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Abstract

The defects formed during the thermite welding process between two sections of
rails require the welded joints to be inspected for quality purpose. The commonly
used non-destructive method for inspection is Radiography testing. However, the de-
tection and classification of various defects from the generated radiography images
remains a costly, lengthy and subjective process as it is purely conducted manually
by trained experts. It has been shown that most rail breaks occur due to a crack that
initiated from the weld joint defect that was not detected. To meet the requirements
of the modern technologies, the development of an automated detection and classifi-
cation model is significantly demanded by the railway industry. This work presents a
method based on image processing and machine learning techniques to automatically
detect and classify welding defects. Radiography images are first enhanced using the
Contrast Limited Adaptive Histogram Equalisation method; thereafter, the Chan-Vese
Active Contour Model is applied to the enhanced images to segment and extract the
weld joint as the Region of Interest from the image background. A comparative in-
vestigation between the Local Binary Patterns descriptor and the Bag of Visual Words
approach with Speeded Up Robust Features descriptor was carried out for extracting
features in the weld joint images. The effectiveness of the aforementioned feature
extractors was evaluated using the Support Vector Machines, K-Nearest Neighbours
and Naive Bayes classifiers. This study’s experimental results showed that the Bag
of Visual Words approach when used with the Support Vector Machines classifier,
achieves the best overall classification accuracy of 94.66%. The proposed method
can be expanded in other industries where Radiography testing is used as the inspec-
tion tool.
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Chapter 1

General Introduction

1.1 Introduction

Railway transportation refers to passengers’ transportation, various commodities,
goods and services traded in as Cargo and Freight from one destination to another,
using wheeled vehicles designed to run on rails. The South African railway industry
is owned and managed by Transnet Freight Rail (TFR), which is one of six divisions
of Transnet Ltd. TFR maintains an extensive rail network across South Africa that
connects with other rail networks in Sub-Saharan regions and its rail network in-
frastructure represents approximately 80% of total infrastructure in Africa. The rail-
way infrastructure is a complex and multi-purpose system that involves earthwork,
tunnels, bridges, and a track structure. Each infrastructure system serves a specific
purpose of assuring safe and reliable train transportation. Thus, proper maintenance
planning and reliable infrastructure monitoring technologies are of great importance.

Figure 1.1: Track structure

1



2 General Introduction

Track structure is the most fundamental part of the railway infrastructure, and its
primary purpose is to serve as a guideway for the train wheels and absorb dynamic
stresses induced by the train motion. As illustrated in Figure 1.1, track structure
comprises components such as rails, sleepers, ballast, and fasteners. The most criti-
cal and maintenance demanding component of the track structure is the rails. Unlike
other components, rails are manufactured in sections and are joined together to form
a continuous railway line during the installation process. The sections of the rails are
usually welded together to form Continuously Welded Rails (CWR); the type of weld-
ing method used by TFR and other railway industries [8, 9] is thermite welding.

Also known as aluminothermic welding, thermite welding is a fast and inexpen-
sive welding process used to join sections of rails permanently. Thermite welding
is exothermic. It is characterised by the chemical reaction between iron oxide and
aluminium to produce a superheated molten iron that fuses with the rails to form a
weld joint. The advantages of thermite welding are its simplicity and mobility. Thus,
it is mainly used on-site as a final step for the installation of rails, Figure 1.2 depicts
the thermite welding process, and the weld joint produced. However, thermite weld-
ing is prone to the formation of defects on the welded joints. If these defects are
undetected, they can lead to rail breaks and possible derailments, and loss of lives.
Studies indicate that most rail breaks occur from cracks that initiate and propagate
from the weld joints [2]. Therefore, it remains an important task to inspect the joints
after the rails have been welded.

Figure 1.2: Thermite weld process and the weld joint formed

A wide range of Non-Destructive Testing (NDT) techniques has been used to in-
spect the weld joints for possible defects that could have occurred during the welding
process. These include acoustic emission, eddy current, ultrasonic testing, and radio-
graphy testing. Radiography Testing (RT) is a commonly used NDT method across
many railway industries [10]. RT has several advantages compared to other NDT
methods as it allows radiography experts to examine and visualize defects from the
generated images. The role of the radiography expert is to detect, classify, and accept
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or reject the weld, based on the type of defect detected and the applicable radiogra-
phy standards.

Five different types of welding defects can be produced from the RT methods. These
are; lack of fusion, shrinkage cavities, inclusions, wormholes, and porosity. Lack of
fusion defects occurs when there is an insufficient fusion between the weld joint and
the parent rails during the welding operation. Shrinkage cavities are voids formed
during the solidification of molten iron due to shrinkages; they are usually located in
the upper web area of the rails. Porosity and wormholes are voids which are caused
by gas entrapment. Porosity is spherical, and wormholes are elongated. Inclusions
occur due to the presence of foreign materials; they are irregular in shape. Figure
1.3 illustrates some of the defects produced by the RT method.

Figure 1.3: Some examples of thermite welding defects [1]

1.2 Problem Statement

The detection and classification of welding defects in the radiography images is con-
ducted manually by a radiography expert with a load of experience. However, it
remains a lengthy, costly, laborious, and subjective process even if conducted by the
experts. In TFR, it usually takes up to two months to complete the detection and
classification of defects from the time the weld joints are tested. This then leaves the
weld joint exposed to a rail break, which could lead to a train derailment and, there-
fore, loss of lives and revenue. The reason behind a lengthy turnaround time is due
to a lack of qualified experts to investigate thousands of weld joints tested monthly
during the maintenance or installation of new rails.

One of many examples of a reported train derailment in TFR due to thermite weld
defect was that of the coal line during the 2016/2017 financial year. Failure analysis
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showed that the rail break occurred due to a crack that initiated at the weld joint. Fig-
ure 1.4 illustrates the derailment site on the coal line. Before the derailment, the coal
line reported 32 rail breaks, 18 train cancellations, and 6520-minute delays. 58% of
the rail breaks were on or adjacent to the weld joint [2]. These statistics indicate that
the manual detection and classification of welding defects using human expertise is
unacceptable. Thus, there is a need to develop an automatic defect detection and
classification system that will address the shortcoming of the manual process.

Figure 1.4: Train derailment site on the coal line [2]

1.3 Motivation

Railway transportation plays a significant role in developing the South African econ-
omy, and industrial growth. Failures such as rail breaks due to thermite weld defects
are directly linked to train derailments. At present, the detection and classification
of thermite weld defects are performed manually by a trained radiography expert.
However, manual inspection is problematic due to its low efficiency, lack of objectiv-
ity, high false alarm rate, and lengthy turnaround time. Additionally, the results are
entirely dependent on the capability of the inspector to detect, classify, and assess
the criticality of defects. Thus, there is a demand for the development of an efficient
and accurate system that can detect and classify thermite weld defects automatically.
The development of an automated system will assure that defects are detected and
classified immediately after the weld joints are tested. This will significantly reduce
the turnaround time and allow the maintenance teams to immediately remove the
weld joints that possess a risk to rail breaks.

Over the years, computer vision technologies have been studied for various appli-
cations in the railway industry. Some of the successful applications of computer
vision in the railway industry have been the development of the automatic classifica-
tion of rail surface defects and railway fastener monitoring systems [11, 12, 13, 14].
However, the development of a computer vision-based system for the detection and
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classification of thermite weld defects remains an area that has not been explored.
This work is an attempt to automate the process by using image processing and ma-
chine learning techniques.

1.4 Main Aim and Specific Objectives

The main aim of this research work is to develop a computer vision-based model for
the detection and classification of thermite weld defects. In an attempt to achieve
the main aim, the following specific objectives have been set.

• Perform a literature review on existing techniques for the detection and classi-
fication of rail defects.

• Perform a literature review on existing techniques for the detection and classi-
fication of welding defects in radiography images.

• Develop an algorithm to improve the quality of the thermite weld images.

• Develop an algorithm to segment and extract the weld joint as the Region of
Interest.

• Investigate several feature extraction methods and classification algorithms.

• Propose an efficient method for weld joint defect classification.

1.5 Study Limitations

Due to the scarcity of dataset, this research only consists of three types of thermite
weld defects: wormholes, shrinkage cavities, and inclusions. Thus, only these three
types of defects are classified.

1.6 Research Contributions

This work makes the following contributions to the railway and radiography indus-
tries.

• The development of a histogram equalisation based algorithm for improving
the quality of thermite weld radiography images.

• The development of an Active Contour based algorithm for the extraction of
the weld joint as the Region of Interest; Active contour methods are used to
segment and further extract the weld joint as the Region of Interest from the
background.
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• The investigation of several feature extraction and classification algorithms;
that has enabled the proposition of a suitable model for the weld joints defects
classification.

• The design and implementation of an efficient model for thermite weld joint
defect classification.

1.7 Dissertation Outline

• The present chapter has covered an introduction to rail thermite welding and
processes, NDT method used to inspect the weld joint’s quality and the type of
weld defects produced using RT methods. Challenges associated with the man-
ual classification of welding defects were stated, and the problem statement
was defined.

• Chapter two presents the literature review on the current image processing and
machine learning methods used to detect and classify defects in the railway
and radiography industries. This includes methods based on deep learning and
shallow learning algorithms.

• Chapter three discusses the material and methods for classification of thermite
weld defects. It divides the methods into thermite weld image enhancement,
weld joint extraction, feature extraction and feature classification.

• Chapter four provides the full experimental results and discussion obtained
from various feature extraction and classification algorithms.

• Chapter five concludes the dissertation and provides the recommendation for
future work.



Chapter 2

Literature Review

2.1 Introduction

Image processing and machine learning methods have enabled many railway practi-
tioners to benefit from a wide variety of applications over the past years. The possi-
bility of collecting data such as rail surface defects, missing fasteners, track geometry
and welding defects has proven beneficial for efficient railway transportation and
the development of predictive maintenance models. The use of machine learning
methods in the railway industry started to gain popularity since the introduction of
first-generation rail monitoring systems introduced by Trascino et al. [15]. These sys-
tems collected and stored various types of rail defect data, which later was reviewed
by a trained personnel to make decisions. However, these systems did not incorpo-
rate automated detection and classification of rail defects in the captured data. As
faster computing software became available, several researchers started introducing
image processing and machine learning framework with high automation capabili-
ties. Therefore, this chapter reviews some of the successful applications of machine
learning in the railway and radiography industries. Section 2.2 presents an overview
of machine learning. Section 2.3 discusses the recent applications of machine learn-
ing in the railway industry. Finally, Section 2.4 outlines some image processing and
machine learning methods for extracting and classifying welding defects in radiogra-
phy images. Section 2.5 concludes the chapter.

2.2 An Overview of Machine Learning

A machine learning algorithm is defined as an algorithm that can learn patterns from
data. Three types of machine learning algorithms exist; supervised learning, unsu-
pervised learning and reinforcement learning. Supervised learning algorithms learn
from labelled training data that allows predictions about unseen or future data. Un-

7
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supervised learning algorithms allow for the extraction of meaningful information
from unlabeled data. For instance, the K-means clustering algorithm, one of the
most popular unsupervised learning algorithms, takes unlabeled data in a high di-
mensional feature space and finds the target label by clustering features based on
similarity measures [16]. Reinforcement learning is when the learning algorithm is
no longer provided with the actual output values for its input values but with the
score that tells the learning algorithm how good or bad its predictions are [17]. Ma-
chine learning algorithms can further be divided into shallow learning algorithms
and deep learning algorithms.

The main difference between shallow and deep learning algorithms lies in their
level of representation. Shallow algorithms use manually designed features and al-
gorithms such as the Support Vector Machines (SVM) [18], K-Nearest Neighbours
(K-NN) [19] and Random Forest [20] to train a shallow classifier. Deep learning
algorithms, on the other hand, learn the features directly from raw data [21]. Shal-
low learning-based methods use manually designed or hand-crafted features to train
shallow algorithms for learning the function that maps the predictive variables to
the target variables. Additionally, these set of algorithms use a structured dataset in
the form of a vector as inputs. For example, the SVM uses the feature vectors rep-
resenting different samples in high dimensional feature space to learn a hyperplane
that best separates between samples of two different classes. The unknown sample
feature vector is assigned to a target function based on its relative position from the
constructed hyperplane. A K-NN algorithm stores the feature vectors as part of the
training process; the unknown sample is assigned a target function using the feature
vectors nearest to the unknown sample.

Deep learning algorithms do not depend on hand-engineered or manually designed
features, and they can learn features directly from the raw data (i.e. Raw images).
Deep learning algorithms are often referred to as ”representation learning”, repre-
sentation learning methods allow for machines to be fed with raw input data and
automatically discovers the representation needed for a detection or classification
task. For many applications, this property makes deep learning algorithms superior
to shallow learning algorithms where features are extracted manually. Over the past
couple of years, railway practitioners have also taken full advantage of deep learning
for a wide variety of railway applications, including the detection, classification and
monitoring of rail defects.

Convolutional Neural Networks (CNN) are a subset of deep learning algorithms
widely used for a computer vision task. CNN with deep learning as defined in [21]
are presentation-based learning methods containing multiple levels of presentations
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obtained using non-linear convolutional layers to transform low-level representations
(from the raw image) into more abstract levels. For example, extracting learned fea-
tures from railroad image containing defects using CNN with three layers would
have the first layer representing the presence or absence of the rail edges at specific
locations in the image. The second layer would typically detect defects by spotting
particular arrangements of edges, and lastly, the third layer may assemble edges com-
bination that corresponds to a particular defect type.

The main difference between the standard neural network and CNN is that the con-
volutional layers replace the fully connected layers in the standard neural network.
In contrast to fully connected layers, the neurons in convolutional layers are not con-
nected to all the neurons in the previous and next layers; instead, the weights are
shared between the group of layers. This sharing of weight is an important property
of CNN as it allows the weight learned from the previous task to be applied in solving
a new task; this is known as transfer learning.

2.3 Application of Machine Learning in Railway

In this section, the recent applications of machine learning algorithms in the railway
industry are reviewed; Most specifically on the detection and classification of rail
defects. The current literature divides these algorithms into shallow learning and
deep learning.

2.3.1 Shallow Learning-based Algorithms

In shallow learning algorithms, researchers commonly relied on complex features
extracted manually from images to train a shallow learning algorithm for detection
and classification of defects in rails. Rajagopal et al. [22] used the Grey Level Co-
occurrence Matrix (GLCM) to extract features in a dataset containing defective and
defect-less rail images. The classification of the extracted GLCM features was carried
out using the Neural Network classifier. The authors initially applied the image en-
hancement techniques to improve image quality before using the Gabor transform to
obtain multiresolution images from the spatial domain.

A similar approach to the one presented in [22] was proposed by Yue et al. [23].
The authors combined geometric features with grey levels features to describe three
surface defects, namely; scale peeling, crack stripping and tread crack. The multiclass
classification of these defects was achieved using the AdaBoost classifier. According
to the authors, the combination of the geometric features and grey levels features
allows for detection of complex and random shape of the defect regions, which is an
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improvement of the method proposed by Rajagopal et al. [22].

In [24], a method for detection and classification of images containing the scouring
rail surface defects and defect-less images was proposed. Several feature extraction
algorithms were used for experiments, these included; Principal Component Analysis
(PCA), Kernel Principal Component Analysis (KPCA), Singular Value Decomposition
(SVD) and Histogram Match (HM). The comparative analysis was achieved using the
Random Forest as a classification algorithm. The experimental results conducted
showed that the PCA gives higher classification accuracy while the HM achieved
faster feature extraction and training time. This method was not effective as for-
eign objects on acquired images were detected as defects.

A vision-based method to automatically detect the absence or presence of fasteners
in rails was proposed in [25]. Image pre-processing and feature extraction was done
using the b-dimensional wavelet transform and PCA, respectively. While the Multi
Layer Perceptron (MLP) classifier was used for recognising fasteners. This method
lacked robustness against changes in illumination. Gilbert et al. [26] proposed a
method based on the Histogram of Oriented Gradients (HoG) features and the linear
SVM classifier to detect and classify defective fasteners on rail track images. The
authors first applied image thresholding techniques to suppress noise and extract the
fastener from the background. Though the use of HoG features allows for a reduction
in intra-class variation, the issue of fastener image variations in viewpoints was not
discussed.

A particular rail surface defect type called squats is usually caused by the Rolling
Contact Fatigue (RCF). Gao et al. [27] made use of three different data sources
consisting of ultrasonic, eddy current and rail surface images to detect squats more
reliably. Features extracted from three data sources were grouped using a cluster-
ing algorithm and fed into the SVM classifier trained to detect squats. This method
lacked accuracy, and the feature extraction process was slow. Jiang et al. [28] com-
bined the laser ultrasonic technology and hybrid intelligent method to achieve fast
classification and evaluation of RCF in different depths. The ultrasonic scanning sys-
tems collected data samples from different locations of the defects. Their method
used Wavelet Packet Transform (WPT) to decompose the signal of the defects in dif-
ferent depths; KCPA to eliminate the redundancy of original feature set and the SVM
classifier to classify defects in different depths.

