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Abstract: The search for new criteria indicating acute or chronic pathological processes resulting
from exposure to toxic agents, testing of drugs for potential hepatotoxicity, and fundamental study of
the mechanisms of hepatotoxicity at a molecular level still represents a challenging issue that requires
the selection of adequate research models and tools. Microfluidic chips (MFCs) offer a promising
in vitro model for express analysis and are easy to implement. However, to obtain comprehensive
information, more complex models are needed. A fundamentally new label-free approach for
studying liver pathology is fluorescence-lifetime imaging microscopy (FLIM). We obtained FLIM
data on both the free and bound forms of NAD(P)H, which is associated with different metabolic
pathways. In clinical cases, liver pathology resulting from overdoses is most often as a result of
acetaminophen (APAP) or alcohol (ethanol). Therefore, we have studied and compared the metabolic
state of hepatocytes in various experimental models of APAP and ethanol hepatotoxicity. We have
determined the potential diagnostic criteria including the pathologically altered metabolism of the
hepatocytes in the early stages of toxic damage, including pronounced changes in the contribution
from the bound form of NAD(P)H. In contrast to the MFCs, the changes in the metabolic state of
hepatocytes in the ex vivo models are, to a greater extent, associated with compensatory processes.
Thus, MFCs in combination with FLIM can be applied as an effective tool set for the express modeling
and diagnosis of hepatotoxicity in clinics.

Keywords: FLIM; microfluidic chip; hepatocyte; liver pathology; metabolism

1. Introduction

There are a number of hepatotoxic agents that cause either acute or chronic dam-
age [1]. Among them, ethanol and acetaminophen (APAP) can be considered as two of
the most common hepatotoxins. For instance, APAP is a safe analgesic at therapeutic
levels. However, an overdose of APAP can cause serious liver injury and even lead to liver
dysfunction [2]. High doses of ethanol through alcohol abuse can cause the development
of alcoholic liver disease, which can further promote fibrosis, cirrhosis or hepatocellular
carcinoma [3].
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The metabolism of ethanol and APAP alters the metabolic state of hepatocytes. Im-
portantly, the degree of hepatic toxicity correlates with both the activity of the catalyzing
enzyme systems and the availability of glutathione (GSH) in the hepatocytes. An absence
of GSH leads to covalent binding of the reactive metabolite N-acetyl-p-benzoquinone imine
(NAPQI) to form NAPQI-protein adducts [4,5].

The mechanisms of hepatotoxicity of APAP and ethanol are illustrated in Figure 1 ((a)
is APAP and (b) is ethanol).

Figure 1. Schematic diagrams of the hepatotoxicity mechanisms. (a) APAP and (b) ethanol. The
percentage distribution of the APAP metabolic pathways is represented by averaged values, and
these are in agreement with the published works [6,7].

APAP: Therapeutic doses of APAP result in the generation of small quantities of
NAPQI that are easily detoxified by GSH. Excessive doses of APAP lead to the shunting
of more APAP into the cytochrome P450 (CYP) system. Increased metabolism of APAP
by CYP, in turn, increases the amount of NAPQI [8,9]. Further, excessive accumulation of
NAPQI critically decreases the limited resource of GSH, thereby reducing the detoxifying
capacity of the liver. In the absence of free GSH, the excess of NAPQI interacts with
the cysteine groups of macromolecules within the hepatocytes, forming NAPQI-protein
adducts, leading to mitochondrial dysfunction and the loss of cellular ATP. GSH depletion
further contributes to cellular oxidant stress [10–12]. Therefore, as final outcomes of the
APAP overdose, an alteration in calcium homeostasis, mitochondrial dysfunction with ATP
depletion, DNA damage, and intracellular protein modification can occur [13–15].
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Ethanol: The oxidative pathways of alcohol metabolism involve three enzymes: al-
cohol dehydrogenase (ADH) in the cytosol; cytochrome P450 (CYP) in the microsomes;
and catalase in the peroxisomes [16]. ADH converts alcohol to acetaldehyde and other
metabolites. In this reaction, NAD+ is reduced by two electrons to NADH, generating
a highly reduced environment in the hepatocyte cytosol. The increased NADH/NAD+
ratio favors hepatic triglyceride accumulation. CYP enzymes (in particular, the microso-
mal ethanol oxidizing system (MEOS)) that are located mainly in the microsomes and
endoplasmic reticulum also contribute to the metabolism of alcohol into acetaldehyde.
Acetaldehyde is a highly reactive and toxic byproduct that may contribute to tissue damage
because it forms a variety of protein and DNA adducts that promote GSH depletion, lipid
peroxidation, and mitochondrial damage [17]. It also contributes to changes in the redox
state of the cell and the formation of reactive oxygen species (ROS), [18] which in turn lead
to intramitochondrial oxidative stress [19–21].

In this regard, decreasing oxidative stress in the hepatocytes than can be induced by
the administration of GSH, N-acetylcysteine, and Cyclophilin D can be considered as a
common strategy for the treatment of liver diseases caused by APAP or ethanol [15,20,22].

