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Abstract 
 

Monitoring maize leaf area index (LAI) and yield over smallholder farms is important for 

understanding crop productivity and for developing early warning systems to improve crop 

production. The advances in spatio-temporal remote sensing have made it feasible to monitor 

the development and productivity of crops LAI and predict their yields at a farm to field scales 

in smallholder croplands. It is, in this regard, that this study employed Unmanned Aerial 

vehicles (UAV) remotely sensed data in predicting maize LAI and yield of maize across the 

growing season in smallholder farms located in the KwaZulu-Natal province of South Africa. 

Specifically, five images were acquired using the DJI Matrice 300 and the Mica sense Altum 

across the maize growing season. Maize LAI samples were measured during the image 

acquisition times while the yield samples were harvested at the end of the growing season. The 

acquired multispectral images were used to generate 57 vegetation indices (VIs) that were used 

in this study to estimate maize LAI and yield based on the Random Forest regression (RF) 

ensemble to address two specific objectives. These specific objectives were i) to estimate LAI 

of maize crops using UAV derived VIs and RF regression across the growing season in 

smallholder croplands, and ii) to estimate maize yield across the phenological cycle based on 

UAV derived data in conjunction with RF regression in smallholder croplands. The results of 

this study showed that the optimal stage for estimating maize LAI using UAV derived VIs in 

concert with the RF ensemble was during the vegetative stage (V8- V10) with an RMSE of 

0.15, R2 of 0.91 (RRMSE = 8 %) based on the blue, green and thermal variables. Across the 

growing season LAI was estimated to RMSE of 0.15 m2/m2, 0.17 m2/m2, 0.65 m2/m2, 0.19 

m2/m2 and 0.32 m2/m2 , R2 of 0.91, 0.93, 0.91, 0.89 and 0.91; and RRMSE = 8.13%, 8.97%, 

19.61%, 10.78% and 15, 22% for the V8-V10, V12-V14, VT-R1, R2-R3 and R3-R4 growth 

stages, respectively. Meanwhile, the combination of UAV derived VIs and bands facilitated an 

optimal estimation of yield to an R2 of 0.80-0.95, RMSE of 0.03-0.94 kg/m2 and RRMSE of 

2.21%-39.91% across the phenological cycle. The predictor variables derived from the blue, 

red, red edge and NIR sections of the electromagnetic spectrum (EMS) proved to be the most 

optimal variables for maize yield predictions. These results demonstrate the prospects of 

utilizing UAV derived data in predicting maize LAI and yield at field scale – a previously 

challenging task with freely available spatial resolution satellite sensors. This offers detailed 

spatially explicit information needed for optimizing agricultural production in smallholder 

farms especially in data-scarce regions such as sub-Saharan Africa. 
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CHAPTER ONE: GENERAL INTRODUCTION-MAPPING LEAF 

AREA INDEX AND YIELD OF MAIZE USING UNMANNED 

AERIAL VEHICLE DERIVED DATA 

 

 

1.1 Introduction 

 

Despite the great progress that has been made in meeting the basic needs of the poor and most 

vulnerable, food insecurity is still affecting a large number of people globally (Conceição et 

al., 2016). Approximately, one in every four people in sub-Saharan Africa is food insecure 

(Mabhaudhi et al., 2016). This is expected to increase over the years mainly because of 

population growth which will increase the demand for agricultural and horticultural production 

by 60% (Van Ittersum et al., 2016). While it will be very difficult to eliminate this challenge, 

it can be minimized by access to timely information that would allow farmers to make informed 

food crop management decisions, especially for main staple crops such as maize to optimize 

crop production. 

Maize (Zea mays L.), is one of the major crops grown in sub-Saharan Africa and is a staple 

food for approximately 50% of the population. Out of the 53 countries found in sub-Saharan 

Africa, 46 grow maize including, South Africa. Maize covers 60% of South Africa’s cropping 

area and constitutes 70% of its grain production (Ndlovu et al., 2021). Currently, South Africa 

is the leading maize producer on the African continent and its production is concentrated in the 

smallholder farms of the Free State, North West, Mpumalanga and KwaZulu-Natal provinces 

(Baloyi, 2011). Half the production of maize produced in South Africa is for human food 

consumption (Mditshwa, 2017). It is predicted that the South African growing population will 

result in an increased demand for food. The provision of timely accurate maize production 

estimates such as yield is critical for intervention measures to cover for possible deficits and 

leakages (Mkhabela et al., 2005). 

Crop yield is the production of a crop per unit area and is determined by the complex interaction 

between management, meteorological, chemical and physical conditions of a specific crop 

(Awad, 2019). Meanwhile, another key for assessing yield before harvest is measuring leaf 

area index (LAI) as a major biophysical parameter for determining crop development. LAI 

provides a measure of the density of foliage and has a close link to the evapotranspiration and 
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photosynthetic capacities of plants (Aboelghar et al., 2011). It is a critical crop growth 

parameter that is closely associated with not only biomass accumulation, but also the yield at 

different phenological stages. 

Before the development of new, advanced technologies, traditional methods such as physical 

field observations were used to determine plant productivity and yield. However, these are 

typically time-consuming, resource, and labour intensive and not ideal for continuous 

smallholder farm crop monitoring (Stein, 2018). Other traditional methods for estimating 

maize yield throughout its phenological cycle included models that integrate soils, climate and 

other environmental factors. These variables act as response functions to describe 

photosynthesis, development and evapotranspiration and yield for a specific crop as well as 

crop simulation models (Labus et al., 2002). Even though these models are based on strong 

physical and physiological concepts, they lack spatial representativeness.  

Geospatial technologies such as remote sensing have since provided an economical and 

efficient alternative for estimating and characterizing maize productivity based on detailed 

quantitative information available at different spatio-temporal scales (Labus et al., 2002). 

Remotely sensed data can characterize photosynthetic active radiation (PAR), crop 

development, biomass accumulation, and LAI as proxies of productivity (Adam et al., 2014; 

Pantazi et al., 2016). Furthermore, geospatial technologies can be used to characterize actual 

crop yields in a spatially explicit manner. LAI can be considered as the main morphological 

parameter of the vegetation canopy that links remotely sensed data and plant photosynthesis, 

growth, productivity and yield (Son et al., 2013; Peng et al., 2019). For instance, Ahmad et al. 

(2020) predicted the annual variability of maize yield using Landsat 8 imagery and reported an 

R2 of 0.78 while Sun et al. (2019) used Sentinel-2 MSI derived red edge VIs to estimate maize 

LAI to an R2 of 0.85. However, despite the success of these applications, satellite-borne earth 

observation sensors are less suitable for monitoring crops at a farm scale. This is because 

satellite-borne earth observation sensors do not offer adequate spatial and temporal resolution 

suitable for characterizing maize crop attributes at a farm scale. For example, Landsat is 

restricted by the 16-day overpass frequency, which results in insufficient images being 

available for phenological changes, especially in areas that are consistently covered by clouds. 

Besides, more problems arise when faced with challenging weather conditions (Veroustraete, 

2015). In addition, Sentinel-2 MSI’s and Landsat’s spatial resolutions of 10 m and 30 m, 

respectively, are also far too coarse for crop management applications at a farm scale. Taking 
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into consideration these challenges, there is a need for the farming industry to explore and 

embrace innovative precision farming technologies to improve agricultural productivity, in this 

case, in smallholder maize farms. 

Recently, UAVs have offered a new solution for improving maize productivity i.e. maize yield 

and LAI estimates (Noureldin et al., 2013). UAVs are complementary to high-altitude systems 

and can be an alternative source of information on maize crops at a farm scale. Their application 

helps bridge the gap between satellites and manned aircraft as well as the time-consuming, 

labour and resource-intensive conventional field surveys (Khaliq et al., 2019). Moreover, 

UAVs are more advantageous in relation to satellite-borne earth observation systems, 

especially for the monitoring of plants, because they are less affected by weather conditions as 

they can be operated during overcast days (Psirofonia et al., 2017). They offer flexibility in 

terms of flight planning and image acquisition scheduling which can be easily changed in near-

real-time according to field conditions.  

UAVs are relatively cheaper making them more suitable for farm-scale remote sensing 

applications (Khaliq et al., 2019). Khaliq et al. (2019) compared satellite and UAV derived 

multispectral imagery for assessing the relative strength of each platform in representing 

vineyard variability. They concluded that satellite imagery could not be effectively used to 

describe vineyard variability, because of its lower spatial resolution and that UAVs are more 

advantageous for relatively smaller areas. While the groundbreaking study of Stroppiana et al. 

(2015) demonstrated the possibilities of remotely estimating rice yield through the use of aerial 

photography, the increasing application of UAVs is promising for in-field decision making. 

Using an S1000, SZ DJI UAV mounted with a Mini MCA camera with 6 channels to acquire 

imagery, Liu et al. (2019) computed VIs and texture metrics to estimate biomass of winter 

oilseed rape. They concluded that UAVs have a great potential in estimating the plot level 

above ground biomass through the combination of VIs and texture metrics. Using UAV 

imagery, Yao et al. (2017) sought to estimate the LAI of maize and concluded that this 

approach can be useful in estimating LAI in a shorter period of time and at lower costs. So, the 

different dynamics of UAV remotely sensed data together with their close relation to plant 

characteristics could play a role in establishing an effective method for estimating LAI and 

yield before harvest.  

Most remote sensing systems including UAVs acquire spectral data of crops from the visible 

to the mid-infrared sections of the electro-magnetic spectrum which is often influenced by 
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strong chlorophyll absorption in the red (0.45-0.67μm) and structural characteristics in the 

near-infrared region (0.7-0.9 μm). As a result, the red and near-infrared region is very 

convenient for vegetation monitoring and mapping because of such high reflectance values 

(Aboelghar et al., 2011).  