Zhang et al. [29] proposed an automatic railway visual detection system that de-
tects surface defects like squats, spalling and flaking. The authors used the vertical
projection and grey contrast algorithms to extract the rail from the background im-
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age. A curvature filter was also applied on the extracted rails to eliminate the noise
and keep only the essential details. The detection of surface defects was achieved
using the Gaussian Mixture Model (GMM) as a segmentation technique based on the
Markov Random Field (RMF). This method allowed for the extraction of rail, even in
challenging backgrounds. However, the main challenge is that an assumption made
was that the pixels in an image are independently distributed, and the prior distribu-
tion of the GMM is independent on the spatial relationship between the pixels and
their neighbours. Thus, the GMM was more susceptible to noise and illumination
changes.

Grace and Rao [30] performed an analytical study of real-time rail surface defect
prediction using three machine learning classification algorithms, namely; Neural
Network, Decision Trees and Random Forest. The algorithms were trained and vali-
dated using the dataset collected by the Train Recording Car (TRC). The experimental
results showed that the Decision Trees classifier outperforms the other classification
algorithms to classify low-risk and high-risk surface defects. Even though the classi-
fication accuracy achieved is impressive, the downside of this study is on the defect
detection stage, some defects could not be detected at high TRC speed; thus, im-
provements are needed.

A method for inspecting weld defects in welded rails was proposed by Nunez et al.
[31] based on the Axle Box Acceleration (ABA) measurements data. ABA measures
the vibrations induced by the wheel-rail interaction and indicates an irregularity in
the rail-based on the measured wheel-rail interaction data. The authors used the
Hilbert based approach to process, detect and assess the quality of the weld based on
numerous registered dynamic responses in ABA. The obtained results were, however,
dependent solely on the dynamic responses from ABA. Furthermore, the acceleration
data used corresponded widely to the vibrations induced by the track irregularities.

An improved method to predict weld defects and classify the track conditions from
the predicted results was proposed by Yao and Tao [32]. The authors extracted a wide
range of features, including manufacturing technologies of welds, related materials,
influential environment factors, and welding engineers’ marks. These features were
then used to train the machine learning classification algorithms including the SVM,
Random Forest and Logistic Regression. However, their method does not detect and
classify different rail welding defects; It only detect whether there is the presence of
welding defects on rails and based on the predicted results the track is classified as
safe or at risk.
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2.3.2 Deep Learning-based Algorithms

Deep learning has seen many successes in the medical and science fields and it is
currently the state-of-the-art paradigm in image recognition and speech recognition.
One of the earliest attempts to apply deep learning algorithms for rail defect detec-
tion is presented in [33]. The authors designed a CNN model with two layers to clas-
sify defective and non-defective rails from stereo images, however, the small dataset
was used for training, and thus the model was vulnerable to overfitting. James et
al. [12] employed a multiphase deep learning-based technique to detect rail surface
discontinuities on rail images; their approach first performed image segmentation
techniques to remove the railroad from the background and then the linear binary
classifier classifies the rail as defective or intact, the classification accuracy achieved
was impressive.

Shang et al. [34] proposed a two-stage method for rail inspection using image
segmentation and CNN. Their method was designed specifically for two objectives;
to extract the rail surface from the background and classify the rail as defective or
defect-less. The rail surface was extracted using the Canny edge operator to detect
edges as the boundaries. Subsequently, the rail classification as defective or defect-
less was achieved using CNN based on the inception-v3 pre-trained model. This
method achieved great classification results; however, it was implemented for a bi-
nary classification task. Additionally, the Canny edge operator did not guarantee
successful detection of edges in every image.

Roohi et al. [35] developed a Deep Convolutional Neural Networks (DCNN) frame-
work to automatically detect and classify four classes of rail defects, namely, weld-
ing defects, light squats, moderate squats, and severe squats. The authors claimed
that feature extraction using DCNN is more robust and accurate than the traditional
feature extraction methods used on a large dataset. Their framework comprised
three convolutional layers, three max-pooling layers, and three fully-connected lay-
ers. Subsequently, the hyperbolic tangent (Tanh) function and the rectified linear
unit (ReLU) were used as activation functions. The classification accuracy achieved
was impressive but could be better with hyperparameter tuning of parameters such
as the learning rate and optimiser. Furthermore, their framework does not detect
and classify different types of welding defects.

The method proposed by Jamshid et al. [36] detected the squats and predicted its
growth based on the video images and ultrasonic measurement data. The ultrasonic
measurement data was used to derive the general characteristics of the squats, and
the video image data was used to analyse the growth of the visual length of defects.
As an improvement to their previous method in [26] where the SVM classifier was
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used to classify the fastener defects. Gibert et al. [11] trained a CNN pipeline based
on five convolutional layers to classify the condition of the fastener as good, miss-
ing, or defective. To make their pipeline more robust against unusual situations, the
authors used image augmentation and resampling techniques to add more ”hard to
classify” images to their training dataset.

Yanan et al. [37] developed a rail surface defect detection method using the YOLO-
v3 deep learning network. Grey scale input images were initially divided into equal
cells, and within each cell, the height, width and centre coordinates of the defects
was calculated using the dimensional clustering method. The authors further used
a logistic regression algorithm to calculate the bounding box score; meanwhile, the
predictions of defect class that the bounding box contains were achieved using the
binary cross-entropy loss function. However, the classification results were not im-
pressive, and the learning rate was set to a high value. A high learning rate allows a
model to learn faster at the cost of the sub-optimal solution.

Recurrent Neural Networks (RNN) are another example of deep learning algorithms
commonly used for sequential and time-series tasks. Long Short-Term Memory (LSTM)
networks are a particular case of RNN, and they can handle the vanishing gradient
problem of the standard RNN. Xu et al. [38] developed an LSTM model to detect and
classify defective and non-defective rail surface based on the ultrasonic measurement
data. The pulse sequence from the ultrasonic data was interpreted as the sequential
task in the LSTM architecture. The LSTM memory cell was used to establish the sur-
face defect classification pipeline.

Song et al. [39] conducted a comparative study to detect and classify the severity of
rail shelling defects. The dataset used to conduct the experiment included images of
four levels of rail shelling defects ranging from low risk to high risk. The authors com-
pared two pre-trained CNN models, namely the Residual Neural Networks (ResNet)
and the VGG-16 network, as well as the approaches based on the manually extracted
features, including the HoG descriptor with SVM classifier. The authors presented the
results in terms of computation cost and classification accuracy. Their experimental
results showed that the ResNet model takes less computational cost and achieves the
highest overall classification accuracy. Table 2.1 illustrates an overview of the current
publications of rail defect classification using machine learning techniques.
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Table 2.1: Recent publications on rail defect classification using machine learning
techniques

Year Author Type of defects Method Algorithm Acc(%)
2014 Soukup et al. [33] Surface defects Deep learning CNN 55
2015 Gilbert et al. [26] Surface defects Shallow learn-

ing
HoG + SVM 92

2016 Roohi et al. [35] Surface defects Deep learning DCNN 92
2016 Santur et al. [24] Surface defects Shallow learn-

ing
PCA + Ran-
dom Forest

85

2018 Rajagopal et al. [22] Surface defects shallow learn-
ing

GLCM + Neu-
ral Network

94.9

2018 Gao et al. [27] Surface defects Shallow learn-
ing

Clustering +
SVM

78

2018 Grace and Rao [30] Surface defects Shallow learn-
ing

Decision Trees 92

2018 James at al. [12] Surface defects Deep learning DCNN 92
2018 Shang et al. [34] Surface defects Deep learning Inception-v3

pre-trained
model

91.2

2018 Yanan et al. [37] Surface defects Deep learning YOLO-v3 pre-
trained model

98

2019 Yeu et al. [23] Surface defects Shallow learn-
ing

Gray features
+ AdaBoost

81.1

2020 Yao et al. [33] Welding defects Shallow learn-
ing

PCA + SVM 92

2020 Song et al. [39] Surface defects Deep learning VGG-16 pre-
trained model

92

As shown in Table 2.1, most researchers have applied machine learning tech-
niques specifically on the detection and classification of rail surface defects. Although
the condition monitoring of weld joint based on machine learning has been studied
by several researchers [34, 40, 41], a limited amount of research work can be found
on the specific subject of the detection and classification of rail thermite weld de-
fects using image processing and machine learning. Thus, for this research work, the
following section will review some related work in other industries that use radio-
graphy to detect and classify welding defects in radiography images. Furthermore,
Table 2.1 shows that deep learning has been the most extensively used technique for
detecting and classifying rail defects. However, deep learning algorithms require an
extensive amount of data for their implementation. Given that the dataset presented
in this work is limited, the following section will review recent applications of im-
age processing and shallow learning techniques for the detection and classification
of welding defects in radiography images.
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2.4 Classification of Defects in Radiography Images

The detection and classification of welding defects in radiography images give a
somewhat more exciting and distinct challenge than rail surface defects images ac-
quired through video cameras. Radiography images are commonly characterised
by low contrast and poor image quality; thus, image enhancement techniques are
the first step towards successfully detecting defects. The weld joint where weld-
ing defects are present needs to be further extracted from the image background to
eliminate noise and reduce computation cost. Furthermore, the feature extraction of
defects in the weld joint, as shown in the literature is usually done using the hand-
engineered feature extraction methods. Finally, the extracted features are used as
inputs to train the classification algorithms. This section discusses the recent appli-
cations of image processing and machine learning techniques to detect and classify
welding defects in related industries that use radiography to inspect the weld joint.

2.4.1 Image Enhancement

Radiography images are characterised by the presence of noise and low contrast;
thus, image pre-processing techniques are usually the first step towards a success-
ful defect detection and classification pipeline. Generally, the image pre-processing
stage consists of applying the image enhancement techniques to improve the visi-
bility of defects and image filtering techniques to reduce noise. Several researchers
have studied numerous image enhancement techniques for improving the quality of
radiography images containing welding defects.

In the research work conducted by Roumen et al. [42] for automatic detection of
defects in radiography images, the authors used two-dimensional adaptive filter and
two-dimensional linear filter for noise suppression and correction of uneven back-
ground. Their method enhances the images at the less computational cost compared
to other Fast Fourier Transform filters. Mohamad and Halim [43] applied a circular
average filter and logarithmic intensity contrast to enhance radiography images con-
taining inclusions and porosity defects. A comparative study by Maher et al. [44]
compared the ideal, Butterworth and Gaussian high pass filters for noise removal and
enhancement of radiography images consisting of the lack of penetration and poros-
ity defects. Through experimentation, the authors proved that Gaussian high pass
filter provides a smooth transition between various bands of pixels intensity values.

Radiography images usually have low contrast and, in most cases, improvement is
achieved by manipulating the contrast of the image. The original radiography im-
age has its grey level distribution highly skewed to the darker side of its histogram.
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The contrast stretching approaches attempts to improve the contrast in an image by
stretching the dynamic range of intensity values the image contains. The contrast
stretching algorithm was proposed in [45] to make weld defects features stand out
more clearly on images characterised by low contrast. The authors further applied
the median filter on the stretched images to remove noise. The median filter allows
for noise removal in images with less blurring effect.

Tokhy et al. [46] applied contrast stretching and normalisation algorithms to en-
hance radiography images containing welding defects. In this method, the images
were first normalised using low and high threshold values, then the value closest to
the maximum and minimum values was computed and finally, the contrast stretch-
ing algorithm was applied according to the determined range of contrast values. In
the study proposed by Abidin et al. [47], three pre-processing techniques for image
enhancement and noise removal were applied, these included noise removal by the
median filter, image enhancement by contrast stretching and image sharpening with
Laplacian filter.

The disadvantage of enhancement methods based on contrast stretching technique
is that these methods are confined to a linear transform function for mapping input
values to output values; thus, the results obtained are less impressive. Another disad-
vantage of contrast stretching techniques is that the overall appearance of an image
is not considered. These techniques only transform a particular intensity value in
the input image and produce a processed single intensity value in the output image.
Histogram equalisation techniques enhance the global appearance of the image by
manipulating its histogram depending on the application. Histogram equalisation
improves the low contrast image by stretching its histogram distribution such that it
is evenly distributed across the entire range of grey intensity values.

In the research work proposed by Zahran et al. [48], the authors suggested using
the median filter and Weiner filter to remove noise prior to enhancing radiography
images with Global Histogram Equalisation (GHE). However, enhancing images us-
ing GHE as outlined in [49] is not ideal since it assumes no illumination changes
in foreground and background image objects. Additionally, for images where there
is a change in illumination, the GHE mapping gives unwanted results such as over
enhancement of intensity values with high probability values.

Adaptive Histogram Equalisation (AHE) is another essential histogram equalisation
technique implemented to address the shortcoming of the GHE. AHE operates by
dividing an image into equal cells and then computing histogram equalisation ac-
cording to grey intensity values of every cell. The work introduced by Attia [50]
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compared contrast stretching, GHE, and AHE for enhancement of radiography im-
ages. The authors presented the results in terms of peak signal to noise ratio and
mean squared error. The experimental results proved that AHE outperforms the GHE
while the contrast stretching achieved the worst results. However, Zhihong et al.
[49] states that AHE techniques tend to over enhance local noise content since en-
hancement is carried out in local image regions.

Another variant of the adaptive histogram-based enhancement techniques is the Con-
trast Limited Adaptive Histogram Equalisation (CLAHE) technique. CLAHE technique
prevents the over-amplification of noise in homogenous regions introduced by AHE;
it does this by clipping the histogram in each cell to a desired contrast expansion and
size. CLAHE has been the technique of choice for enhancing radiography images.
Dang et al. [51] compared CLAHE with AHE, fuzzy, global and local enhancement
algorithms in radiography images conforming to weld segmentation. The work pro-
posed by Koonsanit et al. [52] is even more impressive; the authors combined log-
normalisation and CLAHE to come up with what they called N-CLAHE algorithm for
enhancement of radiography images. Normalising images, according to the authors
allows CLAHE not to overexpose radiography images. Further application of his-
togram equalisation-based techniques for radiography image enhancement of weld
defects has been applied in [53, 54].

2.4.2 Image Segmentation and Weld Joint Extraction

In many computer vision tasks, it is recommended to extract the Region of Interest
(RoI) from the image background before performing feature extraction. Not only
does the elimination of the background results in the removal of noise, but it also
reduces the computational cost for further image analysis. In the detection and
classification of welding defects in radiography images, the RoI is the weld joint
where features containing defect types are contained. Image segmentation are tech-
niques used to define the RoI for further image analysis. These techniques operate
by partitioning an image into different sub-regions of background and foreground
(RoI) objects. This section reviews some of the commonly used image segmentation
techniques deemed effective for weld joint RoI extraction by researchers. The cur-
rent literature divides these techniques into edge-based segmentation methods and
region-based segmentation methods.

Edge based Segmentation

Also known as the discontinuity-based segmentation, edge-based segmentation tech-
niques partitions objects in an image by identifying abrupt changes in its grey level
intensity values. The output of this type of segmentation is the set of edges that are
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connected around the RoI, and they define the weld joint. Most edge-based segmen-
tation techniques rely on the computation of first and second-order image operators
for edge identification. For instance, the work proposed by Carasco and Merry [55]
relied on the Canny edge operator to detect edges and segment the weld joint image
consisting of steel manufacturing welding defects. The segmented weld joint images
were compared to an ideal binary image developed manually by experts. Mirzaei et
al. [56] compared the Sobel, Canny and Gaussian filter for segmentation of weld
joint on the welding images database. Although there was no significant difference
in the results obtained, the Gaussian filter yielded better detection of edges.

According to [56], first-order derivative operators such as the Sobel edge detector
are sensitive to noise and double edge formation. Thus, additional processing tech-
niques are required for effective edge detection. As outlined in [57], the Canny edge
operator achieves good signal to noise ratio compared to first-order derivative oper-
ators. Additionally, non-maxima suppression means the weak edges are eliminated,
and thus the formation of double edges is minimised. However, the Canny edge oper-
ator requires much time to run due to complex computation. Another segmentation
technique which relies on the detection of edges is the edge-based Active Contour
Models (ACM).

Image segmentation using ACM is one of the successful and widely used technique
in image processing. ACM provides an attractive method of segmenting images since
they always produce sub-regions with continuous boundaries, contrary to the first
and second-order derivatives, often producing discontinuous boundaries. The ACM
is known as snake model formulated by Kass et al. [58]. It is a method of surround-
ing the RoI boundary in an image by a ‘snake like’ closed contour, the closed contour
then dynamically adapts to the edges of the RoI in the image under the influence of
internal forces, image forces and external constraint forces.

