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Abstract

Purpose – This paper seeks to analyse 3D growing concrete structures taking into account the
phenomenon of body accretion, necessary for the simulation of the construction sequence, and carbon
dioxide attack.

Design/methodology/approach – A typical 3D segmental bridge made of precast concrete is
studied through a fully coupled thermo-hygro-mechanical F.E. model. The durability of the bridge is
evaluated and carbonation effects are considered. Creep, relaxation and shrinkage effects are included
according to the theory developed in the 1970s by Bažant for concretes and geomaterials; the fluid
phases are considered as a unique mixture which interacts with a solid phase. The porous material is
modelled using n Maxwell elements in parallel (Maxwell-chain model).

Findings – First, calibration analyses are developed to check the VISCO3D model capabilities for
predicting carbonation phenomena within concrete and the full 3D structure is modelled to further
assess the durability of the bridge under severe conditions of CO2 attack.

Originality/value – The adopted numerical model accounts for the strong coupling mechanisms of
CO2 diffusion in the gas phase, moisture and heat transfer, CaCO3 formation and the availability of
Ca(OH)2 in the pore solution due to its transport by water movement. Additionally, the phenomenon of
a sequential construction is studied and numerically reproduced by a sequence of “births” for the 3D
finite elements discretizing the bridge. The fully coupled model is here extended to 3D problems for
accreting bodies (as segmental bridges) in order to gather the effects of multi-dimensional attacks of
carbon dioxide for such structures.
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1. Introduction
Segmental bridges made of precast concrete are characterised by differential shrinkage
and creep effects due to the construction sequence and corresponding addition of new
concrete elements. As stated in van der Veen (2003), concrete segmental bridge design
and construction is a complex process that must consider various time-dependant effects
involving both materials and loading. From a material standpoint, concrete strength and
deformation characteristics due to creep and shrinkage are all highly time dependent.

The aim of this paper is to further investigate the hygro-thermo-mechanical
response of such 3D structures when deteriorated by carbonation phenomena. In fact,
one of the main factors controlling the serviceability and safety performance of
structural concrete is the corrosion of steel reinforcing bars (Ishida et al., 2004).
The passive layer around the steel bars naturally protects them from corrosion.
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However, the penetration of carbon dioxide and the consumption of calcium hydroxide
may cause a drop in the pH value of the pore water. Under low pH conditions (or in case
of water dilution or in presence of corrosive anions), the thin oxide film around the
steel surface is broken and it becomes unable to further protect the steel bars from
corrosion. The most dangerous range of external relative humidity for carbonation is
from 40 to 80 per cent, since the carbonation reaction calls for the presence of water,
while under higher atmospheric humidity the diffusion of carbon dioxide will be
inhibited by the water filling the pores (Saetta et al., 1993). The corrosion initiation
due to a carbonation process only is here investigated.

The numerical model accounts for the strong coupling mechanisms of CO2

diffusion in the gas phase, moisture and heat transfer, CaCO3 formation and the
availability of Ca(OH)2 in the pore solution due to its transport by water
movement. Additionally, the phenomenon of a sequential construction is studied
and numerically reproduced by a sequence of “births” for the 3D finite elements
discretizing the bridge: the elements are sequentially activated with corresponding
activation of their hygro-thermo-mechanical characteristics, including creep and
shrinkage phenomena. This fully coupled model has already been presented
elsewhere (Schrefler et al., 1989; Saetta et al., 1993, 1995; Majorana et al., 1997,
1998; Majorana and Salomoni, 2004), but it is here extended to 3D problems for
accreting bodies (as segmental bridges) in order to gather the effects of
multi-dimensional attacks of carbon dioxide for such structures.

Creep, relaxation and shrinkage effects are dealt with according to the theory
developed in the 1970s by Bažant (Bažant, 1972a, b; Bažant and Wu, 1974; Bažant and
Wittmann, 1982; Bažant, 1982, 1988) for concretes and geomaterials; the fluid phases
are considered as an unique mixture interacting with a solid phase. The porous
material is modelled by n Maxwell elements in parallel (Maxwell-chain model).

