
Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

Classical Programming Topics with 
Functional Programming 

VISNOVITZ Márton 

Abstract. In traditional Hungarian programming education programming theorems are the foundation 
of learning programming. These generic algorithm patterns are traditionally introduced using the 
imperative programming paradigm with sequences, loops, and conditions. After learning about 
programming theorems and basic algorithms the next step is usually to go in the direction of object-
oriented programming. One possible way to approach object-oriented programming is through 
enumerators: the implementation of enumerable data types and the application of programming 
theorems on them. To prove that these classical programming topics, programming theorems and 
enumerators can also be implemented with the principles of functional programming we present 
implementations using the functional programming paradigm along with concepts from object-oriented 
programming. With these we aim to prove that it is possible to introduce programming theorems and 
enumerators in introductory programming with functional programming as well. This paper also 
presents the possibility of a higher-order-first approach to programming education and the possible 
educational advantages this method. 

Keywords: introductory programming, programming theorems, functional programming, object-
oriented programming, enumerators, higher-order-first approach 

1. Introduction and state of the art 

In introductory programming the choice of first programming language and the corresponding 
first programming paradigm has a very important role. Based on the foundation of programming 
paradigms several strategies for teaching introductory programming exist, such as the algorithm-
first, imperative-first, functional-first, hardware-first, etc. approaches [1]. In Hungarian literature a 
slightly different naming convention is present [2] but the core concepts are basically the same.  

Based on our investigation of the curricula of the most renowned universities in Hungary that have 
some form of Computer Science (CS) of Computer Engineering (CE) program1, in Hungarian 
practice an algorithm-first approach is used in most cases starting with basic input-output 
operations and basic control structures and algorithms. This is usually followed up by the learning 
about the object-oriented paradigm. Some universities also introduce the functional paradigm early, 
along with the imperative and the object-oriented paradigms. The training programmes of the top 
US and European universities with CS or CE programs2 follow a similar pattern, however courses 
on functional programming are more prevalent. This shows that alongside the usual imperative-
first and algorithms-first approaches [3] the functional-first approach is also relevant [4,5] in current 
practice. 

The goal of this paper is to show that it is possible to use the tools of functional programming to 
introduce various topics of the classical algorithm-first and object-oriented-second methodologies, 
namely programming theorems and enumerators, and to show the analogies between the classical 

 

1 Eötvös Loránd University, University of Debrecen, Budapest University of Technology and Economics, University of Szeged, 

University of Pécs 

2 Stanford University, MIT, Carnegie Mellon University, Harvard University, University of Oxford, ETH Zurich, University of 

Cambridge, Imperial College London 



Classical Programming Topics with Functional Programming  42 

Central-European Journal of New Technologies in Research, Education and Practice 
   Volume 2, Number 2, 2020. 

and functional implementations. Based on the findings of this investigation we also present a 
possible direction for creating a new methodology for early programming education. 

2. Programming theorems 

Classic Hungarian programming education primarily uses the algorithm-first, object-oriented-
second approach based on the determinative works of Szlávi and Zsakó [6] that were also published 
in the booklet series Mikrológia [3,7,8]. One of the core concepts of this so called “Systematic 
programming” methodology is the usage of programming theorems. Programming theorems are a 
group of basic algorithms that provide solutions to generic group of algorithmic problems 
[7,9,10,11]. They also provide a framework for problem-solving by making the specification, 
planning and implementation of algorithms straightforward by using an analogy-based approach 
[10]. Szlávi and Zsakó identify eleven such programming theorems [7,11], the system of Gregorics 
has seven [9,10]. While there is a large intersection between the two lists, the names of theorems 
can vary. There is also a third source of naming conventions to consider: the vocabulary (keywords) 
of programming languages. In this paper we follow the naming conventions used by most 
programming languages to refer to the programming theorems. 

All programming theorems can be defined as a function that takes one or more collections of 
values as input. The type of the values in these collections can be arbitrary. Hereinafter we will use 
the generic types X (and Y) to refer these types. Szlávi and Zsakó group the programming theorems 
into two categories based on the number of their inputs and outputs [7,11] Based on this 
categorization they identify the following groups: 

In the first category there are programming theorems that take a single collection of values as an 
input and output a single value:  

• Reduction (also called Folding): Returns a single value by applying a combining function 
systematically to a cumulative value and each element in the input collection. The 
combining function takes two values of type X and produces a single value of type X. 