In their work for unsupervised welding defect classification based on Gaussian mix-
ture models (GMM) and exact shape parameters, Nacerredine et al. [59] used snake
ACM for two primary objectives; weld joint segmentation and defects segmentation.
The authors outlined the advantages of snake ACM models in terms of segmenting
objects with irregular shapes. Another unsupervised classification of welding defects
based on GMM and shape parameters proposed by Zhang et al. [29] made use of
snake ACM for weld joint segmentation. Image denoising techniques, including the
curvature filter, were initially applied to original images to minimise noise. Despite
being the widely used image segmentation method, the snake ACM is sensitive to
the initial contour position and shape. For example, an initial contour should be
positioned near the RoI to minimise the computation time. Another significant dis-
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advantage of a snake model is its inability to change with topology.

Region based Segmentation

In contrast to the edge-based segmentation methods where edges are first identified,
region-based segmentation takes the opposite approach, beginning from the inside
of the ACM and the growing outward until weld joint boundaries are encountered.
The region-based segmentation techniques are considered to be more advantageous
than edge-based since they consider regions area rather than local properties such
as gradients. Thresholding is one of the most straightforward and most fundamental
region-based segmentation technique in image processing [60, 61, 62]. Thresholding
relies on a fundamental fact that the dynamic range of pixel values between the RoI
and the background is different. The output of this segmentation technique is a bi-
nary image with RoI represented by a white region and the background represented
by a dark region.

Mouhmadi et al. [63] extracted the weld joint from the background images contain-
ing welding defects in steel pipes using global thresholding. The authors addressed
the issue of low contrast and noise by applying image enhancement techniques to the
acquired images. Several other applications of global thresholding for weld joint ex-
traction in radiography images can be found in [64, 65]. However, the most common
disadvantage of global thresholding methods for weld joint segmentation is that these
methods assumes the acquired images only consist of a bimodal histogram. There-
fore such methods are generally not ideal for images with a non-uniform background
where there are variations in illumination.

Most researchers have focused their attention on the local thresholding techniques for
weld joint segmentation. In local thresholding, an image is divided into sub-regions,
and within each sub-region, a fixed value for separating the foreground and back-
ground is determined. The study conducted by Naceredinne et al. [59] compared
the global thresholding to the local thresholding techniques for weld joint segmen-
tation of radiography images. The results obtained from their study indicated that
global thresholding yields good results on images with good contrast. For images
with non-uniform background, local thresholding was recommended.

The notable disadvantage of thresholding is that the obtained binary image cannot
be exploited immediately because of superfluous information that must be removed.
Thus, the post-processing step is usually used after thresholding. The method pro-
posed by Mahmoudi et al. [66] which is the improvement to their previous work in
[62], relied on local thresholding for weld joint segmentation. Morphological oper-
ations were used as a post-processing technique to remove residual spots and to fill
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holes from the thresholded images. In [67], the method based on multiscale mor-
phology was applied to weld joint images segmented by the iterative Otsu threshold
algorithm.

Region-based ACM is another essential segmentation techniques used in image pro-
cessing. Region-based ACM is based on the level set theory, and they define energy
functionals based on the region statistics rather than local image gradient. Most
region-based segmentation techniques are based on the Mumford and Shah model
which approximate the image to a pixel-wise smooth representation [68]. Chan and
Vese developed a mean curvature flow-based level set implementation of the specific
Mumford-Shah energy functional [69].

In this model, the mean intensity of the pixels inside and outside the curve approx-
imates the image to a smooth representation. The Chan-Vese model is commonly
known as the ACM without edges because it can detect objects whose boundaries are
not represented by image gradients. Just like the edge-based ACM, this model min-
imises the energy until the desired boundaries are reached. However, the stopping
term is not necessarily dependent on the gradient information. The main advantage
of the Chan-Vese ACM is that contours can be split or merged together depending on
the topology changes.

Gharsallah and Braiek [70] used a level set ACM to segment welding defects in im-
ages characterised by uneven illumination and low contrast. The authors exploited
the saliency map as a feature representing image pixels embedded into a region en-
ergy minimisation function. The saliency map is said to be able to represent small de-
fects even in images with low contrast. The results obtained by the authors indicated
that level set ACM is more robust for segmenting images with challenging contrast
and background as well as good performance compared to edge-based segmentation
methods. Boutiche et al. [71] segmented weld joint and welding defects using the
Chan-Vese ACM, curve evolution and binary level set methods. Their method aimed
to extract defects in radiography images with uneven illumination and calculate the
defect parameters for another application.
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2.4.3 Feature Extraction and Classification

The feature extraction and classification steps follow the weld joint RoI step, re-
spectively. Feature extraction aims to extract the meaningful information contained
within the weld joint. The extracted information is usually represented as a his-
togram feature vector per every weld joint image. Feature classification involves
training a machine learning classifier using the extracted features to distinguish be-
tween different feature vectors representing different welding defects. Two layers of
feature extraction techniques exist; low-level feature extraction and mid-level feature
extraction. Low-level image features are extracted from image pixels, and they aim
to be invariant to a variety of image transformation. Mid-level image features, on the
other hand, aim to combine a set of low-level features into a richer representation of
intermediate complexity.

The Low-level visual feature extraction techniques extract visual properties from
certain regions of the image via pixel-level operation. The extracted features are
commonly referred to as global or local, according to the relative area of those re-
gions. A global feature is computed by considering the entire image, and it reflects
the global characteristics of the image. In contrast, a local feature is computed over
a small region of the image. This section reviews the welding defects detection and
classification methods based on global and local feature extraction techniques.

Defect Classification based on Global Features

The methods based on geometric features and texture features have been the most
commonly used global feature extractors for extracting defect features in radiogra-
phy images. The geometric features describe the shape, size, location, and intensity
information of the welding defects, while texture features provide important visual
information. Mekhalfa et al. [72] applied the SVM and MLP classifiers in four weld-
ing defect types, namely solid inclusions, porosity, lack of penetration, and crack.
The authors first applied histogram equalisation techniques to improve the images’
quality before extracting a set of geometric features derived from the geometrical
defect parameters. In their study, the SVM provided higher accuracy and a faster
computational time compared to MLP classifier. The work proposed by Valavanis and
Kosmopoulos [73] made use of geometric and texture features for a multiclass weld-
ing defect classification pipeline. The authors compared the SVM, Neural networks
and K-NN classifiers; the SVM classifier achieved the highest overall classification ac-
curacy in this work.

A method for automatic detection of weld defects from radiography images based
on the SVM classifier was proposed by Shao et al. [74]. Three types of global fea-



22 Literature Review

tures were extracted, including defect area, average grey scale difference and grey
scale standard deviation. These extracted features were then used as inputs to a clas-
sifier to distinguish non-defective images from defective. The results showed that the
proposed method could reduce the undetected rate and false alarm compared to tra-
ditional defect detection methods. The method proposed by Hassan and Awan [75]
classified the welding defects using the geometric features and Artificial Neural net-
work (ANN). The extracted geometric features include the defect area, major axis,
minor axis, solidity and perimeter. The initial step involved enhancing the image
contrast using the histogram equalisation before segmenting the weld defect region
using global thresholding and morphological operations.

Silva et al. [76] extracted four geometric features, including position, aspect ratio,
and the roundness of various types of welding defects. Classification of the extracted
features was achieved using the ANN classifier. Their method proved that the quality
of the extracted features is more important than the quantity of the features. Her-
nandez et al. [77] extracted features describing the defect size, defect shape, defect
location, and information intensity. These features are similar to the features ex-
tracted in [75]. The defects classified included the inclusions, porosity, longitudinal
crack. The classification of the extracted features was achieved using the adaptive
network-based fuzzy interference system (ANFIS). A similar method based on geo-
metric features and ANFIS to classify five types welding defects was proposed in [78].

Global features are attractive because they produce a very compact representation
of images where each image corresponds to a single point in a high dimensional fea-
ture space. Furthermore, global features require less computational cost compared to
the requirements of local features. However, global features are not invariant to sig-
nificant image transformations and are sensitive to clutter and occlusion. As a result,
it is either assumed that an image contains only a single object or that good segmen-
tation of the object from the background is available. The approach to overcoming
these limitations, as stated by Ibrahim et al. [79] is to segment images into several
regions with each region representing a single object. However, image segmentation
is a challenging task that requires a high level understanding of the image content.

Defect Classification based on Local Features

Global feature’s limitations are overcome by a local feature that finds interesting
characteristics of the image content despite significant changes in illumination, oc-
clusion, viewpoint and clutter, and the image does not need to be segmented. A local
feature is computed over a relatively small region of the image. It is defined as a
pattern in an image that differs from its immediate neighbourhood. A local feature
in an image content can be points, edges, corners or small image patches [67]. Two
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types of local descriptors are found in the literature, keypoint based descriptors and
grid sampling-based descriptors. Keypoints are points such as corners and blobs, and
their shape, scale and position are found using a feature detector. On the other hand,
Grid sampling descriptors consist of patches of fixed size and shape placed on a reg-
ular grid across an image. This section reviews the classification of welding defects
conducted by several researchers based on local feature extraction techniques.

The HoG descriptor is a grid sampling-based descriptor which has been very success-
ful in facial recognition tasks [80, 81, 82]; it is invariant to illumination changes. Gao
et al. [83] proposed a method for automatic detection and classification of welding
defects in heating panels. The authors used the HoG descriptor for feature extraction
while the kernel-based SVM was used as a classifier. However, their method was not
suitable for rotated images. Liu et al.[84] proposed a rather more interesting weld
defect classification pipeline based on CNN with three fully connected layers. Fea-
tures in the second fully connected layer were extracted using the HoG descriptor.
The authors then used ensemble methods to classify features in the last fully con-
nected layer of the CNN. The pipeline gave good accuracy at the expense of large
data requirements.

Local Binary Patterns (LBP) descriptor is one of the widely used grid sampling-based
descriptors for extracting local features in images. It is invariant to illumination
changes and rotation. The work proposed by Moghaddam et al. [85] compared the
linear SVM and the K-NN classifiers to classify weld defects features extracted using
the LBP descriptor. The authors considered three types of welding defects: lack of
penetration, lack of fusion and external undercut. The first step was to improve the
contrast of images using the two-dimensional filter before performing feature extrac-
tion. The K-NN outperformed the linear SVM classifier by a significant margin in
terms of classification accuracy.

Mery et al. [86] conducted an empirical study to automatically detect weld de-
fects in a large dataset of automotive radiography images. The authors compared
24 computer vision techniques, including deep learning, sparse representation and
local descriptors. The experiments conducted by the authors showed that the best
performance is achieved by the combination of the LBP descriptor and a linear SVM
classifier. Moreover, the application of the LBP descriptor and the SVM classifier to
detect and classify weld defects in radiography images can be found in [87, 88].

Feature extraction using the keypoint based descriptors include two main steps, key-
point detection and keypoint description. Keypoint detection aims to find interesting
information or keypoints on the image that are invariant to a wide variety of im-
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age transformations, and keypoint description aims to compute a descriptor vector
that describes the local content of a keypoint. The Scale Invariant Feature Transform
(SIFT) and the Speeded Up Robust Features (SURF) are the commonly used keypoint
based descriptors. These descriptors aim to transform an image into vectors that are
invariant to image transformations such as illumination changes, rotation, viewpoint,
scale and affine transformation.

The method based on the SIFT descriptor and the SVM classifier was proposed in
[5] to detect and classify steel defects, due to multiple features generated per im-
age, the authors suggested feature reduction by the voting strategy based on the one
versus all multiple classifiers. The SIFT descriptor yields a 64-dimensional feature
vector describing the local content for every detected keypoint. Keypoints in SIFT
are detected using the Difference of Gaussian (DoG) generated from image pyramid.
On the other hand, the SURF descriptor was implemented to improve SIFT in terms
of reduced feature vector length and faster detection of keypoints [89]. Kalai et al.
[6] detected and classified the slag inclusions, porosity, lack of fusion and incomplete
penetration defects on steel welding images. Features of these defects were extracted
using the SURF descriptor while the Auto-Encoder Classifier (AEC) was employed for
classification purposes. AEC was analysed for weld image classification using a dif-
ferent number of neurons in different hidden layers.

Despite achieving great results in many applications and being robust and invari-
ant to many image transformations, keypoint based descriptors such as SIFT and the
SURF consist of many feature vectors representing a single image. This yields a high
dimensional feature space; thus, the computational cost is high, and the classification
results are affected by outliers. This is because keypoint vectors could be classified
as belonging to a different class label even though they came from the same image.

2.5 Conclusion

In Section 2.2, an overview of machine learning techniques was introduced, and it
was noted that machine learning techniques could be divided into supervised learn-
ing, unsupervised learning and reinforcement learning. Supervised learning learns
from the labelled dataset, while unsupervised learning finds interesting character-
istics in the unlabelled dataset. Reinforcement learning is when the learning algo-
rithms are provided with the score that tells the algorithm how good or bad its pre-
dictions are. It was further noted that machine learning algorithms could be divided
into shallow learning algorithms and deep learning algorithms. Deep learning algo-
rithms learn the features directly from raw data, while shallow learning algorithms
rely on manually extracted features.
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In Section 2.3, the recent applications of machine learning algorithms for the de-
tection and classification of rail defects were investigated. The applications included
methods based on shallow learning algorithms and deep learning algorithms, and the
summary of the results obtained were presented in Table 2.1. It was observed that
both shallow and deep learning algorithms had been used widely for the detection
and classification of rail surface defects and very little work was found on the rail
thermite welding defects. Thus, a further investigation of some related work in other
industries that use radiography to detect and classify welding defects was conducted
in Section 2.4. Given that the dataset presented in this work is limited, section 2.3
only investigated the methods based on image processing and shallow learning tech-
niques.

In Section 2.4, the detection and classification of welding defects in radiography
images was presented in terms of four steps, namely: Image enhancement, weld
joint extraction, feature extraction and feature classification. The Image enhance-
ment step aimed at improving the quality of the images for further image analysis.
It was found that the commonly used image enhancement techniques are based on
contrast stretching, histogram equalisation and median filter for noise removal af-
ter image enhancement. Additionally, it was found that histogram equalisation, most
specifically the adaptive techniques, provides better enhancement of radiography im-
ages than contrast stretching techniques. Thus, the image enhancement technique to
improve the quality of the images acquired for this work will be based on adaptive
histogram equalisation techniques.

The techniques investigated for weld joint extraction included edge-based segmen-
tation techniques and region-based segmentation techniques. It was observed that
edge-based segmentation methods require the computation of edges in images using
the first and second-order derivative operators. However, this could be a challenge
for cases where the detection of edges in images is not feasible. The region-based seg-
mentation on the other hand like the thresholding technique only uses the statistical
information of background and foreground objects for segmentation. Furthermore,
thresholding was found not suitable for segmenting images with uneven background.
Another edge-based segmentation investigated was the Chan-Vese ACM; this method
was found to have a better performance compared to edge-based segmentation meth-
ods since it can segment images with tribological changes.

Two feature extraction methods were investigated; these were the global feature
extraction methods and local feature extraction methods. In this work, the feature
extraction method must at least satisfy the following image transformation require-



26 Literature Review

ments: illumination invariance and rotation invariance. Global features investigated
in the literature don’t meet the above requirements. Two local feature extraction
methods were reviewed, Grid sampling-based methods and keypoint based methods.
The HoG descriptor only meets one of the requirements while the LBP descriptor
meets both of the requirements; thus, the LBP descriptor will be used for experi-
ments.

Two keypoint based descriptors were also investigated; SIFT and SURF descriptors.
Both of these descriptors meet the requirements and they are also invariant to scale,
however, the major disadvantage as found in the literature is that they both repre-
sent an image by many feature vectors and this is not ideal for training a classifier.
Thus, in this work, a novel mid level image representation method that aims to com-
bine the keypoint based features into a global image representation is proposed. The
method is based on the Bag of Visual Words (BoVW) mid level image representa-
tion approach. The SURF descriptor will be used for this purpose since it has a
small dimensional feature vector and it detects keypoints much faster than the SIFT
descriptor. For feature classification, the SVM, K-NN and Naive Bayes classification
algorithms will be used for experiments.



Chapter 3

Materials and Methods

3.1 Introduction

This chapter’s main objective is to provide a mathematical pipeline of the methods
used in this work to detect and classify thermite weld defects. As depicted in Figure
3.1, the methods are divided into thermite weld image enhancement, weld joint Re-
gion of Interest (RoI) extraction, feature extraction and feature classification. Images
are initially enhanced to improve their quality; thereafter, the weld joint is extracted
from the background of the enhanced images. Feature extraction is performed on the
weld joint to extract defect features. The extracted features are then used to train
and validate a classification algorithm. This chapter is structured as follows. First,
image enhancement and weld joint RoI methods are presented in Sections 3.2 and
3.3, respectively. Then the feature extraction methods to extract defect features are
outlined in Section 3.4. After that, the feature classification methods to classify the
considered defects are discussed in Section 3.5, and finally, Section 3.6 discusses the
evaluation methods. Section 3.7 concludes the chapter.