The problem of accretion (boundary value problem) is treated according to
Arutiunian (1976a, b) and Arutiunian (1977) with elements of different ages
superimposed to create the whole structure in a discrete way. In Bugakov (1973), the
problem of mass growing is solved through methods of the elasticity theory, whereas
in Naumov (1994) the theory of a viscoelastic body is used in order to consider the
stress and strain states in homogeneous growing bodies. A more general formulation is
used for the same problem in Diatlovitskii and Vainberg (1975).

2. Thermo-hygro-mechanical model
The field equations of the model are briefly recalled below; for additional details, the
reader is referred to the u-h-T model presented in Schrefler et al. (1989), further
extended in Majorana et al. (1997, 1998).

The model consists of a mass conservation equation in terms of relative humidity,
an energy conservation equation and the linear momentum balance equation for the
multiphase material. Improvements are introduced to take into account carbon dioxide
flows within a 3D porous material. Creep and shrinkage effects are evaluated according
to the theory by Bažant, as previously stated.

The coupled system of differential equations for dealing with humidity diffusion
and heat transport can be written in the form (Majorana, 1985; Schrefler et al., 1989;
Majorana et al., 1998):
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where C is the (relative humidity) diffusivity diagonal matrix, dhs self-dessication,
k hygrothermic coefficient, �a ¼ ›h=›1vÞ

� ��
T;w

equals the change in h due to unit change
of volumetric strain 1v at constant moisture content w, rCq is the thermal capacity,
(L thermal conductivity diagonal matrix and Qh outflow of heat per unit volume of
solid.

Once carbonation phenomena are accounted for, the above system becomes
(Saetta et al., 1993, 1995):
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where c and Dc are the carbon dioxide concentration and diffusivity, and ›hc/›t, ›Tc/›t,
›cc/›t are, respectively, the changes of relative humidity, temperature and CO2

concentration due to carbonation in a unit of time.
Equations (1) and (2) are complemented in the model by the equilibrium equation

and the constitutive relationship (Schrefler et al., 1989; Majorana et al., 1998).
According to what has been presented in Papadakis et al. (1991) and Ishida et al.

(2004) and experimentally observed, it can be assumed (for comparison purposes) that
the time history for the carbon dioxide diffusivity can proceed in agreement with:

Dc ¼Ac
y

t
y¼act

21=2 Dc ¼Acact
21=2 for Dc,1:5Ac Dc ¼ 1:5Ac for Dc $1:5Ac ð3Þ

in which Ac has the dimension of a square length for unit time (material parameter), t is
the exposure time and ac is carbonation rate coefficient, depending on both w/c ratio
and CO2 concentrations. This assumption can be motivated by the observation
(Papadakis et al., 1991; Houst and Wittmann, 1994) that the micropore structure of
cementitious materials may change due to carbonation. In fact, a proposed formula for
the porosity variation can be expressed as (Ishida et al., 2004):

F0 ¼ aF ð4Þ

where F0 is the porosity after carbonation, F porosity before carbonation, a a
reduction parameter. Hence, a reduction in porosity corresponds to a reduction in
carbon dioxide diffusivity. So, the variation of the latter can be initially linked to the
carbonation velocity which decreases with time (Ishida et al., 2004) and to the constant
Ac (equation (3)); once a specific time station is reached, the diffusivity becomes
constant with time. In this way, the decrease in CO2 velocity, due to the increasing
carbonation of the material exposed to carbon dioxide aggression, is simulated.
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Creep and relaxation processes are modelled by n Maxwell elements in parallel
(Maxwell-chain model) (Bažant and Wu, 1974; Bažant and Wittmann, 1982), as shown
Figure 1.

The time-dependent nature of the constitutive law is expressed in integral form as:

sðtÞ ¼

Z t

0

Rðt; t0ÞD0d1ðt0Þ ð5Þ

where:

D021 ¼

1 2n 2n 0 0 0

1 2n 0 0 0

1 0 0 0

2ð1 þ nÞ 0 0

2ð1 þ nÞ 0

2ð1 þ nÞ

2
66666666664

3
77777777775

ð5aÞ

As proved above, the time-dependent stress-strain relationship requires the knowledge
of the function R(t, t 0), called relaxation function which, in accordance with the
Maxwell-chain model, can be expressed in its degenerate form (Majorana and Vitaliani,
1990) (to overcome the difficulties connected with the numerical integration of
equation (5)) as:

Rðt; t0Þ ¼
Xn
m¼1

Emðt
0Þe2ððt2t0Þ=tmÞ ð6Þ

where t0 is the time of first application of load and tm relaxation times.
Generally, another function J(t,t0) called creep function and dual to R(t,t 0) is

more simply derived from experiments compared to the relaxation function: the
former is complementary to the latter and it relates strains to stresses through

Figure 1.
n Maxwell elements in
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an expression similar to equation (5). A typical expression for the creep function in its
degenerate form is:

J ðt; t0Þ ¼
XN
m¼1

1

Cmðt0Þ
1 2 exp½ymðt

0Þ2 ymðtÞ�
� �

ð7Þ

where the functions ym(t) are called reduced times and may be expressed as:

ymðtÞ ¼
t

tm

� �qm

ðm ¼ 1; 2; . . .N Þ ð8Þ

where qm are positive exponents #1 and Em, Cm represent the m-th elastic modulus of
the Maxwell unit and the specific creep, respectively. For a complete description of the
model, the reader is referred to (Majorana, 1985; Majorana and Vitaliani, 1990;
Majorana et al., 1997, 1998).

However, it is to be underlined that the described approach for simulating aging
viscoelasticity through a rate-type aging constitutive model (equations (6)–(8)) suffers
from some weaknesses, among which the fact that different retardation times can give
almost equally good fits of the measured creep curves: a simple method to determine
the (discrete) retardation spectrum has been available in Bažant and Prasannan (1989a,
b) for creep curves in the form of the power law, log-law, or log-power law. These
shortcomings are in fact avoided by the solidification theory, through which aging is
entirely due to the growth of the volume fraction of the load-bearing solidifying matter
(hydrated cement), which itself is non-aging. By separating aging in the form of volume
growth from the viscoelastic behaviour, it is possible to describe creep by a Kelvin
chain with age-independent properties; according to these studies, Em takes the form:

Em ¼
1

q2Am

¼
1

q2bmðnÞðt110m21ÞmðmÞ
; mðmÞ ¼

n

1 þ ðcmÞz
ð9Þ

where n is the exponent of a power function, bm(n), c and z have been optimized by
using a computer library subroutine for Levenberg-Marquardt algorithm (Bažant and
Prasannan, 1989b) and q2 is an empirical material constant (Bažant and Kim, 1991).

But even this approach has a validity restricted to the log-power law and in general,
when a slightly different creep law is required, it fails.

Hence, to deal with general creep laws and to avoid the aforementioned weak points
including the nonuniqueness, an effective approach is to introduce within the
solidification theory the continuous Kelvin chain model with infinitely many Kelvin
units and retardation times spaced infinitely closely, for which Am becomes a
continuous retardation spectrum (Bažant and Xi, 1993, 1994). Such a spectrum may be
evaluated by a certain method developed in the theory of viscoelasticity (Tschoegl,
1971; Tschoegl, 1989) and the Widder’s inversion formula (Widder, 1971). For the
compliance function of the non-aging constituent, the log-power creep law is assumed
(Bažant and Xi, 1993, 1994):

J ðt; t0Þ ¼ q2ln 1 þ
t 2 t0

l0

� �n� �
ð10Þ
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in which l0 ¼ 1 day can be taken for most concretes. When J(t,t 0) has the form of
equation (7), i.e.:

J ðt; t0Þ ¼
XN
m¼1

Am½1 2 e2ððt2t0Þ=tmÞ� ð11Þ

Am becomes (approximating):

Am ¼ ln 10q2nðn2 1Þ
ð3tmÞ

n

1 þ ð3tmÞ
n ð12Þ

which gives the simplified continuous spectrum. It is proved (Bažant and Xi, 1993) that
the creep functions obtained from the continuous spectrum agree with the log-power
curve very well and additionally the continuous retardation spectrum is able to reflect
the creep intensity in various time ranges.

