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1 Introduction

Protein structural comparison is an important operation in molecular biology
and bionformatics. It plays a central role in protein analysis and design. As
proteins fold in three dimensional space, assuming a variety of shapes, a careful
characterization of their geometry is needed to study their function which
is known to be related to the shape. Moreover, the comparison of protein
structures is essential to infer evolutionary information.

The problem of comparing three-dimensional structures has been widely
studied in other disciplines such as computer vision and image processing,
robotics, astronomy and some core methods have migrated from these disci-
plines to bionformatics.

There are many instances of the protein comparison problem that have
been addressed; they include: 1) protein pairwise comparison, 2) protein clas-
sification, to organize all known structures in a biologically relevant groups,
3) searching for common folding patterns and three-dimensional motifs, 4)
studying of protein interaction to identify binding sites for drug design.

From the application point of view, it is important to mention how the
growth of the Protein Data Bank (PDB) asks for effective automatic pro-
cedures for classification and search of the database elements. Currently the
PDB contains more than 17,000 structures and this number is rapidly growing.

The protein comparison may involve different levels of representations of
the three dimensional protein structures, from the atomic level to the level of
secondary structures. Most methods presented in the literature deal with a
protein representation in terms of atomic coordinates

and therefore with a matching problem that uses as basic elements sets of
points (atoms).

C. Guerra, S. Istrail (Eds.): Protein Structure Analysis and Design, LNBI 2666, pp. 57-82, 2003.
 Springer-Verlag Berlin Heidelberg 2003
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Other approaches are based on secondary structures, i.e. α helices and β
strands, that play an important role in the functional behavior of a protein.
The secondary structure elements are represented as vectors in 3D space.

An alignment of α helices and β strands may be used for fast retrieval of
folds or motifs from the PDB. On the other hand, the comparison of secondary
structures can be used as the first step in a two step comparison procedure
that first identifies possible candidate solutions in a fast way and then refines
the solutions taking into consideration the atomic descriptions of proteins.
Another advantage of a structural comparison of secondary structures is that
it allows to study the folding process by tracing the evolution of the fold from
the molden state.

Most of existing approaches allow to detect global similarity between entire
proteins as well as local similarity ([1], [20], [21], [23], [26], [27], [41], [46], [51]).

The integration of strategies operating at different levels of representations
appears very promising to achieve robustness and efficiency. Extensive surveys
on the subject of protein comparison exist enphasizing different aspects of the
general problem [6], [37], [50].

In this paper, we review some of the theoretical results on the computa-
tional complexity of the algorithms designed to obtain optimal solutions to
the problem of matching sets of points using specific metrics. From a theo-
retical point of view, the problem has been extensively studied in the area of
computational geometry, where it is often formulated as the problem of find-
ing correspondences between sets of geometric features (for instance, points or
segments). From these studies it appears that, in most practical cases, exact
algorithms are too time consuming to be useful. Thus, approximate algorithms
are considered that are computationally practical and at the same time are
guaranteed to produce solutions that are within a certain bound from optimal.

Furthermore, we discuss methods for the estimation of rigid transforma-
tions under different metrics such as the Root Mean Square Deviation (RMSD)
and the Hausdorff distance. Geometric indexing techniques prove their effec-
tiveness in searching large protein databases and they are presented in details.
Finally graph-theoretic protein modeling is reviewed as it is useful in designing
algorithms for substructure identification and comparison.

Throughout the paper, we will use pure geometric information, ignor-
ing other properties associated with atoms. Chemical properties, such as hy-
drophobicity, charge, etc. may be important in protein comparison and often
they can be easily incorporated in a matching procedure. The use of such
properties may help reduce the computation time by allowing pruning of the
possible associations at early stages of the processing. However, we will not be
consider these other properties in this chapter. Applications of protein com-
parison are an important subject; since they discussed in the two previous
chapters of this volume, they are not considered here.
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2 Protein Description

A protein is a sequence of aminoacids linked by peptide bonds. An aminoacid
consists of a carbon atom Cα to which are attached a hydrogen atom, an amino
group, and a carboxyl group. The 20 aminoacids differ in the side chain or
residue attached to the Cα atom. The peptide bonds between the aminoacids
in the chain join the carboxyl group of one aminoacid with the amino group of
the next eliminating water in the linking process. The sequence of aminoacids
is generally referred to as the primary structure of a protein. Its length varies
from a few tens to few thousands aminoacids. A different level of protein
representation, known as secondary structure, describes a protein in terms of
recurrent regular substructures, such as the α helices and the β strands. The
tertiary structure is the packing of the structural elements into the 3D shape.
The protein may contain several chains forming its quaternary structure. For
a survey of the protein architecture see [5], [38].

Fig. 1. The volumetric representation of protein 1rpa

The volumetric representation of a protein is displayed in figure 1 where
all atoms are shown as balls; the secondary structure elements of the same
protein are displayed as ribbons in figure 2.

Arrangements of the secondary structures α helices and β strands are the
basis for the protein structural classification of SCOP [44]. In the SCOP clas-
sification hierarchy, the fold level corresponds to the last level of the hierarchy,
the other two being family and superfamily. Proteins sharing a fold have the
same major secondary structures but do not necessarily have a common evolu-
tionary relationship, unlike proteins clustered into families and superfamilies.
The similarity in the arrangements of secondary structures in a fold may be
due to the physical and chemical properties of the packing of the proteins.
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Fig. 2. The secondary structure representation of protein 1rpa

Fig. 3. The ribbon representation of protein 1bxa showing a β sandwich

Fig. 4. The ribbon representation of protein 3por forming a β barrel
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Common structural arrangements of secondary structures or motifs have
been identified within the folds and they include, among others, the β-
sandwich and the β-barrel, as seen in figure 3 and 4, respectively.