Figure 3.1: System diagram of the proposed method

27
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3.2 Image Enhancement

Low pixel dynamic range intensity values characterise the collected thermite weld
images, where pixels are either skewed to the right or to the left of the histogram.
Thus, image enhancement techniques are required to improve the image quality such
that the dynamic range of pixels is evenly distributed across the entire histogram. As
discussed in Chapter 2, several image enhancement techniques have been used in the
literature to enhance radiography images. These are divided into contrast stretching
and Histogram equalisation. Contrast stretching enhances the quality of an image
by increasing the dynamic range of the pixels. It takes the narrow range of intensity
values in the normalised input image and produces a wide range of intensity values
in the processed image. The disadvantage of the contrast stretching technique is that
it is only confined to a linear transform function for mapping input values to out-
put values. Furthermore, it is based on point processing, and it does not consider
the overall appearance of the image [47]. Histogram equalisation offers more ad-
vantages than contrast stretching since the global appearance of the image can be
enhanced by manipulating its histogram. Therefore, histogram equalisation is used
in this work to determine a function that transforms an original image into an en-
hanced image. Histogram equalisation techniques can be divided into global-based
and adaptive-based approaches.

3.2.1 Histogram Equalisation

Global Histogram Equalisation (GHE) is the basic histogram equalisation technique
and it enhances an image by computing a global transform function using the his-
togram of the entire image. Given a thermite weld radiography image I = (I(x, y))

where 0 ≤ x ≤ N − 1, 0 ≤ x ≤ M − 1 with L discrete grey level intensity values do-
nated as {g0, g1, ..., Ig−1} and I(x, y) ∈ {g0, g1, ..., gL−1} is the image intensity at spatial
location (x, y). Then, the normalised histogram or probability density function p(gk)
of I is defined as:

p(gk) =
nk
n

(3.1)

Where nk is the total number of pixels in I with grey level gk for k = 0, 1, ..., L−1 and
n = N×M is the total number of pixels in I; p(gk) is the Probability Density Function
(PDF), and the plot of the PDF is known as the Histogram. From the obtained PDF
of I, the Cumulative Distribution Function (CDF) is defined as:

cdf(gk) =
k∑
j=0

P (gj) =
k∑
j=0

nj
n

(3.2)
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GHE then maps the histogram of I into its entire range of grey values {g0, gL−1} by
using the CDF as the transform function. The transform function T (gk) is defined
using the function cdf(gk) as:

T (gk) = g0 + (gL−1 − g0)cdf(gk) (3.3)

Then the output image of the GHE is denoted by GI = (GI(x, y)), where GI(x, y) is
expressed as:

GI(x, y) = T (I(x, y)) (3.4)

3.2.2 Contrast Limited Adaptive Histogram Equalisation

GHE does not perform well on images that contain local regions of low contrast. In
such cases, the Adaptive Histogram Equalisation (AHE) technique is used. It divides
an image into regions, and for each region, it calculates contrast enhancement based
on the regions CDF’s [90]. However, AHE tends to over enhance noise contents since
it operates in local areas. Thus, the enhancement technique presented in this work
is based on the Contrast Limited Adaptive Histogram Equalisation (CLAHE). CLAHE
overcomes the noise enhancement artefact of AHE by clipping the histogram before
using the CDF as a transform function. The clipping limit is calculated as [91]:

C.L =
p× q
L

(
1 +

ρ

100
(δmax − 1)

)
(3.5)

Where C.L is the clipping limit, p×q is the cell size of each region, ρ is the clip factor,
and δmax is the maximum allowable slope. Figure 3.2 shows the application of the
CLAHE technique on the thermite weld image.

(a) (b)

Figure 3.2: Image enhancement: (a) Original image and (b) Image enhanced using
CLAHE.

3.2.3 Algorithm for Image Enhancement using CLAHE

The steps for performing image enhancement on the thermite weld images using the
CLAHE technique are given in Algorithm 1.
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Algorithm 1 Image enhancement using CLAHE
Require: Thermite weld images
Output: Enhanced images

1: for each image I in the dataset do
2: Divide into equal non-overlapping cells.
3: for each cell do
4: Calculate the histogram using Equation 3.1.
5: Calculate the clip limit using Equation 3.5.
6: Calculate the CDF using Equation 3.2.
7: Calculate the transform function using Equation 3.3.
8: Obtain the enhanced region using Equation 3.4.
9: end for

10: end for

3.3 Region of Interest Extraction

The main focus of this section is to determine and extract the Region of Interest (RoI)
from the enhanced thermite weld images. The RoI is the weld joint, and it must be
removed from the background. Before extracting the weld joint, images must first
be segmented to identify the region and the coordinates of the weld joint from the
image background accurately. Additionally, the requirements of the segmentation
technique in this work is to be able to segment the irregularly shaped weld joint RoI
from the thermite weld images characterised by a complex background. As discussed
in Chapter 2, image segmentation techniques such as Thresholding, Hough transform
and Active Contour Models ACM are available for segmenting radiography images.

Image segmentation using Thresholding techniques is simple and fast to compute;
however, Thresholding methods are effective for segmenting images with bimodal
histogram. Furthermore, Thresholding techniques use a fixed threshold value to dis-
tinguish the foreground region from the background region; thus, their application is
not effective for images characterised by a complex background. Another commonly
used segmentation method is the Hough transform, the Hough transform allows for
segmenting image regions consisting of various known shapes such as circles and el-
lipses; however, when the region to segment is irregular in shape, Hough transform
is not effective [92].

Image segmentation using ACM is one of the successful and widely used segmen-
tation techniques for a variety of tasks in image processing [93, 94, 95]. ACM pro-
vides an efficient way of using an energy function to drive the contour towards the
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object’s boundaries to segment, thus allowing irregularly shaped image regions to be
segmented. Therefore, ACMs are used in this work to segment the weld joint; most
specifically, the region-based ACM, as their advantages compared to other ACM tech-
niques will be explained. This section is presented as follows. First, the mathematical
approach of ACM for image segmentation is presented in Subsection 3.3.1. Then, the
segmentation and extraction of the weld joint from image background is given in
Subsections 3.3.2 and 3.3.3, respectively. Subsequently, the post-processing methods
for removing residual spots in segmented images is presented in Subsection 3.3.4.
Finally, the algorithm for extracting the weld joint RoI is outlined in Subsection 3.3.5

3.3.1 Active Contour Models

Image segmentation using ACM relates the segmentation problem to an optimisation
problem, formulated in terms of the energy function that is constrained such that its
minimum is achieved in correspondence to a contour that approximates the actual
object boundaries. The optimisation is performed iteratively, starting from the initial
contour position, then evolving towards regions that provide a better approximation
of the object boundaries. Image segmentation using ACM can be divided into two
categories; edge-based ACM and region-based ACM. Edge-based ACM relies on the
detection of edges to stop the evolution of the contour on the actual object bound-
aries. In contrast, region-based ACM uses statistical information of the regions to be
segmented. Two mathematical approaches for image segmentation using ACM exist;
parameterised approaches and level set-based approaches.

Parameterised Approaches

A representation of the parameterised ACM is the snake model proposed by Kass
et al. [58]. Snake model segment the image by first defining a snake-like contour
around the RoI; then, under the influence of the energy function, the contour is
driven towards the object and eventually stops at the boundary. Given the location
of the parametric contour C in an image as: C(s) = (x(s), y(s)), then, the energy
function which must be optimised is defined as:

ESnake =

∫ 1

0

[EInt(C(s)) + EExt(C(s))]ds (3.6)

Where Eint represents the internal energy of the contour and Eext represents the
external forces. Internal energy encourages the contour to conform to a known shape
preference; it serves to impose a piecewise smoothness constraints [96]. The internal
energy at some point C(s) on the curve is defined as:

Eint = (α(s)|C ′(s)|2 + β(s)|C ′′(s)|2)/2 (3.7)
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Where C ′(s) is the first-order derivative, and it makes the contour to act as a mem-
brane (elasticity), and C ′′(s) is the second-order derivative which allows the contour
to act as a thin plate (rigidity). α(s) and β(s) are the user-defined parameters which
controls the relative importance of C ′(s) and C ′′(s) respectively.

External forces attract the contour towards image features such as edges, lines and
texture. They can be interpreted as a gravitational pull towards edges in an image.
At a contour location C(s) in image I, the external force is calculated as:

EExt =

∫ 1

0

−||∇I(C(s))||2 (3.8)

The snake model provides an attractive method of segmenting images since it pro-
duces sub-regions with continuous boundaries, contrary to the first and second-order
derivatives, which often produces discontinuous boundaries [97]. Despite being the
widely used image segmentation method [98, 99, 100], The snake model is said to
be sensitive to the initial contour position and shape. For example, an initial con-
tour should be positioned near the RoI to minimise the computational cost. Another
significant disadvantage of a snake model is its inability to change with topology
[101].

Level Sets Methods

Level sets ACM were first introduced by Osher and Sethian [102]. The difference
between the parametric ACM and the level sets ACM is that the latter implements
the contour via a variational level set method. The contour is represented implicitly
by a function φ(x, y) called a level set function, where (x, y) is the pixel location in
the image domain Ω. The contour C is defined as those pixels in Ω where the level
set function is zero, and this is expressed as:

C = {(x, y) ∈ Ω : φ(x, y) = 0} (3.9)

The level set function can be interpreted as the distance function with respect to
the contour C. It is positive outside the contour, zero at the contour location and
negative inside the contour. Given that the contour C moves with speed F in the
normal direction, then the level set function φ(x, y) must satisfy the following level
set equation:

∂φ(x, y)

∂t
= F |∇φ(x, y)| (3.10)

Two alternative approaches for level set segmentation exist; Geodesic ACM and
Chan-Vese ACM. In Geodesic ACM, the gradient descent equation providing speed
F is derived in terms of the contour and then implemented using the level set equa-
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tion. This was done to derive the level set equation for a snake model. The energy
function which must be minimised is defined as:

E(C) =

∫
g(C)dC (3.11)

The above equation is minimum at the edges of the object and g is an edge indicator
function defined as:

g(I(x, y)) =
1

1 + |∇Iσ(x, y)|
(3.12)

Where Iσ(x, y) is the smoothed image representing the spatial scale where the gradi-
ent is computed. The gradient descent equation providing the speed of the contour
in the normal direction is given as:

dC

dt
= gκn+ (n×∇g)n (3.13)

Where κ is the local curvature of C and n is the outer normal. Implementing Equation
3.13 in terms of the level set Equation 3.10 gives the level set equation for Geodesic
ACM defined as:

∂φ(x, y)

∂t
= g(I(x, y))|∇φ(x, y)|div

(
∇φ(x, y)

|∇φ(x, y)|

)
+∇g(I(x, y))∇φ(x, y) (3.14)

Geodesic ACM, as already mentioned, offers more advantages compared to a snake
model as it allows the segmentation of images with changes in topology. However, it
should be mentioned that Geodesic ACM relies on the edge detector to stop the evo-
lution of the contour; this then makes segmentation a challenging task if detecting
edges in an image is impractical or if image edges are smooth.

Another segmentation method based on the level set approach is the Chan-Vese ACM,
proposed by Chan and Vese [69] for the Mumford-Shah [103] segmentation tech-
niques. The Mumford-Shah model can detect contours without relying on gradient
information. For instance, objects with very smooth edges or non-connected edges
can be segmented. Given an image with two regions Ω1 and Ω2 representing the fore-
ground and background objects, respectively; the heaviside step function is defined
as:

H(φ(x, y)) =

{
1, if φ(x, y) ≥ 0 ((x, y) ∈ Ω1)

0, else ((x, y) ∈ Ω2)
(3.15)

The Chan-Vese ACM is based on the Mumford-Shah model, and it segments the image
by using the grey scale intensity information within regions as opposed to using the
edge information. The Mumford-Shah energy function Ecv which must be minimised
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for two energy regions E1 and E2 in Ω1 and Ω2, respectively is expressed as:

Ecv =

∫
Ω1

|(I(x, y)− h1|2dxdy +

∫
Ω2

|(I(x, y)− h2|2dxdy + v|∂Ω1| (3.16)

Where h1 and h2 are the mean intensity values inside and outside the contour respec-
tively, these are updated for each iteration, and v|∂Ω1| is the length of the boundary
which is used as a regularising term. The Chan-Vese ACM in terms of the level set
function φ can be written as:

E(h1, h2, φ) =

∫
Ω

((I(x, y)− h1)2 − (I(x, y)− h2)2)Hφ(x, y)

+

∫
Ω

(I(x, y)− h2)2dxdy + v

∫
Ω

|∇Hφ(x, y)|dxdy (3.17)

The mean intensity values h1 and h2 inside and outside the evolving contour, respec-
tively are defined as:

h1(φ) =

∫
Ω
I(x, y)H(φ(x, y))dxdy∫

Ω
H(φ(x, y))dxdy

(3.18)

h2(φ) =

∫
Ω
I(x, y)(1−H(φ(x, y)))dxdy∫

Ω
(1−H(φ(x, y)))dxdy

(3.19)

The local minimisation of the Chan-Vese energy function is done by the gradient
descent. It is assumed that the heaviside function is smoothed slightly to make it
differentiable. Its derivative is the smoothed delta function: dH(φ)

H(φ)
= δ(φ). The

gradient descent equation is calculated as:

∂φ

∂t
= δ(φ)

(
vdiv

(
∇φ
|∇φ|

)
+ (I(x, y)− h2)2 − (I(x, y)− h1)2

)
(3.20)

Similar to the Geodesic ACM, the Chan-Vese ACM minimises the energy function until
the RoI object boundaries are reached. However, this is achieved independent of
the gradient information but rather on the statistical information of the background
and foreground (RoI) regions. This then allows Chan-Vese ACM to segment images
even characterised by noise and smooth edges. Another significant advantage of the
Chan-Vese ACM is that contours can be broken down into parts or joined together
depending on the topology of the level set function. For these reasons, the Chan-Vese
ACM is used in this work to segment and extract the weld joint as the RoI from the
background of the thermite weld images.
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3.3.2 Weld Joint Segmentation

The segmentation of the weld joint from the thermite weld images is based on the
Chan-Vese ACM, which segments an image without relying on edge information. To
segment the weld joint from the background image, Equation 3.17 is minimised with
respect to the h1, h2 and φ. For a fixed φ, the optimal values of h1 and h2 are cal-
culated using Equations 3.18 and 3.19, respectively. For fixed values of h1 and h2,
the evolution of φ is calculated using Equation 3.20. Figure 3.3a and 3.3b shows the
application of the Chan-Vese ACM and the segmented weld joint image, respectively.

(a) (b)

Figure 3.3: Image segmentation: (a) Application of Chan-Vese ACM and (b) seg-
mented image.

3.3.3 Weld Joint Extraction

To extract the weld joint as the RoI, first, the coordinates and size of the foreground
pixels from the segmented images must be obtained. Then, the obtained coordinates
must be superimposed on the original image to allow for placement of the bounding
box on the region of the weld joint (see Figure 3.4a). The area inside this bounding
box is then cropped, and the final result is the image depicting only the weld joint
without the background information (see Figure 3.4b).

(a) (b)

Figure 3.4: RoI extraction: (a) Image with bounding box and (b) Cropped image.
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3.3.4 Post-Processing using Morphological Operations

Figure 3.5b shows that some images segmented by the proposed Chan-Vese ACM re-
quire to be post-processed in order to remove the defective regions (dark regions)
inside the weld joint RoI. This will then allow the weld joint to be segmented accu-
rately from the image background. In image processing, morphological operations
are techniques that modify images based on shape. Some applications of morphol-
ogy include texture analysis, noise elimination and boundary extraction [104]. When
used in binary images, morphological operations aim to remove unwanted pixel in-
formation on the foreground and background regions of the image. This is achieved
using a structuring element known as the kernel. The kernel is applied in all the pos-
sible areas of the segmented image to produce a post-processed image of a similar
size. A pixel in the input binary image (1 or 0) is assigned a value of 1 only if all
the pixels within the kernel have a value of 1; otherwise a pixel in the input image
is assigned a value of 0. This means the dark pixels in the foreground region of the
input image will become white in the post-processed image, and the white pixels in
the background of the input image will become dark in the post-processed image.

Mathematical morphology operation used in this work is dilation. Dilation adds pix-
els on the boundaries of the image. In this work, dilation is used to add foreground
pixels such that dark regions in the weld joint are eliminated (see Figure 3.5c). Dila-
tion causes the white region (foreground pixels) to grow in size; thus, dark regions
become smaller and smaller. Dilation takes two parameters as inputs; the first pa-
rameter is the input image to dilate, and the second parameter is the kernel. Given
A as a set of input image coordinates, B as a set of kernel coordinates and Bx as
a translation of B such that its origin is at x. Then, the Dilation of A by B is the
set of all points in x such that the intersection of A with Bx is not empty. This is
mathematically defined as [105]:

A⊕B = {x|(B)x ∩ A 6= φ} (3.21)

(a) Obtained contour (b) Segmented (c) Post-processed

Figure 3.5: Post processing of the segmented image
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3.3.5 Algorithm for Weld Joint Segmentation and RoI extraction

Algorithm 2 lists the steps used in this work for extracting the weld joint from the
background of thermite weld images.