Several studies have illustrated that plant development, stress, LAI and yield can be 

characterized using conventional spectral reflectance data, but more accurately with VIs (Labus 

et al., 2002; Mahajan and Raj, 2016; Raeva et al., 2019). Vegetation Indices are sensitive to 

biochemical and biophysical variations in vegetation because they are calculated using the 

reflectance of two or more spectral wavelengths particularly from the visible and near-infrared 

regions of the EMS. VIs have been proven to be more robust than raw bands as they can 

overcome atmospheric impurities, soil background effects, effects of the zenith, and viewing 

angle while improving the signature of vegetation. Numerous studies have illustrated that VIs 

significantly improve crop yield estimations (Haboudane et al., 2002; Aboelghar et al., 2011; 

Noureldin et al., 2013; Wahab et al., 2018; Raeva et al., 2019). Several studies have established 

the relationship between VIs and green biomass and concluded that VIs can be used to estimate 

yield before harvest (Satir and Berberoglu, 2016; Sun et al., 2019; Ahmad et al., 2020). 

However, the relationship between VIs and plant development can be negatively affected by 

canopy shadows and rapid vegetation growth rates as VIs perform differently (Awad, 2019).  

It is therefore perceived that vegetation transforms such as VIs derived from drone remotely 

sensed data could be effective in estimating crop LAI and yields (Mahajan and Raj, 2016; 

Ahirwar et al., 2019). VIs and LAI correlate strongly with crop productivity and plant 

physiological conditions under various dimensions and growth stages with remote sensing data 

from multi-sources (Jégo et al., 2012). In this regard, identifying suitable variables for the 

estimation of crop yields (biomass) is critical because certain variables are weakly correlated 

with crop productivity attributes (LAI and yield ) or they are extremely auto-correlated (Lu, 

2006). Given this challenge, a robust algorithm for distinguishing the most optimal variables 

to increase the estimation of crop yields is essential.  

Advanced machine learning algorithms such as the RF regression are currently being used to 

resolve the overfitting problems and to select a subset of variables that best explain crop 

attributes such as LAI and yield (Mutanga and Adam, 2011; Mutanga et al., 2012; Mditshwa, 

2017; Ngie and Ahmed, 2018). The RF algorithm is widely used because it is a non-parametric 

statistical technique that uses a bagging-based approach to build an ensemble of regression 
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trees while being able to rank important variables that produce an independent measure of 

prediction error (Prasad et al., 2006). To the best of our knowledge, very few studies have used 

the combination of bands and VIs derived from UAV imagery to estimate maize LAI and yield 

across its growing season in concert with the RF machine learning ensemble in smallholder 

farms. Therefore, this study aims to estimate maize LAI and yield using a combination of bands 

and VIs derived from UAV imagery in smallholder farms of KwaZulu-Natal, South Africa. 

1.2 Aim and objectives 

The study aims to estimate maize LAI and yield across the growing season in smallholder farms 

of KwaZulu-Natal province using the RF algorithm on UAV derived data. 

1.2.1 Specific objectives 

 

• To estimate LAI of maize crops using UAV derived VIs and RF regression across the 

growing season in smallholder croplands 

• To estimate maize yield across the phenological cycle based on UAV derived data in 

conjunction with RF regression in smallholder croplands 

 

1.3 Significance of the study 

 

Assessing crop health and productivity of smallholder farms using very high-resolution 

remotely sensed images will immensely contribute towards identifying and addressing the 

leakages and gaps between the actual and attainable yield in smallholder farms of southern 

Africa. Meanwhile, the monitoring of crop production through satellite remote sensing 

techniques has been affected by cloud cover, limited flight times associated with a coarse 

resolution which are inadequate for capturing the complex and heterogeneous nature of 

smallholder farming systems. Therefore, the application of a UAV in this study will bridge the 

gap between satellites and remotely sensed data products in characterizing crop production 

attributes in smallholder farms while reducing the high costs, intensive labour and lengthy 

times associated with conventional field surveys. In this regard, this research will monitor crop 

productivity throughout the growing season, which is important for immediate informed 

tactical decision making on the farm at any point in time during the cropping season. Lastly, 

this study will test and provide remotely sensed data-based yield estimation models which 

could help in informing the farmers on the expected yield before harvesting. This will be a step 
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towards designing an early warning technique enhancing preparedness with regards to either 

crop yield deficit or surplus, facilitating a timely decision-making process on possible 

intervention mechanisms.  

1.4 Structure of the thesis 

This thesis is comprised of four chapters. The first and last chapters represent the general 

introduction and the synthesis and concluding remarks, respectively. The second and third 

chapters present two research papers that seek to meet the above-mentioned objectives. 

Chapters two and three are presented as stand-alone chapters. 

Chapter Two estimates maize LAI across the growing season using UAV derived VIS and 

field-collected LAI in concert with the RF algorithm at a smallholder farm. The study also 

gives insight into the most suitable variables in predicting maize LAI for each growth stage. 

Chapter Three focuses on predicting collected maize yields and finding the most suitable time 

and variables to do this. The RF algorithm was employed on the combination of bands and VIs 

derived from UAV imagery to achieve the results. Since the two chapters are presented as 

standalone manuscripts, overlaps between these two chapters were inevitable as they are 

addressing a single overarching objective of the study. 
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 CHAPTER TWO: ESTIMATING MAIZE LEAF AREA INDEX USING 

UAV-DERIVED MULTI-SPECTRAL REMOTELY SENSED DATA IN 

SMALLHOLDER FARMS. 

 

 

Abstract 

Understanding maize LAI is critical in assessing maize crop productivity. Spatially explicit 

information on smallholder farm maize production, specifically in sub-Saharan Africa remains 

scarce due to lack of incentives and appropriate technologies. These are required for efficient 

and timely monitoring and assessment of maize LAI to combat the challenges of food 

insecurity and end poverty. UAV imagery in concert with VIs obtained at the high spatial 

resolution, provide appropriate technologies for determining maize LAI at a farm scale. This 

study, therefore, evaluated the robustness of using UAV derived VIs in concert with the RF 

algorithm in estimating maize LAI across the growing season in a smallholder farm in 

KwaZulu-Natal, South Africa. The results showed that the optimal stage for estimating maize 

LAI using UAV derived VIs in concert with the RF ensemble in this study was during the 

vegetative stage (V8- V10) with a RMSE of 0.15, R2 of 0.91 (RRMSE = 8 %). Generally, the 

findings also showed that UAV derived traditional, red edge-based and new VIs were able to 

accurately predict maize LAI across the growing season with R2 of 0.89 - 0.93, RMSE of 0.15 

– 0.65 m2 /m2 and RRMSE of 8.13 – 19.61%. The blue, red edge and NIR sections of the EMS 

were critical in predicting maize LAI. Furthermore, combining traditional, red edge-based and 

new VIs was useful in attaining high LAI estimation accuracies. These results are a step 

towards achieving robust, efficient and spatially explicit monitoring frameworks for sub-

Saharan African smallholder farm productivity. 

Keywords: Smallholder farming, Maize, Leaf Area Index, Remote Sensing, UAV, Vegetation 

Indices, Random Forest algorithm. 

 

2.1 Introduction 

Smallholder agriculture is a very important sector in sub-Saharan African economies. This is 

because most households in this region depend on it for their livelihoods (Gollin, 2014). 

According to Mango et al. (2017) smallholder croplands support about 70% of the households. 
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Above all, smallholder agriculture contributes about 15% of the Gross Domestic Product in 

Africa and it is estimated that it contributes 2.5% to the GDP of South Africa (Kamara et al., 

2019). Maize (Zea Mays L) is the most important and most widely grown grain crop in 

smallholder farms of sub-Saharan Africa. In addition, the maize industry plays a significant 

role in the region’s economy because of its contribution to the domestic markets for local 

consumption and its importance in foreign exchange (Ndlovu et al., 2021). It is therefore 

imperative to increase and optimize the production of maize for the country’s food and 

nutritional security as well as for economic benefit. Considering that the population is projected 

to increase, demand for food will increase rapidly. Therefore, there is a dire need to generate 

monitoring frameworks for optimizing the agricultural productivity of staple crops such as 

maize in a spatially explicit manner by looking at the crops elements such as LAI, which is half 

the area of all leaves per unit of surface area. Furthermore, the actual contribution of 

smallholder farmers is generally unknown because they are widely distributed, spatially small, 

fragmented and highly diverse in terms of crop types. 

Generally, crop productivity is evaluated based on its elements such as LAI, chlorophyll 

content concentration and yield. Amongst these elements, LAI is one important parameter that 

can be monitored to assess crop health status, canopy physiology and nutritional supply (Luo 

et al., 2020b). As previously mentioned LAI is defined as half the area of all leaves per unit of 

surface area and its estimation has long been a research focus in the domain of remote sensing 

(Dong et al., 2019). This is because LAI has a huge effect on the physiological process of the 

plant canopy, which is closely related to crop productivity. In addition, the total accumulation 

of LAI is strongly related to biomass accumulation and crop yield (Gitelson et al., 2014). 

Therefore, monitoring LAI of maize at a farm-scale can assist in assessing crop condition 

variation across space and time for the detection of crop phenology and to model biomass and 

yield to optimize production in smallholder farms. The monitoring of LAI in crops is a 

technique used to diagnose and assess crop deficiencies and necessities such as fertilization 

(Tunca et al., 2018). Therefore, monitoring and estimating maize LAI is of vital importance as 

it can assist in improving grain production, which is very critical in combating food insecurity 

while addressing the sustainable development goals of reducing hunger and poverty (Jin et al., 

2019; Peng et al., 2019).  

Crop LAI can be monitored and estimated through traditional methods and/or remote sensing 

techniques which are often associated with field surveys and point sample measurements 

(Tunca et al., 2018). Despite the high accuracy associated with the traditional methods of 
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measuring LAI, they tend to be time-consuming and labour-intensive while lacking spatial 

representativeness (Martínez-Guanter et al., 2019). In contrast, remote sensing technologies 

have increasingly become popular in agricultural research, because they offer fast and non-

destructive ways of monitoring and estimating crop productivity parameters such as maize LAI 

(Yao et al., 2017). Remote sensing provides both spatial and temporal information on crop 

responses to dynamic environmental conditions or information that relates directly to LAI 

(Peng et al., 2019). Remote sensing data has been successfully used to derive important crop 

parameters, including among others; LAI, water use efficiency, chlorophyll, biomass fraction 

of photosynthetically active radiation (Tumlisan, 2017).  

There are numerous ways of using remotely sensed information to estimate LAI. The simplest 

way is to establish an empirical relationship between the remotely sensed data such as spectral 

bands and VIs and measured LAI (Gao et al., 2016). Several earth observation sensors have 

been used in estimating the LAI of maize in various continents resulting in optimal accuracies. 

