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Coverage Analysis and Scaling Laws in
Ultra-Dense Networks
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Abstract— In this paper, we develop an innovative approach
to quantitatively characterize the performance of ultra-dense
wireless networks in a plethora of propagation environments.
The proposed framework has the potential of simplifying the
cumbersome procedure of analyzing the coverage probability and
allowing the unification of single- and multi-antenna networks
through compact analytical representations. By harnessing this
key feature, we develop a novel statistical machinery to study the
scaling laws of wireless networks densification considering gen-
eral channel power distributions including small-scale fading and
shadowing as well as associated beamforming and array gains
due to the use of multiple antenna. We further formulate the rela-
tionship between network density, antenna height, antenna array
seize and carrier frequency showing how the coverage probability
can be maintained with ultra-densification. From a system design
perspective, we show that, if multiple antenna base stations
are deployed at higher frequencies, monotonically increasing the
coverage probability by means of ultra-densification is possible,
and this without lowering the antenna height. Simulation results
substantiate performance trends leveraging network densification
and antenna deployment and configuration against path loss
models and signal-to-noise plus interference thresholds.

Index Terms— Network densification, MIMO, stochastic geom-
etry, millimeter wave, antenna height, coverage probability, Fox’s
H-fading.

I. INTRODUCTION

CHIEFLY urged by the unfolding mobile data deluge, a
radical design make-over of cellular systems enabled by
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the so-called network densification and heterogeneity, primar-
ily through the provisioning of small cells, has become an
extremely active and promising research topic [2]–[10]. While
small-cell densification has been recognized as a promising
solution to boost capacity and enhance coverage with low
cost and power-efficient infrastructure in 5G networks, it also
paves the way for reliable and high capacity millimeter wave
(mmWave) communication and directional beamforming [2].
Nevertheless, there has been noticeable divergence between
the above outlook and conclusions of various studies on
the fundamental limits of network densification, according
to which the latter may eventually stop, at a certain point,
delivering significant capacity gains [4]–[20].

In this respect, several valuable contributions leverage sto-
chastic geometry (SG) to investigate ultra-dense networks
performance under various path loss and propagation models
[4], [5]. In the single-input single-output (SISO) context,
conflicting findings based on various choices of path loss mod-
els have identified that the signal-to-noise plus interference
(SINR) invariance property, which enables a potentially infi-
nite aggregated data rate resulting from network densification
based on the power-law model [4]–[11] vanishes once a more
physically feasible path loss model is considered. In the latter
case, [15]–[17] showed that the coverage probability attains
a maximum point before starting to decay when the network
becomes denser. Most recently, the authors of [17], [18] and
[19] have investigated the limits of network densification when
the path loss model includes the antenna height. Besides
invalidating the SINR invariance property in this case, these
works find that by lowering the antenna height the coverage
drop due to ultra-densification can be totally offset, thereby
improving the network capacity.

Motivated by the tractability of the considered system
models, most of the previous works assumed the sce-
nario of exponential-based distributions for the channel gains
(e.g., integer fading parameter-based power series [6], [8],
[14], and Laguerre polynomial series in [7]) and unbounded
power law models, while the few noteworthy studies that
incorporate general fading, shadowing and path loss models
often lead to complex mathematical frameworks that fail to
explicitly unveil the relationship between network density
and system performance [5], [10], [11]. Moreover, although
some works investigated the effect of path loss singularity
[21]–[23] or boundedness [3], [9], the incorporation of the
combined effect of path loss and generalized fading channel
models is usually ignored. This has entailed divergent or even
contrasting conclusions on the fundamental limits of network
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densification [3], [17], [18]. More importantly, additional work
is necessary to investigate advanced communication and signal
processing techniques, e.g., massive multiple-input-multiple-
output (MIMO), coordinated multipoint (CoMP) and mmWave
communications [24]–[26] that are expected to enhance the
channel gain.

Motivated by the above background, we develop a compre-
hensive theoretical framework for analyzing the performance
of dense networks over generalized fading channels. The main
objective of this paper is, in particular, to introduce a non
model-specific channel model that leads to a new unified
approach to assess the performance of dense networks. To
this end, we propose the Fox’s H model as a unified fading
distribution for a large number of widely used general multi-
path and/or shadowing distributions. In particular, by lever-
aging fundamental results form the Fox’s H transform theory
and the Mellin-Barnes integrals along with SG, we investigate
the performance limits of network densification under realistic
path loss models and general channel power distributions,
including propagation impediments and transmission gains due
to the antenna pattern and beamforming, which are particularly
relevant in multi-antenna settings. Several works [20]–[27]
studied different performance metrics to characterize the per-
formance of multi-antenna cellular networks, yet under the
assumption of the standard power-law path loss model, since
it leads to tractable analysis. In this paper, by leveraging a
novel methodology of analysis that is compatible with a wide
class of path loss models, including the antenna height, we
are able to study the achievable performance of multi-antenna
networks and understand how scaling the deployment density
of the base stations (BSs) helps maintain the per user-coverage
in dense networks. The main contributions of this paper are
the following:

• A unified analytical framework characterizing the cov-
erage performance and corresponding scaling laws of
ad hoc and cellular networks under a general Fox’s H
distributed channel model with a smooth inclusion of
both unbounded and bounded path loss models without
the need of applying approximations or bounds.

• A low complexity extension to the multi-antenna sce-
nario in both ad hoc and cellular networks enabling a
more comprehensive investigation of the coverage per-
formance. The asymptotic performance limits of multi-
antenna networks are derived in closed-form showing that
there is potential for improving the scaling laws of the
coverage by increasing the number of BS antennas.

• Novel solutions to coverage decline due to densification
by considering advanced transmission, such as MIMO
and directional beamforming, and by considering the
effect of high transmission frequencies (e.g., mmWave).
We show that maintaining the maximum coverage is
possible by deploying multiple antennas at the BS and
by operating at higher frequency bands, and without low-
ering the BS height. The obtained scaling laws provide
valuable system design guidelines for optimizing general
networks deployment.

TABLE I

MAIN NOTATIONS AND MATHEMATICAL SYMBOLS/SHORTHAND

The rest of the paper is organized as follows. In Section II,
we present the system model and the modeling assumptions. In
Section III, we introduce our approach to obtain exact closed-
form expressions and scaling laws for the coverage probability.
Section IV is focused on multi-antenna BSs and single-antenna
users, i.e., MISO networks. Applications of the obtained cover-
age expressions in different wireless communication scenarios
are detailed in order to leverage the full potential of network
densification. Numerical and simulation results are illustrated
in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider the downlink transmission of a T -tier hetero-
geneous wireless network. The BSs in Tier k, k = 1, . . . , T
are spatially distributed according to a homogenous Poisson
point process (PPP) Φk ∈ R

2 with given spatial density
λk ≥ 0. We focus our attention on the performance analysis of
a typical user equipment (UE) which is assumed, without loss
of generality, to be located at the origin and is associated with
BS xk ∈ Φk. Then, the SINR at the typical UE is formulated
as

SINRk =
L(rk)gxk∑T

i=1

∑
xi∈Φi\xk

P̃iL(ri)gxi + σ2
k

, (1)

where the following notation is used:

• L(r) is the path loss model, where L(r) = r−α for an
unbounded path loss and L(r) = (1+r)−α for a bounded
one.