Algorithm 2 Image segmentation and weld joint (RoI) extraction
Require: Enhanced thermite weld images
Output: Weld joint images

1: for each image I in the dataset do
2: Initialise φ.
3: set n number of iterations.
4: for n=1 to maximum n do
5: while contour is not stationary do
6: Calculate h1 (φ) and h2 (φ) using Equations 3.18 and 3.19 respectively.
7: Evolve φn+1 using Equation 3.20.
8: end while
9: end for

10: Obtain the coordinates of the segmented foreground pixels.
11: Impose to the original image.
12: Place the bounding box across the coordinates.
13: Crop the area inside the bounding box.
14: save the cropped image.
15: end for

3.4 Feature Extraction

The previous sections of the current chapter have provided the methods used in this
work for image enhancement and weld joint (RoI) extraction. This section of the
chapter introduces the feature extraction algorithms that aim to achieve automated
weld defect classification while being robust to numerous image transformations. As
discussed in Chapter 2, feature extraction techniques are divided into global and lo-
cal feature extraction. Global features are computed by considering the entire image,
and they represent the contents of the image by using a single vector; most shape and
texture descriptors fall under this category.

Global features are attractive because they produce a compact representation of im-
ages where each image corresponds to a single point in a high dimensional feature
space. Furthermore, global features are faster to compute and require less computa-
tional cost than local features. Some of the commonly used global feature extraction
methods include the Histogram of Oriented Gradients (HoG) descriptor and the Grey
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Level Co-occurrence Matrix (GLCM). However, features produced by the aforemen-
tioned techniques are not invariant to significant image transformations such as im-
age rotation, scale and illumination changes and are sensitive to clutter and occlusion
[106]. As a result, it is either assumed that an image contains only a single object or
that good segmentation of the object from the image background is available.

The approach to overcoming these limitations, as stated by Lisin et al. [79] is to
segment images into several regions, with each region representing a single object.
However, image segmentation is by itself a challenging task that requires a high-level
understanding of the image content. The limitations of global feature extractors are
overcome by the methods based on local feature extraction. Local feature extrac-
tors find interesting characteristics of the image content despite significant changes
in illumination, occlusion, viewpoint and clutter, and the image does not need to be
segmented. A local feature is computed over a relatively small region of the image;
therefore, it can be defined as a pattern in an image that differs from its immediate
neighbourhood [107].

Two local feature extraction techniques are empirically compared for extracting de-
fect features in the weld joint images; these are the Local Binary Patterns (LBP)
descriptor and the Speeded-Up Robust Features (SURF) descriptor. In this work,
the feature extractor is required to extract illumination and rotation invariant fea-
tures, and both the LBP and SURF descriptors meet these requirements. It should be
mentioned that the output from the SURF descriptor are keypoints that are highly
discriminative, where many keypoint descriptor vectors represent each image; this
then makes it challenging to train a classifier as the classification results will be im-
pacted by outliers and the computational cost to train the classifier will be expensive.
To address these challenges, the Bag of Visual Words (BoVW) approach is used in
this work to cluster the keypoints into groups called visual words or the codewords;
then, every weld joint image is represented by a global vector which is a count of the
number of occurrence of each codeword on a given image.

This section is structured as follows. The mathematical approach, parameter se-
lection and algorithm implementation of the LBP and SURF descriptors is presented
in Subsections 3.4.1 and 3.4.2, respectively. Thereafter, the representation of SURF
features using the BoVW approach is outlined in Subsection 3.4.3. Inputs are the ex-
tracted weld joint images, and the outputs are feature vectors extracted by the feature
extraction techniques. The extracted features are stored for training and validating
the classification algorithms.
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3.4.1 Feature Extraction using Local Binary Patterns

The LBP descriptor is an effective descriptor for a simple way of extracting texture
in an image. It operates by dividing an image into cells, then every pixel in a cell is
thresholded with its neighbouring pixels, and the value is a binary number. The LBP
value of pixel c surrounded by P neighbouring pixels placed on a circle of radius R
from c is defined as [108]:

LBP(R,P )(c) =
P−1∑
i=0

S(gi − gc)× 2i (3.22)

Where gc represents the grey intensity value of c and gi represents the grey intensity
value of circular symmetric neighbourhood pixels of c. The sign function S() ensures
that the LBP descriptor is invariant to illumination change; it is defined as:

S(x) =

{
1, if x ≥ 0

0, if x < 0
(3.23)

The binary number generated is converted into a decimal number which forms the
LBP code for the given centre pixel. Figure 3.6 illustrates the generation of the LBP
code for the centre pixel highlighted by a red colour.

Figure 3.6: Computation of the LBP code

Assuming that the cell in Figure 3.6 has dimensions N ×M , the LBP code is com-
puted for every pixel, and it is characterised by the distribution of codes representing
the cell as the LBP histogram vector defined as:

z(k) =
N∑
i=1

M∑
j=1

g(LBP(R,P )(i, j)− k) (3.24)

The original LBP descriptor of Equation 3.22 is not invariant to rotation, and it pro-
duces 2P different binary codes produced from the neighbouring pixels. However,
each neighbourhood pixel will move accordingly along the circle’s parameter for a
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rotated image, therefore yielding a different LBP value. A rotation invariant LBP
descriptor is achieved by grouping together the LBP patterns that are the rotated ver-
sions of the same pattern. The rotation invariant LBP descriptor is formally defined
as:

LBP ri
(R,P ) = min{ROR(LBP(R,P )i|i = 0, 1, ..., P − 1} (3.25)

Where the function ROR(x, i) perform the circular i step bitwise right shift on the
pattern binary string x for i number of times. The minimum between the resulting
numbers is then selected. Keeping only the rotationally invariant patterns leads to
a reduction in feature dimensionality, but the number of LBP codes increases drasti-
cally with an increase in P .

The extended LBP descriptor [109] uses uniform patterns to reduce the number of
LBP codes. Uniform patterns have been experimentally shown to occur more fre-
quently in texture images than non-uniform patterns. A pattern is said to be uniform
if it contains at most two bitwise transitions from 0 to 1 or vice versa when the binary
string is considered circular. For example, 0001000 is a uniform pattern because it
has two transitions, while 0101010 is not a uniform pattern because it has 6 transi-
tions. To distinguish between the uniform and non-uniform patterns, the uniformity
measure U is introduced, and it counts the number of spatial transitions (1’s and 0’s)
between successive bits in the circular representation of the pattern binary code. U
is defined as:

U(LBP(R,P )) = |S(gi−1 − gc)− S(g0 − gc)|+
P−1∑
i=0

|S(gi−1 − gi)− S(gi−1 − gi)| (3.26)

All patterns with U > 2 (more than two spatial transitions) are called non-uniform
otherwise patterns are called uniform. The modified rotation invariant uniform LBP
descriptor is then defined as:

LBP riu
(R,P ) =

{∑P−1
i=0 S(gi − gc)× 2i, if U(LBP(R,P ) ≥ 2

P+1, Otherwise
(3.27)

To construct a histogram feature vector in a cell of a given image using uniform
patterns, the LBP descriptor dedicates one bin (bin 0) of the histogram for the accu-
mulation of non-uniform patterns while the remaining bins are for uniform patterns.
For example, using (8,1) neighbourhood gives a total combination of 256 possible
patterns, of which 58 are uniform. This then gives a total of 59 patterns which is
a significant reduction in the feature vector length compared to the LBP descriptor
without uniform patterns. The histogram of all cells in an image are normalised and
concatenated to form a final feature vector, as shown in Figure 3.7.
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Figure 3.7: Computation of a histogram vector using uniform LBP

Parameter selection

The LBP descriptor has several parameters, some of which requires fine-tuning to
achieve the best feature classification results. Parameters such as the number of
neighbours, the radius and the cell size are usually the main parameters which are
optimised for best results depending on the type of LBP descriptor used [110, 111,
112]. In this work, the rotation invariant uniform LBP descriptor is used, thus the
number of neighbours and the radius are kept at (8,1) since the uniform patterns
are found to occur more frequently on this combination [109]. Keeping the number
of neighbours at 8 is also a great choice for avoiding a long feature vector. The LBP
parameter which is optimised here is the cell size. Table 3.1 lists the LBP parameters
used in this work.

Table 3.1: LBP Parameters

Parameter Value

Number of neighbors 8
Radius 1
Cell size Optimal cell size to be evaluated
Number of bins 59
Normalisation L2-norm
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Algorithm for Extracting Features using LBP

Algorithm 3 gives the step involved for extracting features in weld joint images using
the LBP descriptor.

Algorithm 3 Feature extraction using LBP
Require: Weld joint images from training and validation dataset
output: Concatenated feature vector z per image

1: for each image I in the dataset do
2: Divide into cells.
3: for each cell do
4: Compare every pixel’s value to its P neighbours.
5: Threshold every pixel and obtain a binary number using Equation 3.22.
6: Obtain rotation-invariant uniform LBP using Equation 3.27.
7: Compute and normalise the histogram.
8: end for
9: Form a feature vector z.

10: end for

3.4.2 Feature Extraction using Speeded Up Robust Features

Keypoint extraction using the SURF descriptor is broken down into four steps; key-
point detection, keypoint localisation, orientation assignment and keypoint descrip-
tion. This subsection presents the mathematical approach of each step and the algo-
rithm used in this work to extract keypoints using the SURF descriptor.

Keypoint Detection

The SURF descriptor uses the Hessian matrix to determine the location and scale of
the potential keypoints. For a given pixel (x, y) in image I, the Hessian matrix is
calculated as:

H(I(x, y)) =

[
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

]
(3.28)

To achieve scale-invariant keypoints, SURF searches for potential keypoints in an
image at various Gaussian scales and octaves. Thus, for a given point c = (x, y) at
Gaussian scale σ in an octave, the Hessian matrix H(c, σ) is defined as:

H(c, σ) =

[
Lxx(c, σ) Lxy(c, σ)

Lxy(c, σ) Lyy(c, σ)

]
(3.29)
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Where Lxx(c, σ), Lyy(c, σ) and Lxy(c, σ) are the convolutions of Gaussian second-
order derivatives with image I at point c in x, y and xy directions, respectively. The
determinant of Hessian matrix at this location is then defined as [113].

det(Happ) = DxxDyy − (0.9Dxy)
2 (3.30)

WhereDxx, Dyy andDxy are the approximations of the Gaussian second-order deriva-
tives in x, y and xy directions respectively. The SURF algorithm uses responses of box
filters to approximate these three derivatives in respective directions. Three such box
filters are depicted in Figure 3.8.

Figure 3.8: Three box filter approximation of the second-order derivatives of Gaus-
sian filters [3]

The box filter responses are computed using the integral images. In an integral
image, the value of any pixel (x, y) is the sum of all the pixel values above and to the
left of the same pixel location in the original image. The integral image Iint computed
from image I can be calculated as [114]:∑

Iint =
∑

x′≤x,y′≤y

I(x
′
, y

′
) (3.31)

The concept of integral images allows for quick and efficient computation of box
filters. For example, the approximation of Dxx filter in Figure 3.8 is calculated by
first calculating the area enclosed by region A’B’C’D’ and then subtracting the area
enclosed region by ABCD. These area calculations can be carried out efficiently using
integral images.

Scale Space Representation

To be invariant to scale changes, scale-space representation in SURF is achieved by
upscaling the filter sizes rather than iteratively reducing the image size [115]. The
filter sizes for various octaves and layers is depicted in Figure 3.9. The 9 × 9 box
filter is the initial scale layer, and it corresponds to the approximation of Gaussian
second-order derivative at σ = 1.2.
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Figure 3.9: The scale, the filter sizes and octaves in SURF [4]

Keypoint Localisation

The determinant of the Hessian matrix determines the potential keypoint, but some
are weak and need to be eliminated; this is done in the keypoint localisation step.
Keypoint localisation is achieved in three respective stages; in the first stage, all
keypoints within an octave are tested against a fixed threshold value. Keypoints
above the threshold value are accepted and passed on to the second stage. Keypoints
below the threshold are discarded. The second stage is non-maximum suppression
in a 3 × 3 × 3 neighbourhood. In this stage, every keypoint is compared to its 26
neighbouring pixels, 9 in the scale below and above it and 8 in the current scale. A
keypoint is considered a strong keypoint if its value is higher or lower than all its
neighbours (see Figure 3.10).

Figure 3.10: Non maximum suppression [5]

The last step of keypoint localisation is to interpolate the nearby data to determine
the position and scale of keypoints to sub-pixel accuracy. This is achieved by fitting a
3D quadratic function around the neighbourhood of each local extrema, and its peak
value is selected as a sub-pixel and sub-scale location. The function is approximated
by Taylor expansion of the scale-space function D(x, y, σ) with the keypoint (from
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stage 2) as the origin. The Taylor expansion is defined as:

D(z) = D +
∂DT

∂z
z +

1

2
zT
∂2D

∂z2
z (3.32)

Where D and its derivatives are evaluated at the keypoint candidate z0 = [x0, y0, σ0]T

and offset point z = [δx, δy, δσ]T . The location of the extrema is then evaluated by
setting the derivative of Equation 3.32 to 0, yielding:

ẑ =
∂2D−1

∂z2

∂D

∂z
(3.33)

Orientation Assignment

The output from the previous step is the scale-invariant keypoints which are localised
to a sub-pixel accuracy in terms of (x, y, σ). The orientation assignment step aims to
achieve rotation invariant keypoints by assigning to each a reproducible orientation
information. This is done in two steps; first, a circular region of radius 6σ is taken
around every keypoint, and within this region, Haar wavelets responses of size 4σ in
x and y directions are calculated. The obtained responses are then weighted using a
Gaussian kernel centred around every keypoint and plotted as vector points in x and
y coordinates. In the second step, a window of size π/3 is rotated around a keypoint.
Points inside this window are then summed up, and the most dominant results are
assigned as the orientation of the keypoint. The orientation assignment step can be
understood by referring to Figure 3.11.

Figure 3.11: Keypoint orientation assignment [6]

Keypoint Description

This step constructs a square region centred around the keypoint and oriented along
the dominant orientation. This region is divided into sub-regions of size 4 × 4, and
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for each sub-region, Haar wavelets responses are calculated at 5 × 5 regular spaced
sample points. The x and y wavelet responses denoted by dx, and dy, respectively
are calculated and summed up to give a first entry to the feature vector. Absolute
values of the responses |dx| and |dy| are also added to the feature vector to obtain
the information on the polarity of the intensity changes. Thus for each sub-region, a
vector is four-dimensional given as:

v = (
∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|) (3.34)

Since there is a total of 16 sub-regions within the square region, the SURF descriptor
across every keypoint is, therefore, a 64-dimensional feature vector.

Algorithm for Extracting Features using SURF

Algorithm 4 presents the steps used to extract features using the SURF descriptor.

Algorithm 4 Keypoint detection and description using SURF
Require: Weld joint images from training and validation dataset
Output: Keypoint descriptor vectors per image

1: for each image I in the dataset do
2: Calculate integral image Iint using Equation 3.31.
3: Construct scale space.
4: for each pixel in Iint do
5: Calculate Dxx, Dyy, Dxy using box filters.
6: Calculate the Hessian determinant H(c,σ) using Equation 3.30.
7: if H(c,σ) ≥ minHessian then
8: Store as a potential keypoint
9: end if

10: end for
11: for each potential keypoint do
12: Perform non-maxima suppression in a 3× 3× 3 neighbourhood.
13: Find sub-pixel and scale location using Equation 3.32.
14: Assign orientation.
15: Construct a square region centred around a keypoint.
16: Divide into 4× 4 sub-regions.
17: for each sub region do
18: Calculate a keypoint descriptor vector using Equation 3.34.
19: end for
20: Concatenate and store a keypoint vector.
21: end for
22: end for
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3.4.3 Image Representation using Bag of Visual Words

The SURF descriptor produces many descriptor vectors for each image. This is not
ideal for training a classifier because the results will be affected significantly by
the outliers, and the computation cost will be high. Thus, this work proposes the
BoVW approach to represent each image using only a single feature vector. BoVW
is achieved in three steps. Codebook construction, coding and pooling. As shown
in Figure 3.12, the codebook is constructed by grouping together the SURF keypoint
descriptors from the training dataset that are similar, and each group represent a vi-
sual word or a codeword. Coding and pooling represent every image in the dataset
as a global feature vector which is a count of the number of times each codeword
appears on an image.

Figure 3.12: Image representation using the bag of visual words

Codebook Construction

In the codebook construction step, all the keypoint descriptor vectors from the train-
ing dataset are clustered together, and each cluster represents a codeword. Let V =
{vj | j = 1, 2, ..., N} be a set of unordered SURF keypoint descriptors extracted from
the training dataset where vj ∈ IRD is a keypoint descriptor vector and N is the total
number of keypoint descriptors. In this work, the Kmeans clustering algorithm is
used to construct the codebook. This is done by clustering the N keypoint descrip-
tor vectors into K clusters. The output from Kmeans clustering is then a codebook
defined as C = {ck|k = 1, 2, ..., K} where ck ∈ IRD is the mean vector of the kth

cluster.