These range from Landsat (González-Sanpedro et al., 2008; Su et al., 2019), moderate 

resolution imaging spectral radiometer (MODIS) (Kira et al., 2017; Yu et al., 2021) and 

recently Sentinel-2 multispectral instrument (MSI) (Luo et al., 2020a; Amin et al., 2021). 

Despite the optimal accuracies associated with the data from these satellite-borne sensors in 

the estimation of LAI, the trade-off between its spatial and temporal resolution limits its use in 

capturing crop LAI heterogeneity and dynamics at a farm-scale level (Martínez-Guanter et al., 

2019). Yang et al. (2021) states that medium spatial resolution products e.g., Landsat and 

Sentinel-2 have the potential to miss observations at critical growth stages because of their long 

revisit time (16 and 10 days respectively) as well as their coarser spatial resolution which is 

inadequate for small holder fields of less 5 Ha. In this regard, there is still a need to assess other 

sources of spatial data which could be cheaper, more flexible while offering very high spatial 

resolution data suitable for capturing crop LAI at farm to field scales. 

The introduction of UAV remote sensing technology has offered an optimal source of remotely 

sensed data that is suitable for estimating crop productivity elements such as LAI (Martínez-

Guanter et al., 2019). UAV remote sensing technologies offer maximum flexibility in terms of 

temporal resolution since the flying times are user-determined. Their ability to fly at low 

altitude and portability makes them more suitable for farm-scale research when compared to 

satellite remote sensing, as they provide very high spatial resolution data of up to 5cm. (Gao et 

al., 2016). It is anticipated that the very high resolution (VHR) spatial resolution in concert 

with a multispectral resolution which covers the red edge section of the EMS renowned for 
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mapping LAI of plants, could optimize the estimation of maize productivity in smallholder 

croplands. These UAVs have been used in estimating other crops yielding optimal accuracies. 

For instance, Kanning et al. (2018) successfully estimated wheat LAI with an R2 of 0.79 and 

an RMSE of 0.18. The proven compatibility of UAVs enables LAI estimation daily and at high 

resolution. However, most of these studies have been conducted based on single images in 

experimental plots outside the third world smallholder croplands. For an accurate estimation 

and outlook on a specific crop’s productivity and yield, multitemporal images are required to 

understand the growth trajectory of the crop for informed decision making before the 

harvesting period. There is, therefore, a need to assess the utility of UAV derived multispectral 

data in assessing the productivity of staple crops such as maize in smallholder croplands of 

regions such as southern Africa where much hunger and poverty are rife and the need for 

optimizing crop production is imperative. 

Literature also illustrates that the combination of VIs with robust machine learning algorithms 

improves the accuracies of crop productivity models. VIs depict biophysical parameters of the 

plant canopy such as biomass, greenness and LAI and are calculated using the reflectance of 

two or more spectral bands (Zhang et al., 2009). VIs enhance the sensitivity to a specific crop 

parameter while suppressing the influence of other factors such as leaf and canopy structure 

(Sun et al., 2019). Also, VIs counteract the impacts of soil background, atmospheric conditions, 

leaf pigment and inclination among others (Ngie and Ahmed, 2018). Several VIs have been 

proven to be strongly correlated with the LAI of maize (Sun et al., 2019). These include the 

soil-adjusted VIs (SAVI and OSAVI), that were developed to reduce the impact of soil 

reflectance when LAI is low. In recent years, the advancement in sensor technologies has 

allowed application of red edge based VIs such as NDVI based on the red edge (NDVIRE), the 

normalized difference red edge (NDRE), the modified simple ratio red edge (MSRRE) and the 

red edge-based chlorophyll index (CIRE) were developed (Dong et al., 2019). The new VIs and 

red edge-based VIs are very effective in estimating LAI especially from moderate to high LAI 

and are less influenced by canopy structures (Martínez-Guanter et al., 2019). To the best of our 

knowledge, few studies have tested the effectiveness and performance of UAV derived VIs in 

assessing and monitoring crop growth. 

It is in this regard that this study sought to test the robustness of using UAV derived VIs in 

estimating maize LAI across the growing season. To achieve this, a robust algorithm, RF 

regression was used.  This algorithm was chosen and used in this study based on its 

performance in previous studies and also considering that it resolves the overfitting problems, 
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select a subset of variables that best explain crop attributes such as LAI while being insensitive 

to small sample sizes. The specific objectives of this study were (i) to accurately estimate LAI 

using a combination of traditional, new and red edge-based VIs in conjunction with the RF 

algorithm and (ii) to develop a model for the estimation of maize LAI at each growth stage 

based on UAV data and field-collected LAI measurements. 

2.2 Materials and methods 

2.2.1 Study site 

This study was conducted in a maize crop field in a smallholder farm located in Swayimane 

within the province of KwaZulu-Natal in South Africa (29°31’24’’S and 30°41’37’’ E) 

covering an area of 2699.005 m2 (Figure 2.1). The area of Swayimane is characterized by a 

sub-humid climate with hot and humid summers, warm and dry winters. According to Miya et 

al. (2018), the area is characterized by a uni-modal rainfall pattern from November to March 

with an average precipitation of 900-1200 mm and an average temperature of 20℃. The people 

of Swayimane practice small scale farming involving sugarcane and maize production. 
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Table 2.1: Maize growth stages. 

 

2.2.2 Measurements of LAI 

To estimate the LAI of maize in this study, a polygon map was generated in Google Earth Pro 

covering the maize fields. The polygon was imported into ArcMap 10.6 as a keyhole markup 

language (KML) file. This polygon was used to conduct the stratified random sampling in 

generating sampling points as well as in determining the flight path (section 2.2.3). A total of 

63 points were generated and used for this analysis. These sampling points were loaded into a 

Trimble handheld Global Positioning System (GPS) with a sub-meter accuracy of 30 cm and 

used to locate the sampling points in the plot. At each of the selected and located sample points, 

a maize plant that was close to the location was marked for ease of identification and used for 

further sampling. Specifically, five field surveys were conducted during the growing season of 

maize at vegetative (V) and reproductive (R) growth stages. These were V8-V10 (18 March 

2021), V10-V12 (31 March 2021), VT-R1 (12 April 2021), R2-R3 (28 April 2021) and R3-R4 

(14 May 2021) stages. During the field surveys, images were acquired simultaneously with the 

measurement of maize LAI. 

 Growth 

stage 

Name of 

growth 

stage 

Days after 

emergence 

Brief description 

Vegetative (VE) Emergence 0 Germination and Emergence 

 V1 First leaf 

collar 

  

 V2 Second leaf 

collar 

7  

 V3 Third leaf 

collar 

  

 V(n) Nth leaf 

collar 

21 - 55 Plant population established, cob 

development, active growth: cob 

size determined 

 VT Tassling 56 Pollination 

Reproductive  R1 Silking 63  

 R2 Blister 70 Kernel development 

 R3 Milk 91 Grain filling: nutrients transported 

to cob 

 R4 Dough 105  

 R5 Dent 112 Physiological maturity and ready 

for harvest 

 R6 Maturity 160  
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LAI was determined by using the LiCOR 2200C Plant Canopy Analyzer. The LiCOR 2200C 

has a fisheye optical sensor with five concentric rings centered at zenith angles 7o, 22o, 38o, 52o 

and 68o measuring radiation above and below the canopy to estimate canopy light interception 

and transmittance at five angles, by which LAI can be calculated from inversion of the Beer-

Lambert law. This study utilized the 38o zenith angle. 

2.2.3 Image acquisition and pre-processing  

The Mica Sense multi-spectral camera (Altum) (Figure 2.2 b) was mounted on a UAV (DJI 

Matrice 300) (Figure 2.2 a) in this study to acquire multi-spectral images of the study area. The 

Altum consists of five spectral bands (Blue, Green, Red, Red Edge and NIR) with a radiometric 

thermal camera for the thermal region of the EMS, which enables it to take multispectral and 

thermal imagery in a single flight. Before the flights, a flight plan (Figure 2.2 c) was established 

using the polygon of the study area that was created in Google Earth Pro and the polygon of 

the study area was imported as a kml file into the drone controller to generate the flight path 

(Figure 2.2 c). Calibration was also conducted just before flying the drone by acquiring images 

of the radiometric calibration target provided (Figure 2.2 d), which was set to be horizontal and 

not covered by any shadows. This was done to account for the illumination and atmospheric 

conditions prevalent during the flight. The flights were carried out on clear days between 10:00 

AM and 1:00 PM local time. This was the most optimum time of the day when the solar zenith 

angle is minimal and radiation from the sun is at maximum. The flight altitude was kept at 100 

m above the ground obtaining images with a spatial resolution of 5 cm.  

The Pix4D software was then used to pre-process the UAV images. This was done to account 

for radiometric and geometric errors. The images were imported into the Pix4D software and 

thereafter relative calibration and radiometric correction followed by the stitching of the images 

to create ortho-images of the study area.  
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 Vegetation Index Formula Reference 

 GRNDVI (NIR-(G+R))/(NIR+(G+R)) (Peng et al., 2019) 

 GDVI NIR-G (Ramos et al., 2020) 

 CIgreen (NIR/G)-1 (Stroppiana et al., 2015) 

 CVI NIR*(R/(G*G)) (Stroppiana et al., 2015) 

 GLI ((2*G)-R-B)/((2*G)+R+B) (Tumlisan, 2017) 

 EVI 2,5*((NIR-R)/(NIR+(6*B)-

(7,5*B))+1) 

(Potgieter et al., 2007) 

 EVI2 2,4*((NIR-R)/(NIR+R+1)) (Zheng et al., 2019) 

 EVI3 2,5*((NIR-R)/(NIR+(2,4*R)+1)) (Sibanda et al., 2017a) 

 CI (R-B)/B (Yao et al., 2017) 

 IPVI (NIR/NIR+R)/2*(NDVI+1) (Zhang et al., 2019c) 

 SAVI ((NIR-R)/(NIR+R+0,5))*(1+0,5) (Mditshwa, 2017) 

 OSAVI (NIR-R)/(NIR+R+0,16) (Peng et al., 2019) 

 SR (NIR/R) (Peng et al., 2019) 

Red edge based NDRE (NIR-RE)/(NIR+RE) (Sun et al., 2019) 

 CIRE (NIR/RE)-1 (Sun et al., 2019) 

 CCCI ((NIR-RE)/(NIR+RE))/((NIR-

R)/(NIR+R)) 

(Al-Gaadi et al., 2016) 

 NDVIRE (RE-R)/(RE+R) (Dong et al., 2019) 

New nDVI (RYi) – (RYj) / (RYi) + (RYj) This study 

*Where RYi and RYj are different Altum spectral bands. 

