
Original Citation:

Recovering a probabilistic knowledge structure by constraining its parameter space

Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as
described at http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/2452678 since:

10.1007/s11336-008-9095-7

Università degli Studi di Padova

Padua Research Archive - Institutional Repository



PSYCHOMETRIKA—VOL. 74, NO. 1, 83–96
MARCH 2009
DOI: 10.1007/S11336-008-9095-7

RECOVERING A PROBABILISTIC KNOWLEDGE STRUCTURE BY CONSTRAINING
ITS PARAMETER SPACE

LUCA STEFANUTTI AND EGIDIO ROBUSTO
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In the Basic Local Independence Model (BLIM) of Doignon and Falmagne (Knowledge Spaces,
Springer, Berlin, 1999), the probabilistic relationship between the latent knowledge states and the observ-
able response patterns is established by the introduction of a pair of parameters for each of the problems:
a lucky guess probability and a careless error probability. In estimating the parameters of the BLIM with
an empirical data set, it is desirable that such probabilities remain reasonably small. A special case of
the BLIM is proposed where the parameter space of such probabilities is constrained. A simulation study
shows that the constrained BLIM is more effective than the unconstrained one, in recovering a probabilis-
tic knowledge structure.

Key words: probabilistic knowledge structures, basic local independence model, constrained parameter
estimation.

1. Introduction

Given a collection Q of problems (or items) in some domain, in knowledge space theory
(Albert, 1994; Albert & Lukas, 1999; Doignon & Falmagne, 1985, 1999; Falmagne, Doignon,
Koppen, Villano, & Johannesen, 1990), the knowledge state of a student is the collection K ⊆ Q

of all problems that this student is capable of solving. A knowledge structure is a pair (Q, K),
where K is a collection of knowledge states, which contains at least the empty set and Q. Typi-
cally, not all subsets of the full set Q are knowledge states. Assumptions on a dependence relation
among the items are usually made and these assumptions are restrictions that determine which
subsets of Q are states and which are not (see, e.g., Falmagne et al., 1990). Only those subsets
that are consistent with such assumptions belong to the knowledge structure K.

A probabilistic knowledge structure (PKS) is a knowledge structure (Q, K) equipped with a
probability distribution π on the knowledge states (Falmagne & Doignon, 1988). It is essentially
an unrestricted latent class model where the latent classes are the knowledge states. The proba-
bilistic relationship between the latent knowledge states and the observable response patterns is
established by the introduction of a pair of parameters for each of the dichotomous items: a lucky
guess probability and a careless error probability.

In estimating a PKS with an empirical data set, it is desirable that such probabilities remain
reasonably small. A lucky guess or a careless error equal or greater than, say, 0.5 would be
rather difficult to interpret. A possible interpretation is that the data are highly noisy: 50% of the
students who master a given problem fail it by careless error. Conversely, 50% of those students
that are not capable of solving a given problem solve it by chance. In such a situation, the data
set would be classified as too noisy, and thus discarded.

There is however another interpretation which is related to the fit of the model. Suppose
the data have been generated by some “true” but unknown knowledge structure K with small
lucky guess and careless error probabilities. What happens if an incorrect model K′ �= K is fitted
to these data? The simulation study described in Section 3 shows that an incorrectly specified
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model has good chances to obtain an acceptable or even a good fit by an ad hoc inflation of the
careless error and lucky guess probabilities. In a comparative sense, the correct model K and the
incorrect model K′ will not differ that much in terms of likelihood.

A simple and straightforward way to avoid such an inflation is to constrain the lucky guess
and careless error probability estimates within a certain, reasonably small, interval. A constrained
version of the BLIM is developed (C-BLIM), maximum likelihood parameter estimation for the
C-BLIM is derived and the model is explored through a series of simulation studies.