A similar approach has been developed in Bažant and Zi (2002) to determine the
continuous relaxation spectrum for the Maxwell chain model, approximately
calculated from equation (10) simply by algebraic inversion, viz.:

Rðt; t0Þ ¼
1

J ðt; t0Þ
ð13Þ

Additionally, both the drying creep effect and the long-time aging of creep compliance
can be more realistically and more generally represented by relaxation of
microprestress (Bažant and Zi, 2002; Bažant et al., 1997; Bažant, 2001), which is
justified by the fact that the solidification theory alone is unable to explain long-term
aging because the volume growth of the hydration products is too short-lived. This
phenomenon can be explained by relaxation of a tensile microprestress in the bonds or
bridges across the micropores in hardened cement gel filled by hindered adsorbed
water. Then, the amalgamation of microprestress and solidification models leads to a
compliance function of concrete expressed as:

J ðt; t0Þ ¼ J *ðt; t0Þ þ q
0

4S
p21 ð14Þ

in which J*(t,t0) is the viscoelastic compliance affected by the volume growth of
hydration products (in agreement with the solidification theory), q04 is an empirical
function, p a constant ( p . 1; in numerical simulations, the value of p ¼ 2 can be
taken) and S indicates the relaxing microprestress, given by, in case of no drying or
wetting:

S ¼ S0
t0

t

� �
ð15Þ

with S0 initial value of S at time t0; on the contrary, in the limiting case of maximum h
variations:

S ¼ 2c1ln hþ const: ð16Þ

where c1 is a constant.
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Hence, the rate-type aging constitutive model here adopted (already implemented in
the VISCO3D F.E. code) will be updated accordingly in a future paper; however, firstly,
it is the authors’ conviction that the new results would not change significantly;
secondly, the aim now is to analyse the 3D thermo-hygro-mechanical response of an
accreting body and the consequent mutual effects, particularly on the hygro-thermal
regime of each structural segment.

3. Mesh accretion – the boundary value problem
References Arutiunian (1976a, b, 1977) are used as basis for the formulation of the
boundary value problem of the theory of creep in a 3D non-uniform aging body with
elements of different ages superimposed to create the whole structure in a discrete way.
The equations of state for non-uniform aging bodies (Arutiunian, 1977) occupying,
prior the merging, the region V(i) and loaded at the time instant t0

i can be written,
according to Arutiunian (1976a, b), in the form:

1
ði Þ
abð_r; tÞ ¼ 1

0ði Þ
ab ð_r; tÞ þ ð1 þ nÞ I þ L ði Þ
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E t2 t*i


 � J ðt 2 t*i ; t2 t*i Þdt

N ði Þ 1
ði Þ
ab


 �
¼

Z t

t 0
i

1
ði Þ
abð_r; tÞRðt 2 t*i ; t2 t*i Þdt

ð17Þ

where n is the Poisson’s ratio, dab the Kronecker delta, 10ði Þ
ab denotes the assumed

(thermo-hygrometric) deformations and E, J, R are the moduli of instantaneous elastic
deformation, the creep kernel and the relaxation kernel, respectively, of the material of
the body which occupies the region V(i), produced at the time instant t*i .

The basic assumption concerning the merging of the body is that no discontinuities
have to appear both in the displacements of the body during the time interval between
two subsequent mergings and in the stress vector sn at the contact surface. The
condition of continuity is:

uað_r; tÞ ¼ uað_r; tmÞ þ DðmÞuað_r; tÞ ð18Þ

The equation connecting deformations and displacements after merging, namely at
tm # t # tmþ1, is, according to equation (18):
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1abð_r; tÞ ¼ 1abð_r; tmÞ þ
1

2
DðmÞua;bð_r; tÞ þ DðmÞub;að_r; tÞ
h i

ð19Þ

where D(m)ua denotes the displacement increments satisfying the conditions of
continuity in the region V(t) for tm # t # tmþ1.