Coding

The coding step aims to represent every image in the dataset in terms of the codebook
elements (codewords). The coding step can be modelled using the function f defined
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as:
f : IRD −→ IRK

vj −→ βj (3.35)

where βj = {(βk,j)|k = 1..., K} maps a descriptor vector vj into the closest codeword
ck in the codebook according to the following hard coding equation

βk,j =

{
1, if k = arg mink∈{1...,K} ||vj − ck||22
0, otherwise

(3.36)

Where βk,j is the kth component of the encoded vector βj.

Pooling

The final step in the BoVW approach is to construct a vector z that provides a global
description of an image. This vector is a count of how many times each codeword
appears on a given image. The idea of the pooling step is to concatenate and add all
the elements of the encoded descriptor vector for every keypoint on an image. Thus,
given an image with the total number of n descriptors, the kth component of vector
z is calculated as:

zk =
n∑
j=1

βk,j (3.37)

Parameter Selection

Two important parameters of the BoVW approach with SURF descriptor (hereafter
referred to as ”BoSURF approach”), which requires fine-tuning for optimal classifi-
cation results, are found in the keypoint detection, description and the codebook
construction steps, respectively. In the keypoint detection and description step, the
SURF descriptor computes the keypoints using the determinant of the Hessian ma-
trix. Then it removes some by thresholding against a fixed Hessian determinant value
minHessian. Though minHessian is based on heuristics, the optimal value has been
found to be between 400 and 800 in several research studies [116, 117]. Therefore,
minHessian of 500 is used in this work. The other parameter of interest is in the
codebook construction step where keypoints are clustered into K number of clusters,
and each cluster represents a codeword, again the question of which K to use is also
based on heuristics; therefore, different values of K ranging from 200 to 2000 are
experimented in this work for optimal results.



3.5 Feature Classification 49

Algorithm for representing SURF Features using BoVW approach

The steps for representing the weld joint images using the BoSURF approach are
illustrated by Algorithm 5.

Algorithm 5 Image representation using BoSURF approach
Require: Unlabeled keypoint descriptor vectors
Output: Global feature vector z per each weld joint image

1: Store the training descriptor vectors into a dictionary V .
2: Randomly choose K number of descriptor vectors from V to form codeword

centres.
3: while codeword centres are unchanged do
4: Allocate each descriptor vector to the nearest codeword centre.
5: Replace codeword centres with the mean of the descriptor vectors in their

codewords.
6: end while
7: Form a codebook C with K number of codewords.
8: for every image I in the dataset do
9: for every descriptor vector in I do

10: Assign to the nearest codeword in C using Equation 3.35.
11: end for
12: Form a histogram feature vector z using Equation 3.37.
13: end for

3.5 Feature Classification

The feature vectors extracted using the techniques described in the preceding section
of the chapter are independently used as inputs to train and validate each classifica-
tion algorithm. The objective of the classifier is to learn the decision boundary that
can separate new or unseen weld joint images into one of four weld defects types
considered in this work. As discussed in Chapter 2, several classifiers have been used
for multiclass defect classification in radiography images. It should be noted that the
dataset used to conduct experiments in this work is very limited. Training a classifier
based on the limited dataset results in a classifier overfitting as it has more degrees of
freedom to construct a decision boundary. Another challenge arises when the dataset
is characterised by outliers. Outliers have a significant impact on the small dataset
as they can significantly skew the decision boundary.

Three classification algorithms deemed effective for modelling small dataset are used
in this work to address the aforementioned challenges [118, 119, 120]. These are
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the Support Vector Machines (SVM), the K-Nearest Neighbours (K-NN) and the Naive
Bayes classifiers. Therefore, this section of the chapter provides a detailed explana-
tion of the mathematical approach and algorithm implementation of the considered
classification algorithms for classifying thermite weld defects.

3.5.1 Feature Classification using Support Vector Machines

SVM are one of the widely used classification algorithms due to many promising
characteristics in terms of performance. SVM were originally formulated for a binary
classification task, but their use soon extended for multiclass problems through one
vs one and one vs many SVM. This subsection provides the mathematical theory of
SVM and how they are used in this work; at the end of the subsection, an algorithm
detailing the classification of weld joints images using SVM is presented.

Mathematical Approach

For a binary classification task, let ((v1, y1), ..., (vn, yn)) be the training dataset where
vi are the feature vectors representing the samples and y ∈ (−1,+1) are the cor-
responding class labels for the samples. With reference to Figure 3.13, SVM is a
learning algorithm that attempts to find the hyperplane that separates the positive
samples (+1 labelled) from the negative samples (-1 labelled) with the largest mar-
gin, where w is the vector constrained to be perpendicular to the hyperplane, b is the
bias term, and b/||w|| is the perpendicular distance from the origin to the hyperplane.
The margin of the hyperplane is defined as the shortest distance between the positive
and negative samples, which are known as support vectors. For all the samples in the
training dataset, the following constraints must be satisfied.

w.vi + b ≥ +1 for yi = +1 (3.38)

w.vi + b ≤ −1 for yi = −1 (3.39)

Samples for which Equations 3.38 and 3.39 hold lie on the hyperplanes H1 and H2

of Figure 3.13. It turns out the two constraints can be combined together and be
represented as:

yi(w.vi + b) ≥ +1 ∀i (3.40)
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Figure 3.13: A hyperplane that separates the negative and positive samples [7]

By referring to Figure 3.13, the margin which must then be maximised can be
computed as the distance between H1 and H2 planes defined as:

d =
|1− b|
||w||

− | − 1− b|
||w||

=
2

||w||
(3.41)

Thus the margin which must be maximised for an optimal separating hyperplane is
equivalent to solving a primal optimisation problem defined as:

min
1

2
||w||2 subject to yi(w.vi + b) ≥ +1 ∀i (3.42)

To find the maxima or minima of any function without having to worry about the
constraints, Lagrangian formulation is used. It introduces new Lagrangian multiplier
αi for each constraint and the minimisation problem of Equation 3.42 becomes:

L =
1

2
||w||2 −

l∑
i=1

αiyi(xiwi + b) +
l∑

i=1

αi (3.43)

Taking the partial of derivative of Equation 3.43 with respect to the vector w and the
bias b yields:

w =
∑
i=1

αiyivi (3.44)

∑
i=1

αiyi = 0 (3.45)
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The expression of Equation 3.44 defines the vector w as the linear sum of some of the
samples in the dataset. Substituting Equation 3.44 and Equation 3.45 into Equation
3.43 gives the formulation of the dual SVM defined as:

L =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj(vi · vj) subject to
∑
i=1

αiyi = 0 and αi ≥ 0 (3.46)

By solving the dual optimisation problem, the coefficients αi are found. The samples
with αi > 0 are called the support vectors, and they lie on H1 and H2 hyperplanes.
Only the support vectors affect the solution of the SVM problem; hence only the
support vectors are needed to express the solution of the vector w. The decision rule
for classification of the new, unseen sample represented by the vector z is therefore
defined as:

f(z) = wT zi + b (3.47)

Which is equivalent to:

f(z) =
M∑
i

yiαi(v
T
i · z) + b (3.48)

The predicted class label of vector z is then determined by the sign of the decision
function stated above. The formulation of the SVM classifier discussed till now as-
sumes the training samples are linearly separable. In a real-life classification task,
however, the data is characterised by the presence of noise and outliers; thus, data
samples cannot be separated linearly. Soft margin SVM tackle this problem by in-
troducing a slack variable ξi which allows some samples to lie amongst samples
of the opposite class. The primal optimisation problem of Equation 3.42 taking into
account ξi is then defined as:

min
1

2
||w2||+ C

∑
i

ξi subject to yi(w.xi + b) ≥ +1− ξi ∀ξi (3.49)

Where C is a parameter that controls the misclassification error, applying the La-
grangian formulation of Equation 3.49 and then taking the partial derivative with
respect to w and b yields the dual formulation problem defined as:

L =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj(vi · vj) subject to
∑
i=1

αiyi = 0 and C ≤ αi ≤ 0

(3.50)
The formulation of non linear SVM is possible for cases where the samples are non-
linearly separable. The main idea is to transform samples to a high dimensional
feature space χ where they can easily be separated. The transformation then requires
the dot product between any pairs of samples to be computed in χ (i.e φ(vi) · φ(vj)).
This transformation is computationally expensive thus the kernel functions are used.



3.5 Feature Classification 53

A kernel functionK that corresponds to the dot product in χ is defined as: K(vi, vj) =

φ(xi) · φ(vj), thus, only K is needed for computing the dot product without mapping
into a high dimensional feature space. The dual problem of Equation 3.51 is then
defined as:

L =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyj(K(vi · vj)) subject to
∑
i=1

αiyi = 0 and C ≤ αi ≤ 0

(3.51)
Some of the commonly used kernel functions are the linear, polynomial and Radial
Basis Function (RBF). In many classification tasks, the linear and polynomial kernels
have been found to require less computational cost, but they usually achieve low
classification accuracy compared to the RBF kernel [121, 122, 123]. The RBF is used
as the kernel function in this work, and it is defined as:

K(vi, vj) = exp(
||vi − vj||2

2σ2
) (3.52)

To achieve a multi-classification of thermite weld defects, the one vs one SVM clas-
sifier is used, where two pairs of classes are trained at a time. Thus, a total of
D(D − 1)/2 classifiers are obtained, where D is the total number of classes. An
unknown feature vector is assigned to a class label based on the majority vote.

Algorithm for Feature Classification using SVM

Algorithm 6 gives the steps involved in the classification of weld joint images using
SVM.

Algorithm 6 Feature classification using SVM
Require: Training and validation feature vectors
Output: Class label for each feature vector in the validation dataset

1: Train a one vs one SVM model.
2: for for any pair of classes yi and yj do
3: Map the training feature vectors into higher space using a kernel function.
4: Obtain a separating hyperplane by minimising Equation 3.51.
5: end for
6: for each feature vector z in the validation dataset do
7: Assign to class label with the majority vote.
8: end for
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3.5.2 Feature Classification using the K-Nearest Neighbors

Feature Classification using the K-NN classifier is conceptually simple. Learning using
K-NN consists of storing the training samples, and when a new query sample is made,
a set of similar related samples is retrieved from the memory and used to assign the
class label to the new query sample. This Subsection presents the mathematical
approach and the algorithm for the classifying weld joint images using the K-NN
classifier.

Mathematical Approach

To explain the workings of K-NN, let ((v1, y1)..., (vn, yn)) be the weld joint training
dataset where vi are feature vectors representing the training samples in a high di-
mensional feature space IRm, yi are the class labels of the samples. The training phase
of the K-NN stores the training samples and when the query sample represented by
vector z from the validation data is made, the distance between the z and every
other training sample is calculated. The distance measure used in this work is the
Euclidean distance, for any two vectors vi and vj it can be defined as:

d(vi, vj) =

√√√√ m∑
r=1

(ar(vi)− ar(vj))2 (3.53)

Then, k number of samples (v1, v2..., vk) which are nearest to z are used to assign the
class label of z according to the equation defined as:

y(z)← arg max
c∈C

k∑
i=1

δ(c, y(vi)) (3.54)

Where y(z) is the class of sample z, c ∈ C is the class label and δ(c, y(z)) is equal to
1 if c is equal to c(vi), otherwise δ(c, y(z)) is equal to 0. One obvious disadvantage of
assigning the class label based on the majority vote is that nearest k samples may vary
widely in their distance, and the closest neighbours more reliably indicate the class
label for the query sample. For these reasons, weighted K-NN is used in this work.
In weighted K-NN, the contribution of each of the k nearest samples is weighted
according to their distance from the query sample z, thus giving greater weight to
the closest neighbours. By weighting the vote of each nearest sample, then Equation
3.54 becomes.

y(z)← arg max
c∈C

k∑
i=1

wiδ(c, y(z)) (3.55)
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Where wi is the weighting function. In this work, samples are weighted according to
their inverse squared distance from z defined as:

wi =
1

d(z, vi)2
(3.56)

Algorithm for Feature Classification using K-NN

Algorithm 7 gives the steps involved in the classification of weld joint images using
the KNN classifier.

Algorithm 7 Feature classification using KNN
Require: Training and validation feature vectors
Output: Class label for each feature vector in the validation dataset

1: Training phase:
2: for each feature vector v in the training dataset do
3: Save to a dictionary V
4: end for
5: Classification phase:
6: for each feature vector z in validation dataset do
7: Compute the distance between z and vectors in V using Equation 3.53.
8: Assign the class label to z using Equation 3.55.
9: end for

3.5.3 Feature Classification using Naive Bayes

Naive Bayes classifier belongs to a family of Bayesian networks, where the class as-
signment of an unknown sample is based on the class conditional probabilities, with
each representing the probability that the unknown sample belongs to the respective
class. The following subsections detail the mathematical approach of the Naive Bayes
classifier. The algorithm of how Naive Bayes is used in this work to classify weld joint
images is also presented.

Mathematical Approach

Given M classes y1, y2..., yM and an unknown sample represented by a feature vector
z in a high dimensional feature space IRm. The probability that z belongs to class yi
is defined according to Bayes rule as [124]:

P (yi|z) =
P (z|yi)P (yi)

P (z)
(3.57)
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Where P (yi|z) is the probability that sample z belongs to class yi, P (z|yi) is the prob-
ability of generating sample z given class yi, P (yi) is the prior probability of class yi
and P (z) is the probability of sample z occurring. Modelling P (z|yi) is impractical
given z is a vector in a high dimensional feature space. Thus in Naive Bayes, it is
assumed that individual zi′s is conditionally independent given y. The numerator of
Equation 3.57 then becomes:

P (z|yi)P (yi) = P (z1|yi) · P (z2|yi)..., P (zm|yi) · P (yi) =
m∏
k=1

P (zk|yi)P (yi) (3.58)

P (z) is the same for all the classes, and it does not affect the decision. Thus, equation
3.58 simplifies to:

P (z|yi) =
m∏
k=1

P (zk|yi)P (yi) (3.59)

P (yi) is the class prior probability. Given N number of feature vectors from the
training dataset and Ni number of feature vectors which belongs to class yi, then the
prior probability is calculated as:

P (yi) =
Ni

N
(3.60)

To assign the class label to an unknown sample, the value of Equation 3.59 is com-
puted for each class and the class where this value is maximal is selected. This is
computed as y for sample z:

y ← arg max
yi

m∏
k=1

P (zk|yi)P (yi) (3.61)

Algorithm for Feature Classification with Naive Bayes

Algorithm 8 presents the steps involved for the classification of weld joint images
using the Naive Bayes classifier.
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Algorithm 8 Feature classification using Naive Bayes
Require: Training and validation feature vectors
Output: Class label for each feature vector from the test dataset

1: Training phase:
2: for each each class yi do
3: Calculate prior probability using Equation 3.60.
4: end for
5: Classification phase:
6: for each feature vector z in the validation dataset do
7: Assign the class label using Equation 3.61.
8: end for

3.6 Evaluation Methods

The preceding sections of the chapter have provided the mathematical approach and
algorithms used in this work for feature extraction and classification. To measure
how each algorithm perform when compared to others, evaluation matrices must be
defined. The algorithm’s performance is simply knowing how well the algorithm can
correctly assign the validation feature vectors to the correct class labels. This section
of the chapter provides such evaluation matrices used in this work to evaluate the
developed algorithms.

3.6.1 Confusion Matrix

In this work, the performance of a classification algorithm is evaluated by comput-
ing four attributes; the number of correctly recognised class examples (true posi-
tives), the number of correctly recognised examples that do not belong to the class
(true negative) and examples that either were not recognised as class examples (false
negatives) or that were incorrectly assigned to the class (false positives). The four
attributes yield a confusion matrix which is depicted in Table 3.2 for a binary classi-
fication task.

Table 3.2: Confusion matrix table

Predicted positive Predicted negative

Actual positive True positives(tp) False negatives(fn)
Actual negative False positives(tp) True negatives (tn)

Three performance measures can be computed from the confusion matrix, namely
the average accuracy, precision, and recall. The average accuracy is calculated as the
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total number of correctly recognized validation examples divided by the total num-
ber of examples in the validation dataset. Precision is calculated as the total number
of correctly recognised positive examples divide by the number of examples labelled
by the classifier as positive. The recall is calculated as the total number of correctly
recognised positive examples divide by the total number of positive examples in the
validation dataset. Equations 3.62 - 3.65 defines the performance measures for a
multi-class classification task. For a single class Ci the performance measure is de-
fined by tpi, fni, fpi and tni. Where l is the total number of classes in the validation
dataset.

