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Abstract 

 

This study focuses on indoor air quality measurements carried out in an apartment in the 

suburban region of Budapest. The measurements were made by an IQAir AirVisual Pro air 

quality monitor which is a so-called low-cost sensor capable to monitor PM2.5 and carbon 

dioxide concentration. In this study we analyze data measured during January 2017 that was 

characterized by an extreme air pollution episode in Budapest. The aim of the study was to 

calculate daily indoor PM2.5 concentrations that are comparable with the outdoor concentrations 

provided by the Hungarian Air Quality Monitoring Network. Given the fact that AirVisual Pro 

provides data with irregular sampling frequency, data processing is expected to affect the 

calculated daily mean concentrations. The main purpose of the study was to evaluate the effect 

of data processing technique selection on the calculated daily data. The results indicated that 

the uneven sampling frequency characteristic to AirVisual Pro indeed causes problems during 

data processing and has effect on the calculated means. We propose a ‘best method’ for data 

processing for sensors with irregular sampling frequency. 

 

1. Introduction 

 

Given the fact that we spend considerable amount of time in residential buildings and in other 

closed environment (workplace, school, shops, etc.), exposure to indoor air pollutants is a major 

issue worldwide. Indoor air quality is strongly affected by outdoor conditions (Leung, 2015; 

Burnett et al., 2018; WHO, 2018), and by indoor activities like cooking, use of cleaning 

chemicals, cosmetics, etc. (Majd et al., 2019). Despite air quality regulations and legislation, 

many regions are still affected by poor air quality conditions worldwide (Joss et al., 2017). In 

Hungary (and in Central Europe in general) residential heating is a major air pollution source 

as many citizens use wood and garbage for heating. Among other pollutants, Particulate Matter 

(PM) originating from residential heating represents a huge risk to public health that also affects 

indoor air quality (Kistler et al., 2012; EMEP, 2020). 

In response to this challenge posed by the indoor air quality issues, low-cost sensors (LCS) 

monitoring PM2.5 and CO2 (and other gases in some cases) in indoor conditions are gaining 

popularity. LCSs are often criticized because of their poor accuracy and/or precision, and the 

lack of responsiveness to episodic high PM concentrations (Li et al., 2020; Zamora et al., 2020). 

Indeed, some of the sensors seem to be very problematic such as Speck LCS (Zamora et al., 

2020) or the SDI sensor that provides biased data due to high and low relative humidity (Bulot 

et al., 2020; Tagle et al., 2020). It means that some of the LCSs are not applicable to indoor 

exposure estimations without post-processing. However, there are LCSs with a good overall 

performance which means that they might be capable to capture high pollution episodes and 
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the overall background PM indoor concentration and those LCSs might be promising tools in 

terms of future health concerns reduction (Lowther et al., 2019). 

AirVisual Pro is an optical LCS that offers visualization of indoor or outdoor PM2.5, carbon 

dioxide (CO2) mixing ratio, relative humidity and temperature in real time and offers remote 

access from the mobile phone application. Besides, it offers option for comparison of the 

observed PM2.5 with the nearest official air quality monitoring station. All these features 

facilitate the indoor air quality monitoring and tracking that is supported by user-friendly 

suggestions on the screen of the node to maintain good quality air indoors in terms of PM2.5 and 

fresh air (in terms of CO2 mixing ratio). 

A few studies evaluated the quality of the AirVisual Pro observations against some reference 

instrument. In 2017 three units of AirVisual Pro were evaluated by Feenstra et al. (2019) for 

2 months against a Met One Beta Attenuation Monitor (BAM; Met One, USA) that is an U.S. 

EPA designated Class III FEM (EQPM-0308-170) reference instrument. The R2 values were 

around 0.7, while the mean bias was 1.3 g m-3, and the RMSE was about 6.3 g m-3. In 2018, 

PM2.5 readings from AirVisual Pro were compared with a Met One 1020 Beta Attenuation 

Monitor (MetOne, USA), a Dust Monitor by GRIMM (model EDM180, Ainring, Germany), 

and a T640 PM Mass Monitor (Teledyne API, USA) reference instruments at the Air Quality 

Sensor Performance Evaluation Center (AQ-SPEC, 2018). The AirVisual Pro exhibited good 

correlations with the reference instruments at 5-minute, hourly and daily resolution as well 

(R2 varied between 0.66 and 0.89) and good precision for the readings. Zamora et al. (2020) 

evaluated AirVisual Pro for one year in indoor conditions against a pDR (personal DataRAMTM 

pDR-1200, ThermoFisher Scientific, USA) reference instrument. The results showed high 

accuracy and high correlation with pDR (R2 was 0.89) for a non-smoking indoor environment. 