The rest of this section is an overview of the basic local independence model (BLIM) for
probabilistic knowledge structures (Falmagne & Doignon, 1988). Maximum likelihood estima-
tion for the parameters of the C-BLIM is introduced in Section 2. Section 3 presents a simulation
study in which the implications of the C-BLIM are explored and discussed.

1.1. The Basic Local Independence Model (BLIM)

This section is a brief overview of a probabilistic model for knowledge structures proposed
by Falmagne and Doignon (1988) in the context of efficient knowledge assessment. The relation-
ships between this model and other similar models in the literature on cognitive diagnosis are
briefly discussed at the end of the section. Let Q be a nonempty finite set containing n distinct
dichotomous items, and K be a knowledge structure on Q. Both Q and K are fixed throughout
the section.

The binary response pattern (collection of binary responses to the items in Q) of a student
randomly sampled from the population is represented by a discrete random variable R whose
realizations are vectors r ∈ {0,1}n. The kth element of r is equal to one if the student’s response
to the kth item on an n-item knowledge assessment exam is correct and the kth element of r is
equal to zero otherwise (k = 1, . . . , n). The unknown knowledge state of this student is repre-
sented by a discrete random variable K whose realizations are elements K ∈ K. The probability
of sampling a student whose response pattern is r is denoted by P(R = r), and the probability
that the knowledge state of this student is K ∈ K is denoted by P(K = K).

The connection between the observable response patterns and the unobservable knowledge
states is given in the BLIM by the following unrestricted latent class model (see, e.g., Goodman,
1974; Haberman, 1979)

P(R = r) =
∑

K∈K
P(R = r|K = K)P (K = K), (1)

where P(R = r|K = K) is the conditional probability that the response pattern of a randomly
sampled student is r ∈ {0,1}n given that his knowledge state is K ∈ K.

The BLIM is then characterized by three types of parameters: a parameter πK specifying
the probability P(K = K) of each knowledge state, a careless error parameter αq and a lucky
guess parameter βq for every item q ∈ Q. The parameter αq is interpreted as the probability
P(Rq = 0|q ∈ K) that a student will fail q given that this item is indeed solvable from his
knowledge state. The parameter βq specifies the probability P(Rq = 1|q /∈ K) that a student
solves q given that this last is not in his knowledge state.

Let the response patterns in {0,1}n be indexed by i ∈ {1,2, . . . ,2n} and the knowledge
states in K be indexed by j ∈ {1,2, . . . ,m := |K|}. Assuming local independence among the
responses, given the knowledge states, the conditional probability of a response pattern ri given
state Kj ∈ K takes on the form

P(R = ri |K = Kj) =
n∏

k=1

[
α

1−rik
k (1 − αk)

rik
]wjk

[
β

rik
k (1 − βk)

1−rik
]1−wjk , (2)
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where rik ∈ {0,1} is the kth element of response pattern ri , and the membership indicator for item
k and knowledge state Kj is defined such that: wjk = 1 if k is an element of Kj and wjk = 0
if k is not an element of Kj . Equations (1) and (2) are the two basic equations of the BLIM. As
already stated, the model applies to dichotomous items. Concerning possible extensions of the
BLIM to polytomous items, a good starting point could be the approach followed by Schrepp
(1997). Another important issue that is not considered in the present version of the BLIM is that
of missing data. Although an extension of the model to this case seems not difficult to obtain, it
will not be considered in the present article.

There are close connections between the BLIM and other models often used in cognitive di-
agnosis. The more closely related one is the so-called DINA (Deterministic Inputs Noisy AND-
gate) model (Haberman, 1979; Junker, 2001; Macready & Dayton, 1977); see also in this connec-
tion, Maris (1999). There are essentially two main differences between the DINA and the BLIM.
In the first place, the DINA model assumes the existence of a latent set of skills (or discrete
cognitive components) each of which can be either present or absent in an individual, and that
are used in a conjunctive manner to solve the items. This assumption is not made in the BLIM
model, as it is developed on the level of the items and on the possible knowledge structures on
the set Q of items. Secondly, in the DINA, a knowledge state is defined as any subset of skills,
while a knowledge structure in the sense of Doignon and Falmagne’s theory is typically a strict
subset of the powerset on Q (i.e., not all subsets of Q are knowledge states, in general). Further
parallels could be found between the two types of models, but they will not be discussed here.