• P̃i = Pi

Pk
is the power of the i-th BS normalized by the

power of the BS with index k serving the typical UE.
• σ2

k is the normalized noise power defined as σ2
k = σ2

Pk
.

• gxk
is the channel power gain for the desired signal from

the serving BS located at xk . In this paper, a general type
of distribution is assumed for gxk

as follows.
Assumption 1: The channel power gain gxk

for
the typical UE has a Fox’s H distribution, i.e.,
gxk

∼ Hu,v
p,q (x;Pk), with the parameter sequence

Pk = (κk, ck, ak, bk, Ak, Bk) and probability density
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function (pdf) [32]

fgxk
(x) = κkHu,v

p,q

[
ckx

∣∣∣∣ (ak, Ak)p

(bk, Bk)q

]
, x ≥ 0. (2)

where the Fox’s H function is defined as
[32, Eq. (1.2)]mathai

Hu,v
p,q

[
z

∣∣∣∣ (a, A)p

(b, B)q

]
=

1
2πi∫

L

∏u
k=1 Γ(bk+sBk)

∏v
j=1 Γ(1−aj−sAj)z−s∏q

k=u+1 Γ(1−bk−sBk)
∏p

j=v+1 Γ(aj +sAj)
ds,

(3)

where i =
√
−1, Aj > 0 for all j = 1, . . . , p, and

Bk > 0, for all k = 1, . . . , q and L is a suitable
path of the integration that depends on the value of the
parameters [32]. Examples of how classical and more
recent fading models can fit into this unified fading model
are provided in [34, Tables II-V]. In particular, the Fox’s
H function distribution captures composite effects of mul-
tipath fading and shadowing, subsuming a wide variety of
important or generalized fading distributions adopted in
wireless communications such as α-μ,1 N -Nakagami-m,
(generalized) K-fading, Weibull/gamma, and the Fisher-
Snedecor F-S F fading (see [33], [34], and [35] and
references therein).

• α is the path loss exponent.
• gxi is the interferer’s power gain from the interfering

transmitter located at xi. In the proposed framework, we
assume that gxi , i ∈ {1, . . .T } are non-negative random
variables that are independent and identically distributed
according to (2).

III. UNIFIED ANALYTICAL FRAMEWORK

In this section, we derive the complementary cumulative
distribution function (ccdf) of the SINR, also called the
coverage probability, in single-antenna networks. The obtained
framework is utilized to analyze multi-antenna networks in
general settings in the next section.

1The α-μ distributions can be attributed to exponential, one-sided Gaussian,
Rayleigh, Nakagami-m, Weibull and Gamma fading distributions by assigning
specific values for α and μ.

A. Coverage Analysis in Closest-BS-Association-Based
Cellular Networks

Let the typical user be associated with the closest BS. This
implies that the typical user is in coverage if the set S ={
∃k ∈ T : k = argmaxj∈T ,x∈Φj P̃jL(rj); SINRk ≥ βk

}
is

not empty.
Proposition 1: When the locations of the BSs are modeled

as a Poisson point process (PPP) [13] and the nearest-BS
association is adopted, the SINR coverage probability at the
typical UE for an unbounded path loss model and the SINR
thresholds βk, k ∈ {1, . . . , T }, is given by

CU = πδ

T∑
k=1

λk

σ2δ
k

∫ ∞

0

1
ξ2+δ

Hv,u
q,p+1

(
ξ,Pk

U
)

H1,1
1,1

⎛⎝ π

(ξσ2
k)δ

T∑
j=1

λjP̃
δ
j

(
1+δξHv+1,u+2

q+2,p+3

(
ξ,PIj

U

))
,Pδ

⎞⎠ dξ,

(4)

where δ = 2
α , Pδ = (1, 1, 1− δ, 0, δ, 1), with

Pk
U =

(
κkβk,

1
ckβk

, 1−bk, (1−ak, 1), Bk, (Ak, 1)
)

, (5)

and

PIj

U =
(

κj

c2
j

,
1
cj

, (1−bj−2Bj, 0, δ), (0, 1−aj−2Aj,−1, δ−1),

× (Bj , 1, 1), (1, Aj, 1, 1)
)

. (6)

Proof: See Appendix A.
The main assumptions in Proposition 1 are the Fox’s H

distributed signal and interference channel power gains and
the standard power-law unbounded path loss model. The
unbounded power-law path loss is known to be inaccurate
for short distances, due to the singularity at the origin, which
affects the scaling laws of the coverage probability [21]. Next,
a more physically feasible path loss model is considered.

Proposition 2: When a bounded path loss model is adopted,
the coverage probability of cellular networks based on the
nearest-BS association strategy is given in (7)-(9), as shown at
the bottom of the page, that are shown at the top of the next
page.

Proof: See Appendix B.
Remark 1: For arbitrary distributions for the channel gain,

the coverage expressions in (4) and (7) are independent of the

CB =
T∑

k=1

λk

∫ ∞

0

e−
�

j∈T πλj
�P δ

j δξ(Ψ1−Ψ2)
Hv,u

q,p+1

(
ξ,Pk

B
)

ξ2
∑T

j=1 πλjP̃ δ
j δξ(Ψ1 + Ψ2)

H1,1
1,1

( ∑T
j=1 λj P̃

δ
j (1+δξΨ1)∑T

j=1 λj P̃ δ
j δξ(2Ψ1+Ψ2)

, P̃δ

)
dξ, (7)

where P̃δ = (1, 1,−1, 0, 2, 1), Pk
B = Pk

U and Ψx = Hv+1,u+2
q+2,p+3

(
ξ,Px,I

B

)
, x ∈ {1, 2} with

P1,j,I
B =

(
κj

c2
j

,
1
cj

, (1− bj − 2Bj , 0, δ), (0, 1− aj − 2Aj ,−1, δ − 1), (Bj , 1, 1), (1, Aj, 1, 1)
)

(8)

and

P2,j,I
B =

(
κj

c2
j

,
1
cj

,

(
1−bj−2Bj, 0,

δ

2

)
,

(
0, 1−aj−2Aj,−1,

δ

2
−1

)
, (Bj , 1, 1), (1, Aj, 1, 1)

)
(9)
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TABLE II

COVERAGE PROBABILITY OF SOME WELL-KNOWN FADING CHANNEL MODELS BASED ON THE CLOSEST-BS STRATEGY

n-th derivative of the Laplace transform of the aggregate inter-
ference, n ∈ [0,∞), while accurately reflecting the behavior
of multi-tiers networks in all operating regimes without the
need of applying approximations or upper bounds. Compared
with the coverage approximations in [7], [8], and [14] and
expressions in [5], [6], the proposed approach yields a more
compact analytical result for the coverage probability, where
only an integration of Fox’s H functions is needed thanks
to the novel handling of fading distributions. Table II lists
some commonly-used channel fading distributions and the
corresponding expression for C.
It is worth noting that the proposed framework can be extended
to other network models, for example, where the transmitters
are spatially distributed according to other point processes

[36], [37], notably including non-Poisson models [23], or
under multi-slope path loss models [16], [22]. Hence, the
results of this paper allow for an exact and tractable approx-
imation of the coverage probability of any stationary and
ergodic point process [23], [36]. In the next section, we
show the usefulness of the proposed approach for obtaining
insightful design guidelines for multi-antenna and mmWave
networks.