Besides calibration issues, data processing represents another source of uncertainty of the 

LCSs data interpretation. As some sensors are ‘black boxes’ (which means that the hardware 

and the software are not documented in detail) it is not trivial to choose the ‘best method’ for 

post-processing. As an example, AirVisual Pro’s performance is affected by uncertainty related 

to the non-constant measurement frequency that is characteristic to the sensor. 

The aim of the present study was to evaluate the effect of data processing techniques on the 

exposure calculations for PM2.5 using an AirVisual Pro sensor. 

 

2. Materials and methods 

 

2.1. AirVisual Pro 
 

AirVisual Pro (Fig. 1) – manufactured by IQAir (Switzerland) – is a low-cost sensor that offers 

measurements for indoor and outdoor pollution. This device provides real-time PM2.5 (g m–3 

units; effective range: 0.3–2.5 µm in size), CO2 (effective range: 400–10,000 ppm), temperature 

(effective range: –10 to 40 °C) and relative humidity (effective range: 0–95%) data that updates 

in near-real-time for continuous monitoring (IQAir website, 2020a). 

AirVisual Pro is equipped with an AVPM25b optical sensor (also developed by IQAir) that 

measures PM2.5 concentrations, and a SenseAir S8 (Model SE-0031, SenseAir, Sweden) sensor 

measuring CO2 concentrations (Zamora et al., 2020). The PM2.5 sensor is an advanced light-

scattering laser sensor which measures the size of microscopic particulate matter (IQAir 

website, 2020b). 

According to the manufacturer, the frequency of measurements can be set in three different 

modes: the custom mode which offers measurements in regular intervals (from 3 minutes to 

1 hour), the continuous mode making readings in every 10 seconds, and the default mode which 

makes 4 readings per hour if the device is inactive. However, the default mode and the custom 

mode have a special feature that needs attention. If the device is actively used (it means that the 
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screen is activated/deactivated, or the screen content is changed) then the measurement 

frequency will increase and readings will be made every 10 seconds for some time before 

reverting back to 15-minute sampling frequency (IQAir website, 2020c). This means that the 

device can provide data with non-uniform frequency. 

The Department of Meteorology, Eötvös Loránd University has 5 AirVisual Pro sensors. 

Two of them were purchased in late 2016 or beginning of 2017, which means that they can be 

considered as first generation AirVisual nodes. In these cases the software only provides 

2 modes: the default mode and the continuous mode. In normal circumstances the continuous 

mode should not be used to improve the lifetime of the internal pump which means that they 

are operated in default mode. The other three instruments were purchased later so they belong 

to the new generation of the sensors in terms of software/hardware environment. It means that 

they can also be operated in custom mode. Nevertheless, if the AirVisual node is operated in 

custom mode using e.g. 3 minutes sampling interval, the operation of the instrument (screen 

content change, etc.) still triggers readings that make the sampling frequency uneven. The 

AirVisual Pro that was the source of data used in this paper is from the first generation and the 

measurements were taken by the default mode. 

 

 

Figure 1. One of the AirVisual nodes operated by the Department of Meteorology,  

Eötvös Loránd University (photo by B. Atfeh). 

 

2.2. Measurements 
 

In December 2016 an AirVisual Pro was deployed inside a residential apartment in Budapest 

(19th District), Hungary to monitor PM2.5 and CO2 concentrations. The size of the apartment is 

~50 m2 with 4 habitants. The apartment has two rooms, and AirVisual Pro was running in one 

of the two rooms. Ventilation within the apartment is managed by opening the windows about 

3–4 times a day during wintertime. The apartment is located in an area were the main sources 

of PM2.5 is the combustion process from surrounding houses used in heating systems (traffic is 

typically low). 

In this paper data registered during January 2017 were analyzed that was characterized by 

extremely high air pollution in terms of PM2.5 and PM10
1. 