Let us indicate the boundary of V(t) by S(t) and let this boundary consists of five
segments SðtÞ ¼ S0ðtÞ< S1ðtÞ< S2ðtÞ< S3ðtÞ< S4ðtÞ:

Hence, the equations of quasi-static equilibrium and the boundary conditions in
terms of stresses and displacements, written at times tm # t # tmþ1, take the form:

sab;bðr;tÞþf aðr;tÞ¼0; _r[VðtÞ snðr;tÞ¼0; _r[S0ðtÞ _s
n
ðr;tÞ¼ _Fðr;tÞ; _r[S1ðtÞ ð20Þ

_uð_r; tÞ ¼ _V ð_r; tÞ; _r [ S2ðtÞ unð_r; tÞ ¼ Vnð_r; tÞ; _s
t
ð_r; tÞ ¼ _F

t
ð_r; tÞ; _r [ S3ðtÞ

snð_r; tÞ ¼ Fnð_r; tÞ; _u
t
ð_r; tÞ ¼ _V

t
ð_r; tÞ; _r [ S4ðtÞ

ð21Þ

The equation of state of the creep theory connecting the tensors 1ab(r,t) and sab(r,t) has
the expression:

1abð_r;tÞ¼ð1þnÞ½IþL�
sab

E


 �
2ndab½IþL�

sSS

E


 �
þ10

abð_r;tÞ

sabð_r;tÞ¼
E t2xð_rÞ
h i

1þn
ðIþN Þ 1ab210

ab


 �
þdab

n

122n


 �
ðIþN Þ 1SS210

SS

� 	n o

I
sab

E


 �
¼

sabð_r;tÞ

E t2xð_rÞ
�  L sab

E


 �
¼

Z t

gð_rÞ

sabð_r;tÞ

E t2xð_rÞ
�  J ½t2xð_rÞ;t2xð_rÞ�dt

N ðwÞ¼

Z t

gð_rÞ

R½t2xð_rÞ;t2xð_rÞ�wð_r;tÞdt

ð22Þ

in which gð_rÞ ¼ t0
i ; xð_rÞ ¼ t*i andR½t 2 xð_rÞ; t2 xð_rÞ� is a resolvent of the creep

kernel J ½t 2 xð_rÞ; t2 xð_rÞ�.
The system of equations consisting of equation (19), the first equation of (20) and the

first equation of (22) with the boundary conditions (21), represents a closed system
which leads to determine the solution of the boundary value problem of the creep
theory for non-uniform aging bodies undergoing incremental growth. So its solution
will automatically satisfy the usual conditions of continuity of the displacements,
deformations and stresses at the boundary surface between the component bodies
(Bugakov, 1973). The jumps in the values of the stress field components at the surface
Sij can be determined by solving the boundary value problem consisting of equation
(19), the first equation of (20) and the conditions (21). The formulation of the boundary
value problem under the hypotheses of continuous growth is shown in Diatlovitskii
and Vainberg (1975) and Naumov (1994).
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3.1 Numerical formulation
The numerical procedure reproducing the above discrete growth consists in
introducing the whole body (structure) of volume V at time t ¼ 0, characterised by
elements of volume Vm, so that:

V ¼ V 1 < V 2. . .< Vm... < Vk ð23Þ

Accretion is obtained first “blocking” all the material properties (thermal, hygral and
mechanical) of those parts of the body which do not exist at t ¼ 0; hence, at t ¼ 0 þ t1,
V ¼ V1, whereas the others Vi (i ¼ 2, . . . k) are present but “dead” (birth and death
procedure).

Our study, being mainly concentrated on creep phenomena, suggests that the values
of Em (Bažant and Wu, 1974) for the dead elements are fixed, so that:

Cm ¼ Em

_yðtÞ

_yðtÞ2 1
!1 ) J ðt; t0Þ! 0 ð24Þ

and the evolution of creep is avoided.
Further, once time tm (when the body Vm is connected to V) is reached, all the

material characteristics of Vm are activated, including boundary conditions. Continuity
is respected on the contact surfaces, in terms of both stress and strain (Figure 2).

Activation means triggering of humidity variations, concrete desiccation and/or
heat transfer due to temperature gradients. Any boundary condition is activated for
t $ tm only (Figure 3).