Approaches to protein comparison use different protein structural de-
scriptions. A complete structural description is given by the 3D coordinates
(x, y, z) of the individual atoms of a protein. Often only the Cα atoms of the
aminoacids, that form the so-called backbone of a protein, are considered for
comparison.

A more compact description is in terms of the linear vectors associated to
the structural elements helices and β strands. While most of the comparison
approaches are based on the atomic description of a protein, the secondary
structure description may provide a fast method to retrieve substructures or
motifs from large protein databases. Furthermore, it is often used as a first
step when searching in a database for the most similar protein with respect
to a target protein. In fact, hypotheses of similarity for the target protein
are generated in a fast and efficient way based on secondary structures only;
such hypotheses are further verified by a more refined and costly process
that is only applied to those hypothesized proteins. This two-step procedure
may considerably speed up the protein comparison when large databases are
involved.

For most proteins in the PDB, secondary structures are annotated by
the original depositor who provides the starting and ending residue numbers
of all secondary structures. However programs have been designed for the
assignment of the secondary structures from the PDB files and for the analysis
of the overall and residue-by-residue geometry of a protein [10], [34], [35].

Fig. 5. The vectorial representation of protein kinase CK2

Several programs have also been developed to yield the vectorial represen-
tation of a protein [17], [41]. Singular-value decomposition (SVD) is a stan-
dard routine [4], [19] to find the axes of α helices and the best fit segments
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for the β strands. In this routine typically only Cα atoms are used. Other
simpler methods derive the vector associated to a β strand either by directly
connecting the starting and ending residues of the β strand assignments or
by connecting two points that are computed as the average points of few of
the extreme residues on both sides of the strand [51]. This second approach
is less sensitive to curved or kinked structures. Figure 5 shows the vectorial
representation of protein kinase CK2, where each segment is displayed as a
cylinder of fixed radius.

3 Structural Comparison: Problem Formulation

The general matching problem can be informally defined as follows: Given two
sets of geometric features, either points or line segments, determine the largest
common subsets, i.e. the subsets of maximum size, that are geometrically
similar. In the case of proteins, points correspond to atoms and segments are
the axes of the secondary structures.

There are many variants of the matching problem that have been consid-
ered in many different contexts. We now give more formal definitions of the
problem with varying degrees of computational complexity.

Problem 1. Consider two sets of geometric elements A = {a1, a2, · · · , an}
and B = {b1, b2, · · · , bm} in three-dimensional space and assume that they
have the same cardinality, i.e. n = m, and that the element ai corresponds to
the element bi. Find the transformation g between the two sets that minimizes
a given distance metric D over all rigid body transformations T , i.e.

minT D(T (A), B)
Problem 2. Consider two sets of geometric elements A = {a1, a2, · · · , an}
and B = {b1, b2, · · · , bm} in three-dimensional space. Find the transformation
g between the two sets that minimizes a given distance metric D over all rigid
body transformations T , i.e.

minT D(T (A), B)

This problem differs from the previous one because no correspondence is
known a priori between the elements of the two sets.

Problem 3. Given two sets A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bm} in
three-dimensional space and a real number δ > 0, find a maximum-cardinality
set of pairs of elements, one element in A and the second one in B, such that
the distance d between each pair of elements is at most δ.
In this problem we are interested in the largest subset of corresponding ele-
ments of A and B (generally, in practical applications the sets are required to
be above a certain size).
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Different metrics have been used in the literature to determine the struc-
ture similarity between geometric objects. The most common metric is the
RMSD (Root Mean Square Deviation) defined for point sets as follows:

D(A, B) = RMSD(A, B) = (
∑

i=1,n d(ai, bi)2)1/2

where d is the Euclidean distance between two points, and assuming that
the sets have the same cardinality n, ai corresponds to bi.

The RMSD distance is useful when comparing very similar structures,
as those produced during the christallographic analysis or NMR at different
stages of the process. Its disadvantage becomes apparent in the presence of
outliers when the proteins are not structurally close. The existence of even
few outliers may significantly alter the value of the distance and therefore the
determination of the optimal superposition of the two structures.

A second important definition between two point sets is based on the use
of contact maps [33]. The chapter by G. Lancia and Sorin Istrail in this book
deals extensively with contact maps and they are not further discussed here.

Another definition is the Hausdorff metric widely used in the area of com-
puter vision and image processing, in astronomy and extensively studied in
the field of computational geometry. The Hausdorff distance H(A, B) between
A and B is:

H(A, B) = max(h(A, B), h(B, A)))

where h(A, B) is the one-way Hausdorff distance from A to B given by:

h(A, B) = maxai∈A

(
minbj∈B d(ai, bj)

)

In the following we discuss different approaches to solve the above three
problems with different metrics. Problem 1 and its solutions are presented in
section 5. Problem 2 with the Hausdorff distance as metric is considered in
section 6.Problems 3 is reviewed in sections 8.

4 Representation of Rigid Transformations

A large number of methods have been proposed in the literature to compute
the rigid body transformation between two sets of 3D points. They differ with
respect to the transformation representation, and the minimization procedure.
A survey by Sabata and Aggarwal [49] lists several representation of transfor-
mations and approaches to solve this problem using both closed form solutions
and iterative solutions. The book [16] gives a clear description of many issues
related to rigid transformations with enphasis on visualization aspects.

Here we describe several representations of rigid transformations while the
next section is devoted to review methods to compute them.

A rigid motion of an object is a motion that preserves the distances be-
tween object points. The net movement of a rigid body from one configuration
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to another configuration (via a rigid motion) is called a rigid displacement. A
rigid transformation applied to an object model represents a rigid displace-
ment of the object itself. Rigid transformations form the theoretical infras-
tructure both for studying actual objects motions and for predicting possible
(or hypothetical) motions. In the early 1800s Chasles and Poinsot proved
that every rigid body displacement can be realized by a rotation about an
axis combined with a translation parallel to that axis. This motion is what
it is usually referred as a screw motion. Different motion representations are
presently used (mainly in computer vision, computer graphics and robotics),
that can be roughly classified as local or global representations [43].