1.2. Estimation of the BLIM

The basic local independence model is essentially a latent class model where the latent
classes are the knowledge states in K. Therefore, maximum likelihood estimates of the three
types of parameters α, β, and π of the model can be obtained by an application of the
expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).

The observed data sample is a s ×n binary matrix X whose each row is the response pattern
of a single subject to the n different items. Every single entry in the matrix X is denoted by
xvk ∈ {0,1}, where xvk = 1 if and only if subject v solved item k.

The knowledge states of the subjects are obviously unknown, but if there was complete
information, every single subject v would be represented by a pair (xv,Kv) where xv is a 1 × n

binary vector representing the response pattern of v and Kv ∈ K is the knowledge state of that
subject. Indicating with Y the collection of all such pairs in an empirical sample, the complete
data log-likelihood of the model is

�(Y|α,β,π) =
s∑

v=1

lnP(xv,Kv|α,β,π), (3)

where P(xv,Kv|α,β,π) is the joint probability of response pattern xv and knowledge state Kv

given the model parameter vectors α, β and π . In the iteration t + 1 of the EM algorithm, the
conditional expectation of the complete data log-likelihood �(Y|α,β,π) is maximized, given
the observed data X, and the parameter values αt , β t , π t obtained in a previous iteration of the
algorithm.

Let P(xv|Kj ,α,β) be the conditional probability of response pattern xv given knowledge
state Kj ∈ K and parameter values α and β . The Bayesian posterior probability of knowledge
state Kj given response pattern xv and previous estimates αt and β t of the parameters α and β

is

pjv,t := P(xv|Kj ,αt ,β t )πjt∑m
l=1 P(xv|Kl,αt ,β t )πlt

,
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where m = |K| is the total number of knowledge states in the model. Then the conditional ex-
pected log-likelihood of the complete data at iteration t + 1 turns out to be

L(α,β,π) :=
s∑

v=1

m∑

j=1

ln
[
P(xv|Kj ,αt ,β t )

]
pjv,t +

s∑

v=1

m∑

j=1

ln(πjt )pjv,t (4)

and the parameter values that in this iteration maximize L(α,β,π) are

αk,t+1 =
∑s

v=1
∑m

j=1 pjv,t (1 − xvk)wjk∑s
v=1

∑m
j=1 pjv,twjk

and

βk,t+1 =
∑s

v=1
∑m

j=1 pjv,t (1 − xvk)(1 − wjk)∑s
v=1

∑m
j=1 pjv,t (1 − wjk)

for each item k and

πj,t+1 = 1

s

s∑

v=1

pjv,t

for each knowledge state Kj ∈ K.

2. Parameter Estimation in the Constrained BLIM

In this section, maximum likelihood parameter estimation is proposed in which the log-
likelihood of the BLIM model is maximized, subject to the constraint that the parameters α and
β are less or equal to some constant λ ∈ [0,1]. Since α and β are probability values, it is clear
that with λ = 1 the constrained maximization problem reduces to an unconstrained one.