Average accuracy =

∑l
i=1

tpi+tni

tpi+fni+fpi+tni

l
(3.62)

Error rate = 1−
∑l

i=1
tpi+tni

tpi+fni+fpi+tni

l
(3.63)

Precision =

∑l
i=1 tpi∑l

i=1 tpi + fpi
(3.64)

Recall =

∑l
i=1 tpi∑l

i=1 tpi + fni
(3.65)

3.6.2 K Fold Cross-Validation

Cross-validation is a method used to evaluate the performance of the classification
algorithm by measuring how well the algorithm generalises to new data. Before
training, some of the samples in the dataset are removed, and once training has com-
pleted, the removed samples are used to evaluate the performance of the trained
model. Many techniques can be used to perform cross-validation. The simplest tech-
nique is called the holdout method. In this technique, the data is separated into two
datasets, namely the training dataset and validation dataset. The training dataset is
used to train the model, and the test set is used to evaluate the model. However,
there is a possibility of high biasness with the holdout method for limited data. K
fold cross-validation is a technique to improve the holdout method. It ensures that
every observation from the original dataset has a chance to appear on the training
and validation datasets, thus resulting in a less biased model. The original dataset is
randomly divided into K number of folds. The first fold is removed for evaluating
the model, and the model is trained on the remaining K − 1 folds. Then the second
fold is removed from the dataset, and the model is trained using the first and the last
K − 2 folds. The process is repeated K number of times, and each time the results
are reported. This thesis work uses the 5 fold cross-validation technique to evaluate
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the performance of the thermite weld defect classification models.

3.7 Conclusion

This chapter has introduced the mathematical approaches and algorithms used in
this work to classify defects in thermite weld images. The methods were presented
in terms of image enhancement, RoI extraction, feature extraction and feature clas-
sification. Thermite weld image enhancement was carried out based on the CLAHE
technique, and the Weld joint RoI extraction was achieved using the Chan-Vese ACM.
For feature extraction, two techniques were proposed for comparison: the LBP de-
scriptor and the BoVW approach with SURF descriptor (BoSURF). It was further out-
lined that specific parameters require fine-tuning for optimal results. In this work,
the LBP cell size parameter on the LBP descriptor and the codebook size on the Bo-
SURF approach are fine-tuned. Subsequently, the performance of feature extraction
techniques was evaluated using the SVM, K-NN and Naive Bayes classifiers. The next
chapter presents the experimental results and discussion.
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Chapter 4

Experimental Results and Discussion

4.1 Introduction

This chapter aims to provide a detailed presentation of the results obtained from
conducting the experiments using methods presented in Chapter 3. It is structured
as follows: Dataset for the experiments is described in Section 4.2, followed by the
presentation of the results obtained after image enhancement and weld joint RoI
extraction algorithms in Sections 4.3 and 4.4, respectively. Then, the classification
results obtained from the Local Binary Patterns (LBP) descriptor are presented in Sec-
tion 4.5. Subsequently, the classification results obtained from the Bag of Speeded
Up Robust Features (BoSURF) approach are also presented in Section 4.5. The clas-
sification of the above-mentioned feature extraction techniques is achieved using the
Support Vector Machines (SVM), the K-Nearest Neighbours (K-NN) and the Naive
Bayes classifiers. The results obtained are then empirically compared in Section 4.6
to select the best combination of the feature extractor and classifier for automatic
detection and classification of thermite weld defects. Section 4.7 concludes the chap-
ter. All experiments were conducted on a 64-bit MSI machine powered by the Nvidia
GeForce graphics card with 24 cores, and 32 GB RAM. The source codes were imple-
mented using the Matlab R2019b software under the school license.

4.2 Dataset Description

The dataset used to conduct the experiments was collected from the Transnet Freight
Rail (TFR) welding department. A total of 300 thermite weld images representing
four classes, namely defect-less, wormholes, shrinkage cavities and inclusions defects
were collected, and each class consisted of 75 images. A 5 fold cross-validation
method was used for each experiment, where, in each fold (model), 240 images
(60 per class) were used for training, and 60 images (15 per class) were used for
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validation purposes. Figures 4.1 to 4.4 depict some of the sample images from each
class.

Figure 4.1: Defect-less

Figure 4.2: Wormholes

Figure 4.3: Shrinkage cavities

Figure 4.4: Inclusions

4.3 Image Enhancement

The collected thermite weld images are characterised by low contrast and narrow
pixel dynamic range values. Thus, image enhancement techniques were used to im-
prove image quality and increase defect visibility. The enhancement technique used
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in this work is the Contrast Limited Histogram Equalisation (CLAHE) technique, and
it was applied on every weld joint image using the steps explained by Algorithm 1.
As mentioned in Section 3.2, the CLAHE technique overcomes the noise enhance-
ment artefact introduced by the Adaptive Histogram Equalisation (AHE) technique
by clipping the histogram before using the Cumulative Distribution Function (CDF)
as the transform function.

4.3.1 Parameter Evaluation

The clip factor parameter, ρ in Equation 3.5, controls the enhancement rate of the
output image. Figure 4.5 shows the original image and the effect of ρ on the output
image. It can be observed that there is no significant difference in the image quality
between the output image and the original image at a small clip factor value (see
Figure 4.5b). Then, at a higher clip factor value, defect visibility (dark regions) in
an image is significantly increased; however, there is an introduction of noise on the
produced image (see Figure 4.5e to Figure 4.5f). Therefore, an optimal clip factor
is found at ρ=0.01. As shown in Figure 4.5c, defect visibility in an output image
is increased compared to the original image, but the over enhancement and over-
amplification of noise is avoided.

(a) Original image (b) Output image at ρ=0.001

(c) Output image at ρ=0.01 (d) Output image at ρ=0.1

(e) Output image at ρ=0.2 (f) Output image at ρ=0.3

Figure 4.5: Image Enhancement using CLAHE at varying clip factor values
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4.4 Weld Joint Extraction

After image enhancement, the next step is to extract the weld joint as the Region of
Interest (RoI) from the thermite weld image background. The segmentation method
used in this work is the Chan-Vese ACM which segments image regions without the
use of edge information. The extraction of the weld joint was carried out using
Algorithm 2 detailed in Section 3.3. The Chan-Vese ACM was applied on each image
in the dataset to obtain the contour at the boundaries of the weld joint (see Figure
4.6a). The obtained contour was then segmented to obtain the size and coordinates
of the weld joint (see Figure 4.6b). The coordinates were then superimposed on
the original image, and the rectangular bounding box was placed on the boundaries
of the segmented region (see Figure 4.6c). The area inside the bounding box was
then cropped, and the cropped image represents the weld joint as the RoI (see Figure
4.6d).

(a) Application of Chan-Vese ACM (b) Segmentation

(c) Bounding box (d) Weld joint

Figure 4.6: Weld joint RoI steps

Figures 4.7 to 4.10 depict the weld joint RoI extraction for sample images in each
class. It can be observed in Figure 4.8 that some images that contain wormholes
defects, needed to be post-processed in order to achieve accurate segmentation and
weld joint extraction. This is understandable since wormholes defects are charac-
terised by multiple “worm-like” dark patterns introduced by gas entrapment during
the thermite welding process. On the contrary, shrinkage cavities and inclusion de-
fects were easily segmented as they are mostly characterised by a single shape rep-
resenting a defect. Shrinkage cavities usually appear as a straight line (see Figure
4.9), and they are caused by the poor pre-heating temperature of rail ends during
the thermite welding. In comparison, inclusions are irregular in shape (see Figure
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4.10) and are caused by the presence of foreign objects. The post-processing tech-
nique employed in this work to remove residual spots on images segmented by the
proposed Chan-Vese ACM is based on dilation discussed in Section 3.3.4. Figure 4.11
shows the segmentation accuracy of the proposed Chan-Vese ACM on the thermite
weld images per each class. The image is considered to be successfully segmented
if there is no dark spots on the segmented weld joint RoI after post-processing. The
proposed method achieved the segmentation accuracy of 100% on images that be-
long to defect-less and shrinkage cavities classes. Furthermore, the segmentation
accuracy of 97% was achieved on images belonging to the inclusions class, the lowest
segmentation accuracy of 83% was achieved on the images belonging to the worm-
holes class. On average, the proposed Chan-Vese ACM achieved the segmentation
accuracy of 95%.

Figure 4.7: Weld joint extraction in a defect-less class

Figure 4.8: Weld joint extraction in Wormholes class
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Figure 4.9: Weld joint extraction shrinkage cavities class

Figure 4.10: Weld joint extraction in Inclusions class

Figure 4.11: Segmentation accuracy for each class
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4.5 Feature Classification

After extracting the weld joint as the RoI from the image background, two feature
extraction methods namely, the LBP descriptor and BoSURF approach were applied
to represent every weld joint image in the dataset as a feature vector. Inputs to the
feature extraction algorithms are weld joint images of size 300 × 700 pixels. The
performance of each feature extraction method was evaluated using three machine
learning classification algorithms, namely K-NN, SVM and Näıve Bayes. The 5-fold
cross-validation method was employed to train and validate each classification algo-
rithm, where in each model, 240 feature vectors (60 per class) were used to train the
classifiers, and 60 feature vectors (15 per class) were used to validate the classifiers.
The following subsections detail the process.

4.5.1 Classification of the Local Binary Patterns Features

Features extraction using the LBP descriptor was performed on every weld joint im-
age in the dataset using Algorithm 3 presented in Section 3.4. To investigate the
impact of the LBP cell size parameter on the classification accuracy, features were
extracted at increasing cell size parameters, namely: [6 14], [12 28], [30 70] and
[60 140]. Additionally, the number of neighbours and radius parameters were kept
at a combination of (8,1). As outlined in Section 3.4, this combination is ideal since
uniform patterns are found to occur more at 8 neighbouring pixels. Furthermore, the
long feature vector length is avoided at this combination.

Classification using the K-Nearest Neighbours

Feature classification using the K-NN classifier was achieved using Algorithm 7 pre-
sented in the previous chapter. As mentioned in Section 3.5, the value of the K
parameter in the K-NN classifier can have a significant impact on the classification
accuracy. It controls the number of training feature vectors considered when assign-
ing a class label to the unknown feature vector. A smaller K value would mean the
classifier is sensitive to the outliers, while a higher value would mean the neighbour-
hood includes too many vectors from other classes. Therefore, different values of
K, ranging from 1 to 7 (K = 1, 3, 5, 7) were experimented in this work at every LBP
cell size parameter to obtain the highest classification results at each cell size. Tables
4.1 to 4.4 shows the best confusion matrix results obtained by the K-NN classifier at
optimal but different value of K in each LBP cell size parameter. The results are based
on the 5 fold cross-validation method, where in each model, 240 feature vectors (60
per class) were used to train the K-NN classifier, and 60 feature vectors (15 per class)
were used for validation purposes.



68 Experimental Results and Discussion

Table 4.1: Confusion matrix using LBP and 5-NN at [6 14] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 72 1 0 2
Wormholes 1 72 0 2
S. Cavities 5 0 69 1
Inclusions 3 2 1 69

Table 4.2: Confusion matrix using LBP and 5-NN at [12 28] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 70 0 1 4
Wormholes 1 72 0 2
S. Cavities 5 0 69 1
Inclusions 5 1 2 67

Table 4.3: Confusion matrix using LBP and 1-NN at [30 70] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 70 1 0 4
Wormholes 3 70 0 2
S. Cavities 5 0 69 1
Inclusions 5 3 2 65

Table 4.4: Confusion matrix using LBP and 3-NN at [60 140] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 69 0 2 4
Wormholes 3 70 1 1
S. Cavities 4 1 69 1
Inclusions 3 3 5 64
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The average classification accuracy achieved by the K-NN classifier (at optimal K
value) in each LBP cell size was calculated from the obtained confusion matrix re-
sults using Equation 3.62. It was calculated by taking the mean average precision
per class. In each class, precision is calculated as the ratio of feature vectors correctly
classified to belong to a class (true positive) to the actual number of class feature vec-
tors (true positive and true negative). Figure 4.12 illustrates the highest classification
accuracy achieved at optimal K value of the K-NN classifier in each LBP cell size pa-
rameter. It can be observed that the highest, overall classification accuracy of 94%
was achieved at the optimal K value and LBP cell size parameter of 5 and [6 14] re-
spectively. Additionally, the lowest classification accuracy of 90.67% was achieved at
the K value and LBP cell size parameter of 3 and [60 140] respectively. The accuracy
slightly decreases with an increase in the cell size parameter. This slight decrease in
the accuracy indicates that the K-NN classifier generally provides better classification
performance at a smaller spatial scale of the LBP descriptor. Furthermore, it should
be noted from the confusion matrix results that the classes which contribute to the
decrease in the classification accuracy at increasing cell size are the inclusions and
shrinkage cavities. Therefore, the LBP cell size parameter has been found to have an
impact on the classification accuracy achieved by the K-NN classifier.

Figure 4.12: Classification accuracy of the K-NN classifier at varying LBP cell size
parameter
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Classification using the Support Vector Machines

Feature classification using the SVM classifier was achieved using Algorithm 6 pre-
sented in the previous chapter. The non-linear SVM with the Radial Basis Function
(RBF) kernel was used. As already mentioned in Section 3.5, the kernel width σ

can significantly impact the classification results. The σ parameter in the RBF kernel
determines the reach of a single training feature vector. A very high σ value would
mean the training feature vectors have a far reach, in contrary, a very low σ value
would mean the training feature vectors have a closer reach. This means that higher
σ values will yield a decision boundary that depends on the closest feature vectors,
ignoring feature vectors further away. Subsequently, the lower values of σ will yield
a decision boundary that considers feature vectors that are furthest from the decision
boundary. Thus, to prevent the formation of a highly flexed decision boundary and
the decision boundary that is linear, different σ values ranging from 2−4 to 24 (σ =
2−4, 2−3, 2−2, 2−1, 21, 22, 23, 24) were experimented to obtain the optimal value of σ at
each LBP cell size parameter. Tables 4.5 to 4.8 show the best confusion matrix results
obtained by the SVM classifier at optimal but different σ value in each LBP cell size
based on the 5 fold cross-validation method.

Table 4.5: Confusion matrix using LBP and SVM (σ = 4) at [6 14] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 69 4 0 2
Wormholes 2 70 3 0
S. Cavities 1 2 72 0
Inclusions 2 1 2 70

Table 4.6: Confusion matrix using LBP and SVM (σ=0.25) at [12 28] cell size

Defect-less Wormholes S. Cavities Inclusions
Defect-less 67 4 0 4
Wormholes 5 66 4 0
S. Cavities 0 2 73 0
Inclusions 3 0 0 72
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Table 4.7: Confusion matrix using LBP and SVM (σ=0.5) at [30 70] cell size

Defect-less Wormholes S. Cavities Inclusions
Defect-less 67 5 0 3
Wormholes 7 68 0 0
S. Cavities 0 5 69 1
Inclusions 2 0 0 73

Table 4.8: Confusion matrix using LBP and SVM (σ=0.5) at [60 140] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 68 2 2 3
Wormholes 7 68 0 0
S. Cavities 0 6 69 0
Inclusions 3 0 0 72

The average classification accuracy achieved by the SVM classifier (at optimal σ
value) in each LBP cell size parameter has been obtained, and it was calculated from
the confusion matrix results using Equation 3.62. Figure 4.13 depicts the highest
classification accuracy achieved by the SVM classifier at optimal σ value in each LBP
cell size parameter. The highest, overall classification accuracy achieved by the SVM
classifier is 93.33%, and it was achieved at a σ value of 4 and [6 14] LBP cell size
parameter. Furthermore, the lowest classification accuracy of 91.67% was achieved
at a σ value of 0.5 and LBP cell size parameter of [60 140]. Similar to the results
obtained by the K-NN classifier, there is a slight decrease in the classification accuracy
obtained by the SVM classifier at increasing LBP cell size parameter. Also similar to
the conclusion made on the results obtained by the K-NN classifier; the LBP cell
size parameter has been experimentally found to impact the classification results
obtained by the SVM classifier. The advantage of a small LBP cell size parameter is
that features can be extracted in very small local regions in an image; this makes it
possible to detect features that otherwise could not be detected at a larger spatial
scale. On the downside, a small LBP cell size yields a longer feature vector, and this
greatly increases the computation cost.
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Figure 4.13: Classification accuracy of the SVM classifier at varying LBP cell size
parameter

Classification using Naive Bayes

Feature classification using the Naive Bayes classifier was achieved using Algorithm
8. The Naive Bayes classifier is simple, fast and known to perform effectively on
a limited dataset. Furthermore, the Naive Bayes classifier requires less parameter
tuning than other classifiers such as the SVM and K-NN. Tables 4.9 to 4.12 depict the
confusion matrix results obtained by the Naive Bayes classifier at each LBP cell size
parameter.