Let us start by formally introducing the definition of rigid body transfor-
mation. A rigid body transformation is a mapping g : R3 → R3, that must
satisfy the properties:

‖ g(q) − g(p) ‖=‖ q − p ‖ for all points p, q ∈ R3

g(v × w) = g(v) × g(w) for all vectors v, w ∈ R3

The former condition says that lengths are preserved and the latter con-
dition says that internal reflection is not allowed. As a consequence of the
above definitions, rigid body transformations also preserve the inner product,
in particular, orthogonal vectors are transformed to orthogonal vectors. In
general, a rigid body transformation takes right-handed orthonormal coordi-
nate frames to right-handed orthonormal coordinate frames. It is important
to point out that even if the distance between points and the cross product
between vectors are fixed, particles in a rigid body can move related to each
others, because they can rotate (but not translate) with respect to each other.
Then the motion of a body can be described by the motion of any one point
and the rotation of the body around this point. Hence a right-handed Carte-
sian coordinate frame can be attached to some point of the body and the
motion of individual points can be traced from the motion of the body frame
and the motion of the frame attachment point. Due to its importance we first
consider pure rotational motion.

Pure rotational motion in R3 can usually be described by a proper 3x3
matrix, that can be defined by stacking next to each other, the coordinates
of the principal axes of a coordinate frame B (the body frame) relative to a
coordinate frame A (the inertial frame). Such a matrix is called a rotational
matrix: its columns are mutually orthonormal and its determinant is +1. The
set of all 3x3 matrices that satisfy these two conditions is denoted by SO(3),
where SO stands for Special Orthogonal. SO(3) is a group under the matrix
multiplications, with the identity matrix I as the identity element. SO(3) is
the rotation group of R3. A 3x3 rotation matrix can be seen as




r11 r12 r13

r21 r22 r23

r31 r32 r33
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with nine different parameters, the orthonormality conditions (for the ma-
trix columns) add three more constraints, while the sign of the cross product
adds other three constraints. These six constraint equations, reduce the degree
of freedom to three, that is, only three parameters are needed to completely
represent a pure rotation in R3. The matrix coefficients rij can be expressed
in term of these three parameters.

A rotation matrix R ∈ SO(3) represents a rigid body transformation. In
fact it can be proved that it preserves distances and orientations, that is:

• ‖ Rq − Rp ‖=‖ q − p ‖ for all points p, q ∈ R3

• R(v × w) = Rv × Rw for all v, w ∈ R3

Moreover a rotation matrix can be seen as an operator that takes the co-
ordinates of a point (or vector) from a frame to another. Let pb the coordinate
of a point P with respect to the frame B, and Rab the rotation matrix, the
coordinates of P with respect to the frame A are given as:

pa = Rabpb

The pure rotation operator is a linear operator (with the additional con-
straint that it is orthonormal). A sequence of two (or more) rotations will
result in a single combined rotation and conversely a given rotation can be
decomposed using two or more rotations. Rotation matrices can be combined
to form new rotation matrices using matrix multiplication. If a frame C has
orientation Rbc relative to frame B and B has orientation Rab from frame A,
then the orientation of C with respect to A is given by:

Rac = RabRbc

In particular, as we could expect, RabRba = I and Rba = R−1
ab = RT

ab.
An important result about rotations is the Euler Theorem that establishes

that any rotation R ∈ SO(3) is equivalent to a rotation about a given axis
ω ∈ R3 (‖ ω ‖= 1), by an angle θ ∈ [0, 2π). In fact, it is possible to represent
the motion of a single point p rotating about ω at a constant unit velocity,
with the following differential equation:

ṗ(t) = ω × p(t) = ω̂p(t)

Solving this equation gives the expression for a single rotation about ω by
θ, that is R(ω, θ) = eω̂θ. The matrix ω̂ is defined as follows:




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0





where ωT = [ω1, ω2, ω3] and it has the property that ω̂T = −ω̂. Such a matrix
is a skew-symmetric matrix. If ‖ ω ‖= 1, ω̂ is a unit skew-symmetric matrix.
It can be proved that the exponential eω̂θ can be rewritten in term of the
skew-symmetric matrix, resulting in the so-called Rodriguez’s formula:
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eω̂θ = I + ω̂ sin θ + ω̂2(1 − cos θ)

This method represents rotations through the equivalent axis representa-
tion . This is perhaps the most intuitive way of representing rotations. How-
ever, it has some disadvantages. The representation is not unique: in fact
choosing ω

′
= −ω and θ

′
= 2π − θ gives the same rotation as ω and θ,

being the exponential map many-to-one. Moreover, singularities occur when
θ = 0 and the exponential equals I, in such a case ω cannot be determined.
These singularities create problems when computing the rotations. Finally the
transformations resulting from the composition of multiple rotations cannot
be easily computed.

Besides the canonical coordinates, there exist different coordinate systems
for representing the rotation group, mainly used in robotics systems. The fol-
lowing method of describing the orientation of the coordinate frame B relative
to A uses the Euler angles. At the beginning frames A and B are coincident.
First, the frame B is rotated about the z-axis by an angle α, then it is rotated
about the (new) y-axis by an angle β and finally B is rotated about the z-axis
by an angle γ. The triple of angles (α, β, γ) represents the overall rotation,
and the angles α, β, γ are called the ZYZ Euler angles.

These three rotations occurs at principal axes and the global rotation
matrix can be computed from the three rotation matrices related to the three
elementary rotations, that is, giving the specific values for α, β, γ it is easy
to compute both Rab and Rba. The converse question of whether the map
from SO(3) to α, β, γ is surjective is important. It can be proved that for any
R ∈ SO(3) it is possible to determine the Euler angles. This representation
suffers from the problem of singularity at R = I.