• Maximum Selection: Returns a single element (or its index) from the input collection that 
is the maximum (or minimum) based on some comparison between elements. 

• Counting: Returns a single integer value that is the number of elements in the input 
collection that meet a certain condition. 

• Decision: Returns a single logical value that shows whether the input collection has any 
values that meet a certain condition. 

• Selection: Returns the first element (or its index) from the input collection that meets a 
certain condition (existence of such item is guaranteed by the precondition). 

• Search: Returns the first element (or its index) from the collection that meets a certain 
condition if there is any such element. 

The second category has programming theorems that take one or more collections of values as an 
input and output one or more collections of values: 

• Mapping: Returns a new collection in which each element is a transformed version of the 
value of the element with the same index in the input array. The transformation is done by 
some transforming function that takes a value of type X and returns a value of type Y. 

• Filtering: Returns a new collection that contains those and only those elements in the 
input collection that meet a certain condition. 



VISNOVITZ Márton  43 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

• Partitioning: Returns two collections. The first contains elements from the input 
collection that meet a certain condition, the second contains those elements that do not. 

• Intersection: Takes two or more sets with elements of type X and returns a new set that 
contains those elements of the input sets that are present in all of them. 

• Union: Takes two or more sets with elements of type X and returns a new set that contains 
all values that are present in any of the input sets. 

2.1. Imperative and functional implementations 

In classical algorithm-based programming we use the core concepts of imperative programming 
(i.e. statements, loops, and conditions) to implement programming theorems. In the following 
sections we provide the formal signature for each programming theorem and two implementations 
for each: the classic implementation using imperative programming and an implementation using 
functional programming with the concept of folding. The goal of this comparison is to prove that 
the programming theorems can be introduced through not only imperative but functional 
programming as well.  

Notes for the implementations 

For the following code examples a programming language or algorithm/function-description 
method had to be chosen [1,2,12,13]. For the purpose of the demonstration we chose the 
TypeScript programming language3 as it is a multi-purpose programming language that supports 
many programming paradigms (including imperative, functional, and object-oriented); thus, we can 
use it in all examples. This helps with the transition between the concepts that we present in the 
following sections. 

The syntax of TypeScript follows the conventions of C-style programming languages making the 
code easier to read. TypeScript also has support for static type annotations and template functions 
and classes. This makes the following code snippets generic for any input and output value types. 
All the implementations below are written as template functions and classes (using generic types X 
and Y). Another reasoning for choosing the TypeScript programming language for the 
demonstration is that TypeScript (and the JavaScript language that it is a superset of) has a lot of 
properties that are beneficial from an educational point of view. [14,15] 

The TypeScript programming language has a special value called undefined that represents a 
missing on uninitialized value. We used this undefined value for the Search theorem to represent 
“no output”. Implementations of some programming theorems assume a non-empty array as an 
input. Checking for this precondition is not present for more concise code. We also used some 
aliases for built-in types and values for the same reason. The list of these aliases can be seen in 
Table 1. For the functional implementations we use the array destructuring4 ([x0, ...xs]) and 
conditional statement (a ? b : c) features of TypeScript. All functional code snippets with the 
exception of the Selection theorem are based on pattern matching with conditional statements: if 
the input collection has exactly one element/has no elements then return some value, otherwise use a recursive formula 
to calculate the result. If a programming theorem cannot accept an empty input, then the first check 

 

3 https://typescriptlang.org  

4 https://www.typescriptlang.org/docs/handbook/variable-declarations.html#array-destructuring  

https://typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/variable-declarations.html#array-destructuring


Classical Programming Topics with Functional Programming  44 

Central-European Journal of New Technologies in Research, Education and Practice 
   Volume 2, Number 2, 2020. 

is whether there is only one element left in the collection. If an empty input collection is accepted, 
then we check whether the first element is undefined (i.e. the input is empty). 