 

2.3. Data processing 
 

Five different post-processing methods were implemented in the study to calculate daily mean 

PM2.5 concentration from the raw data provided by the sensor. According to method 1, daily 

                                                   
1 https://budapest.hu/Lapok/2017/indokolt-a-riasztasi-fokozat-es-az-ahhoz-tartozo-gepjarmuforgalom-

korlatozasaval-jaro-hatosagi-intezkedes-tovabbi-fennta.aspx 
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averages were computed from hourly averages using all available data during the specific hours. 

In case of method 2, daily means were directly calculated from all available raw data for a given 

day. According to method 3, medians are computed from the raw data using all daily readings. 

Method 4 and method 5 can be considered as data-thinning algorithms, which are based on the 

sampling of raw data four times in each hour. The sampling was done pseudo-randomly in case 

of method 4 while data were sampled in every 15 minutes in case of method 5, which is a more 

deterministic way to thinning the data in comparison with method 4. 

Note that the simplest method for the post-processing is associated with methods 2 and 3. 

Through the implementation of the latter we can mitigate the effect of outliers because median 

is more robust to outliers than sample mean. Those are followed by method 1 in terms of 

complexity that is a two-step method. In the study, methods 4 and 5 have the largest 

computational complexity. With the application of them we aimed to take into account each 

data with the same weight from the raw dataset. Their usage requires advanced data-processing 

tools, i.e. sampling hours in which more than 4 measurements are available while hours with 

4 or less measurements remain intact. In case of method 5 the closest readings to the 1st, 16th, 

31st and 46th minutes in each hour were selected. 

The above-described methods were implemented in the R programming language (R Core 

Team, 2020), which allows us to write reusable codes to easily examine other data series in 

future studies. After calculation of the daily PM2.5 averages the results are evaluated against 

one reference method and compared with the official data. 
 

3. Results and discussion 

 

3.1. Outdoor conditions 

 

During January 2017, a high air pollution episode occurred in Budapest and in Hungary in 

general as well. According to Figs. 2 and 3, the PM10 and PM2.5 concentrations were extremely 

high mostly during the second half of the month. New Year’s Day was also characterized by 

high pollution most likely caused by the fireworks and petards. 

 

 

Figure 2. Daily PM10 concentration during January 2017 at four monitoring sites in Budapest 
operated by the Hungarian Air Quality Monitoring Network 

(source of data: www.levegominoseg.hu). 
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At Teleki tér and at Gilice tér the PM2.5 and PM10 concentrations were very close (cf. Figs. 2 

and 3) indicating that the primary source of the pollution was domestic heating and not traffic. 

As indoor air pollution is closely related to outdoor conditions due to mixing of air between 

indoor and the outdoor air, it is expected that indoor air quality was also extremely poor in those 

days in January. 
 
 

 

 

 

Figure 3. Daily PM2.5 concentration during January 2017 at two monitoring sites in Budapest 
operated by the Hungarian Air Quality Monitoring Network 

(source of data: www.levegominoseg.hu). 

 

 

 

 

3.2. Evaluation of indoor air quality data 

 

In January, a total of 16,939 measurements (i.e. PM2.5 readings) were available for a total of 

735 hours. Missing hours were detected on 14th January (7 pm, 10 pm and 11 pm) and on 15th 

January (from 0 am to 6 am). Fig. 4 shows the AirVisual Pro-based PM2.5 concentration for a 

selected day in January 2017. As the AirVisual Pro device was operated in the so-called default 

mode, readings are typically available in 15-min intervals. However, during daytime the 

observation frequency is increasing in some occasions due to human intervention (typically 

when the screen is switched on or the screen content is adjusted). Note that the increase of the 

observation frequency co-varies with the PM2.5 concentration in some cases which is the clear 

indication of interest in the actual PM2.5 concentration during ventilation (i.e. when the windows 

are open). 
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Figure 4. Indoor PM2.5 concentration during 25 January 2017, 

as observed by the AirVisual Pro sensor. 

 

 

Fig. 5 shows the frequency distribution of the number of readings per hour for the whole 

month. As it can be seen in the figure, frequency of the number of readings per hour is not 

uniformly distributed. 

 

 

 

Figure 5. Frequency distribution of the number of readings per hour during January 2017. 
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During nighttime, when the AirVisual node is not used, the observations are made every 

15 minutes (only 13 hours from a total of 735 are characterized with less than four 

measurements per hour, while 376 hours are available with four measurements and more than 

four readings are available in 346 hours). Consequently, it is expected that daily averages 

computed from the raw data and daily averages computed from the hourly data will not be the 

same. If daily averages are computed from the raw data then the averages might be distorted by 

hours in which larger number of readings is available. If daily averages are computed from 

hourly averages then each hour is taken into account with the same weight. 