Figure 3.
Schematic of BCs’
activation ACTIVATED ACTIVATED ACTIVATEDNOT ACTIVATED

Figure 2.
Schematic of the
incremental procedure for
elements’ birth

Step 1 V1 V2 V3 V4

V1 V2 V3 V4

V1 V2 V3 V4

V1 V2 V3 V4

Step m

Step 2m

Step 3m
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4. Durability – the carbonation process
As previously indicated, the prime effect of carbonation within concrete pastes is to
decrease their pH, creating conditions for steel bars oxidation. As secondary effects,
CO2 can generate leaching (not discussed here) or influence shrinkage (Collepardi,
1980). In fact, if carbon dioxide comes into contact with concrete after it has shrunk by
desiccation, an additional shrinkage appears. This is due to the transformation of CO2

into carbonic acid H2CO3 which reacts with calcium hydroxide Ca(HO)2 generating
calcium carbonate CaCO3 and water.

The reaction is described by (Collepardi, 1980):

H2CO3 þ CaðOHÞ2 ! CaCO3 þ 2H2O ð25Þ

The basic nature of concrete comes from the generation of Ca(OH)2, so that a thick film
of Fe(OOH) is formed around the steel bars, passivating them against corrosion; steel is
hence subjected to further oxidation from oxygen if the pH value of the pore water
decreases. This drop may be caused by a further penetration of carbon dioxide and the
consumption of calcium hydroxide; however, if concrete pores are filled with water, the
penetration of carbon dioxide is hindered due to the low rate of diffusion of CO2 in
water while, if the pores are completely dry, the reaction of carbon dioxide with water
molecules is absent. However, depassivation can also happen by water dilution and
corrosive anions (e.g. chlorides) (Bažant, 1979a, b).

In the following, we will consider the corrosion initiation due to a carbonation
process only; the corrosion propagation (depending on the rate of diffusion of oxygen
and water) is not treated here, considering the initiation period as representative for a
first durability assessment of the structure.

Hence, if concrete had RH ¼ 100 per cent, pores would be saturated and carbon
dioxide, being unable to penetrate, would not activate the reaction; differently, with
RH ¼ 0 per cent, carbon dioxide would penetrate quickly but it could not react with
water to form the carbonic acid triggering the carbonation process. This explains why
the carbonation phenomenon occurs mainly within a (internal) relative humidity range
of 50-80 per cent, with maximum effects in the former scenario.

For a complete explanation of the processes of corrosion, the reader is referred to
(Bažant, 1979a, b).

4.1 Assessment of the carbonation depth
As previously stated, the progression with time of the carbonated front (carbonation
depth) depends on a variety of factors, e.g. water-cement ratio w/c, time, temperature T,
porosity, external relative humidity, atmospheric CO2 concentration.

Some authors (Papadakis et al., 1991; Ishida et al., 2004) experimentally obtained the
depth of carbonation, being a function varying with the square root of exposure time
under the form (for a Portland cement concrete), see equation (3):

yd ¼ ac

ffiffi
t

p
ð26Þ

At constant (environmental) RH ¼ 55 per cent, a series of values for ac (independent
on time) were obtained, as listed in Table I and shown in Figure 4. The ac

1/ac
2 ratio

allows for converting the time scale in accelerated environments into the time scale
under normal conditions (Ishida et al., 2004): generally speaking, the accelerated test
underestimates the resistance to carbonation of lower w/c concretes.
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Using the values reported in (Ishida et al., 2004) (RH ¼ 55 per cent, w/c ¼ 0.6,
T ¼ 208C, CO2 concentration ¼ 10 per cent; in the following these results are
addressed as “BC_1”) for a 1D case, the curves of Figures 5 and 6 for the carbonation
depth and velocity were obtained, for a time scale of years and days, respectively.

w/c (per cent)
ac

1 (mm/years1/2)
(CO2 ¼ 10 per cent)

ac
2 (mm/years1/2)

(CO2 ¼ 0.07 per cent) ac
1/ac

2

80 79.1 10.8 7.32
60 51.2 6.8 7.53
40 23.9 3.0 7.79

Source: Ishida et al. (2004)

Table I.
Calculated carbonation
rate coefficients for
different atmospheric
CO2 concentrations

Figure 4.
Curves of ac coefficient
(equation (26))
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4.2 Calibration of the model
First, some calibration analyses were performed on a 3D sample to check the model
capabilities of fitting available experimental data, hence ensuring realistic predictions
for durability assessments of concrete structures and particularly concrete segmental
bridges. Whereas the curves of Figure 7 come from equation (26) and fit the results
obtained in Ishida et al. (2004) (dots) (the latter are shown in Figure 8 (crosses) at
different time stations), with the values reported in the previous section (BC_1;
Table II), the results shown in Figures 8 and 9 (contour maps) were obtained in terms of
carbonation (per cent) vs depth for different times. The difference among results is
justified by the three-dimensionality of our analyses versus the one-dimensionality of
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Ishida et al. (2004): hence, a 1D analysis generally overestimates (if the 3D body surface
is convex) the carbonation velocity at higher w/c ratios (Figure 9).