Table 4.9: Confusion matrix using LBP and Naive Bayes at [6 14] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 54 11 5 5
Wormholes 14 59 2 0
S. Cavities 8 5 52 10
Inclusions 7 2 10 56
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Table 4.10: Confusion matrix using LBP and Naive Bayes at [12 28] cell size

Defect-less Wormholes S. Cavities Inclusions
Defect-less 52 13 7 3
Wormholes 11 59 3 2
S. Cavities 1 6 61 7
Inclusions 0 2 9 64

Table 4.11: Confusion matrix using LBP and Naive Bayes at [30 70] cell size

Defect-less Wormholes S. Cavities Inclusions
Defect-less 67 3 3 2
Wormholes 3 71 1 0
S. Cavities 5 5 63 2
Inclusions 2 5 12 56

Table 4.12: Confusion matrix using LBP and Naive Bayes at [60 140] cell size

Defect-less Wormholes S. Cavities Inclusions

Defect-less 60 12 1 2
Wormholes 11 53 11 0
S. Cavities 5 6 58 6
Inclusions 3 2 5 65

Figure 4.14 shows the average classification accuracy achieved by the Naive Bayes
classifier at varying LBP cell size parameters. The accuracy was calculated from the
confusion matrix results using Equation 3.62. Contrary to the classification accura-
cies obtained by the K-NN and SVM classifiers, the classification accuracy achieved by
the Naive Bayes classifier increases with an increase in the cell size parameter. This
increase indicates that the Naive Bayes classifier generalises better on the feature
vectors extracted at a large LBP spatial scale. However, there is a slight decrease in
the classification accuracy after [30 70] cell size. The highest classification accuracy
obtained by the Naive Bayes classifier is 85.66%, and it was achieved at [30 70] LBP
cell size parameter.
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Figure 4.14: Classification accuracy of the Naive Bayes classifier at varying LBP cell
size parameter

4.5.2 Best Classifier for LBP Features

Table 4.13 depicts the highest classification accuracy achieved by each classifier on
features extracted by the LBP descriptor. It is shown that the best classifier for clas-
sifying the LBP features is the K-NN (K=5) classifier with the classification accuracy
of 94%. The second best classifier is the SVM (σ = 4) with the classification accuracy
of 93.33%. The Naive Bayes classifier achieved the lowest classification accuracy of
85.66%.

Table 4.13: Highest classification accuracy by each classifier for LBP features

Method LBP parameter Classifier type Accuracy(%)
LBP + K-NN Cell size: [6 14] K-NN: K = 5 94.00
LBP + SVM Cell size: [6 14] SVM: σ= 4 93.33

LBP + Naive Bayes Cell size: [30 70] Naive Bayes 85.66
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4.5.3 Classification of the Bag of Speeded Up Robust Features

Keypoint detection and description on the weld joint images was achieved using the
SURF descriptor according to the steps listed by Algorithm 4 explained in the previ-
ous chapter. As mentioned in Section 3.4, the minHessian value used to filter out
unstable keypoints was selected to be 500. The BoVW method was applied on the
keypoints descriptors to learn a codebook and represent every weld joint image as a
global feature vector according to the steps listed in Algorithm 5. For codebook con-
struction; the K-means clustering algorithm was applied on the randomly sampled
SURF keypoint descriptor vectors, and in an attempt to obtain the optimal codebook
size, the codebook was constructed at increasing number of codewords ranging from
200 to 2000.

Classification using the K-Nearest Neighbors

Feature classification using the K-NN classifier was achieved using Algorithm 7 pre-
sented in the previous chapter. Different values of K ranging from 1 to 7 (K = 1, 3,
5, 7) were experimented to find the optimal value of K at each codebook size. Tables
4.14 to 4.17 show the best confusion matrix results obtained using the K-NN classifier
at optimal but different value of K in each codebook size parameter based on the 5
fold cross-validation method. In each model, 240 feature vectors (60 per class) were
used to train the classifier, and 60 feature vectors (15 per class) were used to validate
the classifier.

Table 4.14: Confusion matrix using BoSURF and 3-NN at 200 codewords

Defect-less Wormholes S. Cavities Inclusions

Defect-less 63 2 5 5
Wormholes 1 65 3 6
S. Cavities 7 2 65 1
Inclusions 7 3 2 63

Table 4.15: Confusion matrix using BoSURF and 5-NN at 800 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 67 2 3 3
Wormholes 3 65 4 3
S. Cavities 2 1 70 2
Inclusions 2 2 2 69
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Table 4.16: Confusion matrix using BoSURF and 5-NN at 1400 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 67 2 3 3
Wormholes 1 69 2 3
S. Cavities 4 1 68 2
Inclusions 4 2 4 65

Table 4.17: Confusion matrix using BoSURF and 3-NN at 2000 codewords

Defect-less Wormholes S. Cavities Inclusions

Defect-less 67 3 1 4
Wormholes 5 65 3 2
S. Cavities 2 0 70 3
Inclusions 3 2 2 68

Figure 4.15: Classification accuracy of the K-NN classifier at varying codebook size
parameter

Figure 4.15 shows the average classification accuracy achieved at optimal K value
of the K-NN classifier at increasing number of codewords. The accuracy was calcu-
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lated from the confusion matrix results using Equation 3.62. A significant increase in
the classification accuracy can be observed for the first 800 codewords. Afterwards,
there is a slight and less significant increase in the classification accuracy on the re-
maining codewords. The highest classification accuracy achieved by the K-NN (K=5)
classifier is 90.66%, and it was obtained at 1400 codewords.

Classification using the Support Vector Machines

Feature classification using the SVM classifier was performed using Algorithm 6 pre-
sented in the previous chapter. The non-linear SVM with the RBF kernel was used.
Different σ values (σ = 2−4, 2−3, 2−2, 2−1, 21, 22, 23, 24) were experimented at each
codebook size in order to obtain the optimal value of σ. Tables 4.18 to 4.21 show the
best confusion matrix results obtained by the SVM classifier at optimal but different σ
value for each codebook size parameter based on the 5 fold cross-validation method.

Table 4.18: Confusion matrix using BoSURF and SVM (σ = 0.5) at 200 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 68 2 3 2
Wormholes 4 62 3 6
S. Cavities 3 5 63 4
Inclusions 4 4 8 59

Table 4.19: Confusion matrix using BoSURF and SVM (σ = 4) at 800 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 71 0 2 2
Wormholes 2 68 1 4
S. Cavities 3 3 66 3
Inclusions 2 3 4 66

Table 4.20: Confusion matrix using BoSURF and SVM (σ = 8) at 1400 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 71 0 2 2
Wormholes 1 72 1 1
S. Cavities 2 0 71 2
Inclusions 3 0 2 70
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Table 4.21: Confusion matrix using BoSURF and SVM (σ = 0.25) at 2000 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 65 2 4 4
Wormholes 1 68 2 4
S. Cavities 0 1 71 3
Inclusions 4 3 3 65

Figure 4.16 shows the average classification accuracy achieved by the SVM clas-
sifier (at optimal σ value) in each codebook size parameter. The accuracy was calcu-
lated from the obtained confusion matrix results using Equation 3.62. It can be ob-
served that the classification accuracy increases with an increase in the codebook size
from 600 to 1400 codewords. After that, there is a linear decrease in the classifica-
tion accuracy with an increase in the number of codewords. The highest classification
accuracy achieved by the SVM classifier (at σ = 8) for classifying the BoVW features
is 94.66%, and it was obtained at the optimal codebook size of 1400 codewords.
Subsequently, the lowest classification accuracy achieved by the SVM classifier was
obtained at 600 codewords.

Figure 4.16: Classification accuracy of the SVM classifier at varying codebook size
parameter
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Classification using the Naive Bayes Classifier

Feature classification using the Naive Bayes classifier was achieved according to the
steps listed by Algorithm 8. Tables 4.22 to 4.25 depict the confusion matrix results
obtained by the Naive Bayes classifier at varying LBP cell size parameter.

Table 4.22: Confusion matrix using BoSURF and Naive Bayes at 200 codewords

Defect-less Wormholes S. Cavities Inclusions

Defect-less 51 4 14 6
Wormholes 6 51 8 10
S. Cavities 9 0 61 5
Inclusions 3 12 8 52

Table 4.23: Confusion matrix using BoSURF and Naive Bayes at 800 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 55 5 10 5
Wormholes 7 51 5 12
S. Cavities 6 4 62 3
Inclusions 3 8 12 52

Table 4.24: Confusion matrix using BoSURF and Naive Bayes at 1400 codewords

Defect-less Wormholes S. Cavities Inclusions
Defect-less 60 6 7 2
Wormholes 2 63 5 5
S. Cavities 7 2 61 5
Inclusions 3 8 3 61

Table 4.25: Confusion matrix using BoSURF and Naive Bayes at 2000 codewords

Defect-less Wormholes S. Cavities Inclusions

Defect-less 65 3 4 3
Wormholes 5 62 7 1
S. Cavities 4 2 64 5
Inclusions 0 8 7 60
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Figure 4.17 shows the average classification accuracy achieved by the Naive Bayes
classifier at varying codebook size parameter. The accuracy was calculated from the
confusion matrix results using Equation 3.62. There is an increase in the classification
accuracy for the initial 1200 codewords. After that, the codebook size parameter
has a less significant impact on the classification accuracy. The highest classification
accuracy achieved by the Naive Bayes classifier is 88.33%, and it was obtained at the
optimal codebook size parameter of 1200 codewords.

Figure 4.17: Classification accuracy of the Naive Bayes classifier at varying codebook
size parameter

4.5.4 Best Classifier for BoSURF Features

Table 4.26 depicts the highest classification accuracy achieved by each classifier on
features extracted by the BoSURF approach. It can be observed that the best classifier
for classifying the BoSURF features is the SVM (at σ = 8) classifier with the classifi-
cation accuracy of 94.66%. The second best classifier is the K-NN (at K = 5), with the
classification accuracy of 90.66%. Similar to the classification accuracy obtained for
classifying LBP features, the Naive Bayes classifier achieved the lowest classification
accuracy of 85.66% for classifying the BoSURF features.
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Table 4.26: Highest classification accuracy by each classifier for BoSURF features

Method parameter Classifier type Accuracy(%)

BoSURF + K-NN Codewords: 1400 K-NN: K = 5 90.66
BoSURF + SVM Codewords: 1400 SVM: σ= 8 94.66

BoSURF + Naive Bayes Codewords: 1200 Naive Bayes 88.33

4.6 Best Method for Detection and Classification of
Thermite Weld defects

In Section 4.5, the classification results obtained by each classifier for classifying
features extracted by the LBP descriptor and the BoSURF approach were presented.
Certain parameters of the feature extraction and classification algorithms were fine-
tuned to identify optimal parameter values that achieve the best possible accuracy
for classifying thermite weld defects. As shown in Table 4.13, it was found that the
K-NN classifier obtains the best classification accuracy for LBP features at the optimal
cell size parameter and K value of [6 14] and 5, respectively. Additionally, the best
classification accuracy for BoSURF features was obtained by the SVM classifier at the
optimal codebook size of 1400 codewords and σ value of 8 (see Table 4.26). The
aforementioned best classification accuracies are depicted in Table 4.27, and they
are compared to select the best method for automatic detection and classification
of thermite weld defects. It can be observed that the best method for detecting
and classifying thermite weld defects is achieved by the combination of the BoSURF
approach and SVM classifier with the classification accuracy of 94.66%. It should
be noted that the 94% classification accuracy achieved by the LBP descriptor and
K-NN is not far off; However, since the optimal LBP cell size parameter was found
at the small spatial scale, the resulting feature vector length representing each weld
joint image is incredibly long (147 500) compared to the feature vector length of
only 1400 histograms obtained by the BoSURF approach. Thus, the results clearly
indicate that the BoSURF approach outperforms the LBP descriptor in terms of defect
detection, classification accuracy and computation cost.

Table 4.27: Highest classification accuracy achieved for LBP and BoSURF

Method Optimal parameters Feature length Accuracy(%)

LBP + K-NN Cell size: [6 14] K = 5 147 500 94.00
BoSURF + SVM Codewords: 1400 σ = 8 1400 94.66
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4.7 Conclusion

This chapter has presented the experimental results of the methods introduced in
Chapter 3. The chapter first introduced the dataset used to conduct the experiments.
This was followed by applying the CLAHE technique to improve the quality of every
image. The weld joint was extracted as the RoI from the background of each en-
hanced image, where the Chan-Vese ACM was used as a segmentation method. Two
feature extraction methods, namely the LBP descriptor and BoSURF approach, were
applied on each weld joint image to represent the weld joint as a feature vector. The
performance of the feature extraction methods was evaluated using the three classifi-
cation algorithms, namely the K-NN, SVM and Naive Bayes. Hyperparameter tuning
was performed on the feature extraction and classification algorithms to identify the
optimal parameters for best classification results. The experimental results indicated
that the best method for detecting and classifying thermite weld defects is obtained
by combining the BoSURF approach as a feature extractor and the SVM as a classifier.



Chapter 5

Conclusion and Future Work

5.1 Dissertation Conclusion

This work aimed to develop an image processing and machine learning based method
to detect and classify thermite weld defects in welded rails automatically. Conven-
tionally, the detection and classification of thermite weld defects in radiography im-
ages is conducted manually by a trained RT specialist with loads of work experience.
However, questions have been raised regarding the use of human expertise to detect
and classify defects. The manual process is deemed to be biased, lengthy and sub-
jective even if the experts conduct it. Therefore, there is a need to develop a method
that can automatically detect and classify defects in a robust, fast, reliable and objec-
tive manner without human interventions.

An automated thermite weld defect detection and classification method have been
developed based on image processing and machine learning techniques. Due to the
nature of the obtained thermite weld radiography images, four steps were proposed:
image enhancement, image segmentation, feature extraction, and feature classifica-
tion. The collected images were characterised by poor contrast; therefore, image
enhancement techniques were required to improve the image quality and defect vis-
ibility. According to the literature study, it was found that the CLAHE technique
provides better enhancement results on radiography images compared to other his-
togram equalisation techniques. Thus, the collected images were enhanced using the
CLAHE technique, and image quality was improved.

An algorithm has been developed and applied on the enhanced images to extract
the weld joint (RoI) from the image background. The literature study indicated that
the edge-based segmentation methods such as Thresholding and Hough transform
are effective for a variety of segmentation tasks. However, the collected images con-
tained an irregularly shaped weld joint and a complex image background. This then
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made the Thresholding and Hough transform techniques to be ineffective. Therefore,
the segmentation of the weld joint was achieved using the Chan-Vese ACM, which is
based on the level set methods. Image segmentation using the Chan-Vese ACM allows
contours to be represented as a level of a topological function that can merge or split.
Thus irregularly shaped image regions can be segmented. The proposed Chan-Vese
ACM achieved the segmentation accuracy of 95%

Feature extraction techniques were then applied to the weld joint images to represent
every weld joint as a feature vector. The literature categorised these techniques into
local and global feature extractors. Local feature extractors were found to have more
advantages than global feature extractors as they are invariant to significant image
transformations such as rotation, viewpoint and illumination changes. Therefore,
two local feature extraction techniques, namely the LBP descriptor and the SURF
descriptor, were independently applied on the weld joint images to represent every
image as a feature vector.

The SURF descriptor first detects the scale-invariant keypoints before computing a
descriptor vector for each keypoint in the image. This meant a single image is rep-
resented by many feature vectors for training a classifier; thus, computational costs
demand are extensively high. To address this challenge, the BoVW (BoSURF) ap-
proach was used to create a codebook in a completely unsupervised learning manner
from the unlabelled SURF descriptor vectors. Weld joint images were therefore repre-
sented by a single histogram vector that is a count of how many times each codeword
appears on the image. The K-means clustering algorithm was used to create visual
codewords.

The performance of the two feature extractors was compared using three classifiers,
namely the K-NN, SVM and Naive Bayes. These three classifiers were selected due to
their effectiveness in modelling a small dataset. Some parameters of the feature ex-
tractors and classifiers were fine-tuned to evaluate their impact on the classification
performance and to select the best classification results. For feature extractors, these
parameters were the LBP cell size and the codebook size on the LBP descriptor and
BoSURF approach, respectively. For classifiers, the parameters were the K value and
the σ value on the K-NN and SVM classifiers, respectively.

The experiments were conducted based on the 5-fold cross-validation method. It
was found that the best method for detecting and classifying thermite weld defects
is achieved when BoSURF features are combined with SVM classifier; this combina-
tion achieved the classification accuracy of 94.66% at optimal codebook size and σ

parameters of 1400 and 8, respectively. To the best of the author’s knowledge, lim-
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ited research work exist in the literature for the specific objective of detecting and
classifying thermite weld defects in welded rails using image processing and machine
learning techniques. Thus, the results obtained in this work can be used as a baseline
for further research studies and improvement to the topic at hand.

5.2 Recommendation for Future work

To address the limitations of this study (see Section 1.5), the following recommen-
dations should be considered for future work.

1. Image dataset of other thermite weld defects types should be collected to im-
plement a robust method that can detect and classify any thermite weld defects.

2. More thermite weld image dataset should be collected and made publicly avail-
able to compare the methods proposed in this work to some of the state of the
art methods based on Deep learning approaches.
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