accessed: 2013-02-15.

[61] Thakur M. K., Kumari M., and Das M. Architectural layout planning using genetic algo-

rithms. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE Inter-

national Conference on, volume 4, pages 5–11, 2010.

[62] Wloch K. and Bentley P. J. Optimising the performance of a formula one car using a genetic

algorithm. In In Proceedings of Eighth International Conference on Parallel Problem Solving

From Nature, pages 702–711, 2004.

[63] Applegate D. L., Bixby R. E., Chvatal V., and Cook W. J. The Traveling Salesman Problem:

A Computational Study (Princeton Series in Applied Mathematics). Princeton University

Press, Princeton, NJ, USA, 2007.

[64] Carroll D. L. Chemical laser modeling with genetic algorithms. AIAA Journal, 34:338–346,

1996.

[65] Gouveia L. A classification of formulations for the (time-dependent) traveling salesman

problem. European Journal of Operational Research, 83(1):69–82, 1995.

[66] Olsen A. L. Penalty functions and the knapsack problem. In Evolutionary Computation,

1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE

Conference on, volume 2, pages 554–558, 1994.

[67] Winston W. L. and Goldberg J. B. Operations research: applications and algorithms. Thom-

son Brooks & Cole, 2004.

98

[68] Amini M. M. and Racer M. A hybrid heuristic for the generalized assignment problem.

European Journal of Operational Research, 87(2):343–348, 1995.

[69] Chiu H. M. A location model for the allocation of the off-street parking facilities. Journal

of the Eastern Asia Society for Transportation Studies, 6:1344–1353, 2005.

[70] Gen M. and Cheng R. A survey of penalty techniques in genetic algorithms. In Evolutionary

Computation, 1996., Proceedings of IEEE International Conference on, pages 804–809, 1996.

[71] Gen M. and Cheng R. Genetic Algorithms and Engineering Optimization. Wiley Series in

Engineering Design and Automation. John Wiley & Sons, 1999.

[72] Glavic M. and Wehenkel L. Interior point methods: A survey, short survey of applications

to power systems, and research opportunities. Technical report, Technical Report, 2004.

[73] Lewis R. M. and Torczon V. Pattern search algorithms for bound constrained minimization.

Technical report, ICASE, NASA Langley Research, 1996.

[74] Lewis R. M., Torczon V., and Trosset M. W. Direct search methods: Then and now. Journal

of Computational and Applied Mathematics, 124:191–207, 2000.

[75] Salkin H. M. and De Kluyver C. A. The Knapsack Problem: A Survey. Reprint / Purdue

university, Krannert Graduate School of Management. Krannert Graduate School of Man-

agement and Institute for Research in the Behavioral, Economic, and Management Sciences,

1980.

[76] Silvano M. and Paolo T. Knapsack problems: algorithms and computer implementations.

John Wiley & Sons, Inc., New York, NY, USA, 1990.

[77] Spronck P. H. M. and Kerckhoffs E. J. H. Using genetic algorithms to design neural rein-

forcement controllers for simulated plants. In Proceedings of the 11th European Simulation

Conference, pages 292–299, 1997.

[78] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.

[79] Gabere M. N. Simulated annealing driven pattern search algorithms for global optimization.

Master’s thesis, University of the Witwatersrand, 2007.

[80] Sivanandam S. N. and Deepa S. N. Introduction to Genetic Algorithms. Springer Publishing

Company, Incorporated, 1st edition, 2007.

[81] Parking Network. About parking @ONLINE. http://www.parking-net.com/about-parking.

Accessed: 2013-04-10.

[82] Adewumi A. O. Some Improved Genetic-algorithms Based Heuristics for Global Optimization

with Innovative Applications. PhD thesis, University of the Witwatersrand, 2010.

99

[83] Yeniay O. Penalty function methods for constrained optimization with genetic algorithms.

Mathematical and Computational Applications, 10:45–56, 2005.

[84] University of KwaZulu-Natal. New Policy: Staff Parking Fees and Reserved Bays. Durban,

South Africa, 2006.

[85] Alberto P., Nogueira F., Rocha H., and Vicente L. Pattern search methods for user-provided

points: Application to molecular geometry problems. SIAM Journal on Optimization,

14(4):1216–1236, 2004.

[86] Chan P. and Lyu M. R. Digital video watermarking with a genetic algorithm. In Proceedings

of International Conference on Digital Archive Technologies (ICDAT 05), pages 139–153,

2005.

[87] Sattayhatewa P. and Smith R. L. Development of parking choice models for special events.

Transportation Research Record: Journal of the Transportation Research Board, 1858:31–38,

2003.

[88] Shabanzadeh P., Hassan M. A., June L. W., and Mohagheghtabar M. Using pattern search

methods for minimizing clustering problems. World Academy of Science, Engineering &

Technology, 62:158 – 162, 2010.

[89] Venkataraman P. Applied Optimization with MATLAB Programming. Wiley Publishing, 2nd

edition, 2009.

[90] Garcia E. R. Q. and Quintero G. C. M. Space allocation using intelligent optimization

techniques. In ANDESCON, 2010 IEEE, pages 1–6. IEEE, 2010.

[91] Hooke R. and Jeeves T. A. “ direct search” solution of numerical and statistical problems.