Thus, evaluation of the metabolic state of hepatocytes is an urgent task both for under-
standing the fundamental mechanisms of hepatotoxicity and for finding new therapeutic
agents for liver treatment. Different in vitro, ex vivo and in vivo experimental models can
be used for monitoring the level of hepatotoxicity induced by ethanol or APAP.

In general, while rats are commonly used as an animal model for the investigation of
ethanol hepatotoxicity, mice are used to study the mechanisms of APAP-induced hepatocyte
death. The reason mice were chosen as a suitable model for revealing the influence of APAP
on hepatocytes is that rats are resistant to APAP damage. Furthermore, mice are widely
used to test APAP hepatotoxicity, since the induced toxic damage in this case is similar to
that in humans [22,23]. Although in vivo models reflect the real situation, one important
limitation of animal models is that the results can be hard to interpret due to the systemic
intoxication induced by the toxic agent. Moreover, in these models, stimulation of chronic
damage by a number of toxins (e.g., ethanol) is long-term and can take from 4 to 12 weeks.
In addition, the use of animal models presents a wide range of ethical concerns [24–26].

Employing ex vivo analysis of tissue slices enables the preservation of the complex
multicellular architecture supporting the native components of the intercellular matrix and
cellular interactions. However, if it is necessary to analyze metabolic changes directly in
the hepatocytes, then the slice model is inferior, because interpreting it is complicated by
the influence of the surrounding non-parenchymal cells [27,28].

In vitro models can be more appropriate for simple and fast analysis of hepatotoxic-
ity [29]. In this context, microfluidic technology can help to establish in vitro conditions
similar to ex vivo/in vivo environments. Indeed, the microfluidic method opens up the
possibility of mimicking the functions of organs in vitro. For instance, with microfluidic
chips (MFCs), adjustment of the environmental conditions is possible according to the type
of cell. Thus, microfluidics has emerged as a suitable tool for cell manipulation and cell
study, as the culture of cells in such flow conditions facilitates the supply of nutrients or
other compounds (drugs, toxins) required to study the cellular response [30]. As pointed
out in a published study [31], microfluidics can maintain the hepatocytes’ synthetic and
metabolic functions. In the same work, microfluidic chips proved to be more sensitive to
drug-mediated hepatotoxicity than other methods for most of the drugs tested. Further-
more, in vitro toxicity data have been shown to be positively correlated to in vivo toxicity
data. Another successful example of cell lines or primary cells cultured in MFCs is shown
in Ref [32], where MFCs were used for the testing of single or multidrug combination
chemotherapy at defined doses.

Here, we have systematically studied hepatotoxicity in different research models,
including animal models (mice for APAP analysis, and rats for ethanol analysis), precision-
cut slices, and an in vitro model using MFCs. All the tested models were compared to
each other.
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A number of methods are used to analyze the metabolic changes in liver cells caused
by toxic damage. In particular, Western blots or enzyme-linked immunosorbent assays
provide information about the content of various low molecular weight compounds, as well
as specific proteins in the samples [33]. However, these methods do not allow the analysis
of freshly prepared samples or living cells, and require tissue destruction and preliminary
preparation of the material. Genomic analysis methods have the same drawbacks as they
cannot allow monitoring of processes occurring in living cells and do not provide cellular
resolution [34]. In addition, although it is possible to analyze blood serum metabolites [35],
this method provides only indirect information and is not specific enough. Unlike the
above-mentioned methods, fluorescence-lifetime imaging microscopy (FLIM) is label-free,
minimally invasive and allows the analysis of fresh tissue samples and living cells [36–41].
Currently, very few works have been performed based on analyses of the metabolic state of
hepatocytes with toxic damage [42,43]. Furthermore, until now, no comprehensive FLIM
analysis has been carried out on the various models, and especially on the MFC model.

A wide range of fluorescence techniques have found broad application in the mi-
croscopy of live specimens, since they are extremely sensitive and can be used to study
biochemical interactions at the molecular level [44]. However, fluorescence is characterized
not only by the spatial distribution of fluorescence intensity and the fluorescence spectrum,
but also by the fluorescence lifetime, i.e., the time a fluorescent molecule spends in an
excited state before emitting a photon as it decays back to its ground state. The fluorescence
lifetime depends on the type of molecule, its conformation, and the way the molecule
interacts with its environment [44,45].

Since the metabolic coenzyme NAD(P)H is autofluorescent, it can be monitored
nondestructively and without exogenous labels, using optical techniques [46–48]. Lakowicz
et al. proposed the FLIM technique for distinguishing the free and protein-bound states of
the NADH cofactor [49]. Taking this into account, the FLIM approach enables analysis of
the metabolic state of various cell types, based on such fluorescence lifetime data and the
contributions of the free and bound forms of NAD(P)H to cell metabolism [50–54]. The
fluorescence lifetime has both short and long lifetime components that reflect whether the
NAD(P)H is in the free or protein-bound state, respectively [46], as it is sensitive to the
fluorophore’s microenvironment, thereby providing a method for distinguishing the free
and protein-bound components (and their relative contributions).