B. Coverage Analysis in Strongest-BS-Association-Based
Cellular Networks

The strongest-BS association rule, according to which
the serving BS is the one that provides the maximum
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signal-to-interference (SIR),2 can be particularly advantageous
for application to scenarios in which the closest-BS association
strategy may provide poor performance due to severe block-
ages. Also, the strongest-BS association criterion may yield
performance bounds for other, more practical, cell association
strategies. Under the strongest-BS association, the typical user

is in coverage if the set S =
{
∃k ∈ T ; max

xk∈Φk

SIRk ≥ βk

}
is

not empty [14].
Proposition 3: When the strongest-BS association is

adopted, the SIR coverage probability of the typical UE with
unbounded path loss model, given the SIR thresholds βk,
k ∈ {1, . . . , T }, is given by

C = 2π

T∑
k=1

κkλk

ck

∫ ∞

0

rkΥ(rk)drk

=
π

C(δ)

T∑
k=1

λkβ−δ
k Λk∑

j∈T λjP̃ δ
j Λj

, (10)

with

Υ(rk)

= Hu+1,v
p+1,q+1

⎡⎣ T∑
j=1

πr2
kλjΓ(1−δ)Λj

P̃−δ
j (ckβk)−δ

∣∣∣∣(ak+Ak, δAk), (1, δ)
(0, 1), (b+Bk, δBk)

⎤⎦ ,

(11)

where C(δ) = π2δ csc(πδ) and

Λj =
κj

cδ+1
j

∏u
t=1 Γ (bjt + (1 + δ)Bjt)∏p

t=u+1 Γ (1− bjt − (1 + δ)Bjt)

×
∏v

k=1 Γ (1− ajk
− (1 + δ)Ajk

)∏p
k=v+1 Γ (ajk

+ (1+δ)Ajk
)

. (12)

Proof: The proof follows from Appendix C along with the
fact that

Erk
[Υ(rk)] = 2πλk

∫ ∞

0

rkHu+1,v
p+1,q+1

[ T∑
j=1

πr2
kλjΓ(1 − δ)Λj

P̃−δ
j (ckβk)−δ∣∣∣∣ (ak + Ak, δAk), (1, δ)

(0, 1), (b+Bk, δBk)

]
drk

. (13)

Then, applying the transformation Hm,n
p,q

[
x
∣∣ (ai, kAj)p

(bi, kBj)q

]
=

1
kHm,n

p,q

[
x

1
k

∣∣ (ai, Aj)p

(bi, Bj)q

]
, k > 0 and the Mellin transform in

[32], we obatin

Erk
[Υ(rk)] =

Γ(1− δ)−1

Γ(1 + δ)

ckβ−δ
k

Λk

κk∑
j∈T λjP̃ δ

j Λj

. (14)

Finally, plugging (14) into (10) yields the desired result after
some manipulations.

Remark 2: As shown in (10), the main task in deriving the
coverage probability in cellular networks under the strongest-
BS cell association criterion is to calculate Λ. In Table III, we
show the coverage probability for the strongest-BS association
criterion when various special cases of the Fox’s H function
distribution are considered. Notably, (10) is instrumental in

2[9] showed that self-interference dominates noise in typical heterogeneous
networks under the strongest-BS association. Therefore, we ignore noise in
the rest of this section.

evaluating the impact of the number of tiers or their relative
densities, transmit powers, and target SIR over generalized
fading scenarios. This result complements existing valuable
coverage studies of cellular networks over generalized fading
[14, Proposition 1], [9, Corollary 1].

Remark 3: Our proposed method in Proposition 3 can be
exploited to smoothly include the bounded path loss model
into the coverage analysis. From a computational perspective,
we note that closed-form expressions in this case may not
be affordable due to a double integration. Due to space
limitations, the details are omitted. In particular, we only
report the unbounded case since it allows useful coverage
simplifications.

C. Coverage Analysis in Ad Hoc Networks

Ad hoc networks with short-range transmission are, from
an architecture perspective, similar to device-to-device (D2D)
communication networks where Internet of Things (IoT)
devices communicate directly over the regular cellular spec-
trum but without using the BSs. We use the dipole PPP model
[40] where the typical receiver has its associated transmitter in
the k-th tier at a fixed distance rk , assumed to be independent
of the set of interfering transmitters and their densities.3

Proposition 4: The coverage probability of ad hoc networks
over the Fox’s H fading channel is given by

C =
T∑

k=1

κk

ck
Υ(rk), (15)

where Υ(rk) is given in (11).
Proof: It follows from Proposition 3 when rk is fixed.

We note that the coverage probability in ad hoc networks
involves a finite summation of Fox’s H functions which can
be efficiently evaluated [11]. Overall, the obtained analytical
expressions are easier to compute than existing results [4]–[6],
[17]–[20] that contain multiple nested integrals.

D. The Impact of Network Densification

In this section, we exploit the derived analytical framework
to analyze the coverage scaling laws for single-antenna multi-
tiers cellular and ad hoc networks. Assuming λk = λ → ∞,
k = 1, . . . , T , the coverage scaling laws are given in the
following text.

1) Coverage Scaling Law in Cellular Networks: The cov-
erage probability of single antenna-cellular networks with an
unbounded path loss model is invariant with the BS density
λ. Specifically, we have

CU ,∞ =
T∑

k=1

∫ ∞

0

Hv,u
q,p+1

(
ξ,Pk

U
)
dξ

ξ2
∑T

j=1P̃
δ
j

(
1+δξHv+1,u+2

q+2,p+3

(
ξ,PI

U
)) , (16)

which is obtained by letting λ → ∞ in Proposition 1 and
resorting to the asymptotic expansion of the Fox’s H function
H1,1

1,1(x;Pδ) ≈
x→∞

1
δ x−1 along with applying [38, Eq.(1.5.9)].

3The dipole PPP model is perhaps simplistic, but we leave the investigation
of random wireless ad hoc networks with mobile nodes and with clustered
and non-homogeneous PPPs [37] to future work.
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TABLE III

COVERAGE PROBABILITY OF SOME WELL-KNOWN FADING CHANNEL MODELS BASED ON THE STRONGEST-BS ASSOCIATION

We note that (16) generalizes the SINR invariance property
that has been revealed in some specific settings, e.g., [3], [4],
[5], and [9].
Contrary to what the standard unbounded path loss model
predicts, the coverage probability under the bounded path loss
model scales with e−λ and approaches zero with increasing λ
for general values of δ. This is readily shown in the following
asymptotic coverage expression obtained by letting λ→∞ in
Proposition 2, as4

CB,∞ =
T∑

k=1

∫ ∞

0

e−λ
�T

j=1 π �P δ
j δξ(Ψ1−Ψ2)

×
Hv,u

q,p+1

(
ξ,Pk

B
)
H1,1

1,1

( �T
j=1

�P δ
j (1+δξΨ1)�

j∈T
�P δ

j δξ(2Ψ1+Ψ2)
,Pδ

)
ξ2

∑T
j=1 πP̃ δ

j δξ(Ψ1 + Ψ2)
dξ.