 

2.2.5 Maize LAI prediction 

RF algorithm was used to estimate maize LAI across the growing season. RF is amongst the 

group of machine learning techniques developed to advance the classification and regression 

trees algorithm through the compilation of a huge set of decision trees. It is advantageous in 

that it can optimize the regression trees (ntree) method by the combination of a large set of 

decision trees. The machine learning technique was implemented using the R interface. In R, 

the doBest function was used to optimize the ntree and mtry parameters to 200 and 5, 

respectively, which was the best combination of parameters after testing the ntree values in 

increments of 100 to 2500 and the mtry values in increments of 1 to 5. The resulting models of 

each growth stage were then compared to assess the best performing model. 

2.2.6 Accuracy assessment  

To assess the performance of the models, the dataset (n = 63) was split into 70% training (n = 

44) and 30% test (n = 19) dataset. The training data was used to train the model and the test 
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data was used to evaluate the estimation models. The performance of each model in estimating 

LAI was evaluated using the coefficient of determination, the root mean square error (RMSE) 

and relative root mean square error (RRMSE). The model that yielded a high R2 and low RMSE  

was then used to create a LAI map for the study site in ArcMap 10.6. 

RMSE = √
𝑆𝑆𝐸2

𝑛
                       (1) 

RRMSE % = 
𝑅𝑀𝑆𝐸

𝑀𝐸𝐴𝑁
× 100       (2) 

 

2.3 Results 

2.3.1 Descriptive statistics 

Descriptive statistics of LAI measured in the field for all the growth stages (i.e. V8-V10, V10-

V12, VT-R1, R2-R3, R3-R4) are shown in Table 2.3. The highest average maize LAI of 3.44 

was obtained from the R3-R4 growth stage and the lowest was observed for the V8-V10 growth 

stage which was 1.78. Furthermore, the R3-R4 growth stage had the highest maximum LAI of 

6.29 compared to the rest. The V8-V10 stage had the lowest LAI of 0.47 compared to the rest. 

The mean of LAI increased along with an increase in maize crop productivity. 

 

Table 2.3: Descriptive statistics of the actual maize LAI 

Growth Stage N Mean Std. dev Min Max 

V8-V10 63 1.78 0.35 0.47 1.37 

V12-V14 63 1.82 1.37 1.01 2.93 

VT-R1 63 2.07 1.14 2.24 3.46 

R2-R3 63 3.29 1.1 2.66 5.15 

R3-R4 63 3.44 0.63 3.53 6.29 

 

2.3.2 Derived Maize LAI prediction models and their accuracies 

Figure 2.3 demonstrates the model accuracies obtained in estimating maize LAI based on the 

RF algorithm. The accuracies of the prediction models were moderate to high across the 

different growth stages of maize. For instance, when predicting LAI at the V8-V10 growth 

stage, a good model with and R2 of 0.91, RMSE of 0.15 m2/m2 and RRMSE of 8.13% was 

obtained (Figure 2.3 a). The most optimal variables in estimating maize LAI at this stage were 

ndviB&T and ndviG&B (Figure 2.4 a). Similarly, the V12-V14 growth stage predicted maize 
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LAI at an R2 of 0.93, RMSE of 0.17 m2/m2 and RRMSE of 8.97% (Figure 2.3 b) with BNDVI 

and ndviB&NIR being more influential for this model (Figure 2.4 b).  

The VT-R1 growth stage demonstrated a moderate prediction accuracy in estimating maize 

LAI (R2 = 0.91, RMSE = 0.65 m2/m2 and RRMSE = 19.61%) (Figure 2.3 c). The most suitable 

predictor variables for this stage included ndviNIR&T and ndviR&T (Figure 2.4 c). This was 

followed by a drastic improvement in the R2-R3 growth stage with an R2 of 0.89, RMSE of 

0.19 m2/m2 and RRMSE of 10.78% (Figure 2.3 d). The most influential variables for this 

prediction were CI and ndviB&RE (Figure 2.4 d). The R3-R4 growth stage also yielded a 

moderate model (R2 = 0.91, RMSE = 0.32 m2/m2 and RRMSE = 15.22%) (Figure 2.3 e). The 

most optimal variables for the prediction of maize LAI at the R3-R4 growth stage were 

ndviNIR&B and ndviB&NIR (Figure 2.4 e).  
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Figure 2.4: Variable importance scores of selected variables that exhibited the highest scores 

in predicting maize LAI for the a) V8-V10 b) V12-V14 c) VT-R1 d) R2-R3 and e) R3-R4 

maize growth stages 

 

 

 

 

 

 

 

 

    

    

    

    

   

    

 
 
 
 
 

 
  
 
 
 
 
 
 

 
 
  
 
 
 
 

 
 
 
 
 
 

 
  

 
 
 
 
 
 

 
 
  
 
 
 

  
 

 
 
 

  
 
 

 
 
  
 
  

 

 
 
  
 
  
 
 

 
 
  
  

 
 

 
 
  
 
 
 
 

 
 
 
 

 
 
  
 
  

 

 
 
  
 
 
 

 
 
  
  

 

 
 
  
 
 
 

 
 
  
  

 

  
  
 
 
  
  
 
 
 
  
 
 
  

         

  

 

    

    

    

    

   

    

    

 
 
 
 
 
 

 
 
  
 
 
 
 

  
 
 

 
 
  
 
 
 

 
 
  
 
 
 

 
 
  
 
 
 

 
 
  
 
 
 

 
  

 
 
 
 

  
 
 
 

  
 

 
 
 
 

  
  

 
 
  
 
  
 
 

  
 

 
 
 
 
 
 

 
 
  
 
 
 

 
 
  
 
  
 
 

 
 
  
 
 
 
  

 
 
 
 
 

  
  
 
 
  
   

 
 
  
 
 
  

         

  

 

   

 

   

 

   

 

 
 
  
 
 
 

 
 
  
 
 
 

 
 
 
 
 
 

 
 
  
 
 
 
  

  
 

 
  

  
 
 
 

 
 
  
 
  

 
 

  
 

 
 
  
 
  

 
 

  
  

 
 
  
 
 
 
  

 
 
 
 
 
 

 
 
  
 
 
 

 
 
  
 
 
 

 
 
  
 
 
 

 
 
  
 
 
 
 

 
 
  
 
 
 

 
 
  
 
 
 
 

  

  
  
 
 
  
  
 
 
 
  
 
 
  

         

  

 

    

   

    

   

    

 
 
  
  

 

 
 
 
 

 
 
  
 
 
 
  

 
 
  
 
  

 

 
 
  
 
  
 
 

  
  
 
 
 
  

  
 
 
 

 
 
  
 
 
 

  
  

 
  
 
 

 
 
  
 
 
 
  

  
 
 

 
 
  
 
 
 
 

 
 
  
  

 

 
 
 
 
 

 
 
  
 
 
 
  

 
  

  
  

 
 
  
 
 
 

 
 
  
 
  
 
 

  
  
 
 
  
  
 
 
 
 
  
 
 
  

         

  

 

    

   

    

   

    

   

    

   

    

   

 
 
  
  

 

 
 
 
 

 
 
 
 

 
 
  
 
 
 
 
  

  
 
 
 

 
 
 

 
 
 
 
 

  
  
 
 
 
  

 
 
 

 
 
  
 
 
 
  

 
 
  
 
 
 

 
 
 
 
 

 
 
  
  

 

 
 
  
 
 
 

 
 
  
 
  
 
 

 
 
 
 
 
 

 
 
  
  

 
  

 
 
  
 
 
 
  

 
 
  
 
 
 
  

 
 
  
 
  
 
 

  
  
 
 
  
  
 
 
 
  
 
 
  

         

  



24 
 

 

Figure 2.5: Spatial distribution of modelled maize LAI for the a) V8-V10 b) V12-V14 c) VT-R1 d) R2-R3 and e) R3-R4 growth stages based on 

the RF models. 
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2.4 Discussion 

This study sought to test the utility of UAV derived VIs in estimating maize LAI across the 

growing season based on the Altum sensor mounted on the DJI Matrice 300 UAV data. This 

study specifically sought to estimate LAI using the combination of UAV derived traditional, 

new and red edge-based and the RF algorithm across the growing season in the context of 

smallholder farms. 

2.4.1 Predicting maize LAI 

The results of this study showed that maize LAI was optimally estimated at the V8-V10 growth 

stage to an R2 of 0.91, RMSE of 0.15 m2/m2 and RRMSE of 8.13% with the most influential 

variables being the ndviG&B and ndviB&T derived using the green, blue and thermal spectral 

variables. This demonstrates the sensitivity of maize LAI to the blue, green and thermal regions 

of the EMS in the early growth stages. Literature states that the blue section of the EMS is 

sensitive to green vegetation as it is used by plants during the process of photosynthesis, which 

results in its absorption by vegetation, hence its influence in predicting LAI (Dou et al., 2019; 

Grajek et al., 2020). Previous studies also states that the presence of bright green vegetation on 

the ground during the early stages of plant growth results in a high reflectance in the green 

region of the EMS which explains the sensitivity of maize LAI to the green section of the EMS 

at the V8-V10 for this study (Ren and Zhou, 2019; Sharifi and Agriculture, 2020). These 

findings are in agreement with a study by Motohka et al. (2010) who noticed a decrease in 

green reflection when leaves changed from a bright green in the early stages of the season to a 

dark green colour towards the later stages of the season. This was caused firstly by the end of 

the formation of new leaves which was also detected using spectral variables derived from the 

green section of the EMS.  

In addition, the thermal band was also amongst the most influential spectral predictor variables. 

This could be explained by the fact that during the V8-V10 growth stage, there is low foliage 

density and previous studies states that when there is low foliage density, the soil tends to 

absorb more heat resulting in a high reflectance of the thermal region from the ground, 

explaining the sensitivity to the thermal band during this stage for this study (Filgueiras et al., 

2019).  