Cellular energy metabolism is a complex of biochemical pathways that are associated
with the synthesis of ATP, so is a sensitive marker of the cellular state and viability. In par-
ticular, energy metabolism undergoes changes through the influence of different agents or
because of cell damage. Generally, there are two biochemical pathways in a cell responsible
for all ATP synthesis. Under normal conditions, most of the ATP in liver cells is produced
by the chain of reactions known as the mitochondrial OXPHOS system. It is the bound
form of NADH that is involved in this process [55]. In the OXPHOS, NADH acts as the
primary donor of protons and electrons for the electron transport chain of the mitochon-
dria. As a result of such NADH oxidation, a proton gradient (electrochemical potential) is
formed [56]. This electrochemical potential gradient is required for the production of ATP
by ATP-synthetase [57]. The second pathway for ATP synthesis is glycolysis, where a free
form of NADH is involved. As a result of this multistage process, two high-energy ATP
molecules, two pyruvate molecules, and two water molecules are formed, while two NAD+
molecules are reduced, to form two NADH molecules [58,59]. Under normal conditions,
the contribution of glycolysis to energy metabolism is insignificant [60].

However, the pathological effects of toxins (in particular, of ethanol and APAP) can
disrupt the functions of mitochondria and the respiratory chain. Such alterations can lead
to changes in emphasis of the metabolic pathways for ATP synthesis. Thus, such metabolic
changes in hepatocytes can be assessed by the changes in the contributions of the two forms
of NADH.

The reduced phosphorylated form, NADPH, is involved in the biosynthesis of fatty
acids and steroids, in the pentose phosphate pathway, and in antioxidation defense re-
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actions (GSH metabolism) [61]. Thus, use of the FLIM method allows information to be
obtained about the changes in the intensity of these metabolic processes where the different
forms of NAD(P)H are involved.

2. Materials and Methods
2.1. Fabrication of MFCs and Numerical Simulation of Flow in MFCs

The MFCs used in this study consisted of two chambers separated by an array of pillars
(an inner chamber and an outer one). The inner chamber contained hydrodynamic traps
for the cells. The MFCs were fabricated using a soft lithography method incorporating a sil-
icone elastomer, PDMS. Numerical modeling of the flows in the microchannels of the MFCs
was realized with COMSOL Multiphysics 5.6 software. A detailed description of the MFC
fabrication procedure and numerical simulation is presented in Supplementary Materials.

2.2. Experimental Setup with MFCs

Primary hepatocytes were isolated from the liver of a laboratory animal (mouse/rat)
and introduced into the inner chamber of an MFC. Syringe pumps filled with complete
cell culture medium (with or without toxins) were connected to the outer chamber of the
MFC. The cell culture medium (with or without toxins) was pumped for 3 h or 24 h at
37 ◦C, 5% CO2. The detailed description of the MFC experimental setup is presented in
Supplementary Materials.

2.3. Animal Model

Acute toxic damage of liver tissue caused by APAP was induced in 10 male mice
(C57BL/6). For this purpose, the mice were treated intraperitoneally with doses of
500 mg/kg APAP dissolved in warm saline [62]. Induction of chronic ethanol damage of
liver tissue was carried out using 10 male rats (Wistar). For this purpose, we performed
daily oral administration of a 40% ethanol solution at a dosage of 3 mL/100 g. A 10%
ethanol solution was also added to the animal drinker [63]. The healthy livers of 5 mice
and 5 rats were compared as controls.

For the microscopic examination, the whole organ of each animal was isolated, washed
with PBS in order to remove the blood, and cut to obtain tissue samples with a size of
0.5 × 0.5 cm.

2.4. Precision Cut Liver Slices

In this study, we obtained 15 precision cut liver slices for each experimental group.
Fresh hepatic tissue was cut into 1.0 × 1.0 × 0.5 cm3 samples. The fixed samples were cut
using a stainless steel blade, under buffered conditions with ice-cold PBS. Immediately
after cutting, the samples were placed in a 6-well plate with CO2-conditioned DMEM sup-
plemented with 10% FBS, 4 mM L-glutamine and antibiotic-antimycotic solution. To induce
APAP toxic damage, the slices were then transferred to a 10 mM solution of APAP diluted
in DMEM medium with 10% FBS, 4 mM L-glutamine, and antibiotic-antimycotic solution.
To induce ethanol toxic damage, further slices were placed in a 25 mM solution of ethanol
diluted in DMEM medium with 10% FBS, 4 mM L-glutamine, and antibiotic-antimycotic
solution. Slices placed in the medium without toxins were used as a control [28,64]. Further
cultivation was carried out in the 12-well plates incubated at 37 ◦C on an orbital shaker
(60 rpm) [65]. After 3 h and 24 h of incubation, slices (from both mice and rats) were
visualized using a confocal laser scanning microscope (CLSM).