A second test was performed, with BCs given by RH ¼ 55 per cent, w/c ¼ 0.4,
T ¼ 208C, CO2 concentration ¼ 10 per cent (BC_2), whose experimental results
are listed in Table III. The numerical results are shown in Figures 10 and 11
(contour maps) in terms of carbonation (per cent) vs depth for different times, whereas
the curves of Figure 12 come again from equation (26).

Being the w/c ratio decreased, the carbonation depth is reduced; in fact, a lower w/c
value generates a reduction in the concrete pores and consequently a decrease in CO2

(and therefore CaCO3) velocity.

Figure 8.
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Progression of the
carbonated front after 0.2
(left) and 836 (right) days
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The last test considers BCs given by RH ¼ 55 per cent, w/c ¼ 0.8, T ¼ 208C, CO2

concentration ¼ 10 per cent (BC_3), whose experimental results are listed in Table IV;
Figure 13 represents equation (26), whereas the numerical results are shown in Figures 14
and 15 (contour maps) in terms of carbonation (per cent) vs depth for different times.

Figure 10.
Carbonation depth and

velocity for BC_2

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Time [days]

D
ep

th
 o

f 
C

ar
bo

na
tio

n 
[m

m
]

0

2

4

6

8

10

12

14

V
el

oc
ity

 o
f 

C
ar

bo
na

tio
n 

[m
m

/d
ay

s]
yd vd

Note: The dots indicate the results from Ishida et al. (2004)

Figure 11.
CaCO3 variation along the

sample at different times
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Figure 12.
Progression of the
carbonated front after
0.2 (left) and 836 (right)
days (w/c ¼ 0.4)
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It can be observed that such a w/c ratio determines the most dangerous situation for
concrete: in fact, as shown by Figure 14, the carbonation front penetrates the sample
more quickly than when lower ratios are considered.

5. Application (3D segmental bridge)
A typical highway viaduct was modelled to study the coupled phenomena of
creep and carbon dioxide attack for durability assessments. The full model
comprises one span alone, composed by 14 segments, symmetrically located with

Figure 14.
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reference to mid-span (Figure 16) and it schematises the real bridge structure shown in
Figures 17-19.

The first seven segments were created, applying symmetry boundary conditions
only once the two half-spans were connected (closure); in this way the real construction
sequence is reproduced, starting from a pier and symmetrically creating two segments,
one on each pier side every seven days, hence maintaining equilibrium. The
construction practice requires the creation of two additional half-spans both connected
to another pier; their closure determines the real bridge span.

Figure 17.
The Fadalto bridge, Italy

Figure 18.
Typical section of pier and
segments

Figure 19.
Section-type

Figure 16.
Commonly used
construction sequence for
segmental bridges

Pier 1 Pier 2
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5.1 Model description
About 20-nodes 3D isoparametric finite elements were used; each caisson (Figure 20)
was discretized by 11 elements (more elements were used in other analyses), with a
total of 132 nodes per caisson.

Once the segment was “activated” dead loads were assigned (Figure 21); after seven
days the second segment was introduced (activated) and, contemporaneously, the
previous one was tensioned by the continuity tendons (Figure 22), simulated by
longitudinal forces applied on the vertical cores; this procedure was repeated for all the
seven segments.

Further, the static scheme was changed due to the closure operation (connection
between two half-spans, Figure 23), applying symmetry boundary conditions to the
last previously-free segment edge.