In estimating maize LAI during the V12-V14 growth stage, UAV derived VIs yielded an R2 of 

0.93, a RMSE of 0.17 m2/m2 and an RRMSE of 8.97% based on spectral variables derived 

from the blue and NIR regions of the EMS (BNDVI). The results of this growth stage signify 
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the sensitivity of maize LAI to the blue and NIR sections of the EMS to maize LAI during the 

V12-V14 growth stage. As mentioned earlier, the blue region of the EMS plays an important 

role in plant photosynthesis which is a daily process that a plant undergoes, hence the 

importance of the blue waveband in this growth stage as well (Grajek et al., 2020). In 

explaining the sensitivity of maize LAI to the NIR section of the EMS, literature states that this 

section is very important in vegetation monitoring as healthy vegetation tends to reflect highly 

in this section, hence its influence in estimating LAI (Fu et al., 2014; Liu et al., 2019; Martínez-

Guanter et al., 2019). Specifically, the presence and increased foliage density of maize plants 

result in leaves strongly reflecting in the NIR section of the EMS. 

In predicting maize LAI at the VT-R1 growth stage, UAV derived VIs produced a prediction 

model with an R2 of 0.91, a RMSE of 0.65 m2/m2 and an RRMSE of 19.61% based on the 

combination of spectral variables derived from the red and NIR regions of the EMS (ndviR&T 

and ndviNIR&T). The red and NIR sections of the EMS are of significance in vegetation 

monitoring. Specifically, vegetation tends to strongly absorb in the red section and as 

mentioned earlier reflect highly in the NIR section explaining the sensitivity of maize LAI to 

these sections of the EMS. These sections of the EMS are of great value in explaining LAI, 

because the level of absorption in the red section and reflection in the NIR section is based on 

the amount of vegetation present on the ground. Therefore the higher the absorption and 

reflection in the red and NIR sections respectively, the higher the amount of vegetation on the 

ground and vice versa (Ramos et al., 2020).  

When predicting maize LAI in the R2-R3 growth stage using UAV derived VIs, a model with 

an R2 of 0.89, a RMSE of 0.19 m2/m2 and an RRMSE of 10.78% was obtained again, based on 

the indices derived using the blue and red wavebands together with the red edge wavebands 

(ndviB&RE and CI). This indicates a sensitivity of maize LAI to the blue, red and red edge 

sections of the EMS in the R2-R3 growth stage. The contribution of the red edge could be 

attributed to the fact that chlorophyll and biomass are sensitive to the red edge (Tumlisan, 

2017). Specifically, LAI is correlated to chlorophyll and biomass, hence the influence of the 

red edge in predicting LAI (Sun et al., 2019). Finally, in the R3-R4 growth stage, maize LAI 

was sensitive to the blue and NIR sections of the EMS. These produced an optimal model with 

R2 of 0.91, a RMSE of 0.32 m2/m2 and an RRMSE of 15.22%. The influence of the blue and 

NIR bands in predicting maize LAI, could be explained by the role of the blue band in the 

process of photosynthesis and the strong reflection of vegetation in the NIR section of the EMS 

as mentioned previously. 
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2.4.2 The performance of combining UAV derived traditional, red edge-based and new 

VIs in predicting maize LAI 

Results in this study show that combining traditional, red edge-based and new VIs produced 

good yield prediction models for all the growth stages. This could be caused by the sensitivity 

of the red edge region of the EMS together with the ability of VIs to enhance vegetation features 

to the variation in LAI changes (Sun et al., 2019). Across the growing season, LAI changes as 

was shown in Table 2.3. During the early stages (V8-V10 and V12-V14) of the growing season, 

leaves are small and as maize grows so does the leaves. This results in the alteration of LAI 

across the phenological cycle. Therefore, the red edge section of the EMS better detects the 

spectral reflectance of these growth stages which shifts with vegetation growth, expanding on 

the performance of VIs (Sibanda et al., 2021). Additionally, the red edge region of the EMS is 

also sensitive to chlorophyll content variability, which increases as maize grows. This also 

contributes to the high accuracies of the estimation of maize LAI when VIs are combined with 

the red edge.  

Meanwhile, VIs are sensitive to distinctive spectral properties of green vegetation in the image 

caused by the reflectance of maize at various growth stages on particular spectral bands such 

as the red, red edge and NIR (Kanning et al., 2018). Furthermore, VIs are highly correlated 

with LAI. This then boosts the robustness of VIs in estimating LAI. VIs are also sensitive to 

the LAI variability caused by the different stages of the phenological cycle as well as the 

accumulating chlorophyll content throughout the crops growing season (Leroux et al., 2019). 

It is in this regard that high estimation accuracies of LAI are realized when the traditional, red 

edge-based and new VIs are combined. In addition, VIs optimize the characterization of spatial 

information on vegetation while increasing the range of LAI to optimal levels (He et al., 2019). 

The results of this study are consistent with those of Fu et al. (2014) who reported that models 

derived from the combination of VIs and band parameters could effectively increase the 

accuracy of winter wheat biomass estimation when compared with the performance of bands 

or VIs as stand-alone data. Another study by He et al. (2019) estimated the LAI of rice-based 

on a new vegetation index and concluded that the combination of the NIR and red edge bands 

was the best in predicting rice LAI (R2 = 0.6, RMSE = 1.41 m2/m2 ).  

2.5 Conclusion 

This study sought to test the utility of UAV derived VIs in estimating maize LAI across the 

growing season based on the Altum sensor mounted on the DJI Matrice 300 UAV data in a 

smallholder farm. Based on the findings of this study it can be concluded that: 
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• Maize LAI can be optimally estimated using UAV derived VIs across the growing 

season; 

• The blue, green, red edge and NIR sections of the EMS were influential in estimating 

Maize LAI; 

• Combining traditional, red edge-based and new VIs was useful in attaining high LAI 

estimation accuracies. 

Quantitative assessments of maize LAI attained in this study are a step towards developing 

non-destructive and cost-effective methods for routine and timely monitoring of maize LAI in 

smallholder farms for precision farming and increasing crop productivity. The findings 

indirectly contribute towards poverty alleviation by ensuring food security. 
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 CHAPTER THREE: ESTIMATING MAIZE YIELD USING UAV-

DERIVED MULTI-TEMPORAL DATA IN SMALLHOLDER FARMS 

OF KWAZULU-NATAL, SOUTH AFRICA 

 

 

Abstract 

Designing relevant food and nutrition security measures and frameworks on smallholding 

staple crops require robust, efficient and spatially explicit yield monitoring and estimation 

techniques. This is particularly necessary in developing countries where hunger, malnutrition 

and food and nutrition insecurity are rife. Smallholder maize croplands are a key source of 

livelihood in rural communities, especially in regions such as southern Africa where rapid 

population increases and climate change have compounded the challenge of food and nutrition 

insecurity, hunger and poverty. Advances in remote sensing techniques have made it feasible 

to accurately monitor and predict crop yields throughout the growing season. Specifically, 

UAVs equipped with multispectral high spatial resolution sensors offer spatially explicit near 

real-time data suitable for maize monitoring and yield estimation at a smallholder farm scale. 

Therefore, this study sought to predict maize yield in smallholder croplands of southern Africa 

using UAVs derived multi-temporal remotely sensed datasets in concert with the RF regression 

ensemble. The value of using the grain biomass, absolute plant biomass, grain biomass as a 

proportion of the absolute maize plant biomass, VIs and combined spectral data were evaluated. 

Results showed that UAV derived data could accurately predict yield with R2 ranging from 

0.80 - 0.95, RMSE ranging from 0.03 - 0.94 kg/m2 and RRMSE ranging from 2.21% - 39.91% 

based on the spectral datasets combined. Results of this study further revealed that the VT-R1 

(56-63 days after emergence) vegetative growth stage was the most optimal stage for the early 

prediction of maize biomass (R2 = 0.89, RMSE = 0.77, RRMSE = 14,47%), grain yield (R2 = 

0.85, RMSE = 0.1, RRMSE = 5.08%) and proportional yield (R2 = 0.92, RMSE = 0.06, 

RRMSE = 17.56%), with the Normalized Difference Vegetation Index (NDVI), Enhanced 

Normalized Difference Vegetation Index (ENDVI), Soil Adjusted Vegetation Index (SAVI) 

and the red edge band being the most optimal prediction variables. The grain yield models 

produced more accurate results in estimating maize yield when compared to the biomass and 

proportional yield models. The results demonstrate the value of UAV derived data in predicting 

maize yield on smallholder farms – a previously challenging task with coarse spatial resolution 

satellite sensors. 
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3.1 Introduction 

Agriculture continues to be the mainstay of the economies of most southern African countries, 

providing over 35% of their gross domestic product, 70-80% of the available employment 

opportunities and about 30% foreign exchange. Furthermore, the agricultural sector provides 

livelihoods to over 70% of the country’s population in the form of smallholder farming who 

constitute the majority of food producers (Jin et al., 2019). However, despite the sector’s 

fundamental role in the region’s economies and food security, like many other regions of the 

African continent, abject poverty and deepening hunger continue to stall the development 

prospects. This is demonstrated by among others the increasing number of people living below 

the poverty line and malnourished children, trends that could reduce the region’s objective of 

ending poverty and hunger by 2030 as stipulated in the current sustainable development goals. 

Whereas there are a plethora of challenges accelerating food insecurity, the principal cause is 

the decline in the production of staple crops. Specifically, decreasing yields of critical food 

crops such as maize are attributed to, among others, the utility of rudimentary farming 

practices, the low inputs that characterize conventional farming systems, lack of incentives and 

appropriate technologies to optimize production, especially on smallholder farms (Tan et al., 

2020). Despite their potential, the characteristic nature of smallholder farming systems has so 

far presented a low predisposition to invest in improved agricultural technologies that can 

optimize agricultural productivity, hence mitigating food insecurity and poverty.  