2.5. Multiphoton Microscopy

All the samples were investigated using confocal laser scanning microscopy (CLSM
880) equipped with a Ti:Sapphire femtosecond laser and time-correlated single photon
counting (TCSPC). The average laser power used was approximately 10 mW. An oil
immersion objective C Plan-Apochromat 40×/1.3) was used to collect the fluorescence
signal. From 10 fields of view for each sample, both the NAD(P)H fluorescence intensity
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images and the FLIM data were acquired. To visualize the NAD(P)H fluorescence, the
sample was excited with a wavelength of 750 nm, and the fluorescence signal was detected
in the range of 450–490 nm. The FLIM analysis was performed using SPCImage software
(Becker & Hickl GmbH, Berlin, Germany) with a biexponential decay model. The following
parameters were analyzed in 20–30 regions of the cytoplasm of the cells in each field of
view: tm (ps), the amplitude-weighted mean lifetime; t1 (ps), the fluorescence lifetime of the
free form of NAD(P)H (the short decay component); t2 (ps), the fluorescence lifetime of the
bound form of NAD(P)H (the long decay component); and the relative contributions of the
free, a1 (%), and the bound, a2 (%), forms of NAD(P)H. To remove the background signal
of the medium in which the hepatocytes were incubated, we used the Threshold option in
the SPCImage software. Moreover, the processing was carried out manually, so we could
precisely distinguish the areas of cytoplasm in the hepatocytes. A more detailed description
of the multiphoton microscopy experiments is presented in Supplementary Materials.

2.6. Histology

Histological studies were carried out following a standard procedure that is compre-
hensively described in Supplementary Materials. Finally, 10 micrographs per sample were
acquired using an optical microscope to proceed with a routine morphological analysis.

3. Results and Discussion

The design of this study is depicted in Figure 2, where the experimental stages
of analysis of the hepatocytes’ metabolic state are presented for the MFC model, for
precision-cut liver slices, and for the ex vivo samples taken from animals. The main
concept of the work was to monitor and compare the metabolic state of the hepatocytes
after the introduction of APAP or ethanol, using the FLIM method. The animal model
included acute APAP-induced injury caused by a single intraperitoneal injection of the
toxin, whereas chronic alcohol injury was created by systematic oral administration of
ethanol for 12 weeks. Precision-cut slices, obtained by a microtome, were placed in a
culture medium supplemented with APAP or ethanol. In the case of the MFCs, isolated
hepatocytes were cultured in a chip, where the relevant toxins (APAP and alcohol) were
circulated for a predetermined period of time. In the following sections, we discuss each
step in more detail.

Figure 2. Road map of the steps implemented to study hepatotoxicity using different models.
(Microfluidic chip: upper row, slices: middle row, ex vivo: bottom row).
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3.1. MFC Use for Hepatocytes Culture

An MFC was developed to cultivate primary hepatocytes for study of the influence
of the toxic effects of APAP and ethanol. The resulting MFC consisted of two chambers:
an inner chamber with hydrodynamic traps designed to trap the cells, and an outer
chamber (Supplementary Materials, Figure S1). The culture medium was loaded through
the outer chamber. To prevent the cells from being removed by the flow of the culture
medium, an array of pillars was placed between the outer and inner chambers. Numerical
modelling was performed to evaluate the interaction of the culture medium flowing from
the outer chamber with the cells in the inner chamber (Supplementary Materials, Figure S2).
According to the numerical simulation results obtained, the cells (red dots, d = 70 µm)
were captured in the hydrodynamic traps and remained there. Moreover, the captured
cells interacted with the flow from the outer chamber when the applied flow rate was in
the range from 0.008 µL/s to 0.02 µL/s. Microfluidics attracts a great deal of attention due
to the low consumption of materials (both cells and the pumped medium) compared to
conventional models such as slices and in vivo (ex vivo) experiments. Furthermore, the
use of a microfluidic approach is able to reduce the number of animals used in in vivo
testing. In addition, the indisputable advantages of using MFCs are the complete isolation
of the cells from the external environment and blood stream imitation. The isolation is
achieved by placing the material (liver cells) in the sealed chamber of an MFC. Furthermore,
microfluidic systems enable automation of the research process, once the initial loading of
the cells into the MFC has taken place. Subsequently, processes such as washing, control of
flow rates and reagent concentrations can be fully automated and carried out without the
intervention of operators, which therefore reduces the opportunity for error.