In order to solve this problem new methods should be studied. Rotations
in a 2D space can be represented by complex numbers on the unit circle.
When moving to a 3D space, it is possible to generalize this idea, by in-
troducing quaternions . Formally a quaternion Q is a 4-tuple of the form
< q0, q1, q2, q3 >: where q0 is the scalar component of Q and −→q = (q1, q2, q3)
is the vector component of Q. Hence, Q = (q0,

−→q ) with q0 ∈ R and −→q ∈ R3.
The set of quaternions is a 4D vector space over the reals and it forms a
group with respect to quaternion multiplication (denoted “·”). Quaternions
multiplication is defined as follows:

Q · P = (q0p0 −−→q ·−→p , q0
−→p + p0

−→q + −→q ×−→p )

The unit quaternions are the subset of all quaternions Q such that ‖ Q ‖=
1, where ‖ Q ‖2= q2

0 + q2
1 + q2

2 + q2
3

Each rotation matrix R = eω̂θ correspond to a unit quaternion defined
as Q = (cos(θ/2), ω sin(θ/2)). It can be proved that if Qab correspond to a
rotation of frame A to B and Qbc correspond to a rotation of frame B to C, then
the rotation between frame A to C is given by the quaternion Qac = Qab ·Qbc.
An alternative representation of rotations, often used in computer vision, is
the unit quaternion, Given a unit quaternion Q = (q0,

−→q ) the corresponding
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rotation is given by θ = 2 cos−1(q0) and ω = k−→q with k = 1/ sin(θ/2), if
θ &= 0, ω = 0 otherwise.

The 3x3 rotation matrix R in terms of the unit quaternion is directly given
by:

R =




q0

2q1
2 − q2

2 − q3
2 0 0

0 1 0
0 0 1





Quaternions give a global parametrization of SO(3), at the cost of using four
numbers instead of three to represent a rotation. Since the quaternions space
has a group structure that directly corresponds to that of rotations, they
provide an efficient representation without suffering from singularities.

Rigid body displacements usually are not limited to pure rotations (even
if pure rotations represent an important subset), but they generally consist of
rotations and translations. Pure translations have a very simple representa-
tion: given two co-oriented frames A and B, with pab the representation in A
of the origin of B, for any point q ∈ R3, qa = pab + qb. Pure translations can
be represented by 3D vectors.

A rigid body motion (a rigid body displacement) then can be represented
by pab ∈ R3 and R ∈ SO(3). The Cartesian product of R3 with SO(3),
represents all the rigid body motions and it is denoted as SE(3) (that stands
for special Euclidean group):

SE(3) = {(p, R) : p ∈ R3, R ∈ SO(3)}

Each element of SE(3) serves both as a specification of a rigid body place-
ment (with respect to a fixed environment frame) and as a transformation
taking the coordinates of a point from one frame to another. If a is a 3D point
and a′ is its corresponding point after a rigid transformation is applied, then
the following relation holds:

a′ = Raba + pab

The above can be expanded into:



a′

x

a′
y

a′
z



 =




r11 r12 r13

r21 r22 r23

r31 r32 r33



+




px

py

pz





The transformation of points can be usefully represented using the homo-
geneous representation . The homogeneous representation maps points and
vectors in a 4D space, by adding a forth coordinate. The homogeneous coor-
dinates of a point q = (q1, q2, q3) are q̄ = (q1, q2, q3, 1), while the homogeneous
coordinates of a vector v = (v1, v2, v3) are v̄ = (v1, v2, v3, 0). Then a rigid
transformation becomes:

ā′ =
[

a′

1

]
=
[

Rab pab

0 1

] [
a
1

]
= gabā

The 4 × 4 matrix ‘gab is called homogeneous representation of g =
(pab, Rab) ∈ SE(3). Within homogeneous representation we obtain a linear
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representation of rigid body motions, and the standard matrix multiplication
is the composition rule for rigid body motion.

Homogeneous coordinates are useful for representing twists . A twist is a
couple (v, ω̂), with v ∈ R3 and ω̂ a skew-symmetric matrix. A twist can be
written as:

ξ̂ =
[

ω̂ v
0 0

]

Of course ξ̂ ∈ R4x4, while the twist coordinates ξ = (v, ω) ∈ R6. It can be
proved that the exponential of a twist multiplied by a scalar, is an element
of SE(3), that is, it represents a rigid transformation. Conversely it can be
proved that every rigid transformation can be written as the exponential of
some twist, that is, given a g ∈ SE(3), there exists a twist ξ̂ and θ ∈ R such
that g = exp(ξ̂θ). It is important to remind the reader that the exponential
map is many-to-one and hence the choice of ω and θ may not be unique for
solving the rotational component of the motion.

The concept of twist helps us to show that every motion is a screw motion.
A screw motion is a motion which consists of a rotation about an axis in space
by an angle of θ, followed by a translation along the same axis by an amount
d. This motion is called a screw motion since it remind us to the actual motion
of a screw that rotate and translates about the same axis. A screw consists
of an axis l, a pitch h and a magnitude M , while a screw motion represents
rotation by an amount θ = M , about the axis l followed by a translation
parallel to the axis l by an amount hθ. The overall rigid displacement can be
computed and it results as:

g =
[

eω̂θ (I − eω̂θ)q + hθω
0 1

]

If we choose v = −ω × q + hω, the twist coordinates ξ = (v, ω) generate
the given screw motion. Going one step further it can be proved that it is
possible to define a screw associated with every twist. Finally it is possible to
conclude that every rigid body motion can be realized by a rotation about an
axis combined with a translation parallel to that axis.

5 Determination of 3D Rigid Transformations

In this section we review solutions for problem 1, as formulated in section 3.
Consider two sets of points A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bm} in
3D space with the same cardinality. Assume that point correspondences are
known, i.e. that point ai corresponds to the point bi. The problem is to derive
the rigid body transformation that optimally maps A into B. This problem is
known as the absolute orientation problem. Points measurements are affected
by some noise and errors, due both to the estimation of the point coordinates
and to the determination of the point correspondences. Formally speaking
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this problem can be stated as a minimization problem, according to the least
square error criterion.