Alias (symbol) Meaning TypeScript value/type 

Z integer type number (type) 

R real type number (type) 

B logical type boolean (type) 

T true logical value true (value) 

F false logical value false (value) 

U undefined type and value undefined (type, value) 

Table 1: Aliases used in the code examples 

Reduction, Counting, Maximum Selection 

type ReduceTheorem  = <X> (x: X[], f: (s: X, e: X) => X) => X 
type MaximumTheorem = <X> (x: X[], m: (a: X, b: X) => X) => X 
type CountTheorem   = <X> (x: X[], p: (e: X) => B)       => Z 

Function signatures of the Reduction, Counting and Maximum Selection theorems 

The Reduction (a.k.a. Folding, Sequential computing [11] or Summation [10]) programming 
theorem has two variants. The first takes the first value of the input collection and uses it as the 
starting value for the cumulation. The second variant uses a starting value (often named f0) for the 
reduction. This second version is more general but, in most cases, we use a value that is neutral for 
the f function so that the starting value does not change the result (e.g. 0 for addition, 1 for 
multiplication). This means that most of the time this starting value can be omitted, and we can 
start the reduction with the first element of the input. 

In the following example we show the implementation for the first variant of the Reduction 
theorem that does not use the starting value. This means that only non-empty inputs can be 
accepted for the theorem. The Reduction theorem starts with the first element of the input then 
applies the f function to the current result and the next element of the collection until all elements 
of the input have been processed. 

reduce: ReduceTheorem = (x, f) => { 
  let s = x[0]; 
 
  for (let i = 1; i < x.length; i++) { 
    s = f(s, x[i]); 
  } 
 
  return s; 
} 

 

reduce: ReduceTheorem = ([x0, ...xs], f) =>  
  xs.length === 0 ? x0  
  :                 f(reduce(xs, f), x0) 

Imperative and functional implementations of the Reduction theorem 

The Maximum Selection theorem [10,11] takes the function m as an input which is a function that 
returns the maximum of two values based on some ordering. The theorem then uses this function 
to calculate the “larger” value of the current maximum and the next element in the input. This 



VISNOVITZ Márton  45 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

concept is the same as the Reduction theorem where the f function of the reduction is the m 
“maximum” function. 

maximum: MaximumTheorem = (x, m) => { 
  let s = x[0]; 
 
  for (let i = 1; i < x.length; i++) { 
    s = m(s, x[i]); 
  } 
 
  return s; 
}; 

 

maximum: MaximumTheorem = ([x0, ...xs], m) =>  
  xs.length === 0 ? x0  
  :                 m(maximum(xs, m), x0) 

Imperative and functional implementations of the Maximum Selection theorem 

The Counting theorem’s [10,11] implementation is based on the concept of adding ones and zeroes 
for each element in the input based on whether they meet the p condition. 

count: CountTheorem = (x, p) => { 
  let s = 0; 
 
  for (let i = 0; i < x.length; i++) { 
    if (p(x[i])) { 
      s += 1; 
    } 
  } 
 
  return s; 
} 

 

count: CountTheorem = ([x0, ...xs], p) =>  
  x0 === U ? 0 
  :          (p(x0) ? 1 : 0) + count(xs, p) 

Imperative and functional implementations of the Counting theorem 

Decision, Selection, Linear Search 

type DecideTheorem = <X> (x: X[], p: (e: X) => B) => B 
type SelectTheorem = <X> (x: X[], p: (e: X) => B) => X 
type SearchTheorem = <X> (x: X[], p: (e: X) => B) => X | U 

Function signatures of the Decision, Selection and Linear Search theorems 

The Decision theorem [11] is one of the theorems that is missing from Gregorics’ list [10]. It takes 
the predicate p as an input and uses it to decide whether there is any element in the collection that 
satisfies p. Both the imperative and the functional (due to lazy evaluation) implementations stop 
the evaluation if a “good” value is found. 

decide: DecideTheorem = (x, p) => { 
  let i = 0; 
 



Classical Programming Topics with Functional Programming  46 

Central-European Journal of New Technologies in Research, Education and Practice 
   Volume 2, Number 2, 2020. 

  while (i < x.length && !p(x[i])) { 
    i++; 
  } 
 
  return i < x.length; 
}; 

 

decide: DecideTheorem = ([x0, ...xs], p) =>  
  x0 === U ? false  
  :          p(x0) || decide(xs, p); 

Imperative and functional implementations of the Decision theorem 

The Selection [10,11] and the Search [11], (aka. Linear Search [10]) theorems are very similar. Both 
take a predicate p as an input to find an element in the input that satisfies p. The main difference 
is that for the Selection theorem we have an extra precondition: there is at least one element for 
which p is true. That is why we do not have to check if we reached the end of the collection. 