(17)

Due to the complexity of the bounded model, the impact of λ
was only understood through approximations in [14] and [15]
and for fading scenarios with integer parameters. Thanks to our
proposed unified approach, the impact of ultra densification
can be scrutinized in the most comprehensive setting of multi-
tier networks under the Fox’s H fading channel.

2) Coverage Scaling Law in Ad Hoc Networks: In
ad hoc networks, to the best of our knowledge, there
exists no works that quantified the effect of densification

4Using the Mellin-Barnes integral representations of Ψ1 and Ψ2 [32], we
can easily show that Ψ1 − Ψ2 > 0.

over generalized fading channels. By exploiting the pro-
posed analytical framework, the coverage scaling law in
ad hoc networks is revealed in this paper. First, it is
pertinent to remark that gk ∼ H-{(q, 0, p, q),P} can be
assumed in the majority of fading distributions as shown
in Table II. In this case, applying the asymptotic expan-
sion of the Fox’s H function [38, Eq. (1.7.14)] Hq,0

p,q(x) ∼

x
ν+1

2
Δ exp

[
−Δ

(
x
ρ

)1/Δ
]

to (15), we obtain

C ≈
λ→∞

T∑
k=1

κk

ck
(λA)

νk+1
2

Δk exp

[
−Δk

(
λ
A
ρk

)1/Δk
]

, (18)

where A =
∑T

j=1
πr2

kΓ(1−δ)Λj�P−δ
j (ckβk)−δ

, Δk =

1 + δ
(∑q

j=1 Bjk
−

∑p
j=1 Ajk

− 1
)

, ρk =
δδ

∏p
j=1(δAjk

)−δAjk

∏q
j=1(δBjk

)−δBjk , and νk =∑q
j=1 bjk

−
∑p

j=1 ajk
+

∑q
j=1 Bjk

−
∑p

j=1 Ajk
+ p−q

2 − 1
are constants defined in [38, Eq. (1.1.8)], [38, Eq. (1.1.9)],
and [38, Eq. (1.1.10)], respectively.
In the special case of Gamma fading, i.e., gxk

∼
Gamma(mk, 1) ∼ H-{(1, 0, 0, 1),P}, it can be shown
that Δk = 1, ρk = 1, and νk = mk − 3

2 , which results in

C ≈
λ→∞

T∑
k=1

(λA)mk−1

Γ(mk)
exp (−λA) . (19)

It turns out that the coverage probability of ad hoc networks
in arbitrary Nakagami-m fading (i.e., gxk

∼ Gamma(mk, 1),
k = 1, . . . , T ) is formulated as the product of an exponential
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function and a polynomial function of order T (max mk
k=1,...,M

− 1)

of the transmitter density λ. When T = 1, i.e., in single-
tier networks, the coverage probability is a product of an
exponential function and a power function of order m − 1.
In the special case when T = m = 1, i.e., in single-tier ad
hoc networks over a Rayleigh fading channel, the coverage
probability reduces to an exponential function.

IV. MULTI-ANTENNA VS. SINGLE-ANTENNA NETWORKS

A. Coverage Analysis

In multi-antenna networks, the analysis of the coverage
probability is more difficult due to the more complicated signal
and interference distributions. However, we emphasize that,
for several MIMO techniques, the associated post-processing
signal power gain can include Gamma-type fading [20], [25],
[27], [28] with gx ∼ Gamma(M, θ) where M is typically
related to the number of antennas (e.g. M = Nt, θ = 1
for maximum-ratio-transmission (MRT) and M = Nt, θ =
1/Nt for millimeter wave analog beamforming, where Nt

is the number of antennas at the transmitter) [27, Table II].
Hence, assuming that the signal power is gamma distributed
in multi-antenna networks and recognizing that fgx(x) =
θ−1

Γ(M)H
1,0
0,1

[
x
θ

∣∣∣∣ −
(M − 1, 1)

]
, then the Fox’s H-based modeling

of the coverage presented in Section III can be generalized to
the analysis of muti-anetnna networks.

1) Multi-Antenna Cellular Networks: We consider multiple-
input-single-output (MISO) networks using MRT where the
BSs of the k-th tier are equipped with Ntk

antennas. We
assume that the channel power gain gxk

of the desired signal is
gamma distributed such that gxk

∼ Gamma(Ntk
, 1) [27]. As

far as the interference distribution is concerned, we assume
that gxi are identically distributed according to an arbitrary
Fox’s H distribution. Hence, Proposition 1 can be generalized
to obtain the coverage probability in multi-antenna cellular
networks with arbitrary interference, as

C = πδ

T∑
k=1

(
Pk

σ2
k

)δ

λkβK

Γ(Ntk
)

∫ ∞

0

η(ξ)
ξ2+δ

H0,1
1,1

[
ξ

βk

∣∣∣∣(2−Ntk
, 1)

(1, 1)

]
dξ,

(20)

where

η(ξ) = H1,1
1,1

⎛⎜⎝ T∑
j=1

πλj P̃
δ
j(

Pk

ξσ2
k

)−δ

(
1+δξHv+1,u+2

q+2,p+3

(
ξ,PIj

U

))
,Pδ

⎞⎟⎠ .

(21)

Compared with existing approaches in [20]–[26], which
requires the calculation of Ntk

− 1 derivatives of η(ξ) when
gxk

is gamma distributed as Gamma(Ntk
, 1), the framework

in (20) and (21) adds no computational complexity and thus
preserves the tractability of single-antenna settings. We note
that assuming a Gamma distribution for the interferers’ power
gain, i.e. gxj ∼ Gamma(χj , φj), j ∈ {1, . . . , T }, is commonly
encountered in multi-antenna networks [27], [30], [31]. In this

case, we only need to modify the parameters of η(ξ) by
replacing in (20) the following equation

PI,j
U =

(
φj

Γ(χj)
, φj , (−χj, 0, δ), (0, 1, , δ−1),

(1, 1, 1), (1, 1, 1, 1)
)

. (22)

2) Multi-Antenna Ad Hoc Networks: The coverage proba-
bility of ad hoc networks for different multi-antenna trans-
mission strategies for which gxk

∼ Gamma(Mk, θk), k =
1, . . . , T is directly obtained from (15) as

C=
T∑

k=1

1
Γ(Mk)

×H2,0
1,2

⎡⎣ T∑
j=1

πr2
kλjΓ(1− δ)Λjβ

δ
k

P̃−δ
j (θk)−δ

∣∣∣∣ (1, δ)
(0, 1), (Mk, δ)

⎤⎦ , (23)

where Λj accounts for Fox’s H identically distributed interfer-
ences and is given in (12). The coverage probability scaling
law of multi-antenna ad hoc networks using MRT with Ntk

antenna at the k-th tier BS is obtained by applying (19) to (23)
as

C ≈
λ→∞

T∑
k=1

(λA)Ntk
−1

Γ(Ntk
)

exp (−λA) −→
λ−→∞

0 (24)

where A =
∑T

j=1
πr2

kΓ(1−δ)Λj�P−δ
j β−δ

k

. This last result reveals that,

although the SIR increases in multi-antenna ad hoc networks,
it will drop to zero as the transmitter density increases.