Since maximization of the likelihood corresponds to minimization of the negative log-
likelihood, the general setup of the problem is to minimize a nonlinear function f (x) subject
to the inequality constraints gl(x) ≥ 0, l = 1,2, . . . , I . An optimization method which solves
this problem is any method which provides a solution satisfying the Karush–Kuhn–Tucker con-
ditions (see, e.g., Wright, 1997). One such method is the so-called log-barrier, in which the
original constrained minimization problem is converted to an unconstrained one, and the func-
tion to be minimized takes on the general form

h(x,μ) := f (x) − μ

I∑

l=1

ln
[
gl(x)

]
,

where μ ≥ 0 is a penalty parameter. It is easily seen that as gl(x) tends to zero, h(x,μ) ap-
proaches +∞, thus providing a “barrier” to crossing the boundary.1

Given an initial and sufficiently large value μ0 of the penalization parameter, the minimiza-
tion procedure takes place in a finite number of steps. In each new iteration t +1, the penalization
parameter μ is gradually decreased by some amount (say, μt+1 = cμt , for 0 < c < 1) and an un-
constrained maximization of the function h(x,μt+1) is done.

If the initial guesses of the parameter estimates belong to the feasible region (i.e., all in-
equality constraints are satisfied at the outset) then: (a) if some local minimizer of the function
f is an interior point of the feasible region, the barrier algorithm will reach such point otherwise

1A similar approach, but in a different context, is that of Houseman, Coull, and Betensky (2006).
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(b) if such a minimizer lies outside the feasible region then a point belonging to the boundary of
the region will be reached.

In our specific application, it happens that the constrained parameter space is a convex subset
X of the whole parameter space. It should be noted that in this case, if also the function f to be
minimized is convex, any point in the interior of the convex region X which is a local minimum
of f is also a global minimum in X (see Proposition 1.22, p. 67 in Bertsekas, 1996).

Thus, given suitable upper bounds α∗
k , β∗

k ∈ [0,1], in the problem at hand, there are four
types of inequality constraints for each item k:

(i) αk ≥ 0
(ii) αk ≤ α∗

k

(iii) βk ≥ 0
(iv) βk ≤ β∗

k

and the problem itself consists of maximizing the conditional expected log-likelihood in (4),
under the constraints (i) to (iv). It should further be noted that between the two left-side terms
of (4), only the first one depends on the two parameters αk and βk . Thus, the part of L which
concretely undergoes a constrained maximization is just

L′(α,β) :=
s∑

v=1

m∑

j=1

ln
[
P(xv|Kj ,αt ,β t )

]
pjv,t .

By an application of the barrier method, such a constrained maximization corresponds to an
unconstrained minimization of the function

Q(α,β) := −
{

L′(α,β) + μ

n∑

k=1

ln
[
αk(α

∗
k − αk)βk(β

∗
k − βk)

]
}

,

where μ is the penalty parameter introduced above.
The function Q(α,β) is minimized by setting to zero its first partial derivatives with respect

to the parameters αk and βk . The first partial derivative of Q(α,β) with respect to the parameter
αk turns out to be

∂Q(α,β)

∂αk

= (α∗
k − αk)[ak,1αk − (μ + ak,0)(1 − αk)] + μαk(1 − αk)

αk(1 − αk)(α
∗
k − αk)

, (5)

where ak,0 and ak,1 are defined in the following way:

ak,0 :=
∑

v

∑

j

pjv,t (1 − xvk)wjk

and

ak,1 :=
∑

i

∑

j

pjv,t xvkwjk.

By setting the numerator of the right-hand term of (5) equal to zero, a second degree equation is
obtained. Between the two roots of this equation, the one which actually satisfies the constraint
0 ≤ αk ≤ α∗

k is given by the formula (let ak := ak,0 + ak,1):

αk,t+1 = (ak,0 + 2μ) + α∗
k (ak + μ)

2(ak + 2μ)
−

{ [(ak,0 + 2μ) + α∗
k (ak + μ)]2 − α∗

k (ak,0 + μ)

2(ak + 2μ)

} 1
2

.
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Following a similar development for the parameters βk , and defining the two quantities

bk :=
∑

v

∑

j

pjv,t (1 − wjk),

and

bk,1 :=
∑

v

∑

j

pjv,t xvk(1 − wjk),

one obtains that

βk,t+1 = (bk,1 + 2μ) + β∗
k (bk + μ)

2(bk + 2μ)
− {[(bk,1 + 2μ) + β∗

k (bk + μ)]2 − β∗
k (bk,1 + μ)

2(bk + 2μ)

} 1
2

is the value of βk which maximizes the expected log-likelihood at iteration t + 1 of the EM
algorithm, under the constraint 0 ≤ βk ≤ β∗

k .