select: SelectTheorem = (x, p) => { 
  let i = 0; 
 
  while (!p(x[i])) { 
    i++; 
  } 
 
  return x[i]; 
}; 

 

select: SelectTheorem = ([x0, ...xs], p) =>  
  p(x0) ? x0 : select(xs, p); 

Imperative and functional implementations of the Select theorem 

The Search theorem does not have this precondition. Some implementations return a logical value 
that indicates whether we found any element for which p is true. Other implementations return a 
special value for inputs without a “good” value. In our implementation we return undefined if 
there are no element in the input for which p is true. 

search: SearchTheorem = (x, p) => { 
  let i = 0; 
 
  while (i < x.length && !p(x[i])) { 
    i++; 
  } 
 
  return i < x.length ? x[i] : U; 
}; 

 

search: SearchTheorem = ([x0, ...xs], p) =>  
  x0 === U ? U 
  : p(x0)  ? x0  
  :          search(xs, p); 

Imperative and functional implementations of the Search theorem 



VISNOVITZ Márton  47 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

Mapping, Filtering, Partitioning 

type MapTheorem       = <X, Y> (x: X[], f: (e: X) => Y) => Y[] 
type FilterTheorem    = <X>    (x: X[], p: (e: X) => B) => X[] 
type ParitionTheorem  = <X>    (x: X[], p: (e: X) => B) => [X[], X[]] 

Function signatures of the Mapping and Filtering theorems 

The Mapping theorem (aka. Copying [11]) has an additional generic type Y present in its function 
signature. The reason for this is that the f function may transform values to a different type than 
the type of the input values (e.g. mapping strings to their lengths). This theorem’s implementation 
is based on either the option to add a new element to an array (push) or the ability to construct a 
new array by listing the elements of another array using the spread operator (...). 

map: MapTheorem = (x, f) => { 
  let s = []; 
 
  for (let i = 0; i < x.length; i++) { 
    s.push(f(x[i])); 
  } 
 
  return s; 
}; 

 

map: MapTheorem = ([x0, ...xs], f) =>  
  x0 === U ? []  
  :          [f(x0), ...map(xs, f)]; 

Imperative and functional implementations of the Map theorem 

The Filtering theorem (aka. Multiple Item Selection [11]) uses a similar concept as the Mapping 
theorem. The difference is that instead of changing the values of the input collection when we copy 
it to the output collection, we may omit some elements based on the predicate p. It is also similar 
to the Search theorem with the exception that it does not only search for the first value that satisfies 
the p condition but creates a collection of all of such elements in the input. 

filter: FilterTheorem = (x, p) => { 
  let s = []; 
 
  for (let i = 0; i < x.length; i++) { 
    if (p(x[i])) { 
      s.push(x[i]); 
    } 
  } 
 
  return s; 
}; 

 

filter: FilterTheorem = ([x0, ...xs], p) => 
  x0 === U ? [] 
  : p(x0)  ? [x0, ...filter(xs, p)]  
  :          [...filter(xs, p)]; 

Imperative and functional implementations of the Filter theorem 



Classical Programming Topics with Functional Programming  48 

Central-European Journal of New Technologies in Research, Education and Practice 
   Volume 2, Number 2, 2020. 

The classic imperative implementation of the Partitioning theorem [7,11] is just a more efficient 
algorithm for applying the Filtering theorem twice. It uses a single loop for both filters thus making 
the algorithm faster. 

Unlike other theorems Partitioning returns two values (two collections) as an output. In the 
implementations below we used a TypeScript array to return both collections at the same time. 

partition: ParitionTheorem = (x, p) => { 
  let s1 = [], s2 = []; 
 
  for (let i = 0; i < x.length; i++) { 
    if (p(x[i])) { 
      s1.push(x[i]); 
    } else { 
      s2.push(x[i]); 
    } 
  } 
 
  return [s1, s2]; 
}; 

 

const partition: ParitionTheorem = ([x0, ...xs], p) =>  
  x0 === U ? [[], []] 
  : p(x0)  ? [[x0, ...partition(xs, p)[0]], [...partition(xs, p)[1]]] 
           : [[...partition(xs, p)[0]], [x0, ...partition(xs, p)[1]]] 

Imperative and functional implementations of the Filter theorem 

Intersection, Union 

type UnionTheorem     = <X> (x: X[], y: X[]) => X[] 
type IntersectTheorem = <X> (x: X[], y: X[]) => X[] 

Function signatures of the Partitioning, Intersection and Union theorems 

Even classically the Intersection and Union theorems are just combination of other theorems 
[7,11]. The Intersection theorem can be viewed as the combination of the Filtering and the 
Decision theorems, while the Union theorem is basically a Mapping theorem plus the combination 
of again Filtering and Decision. For this reason, we do not detail the implementations for these 
theorems. 