Journal of the ACM, 8(2):212–229, 1961.

[92] Lopes R. and Girimonte D. The office-space-allocation problem in strongly hierarchized

organizations. In Proceedings of the 10th European conference on Evolutionary Computation

in Combinatorial Optimization, pages 143–153, Berlin, Heidelberg, 2010. Springer-Verlag.

[93] Pereira R., Cummiskey K., and Kincaid R. Office space allocation optimization. In Systems

and Information Engineering Design Symposium (SIEDS), 2010 IEEE, pages 112–117, 2010.

[94] Reeves C. R., editor. Modern heuristic techniques for combinatorial problems. John Wiley

& Sons, Inc., New York, NY, USA, 1993.

[95] Eberhart R.C. and Shi Y. Particle swarm optimization: developments, applications and re-

sources. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, volume 1,

pages 81–86, 2001.

100

[96] Alsumait J. S., Sykulski J. K., and Alothman A. K. Application of pattern search method

to power system economic load dispatch. In Third IASTED Asian Conference Power and

Energy Systems, pages 90–95, 2007.

[97] Arora S. and Puri M. C. A variant of time minimizing assignment problem. European Journal

of Operational Research, 110(2):314 – 325, 1998.

[98] Cernic S., Jezierski E., Britos P., Rossi B., and Garćıa M. R. Genetic algorithms applied to

robot navigation controller optimization. In International Conference on Intelligent Systems

and Control, pages 230–234, 1999.

[99] Geisendorf S. Genetic algorithms in resource economic models. Santa Fe Institute, NM,

USA, Working Papers, pages 99–08, 1999.

[100] Geisendorf S. Are genetic algorithms a good basis for economic learning models? Technical

Report 5, University of Kassel, Institute of Economics, 2007.

[101] Helvig C. S., Robins G., and Zelikovsky A. The moving-target traveling salesman problem,

2003.

[102] Kazarlis S. and Petridis V. Varying fitness functions in genetic algorithms: Studying the rate

of increase of the dynamic penalty terms. In Parallel Problem Solving from Nature V—PPSN

V, pages 211–220. Springer-Verlag, 1998.

[103] Kirkpatrick S., Gelatt C. D., and Vecchi M. P. Optimization by simulated annealing. Science,

220:671–680, 1983.

[104] Mizuta S., Sato T., Lao D., and Ikeda T. M. Structure design of neural networks using

genetic algorithms. In Complex Systems, volume 13, pages 161–175, 2001.

[105] Nemirovski A. S. and Todd M. J. Interior-point methods for optimization. Acta Numerica,

17(1):191–234, 2008.

[106] White M. S. and Flockton S. J. Genetic algorithms for digital signal processing. In Lecture

Notes in Computer Science, 1994.

[107] Zekai S. and Oztopal A. Genetic algorithm for the classification and prediction of precipi-

tation occurrence. Hydrological Sciences-journal-des Sciences Hydrologiques, 46(2):255–267,

2001.

[108] Hegazy T. Optimization of resource allocation and leveling using genetic algorithms. Journal

of Construction Engineering & Management, 125(3):167, 1999.

[109] Litman T. Parking management: strategies, evaluation and planning. Victoria Transport

Policy Institute, 2011.

101

[110] Weise T. Global optimization algorithms theory and application , 2008.

[111] Yokota T., Gen M., Ida K., and Taguchi T. Optimal design of system reliability by an im-

proved genetic algorithm. Electronics and Communications in Japan (Part III: Fundamental

Electronic Science), 79(2):41–51, 1996.

[112] Aickelin U. Genetic algorithms for multiple-choice optimisation problems. PhD thesis, Uni-

versity of Swansea, 1999.

[113] Torczon V. On the convergence of pattern search algorithms. Society for Industrial and

Applied Mathematics Journal on Optimization, 7(1):1–25, 1997.

[114] Chinneck J. W. Practical optimization: A gentle introduction @ONLINE.

http://www.sce.carleton.ca/faculty/chinneck/po.html. Accessed: 2013-05-09.

[115] Coit D. W. and Smith A. E. Penalty guided genetic search for reliability design optimization.

Computers and Industrial Engineering, 30:895–904, 1996.

[116] Glover F. W. and Kochenberger G. A., editors. Handbook of Metaheuristics, volume 114 of

International Series in Operations Research & Management Science. Springer, 2003.

[117] Sun W., Heights U., Mouskos K. C., and Bernstein D. A web-based parking reservation

system. 2003.

[118] Young W., Thompson R. G., and Taylor M. A. P. A review of urban car parking models.

Transport Reviews, 11:63–84, 1991.

[119] Chu W-M., Yao M-J., and Tseng T-Y. An improved genetic algorithm for solving the optimal

resource allocation problem in stochastic activity networks. In Proceedings of the Fifth Asia

Pacific Industrial Engineering and Management Systems Conference, 2004.

[120] Wikipedia. Branch and bound @ONLINE. https://en.wikipedia.org/wiki/Branch-and-

bound. Accessed: 2013-06-28.

[121] Wikipedia. Cplex @ONLINE. http://en.wikipedia.org/wiki/CPLEX. Accessed: 2012-08-26.