3. A Simulation Study

The two models BLIM and C-BLIM were assessed in a simulation study with respect to
goodness-of-fit and goodness-of-recovery. In general, goodness-of-recovery tells how well the
true model parameters are recovered by a specific estimation method. By goodness-of-recovery,
we mean here also whether the knowledge structure that has generated the data is correctly
recovered or identified. When the data are very noisy, i.e., when the careless errors and lucky
guesses tend to be rather high for many items, this point may become problematic, because there
could be no way at all to recover the true knowledge structure from the data. A question is thus
under which conditions the knowledge structure that generated a given data set is recoverable
and how well its parameters are recovered in the two models BLIM and C-BLIM.

3.1. Simulation of the Data Sets

The random data sets were generated according to the BLIM model, a fixed number of 20
items, and a fixed randomly generated knowledge structure K0 containing 200 knowledge states.
The number of response patterns in each of the data sets (the sample size) was set to a fixed
number of 1,000. Four distinct models, all based on the same knowledge structure K0, were used
to generate the data. The main difference between these four models was in the choice of the
upper bound (henceforth denoted by λtrue) of the interval of the uniform distribution that was
used to generate the true careless error and lucky guess parameters (the lower bound was fixed at
0 for all four models). In the first model, this upper bound was set to 1.0; in the second model, it
was set to 0.5; in the third model, it was 0.25, and in the last one, the upper bound was 0.1. For
each of the four models a total number of 100 random data sets were generated.

3.2. Estimation of the Model Parameters

For each of the 100 × 4 = 400 random data sets, three alternative models were estimated. In
the first model, henceforth called the correct model, the knowledge structure was exactly the one
used to generate the data, namely K0. In the second and third models, two randomly generated
knowledge structures, different from the correct one, were used. The knowledge structures used
in these two additional models contained, as the correct one, 200 knowledge states. These two
models will be henceforth referred to as the incorrect models 1 and 2, and the corresponding
knowledge structures will be denoted, respectively, by K1 and K2.
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To have a measure of how much the three knowledge structures differed one another, a
particular discrepancy index for knowledge structures was computed (see the Appendix). The
discrepancy between K1 and K0 was D(K1, K0) = 4.01 (SD = 0.90) and that between K2 and
K0 was D(K2, K0) = 4.02 (SD = 0.91). This means that on the average, a knowledge state in
K1 (resp. K2) differs for at least 4.01 (resp. 4.02) items from the knowledge states in K0. The
distance between the two structures K1 and K2 was also computed and it was D(K1, K2) = 3.94
in a direction and D(K2, K1) = 4.01 in the other.

For every random data set, each of the three alternative models was estimated four different
times by C-BLIM, each time with a different value of the upper bound λest of the α and β

parameter estimates (equal for all α and β parameters). The following values of λest were used:
λest = 1, λest = 0.5, λest = 0.25, λest = 0.1. This means that for each of the data sets there were
a total of 3 × 4 = 12 distinct models to estimate.

3.3. Testing the Models

As a goodness-of-fit index of the different estimated models, the standard likelihood ratio
Chi-square statistic was used. It is well known that for large and sparse data matrices the approx-
imation to the asymptotic distribution of this statistic lacks of accuracy and cannot be used in
practice. This is the case of the present simulation study, because with 20 items the theoretical
number of distinct binary response patterns is huge (220) and a data set of 1,000 response patterns
is definitely too small. However, for the purpose of comparing the goodness-of-fit of alternative
models, likelihood ratio Chi-square can still be appropriate. Given two models i and j , paramet-
ric bootstrap (see, e.g., Langeheine, Pannekoek, and van de Pol, 1996; von Davier, 1997) can be
used to estimate the proportion P(χ2

i < χ2
j ) of data sets in which χ2

i happens to be less than χ2
j .