In the literature there exist a large numbers of algorithms that compute
3-D rigid transformation between two sets of geometrical features. For our pur-
poses, it is interesting to review some of the most popular closed-form solution
using correspondent points [39]. The rotational and translational components
are computed as solutions to a least square formulation of the problem. The
proposed approaches differ mainly in the transformation representation. The
first was developed by Arun, Huang and Blostein [4] and it is based on com-
puting the singular value decomposition (SVD) of a matrix.

The problem has been formalized as a particular version of the well-studied
orthogonal Procrustes problem , that can be stated as it follows:

minimize ‖ A − BR ‖ with respect to R, subject to RT R = I

where A, B ∈ Rm×3 are given by the set of 3-D vectors ai, and the set of 3-D
vectors bi, respectively, and R ∈ R3×3, is orthogonal.

This problem is equivalent to the following one:

maximize trace(RT BT A) with respect to R, subject to RT R = I

In fact

(A − BR)(A − BR)T = trace(AT A) + trace(BT B) − 2trace(RT BT A)

This problem can be approached using “The Singular Value Decomposition
(SVD) Theorem”, that can be stated as follows: Theorem. If A is a real m-by-

n matrix then there exist two orthogonal matrices U ∈ Rm×m and V ∈ Rn×n

such that UT AV = diag(σ1, . . . , σp), p = min{m, n} where σ1 ≥ σ2 ≥ . . . ≥
σp ≥ 0. The problem of maximizing trace(RT BT A) can be solved through

the computation of the SVD of BT A. In fact let Σ be the SVD of BT A, that
is

Σ = UT (BT A)V = diag(σ1, σ2, σ3)

and we define a new orthogonal matrix Z = V T RT U . Then we obtain:
trace(RT BT A) = trace(RT UUT (BT A)V V T = trace(RT UΣV T ) then

trace(RT UΣV T ) = trace(V T RT UΣV T V = trace(ZΣ)

The previous expression can be rewritten as:

trace(RT UΣV T ) = trace(ZΣ) =
3∑

i=1

ziiσi

as Z is orthogonal the best choice for R is obtained when Z becomes the
identity matrix. Hence R = UV T
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This general method proves itself useful for computing 3-D rigid transfor-
mation estimation between two sets of corresponding points. The algorithm
can be sketched as a two step algorithm. The first step computes the op-
timal rotation matrix R using the 3x3 correlation matrix H =

∑N
i=1 aibT

i

through its singular value decomposition (H = Udiag(σ1, σ2, σ3)V T ) obtain-
ing R = V UT . The second step computes the optimal translation vector as
P = a − Rb.

A similar approach computes the eigenvalues of a proper derived matrix
(the orthonormal matrices ) instead. It was proposed by Horn, Hilden and
Negahdaripour [25]. With this method the correlation matrix H is firstly
computed. However, rather than computing its SVD, a polar decomposition
is used, such that H = RS, where S = (HHT )1/2. The optimal rotation is
given by:

R = HT

(
1√
λ1

u1u
T
1 +

1√
λ2

u2u
T
2 +

1√
λ3

u3u
T
3

)

where {λi} and {ui} are the eigenvalus and eigenvectors of the matrix HHT .
Representing rotations using unit and dual quaternions gives two more

techniques that have been proposed respectively by Horn [28] and by Walker,
Shao and Voltz [56]. The former method asks to rewrite the minimization
problem in the quaternion framework. A new 4x4 matrix can be constructed
from the correlation matrix H as:

K =

H00 + H11 + H22 H12 − H21 H20 − H02 H01 − H10

H12 − H21 H00 − H11 − H22 H01 + H10 H20 + H02

H20 − H02 H01 + H10 H11 − H00 − H22 H12 + H21

H01 − H10 H20 + H02 H12 + H21 H22 − H11 − H00

The optimal rotation is the eigenvector related to the largest positive eigen-
value of K.

The latter method is the most significantly different of the four. It was
designed ot minimize the equation;

Σ2 =
∑L

i=1 αi ‖ n1i − Rn2i ‖2 +
∑N

i=1 βi ‖ ai − Rbi − P ‖2

where {n1i} and {n2i} are two sets of corresponding unit normal vectors,
and {αi}, {β} are weighting factors reflecting data reliability. Dual quater-
nions for representing both rotation and translation are used and again the
minimization problem can be rewritten in this new framework, resulting in
new equations involving the parametrization of the dual quaternions. Again
optimal values for R and P can be computed.

These four algorithms can be compared with respect to their accuracy,
stability and efficiency [40]. Experimentations shows that no one algorithm
is superior in all case. In fact difference in accuracy (on nondegenerate 3-D
point sets) is almost insignificant. Stability is more discriminant instead. The
SVD and the unit quaternion method are very similar and usually the most
stable. In terms of efficiency, the orthonormal matrix looks quicker with small
data sets, while the dual quaternions method is superior with larger data
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sets (according to proper computer memory configuration). In conclusion, the
SVD should provide the best stability and accuracy, even if is not as efficient
as dual quaternions with large data set. Otherwise the unit quaternions can
be chosen on smaller data set for slightly better speed performance.

6 Geometric Pattern Matching

In this section we focus on the Hausdorff distance, defined in section 3, and
review both theoretical and practical approaches to compute it.

Much work has been done on the computation of the Hausdorff distance.
In the area of computational geometry exact algorithms have been studied for
the problem of deciding whether there exist a transformation that maps one
set of points into another set within a given distance. Fundamental robust-
ness issues are discussed in [3]. Chew et al. [10] have considered the problem
of matching point-sets in a d-dimensional space using the Hausdorff distance
under translation only. For the case d = 3, they provide exact solutions in
O(n3 log2 n) time. Extensions [11] to the more general case of Euclidean mo-
tion and of sets of segments have obtained exact solutions in O(n6 log2 n)
time. However they are limited to the case of planar sets.