3.2. Analysis of Metabolic State of Normal Hepatocytes from Mice

At the beginning of the study, the metabolic state of the hepatocytes was evaluated
under normal conditions (without adding toxins), using three types of model (in vitro using
MFCs, precision-cut slices, and ex vivo). The hepatocytes were imaged using the FLIM
technique to reveal aspects of the fluorescence lifetimes: amplitude-weighted mean lifetime
(tm), the short t1 (ps) and long t2 (ps) decay components, and the relative contributions of
the free (a1, %) and bound (a2, %) forms of NAD(P)H in the hepatocytes for all the models
represented. The fluorescence lifetimes of the free and bound forms of NAD(P)H (t1 and
t2, respectively) for the MFC model were shorter than those in the slice models and ex vivo
samples, at both 3 h and 24 h of cultivation (Supplementary Materials, Figure S12). In a
number of earlier works, increased values of t1 and t2 had been shown to be associated
with cell hypoxia or cell damage [39,48,66]. It was also reported that a rise in the mean
fluorescence lifetime corresponds either to an increase in glycolysis or to a decrease in
oxygen tension [67]. High values of t1 and t2 may be associated with a reduced level of
synthetic activity in cells. In particular, increased t1 and t2 can be observed in stem cells
during their differentiation [68]. We assume that the reason for the shorter fluorescence
lifetimes (t1, t2) in the MFC model is due to a decrease in the metabolic activity of the
hepatocytes, since they were isolated from tissue. In addition, a slight decline in cell
viability may further account for the decrease in fluorescence lifetimes, since the metabolic
activity of cells is indirectly related to their viability [39,48,69].

The metabolic state of the hepatocytes was analyzed in more detail, based on the fluo-
rescence lifetimes and the relative contributions of the free and bound forms of NAD(P)H,
because any change in a1 or a2 reflects a switching of cellular energy metabolism to glycoly-
sis or OXPHOS [70,71]. Since the a2 values are associated with OXPHOS, we subsequently
used only this parameter to present the data in the figures. In the case of the MFC model,
a statistically significant increase in the contribution of the bound form of NAD(P)H (a2)
compared to that at 3 h was observed after 24 h of cultivation (3 h: 25.55% ± 2.8 and 24 h:
29.31% ± 5.1) (Figure 3). In contrast, in the slice model, a slight decline in the contribution
of a2 was recorded at 24 h compared to that at 3 h (3 h: 27.26% ± 2.5 and 24 h: 25.54% ± 4.3)
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(Figure 3). In the ex vivo samples, the contribution of the bound form of NAD(P)H was
significantly higher, 32.16% ± 2.7 (Figure 3).

Figure 3. Metabolic imaging of control mouse hepatocytes with the MFC, slice and ex vivo models.
(a) Combined images of the bright-field and the autofluorescence of NAD(P)H (left row) with
pseudocolor-coded fluorescence life-time imaging microscopy (FLIM) images of the NAD(P)H of the
hepatocytes (central and right rows), field of view is 213 × 213 µm; (b) scatter plots reflecting the
distribution of the values of the fluorescence lifetime contributions of the bound form of NAD(P)H.
Here, tm (ps) is the amplitude-weighted mean lifetime (tm); a2 (%) is the relative contribution of the
bound form of NAD(P)H; scale bar: 50 µm.

A decrease in the contribution of the NAD(P)H bound form is generally associated
with a cellular metabolic shift to a more glycolytic state with a reduced emphasis on OX-
PHOS. Since OXPHOS is the principal pathway that normal hepatocytes use for obtaining
energy, a low a2 value indicates the hepatocytes are suffering damage or hypoxia [72].
Moreover, the lower a2 values found in the MFCs and in the slices compared with the
native tissue in the ex vivo samples presumably indicate a reduced OXPHOS level in the
hepatocytes in the former due to the disruption of the native tissue structure and partial
cell damage inflicted on them during the manipulations. Furthermore, the metabolic
switch in hepatocytes to a more glycolytic state is known to be a specific response to
their isolation [73].

3.3. Analysis of Hepatotoxicity of APAP

Next, the metabolic state of hepatocytes was examined after their exposure to APAP
(10 mM solution of APAP) in the three different models. The metabolic activity of the
isolated hepatocytes cultured in MFCs was checked after 3 h, since it had previously been
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demonstrated that the most pronounced metabolic changes under the influence of APAP
could be detected in the range of 2–6 h post exposure [74,75]. Analysis of the metabolic
state of the hepatocytes after APAP administration revealed that the fluorescence lifetimes
t1 and t2 were much shorter in the MFC model compared to those in the slices and ex vivo
samples, as had been shown previously, without the addition of APAP (Supplementary
Materials, Figure S12). This indicated a decline in the overall metabolic activity of the
hepatocytes damaged after exposure to APAP.

On analyzing the contribution of bound NAD(P)H, a2 (%), the MFC model showed a
reduced contribution of the bound form of NAD(P)H compared to hepatocytes without
the addition of APAP (3 h: 17.6% ± 2.1, and 24 h: 20.16% ± 6.9) (Figure 4).

Figure 4. Metabolic imaging of mouse hepatocytes exposed to APAP in the MFC, slice and ex vivo
models. (a) Combined images of the bright-field and autofluorescence of NAD(P)H (left row) with
pseudocolor-coded FLIM images of the NAD(P)H of the hepatocytes (central and right rows), field of
view is 213 × 213 µm; (b) scatter plots reflecting the distribution of the values of the fluorescence
lifetime contributions of the bound form of NAD(P)H. Here, tm (ps) is the amplitude-weighted mean
lifetime (tm); a2 (%) is the relative contribution of the bound form of NAD(P)H; scale bar: 50 µm.