B. The Impact of the Antenna Size

In this subsection, we consider MISO single-tier networks
(i.e., T = 1) in which the BSs are equipped with Nt

antennas. We exploit the expressions and tools of the previous
sections to derive the scaling laws for different multi-antenna
networks including ad hoc, cellular, mmWave and networks
with elevated BSs.

1) Antenna Scaling in Ad Hoc Networks: For the multi-
antenna case, the coverage expression in (23) can be used to
find the asymptotic scaling laws summarized as follows.

Proposition 5: Consider a MISO ad hoc network with Nt

transmit antennas such that lim
λ→∞

Nt

λ
1
δ

= γ, where γ ∈ [0,∞],
then the asymptotic coverage probability has the following
scaling law

lim
λ→∞

C =

⎧⎪⎪⎨⎪⎪⎩
0, γ = 0;

H1,0
1,1

[
T
γδ

∣∣∣∣ (1, δ)
(0, 1)

]
, γ ∈ R

∗
+;

1, γ =∞.

(25)

where γ = 0,∈ R
∗
+,∞ stands for asymptotically

sublinear, linear and super-linear scaling of Nt and
T = πr2Γ(1−δ)βδθδΛ.
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Proof: Resorting to the Mellin-Barnes representation of the
Fox’s H function in (23), it follows that

C (a)
=

1
2πj

∫
C

Γ(Nt + δs)Γ(s)
Γ(Nt)Γ(1 + δs)

(Tλ)−s
ds

(b)



λ→∞

1
2πj

∫
C

(
T λ

Nδ
t

)−s

Γ(1 + δs)
ds, (26)

where (a) follows from using [32, Eq. (2.1)] and (b) fol-
lows form applying lim

λ→∞
Γ(Nt+δs)

Γ(Nt)
= (Nt)δs. The proof

follows by recognizing the Fox’s H function definition in
[32, Eq. (1.2)], along with its asymptotic expansions near zero
[38, Eq. (1.7.14)] and infinity [38, Eq. (1.8.7)].

Hence, based on Proposition 5, we evince that scaling the
number of antennas linearly with the density does not prevent
the SINR from dropping to zero for high BSs densities (as
δ−1 = α/2 with α > 2) thereby hindering the SINR invariance
property. Interestingly, when the number of antennas scales
super-linearly with the BSs density, the coverage approaches
a finite constant which is desirable since it guarantees a certain
quality of service (QoS) for the users in the dense regime.

2) Antenna Scaling in Cellular Networks: Before delving
into the analysis, it is important to recall that, in the sin-
gle antenna case, the coverage probability under a practi-
cal bounded path loss model drops to zero as λ → ∞
(see Section II.C). In the multi-antenna case, the asymp-
totic coverage scaling laws are summarized in the following
proposition.

Proposition 6: In MISO cellular networks with Nt transmit
antennas such that lim

λ→∞
Nt

λ = ζ, where ζ ∈ [0,∞], the

asymptotic coverage probability under a bounded path loss
model has the following scaling law

lim
λ→∞

C =

⎧⎪⎪⎨⎪⎪⎩
0, ζ = 0;

H1,0
1,1

[
2π β

ηζ

∣∣∣∣(1, 1)
(0, 1)

]
, ζ ∈ R

∗
+;

1, ζ =∞,

(27)

where η = 2 − 3α + α2 and ζ = 0,∈ R
∗
+,∞ stands

for asymptotically sub-linear, linear and super-linear scaling
of Nt.

Proof: Due to the intricacy of LI in (48), we resort
to an analytically tractable tight lower bound. Under the
bounded path loss model, the coverage probability in (47)
involves the interference Laplace transform LI(s(1 + r)α) =
exp(2πλΘ(s(1 + r)α), where we have

Θ(s) = Eg

[∫ ∞

r

(
1− exp

(
−sg(1 + t)−α)

))
tdt

]
(a)

≤ sE[g]
∫ ∞

r

t(1 + t)−αdt

(b)
≈ s

η

(
(1 + r)1−α(1− r + αr)

)
, (28)

where the inequality in (a) follows from the fact that 1−e−x ≤
x, ∀x ≥ 0 and (b) holds since g has a unit mean. We
note that when r becomes smaller, the inequality in (29)
becomes tighter. This is typically the case in ultra-dense
networks, where the closest distance to the origin tends to

be infinitesimally small. Accordingly, by relabeling r ← r
λ ,

we obtain

Θ
(
s
(
1 +

r

λ

)α)
≈

λ→∞

s

η
. (29)

Hence, the coverage probability can be obtained by
merging (29) and (47) as

C ≈ β

Γ(Nt)

∫ ∞

0

e−2π λ
η ξ

ξ2
H0,1

1,1

[
ξ

β

∣∣∣∣(2−Nt, 1)
(1, 1)

]
dξ,

(a)
≈ 1

Γ(Nt)
H2,0

1,2

[
2π

λβ

η

∣∣∣∣ (1, 1)
(0, 1), (Nt, 1)

]
, (30)

where (a) follows by applying
∫ ∞
0

fr(r)dr = 1 and
[32, Eq. (2.3)]. As Nt(λ) →

λ→∞
∞, we obtain

C
(b)



λ→∞
H1,0

1,1

[
2π

λβ

Ntη

∣∣∣∣ (1, 1)
(0, 1)

]
, (31)

where (b) follows by using an approach similar to (26). The
proof follows by resorting to the asymptotic expansions of
the Fox’s H function in (30) when ζ = Nt

λ is near zero
[38, Eq. (1.7.14)] and infinity [38, Eq. (1.8.7)].

The obtained result in (31) allows us to conclude that
monotonically increasing the per-user coverage performance
by means of ultra-densification is theoretically possible
through the deployment of multi-antenna BSs. Specifically,
(31) unveils that scaling linearly the number of antennas with
the BS density constitutes a solution for avoiding the coverage
drop in traditional dense networks.

C. The Impact of Antenna Gain in mmWave Networks

In MISO mmWave networks, the channel gain of the signal
gx follows a gamma distribution gx ∼ Gamma(Nt,

1
Nt

), where
Nt is the number of antennas at the BS [27]–[30]. As for the
interference received at the typical user, the total channel gain
is the product of an arbitrary unit mean small-scale fading gain
g [28], [30] and the directional antenna array gain G( d

λt
θx),

where d and λt are the antenna spacing and wavelength,
respectively, and θx is a uniformly distributed random variable
over [−1, 1]. An example of antenna pattern based on the
cosine function is given by [30], [31]

G(x) =
{

cos2
(

πNt

2 x
)
, |x| ≤ 1

Nt
;

0, otherwise.
(32)

In dense mmWave network deployments, it is reasonable
to assume that the link between any serving BS and the user
is in line-of-sight (LOS). Mathematically, the probability of
being in a LOS propagation can be formulated as p(r) =
e−τr, where τ is the blockage parameter determined by the
density and average size of the spatial blockage [18], [27].
Accordingly, (28) can be derived, based on the cosine antenna
pattern and the blockage model, as

Θ(s)≤ λts

πdNt

(∫ ∞

r

t
e−τt

(1 + t)αL
dt+

∫ ∞

(1+r)
αL
αN −1

t(1−e−τt)
(1 + t)αN

dt

)

×
∫ π

0

cos2
(x

2

)
dx

(a)
=

λ→∞

λte
τs

2dNt
(E + J (τ)) , (33)
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where (a) follows by using the same approach as (29) where
αL(αN ) is the path loss exponent of the LOS (NLOS)
link, E = αN−αL−1

(1−αL)(αN−2) , J (τ) = (αL−1+τ)EαL−1(τ)

αL−1 −
(αN−1+τ)EαN−1(τ)

αN−1 , and Eν(·) denotes the Exponential Inte-
gral function [39]. Then, using (33) and following the same
steps as in (30), we obtain

C =
1

Γ(Nt)
H2,0

1,2

[
πλeτβ

λ−1
t d

(E+J (τ))
∣∣∣∣ (1, 1)
(0, 1), (Nt, 1)

]
.(34)

Hence, the coverage scaling laws in mmWave networks are
given in the following proposition.