2.2. Programming theorems with higher-order functions 

In addition to using folding and recursion, another way of implementing programming theorems with 
functional programming would be by using basic higher-order functions. The higher-order functions 
reduce, map, and filter are present in practically every programming language that supports 
functional programming (names may vary). Using only these three higher-order functions, it is 
possible to create easy “one-liner” solutions for all programming theorems (see figure below). This 
means that introducing only the concept of higher-order functions and these three basic functions 
are enough to easily solve problems that require the usage of programming theorems. 

  



VISNOVITZ Márton  49 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

reduce       = (x, f) => x.reduce(f) 

count        = (x, p) => x.filter(p).length 

maximum      = (x, m) => x.reduce(m) 

decide       = (x, p) => x.filter(p).length > 0 
select       = (x, p) => x.filter(p)[0] 

 

search       = (x, p) => x.filter(p)[0] 

map          = (x, f) => x.map(f) 

filter       = (x, p) => x.filter(p) 

partition    = (x, p) => [x.filter(p), x.filter(e => !p(e))] 

Functional implementation of the theorems with higher-order functions 

As seen in the code snippet above, reduce, map, and filter are exactly equivalent with the 
corresponding Reduction, Mapping and Filtering programming theorems. All the other theorems 
can be implemented using only these three higher-order functions. Many functional programming 
languages provide built-in functions for more than only these three theorems (e.g. in TypeScript 
the some method for the Decision and the find method for the Selection and Search theorems). 
However, reduce, map, and filter are very common in real-life programming and are enough to 
provide an “easy-enough” solution to the rest of the theorems.  

Szlávi and Zsakó group programming theorems based on whether their output is a single value or 
one or more collections of values [11]. Another way to group them could be based on their form 
in functional programming. It is possible to group the theorems into three distinct categories based 
on which higher-order function can be used for their implementations. 

Reduction Filtering Mapping 

Reduction 

Maximum Selection 

Filtering 

Decision 

Searching 

Counting 

Partitioning 

Mapping 

Grouping theorems based on their implementations with higher-order functions 

It is also possible to implement the functional Mapping and Filtering theorems using the Reduction 
theorem just like in imperative programming [11,16], however that would result in overly 
complicated solutions for many theorems.  

3. Enumerators 

One of the classic ways to follow up an introductory, algorithm-first programming education is to 
continue with the means of data encapsulation and proceed towards object-oriented programming. 
This usually leads to the introduction of abstract data structures, classes, and objects. Another 
approach for proceeding towards object-oriented programming is with enumerators. Classic 
(imperative) enumerators are data types that have the following properties [9,17]: 

  



Classical Programming Topics with Functional Programming  50 

Central-European Journal of New Technologies in Research, Education and Practice 
   Volume 2, Number 2, 2020. 

• It is possible to point to its first element (based on an internal ordering), 

• step to the next element, 

• ask for the currently pointed element, 

• and ask if the enumeration has ended. 

The classic, imperative implementations of programming theorems all work with such 
enumerators. Using the interface of enumerators all the array and indexing specific code in the 
programming theorem can be easily replaced. [17]  

interface Enumerable<X> { 
  first   : () => void; 
  next    : () => void; 
  current : () => X; 
  end     : () => boolean; 
} 

Interface for “classic” enumerators 

const reduce = <X>(x: Enumerable<X>, f: (s: X, e: X) => X) => { 
  x.first(); 
  let s = x.current(); 
 
  for (x.first(); !x.end(); x.next()) { 
    s = f(s, x.current()); 
  } 
 
  return s; 
} 

Implementation of the Reduction theorem using “classic” enumerators 

Collections are a subtype of enumerators that store values of a specific type that can be 
enumerated [9]. They extend the Enumerable interface by a method that allows the addition of an 
element into the collection. This is required to implement programming theorems that output not 
only a single value but one or more new collections (e.g. Mapping, Filtering). 