To test goodness-of-fit of the correct knowledge structure against each of the two incorrect
ones, the proportion P(χ2

0 < χ2
1 , χ2

2 ) was computed of data sets in which the Chi-square of the
model incorporating the correct knowledge structure (χ2

0 ) was less than the Chi-square of both
incorrect models (χ2

1 and χ2
2 ). For short, in the sequel this proportion will be denoted by p0.

Along with this proportion, an average Chi-square was also computed for each of the estimated
models by

χ2
jk = 1

100

100∑

i=1

χ2
ijk,

where χ2
ijk is the value of the Chi-square obtained for data set i, model j ∈ {0,1,2}, and

λest = k ∈ {0.1,0.25,0.5,1.0}.

3.4. Results

Figure 1 compares goodness-of-fit of the model incorporating the correct knowledge struc-
ture with the other two models, for each of the four values of λtrue and each of the four values
of λest. The values of λtrue are along the horizontal axis (we recall that only the four values 1.00,
0.50, 0.25, 0.10 were used in the simulations). The proportion p0 is measured along the verti-
cal axis. Each of the four curves in the diagram corresponds to a different value of the upper
bound λest.

Some comments on the diagram in Figure 1 are in order. A first thing to notice is that
regardless of the value of λest, the lowest value of the proportion p0 is always obtained when
the upper bound λtrue is 1.0. It should be observed that with such an upper bound the true α and
β probabilities were higher than 0.5 for more than half of the items, with a maximum value of
0.93. Therefore, the noise in the generated data was pretty high. When parameter estimation is
not constrained (i.e., λest = 1.0), the proportion p0 is 0.31. That is, the correct model obtained
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FIGURE 1.
Proportion of simulated data sets in which χ2

0 (correct knowledge structure’s Chi-square) turned out to be smaller than

both χ2
1 and χ2

2 (incorrect knowledge structures’ Chi-square). The upper bound λtrue is on the horizontal axis. Each
curve corresponds to a different value of λest.

a Chi-square that is less than those of the incorrect models in only 31 data sets out of 100. The
situation seems not improving with smaller values of λest. This result concerning λtrue = 1.0
indicates a problem in separating the correct model from the incorrect ones, that is a problem of
recovering the true underlying knowledge structure when the data are too noisy. Further details
on this point will be given again later.

Still concerning the curve of unconstrained model in Figure 1 (λest = 1.0), we see that the
proportion p0 increases as λtrue decreases and, for λtrue = 0.1, it reaches a value of 0.92. This
just suggests that when the noise in the data is reduced enough, the true knowledge structure
becomes uncoverable.

Results are rather similar for the curve of λest = 0.5. Instead, a quite interesting thing hap-
pens when the constraint λest is less or equal to 0.25. What we observe in these cases is that the
two curves for λest = 0.25 and λest = 0.1 start decreasing much later than the other two. This
suggests that unless the data are so noisy to make the true knowledge structure uncoverable, it is
much likely that with the same amount of noise in the data, the true knowledge structure is cor-
rectly uncovered when the upper bound λest takes on small values. In particular, with λest = 0.1
and for λtrue ≤ 0.5, the proportion of simulated data sets in which the correct model wins against
the two incorrect ones is 1.0, that is, 100% of the data sets. Curiously enough, this happens in
spite of the fact that such a small value of λest will certainly give rise to biased estimates for all
those α and β parameters whose true value lies above λest. This point will be discussed later in
more detail.

The four diagrams in Figure 2 show the average chi-square χ2
i obtained for each of the

three alternative estimated models. The upper left diagram shows χ2
i for the case λest = 1.0
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FIGURE 2.
Average Chi-square of the three estimated models with different values of the upper bound λest. The values along the
vertical scale must be multiplied by 106.