Proposition 7: In mmWave networks in which
limλ→∞ λt = 0, and lim

λ→∞
Ntλ−1

t

λ = ρ, where ζ ∈ [0,∞], the

asymptotic coverage probability has the following scaling law

lim
λ→∞

C =

⎧⎪⎪⎨⎪⎪⎩
0, ρ = 0;

H1,0
1,1

[
π βeτ (E+J (τ))

dρ

∣∣∣∣(1, 1)
(0, 1)

]
, ρ ∈ R

∗
+;

1, ρ =∞.

(35)

Proof: The proof is similar to those of Propositions 5 and 6.
The obtained result unveils that the scaling laws derived
for mmWave cellular networks are similar to those obtained
for legacy frequency bands (see Proposition 6). Specifically,
maintaining a linear scaling between the density of BSs and
the number of antennas is sufficient to prevent the SINR
from dropping to zero and to guarantee a certain quality
of service to the UE. In addition, the optimal coverage can
be achieved by linearly scaling the number of antennas and
the mmWave carrier frequency, which reduces both cost and
power consumption. This result provides evidence that moving
towards higher frequency bands may be an attractive solution
for high capacity ultra-dense networks.

Achieving optimal coverage rely on determining the opti-
mal scaling factor below which further densification becomes
destructive or cost-ineffective. This operating point depends on
the properties of the channel power distribution and path loss
and is of cardinal importance for the successful deployment
of ultra-dense networks.

Corollary 1 (Optimal Scaling Factor in Dense mmWave
Networks): Capitalizing on Proposition 7, the optimal scaling
factor ρ that prevents the outage drop in dense mmWave
networks is given by

ρ =
Ntfc

λ
(a)
=

πβeτ (E + J (τ))
d

, (36)

where fc is the mmWave carrier frequency and (a) follows

from recognizing that H1,0
1,1

[
x

∣∣∣∣ (1, 1)
(0, 1)

]
= U(1 − x), where

U(x) =
{

1, x ≥ 0;
0, otherwise.

stands for the Heaviside function

[39]. In particular, (36) unveils that under a full-blockage
scenario (i.e., τ → ∞), a super-linear scaling of Ntfc is
required to offset the coverage drop. However, in the no-
blockage regime (i.e., τ → 0), only a linear scaling is needed.

Using this framework, enhanced antenna models can be con-
sidered to investigate the impact of beam alignment errors on
the coverage probability of mmWave dense networks [29].

D. The Impact of Antenna Height in 3D Networks

The vast majority of spatial models for cellular networks
are usually 2D and ignore the impact of the BS height. Recent
papers have, however, tackled this issue and have highlighted
the importance of taking this parameter into account to appro-
priately estimate the network performance [17]–[19]. In 3D
cellular networks, the distance between a BS and the typical
UE can be expressed as

√
h2 + r2, where h is the absolute

antenna height difference between the serving BS and the
typical UE. Adapting the coverage probability expression in
(47) to the 3D context results in an interference distribution
whose Laplace transform is of the form LI(s(r2 + h2)

α
2 ) =

exp(2πλΘ(s(r2 + h2)
α
2 )) where

Θ(s) ≤ sE[g]
∫ ∞

r

t(h2 + t2)−
α
2 dt (37)

(a)
=

s

α− 2
(
h2 + r2

)1−α/2
.

By employing the change of variable x ← λr2, we obtain

LI
(
s
(

r
λ + h2

)α
2
)
≈

λ→∞
e

2πλsh2
α−2 . Hence, the coverage proba-

bility in 3D multi-antenna cellular networks can be formulated
similar to (30) and (31) as

C 

λ→∞

H1,0
1,1

[
2π

λh2β

Nt(α− 2)

∣∣∣∣ (1, 1)
(0, 1)

]
. (38)

The obtained analytical expression of the coverage probabil-
ity unveils the impact of the antenna height coupled with
other design parameters. Recent works [17]–[19] proposed to
maintain the SINR invariance of the coverage probability by
lowering the height of the BSs. Based on (38), we evince
that the SINR invariance of the coverage probability in 3D
networks can be maintained by enforcing a super-linear scaling
with the number of antennas.

Corollary 2 (Optimal Scaling Factor in Dense 3D Net-
works): The optimal scaling factor for the successful deploy-
ment of dense 3D networks is

Nt

λ
=

2πβh2

α− 2
, (39)

which exploits (38) and follows similar to Corollary 1. In
particular, the last result shows that the coverage probabil-
ity monotonically decreases as the BS density increases, if

lim
λ→∞

Nt
λ = ζ ∈ R

∗
+, and if h >

√
(α−2)ζ

2πβ . Interestingly, it is

possible to counteract this decay by optimizing the antenna
number according to the BS density in order to maintain the
per-user coverage performance.

V. NUMERICAL RESULTS

In this section, the obtained analytical frameworks are
substantiated with the aid of Monte Carlo simulation using
105 independent network realizations. Monte Carlo simulation
results are obtained by using the system simulator described
in [6], [12], to which the reader is referred for further
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Fig. 1. Coverage probability vs. λ2 for multi-tier cellular networks with
T = 2 over arbitrary Nakagami-m fading with m1 = 1.5, m2 = 2.5,
P1 = 50 W, and P2 = 1 W.

information. Unless otherwise stated, the noise power is set
to σ2 = −70 dBm and the path loss is given by L(r) = r−α

for the power-law unbounded model and L(r) = (1 + r)−α

for the physically feasible bounded model, with α = 3.
The performance comparison between strongest-BS and

closest-BS association-based two-tier (i.e., T = 2) cellular
networks with unbounded power-law path loss model are
illustrated in Fig. 1. Overall, the strongest-BS strategy pro-
vides significant performance gain over the closest-BS strategy
especially in the low deployment density range. Furthermore,
depending on the target SINR thresholds, the effect of increas-
ing the densification of BSs is beneficial while, in some cases,
tends to be negligible. Indeed, under the power-law model, the
coverage saturates to a non-zero finite constant in the limit of
λ1, λ2 →∞.