[122] Wikipedia. Metaheuristic @ONLINE. http://en.wikipedia.org/wiki/Metaheuristic. Ac-

cessed: 2012-05-15.

[123] Wikipedia. Parallel parking @ONLINE. http://en.wikipedia.org/wiki/Parallel-parking. Ac-

cessed: 2011-11-24.

[124] Wikipedia. Parking lot @ONLINE. http://en.wikipedia.org/wiki/Parking-lot. Accessed:

2011-11-24.

[125] Wikipedia. Simplex algorithm @ONLINE. http://en.wikipedia.org/wiki/Simplex-algorithm.

Accessed: 2013-06-28.

102

[126] Hu X. Particle swarm optimization @ONLINE. http://www.swarmintelligence.org/index.php.

Accessed: 2013-04-05.

[127] Hu X., Shi Y., and Eberhart R. Recent advances in particle swarm. In Evolutionary Com-

putation, 2004. CEC2004. Congress on, volume 1, pages 90–97, 2004.

[128] Song X., Li D., Gu H., Liao Y., and Ren D. Insights into performance of pattern search

algorithms for high-frequency surface wave analysis. Computers & Geosciences, 35(8):1603–

1619, 2009.

[129] Xin-She Y. Engineering optimization an introduction with metaheuristic applications, 2010.

[130] Xin-She Y. Review of metaheuristics and generalised evolutionary walk algorithm. Interna-

tional Journal of Bio-Inspired Computation, 3(2):77–84, 2011.

[131] Ahmed Z. and Majeed S. Machine learning and data optimization using bpnn and ga in doc.

International Journal of Emerging Sciences, 1(2):108–119, 2011.

[132] Michalewicz Z. Genetic algorithms, numerical optimization, and constraints. In Proceedings

of the Sixth International Conference on Genetic Algorithms, volume 195, pages 151–158,

1995.

[133] Michalewicz Z. and Attia N. F. Evolutionary optimization of constrained problems. In

Proceedings of the 3rd annual conference on evolutionary programming, pages 98–108, 1994.

[134] Michalewicz Z. and Nazhiyath G. Genocop iii: A co-evolutionary algorithm for numerical op-

timization problems with nonlinear constraints. In Evolutionary Computation, 1995., IEEE

International Conference, volume 2, pages 647–651, 1995.

[135] Michalewicz Z. and Schoenauer M. Evolutionary algorithms for constrained parameter opti-

mization problems. Evolutionary Computation, 4(1):1–32, 1996.

[136] Wang Z. and Zhou W. Current situation and improvement strategy for campus parking

in china. In Proceedings of the 2010 International Conference on Intelligent Computation

Technology and Automation, volume 01, pages 1075–1078, 2010.

103

Appendix A

Dataset 1

Table A.1: Available parking spaces in the parking lots

Parking lots Reserved Unreserved Total space

1 25 47 72

2 65 121 186

3 39 71 110

4 69 129 198

5 52 95 147

6 36 68 104

7 56 104 160

8 49 92 141

Total 391 727 1118

104

Table A.2: Population of users to be allocated parking

Buildings Reserved users Unreserved users Total users

1 27 65 92

2 9 28 37

3 27 66 93

4 51 102 153

5 50 100 150

6 43 89 132

7 25 62 87

8 30 70 100

9 28 67 95

10 33 75 108

11 29 68 97

12 39 84 123

Total 391 876 1267

Table A.3: The distance cost

Building Parking Lots

1 2 3 4 5 6 7 8

1 79 160 26 143 183 93 141 195

2 108 86 196 62 146 170 43 147

3 182 100 56 83 152 15 176 125

4 57 170 125 156 191 15 183 59

5 143 128 85 13 80 48 11 152

6 97 187 24 147 97 151 26 69

7 183 55 67 157 184 145 78 155

8 48 116 159 93 161 85 43 163

9 168 15 80 66 77 126 11 124

10 94 53 83 169 81 58 109 93

11 189 45 26 106 143 63 60 55

12 136 95 123 196 125 58 61 169

105

Table A.4: Parking permit issued for each parking lot

Parking lots(k) Parking permit issued(Ak)

1 75

2 217

3 121

4 232

5 167

6 113

7 183

8 159

Total 1267

106

Appendix B

Dataset 2

Table B.1: Available parking spaces in the parking lots

Parking lots Reserved Unreserved Total space

1 20 37 57

2 27 51 78

3 27 51 78

4 48 90 138

5 33 61 94

6 44 82 126

7 39 71 110

8 45 83 128

9 21 40 61

10 52 96 148

Total 356 662 1018

107

Table B.2: Population of Users to be Allocated parking

Buildings Reserved users Unreserved users Total users

1 31 72 103

2 17 51 68

3 45 117 162

4 32 73 105

5 8 32 40

6 39 89 128

7 29 72 101

8 7 35 42

9 41 111 152

10 21 60 81

11 15 48 63

12 9 39 48

13 20 55 75

14 15 48 63

15 27 87 114

Total 356 989 1345

108

Table B.3: The Distance Cost

Building Parking lots

1 2 3 4 5 6 7 8 9 10

1 88 78 56 51 167 138 84 93 143 48

2 10 114 35 86 119 57 92 159 81 85

3 113 76 53 73 161 100 192 38 195 199

4 49 128 77 54 73 86 119 128 195 86

5 52 161 65 188 52 124 171 60 132 135

6 72 152 186 140 69 162 63 95 173 181

7 28 34 20 193 121 30 128 170 86 199

8 152 166 123 93 168 166 122 47 130 134

9 152 15 41 189 65 170 193 68 197 31

10 113 89 169 11 86 77 26 102 116 17

11 74 149 42 126 174 92 105 74 187 127

12 168 158 105 162 127 119 109 162 147 118

13 115 80 200 54 198 143 27 198 102 193

14 192 152 78 187 49 151 182 40 131 152

15 180 180 19 155 167 154 178 55 179 136

Table B.4: Parking permit issued for each parking lot

Parking lots(k) Parking permit issued(Ak)