(unconstrained model). The already mentioned problem of separating the correct model from
the incorrect ones, when too much noise is present, appears once again in this diagram. For
λtrue = 1.0, the average Chi-square of the three models is almost the same, meaning that on the
average all of them fit equally well the data. Similar conclusions are drawn for the two cases
λtrue = 0.5 and λtrue = 0.25. Only for λtrue = 0.1, the correct model is clearly separated from
the other two. For λest = 0.5 (upper right diagram), things are quite similar. Finally, confirming
what already observed in Figure 1, when λest ≤ 0.25 separation between the correct model and
the incorrect ones starts earlier (i.e., for higher values of λtrue).

To summarize, it seems important to recognize that for all values of λest used in this sim-
ulation study, the correct model cannot be uncovered when the data are too noisy (λtrue = 1.0).
However, provided that λtrue is at most 0.5, the smaller the value of λest the better the separation
between the correct model and the incorrect ones.

The results discussed so far only concern the problem of separating the correct knowledge
structure from other incorrect ones. However, nothing has been stated yet about how well the
parameters of the models incorporating such knowledge structures are recovered.

A scatter plot of the estimated parameters against generating parameters in both correct
model and incorrect model 1 is depicted in Figure 3, for λtrue = λest = 1.0. Upper diagrams
refer to the correct model and left diagrams refer to α and β parameters. It can be clearly seen
that estimation is very bad for both models. The elevated amount of noise in the data prevents
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FIGURE 3.
Generating parameters (x axis) versus estimated parameters (y axis) in both correct model (upper diagrams) and incorrect
model 1 (lower diagrams) for λtrue = λest = 1.0. The straight line x = y is added for reference.

any reasonable estimate of the underlying parameters even when the estimated model is indeed
correctly specified. It should further be observed that in both models the α and β parameters are
almost all underestimated.

Figure 4 shows the case of λtrue = 0.5 and λest = 1.0. The bias of the correct model is negli-
gible for all parameters. Concerning the α and β parameters, it is rather interesting to notice that
in the incorrect model they are almost invariably overestimated. Recalling that for the condition
λtrue = 0.5, λest = 1.0, correct and incorrect models fit equally well the data, this result is now
quite well understood. The price that the incorrect models have to pay for reaching a fit which
is as good as that of the correct one is an ad-hoc inflation of the careless error and lucky guess
parameters.

The condition λtrue = 0.5, λest = 0.25 is shown in Figure 5. A comparison between the α

and β estimates in the correct model and those in the incorrect one sheds light to a nice property
of the C-BLIM. What it is seen in the top left diagram of this figure can be regarded as a “partial
recovery” of the true model parameters. In fact, bias is small for only those parameters that lie
below the upper bound λest. For the remaining parameters, all the estimates lie exactly on the
boundary of the feasible region. This does not happen however with the incorrect model. For
many of the α and β parameters that are smaller than λest, their estimates lie on the boundary
anyway. This just reflects the tendency of the incorrect model to increase the α and β parameter
estimates until the model likelihood reaches its maximum value. By imposing an upper bound to
such parameter estimates, the C-BLIM simply prevents such an undesirable behavior.
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FIGURE 4.
Generating parameters (x axis) versus estimated parameters (y axis) in both correct model (upper diagrams) and incorrect
model 1 (lower diagrams) for λtrue = 0.5 and λest = 1.0. The straight line x = y is added for reference.

Finally, in Figure 6, the condition λtrue = 0.1, λest = 0.25 is considered. This time the bias
of the estimates is negligible for all parameters of the correct model. However, once again most
parts of the α and β estimates in the incorrect model end up to the boundary of the feasible
region, confirming what already observed in the previous cases.