interface Collection<X> extends Enumerable<X> { 
  add : (e: X) => void; 
} 

Interface for collections 

3.1. Functional enumerators 

It is also possible to create enumerators for the functional implementations of programming 
theorems as well. This requires creating a new definition for functional enumerators to suit our 
requirements. The requirements for a functional enumerator are the following: 

• It is possible to decide whether it is empty, 

• ask for the first (head) element, 

• ask for the rest of the elements (tail) – i.e. elements except for the first. 



VISNOVITZ Márton  51 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

Programming theorems for such enumerators can be implemented as standalone functions or as 
methods of an enumerator class itself [18]. If we use the latter method, we must use an abstract 
class instead of an interface to be able to implement the theorems as class methods. As for the 
methods of the Enumerable interface, we leave them as abstract methods, showing that these must 
be implemented for each specific enumerator (e.g. sequential input file enumerator, range 
enumerator, etc). The theorems can still use these abstract methods in their implementations. 

interface Enumerable<X> { 
  isEmpty : () => boolean; 
  next    : () => X; 
  rest    : () => Enumerable<X>; 
} 

Abstract class and methods for “Functional” Enumerators 

This functional enumerator interface can also be extended to allow the addition of an element. The 
signature of this extension to create the Collection interface is similar to the method required for 
classic collections. The main difference is that as in functional programming it is not allowed to 
change the internal state of an object, we must construct a new object when we add an element to 
a collection. 

interface Collection<X> extends Enumerable<X> { 
  add : (e: X) => Collection<X>; 
} 

Interface for “functional” collections 

3.2. Programming theorems for functional enumerators 

Programming theorems for functional enumerators can be implemented either as standalone 
functions or methods on the enumerator with the folding method that is shown in Section 2.1. The 
main difference between the two approaches is that if a theorem is implemented as a method then 
it does not have to take the collection as an input parameter, it is automatically passed via the this 
reference. As shown in Section 2.2, we only need to implement three methods, reduce, map, and 
filter to have access to all programming theorems.  

As with these enumerators we target functional programming it is important that the theorem 
implementations work in accordance with the main principles of functional programming. This 
means that none of the theorems can change the internal state of an enumerator (they should be 
immutable) and must return a new enumerator when necessary. 

abstract class CollectionWithTheorems<X> extends Collection<X> { 
  abstract isEmpty : ()     => boolean; 
  abstract first   : ()     => X; 
  abstract rest    : ()     => CollectionWithTheorems<X>; 
  abstract add     : (e: X) => Collection<X>; 
 
  reduce = (f: (s: X, e: X) => X): X =>  
    this.rest().isEmpty() ? this.first() 
                          : f(this.rest().reduce(f), this.first()); 
  map = <Y> (f: (e: X) => Y): MappableCollection<Y> =>  
    this.empty()          ? this.constructor() 



Classical Programming Topics with Functional Programming  52 

Central-European Journal of New Technologies in Research, Education and Practice 
   Volume 2, Number 2, 2020. 

                          : this.rest().map(f).add(f(this.first())); 
  filter = (p: (e: X) => B): FilterableCollection<X> =>  
    this.empty()          ? this.constructor() 
    : p(this.next())      ? this.rest().filter(p).add(this.first()) 
                          : this.rest().filter(p); 
} 

Abstract class with the signatures and folding-based implementations of programming theorems 

4. Educational considerations 

In classic programming education we usually follow an algorithm-first, object-oriented-second 
approach. With this method the focus in early programming is on the low-level concepts, i.e. how 
things work and how to implement basic algorithms. With a functional-first approach the same can 
be said if we start with the low-level concepts first, like pattern-matching or folding. This approach 
results in a bottom-up learning process. 

However, there is the possibility to start programming education with a higher-order-first approach. 
This would mean that programming is introduced with high-level, functional-style programming: 
using collections and the reduce, map and filter functions as shown in Section 2.2. This would 
allow students to easily solve most data-processing tasks easily using high-level tools. Based on our 
experiences in various introductory and web programming courses and our experience with 
teaching pupils in summer camps [15] this top-down learning approach can emphasise problem-solving, 
giving student early satisfaction and quick success to keep their motivation high. Principles of 
object-oriented programming could also be introduced early by data-encapsulation with classes and 
objects and data-processing methods. It would also be possible to use this approach combined 
with web technologies, web programming in the browser, and the principles of the constructionist 
learning theory to create a motivating and efficient framework for learning programming [15].  