Exact algorithms cannot be used in most practical applications where mea-
surement errors and noise are present; furthermore, the high computational
complexity of the exact algorithms make them impractical for use in real prob-
lems. For these reasons, approximate solutions for the case of point sets, both
in 2-dimensional and in 3-dimensional space, have been considered [15].

In the field of computer vision, an efficient multi-resolution technique for
comparing images using the Hausdorff distance has been presented in [29]
where the space of possible transformations is limited to translations and scal-
ing; in [48] the above technique is extended to affine transformations. Affine
transformations are used in [24] for matching point sets. Other approaches
to matching sets of segments in 3D space based on various techniques and
metrics are given in [9], [24], [31]

The computation of the Hausdorff distance does not necessarily produce
a one-to-one correspondence between the elements of the two sets; it may
happen, in fact, that multiple elements in one set are associated with a sin-
gle element of the other set. This is unlike most existing object recognition
methods that give an explicit pairing.

Approaches have been proposed for the computation of the Hausdorff dis-
tance between sets of segments associated to secondary structures [10]. The
standard Hausdorff distance provides a good metric over point sets but does
not preserve the notion of relevant subsets like the segments. To keep infor-
mation relative to the line segments in the definition of the distance function
an alternative definition of the Hausdorff metric between sets of segments has
been introduced in [23], together with efficient approximate algorithms for its
computation Given two sets A = {a1, a2, · · · , am} and B = {b1, b2, · · · , bn} of
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line segments ai and bj, the Segment Hausdorff distance HS(A, B) between
A and B is:

HS(A, B) = max(hS(A, B), hS(B, A))),

where hS(A, B) is the one-way Segment Hausdorff distance given by:

hS(A, B) = max
ai∈A

(
min
bj∈B

H({ai}, {bj})
)

The matching strategy is essentially an alignment that selects a few “rep-
resentative” segments of the set A and computes a rigid transformation based
on an hypothesized correspondence between the representative segments of A
and a group of segments of B. It then verifies the hypothesis by computing
the distance measure for such a transformation. The above steps are repeated
for all possible groups of segments of A. More precisely, the algorithm looks
for a rigid body transformation g (translation plus rotation) that minimizes
the distance between two sets of segments, A and B and it consists of the
following three main steps:

Step 1 determine a translation P ;
Step 2 determine a rotation R;
STep 3 evaluate the distance between g(A) and B, where g is the combined

transformation.

The rigid body transformation is obtained by selecting three representa-
tives for each of the two sets A and B that are affine independent elements.

First, a representative segment a for A is randomly chosen. This repre-
sentative is paired with each element b of B. For each such pair (a, b), the
translation P is defined by taking the mid-point am of a into the mid-point
bm of b. This choice of the translation minimizes the distance between the
transformed segment P (a) and b.

To define the rotation, two additional independent elements of A are
needed. The second representative a′ is chosen as the segment containing
the point a′

f farthest from am. The third representative segment a′′ is chosen
so that it contains the point a′′

d at maximum distance from the line ama′
f . It

is easy to see that the points a′
f and a′′

d must each be an endpoint of some
segment. The condition that is enforced is the affine independence of the three
points am, a′

f and a′′
d . These choices bind the error due to the approximation.

The next step of the algorithm is to choose the segments b′ and b′′ of B in
all the m2 possible ways. For each b′ and each endpoint of b′, consider the
rotation that has origin in am and that makes a′

f and am to become collinear
with the endpoint of b′. Define R′ as the one of the above rotations that min-
imizes the distance between a′

f and the endpoints of b′. Then define R′′ to be
the rotation about the axis ama′

f that brings a′′
d closest to an endpoint of b′′.

Apply the transformations R′′R′P (A). Finally choose over all the triplets b,
b′ and b′′ the transformation g that resulted in the smallest distance.
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The time complexity of the overall algorithm is O(mn3 log n). In fact,
using the Hausdorff metric, the nearest neighbor query in a set of segments
(to identify the segment of B “closest” to a segment of A), reduces to a nearest
neighbor query among points in R6 that can be performed in optimal O(log n)
time within a known error bound. It is shown that the error introduced with
the approximation is within a bounded factor from optimal. This bound is
the same as the bound obtained in [15] for the simpler case of point sets.

Experiments have been conducted on several proteins and the results were
consistent with previous studies. As an example presented in [22], figure 6
shows the superposition of two sets of segments associated to proteins 1rpa
and 1rpt, with very similar structures.

Fig. 6. The alignment of proteins 1rpa (red segments) and 1rpt (green segments)

7 Indexing Techniques

Indexing techniques, initially proposed in the field of computer vision by Wolf-
son et al., have found interesting applications in the area of bioinformatics.
Indexing or geometric hashing provides a way to efficiently search a large
database of proteins by storing redundant transformation invariant informa-
tion about the proteins in a hash table, from which this information can be
easily retrieved. The construction of the hash table, that constitutes the most
complex part of the entire process, is done off-line at a preprocessing stage.

Indexing techniques have been applied to compare proteins at different
levels of representations [2], [8], [13], [14], [32], [36], [55] (see also the chapter
by H. Wolfson of this volume).

One major distinction of the comparison approaches is whether they are
order dependent or order independent, in other words whether the use the
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order of the elements along the protein chain as a constraint in the correspon-
dence process. Indexing techniques do not take into consideration the order of
elements (either points or secondary structures) along the chain and therefore
fall into the category of order-idenpendent methods.