4. Final Remarks

The constrained BLIM and the method of analysis that can be derived from it seem espe-
cially useful when there is not much theory about the knowledge structure on a given set of
problems. In such cases, more than one knowledge structure could be plausible in theory and the
problem is which of them better fits the data. The simulation study suggests that in case of high
noise in the data there is no way to separate a correctly specified model from others (all models
will have approximately the same likelihood). However, if noise in the data is sufficiently small
(say, less than 0.5), then the C-BLIM becomes helpful in the problem of recovering the knowl-
edge structure underlying the data. In particular, if one of the alternative knowledge structures
is correctly specified, then the introduction of an upper bound λest of at most 0.5 to the error
parameters α and β allows to separate this particular knowledge structure from other incorrect
ones. In fact, simulations show that as this upper bound gets lower, the likelihood of the incorrect
models decreases much faster than that of the correct one.
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FIGURE 5.
Generating parameters (x axis) versus estimated parameters (y axis) in both correct model (upper diagrams) and incorrect
model 1 (lower diagrams) for λtrue = 0.5 and λest = 0.25. The straight line x = y is added for reference.

Once a knowledge structure has been separated from others, it is possible that for this par-
ticular model some of the alpha and beta parameters lie exactly on the upper bound. In this case,
the upper bound itself could be elevated (up to, say, 0.5) and those parameters reestimated until
they belong to the interior of the constrained parameter space. If at the end of this process, there
are still some item parameters on the upper bound, this could be a sign of too much noise in the
data concerning those items with high alpha or beta.

Alternative ways of constraining the error parameters of the model have been proposed. For
instance, Junker and Sijtsma (2001) introduce a monotonicity constraint on such parameters.
Given an item i, the monotonicity constraint requires that αi ≤ 1 − βi . Actually, this constraint
does not prevent the possibility that the alpha and beta parameters get higher than a reasonable
value anyway. That is, an ad hoc inflation of such parameters is still possible. As discussed, above
the danger is that an incorrect model could have the same likelihood as a correctly specified one.

In the simulation studies discussed in Section 3, the assumption was made that the correct
knowledge structure belongs to the collection of models that undergo a goodness-of-fit test. This
situation could not hold in practice. In this case, the aim could be to establish which of the
models at hand is a better approximation of the “true” knowledge structure underlying the data.
The simulation study could be extended to such cases by considering some distance of each
of these models from the “true” model (see, e.g., the Appendix) and to study how the model
likelihood varies as a function of the imposed constraints and the distance between tested and
“true” model.
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FIGURE 6.
Generating parameters (x axis) versus estimated parameters (y axis) in both correct model (upper diagrams) and incorrect
model 1 (lower diagrams) for λtrue = 0.1 and λest = 0.25. The straight line x = y is added for reference.
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Appendix: Distance between Two Knowledge Structures

A measure of the distance between two knowledge structure can be obtained in the following
way (for details, see Doignon & Falmagne, 1999). Given two knowledge structures K and K′ and
two knowledge states K ∈ K and K ′ ∈ K′, the symmetric difference between K and K ′ is defined
to be

K	K ′ := ∣∣(K \ K ′) ∪ (K ′ \ K)
∣∣.

The subset K	K ′ contains all elements in the union of the two sets not belonging to their in-
tersection. The distance of a state K ∈ K from the knowledge structure K′ is then computed
as

d(K, K′) := min{K	K ′ : K ′ ∈ K′}.
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Then the discrepancy between K and K′ is defined to be the mean of the minimum distances
d(K, K′) of the states K ∈ K from K′:

D(K, K′) = 1

|K|
∑

K∈K
d(K, K′).

It is clear that D(K, K) = 0. It should also be observed that D is not commutative, i.e.,
D(K, K′) �= D(K′, K), in general. Nonetheless, D(K, K′) can be regarded as a measure of
how well a knowledge structure K approximates another knowledge structure K′. Along with
D(K, K′), a standard deviation SD(K, K′) can also be computed.
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