 

As aforementioned, smallholder farming is the most prevalent form of maize production in 

southern African countries.  In a recent sub-national census,  Jin et al. (2019) showed that 50% 

of food calories in the region were produced on farms of less than 5 ha in size. The annual 

demand for maize in this region is expected to increase at a rate of 2.4% per annum up to 2025 

(Dhau et al., 2018). Hence, it is necessary to explore approaches to maximize maize production 

on smallholder farms to mitigate poverty and address food and nutritional insecurities. To 

achieve this frequent monitoring across the growing season is critical in assessing the value of 

the adopted techniques and approaches to improve smallholder farm productivity (Tunca et al., 

2018). 

Traditionally, several approaches that include ground observations, surveys and measurements 

have been adopted in crop monitoring (Mditshwa, 2017). However, these approaches are 
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limited by their high labour and financial costs and therefore not ideal for continuous and time-

efficient crop monitoring (Jégo et al., 2012). Meanwhile, satellite remote sensing has emerged 

as a better alternative for crop monitoring and yield estimation (Fernandez-Ordoñez and Soria-

Ruiz, 2017; Leroux et al., 2019). For instance, Aghighi et al. (2018) demonstrated that Landsat 

8 multispectral remotely sensed data could predict silage maize yield with an optimal R2 of 

0.87, while Kayad et al. (2019) utilized Sentinel-2 multispectral instrument derived VIs to 

estimate corn grain yield spatial variability with an R2 of 0.6. Despite the successes associated 

with these studies, the utilization of such multispectral satellite datasets in crop monitoring and 

yield estimation in smallholder farms is limited by their relatively coarse spatial and temporal 

resolutions (Stratoulias et al., 2017). Whereas there are numerous satellite images with high 

spatial resolutions (e.g. SPOT, Worldview and QuickBird and Planetscope), they are not cost-

effective for monitoring smallholder crops.  Moreover, they are often associated with 

processing complexities which makes them unsuitable for monitoring and estimating maize 

yield at a farm-scale (Jin et al., 2019; Chivasa et al., 2020).  

 

On the other hand, UAVs, also known as drones have emerged as a prospective alternative 

source of remotely sensed data suitable for mapping and monitoring crop productivity at a farm 

to field scale (Maes et al., 2018). With advancements in technology, the weight and size of 

multispectral cameras have been drastically reduced to ease mounting on UAVs for use in 

precision agriculture (Candiago et al., 2015). UAV systems provide high spatial resolution 

remotely sensed data at user-defined revisit frequencies and areas of interest, hence time-

efficient and cost-effective agricultural applications such as yield modelling (Schut et al., 2018; 

Ziliani et al., 2018). Furthermore, in estimating maize crop yield using temporal remotely 

sensed datasets, it is not very clear whether the ultimate plant biomass (inclusive of the grains), 

the actual grain biomass (excluding the foliage and stem) or the biomass of grain yield as a 

proportion of ultimate plant biomass exhibits more accurate yield estimates. This has further 

compounded the challenge in using remotely sensed data to estimate the yield of crops such as 

maize when compared with crops such as cabbages and spinach (Abdel-Rahman et al., 2014), 

where biomass is derived from the foliage which in turn directly interacts with the spectral 

signatures used in yield estimation. In this regard, very few studies have utilized UAV derived 

data in estimating maize yield at smallholder farms in sub-Saharan Africa. Hence, there is a 

need to test the utility of multispectral and thermal drone derived remotely sensed datasets to 

not only estimate maize yield in smallholder farms of the southern African region, but also 

identify the specific yield variables that optimally facilitate the accurate estimation of yield. 
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Testing drone derived remotely sensed data in estimating maize yield is important for 

optimizing agricultural production, a challenge using coarse spatial resolution image data. 

Therefore, this study aimed to test the utility of UAV derived data in estimating maize yield 

across the growing season in a smallholder farm. To address this overarching objective, the 

study sought to; i) predict maize yield using UAV remotely sensed data in conjunction with 

the RF algorithm and determine the most optimal growth stage for yield prediction, and ii) 

compare the performance of using the actual grain biomass (excluding the foliage), the ultimate 

plant biomass (inclusive of the grains and foliage) and the biomass of grain yield as a proportion 

of ultimate plant biomass in estimating maize yield. To achieve this, the combination of bands 

and VIs and the RF algorithm regression ensemble were used. 

3.2 Materials and methods 

3.2.1 Study area 

This study was conducted on a smallholder farm located in Swayimane, KwaZulu-Natal, South 

Africa. The farm is located between 29°31’24’’S and 30°41’37’’ E (Figure 3.1). The area has 

a sub-humid climate with an average temperature of 20 ℃ and average precipitation of  900-

1200 mm per annum (Miya et al., 2018). The study was conducted on a 2699.005 m2 maize 

field where the maize was sawn in November with approximately 160 days of the growing 

season.  
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a Trimble handheld GPS with a sub-meter accuracy of 30 cm. The GPS was then used to locate 

and navigate to the sampling points in the field. At each location, a square meter plot was 

established and maize plants in proximity to each sample point selected for yield estimation. 

To determine the absolute maize plant biomass, the sample plants (the entire stalk and the cob 

with the grains) were harvested manually during the reproductive stage R3-R4, which marked 

the end of the growing season of maize. These were lightly shredded to fit in the brown bags 

and appropriately labelled. The entire plant biomass was first oven-dried at 60 ℃ for 48 hours 

then weighed to determine the entire plant biomass before separating the cobs from the plant. 

After the separation, the grains were shelled to determine the grain yield biomass. The dry 

grains were weighed and grain yield was calculated as the weight in kg/m2. The dry grains were 

then divided by the absolute plant biomass to determine the proportional yield. These weights 

were then recorded on an excel spreadsheet together with coordinates of each sampling point. 

3.2.4 UAV system and imaging sensor 

A DJI Matrice 300 UAV was used in this study for acquiring remotely sensed data (Figure 3.2 

a). The device weighs 6.3 kg and has a 30 min flight duration. The DJI M300 flight controller 

was used for autonomous flights and a DJI Data Link was used to transmit flight parameters to 

the controller and to remotely control the UAV. A MicaSense Altum multi-spectral camera in 

conjunction with a DSL 2 was used for UAV spectral imaging of the study site (Figure 3.2 b). 

MicaSense Altum sensor is equipped with a DSL2 GPS to determine image coordinates during 

the acquisition period. The device acquires images simultaneous at a 5.2 cm spatial resolution 

in the blue (475 – 559 nm), green (560 – 667 nm), red (668 – 716 nm), red edge (717 - 839 

nm), NIR (840 nm) and thermal (8-14 um) regions of the EMS. Each multispectral image had 

2064 x 1544 (rows and columns) pixels and 160 x 120 for the thermal band. Horizontal and 

vertical field of view angles were 48o and 37o, respectively, for the multispectral bands and 57o 

and 44o for the thermal band at a flight altitude of 100 m. The sensor can store the images both 

in its internal memory and on a USB.  

Figure 3.2: a) DJI Matrice 300 UAV and b) Mica Sense Altum sensor utilized in this study.  
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3.2.5 Image processing and field data collection 

3.2.5.1 Image acquisition and pre-processing 

A polygon was digitized on Google Earth and exported as a kml file. The polygon was then 

imported into the controller and used to establish the flight plan, flight altitude and speed 

parameters for image acquisition. Prior to image acquisition, the sensor was calibrated by 

acquiring images of the radiometric calibration panel before and after the reconnaissance flight. 

Five images were acquired at different times across the growing season between February and 

May of 2021 (days after emergence, 35, 49, 62, 78 and 94). These images, covering the V8 to 

R3-R4 growth stages were acquired under clear sky conditions between 10:00 AM to 1:00 PM 

local time, which is the period of the day when changes in solar zenith angle are minimal and 

the radiation from the sun at maximum. The images from calibration targets were used in 

calibrating and correcting the reflectance of images. The calibrated images were then exported 

alongside all the other images into Pix4 D for stitching and radiometric correction. To 

accurately retrieve georeferenced ortho-mosaicked images of the study plot for the different 

growth stages, the Altum camera was set to 80% overlap mode using the sensors Wi-Fi. This 

facilitated the stitching of the images using Pix4D. After transferring the images into Pix4D 

fields, they were calibrated, radiometrically corrected and stitched to create ortho-images for 

the entire study site. Geometric correction was done in QGIS 3.12.3 using field collected 

ground control points.   

3.2.5.2 Calculation of VIs 

The UAV derived image bands were used to compute VIs and both spectral bands and indices 

used to predict maize yield. The VIs selected in and utilized in this study are summarized in 

Table 3.1. These VIs were chosen based on their performance in previous studies (Bala and 

Islam, 2009; Mditshwa, 2017; Tumlisan, 2017). The indices directly relate to the chlorophyll 

content of the plant, which indirectly relates to yield. 

 

Table 3.1: VIs used in this study.  

Vegetation Index Abbreviation Equation Reference 

Normalized Vegetation 

Index 

NDVI 

 

𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  (Wahab et al., 2018) 

Enhanced Vegetation 

Index 

ENDVI 

 

 
(𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁) − (2 × BLUE)

(𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁) + (2 × BLUE)
 

(Zhang et al., 2009) 
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Vegetation Index Abbreviation Equation Reference 

Soil Adjusted 

Vegetation Index 

SAVI (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
 × (1 + L) 

 

(Ngie and Ahmed, 2018) 

Optimized Soil 

Adjusted Vegetation 

Index 

OSAVI (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.16)
 × (1 + 0.16) 

 

 (Liu et al., 2019) 

Simple Ratio SR 𝑅𝐸𝐷

𝑁𝐼𝑅
 (Kanning et al., 2018) 

 

3.2.6 Data Analysis 

3.2.6.1 Correlation between grain yield and the entire plant biomass 

A correlation between the grain and the biomass data was determined to evaluate whether there 

was a link between the accumulated biomass and the actual yield at the R3-R4 growth stage. 

A Pearson product-moment correlation test was conducted in this regard following a data 

normality test, which indicated that the data did not significantly deviate from the normal 

distribution.  