As shown in our previous work, OXPHOS predominates in normal hepatocytes and,
accordingly, the contribution of the bound form of NAD(P)H is high [53]. The drop in
the contribution of the bound form of NAD(P)H in isolated hepatocytes is consistent with
the known mechanisms of APAP hepatotoxicity. Specifically, APAP overdose leads to
mitochondrial dysfunction and the disruption of the mitochondrial respiratory chain [12].
Moreover, NAPQI inhibits both NADH (complex I)- and succinate (complex II)-driven
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respiration in isolated mouse liver mitochondria or permeabilized mouse hepatocytes,
apparently without affecting the complexes III and IV [76]. A decrease in the contribution
of the bound form of NAD(P)H is also associated with a drop in the ATP content in
hepatocytes, which has previously been reported [10,11]. In Figure 4b, a large standard
deviation of a2 in the MCF model was observed, which can be attributed to significant
differences in the metabolic states of the hepatocytes isolated from tissue. In this state,
hepatocytes have a varying baseline level of metabolic activity. In addition, this may be due
to different individual sensitivity of cells to the toxin. Models where the tissue structure is
conserved (ex vivo and slices) are better able to maintain cell homeostasis, and, therefore,
the metabolic state is more stable.

In the slice model, there was a sharp increase in the value of the contribution of a2
after 24 h of cultivation (3 h: 29.42% ± 3.5, and 24 h: 33.66% ± 4.2) (Figure 4). A similar
trend was observed in the ex vivo model; there was a significant growth in the values
of the a2 contribution at 24 h after the introduction of APAP (38.59% ± 3.6) (Figure 4).
Both in the slice model and in the animal model, the values of a2 significantly increased
compared to the control data (no added toxin). Thus, in the slices and ex vivo samples, the
characteristic decrease in the intensity of OXPHOS that was observed in the MFC model,
was not present. The low a2 values in the case of the MFC model can be explained by the
enhanced sensitivity of isolated hepatocytes to the toxins. This finding is in agreement with
previous studies. For instance, it had been demonstrated that 24 h after the exposure of
isolated hepatocytes to APAP, a more rapid decrease in the levels of ATP and GSH occurred,
indicating a larger decrease in hepatocyte viability [77]. By contrast, it is assumed that,
where the tissue structure is maintained (in the slices and ex vivo samples), when the action
of APAP is stopped, the mechanisms of ATP resynthesis are activated, this also explaining
their increase in the contribution of the bound form of NAD(P)H [77,78].

Based on the above results, we can conclude that the isolated hepatocytes in the
in vitro model (in the MFC model) are more sensitive to the influence of the toxin (APAP).
Correspondingly, the preserved tissue structure (of the slice and ex vivo models) allows a
better maintenance of hepatocyte homeostasis and provides for compensatory processes
when exposed to APAP.

3.4. Analysis of the Metabolic State of Normal Hepatocytes from Rats

The metabolic state of hepatocytes from rats was analyzed. As previously mentioned,
three types of models (MFC, slices and ex vivo) were used. The fluorescence lifetimes
(t1 and t2, ps) of the free and bound forms of NAD(P)H were similar in all three models
(Supplementary Materials, Figure S13). This result indicates the stability of the metabolic
activity of the hepatocytes in all the tested models. Thus, isolated rat hepatocytes were
shown to have a more stable metabolic state compared to the isolated mouse hepatocytes
(which showed changed values of t1 and t2).

The in vitro MFC model with normal (untreated) rat hepatocytes showed a significant
rise in the contribution of the bound form of NAD(P)H after 24 h of cultivation, compared
with 3 h (3 h: 25.54% ± 4.1, and 24 h: 33.65% ± 2.7) (Figure 5). For both rats and mice,
lower a2 values for the MFC model were observed after 3 h, compared to 24 h. This result
can be explained by the stabilization of the metabolic state of the hepatocytes within 24 h
after isolation from the tissue. It is known that oxidative phosphorylation predominates
in normal hepatocytes [79]. Thus, we can conclude that within 24 h there is a shift in
the metabolic activity of the hepatocytes to the specific level. The slice model showed a
slight decrease in the contribution of a2, but in general, the metabolic state of hepatocytes
in this model was stable (3 h: 27.05% ± 4.4, and 24 h: 25.33% ± 2.3) (Figure 5). In the
hepatocytes of the ex vivo samples, the contribution of a2 was 25.2% ± 1.3 (Figure 5). Thus,
the metabolic state of the hepatocytes in all three models was similar after 24 h, following
the initial temporary shift in metabolic state of hepatocytes in the MFCs.
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Figure 5. Metabolic imaging of control rat hepatocytes for the MFC, slice and ex vivo models. (a) Com-
bined images of the bright-field and autofluorescence of NAD(P)H (left row) with pseudocolor-
coded FLIM images of the NAD(P)H of the hepatocytes (central and right rows), field of view is
213 × 213 µm; (b) scatter plots reflecting the distribution of the values of the fluorescence lifetime
contributions of the bound form of NAD(P)H. Here, tm (ps) is the amplitude-weighted mean lifetime
(tm); a2 (%) is the relative contribution of the bound form of NAD(P)H; scale bar: 50 µm.