1 73

2 102

3 102

4 184

5 124

6 168

7 146

8 170

9 78

10 198

Total 1345

109

Appendix C

Dataset 3

Table C.1: Available Parking Spaces in the Parking Lots

Parking lots Reserved Unreserved Total space

1 11 21 32

2 59 110 169

3 38 71 109

4 19 36 55

5 52 97 149

6 43 79 122

7 50 94 144

8 79 146 225

9 22 41 63

10 44 82 126

11 15 28 43

12 40 74 114

13 66 123 189

14 18 33 51

15 62 115 177

16 33 62 95

17 57 105 162

Total 708 1317 2025

110

Table C.2: Population of users to be allocated parking

Buildings Reserved users Unreserved users Total users

1 78 184 262

2 110 231 341

3 42 130 172

4 25 102 127

5 20 91 111

6 67 165 232

7 28 106 134

8 35 118 153

9 13 57 70

10 71 173 244

11 119 250 369

12 100 226 326

Total 708 1833 2541

111

Table C.3: The distance cost

Building Parking lots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 247 192 77 163 284 165 237 103 85 90 246 120 163 274 167 220 243

2 292 97 233 252 215 137 93 259 242 88 182 250 253 186 165 79 275

3 95 131 293 248 149 130 79 265 292 84 193 249 282 237 252 109 85

4 283 229 202 121 115 165 94 181 147 227 156 289 218 81 256 122 249

5 61 188 230 67 262 109 207 169 298 166 230 161 143 163 98 93 97

6 110 86 126 64 286 57 260 272 132 78 68 164 151 69 56 131 57

7 52 145 165 209 144 215 178 66 84 225 199 200 160 216 64 250 82

8 218 149 62 156 67 90 91 177 146 95 265 261 220 226 86 125 83

9 276 194 146 276 95 251 229 205 191 251 162 58 166 280 93 244 82

10 193 55 140 154 194 152 277 233 208 178 213 97 288 215 206 188 284

11 89 194 122 89 96 132 105 107 185 187 126 286 139 223 57 189 118

12 176 283 254 185 123 237 268 55 129 102 202 287 135 263 168 233 286

112

Table C.4: Parking permit issued for each parking lot

Parking lots(k) Parking permit issued(Ak)

1 35

2 216

3 135

4 65

5 189

6 153

7 182

8 291

9 75

10 158

11 49

12 142

13 243

14 59

15 226

16 117

17 206

Total 2541

113

Appendix D

Dataset 4

Table D.1: Available parking spaces in the Parking lots

Parking lots Reserved Unreserved Total space

1 37 69 106

2 27 49 76

3 41 77 118

4 26 47 73

5 34 62 96

6 31 57 88

7 36 68 104

8 52 97 149

9 44 82 126

10 52 96 148

11 26 47 73

12 36 67 103

13 19 36 55

14 44 82 126

15 39 71 110

16 48 88 136

17 52 97 149

18 50 93 143

Total 694 1285 1979

114

Table D.2: Population of users to be allocated parking

Buildings Reserved users Unreserved users Total users

1 14 40 54

2 15 42 57

3 35 78 113

4 17 49 66

5 21 56 77

6 25 61 86

7 25 63 88

8 24 61 85

9 36 79 115

10 12 41 53

11 14 45 59

12 11 34 45

13 21 56 77

14 45 92 137

15 16 49 65

16 43 89 132

17 40 85 125

18 45 94 139

19 49 98 147

20 19 53 72

21 20 55 75

22 31 72 103

23 21 56 77

24 48 97 145

25 47 95 142

Total 694 1640 2334

115

Table D.3: The distance cost

Building Parking lots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 335 315 147 172 107 354 196 109 276 393 387 366 71 190 156 92 198 148