3.2.6.2 Maize yield prediction 

To test the relationship between biomass, grain yield and proportional yield determined at the 

R3-R4 stage, the collected 63 yield samples and UAV data (i.e. combination of bands and VIs 

data) were divided into training (70%) and test (30%) datasets to derive models using the  RF 

algorithm in R statistical package. The RF algorithm was adopted in this study as it is a non-

parametric statistical technique that uses a bagging-based approach to build an ensemble of 

regression trees while ranking important variables that produce an independent measure of 

prediction error Prasad et al. (2006).  In R, the ntree and mtry parameters were optimized using 

the doBest function. The function selected the ntree and mtry parameters with the lowest RMSE 

to determine the most influential parameters. These parameters were tuned to 600 for ntree and 

five for mtry. In addition, the most optimal growth stage at which the combination of bands 

and VIs were highly correlated to the yield was assessed to determine the most suitable period 

to predict maize yield before harvest.  

3.2.6.3 Model validation and accuracy assessment 

Test data (30%) was used to evaluate model performance of the derived models. Performance 

indicators such as R2, RMSE) and RRMSE were determined and used to assess the accuracy 

of each model. 
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3.3.2 Derived maize yield prediction models and their accuracies 

Figure 3.4 illustrates the model accuracies obtained in predicting the biomass, grain yield and 

proportional yield based on the RF algorithm. The accuracies of the prediction models varied 

greatly across the maize growing season. For example, when estimating the absolute plant 

biomass, the V8-V10 growth stage yielded the poorest model, with an R2 of 0.80 and RMSE 

of 0.94 kg/m2. The prediction of biomass improved in the V12-V14 growth stage model (R2 = 

0.85 an RMSE = 0.72 kg/ m2). Similarly, the VT-R1 and R2-R3 models predicted biomass at 

an improved R2 = 0.89, RMSE = 0.77 kg/m2 and R2 = 0.89, RMSE = 0.88 kg/m2, respectively.  

The optimal model in estimating biomass was derived from the R3-R4 model, with an R2 of 

0.91 and RMSE of 0.61 kg/m2 (Figure 3.4 e). The most optimal variables in estimating biomass 

were ENDVI, the red edge band, NIR and NDVI, in order of importance (Figure 3.5 e).  

Similarly, the V8-V10 model demonstrated the lowest prediction accuracy in estimating the 

grain yield (R2 = 0.85 and RMSE = 0.6 kg/m2). This was followed by V12-V14 and VT-R1 

with an R2 of 0.89, RMSE of 0.12 kg/m2 and R2 of 0.85, RMSE of 0.1 kg/m2, respectively. The 

prediction accuracy increased significantly with the R2-R3 model (R2 = 0.95 and RMSE = 0.09 

kg/m2). The R3-R4 model optimally predicted the grain yield with the lowest RMSE = 0.03 

kg/m2 and R2 = 0.92 (Figure 3.4 e). The variables that had the highest influence in the grain 

yield model were ENDVI, NIR, NDVI and the red edge band in ascending order of importance 

(Figure 3.5 e). 

When predicting the proportional yield, the V12-V14 model produced the lowest prediction 

accuracy with an R2 of 0.92 and RMSE of 0.11 kg/m2. The prediction of proportional yield 

improved in the V8-V10, VT-R1 and R2-R3 models with an R2 of 0.91, RMSE of 0.09 kg/m2; 

R2 of 0.92, RMSE of 0.06 kg/m2 and R2 = 0.92, RMSE = 0.07 kg/m2. The optimal model for 

estimating proportional yield produced an R2 of 0.95 and RMSE = 0.07 kg/m2 (Figure 3.4 e). 

The most suitable predictor variables included NDVI, the green, NIR and red edge bands 

(Figure 3.5 e). 

In comparing the performance of the maize biomass, grain yield and proportional yield 

variables in predicting yield across all growth stages, the results varied greatly (Figure 3.4). 

For example, when estimating yield at the V8-V10 growth stage, the proportional yield model 

exhibited the poorest prediction accuracy with an RRMSE of 30.43% followed by the grain 

yield model with an RRMSE of 27.99%. Comparatively, the most optimal model in estimating 

yield during the V8-V10 growth stage was the biomass model with an RRMSE of 15.42% 
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(Figure 3.4 a). The most important variables include the red and blue bands, SAVI and OSAVI 

(Figure 3.5 a). 

Similarly, the proportional yield model yielded the poorest model with an RRMSE of 39.91% 

followed by the biomass model with an RRMSE of 15.37% at the V12-V14 growth stage. The 

grain yield model optimally predicted maize yield with the lowest RRMSE = 5.44% at the V12-

14 (Figure 3.4 b). The most optimal variables for this prediction were the green, red edge, red 

and blue bands (Figure 3.5 b). 

In predicting yield at the VT-R1 growth stage, the proportional yield model produced the 

highest RRMSE of 17.56%. The prediction accuracy improved with the biomass and grain 

yield models (RRMSE = 12.56% and 5.08%, correspondingly) (Figure 3.4 c). The variables 

that had the highest influence in the grain yield model were SAVI, NDVI, ENDVI and the 

green band, in order of importance (Figure 3.5 c). 

When predicting yield in the R2-R3 growth stage, the highest RRMSE of 22.57% was obtained 

by the proportional yield model. The biomass model improved the prediction by a magnitude 

of 8.1%, i.e., RRMSE = 14.47%. Similarly, the grain yield model was the optimal model in 

estimating yield at the R2-R3 growth stage (Figure 3.4 d). The red-edge band, NDVI, ENDVI 

and SR were the most influential variables for this model (Figure 3.5 d). 

For the R3-R4 growth stage, the proportional yield exhibited the lowest prediction accuracy 

with an RRMSE of 21.78%. The prediction of yield improved significantly with the biomass 

model (RRMSE = 12.97%) and even greater with the grain yield model (RRMSE = 2.21%) 

(Figure 3.4 e).  The most influential variables for this prediction were NDVI, NIR, ENDVI and 

the red edge band (Figure 3.5 e). 
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Figure 3.4: Relationship between observed and predicted i) biomass, ii) grain yield and iii) 

proportional yield based on the combination of bands and VIs using the RF Model for a) V8-

V10 b) V12-V14 c) VT-R1 d) R2-R3 and e) R3-R4 maize growth stages. 
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growth stages had lower overall accuracies when compared to the R2-R3 and R3-R4 growth 

stages. Several studies (Guindin-Garcia, 2010; Son et al., 2013; Al-Gaadi et al., 2016; Chivasa 

et al., 2017) have noted that in the early stages of crop development, vegetation reflectance is 

affected by the soil background, which explains the low performance of UAV data in predicting 

maize biomass, grain yield and proportional yield at the early (vegetative growth) stages of this 

study.  At this stage, the maize leaves are not fully grown, exposing the surrounding soil, which 

then interferes with the plant’s reflectance as the sensor also picks up the soil reflectance 

(Zhang et al., 2019a).   

In contrast, the later growth stages of the crop yielded higher overall accuracies. Specifically, 

the R2-R3 and R3-R4 growth stages had higher accuracies when compared to the V8-V10, 

V12-V14 and VT-R1 stages. The high performance of the UAV data in predicting maize yield 

at the R2-R3 and R3-R4 stages of the growth cycle can be explained by existing literature 

which has reported significantly high accuracies in the prediction of maize yield at the late 

(reproductive) stages of the crop (Guindin-Garcia, 2010; Mditshwa, 2017). Literature notes 

that at this stage, the maize leaves have grown to mid-density covering the surrounding soil 

and therefore crop reflectance is not impacted by the soil background (Mkhabela et al., 2005; 

Tumlisan, 2017; Tunca et al., 2018). When plants have grown to mid-density, there is canopy 

coverage, meaning the biomass production has reached its most mature stage, making it 

possible to remotely sense vegetation without any interferences from the ground such as soil 

(Kayad et al., 2019). At this stage, when biomass production has reached its peak, it is most 

closely related to yield, which explains why the model accuracies for these stages were higher 

than of the earlier stages of growth (Ngie and Ahmed, 2018; Li et al., 2020). 

Regarding model variable importance, SAVI, OSAVI, the blue and red bands were more 

important in the prediction at the early stages than in the late stages of the crops phenological 

cycle. The value of SAVI and OSAVI can be attributed to their ability to suppress soil 

background, hence better prediction at minimal leaf coverage resulting and soil exposure (Ren 

and Zhou, 2019; Zhang et al., 2019b). The importance of the blue and red bands for these 

models can be explained by soil being more dominant than vegetation in the early stages of the 

crop resulting in high reflectance in the blue and red region of the EMS (Ngie and Ahmed, 

2018). 

Comparatively, NDVI, ENDVI, the green, red, red edge and NIR bands were of significant 

importance in the prediction models at the R2-R3 and R3-R4 crop growth stages. The 
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importance of NDVI and ENDVI in these models could be as a result of the fact that when the 

reflectance measurements for the R2-R3 and R3-R4 growth stages were taken, a saturation of 

the plant canopy had not occurred, the plant canopy had only accumulated to mid-density and 

there is a good relationship between NDVI and ENDVI and biomass and yield at mid-density 

canopies, which characterize the R2-R3 and R3-R4 maize growth stages (Awad, 2019). The 

importance of the green, red, red edge and NIR bands in the models of the R2-R3 and R3-R4 

growth stages for this study can be attributed to the fact that there was a dominance of 

vegetation which reflects strongly in the green and NIR regions of the EMS and highly absorbs 

in the red and red edge regions of the EMS (Khaliq et al., 2019; Marcial-Pablo et al., 2019). 

3.4.2 Determining the most optimal growth stages and variables for yield prediction  

The best-fit model for predicting maize biomass and grain yield was obtained at the R3-R4 

growth stage, with ENDVI and the red edge band being the most important variables for the 

prediction of maize biomass and ENDVI and NDVI being the most important for the prediction 

of grain yield. The influence of the ENDVI, NDVI and the red edge in the prediction at this 

stage could be explained by the good relationship between the two indices and biomass and 

yield at mid-density canopies before saturation (Mutanga et al., 2012; Tan et al., 2020). On the 

other hand, previous studies note that the red edge section of the EMS is related to chlorophyll 

and biomass, which directly relates to yield (Dube et al., 2017; Sibanda et al., 2017b).  

Generally, mid-density canopies are characterized by a high amount of biomass, which is 

associated with high chlorophyll content and carbon assimilation which are sensitive to the red 

edge section of the EMS (Sibanda et al., 2021). Furthermore, a mid-density canopy like in the 

R3-R4 growth stage results in high ENDVI and NDVI values as well as a strong absorption in 

the red edge region of the EMS, hence their strong influence in the prediction of biomass and 

grain yield when compared to the other variables (Raeva et al., 2019). In addition, the best-fit 

model for predicting maize proportional yield was obtained in the VT-R1 growth stage with 

NDVI and SAVI being the most important variables for the prediction of proportional yield. 