For matching 3D point sets, quadruples of points are used to define ref-
erence frames or bases in which the coordinates of all other points remain
invariant. Models are stored into the table by considering all possible combi-
nations of quadruples of points as bases and using the invariant coordinates
of the remaining points to index the table. At recognition time, if the correct
quadruple of points is chosen from the image points, the candidate matches
are efficiently retrieved from the corresponding entries of the hash table.

Here we concentrate on the application of hashing techniques at the sec-
ondary structure level involving transformation invariant properties of vectors
associated to the secondary structures. The programs 3dSEARCH [51] and
3d-Lookup [26], based on hashing, compute geometric properties of pairs of
secondary structures. They both construct the hash table by a procedure that
consists of the following steps for the insertion of a protein in the database:

Step 1. For each pair of vectors of the protein, compute a reference frame
or coordinate system identified by the two endpoints of one vector and by
the orientation of the other vector.

Step 2. For each remaining vector in the protein, compute its coordinates
in the reference frame defined in the previous step 1.

Step 3. The coordinates are quantized into fixed size interval and used to
access the entry of the table corresponding to those coordinates where the
following pair of information is stored: 1) name of the protein that hashed
into it; 2) identifiers of the two vectors used as reference frame.

Once the hash table is built, each secondary structure vector from the given
query structure is simultaneously compared to the entire library of target
structures by simply indexing into this table. Thus, to compare a query protein
to all target proteins the above step 1 and 2 are repeated for the query protein.
Step 3 is replaced by the following:

Step 3’ The coordinates are quantized into fixed size interval and used to
access the entry of a 3d table corresponding to those coordinates where a
vote is cast to every pair (protein name, two vector identifiers) present at
that entry.

At the end of the process the proteins in the table which obtained the most
votes are the candidates for matching.

A recently proposed approach [21] considers triplets of secondary struc-
tures rather than pairs to build the hash table. The three dihedral angles
associated to all triplets of secondary structures are used to index a hash ta-
ble. Let (si, sj , sk) be a triplet of segments, where s corresponds either to an
α-helix or a β-strand. Let αsr be the dihedral angle formed by two segments
s and r. The dihedral angle between two segments is the angle formed by
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the two planes perpendicular to the straight lines containing the segments
themselves and therefore is defined in the range [0, 180].

The triplet of segments (si, sj , sk) is then described by the three angles
(αij , αjk, αki). The three angles, quantized into uniform intervals, provide
three indeces for the table; a fourth index triplet type is used to access the
table; it depends on the types of the secondary structures in the triplets,
whether all α helices, one α helix and two β strands and so forth. Thus a
4-dimensional table is constructed during the set up phase of the method. No
explicit information is present in the tables about the order of the segments
along the polypeptide chain.

Each entry of the table keeps a record of each triplet hashed into it. The
record contains the following information: 1) the name of the protein, 2) the
identifiers for the three vectors, 3) the pairwise distances between the three
vectors. Such distances are used to filter incorrect hypotheses of associations
in the matching process, because false results could be obtained based on
angular information only. The distance is measured as the distance between
the middle points of two segments.

The construction of the table is computation intensive; it requires O(n3)
time, for n secondary structures. Once it is built it allows fast retrieval of
candidate matches between the query protein and the proteins stored in the
database. The space requirements for this approach may be high. However,
the table is only partially occupied since the three angles are related by the
triangular inequality.

The table can be queried to find similarities in the arrangement of the sec-
ondary structures of a query protein with the proteins stored in the database.
A protein P is matched against the database of proteins by the following
procedure:

Step 1 For each triplet (si, sj, sk) of secondary structures of P , compute the
three angles (α, β, γ) and the three distances of the associated segments.

Step 2 Access the cell of the hash table indexed by (α, β, γ, triplet type)
and tally a vote for each entry in the cell with similar distance values.

Step 3 Formulate and rank hypotheses of matching by determining the
proteins with the highest number of votes.

The verification of the hypothesized matches may be performed by a pair-
wise comparison between the proteins, either at the level of secondary struc-
tures [23] or by extending the matching to residue level.

Once compiled, the table can be used for different types of comparisons,
for instance for all-to-all structure comparison.

Experiments have been conducted that consisted in building the hash table
for all proteins in the PDB (approx. 14.000) have shown that the approach is
both robust and efficient. The construction of such a table for approximately
350 representative proteins from the PDB has led to interesting observations
about the distribution of the angles of the secondary structures which deviate
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from the distribution of randomly chosen vectors more significantly than one
would have expected [47].

8 Graph-Theoretic Approaches

Here we give a brief description of the use of graphs to represent protein
structures and of the techniques used to identify common substructures within
proteins or to search for specific patterns in databases of molecules. Early work
on protein matching based on graph theory was done by Brint and Willett
[7]. To compare two or more structures, the method generates a graph of
correspondences where each node represents a pair of atoms, one for each
protein, and an edge connects two nodes (a, b) and (a′, b′) if the difference
of the distances d(a, a′) and d(b, b′) is below a certain tolerance. Problem 3
defined in section 3, that is finding a maximum-cardinality set of element pairs
such that the distance between each pair is at most a given value δ, can then
be restated as one of determining the maximal clique of a graph. Finding a
clique in a graph is a well known NP-complete problem.

In [57] graph isomorphism is used to search for pharmacophoric 3D pat-
terns in a database. The method of representation of a 3D structure is the
connection table, which contains the list of all atoms of the structure together
with the bond information that describes the way in which the atoms are
linked together. The connection table is basically a graph where the nodes
represent the individual atoms and the edges represent interatomic distances.
The graph is complete in the sense that there is an edge connecting every pair
of nodes. A variant of this graph is obtained by using angular information to
label the edges. The angle can be either the torsion angle or the valence angle
defined as the angle between three bonded atoms. The presence of a query
substructure in a database can be tested by means of a subgraph isomorphism.
Subgraph isormorphism is computationally expensive and therefore cannot be
used to test all entries in the database. Thus a screening strategy is suggested
to reduce the overall execution time by eliminating most of the entries of
the database from consideration by subgraph isomorphism. This screening is
analogous of an index technique in that it provides access to a small fraction
of the database by a preprocessing operation that groups all elements with
similar characteristics. An extension to flexible matching is provided as well.