2 367 310 288 119 328 80 67 277 183 204 241 362 289 234 295 256 83 204

3 94 187 279 138 159 190 366 306 334 89 232 167 65 196 283 129 259 234

4 370 279 107 266 235 141 381 277 236 140 131 295 75 280 239 185 215 210

5 271 110 92 216 108 330 222 208 173 193 221 119 233 270 294 254 294 356

6 84 297 224 173 261 201 221 241 379 258 268 61 84 152 283 138 295 231

7 147 61 386 341 142 369 168 154 357 142 288 310 336 201 112 152 273 380

8 241 147 169 255 279 114 365 311 243 261 188 225 336 55 95 266 62 273

9 385 66 255 242 291 142 179 116 268 299 179 218 303 394 400 143 74 385

10 388 84 128 371 312 101 89 290 255 128 396 367 102 109 110 339 162 134

11 105 338 313 150 208 98 323 114 123 91 63 263 281 87 61 394 236 287

12 390 293 139 315 79 354 186 179 155 154 360 266 232 180 246 306 279 151

13 385 161 227 314 130 253 135 269 215 162 370 351 391 119 359 170 193 285

14 220 383 295 183 370 242 191 323 131 198 329 332 277 221 284 254 337 293

15 330 62 362 249 103 101 84 78 346 228 85 252 330 169 117 88 301 74

16 100 204 386 77 339 349 96 375 118 80 142 114 209 383 179 367 389 139

17 198 184 242 69 238 268 380 321 129 142 167 134 201 372 211 358 236 128

18 371 318 99 236 399 173 385 220 110 330 288 360 339 68 394 336 164 284

19 327 328 102 323 77 230 251 203 130 60 98 60 79 308 105 141 87 346

20 386 115 140 377 205 191 71 206 202 375 302 221 97 144 349 258 264 171

21 280 221 344 95 87 77 132 157 159 306 87 109 111 198 276 58 323 323

22 62 206 139 249 387 134 174 228 373 221 279 393 187 242 182 199 198 286

23 347 276 335 214 52 93 337 229 201 252 223 299 341 380 117 159 82 52

24 377 298 135 54 321 114 55 336 115 133 323 225 331 196 200 107 143 261

25 288 314 375 168 336 134 65 328 367 211 300 215 71 394 219 113 104 185116

Table D.4: Parking permit issued for each parking lot

Parking lots(k) Parking permit issued(Ak)

1 124

2 89

3 140

4 82

5 111

6 101

7 122

8 180

9 150

10 179

11 82

12 120

13 60

14 150

15 129

16 163

17 180

18 172

Total 2334

117

Appendix E

Conference paper accepted at

iSTEAMS Research Nexus 2013

118

An Exact Solution for Allocating Car Parking
Spaces on Campus

Luke O. Joel*, Sawyerr A. Babatunde** and Adewumi O. Aderemi*

*School of Mathematics, Statistics and Computer Science, University of
Kwazulu-Natal, Westville Campus, Durban, South Africa

**Department of Computer Sciences, University of Lagos, Yaba, Lagos, Nigeria

Abstract

All over the world, especially in the university environment, planning managers and
traffic engineers are constantly faced with the problem of inadequate allocation of car
parking spaces to demanded users. Users could either prefer reserved parking spaces to
unreserved parking spaces or vice versa. This makes the campus parking manager to be
faced with two basic problem which are: the problem of allocating the actual number
of available reserved spaces to users without any conflict over the same parking space,
and the problem of determining the number of parking permit to be issued for parking
lot with unreserved spaces. Hence, an optimal or available solution to the problem is
required. This paper investigates a model for allocating car parking spaces, adds a
constraint to address the reserved parking policy in a university environment and solves
the parking allocation problem using an exact solution method. The result obtained
gives the value of the objective function and the optimal allocation of users to each
parking lot.

Keywords: Allocation, Model, Parking space, Parking lot, Reserved spaces, University

1 Introduction

Parking is a major concern in the transportation planning and traffic management of any
organisation all over the world. Parking problems, among other things, are major problems
facing the society and especially the university environment due to limited number of avail-
able parking spaces and the cost of parking facilities. The challenge is to develop a model
of the problem that considers different parking policies in the campus environment and to
obtain an optimal or available solution to the problem. Many studies have looked at the

2 Luke O.J., Sawyerr B.A and Adewumi A.O.

parking problem from administrative and management point of view. However this paper
will examine the problem from optimization point of view. The paper addresses the problem
of parking allocation in the university environment by formulating a model of the problem
which caters for both reserved and unreserved policy in the campus world

2 Related Works

In the previous studies on parking problem, Narragon, Dessouky and DeVor [4] evaluated
campus parking over-issuance policies by developing a probabilistic model which permits
different classes of users to be considered simultaneously. Mouskos et al. [3] formulated a
deterministic dynamic parking reservation system (PRS) for performing parking space as-
signment on the minimization of parking cost in order to aid users in securing a parking
space either before or during their trip. Chiu [5] developed a multi-objective linear integer
programming model for the optimum allocation of the off-street parking facilities decision
makers. He advocated for the use of existing public facility as a parking facility. Batabyal
et al. [7] analysed two university parking issues by determining the mean parking time of
an arriving car for both short term and long term parkers and computing their probability
distribution function. He also calculated the probability distribution function of parking
violators. Sattayhatewa et al. [8] modelled the evaluation of parking lot choice by con-
sidering three (3) major factors- driving time, parking cost, and walking time which could
be used to analyse the current traffic conditions, improve the traffic conditions and assess
various operational and management policies for special events. Brown-West [9] presented
an optimization methodology for the use of existing land and to manage parking spaces in
a competitive, policy-driven university campus. Major operational and site features, as well
as parameters that could help parking managers and engineers are included in the model.
Essentially, Goyal and Gomes [1] proposed a parking allocation model in a university envi-
ronment on cases where the number of users is equal or less than the available spaces and
where the number of users is greater than the available parking spaces. The latter case will
be the focus of this paper with reserved policy.