Fig. 2 reports the scaling of the coverage probability
with the BS densities for both bounded and unbounded
path loss models. Analytical and experimental curves are in
good agreement. The figure shows that the unbounded model
(i.e., r−α) guarantees a certain coverage for the users in
the dense regime by preventing the SINR from dropping to
zero. However, this SINR-invariance property is unattainable
because the unbounded model is not sufficiently accurate for
short transmission distances. The figure also highlights the
diminishing gains achieved with the more realistic bounded
path loss model, as anticipated by (17). In this case, new
densification strategies are required to prevent the SINR from
dropping to zero and avoiding the densification plateau.

Fig. 3 shows the scaling of the SIR coverage probability
of ad hoc networks against the transmitter density for various
common fading distributions stemming from the general Fox’s
H fading model. In particular, we corroborate the result of (18)
stipulating that increasing the transmitter density degrades the
coverage probability, and that the coverage probability can be
formulated as the product of an exponential function and a
polynomial function of order T (m − 1) of the transmitter
density. Moreover, the multi-path fading model has a less
noticeable impact on the coverage performance than the path
loss model (cf. Fig. 2) and the number of tiers.

Fig. 4 shows the SIR outage probability of cellular networks
for an unbounded path loss model versus the antenna size

Fig. 2. Coverage probability and scaling laws vs. the BS density λ for multi-
tier cellular networks over Nakagami-m fading with T = 2, P1 = 50 W,
and P2 = 1 W.

Fig. 3. Coverage probability in ad hoc networks vs. the transmitter density
λ when β = 0 dB.

Fig. 4. Outage probability in MISO cellular networks assuming MRT vs.
the number of antennas at the transmitter with λ = 10−3 and φ = 1.

when assuming that the interferers’ power gain follows a
Gamma distribution, i.e., g ∼ Gamma(χ, φ). Fig. 4 demon-
strates that increasing the antenna size keeps improving the
coverage probability, less significantly, however, as the number
of antennas grows large.

Fig. 5 illustrates the SIR coverage probability of a two-
tiers cellular network over Rician fading with closed-BS
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Fig. 5. Coverage probability in a two-tier cellular network under strongest-BS
association vs. the Rician K-factor for λ = 10−3.

Fig. 6. Coverage probability of MISO ad hoc networks vs the BS density
λ for different scaling of the number of antennas.

association obtained from Proposition 3 for different Rician
power factors. We observe a substantial increase of the cov-
erage probability only in the non-asymptotic regime, i.e.,
K1 �= K2. Moreover, we observe that the two extreme
regimes of pure fading channel with (K → 0) and
pure LOS propagation (K → ∞) achieve worse coverage
performance.

Fig. 6 shows the scaling of the coverage probability in
ad hoc networks against the transmitter density for different
scaling rates of the number of antennas: super-linear, linear,
sub-linear, and constant (i.e, single antenna). We note that
the coverage decreases with the density as compared with the
single antenna case, as anticipated in (24), and also when the
number of antennas is scaled sublinearly or linearly with the
density, as predicted by Proposition 5. We observe that a super-
linear scaling of the number of antennas with the BS density is
required to prevent the SIR from dropping to zero, and thereby
restore the SIR invariance property.

The impact of the BS height on the coverage probability
is illustrated in Fig. 7. As predicted in Section IV.D, we note
that a linear scaling of the number of antennas is required
to maintain a non-zero SINR for low values of h. When the
BS height increases, the coverage probability decreases due to
the increase of the path loss and the linear scaling becomes
insufficient.

Fig. 7. Coverage probability of MISO cellular networks vs the BS height h
for different scaling of the antenna number Nt.

VI. CONCLUSION

By leveraging the properties of Fox’s H random variables,
we developed a unifying framework to characterize the cover-
age probability of heterogeneous and muti-antenna networks
under both the closest-BS and the strongest-BS cell association
strategies. We studied the impact of BS densification on the
coverage performance both under bounded and unbounded
path loss models. By direct inspection of the obtained ana-
lytical framework, we have been able to derive exact closed-
form formulations and scaling laws of the coverage probability
for two typical network models, i.e., heterogeneous and multi-
antenna cellular and ad hoc networks, while incorporating gen-
eralized fading distributions. The obtained results encompass
insightful relationships between the BS density and the relative
antenna array size, gain and height, showing how the coverage
can be maintained whilst increasing the network density. The
insights provided in this work are of cardinal importance for
optimally deploying general ultra-dense networks.

VII. APPENDIX A: PROOF OF PROPOSITION 1

With the closest-BS association strategy, the coverage prob-
ability is given by

C �
T∑

k=1

θkP (SINRk > βk) =
T∑

k=1

θkErk
{C(rk)} , (40)

where θk denotes the association probability and is expressed

as θk = λk�
j∈T λj

�P δ
j

, and P̃j = Pj

Pk
. Using [10, Theorem 1]

and [11, Eq. (39)] and applying the Fox’s H transform in
[32, Eq. (2.3)], the coverage probability under unbounded path
loss model, denoted as CU , is given by

CU(rk) =
∫ ∞

0

1√
ξ
L−1

{
1√
s
Hu,v

p,q {f(t);P} (sξ); s; βk

}
× e

−σ2ξ
rα

k
Pk

∏
j∈T
LIj

(
ξ
rα
k

Pk

)
dξ, (41)

where f(t) =
√

tJ1

(
2
√

stξ
)
, Hu,v

p,q {f(t);P} (s)
is the Mellin transform [32, Eq. (2.3)], J1(x) =
H1,0

0,2

(
x2

4 ; (1, 1, 1
2 ,− 1

2 , 1, 1)
)

is the Bessel function of

Authorized licensed use limited to: Tomsk Polytechnic University. Downloaded on June 23,2021 at 12:35:22 UTC from IEEE Xplore.  Restrictions apply. 



TRIGUI et al.: COVERAGE ANALYSIS AND SCALING LAWS IN ULTRA-DENSE NETWORKS 4169

the first kind [39, Eq. (8.402)], and L−1 is the inverse
Laplace transform. Moreover LIj , in (47), is the Laplace
transform of the aggregate interference from the j-th tier
evaluated as

LIj (s) = exp(2πλjΘ(s)), (42)

where

Θ |g=y (s)
(a)
=
∫ ∞
�

Pj
Pk

� 2
α rk

(
1− exp

(
−syPjr

−α
))

rdr

(b)
=

syPj

α

∫ ∞

Pk
Pj

r−α
k

x− 2
α e−syx

1F1 (1, 2, syx)dx

(c)
=

syP̃ δ−1
j Pj

rα−2 (2−α)2F2

(
1,− 2

α
+1; 2;− 2

α
+2;−syPk

rα
k

)
,

(43)

where (a) follows from the probability generating
functional [9], [40], while relabeling x as r−α

k and
(1 − e−x)/x = e−x

1F1 (1, 2; x) is applied in (b), and
(c) follows from applying

∫
xβ−1e−cx

1F1(a, b, cx)dx =
xβ

β 2F2 (b − a, β, b, β + 1,−cx). Hence, we obtain

LIj (ξ) = exp(−2πλjEg[Θ(s)])

= exp
(
−πδλjP̃

δ−1
j

ξr2−α
k Pj

(1− δ)
Hu,v

p,q {h(t);P} (ξ)
)

,

(44)

where δ = 2
α , h(t) = t 2F2

(
1, 1− δ; 2; 2− δ;−ξtr−α

k

)
=

tH1,2
2,3 (t;P1), P1 = (1 − δ, ξ(r2

k)−
α
2 , (0, δ), (0,−1,

δ − 1),12,13), and pFq(·) is the generalized hypergeometric
function of [39, Eq. (9.14.1)]. In (44), in particular, we first
take the expectation over the interferers’ locations and then
average over the Fox’s H distributed channel gains, which is
in the reverse order compared to the conventional derivations
in [4]–[9]. The reason behind this order swapping is that
the Fox’s H fading model is more complicated than the
conventional exponential model, and therefore averaging over
it in a latter step preserves the analytical tractability.