3.5. Analysis of the Hepatotoxicity of Ethanol

Next, we studied metabolic changes in the hepatocytes cultured in MFCs, as well as in
hepatocytes present in the slices and in ex vivo samples under exposure to ethanol. Mod-
eling chronic liver injury under the influence of ethanol usually takes 4–12 weeks [25,26].
In our work, the induction of chronic ethanol hepatotoxicity was carried out for 12 weeks.
Based on previous observations, the values of the fluorescence lifetimes of the free (t1)
and bound (t2) forms of NAD(P)H in the MFC model and in the slices were similar. The
values of t1 and t2 for the ex vivo samples were significantly higher in comparison with
the other models (Supplementary Materials, Figure S13). It is known that t2 is composed
of the signal from the bound form of NADH and NADPH (the phosphorylated form of
NADH). However, in most cases, the contribution of NADPH is negligible and can be
neglected [80]. The standard values of t2 in the cells ranged from 1500 to 2200 ps. The
unchanged lifetimes of the bound form of NAD(P)H in the MFC and slice models indicated
that NADPH is not involved in the hepatocyte metabolism (similar to the case of APAP
hepatotoxicity). The possible reason for this is the reduced content of GSH, since in these
models (MFC and slices), the possibilities of compensatory processes are reduced. As
previously reported, chronic ethanol consumption selectively decreases the mitochondrial
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GSH level, presumably because of the impaired uptake of GSH from the cytosol to the
mitochondrial matrix [81].

However, in the case of the ex vivo samples, there was an increase in the values of t2
indicating an increase in the emphasis on the processes associated with NADPH. Thus, the
obtained data can be explained by the involvement of antioxidant defense processes with
an increase in GSH synthesis under the influence of ethanol [63,82–84].

In the MFC model, it was shown that the contribution of a2 was significantly lower af-
ter 24 h of rat hepatocyte cultivation compared to 3 h (3 h: 31.62% ± 1.8; 24 h: 24.44% ± 4.9)
(Figure 6). In the microfluidic approach, the a2 values after 24 h of culturing were lower
than in the normal hepatocytes. In the animal model (ex vivo), the value of the contribution
of a2 after 12 weeks of induction of chronic pathology was 22.75% ± 2 (Figure 6); this value
is also lower than in the liver tissue of healthy animals.

Figure 6. Metabolic imaging of rat hepatocytes exposed to ethanol in the MFC, slice and ex vivo
models. (a) Combined images of the bright-field and autofluorescence of NAD(P)H (left row) with
pseudocolor-coded FLIM images of the NAD(P)H of the hepatocytes (central and right rows), field of
view is 213 × 213 µm; (b) scatter plots reflecting the distribution of the values of the fluorescence
lifetime contributions of the bound form of NAD(P)H. Here, tm (ps) is the amplitude-weighted mean
lifetime (tm); a2 (%) is the relative contribution of the bound form of NAD(P)H; scale bar: 50 µm.

The results obtained in the animal model and in the isolated hepatocytes are in good
agreement with the previous studies. In the rat model after chronic ethanol exposure, a
profound defect in mitochondrial metabolism was reported [81], resulting in depressed
mitochondrial protein synthesis and the associated loss of complexes involved in the
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mitochondrial electron transport chain [85–87]. These chronic ethanol-induced alterations
can also lead to depressed respiratory capacity and impaired OXPHOS, which are critical
in the development of alcoholic liver injury [88,89].

Several studies have demonstrated a decrease in ATP content when exposed to
ethanol [90,91]. Indeed, mitochondria isolated from the liver of alcohol-fed animals contain
lower amounts of respiratory chain components compared to the mitochondria of non-
treated animals. In addition, it has been shown that animals exposed to alcohol had lower
levels of the enzyme complex that mediates ATP production. As a result, the rate of ATP
synthesis in such liver mitochondria is depressed as well, leading to an overall decline in
ATP content in the hepatocytes [92]. Therefore, disruption of the mitochondrial respiratory
chain leads to the decreased contribution of the bound form of NAD(P)H seen in the ex
vivo models and in isolated hepatocytes.