3 Parking Allocation Model

The allocation of available parking spaces to a set of users in order to minimize the distance
walked by each user from the parking lot to the buildings in which they work is a difficult
one, especially when the reserved policy is to be considered. A parking reserved policy is an
important part of campus parking, hence there is need to incorporate this into the campus
parking space allocation model. A constraint that addresses the reserved policy, Equation
1, was introduced to the model proposed in [1] for a case where the number of users, TU ,

An Exact Solution to Parking Spaces Allocation Model 3

is greater than the available spaces, TS . The constraint ensure that sum of the parking
allocation, Xijk, is equal to the number of available spaces, Mik, for reserved policy and
greater than the number of available spaces for unreserved policy.

m∑

j=1

Xijk ≥Mik for i = 1, 2, ..., l and k = 1, 2, ..., n (1)

By reserved spaces, we mean, a user given a reserved allocation does not share his
allocation with any other user. That is, the number of users allocated to a parking space
marked reserved cannot be more than the number of parking spaces. For unreserved, the
number of users could be more than the available parking spaces because they are meant to
be shared by more than one user. Hence, the model is formulated as an linear programming
model and it is given as:

Minimize Z =
n∑

k=1

m∑

j=1

l∑

i=1

DjkXijk (2)

subject to:

n∑

k=1

Xijk = Pij for i = 1, 2, ..., l and j = 1, 2, ...,m (3)

m∑

j=1

l∑

i=1

Xijk = Ak for k = 1, 2, ..., n (4)

m∑

j=1

Xijk ≥Mik for i = 1, 2, ..., l and k = 1, 2, ..., n (5)

Xijk ≥ 0 ∀ i, j, k ≥ 0 (6)

Where,
l = the total number of permits type (with index i)
m = the total number of users’ building (with index j)
n = the total number of parking lot (with index k)

TS =
n∑

k=1

Nk =
n∑

k=1

l∑

i=1

Mik

TS = the total number of available parking spaces
Nk = the number of available spaces in the kth parking lot excluding the spaces for handi-
capped users

4 Luke O.J., Sawyerr B.A and Adewumi A.O.

Mik = the number of parking places available with permit type i in kth parking lot
Ak = the number of permits issued to the kth parking lot
Djk = the distance between the jth users’ building and the kth parking lot
Xijk = the number of people having permit type i, users’ building j in the kth parking lot

TU =
l∑

i=1

Bi =
m∑

j=1

l∑

i=1

Pij

TU = the total number of users demanding parking
Bi = the number of permit type i users
Pij = the number of permit type i users working in building j

The objective function in Equation 2 minimizes the distances walked by users from each
parking lot to their respective buildings. Equation 3 is the permit type users constraint
which ensures that the sum of the parking allocation in each parking lot is equal to the
number of users with the permit type for the parking lot. Since several parking permits are
issued for different parking lot, the constraint in Equation 4 ensures that the sum of parking
allocation for users with permit type i working in building j is equal to the parking permit
issued for the parking lot. Equation 5 is the reserved spaces constraint introduced to the
model and it is as explained earlier. The non-negativity constraint in Equation 6 keeps the
variables to be equal or greater than zero.
[1] made the following assumptions:

1. The shortest walking distance between each parking lot and the users’ working building
is known and it is taken by all users.

2. The probability of a user bringing his car on a particular day and the probability of
the user finding a space on that day is the same for all users.

4 Data

The data used is from the parking data for University of KwaZulu-Natal (UKZN), Westville
Campus [6]. UKZN has a staff population of approximately 4300 people, and about 40%
of this were from Westville Campus, which is approximately 1720 people. Obviously, not
all the 1720 people will need a parking space, so about 75% of the Westville Campus staff
require parking spaces, which gives us a population of 1290 users demanding parking spaces.
A look at the available parking spaces is necessary for the efficient calculation of the ratio
of demand to supply of parking spaces on Westville campus. Hence, from Table 1, we are

An Exact Solution to Parking Spaces Allocation Model 5

to allocate 1047 parking spaces to 1290 users with some reserved consideration. There are
several buildings and parking lots in Westville Campus but twelve(12) out of these buildings
and six(6) out of these parking lots are used in the study. A break down of the users
demanding parking in each of this building is given in Table 2. The distance cost from each
building to each parking lot is calculated and given in Table 3.

Table 1: Available Parking Spaces in the Parking Lots

Parking Lots Number Available Reserved Unreserved

1 201 40 161
2 138 138 -
3 126 27 99
4 142 32 110
5 68 68 -
6 372 72 300

Total 1047 377 670

Table 2: Population of Users demanding parking

Buildings Users demanding parking Reserved Number Unreserved Number

1 142 41 101
2 77 23 54
3 118 34 84
4 64 19 45
5 60 19 41
6 220 64 156
7 51 15 36
8 129 38 91
9 42 11 31
10 103 30 73
11 169 49 120
12 115 34 81

Total 1290 377 913

The mean and the standard deviation [1] for the distribution is given as p.Ak and√
(p(1− p)Ak) , where p is the probability of a user bringing his car on a particular day.