The significance of NDVI and SAVI in the prediction model of maize of proportional yield at 

this stage can be attributed to the fact that this is the middle stage where the canopy has not 

grown to mid-density resulting in significant soil exposure  (Mditshwa, 2017). This then results 

in SAVI being important in suppressing the soil background effect and allows NDVI to perform 

well as it has a good relationship with the biomass and yield at this stages’ canopy level because 

the canopy has not yet reached saturation, as canopy saturation hinders the performance of 

NDVI (Mutanga et al., 2012).  
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Regarding the best-fit model for maize biomass and grain yield which was obtained at the R3-

R4 reproductive development stage and proportional yield at the VT-R1 vegetative 

development stage (78 and 62 days after emergence) of the growth cycle. Using the R3-R4 

growth stage for biomass and grain yield prediction could be late for the adoption of any 

effective measure before harvest. A significant relationship was found at the VT-R1 (62 days 

after emergence) growth stage for biomass as well as grain yield. Based on our findings, this 

is the optimal stage at which maize yield could be predicted before harvesting. The most 

significant variables for the optimal biomass, grain yield and proportional yield prediction 

models were the red edge band and ENDVI, SAVI and NDVI, ENDVI and the red edge band 

respectively. Furthermore, the grain yield produced higher prediction accuracies in estimating 

maize yield for most of the crop’s growth stages (V12-V14, VT-R1, R2-R3 and R3-R4) when 

compared to the absolute plant biomass and the biomass of grain yield as a proportion of 

ultimate plant biomass. The absolute plant biomass was only optimal in the V8-V10 growth 

stage and the proportional yield produced the poorest yield prediction accuracies in all of the 

growth stages. Therefore, the grain yield proved to be the most optimal in estimating maize 

yield. 

The obtained validation accuracies and their variable importance match those from previous 

findings, where the prediction was conducted on maize using different space-borne sensors. 

For example, Battude et al. (2016) estimated the biomass and maize yield over a large area 

using Sentinel-2 data and concluded that remotely sensed data can accurately be used to predict 

the biomass and yield throughout the phenological cycle, with prediction accuracies ranging 

from 0.8-0.9.  Ngie and Ahmed (2018) successfully estimated maize grain yield using SPOT 5 

data in the Free State province of South Africa, where prediction models with accuracies of 

0.92 and 0.9 were achieved using SAVI and NDVI.  Mditshwa (2017) used GIS and remote 

sensing to estimate maize grain yield from the different growth stages and concluded that 

NDVI and SAVI are good yield predictors. Unlike the current study which was conducted on 

a small area using high spatial and temporal resolutions datasets, the above-mentioned studies 

were conducted at large spatial extents using Sentinel-2 and Landsat-8. In this study, the 

adoption of a sensor mounted on a UAV has demonstrated its value in predicting maize yield 

in a smallholder farm.  
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3.5 Conclusion 

This study aimed to predict maize yield (biomass, grain yield and proportional yield) across 

the growing season in a smallholder farm based on UAV remotely sensed data. The following 

conclusions were drawn: 

• UAV derived data optimally predicted maize yield during the R3-R4 growth stage using 

ENDVI, NDVI and the red edge band; 

• The VT-R1 stage was the most optimal stage for the early prediction of maize yields 

using SAVI, NDVI, ENDVI and the red edge band; 

• The grain yield models produced higher accuracies in estimating maize yield when 

compared to the absolute plant biomass and the biomass of grain yield as a proportion 

of absolute plant biomass models. 

The characterised variations in field productivity can assist farmers and decision-makers in 

identifying low yield areas within the field so as to adjust their management practices to 

maximize farm productivity. These findings highlight the utility of UAV systems in optimizing 

agricultural production through precision farming on smallholder farms, necessary for poverty 

alleviation and food and nutritional security. 
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 CHAPTER FOUR: ASSESSING THE UTILITY OF UNMANNED AERIEL 

VEHICLE REMOTELY SENSED DATA FOR ESTIMATING MAIZE LEAF AREA 

INDEX (LAI) AND YIELD ACROSS THE GROWING SEASON: A SYNTHESIS 

 

 

4.1 Introduction 

In southern Africa, the number of people living below the poverty datum line, as well as the 

number of malnourished children, are exponentially increasing which could potentially reduce 

the prospects of the region to meet the sustainable development goals of ending poverty and 

hunger by 2030. The principal cause that is accelerating food insecurities is the decline in the 

production of staple crops such as maize (Zea mays L), especially in smallholder agricultural 

lands. Smallholder farms have so far presented a low predisposition to invest in advanced 

agricultural technologies that will optimize agricultural productivity while addressing food 

insecurity and poverty challenges. To close the gap of poverty while addressing food and 

nutritional insecurities there is an urgent need to maximize the production of maize in 

smallholder farms. This can be achieved through the reduction of input costs and the increment 

of maize yields as well as optimizing agricultural productivity. For this optimization to be 

successful, crops should be monitored across their growing season and crop growth 

management techniques implemented on time and at required quantities. However, spatial data 

sources suitable for estimating crop yield and productivity elements in smallholder agricultural 

lands have been scanty due to their relatively small size (< 5 ha), fragmentation and crop 

diversity. The advent of UAVs has presented better prospects for monitoring crop productivity 

at a field scale. It is in this regard that this study sought to assess the utility of UAV derived 

data in estimating maize LAI and yield across the growing season in smallholder farms of 

KwaZulu-Natal based on the RF algorithm. The specific objectives of this study were: 

• To estimate LAI of maize crops using UAV derived VIs and RF regression across the 

growing season in smallholder croplands; 

• To estimate maize yield across the phenological cycle based on UAV derived data in 

conjunction with RF regression in smallholder croplands. 
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4.2 Estimating Maize Leaf Area Index using UAV-derived multi-spectral remotely sensed 

data in smallholder farms. 

In this objective, this study sought to test the utility of UAV derived VIs in estimating maize 

LAI across the growing season in a smallholder farm. Based on the RF regression algorithm, 

the results of this study showed that UAV derived VIs optimally estimated maize LAI (R2 = 

0.91, 0.93, 0.91, 0.89 and 0.91; RMSE = 0.15, 0.17, 0.65, 0.19 and 0.32 m2/m2 and RRMSE = 

8.13%, 8.97%, 19.61%, 10.78% and 15, 22% for the five growth stages, respectively). 

Specifically, the V8-V10 stage exhibited the most accurate model in estimating LAI to an 

RMSE of 0.15, R2 of 0.91 and RRMSE of 8.13% based on the ndviG&B and ndviB&T spectral 

variables. These results illustrate the utility of UAV derived VIs in estimating maize LAI in a 

smallholder farm with spectral variables derived from the blue, green and thermal regions of 

the EMS were the most optimal variables for these predictions. This offers the explicit 

information needed for optimizing agricultural production in smallholder farms in data-scarce 

regions such as sub-Saharan Africa.  

4.3 Estimating Maize yield using UAV-derived multi-temporal data in smallholder farms 

of KwaZulu-Natal, South Africa 

For the second objective, UAV remotely sensed data in concert with RF regression ensemble 

were employed in predicting maize yield in a smallholder farm located in the KwaZulu-Natal 

province of South Africa. To answer this objective, the biomass of maize grain, the biomass of 

grain as a proportion of the absolute biomass, as well as absolute biomass of the maize (plant 

and cob) were compared based on the RF regression. UAV images were acquired across the 

maize growing season and VIs were computed, combined with the bands and used in this 

element of the study.  

 

The findings of this study showed that yield could be optimally estimated during the R3-R4 

growth stage to an RMSE of 0.61 and 0.03 kg/m2 and R2 of 0.91 and 0.92 for the biomass and 

grain yield variables, respectively, based on the NDVI, ENDVI, SAVI and the red edge band 

spectral variables. However, using the R3-R4 growth stage for biomass and grain yield 

prediction could be late for the adoption of any effective measure before harvest and 

recommended the use of the VT-R1 growth stage for the early prediction of yield as a 

significant relationship was found at this stage. The proportional yield was optimally predicted 

during the VT-R1 growth stage to an RMSE of 0.06 kg/m2 and R2 of 0.92 based on NDVI and 

the green band. The findings of this study also indicated that grain yield was optimally 
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predicted in relation to biomass and proportional yield as a variable for characterizing the yield 

of maize in smallholder croplands. 

4.4 Conclusion 

This study sought to assess the utility of UAV derived data in concert with the RF algorithm 

in predicting maize LAI and yield in smallholder farms of KwaZulu-Natal, South Africa. Based 

on the findings deduced from each chapter and or objective, this study concluded that: 

i. Maize LAI can be optimally estimated at the V8-V10 growth stage using UAV 

derived VIs based on the blue, green and thermal sections of the EMS; 

ii. UAV derived data can optimally predict maize biomass and grain yield during the 

R3-R4 growth stage using ENDVI, NDVI and the red edge band and proportional 

yield during the VT-R1 growth stage using NDVI, SAVI, green and the red edge 

band; 

iii. The grain yield models produced higher accuracies in estimating maize yield when 

compared to the absolute plant biomass and the biomass of grain yield as a 

proportion of absolute plant biomass models. 

These findings are a fundamental step towards the establishment of timely accurate maize 

production estimates critical for intervention measures to cover for possible deficits and 

leakages. Optimizing food production will facilitate the attainment of the sustainable 

development goals of drastically reducing hunger and poverty while improving food and 

nutrition security. 

4.5 Recommendations for future studies 

Despite the high accuracies derived in this study, there is still a gap in research that requires 

further inquiry, particularly on smallholder maize farms. We recommend that future studies 

should; 

i. Seek to evaluate the utility of UAV derived data in predicting maize yield using plant 

crop height as a proxy of yield; 

ii. Assess the performance of UAV remotely sensed data in discriminating and mapping 

yield of maize considering the multiple cropping patterns associated with smallholder 

croplands within a single plot; 

iii. Test the utility of combining UAV derived texture models and red edge waveband 

derivatives in estimating maize LAI and yield. 