In later stages of a higher-order-first educational approach, it could be possible for students to learn 
about the internal operation of the functional theorems by creating custom enumerable data 
structures. The implementation of the theorems on custom enumerators could be either in a 
functional or imperative style thus focusing on how things work. This approach could help students 
to learn about various programming paradigms and how to combine them. 

As such higher-order-first approach would initially only use the Reduction, Mapping and Filtering 
theorems as shown in Section 2.2, some other theorems will be less efficient than some other 
implementations. One example would be the Partitioning theorem that is solved by applying the 
Filtering theorem twice in succession (thus iterating through the input two times), however on a 
lower level it can be solved by a single iteration over the input collection. In a top-down learning 
approach this lack of efficiency is not necessarily an issue, as the focus is on solving problems. 
Most of the times we do not require highly efficient programs and working with the occasional 
sub-optimal theorem implementation is perfectly fine. Also, some programming languages provide 
many built-in higher-order functions that solve more theorems efficiently similarly to how the 
reduce, map and filter functions solve the Reduction, Mapping and Filtering theorems. In later 
stages of the learning process the efficiency aspect can be covered in more detail as well, and more 
effective solutions can be implemented with imperative or low-level functional programming. 

  



VISNOVITZ Márton  53 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

5. Conclusions 

Programming theorems and enumerators form a solid foundation for classical algorithm-first, object-
oriented-second programming curriculums that are very popular all over the globe. This approach 
emphasises understanding the low-level concepts of programming and how to use those concepts 
to build more and more complex algorithms and data structures to solve problems. It is possible 
to use functional programming to implement the same programming theorems and enumerators. 
This means that it is possible to create a functional-first programming curriculum that is analogous 
to this classic method as it uses the same programming theorems and enumerators as its 
foundation. 

With functional-style programming and higher-order functions three programming theorems are 
enough to provide concise albeit form an efficiency perspective sometimes sub-optimal solutions 
to the rest of the theorems. Practically every programming language that supports functional 
programming have these three programming theorems available as higher-order functions out of 
the box. Based on these functions it could be possible to create a higher-order-first curriculum for 
teaching programming. This approach would facilitate a problem-solving centred learning process 
and would focus less on the low-level inner workings of programming theorems in the early stages 
of learning programming. In later stages it could also be possible to work our ways towards 
implementing new enumerators and other data structures that give a deeper understanding of the 
underlying algorithms or functional constructs. The browser and web programming combined with 
a constructionist learning methodology could provide a suitable environment for learning activities 
using this higher-order-first approach, thus they could hold great potential as a platform for learning 
programming using this methodology. 

  



Classical Programming Topics with Functional Programming  54 

Central-European Journal of New Technologies in Research, Education and Practice 
   Volume 2, Number 2, 2020. 

Acknowledgement 

The research has been supported by the European Union, co-financed by the European Social 
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding 
Innovation in Informatics and Infocommunications). 

Bibliography 

1. Vujošević-Janičić, M., Tošić, D., The Role of Programming Paradigms in the First Programming 
courses, Teaching of Mathematics, vol. 11, no. 2, pp. 63–83, (2008). 

2. Szlávi, P., Zsakó, L., Methods of teaching programming, Teaching Mathematics and Computer Science, 
vol. 1, no. 2, pp. 247–257, (2003), DOI: 10.5485/tmcs.2003.0023. 

3. Szlávi, P., Zsakó, L., Módszeres programozás: Programozási bevezető (in Hungarian), in Mikrológia 
vol. 18. ELTE TTK Általános Számítástudományi Tanszék: Budapest, (1994). 

4. Joosten, S., van den Berg, K., van der Hoeven, G., Teaching functional programming to first-year 
students, Journal of Functional Programming, vol. 3, no. 1, pp. 49–65, (1993), 
DOI: 10.1017/S0956796800000599. 

5. Chakravarty, M. M. T., Keller, G., The Risks and Benefits of Teaching Purely Functional 
Programming in First Year, Joural of Functional Programming, (2004), 
DOI: 10.1017/S0956796803004805. 

