

Fig. 1. Cobalt ferrite ($CoFe_2O_4$) obtained by sol-gel auto combustion method

amount of ammonia was added to the solution in order to modify the pH value to about 7–8 [3]. Then solution was stirred on a magnetic stirrer heated for 1 hour. Continuously, after they were heated in a drying cabinet and at a temperature of 130–550 °C combustion occurred (Figure 1).

References

- Richa S and Yadav B. C. // Ferrite Materials: Introduction, Synthesis Techniques and Applications as Sensors. International Journal of Green Nanotechnology, 2012. – Vol. 4. – P. 141–154.
- Danks A. E., Hall S. R., Schnepp Z. // The evolution of 'sol-gel' chemistry as a technique for materials synthesis. Mater. Horiz, 2016. Vol. 3. P. 91–112.

Fig. 1. Diffractogram of cobalt ferrite obtained by sol-gel combustion method

The specific surface area of the obtained powder was determined by low temperature nitrogen adsorption by the BET method and as a result showed 12 m²/g. X-ray phase analysis of the product was carried out on a Phaser D2 automatic diffractometer (Bruker).

X-ray phase analysis showed that following the results of the synthesis by the sol-gel method both ferrite $CoFe_2O_4$ is formed and cobalt iron oxide $(Co_{0.745}Fe_{1.255}O_4)$, $(Co_{0.255}Fe_{0.745}O_4)$ (Figure 2).

Tianfu Huang, Zehai Qiu, Zhibiao Hu, Xiaochun Lu // Novel method of preparing hierarchical porous CoFe₂O₄ by the citric acid-assisted sol-gel autocombustion for supercapacitors. Journal of Energy Storage, 2021. – Vol. 35. – P. 102286.

CALCULATION OF THE EQUIPMENT OF THE SEPARATION UNIT FOR THE PRODUCTS OF PROCESSING THE STRAIGHT-RUN DIESEL FRACTION ON A ZEOLITE CATALYST

N. S. Baghdasaryan, A. A. Altynov, I. A. Bogdanov Scientific adviser – engineer A. A. Altynov Linguistic advisor – researcher I. A. Bogdanov

National Research Tomsk Polytechnic University Russia, Tomsk, Lenin avenue, 30, 10030077@mail.ru

Product fractionation column is a part of almost every unit where catalytic processes are implemented.

At the first stage of work, the straight-run diesel fraction was processed on a zeolite catalyst in order to improve low-temperature properties. However, a product with a wide fractional composition was obtained, including gasoline, kerosene and diesel fractions. In this connection, the aim of this work is to calculate the fractionation column for the products of processing the straight-run diesel fraction on a zeolite catalyst. The column provides separation into three narrow fractions: 1) the initial boiling point – 140 °C (gasoline fraction); 2) 140–240 °C (kerosene fraction); 3) 240 °C – end boiling point (diesel fraction).

Characteristic	UM	Value		
Density at 15 °C	g/cm ³	0.8254		
Viscosity dynamic at 15 °C	cP	1.7074		
Density at 20 °C	g/cm ³	0.8204		
Viscosity dynamic at 20 °C	cP	1.4914		
Fractional composition				
initial boiling point	-	38		
10 % vol.		90		
20 % vol.		156		
30 % vol.		187		
40 % vol.] °C	220		
50 % vol.		250		
60 % vol.	274 299			
70 % vol.				
80 % vol.]	329		
90 % vol.		335		

Table 1. Characteristics of the technological flow

 Table 2.
 Characteristics of the fractionation column

Characteristic	UM	Value
Number of trays	items	73
Column diameter	mm	2800
Pressure in the column	kPa	350
Column top temperature	°C	155.5
Column bottom temperature	°C	354.5

The characteristics of the technological flow for the rectification column (a product of processing the straight-run diesel fraction on a zeolite catalyst) are presented in Table 1.

In the process of work, technological, thermal, constructive and mechanical calculations were made. Part of the calculations was carried out using the UniSim Design software [1]. In accordance with the calculations made, a project of a fractionation column with valve plates was developed. The characteristics of the column are presented in Table 2.

References

 Budnik V. A. // Methodical manual for the program of training students of technological disciplines work in the environment «Hysys», 2010. – P. 28.

Table 3.	Composition of the output products of the col-
	umn in mass fractions

Fraction, °C	Initial boil-	140–240 °C	240 °C –
	– 140 °C		point
45	0.1167	0.0020	0.0000
59	0.1721	0.0038	0.0000
73	0.1099	0.0032	0.0000
87	0.1097	0.0043	0.0000
101	0.1072	0.0058	0.0000
115	0.1058	0.0086	0.0000
129	0.1008	0.0137	0.0000
143	0.0858	0.0249	0.0000
158	0.0614	0.0571	0.0000
172	0.0283	0.1123	0.0000
185	0.0022	0.1357	0.0011
199	0.0001	0.1148	0.0040
213	0.0000	0.1068	0.0120
227	0.0000	0.0849	0.0277
241	0.0000	0.0579	0.0476
255	0.0000	0.0432	0.0711
269	0.0000	0.0345	0.0864
283	0.0000	0.0285	0.0903
297	0.0000	0.0234	0.0846
311	0.0000	0.0200	0.0790
329	0.0000	0.0444	0.1871
335	0.0000	0.0360	0.1541
354	0.0000	0.0138	0.0615
366	0.0000	0.0102	0.0465
381	0.0000	0.0056	0.0260
395	0.0000	0.0045	0.0208

Considering the number of trays and the accepted inter-tray distance of 600 mm, the height of the column was 49 meters. The composition of the obtained products is presented in Table 3.

With the unit capacity of $100 \text{ m}^3/\text{h}$ by feedstock, the yield of the gasoline fraction is $-9 \text{ m}^3/\text{h}$, kerosene fraction $-27 \text{ m}^3/\text{h}$, diesel fraction $-64 \text{ m}^3/\text{h}$.

Том 2