By contrast, according to the data obtained, the metabolic state remained approx-
imately constant between 3 h and 24 h (3 h: 25.18 ± 3.9, and 24 h: 26.46 ± 2.9) in the
slice model (Figure 6). The exposure to ethanol also disrupted the processes of glycolysis,
additionally contributing to a decrease in the ATP content in the cells and to their further
damage. However, compensatory processes often occur in liver cells at the early stages of
ethanol exposure [90–92]. Thus, the stability of the a2 value in the case of the slice model
may be associated with a simultaneous decrease in two processes at once (glycolysis and
OXPHOS) and compensatory processes occurring as a result of the slice model being more
complex compared to the isolated cells, allowing the cells in the slices to maintain the
balance of their metabolic state.

It can be concluded that the results obtained in the models of isolated hepatocytes and
in the animal model are consistent with each other and reflect the known mechanisms of
ethanol hepatotoxicity more accurately than do the slices. The exposure of slices to ethanol
for 24 h is not enough to allow for the analysis of the metabolic changes that had been
clearly observed in the slices in the APAP hepatotoxicity model. This is probably associated
with the resistivity of the hepatocytes to the toxic effects of ethanol in the slice model due
to the preservation of the native tissue structure [77,78].

4. Histological Analysis of Hepatocytes

Well-established histological alterations of hepatocytes after APAP administration
include extensive centrilobular coagulative necrosis of the hepatocytes, the dilatation of
sinusoids, and microvesicular and macrovesicular steatosis. The microvesicular steatosis
occurs as a consequence of direct toxicity on the mitochondria and their oxidative processes.
Macrovesicular steatosis corresponds to triglyceride accumulation due to defects in lipopro-
tein metabolism, damage to the plasma membrane, or to increased lipid delivery to the
hepatocytes following an increased synthesis or mobilization [93]. In our case, histological
analysis confirmed the presence of similar pathological changes associated with exposure
to APAP, both in the slices and in the ex vivo samples obtained from animals. We observed
severe fatty infiltration, dilatation of sinusoids and cell edema. However, the number of
necrotic hepatocytes was insignificant (Figure 7).

Under exposure to ethanol, histological changes include coagulation necrosis of the
hepatocytes, swollen hepatocytes, and cytoplasmic vacuolation (vesicular steatosis). With
chronic exposure, serious alterations of the normal parenchyma architecture and fibrosis
occur [94]. Here, we have also confirmed the presence of pathological changes associated
with exposure to ethanol. In the slices, we revealed necrosis of the hepatocytes and a
pronounced fatty infiltration of the cells. As the process of fibrosis is complex and systemic,
its development cannot be observed in the slice model [95]. However, in the ex vivo model,
in addition to fatty infiltration, we did observe initial signs of tissue fibrosis (Figure 8).
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Figure 7. Histological images of liver tissue in the normal state and when exposed to APAP. Hema-
toxylin and eosin staining, ×400; scale bar: 50 µm.

Figure 8. Histological images of liver tissue in its normal state and when exposed to ethanol.
Hematoxylin and eosin staining, ×400; scale bar: 50 µm.
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Thus, toxic damage induced in liver tissue was confirmed for both toxins. The
metabolic state of the hepatocytes in the MFC model corresponded to the known mecha-
nisms of toxic damage, indicating the relevance and potential value of this model.

5. Conclusions

The comparative study on the hepatotoxicity of APAP and ethanol was performed
using three models: MFCs, tissue slices, and an animal model (ex vivo samples). In the
presence of APAP (mouse ex vivo model), we showed that conservation of the tissue
structure (in the slices and ex vivo models) allows a better maintenance of the metabolic
state of the hepatocytes and enables compensatory processes to occur, while in the MFC
model, we revealed a characteristic decrease in the intensity of OXPHOS and an increased
sensitivity of the isolated hepatocytes to the toxin. In the presence of ethanol (rat model),
the values of t1 and t2 for the ex vivo samples were significantly higher in comparison to
the other models, probably due to the higher contribution of NADPH, as a compensatory
reaction. In the MFC and ex vivo models, we showed that the emphasis on OXPHOS was
significantly reduced, which precisely reflects the known mechanisms of ethanol hepatotox-
icity. At the same time, no significant changes in a2 were revealed in the slice model; thus,
the exposure of slices to ethanol for 24 h is apparently not enough to develop detectable
metabolic changes in the hepatocytes. This was similar to the APAP hepatotoxicity model,
where no metabolic changes were observed, either. In general, the changes in the metabolic
state of isolated hepatocytes in the MFC model corresponded to the known mechanisms
of hepatotoxicity of APAP and ethanol, and we assume that such MFCs can therefore be
used as effective tools for express modeling of the hepatotoxicity of various agents. The
FLIM technique, which was used to analyze the metabolic state of the hepatocytes, has
demonstrated its efficacy for the express assessment of the effects of various toxic agents
and can be further successfully translated into clinical settings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10112894/s1, Supplementary Materials (presented in PDF) includes extended information
on the using materials, fabrication of microfluidic chips, numerical simulation of flows in MFCs, MFCs
experimental setup, animal modeling, precision cut liver slices preparation technique, multiphoton
microscopy setup, FLIM data on fluorescence lifetimes values of NAD(P)H (t1 and t2, ps), and
histological analysis protocol.
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