Fig. 6 shows the daily PM2.5 concentration for January 2017, based on the 5 different 

methods (see above). Overall, the monthly course follows the outdoor conditions quite well 

including the high episode in 1 January (see Fig. 3). The period between 19 and 26 January was 

characterized by very high indoor PM2.5 concentration up to around 50–60 g m–3. 

It is clear from Fig. 6 that the daily results are affected by the data processing technique as 

it was expected. Especially methods 2 and 3 provide markedly different results from the other 

3 methods in some days (not necessarily on days that are characterized by the highest air 

pollution). Methods 1, 4 and 5 provide consistent results. All three methods use hourly 

aggregation before calculation of the daily data. 
 

 

Figure 6. Daily indoor PM2.5 concentration in the study period calculated 

with the different methods (see text for details). 

 

Based on the theoretical considerations mentioned above we selected method 1 as the 

reference technique because it uses all available observations, and moreover it handles the 

possible bias caused by the high number of readings during daytime (when episodes may 

occur). 

Table 1 provides statistical evaluation of the daily PM2.5 data based on the five methods. 

Monthly mean indoor PM2.5 concentration was very similar for methods 1, 3, 4 and 5 with 

negligible differences (within 1 g m–3). However, application of method 2 resulted in a large 

bias (4.1 g m–3). Considering the daily data the maximum difference between method 2 and 

method 1 was 23.2 g m–3 (on 22nd January), while for method 3 and method 1 it was 
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14.9 g m-3 (same day). Underestimation of daily PM2.5 relative to method 1 was not typical, 

though for method 3 it was 6.1 g m–3 in 14 January. RMSE was the largest for method 2, with 

somewhat smaller values for method 3. The smallest RMSE was associated with method 4 

(random sampling). Explained variance relative to method 1 was quite high for all cases. The 

lowers explained variance (expressed by R2) was again associated with method 2. 

 
Table 1: Statistical evaluation of the daily PM2.5 dataset that was derived from 

the raw AirVisual Pro readings using different methods. SD stands for standard deviation, 

RMSE is root mean square error, while R2 is the square of the linear correlation coefficient. 

Bias, RMSE and R2 values are calculated relative to method 1. 

 method 1 method 2 method 3 method 4 method 5 

MEAN (g m–3) 20.5 24.6 21.3 20.6 19.8 

SD (g m–3)  14.61 17.99 16.64 14.69 14.42 

BIAS (g m–3) N/A 4.1 0.7 0.1 –0.7 

RMSE (g m–3) N/A 6.83 3.80 0.28 1.19 

R2 N/A 0.924 0.949 1.00 0.995 

 

The statistical evaluation revealed that the two-step methods (methods 4 and 5) are suitable 

for the calculation of the daily means and provide very similar results to method 1, while the 

simple daily aggregation (methods 2 and 3) are associated with errors thus should be avoided. 

Given the simplicity of method 1 relative to methods 4 and 5 we propose to use method 1 as 

the ‘best practice’ for the post-processing of the AirVisual Pro readings. This method might be 

applicable to any other sensor that is characterized by non-uniform observation frequency. 

 

4. Conclusions 

 

LCSs provide essential information about the indoor air quality that is a major step forward in 

terms of the improvement of life quality and human health. According to the growing literature, 

AirVisual Pro is among the better LCSs that might be suitable for air pollution exposure 

assessments. Rigorous evaluation of the performance of the LCSs is a prerequisite for any 

scientifically sound assessment. In this study we demonstrated that post-processing method 

selection is another vital question that needs attention, especially if the observation frequency 

of the instruments is not constant. We propose to use a two-step data processing technique for 

AirVisual Pro that first consists of the calculation of hourly averages from all available 

readings, and then the calculation of the daily means from the hourly data. Simpler data 

handling (e.g. simple daily aggregation based on all raw data) might lead to inaccurate results 

that will affect the exposure assessment and any further conclusion regarding indoor air quality.  

In our study the validity of the PM2.5 readings was not addressed due to the lack of reference 

observation for the investigated time period. Evaluation of the AirVisual Pro’s readings against 

reference monitor and adjustments (i.e. calibration) is needed in the future to provide high 

quality data for indoor air quality assessment. 
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