Goyal & Gomes [1] observed that in order to get equal probability for all the users, the

6 Luke O.J., Sawyerr B.A and Adewumi A.O.

Table 3: The Distance Cost
Building Parking Lots

1 2 3 4 5 6

1 255 270 440 165 285 610
2 150 165 335 60 180 505
3 165 180 320 75 195 490
4 120 135 275 120 150 445
5 270 285 260 105 200 430
6 180 150 215 195 60 485
7 60 90 320 150 180 490
8 90 60 290 165 150 400
9 350 320 210 260 245 90
10 440 410 120 350 335 180
11 320 290 60 230 215 200
12 335 305 75 245 230 215

equation in (7) must be satisfied

Nk − p.Ak√
(p(1− p)Ak)

= Ψ (7)

Getting the value of Ψ enables us to calculate the total number of permit issued for the kth
parking lot. However, In order to obtain the value of Ψ that will be used to calculate the total
number of permit issued, Ak, which will be equal to the number of users demanding parking,
TU , Goyal [2] suggested squaring Equation (7), rearranging the terms for the kth parking lot,
ignoring small terms and then equating it to the total number of users demanding parking.
The resultant equation is the quadratic equation in (8).

nΨ2 − 2Ψ
n∑

k=1

√
Nk − 2(p.TU −

n∑

k=1

Nk) = 0 (8)

Solving the quadratic equation in (8), the value of Ψ obtained is used to get the values of
Ak in equation (9):

Ak =
(2Nk + Ψ2)− 2Ψ

√
(Nk)

2p
(9)

Parking Permit Calculation

The numbers of parking permit to be issued for each parking lot are calculated. These
numbers are only calculated for the parking lots that are not entirely for reserved parking,

An Exact Solution to Parking Spaces Allocation Model 7

since the numbers of parking permit issued cannot be greater than the numbers of available
parking spaces in a reserved parking. Hence, the number of parking permit issued will not
be calculated for parking lot 2 and 5. We subtract the number of parking spaces in the two
parking lots for reserved parking lots only - 206, from the total number of users demanding
parking - 1290, to obtain the number of users - 1084 to be used in calculating the parking
permit issued. The values of the variables to be substituted into Equation(8) are

B = 1290, N1 = 201, N2 = 138, N3 = 126,

N4 = 142, N5 = 68, N6 = 372, n = 4,

with p = 0.7 as suggested by [2, 4].
which gives

4Ψ2 − 2Ψ(
√
N1 +

√
N3 +

√
N4 +

√
N6)

−2(0.7 ∗ 1084− (N1 + N3 + N4 + N6)) = 0

and finally the quadratic equation

6Ψ2 − 113.2122Ψ + 164.4 = 0

Solving the quadratic equation, we obtain the practical value of Ψ = 1.535

Hence, we put the value of Ψ got into Equation (9) to get the parking permit issued for each
parking lot. Table 4 gives the detail of that. Parking Lots 2 and 5 are only for reserved
parking, while the other parking lots have a certain number for reserved and unreserved
parking as given in Table 1 .

Table 4: Parking Permit Issued for each Parking Lot

Parking Lots(k) Number Available(Nk) Parking Permit Issued(Ak)

1 201 258
∗2 138 138
3 126 157
4 142 178
∗5 68 68
6 372 491

Total 1047 1290

8 Luke O.J., Sawyerr B.A and Adewumi A.O.

5 Results and Discussion

The mathematical model was implemented using IBM ILOG CPLEX software. The IBM
ILOG CPLEX optimization studio (simply called CPLEX version 12.4) uses a variants of
simplex method or the barrier interior point method to solve different kind of optimiza-
tion problems. The CPLEX software package is incorporated into the Advanced Interactive
Multidimensional Modeling System (AIMMS) which is used to obtain optimal solution to
the problem. The following is the discussion of the results obtained by using the CPLEX
software package.

Figure 1 gives the parking allocation for the formulated model with reserved constraint
while Figure 2 gives the parking allocation for the model formulated without reserved con-
straint in [1]. Reserved space is abbreviated to ’Rv’ and Unreserved space to ’UnRv’ in the
results shown in Figure 1, 2, 3, and 4. The value of the objective function, Z, in Equation
(2), is the minimized value of the distances walked by the users from each parking lot to their
respective buildings provided the constraints are satisfied. The objective value obtained for
the allocation in Figure 1 is 229160 while that of the allocation in Figure 2 is 210395. Al-
though the objective value of the allocation in Figure 2 gives a minima value of both but the
allocation obtained is infeasible based on the data. Comparing the two allocations, Figure 1
indicates that the reserved parking spaces were allocated to reserved users. But in Figure 2,
the allocation is contrary. That is, the number of users that are assigned to reserved parking
in Figure 2 are more than the number of reserved spaces available. Parking lot 2 and 5 are
for reserved users, see Table 1 and 4. This was emphasized by the parking allocation shown
in Figure 1 but not in Figure 2. Also, the number of spaces for reserved parking in parking
lot 1,3,4, and 6 are the same with the number of allocated reserved users for these parking
lots only in Figure 1.