Finally, applying [32, Eq. (1.58)], the Mellin transform
[32, Eq. (2.3)], and the inverse Laplace transform of the Fox’s
H function [32, Eq. (2.21)] given by

L−1{x−ρHu,v
p,q (x;P); x; t} = t−ρ−1Hu,v

p+1,q

(
1
t
;Pl

)
, (45)

where Pl = (κ, c, (a, ρ), b, (A, 1), B), the desired result is
obtained after applying the Fox’s H reduction formulae in
[32, Eq. (1.57)]. The coverage probability over Fox’s H
fading5 for a receiver connecting to a k-th tier BS located at
xk is given by

CU(rk)=
∫ ∞

0

1
ξ2

Hv,u
q,p+1

(
ξ;Pk

U
)
e
−σ2ξ

rα
k

Pk

exp

(
− πδ

∑
j∈T

r2
kλj P̃

δ
j ξHv+1,u+2

q+2,p+3

(
ξ;PI

U
))

dξ, (46)

5We dropped the index i from Fox’s H distribution {Oi,Pi} for notation
simplicity.

where P̃j = Pj

Pk
, δ = 2

α , and the parameter sequences

Pk
U =

(
κβk, 1

cβk
, 1−b, (1−a, 1),B, (A, 1)

)
, and

PI
U =

(
κ
c2 , 1

c , (1− b− 2B, 0, δ), (0, 1− a− 2A,−1, δ− 1),

(B, 1, 1), (1, A, 1, 1)
)

. Recall that the pdf of the link’s distance

rk is given by frk
(x) = 2πλk

θk
x exp

(
−

∑
j∈T πx2λj P̃

δ
j

)
[3],

[40]. Then recognizing that exp(−x) = H1,0
0,1(x; 1, 1, 0, 1, 1, 1)

[32, Eq. (1.125)] in (46), we apply [32, Eq. (2.3)] to obtain the
average coverage probability in (4) after some manipulations.

VIII. APPENDIX B: PROOF OF PROPOSITION 2

The proof of Proposition 2 relies on the same approach
adopted in Appendix A, yielding

CB(rk)=
∫ ∞

0

1√
ξ
L−1

{
1√
s
Hu,v

p,q {f(t);P} (sξ); s; βk

}
×e

−σ2ξ
(1+rk)α

Pk

∏
j∈T
LIj

(
ξ
(1 + rk)α

Pk

)
dξ, (47)

where rearranging [11, Eq. (39)] after carrying out the change
of variable relabeling (1 + x)−α as x, we have

LIj (ξ)=exp

(
− πδλjξP̃

δ−1
j

(
(1+rk)2−αPj

(1−δ)
Hu,v

p,q{h1(t);P1}(ξ)

− (1+rk)1−αPj(
1− δ

2

) Hu,v
p,q {h2(t);P} (ξ)

))
, (48)

where h1(t) = t 2F2 (1, 1− δ; 2; 2− δ;−ξt(1 + rk)−α) and
h2(t) = t 2F2

(
1, 1− δ

2 ; 2; 2− δ
2 ;−ξt(1 + rk)−α

)
. Finally

applying the Mellin transform in [32, Eq. (2.3)] and plugging
the obtained result into (47), the coverage probability under
bounded path loss model is obtained as

CB(rk) =
∫ ∞

0

1
ξ2

Hn,m
q,p+1

(
ξ,Pk

B
)
exp

(
− σ2

Pk
ξ(1 + rk)α

−
∑
j∈M

πλj P̃
δ
j δξ

(
(1 + rk)2Hn+1,m+2

q+2,p+3

(
ξ,P1,I

B

)
−(1 + rk)Hn+1,m+2

q+2,p+3

(
ξ,P2,I

B

)))
dξ, (49)

where Pk
B = Pk

U , P1,I
B =

(
κ
c2 , 1

c , (1 − b −

2B, 0, δ), (0, 1−a−2A,−1, δ−1), (B, 1, 1), (1, A, 1, 1)
)

, and

P2,I
B =

(
κ
c2 , 1

c ,
(
1−b−2B, 0, δ

2

)
,
(
0, 1−a−2A,−1, δ

2−1
)
,

(B, 1, 1), (1, A, 1, 1)
)

. Recalling that CB =∑T
k=1 θkErk

{
CB(rk)

}
, then as inferred from (49), the

coverage probability for bounded path loss model is obtained
as a function of a two-fold multiple integral. Due to space
limitations, the details are omitted. However, in the special
case when σ2 = 0 (i.e., interference-limited scenario),
Proposition 2 follows by averaging (49) over rk along with
some manipulations similar to Proposition 1.
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IX. APPENDIX C: PROOF OF PROPOSITION 3

Based on [11], the Laplace transform of the aggregate inter-
ference from tier j under the max-SINR association strategy
is evaluated as LIj (ξ) = exp

(
−πλjξ

δΓ (1− δ) E[gδ]
)
, where

E[gδ] is the Mellin transform of the Fox’s H function obtained
as E[gδ] = Λ [32, Eq. (2.8)]. According to [9, Lemma 1], the
coverage probability under strongest-BS association is

C = 2π
∑
k∈M

λk

∫ ∞

0

rkC(rk)drk
, (50)

where, following the analytical steps as in Appendix A, we
obtain

C = 2π
∑
k∈T

λk

∫ ∞

0

rk

∫ ∞

0

1
ξ2

Hv,u
q,p+1

(
ξ;Pk

U
)

exp

(
−

∑
j∈T

r2
kπλjP̃

δ
j ξδΓ(1− δ)Λj

)
dξdrk

(a)
= 2π

∑
k∈T

λk

δ

∫ ∞

0

rk

∫ ∞

0

1
ξ2

Hv,u
q,p+1

(
ξ;Pk

U
)

H1,0
0,1

⎛⎜⎝
⎛⎝∑

j∈T
r2
kπλjP̃

δ
j Γ(1−δ)Λj

⎞⎠
1
δ

ξ;
(

1, 1, 1, 0, 1,
1
δ

)⎞⎟⎠dξdrk,

(51)

where (a) follows from substituting exp(−x) =
H1,0

0,1(x; 1, 1,−, 0,−, 1) [32, Eq. (1.125)] and applying the

transformation Hu,v
p,q

[
x
∣∣ (ai, kAj)p

(bi, kBj)q

]
= 1

kHu,v
p,q

[
x

1
k

∣∣ (ai, Aj)p

(bi, Bj)q

]
.

Finally, applying [32, Eq. (2.3)] to evaluate the inner-integral
in (51), yields the strongest-BS based coverage probability as
shwon in Proposition 3.
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