The approach by Escalier at al. [12] finds the largest similar subsets of
atoms by recursively building subsets of increasing sizes, combining two sub-
sets of size k to build a subset of size k + 1. Two subsets can be combined
to form a larger one if they differ in one element only and their inter-atomic
distances are all below a given threshold. Thus, this problem is equivalent to
a clique finding problem. A suitable tree data structure allows an efficient im-
plementation of the merge operation. As stated by the authors, the approach
is suitable for small (less than 30 atoms) molecules. For larger structures such
as proteins, a brute force application of the algorithm may lead to unreason-



Geometric Methods for Protein Structure Comparison 77

able execution times. Heuristics have to be introduced to reduce the amount
of computation. One such heuristic is to split the problem in two parts: the
first is to identify local fragments and the second is to assemble them together.

A graph-based approach was used in [20], [41] to compare secondary struc-
ture motifs in proteins. Proteins and motifs are represented as labelled graphs
with the nodes corresponding to the segments associated s to secondary struc-
tures and the arcs to the angular and spatial relations between segments. Sub-
graph isomorphism is used to identify common structural patterns in pairs of
proteins or to search for motifs in the PDB. The Ullman’s algorithm for sub-
graph isosmorphism [54] was found to be sufficiently fast for the search of
small motifs from he PDB. Chains of lines segments, corresponding to ei-
ther secondary structures or to linear representation of other fragments of the
backbone have also been considered [1].

9 Integration of Methods for Protein Comparison Using
Different Representations

Different representations offer richer source of information that can be used
in the comparison. This approach has been already investigated in the litera-
ture resulting in effective tools. Alignment of superfamily members has been
obtained through conservation of structural features such as solvent accessi-
bility, hydrogen bonding and the presence of secondary structures [42], [45],
[50], [53].

An hierarchical protein structure superposition using both secondary
structures and backbone atoms was recently proposed by Singh and Brutlag
[51]. The local alignment of secondary structures is obtained by a variation of
the Smith-Waterman dynamic programming algorithm [52]. A score function
is used in the dynamic programming to measure the degree of similarity be-
tween pairs of vectors (linear segments) and is an attribute that may be either
orientation independent (like the angle between two vectors within the same
protein) or orientation dependent (like the angle between two vectors corre-
sponding to two structures each belonging to one protein of the pair). Other
attributes may relate distances between segments within the same or differ-
ent proteins. The expression for the score function S used in this approach,
similar to that used by Gerstein and Levitt [18], is given by:

S = 2M
1+[d/d0]

2 − M

where M is a weighting factor for the attribute being measured, d the attribute
value and d0 is the value at which the score should be 0. An important choice
of a dynamic programming approach is how to assign gap penalties. For sec-
ondary structure alignment it may be appropriate to decide to introduce no
penalty because often the deletion of a secondary structure is due to an incor-
rect assignment in the PDB or to a mutation that changed a single secondary
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structure element, say a strand, into two structures or converted a strand into
a turn.

Once an initial superposition of the secondary structures has been obtained
by the dynamic programming algorithm, it is refined by iteratively minimizing
the RMSD between pairs of nearest atoms from the two proteins. An inter-
esting feature of the approach is that it does not simply rely on RMSD for
judging the quality of the alignment but it takes into consideration also the
number of “well” aligned atoms. Well aligned atoms define the “core” of the
proteins and are selected as follows. Pairs of atoms, one atom from each pro-
tein, are selected so that each atom of the pair is the nearest atom of the other
atom of the pair in the other protein. Furthermore, to be included in the core,
such pairs of atoms have to satisfy the co-linearity property i.e. if (i, j) and
(h, k) are two such pairs and i < h then it must be j < k. Thus this method
is order-dependent, according to one major classification of protein compar-
ison approaches. The last step of the algorithm is to try to improve on the
superposition of the core atoms even at the cost of degrading the alignment
of the rest of the atoms.

The algorithm is efficient in terms of computational complexity and spends
most of the execution time on the secondary and atomic alignment and a small
fraction on the alignment of the core structures.

10 Conclusions

The problem of protein comparison can be successfully approached by first
considering the related geometric issues. In the paper, the power and limita-
tions of the different algorithms for protein structure comparison have been
reviewed and discussed. Most of them have already proved their utility in
computer vision and image processing, as well as in robotics, astronomy and
physics. Their use in molecular biology and bioinformatics opens new perspec-
tives for developing integrated methods for protein comparison, classification
and engineering. Even if the different methods have been introduced to be
used within different applications (characterized by different requirements),
they solve particular instances of a more general matching problem, as deeply
investigated in the area of computational geometry. The variety of protein
representations supports the reasoning both at the level of points (i.e. atomic
level) and at level of segments (or secondary structures). Estimation of rigid
transformations with different metrics is an important technique within the
protein structure comparison algorithms. Moreover geometric indexing tech-
niques prove their effectiveness in searching large protein databases. Finally,
graph-theoretic protein modeling helps in designing algorithms for substruc-
ture identification and comparison.

From the current research it has been recognized that the combination
of different methods and different protein representations may result in new
and effective algorithms with decreased computational complexity and better
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speed. Solvent accessibility, hydrogen bonding and the presence of secondary
structures can be considered together in the alignment of superfamilies, while
a hierarchical protein structure superposition can be obtained using both sec-
ondary structures and backbones atoms. For a better characterization of the
proteins functions and their evolutionary information, geometric reasoning
should be coupled with some proper chemical consideration involving hy-
drophobicity, charge, etc. The goal is to use domain-specific information for
allowing a better pruning of the possible association choices at a very early
stage of the matching process.
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