Figure 3 gives a close comparison of the total number of allocated spaces in each parking
lot for the two models. Figure 4 is a graph representing the same values as shown in Figure
3. The number of reserved and unreserved spaces allocated using the model with reserved
constraints is highlighted in yellow. the results indicate that adding a constraint to address
the reserved policy in a campus environment to the model formulated in [1] is necessary in
order to obtain feasible solution to the campus parking space allocation problem. In general,
the allocation that was done assigned as much as possible the closest parking lot to users in
a particular building while considering the interest of the remaining users in other building.
Where the closest parking lot would not be possible, a little farther parking lot would be
considered.

An Exact Solution to Parking Spaces Allocation Model 9

Figure 1: Parking Allocation with Reserved Constraint

Figure 2: Parking Allocation without Reserved Constraint

Figure 3: Comparing the Allocation with the Data given

10 Luke O.J., Sawyerr B.A and Adewumi A.O.

Figure 4: Comparing the Allocation with the Data given 2

6 Conclusion

The model for allocating car parking spaces in the university with reserved constraint policy
was investigated. An added constraint was introduced to the model proposed in [1] so as to
accommodate the reserved policy which is an important part of any university transportation
planning. Some parking data were use to test the model. An exact solution, the optimum
objective function value and the allocation of users to each parking lot were obtained using
the CPLEX software.

References

[1] Goyal, S. K. and Gomes, L. F. A. M. (1984), A model for allocating car parking spaces
in universities, Transportation Research Part B: Methodological, volume 18, number 3,
pages 267-269.

[2] Goyal S. K. (1978), Two models for allocating car parking spaces, Traffic engineering
and control, volume 19, number 2, pages 83-85.

[3] Mouskos, K.C. and Tvantzis, J. and Bernstein, D. and Sansil, A.(2000), Mathemati-
cal formulation of a deterministic parking reservation system (PRS) with fixed costs,
Electrotechnical Conference,MELECON 2000,volume 2, pages 648-651.

[4] Narragon E. A., Dessouky M. I. and DeVor R. E. (1974), A Probabilistic Model for
Analyzing Campus Parking Policies, Operations Research, volume 22, number 5, pages
1025-1039.

An Exact Solution to Parking Spaces Allocation Model 11

[5] Hsien-Ming C. (2005), A Location Model for the Allocation of the off-street Parking
Facilities, Eastern Asia Society for Transportation Studies, volume 6, pages 1344-1353.

[6] University of KwaZulu-Natal Parking Policy (2006), Durban, South Africa

[7] Batabyal A. A. and Nijkamp P. (2010), A probabilistic analysis of two university parking
issues, The Annals of Regional Science, volume 44, number 1, pages 111-120.

[8] Sattayhatewa P. and Smith R. L. (2003), Development of parking choice models for
special events, Transportation Research Record: Journal of the Transportation Research
Board, volume 1858, pages 31-38.

[9] Brown-West O. G. (1996), Optimization model for parking in the campus environment,
Journal of the Transportation Research Board, volume 1564, number 1, pages 46-53.

	Declaration
	Declaration - Plagiarism
	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Outcome of Research Work - Publication
	Introduction
	Background of Study
	Types of Parking
	Parking Restrictions

	Statement of Problem
	Motivation
	Objective of the Study
	Definition of Terms
	Thesis Overview

	Background and Related Works
	Introduction to Optimization
	Optimization Process
	Classification of Optimization Problems

	Combinatorial Optimization Problem
	Knapsack Problem
	Travelling Salesman Problem
	Assignment Problem
	Space Allocation Problem

	Optimization Techniques
	Exact Optimization Techniques
	Simplex Algorithm
	Interior Point Algorithm
	Branch and Bound Algorithm

	Meta-heuristic Optimization Techniques

	Genetic Algorithm
	Introduction
	GA Encoding
	Binary Encoding
	Value Encoding
	Permutation Encoding
	Tree Encoding

	GA Operator
	Selection
	Crossover
	Mutation

	Application of GA

	Pattern Search
	Introduction
	Application of PS

	Particle Swarm Pattern Search Algorithm
	Particle Swarm Optimization
	Particle Swarm Pattern Search

	Penalty Method for Constrained Optimization
	Death Penalty
	Static Penalty
	Dynamic Penalty
	Annealing Penalty
	Adaptive Penalty

	Conclusion

	Campus Space Allocation Problem
	Introduction
	Related Works on PSA
	Campus Parking Space Allocation Model
	Solution Idea
	Exact Optimization Solver
	Genetic Algorithm
	Pattern Search Algorithm
	Particle Swarm Pattern Search Algorithm
	Data Representation for the CPSA Model
	Conclusion

	Experimental Setting and Results
	Dataset
	Experimental Settings
	GA Parameter Settings
	PS Parameter Settings
	PSwarm Parameter Settings

	Exact Results Using CPLEX Solver
	Fitness Values across Datasets
	Distribution of Parking Spaces
	Dataset 1
	Dataset 2
	Dataset 3
	Dataset 4

	Meta-heuristic Results Performances
	Fitness Values across Datasets
	Execution Time of the Algorithms for Different Datasets
	Distribution of Parking Spaces
	Dataset 1
	Dataset 2
	Dataset 3
	Dataset 4

	Meta-heuristics Comparison with Exact Results
	Conclusion

	Conclusion and Future Research
	Introduction
	Organisation of Objectives
	Summary of Research Study
	Future Research
	Conclusion

	Dataset 1
	Dataset 2
	Dataset 3
	Dataset 4
	Conference paper