6. Szlávi, P., Zsakó, L., Módszeres programozás (in Hungarian). Műszaki Könyvkiadó: Budapest, 
(1986). 

7. Szlávi, P., Zsakó, L., Módszeres programozás: Programozási tételek (in Hungarian). ELTE 
Informatikai Kar, (2008). 

8. Szlávi, P., Temesvári, T., Zsakó, L., Módszeres programozás: A programkészítés technológiája (in 
Hungarian), in Mikrológia vol. 21. ELTE TTK Általános Számítástudományi Tanszék: 
Budapest, (1994). 

9. Gregorics, T., Programozás 1. kötet Tervezés (in Hungarian). ELTE Eötvös Kiadó: Budapest, 
(2013). 

10. Gregorics, T., Kovácsné Pusztai, K., Fekete, I., Veszprémi, A., Programming Theorems and Their 
Applications, Teaching Mathematics and Computer Science, pp. 213–241, (2019), 
DOI: 10.5485/TMCS.2019.0466. 

11. Szlávi, P., Zsakó, L., Törley, G., Programming Theorems Have the Same Origin, Central-European 
Journal of New Technologies in Research, Education and Practice, vol. 1, no. 1, pp. 1–12, (2019), 
DOI: 10.36427/cejntrep.1.1.380. 

12. Kruglyk, V., Lvov, M., Choosing the First Educational Programming Language, in CEUR Workshop 
Proceedings, (2012), vol. 848, pp. 188–198. 

13. Van Roy, P., Haridi, S., Teaching Programming Broadly and Deeply: The Kernel Language Approach, 
in IFIP Advances in Information and Communication Technology, (2003), vol. 117, pp. 53–62, 
DOI: 10.1007/978-0-387-35619-8_6. 

https://doi.org/10.5485/tmcs.2003.0023
https://doi.org/10.1017/S0956796800000599
https://doi.org/10.1017/S0956796803004805
https://doi.org/10.5485/TMCS.2019.0466
https://doi.org/10.36427/cejntrep.1.1.380
https://doi.org/10.1007/978-0-387-35619-8_6


VISNOVITZ Márton  55 

Central-European Journal of New Technologies in Research, Education and Practice 
Volume 2, Number 2, 2020. 

14. Horváth, G., Menyhárt, L., Teaching introductory programming with JavaScript in higher education, in 
Proceedings of the 9th International Conference on Applied Informatics, (2015), pp. 339–350, 
DOI: 10.14794/icai.9.2014.1.339. 

15. Visnovitz, M., Horváth, G., A Constructionist Approach to Learn Coding with Programming 
Canvases in the Web Browser, CONSTRUCTIONISM 2020, pp. 1–8, (2020). 

16. Gregorics, T., Force of Summation, Teaching Mathematics and Computer Science, pp. 185–199, 
(2014), DOI: 10.5485/TMCS.2014.0365. 

17. Gregorics, T., Programming Theorems on Enumerator, Teaching Mathematics and Computer Science, 
pp. 89–108, (2010). 

18. Gregorics, T., Programozás 2. kötet Megvalósítás (in Hungarian). ELTE Eötvös Kiadó: 
Budapest, (2013). 

 

Authors About this document 

VISNOVITZ Márton 

Eötvös Loránd University, Budapest, 
Hungary 
3in Research Group, Martonvásár, Hungary 
e-mail: visnovitz.marton@inf.elte.hu 

Published in: 

CENTRAL-EUROPEAN JOURNAL OF 
NEW TECHNOLOGIES IN RESEARCH, 
EDUCATION AND PRACTICE 

Volume 2, Number 2. 2020 

ISSN: 2676-9425 (online) 

DOI: 

10.36427/CEJNTREP.2.2.965 

License 

Copyright © VISNOVITZ Márton. 2020 

Licensee CENTRAL-EUROPEAN JOURNAL OF NEW TECHNOLOGIES IN 
RESEARCH, EDUCATION AND PRACTICE, Hungary. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 
license. 

http://creativecommons.org/licenses/by/4.0/ 

https://doi.org/10.14794/icai.9.2014.1.339
https://doi.org/10.5485/TMCS.2014.0365
http://creativecommons.org/licenses/by/4.0/