Figure 20.
FE mesh of the

caisson-type

y

xz

Figure 21.
Dead loads application

Self-weight

Figure 22.
Application of continuity

tendons

Post-stressed
tendons

Self-weight
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To complete the connection, lower post-tensioning cables were applied (Figure 24); the
final discretization for the complete bridge half-span is shown in Figure 25. An external
“cover” of finite elements was used to reproduce the environmental characteristics in
terms of relative humidity, temperature and CO2 concentration. The external RH was
fixed to 55 per cent, whereas each caisson had an initial RH ¼ 99 per cent (saturated
conditions). The analysis was pushed up to the bridge’s service life span, i.e. 45 years.

5.2 Material
The material data for the adopted concrete and its mixing characteristics are listed in
Tables V and VI, respectively.

Figure 24.
Final load condition

Post-stressed
tendons

Self-weight

Figure 25.
Final FE mesh for the
bridge half-span

Figure 23.
Change in the static
scheme

EC
24,5

554



5.3 Mesh growing
The accretion sequence is shown in Figure 26: every seven days a new segment is
added, up to the closure of the half-span.

5.4 Model results
Figure 27 shows the history of concrete relative humidity up to 49 days: each curve
represents the general humidity variation within each segment. Humidity is at a
constant value of about 99 per cent until the corresponding segment is activated; then,
a slight recovery in humidity for the former caisson – which is drying – is shown: in
fact, the curves represent the humidity state at the interface between two adjacent
segments, which is changed by the connection with the following segment.

The general trend of humidity for the whole structure is shown in Figure 28: RH
decreases with time as concrete dries and desaturates, as shown also in Figure 29 for
a typical caisson.

The evolution of settlements, for a node belonging to the first caisson, is shown in
Figure 30: the first settlement recoveries are due to the continuity tendons, whose effect
predominates on the segments’ self-weight; the last jump is given by the lower
post-tensioning cables introduced when the static scheme changes, generating a
displacement recovery. The final deformed shape for half bridge is shown in Figure 31.

Once the construction sequence is concluded, a carbon dioxide attack is staged with
an external CO2 concentration of 10 per cent, i.e. an accelerated environment (Section
4.1), obtaining the contour maps for carbonation depth of Figure 32 and a typical
CaCO3 history of Figure 33: clearly, the referring node belongs to a part of the structure
initially not-carbonated (internal).

Figure 34 shows the carbonation profiles within the half section of a typical caisson,
after 1,000 days: as stated in Section 4.1, to predict the structure performance under
normal conditions for CO2 attack, the carbonation depth must be reduced by about
seven times.

Material property set 2 (segments) Value

Elastic modulus (MPa) 0.349620 £ 105

Poisson’s ratio 0.200000 £ 100

Diffusivity X (m/day) 0.150000 £ 102

Diffusivity Y (m/day) 0.150000 £ 102

Diffusivity Z (m/day) 0.150000 £ 102

Unrestrained shrinkage for H ¼ 0 20.400000 £ 1022

Coeff. r0 stress for thermal deformations 0.450000 £ 100
Table V.

Material properties

Symbol Value Unit Species

w 148.5 kg/m3 Water content
c 450 kg/m3 Cement
g 951 kg/m3 Gravel
s 844 kg/m3 Sand
a 1795 kg/m3 Aggregates

Table VI.
Concrete mixing
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Figure 28.
Humidity history for the
whole bridge structure
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6. Conclusions
The analysis of a typical 3D segmental bridge made of precast concrete was carried out
through a fully coupled thermo-hygro-mechanical F.E. model, taking into account the
phenomenon of body accretion, necessary for the simulation of the construction sequence,
and carbon dioxide attack. Creep, relaxation and shrinkage effects were included according
to the theory developed in the 1970s by Bažant for concretes and geomaterials. The porous
material was modelled by n Maxwell elements in parallel (Maxwell-chain model).
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Contour map of humidity
at different time stations
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The rate-type approach will be updated in a future paper following the lines of both the
solidification and the relaxation of microprestress theories.

First, calibration analyses were developed to check the 3D model capabilities for
predicting carbonation phenomena within the concrete material. 3D analyses allowed
for effectively considering transversal effects, so that the structural response is more
accurately predicted if compared to 1D and 2D analyses. Severe conditions for CO2

attack were considered for assessing the durability of the segmental bridge at the end

Figure 32.
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of the construction sequence, when drying and creep phenomena are still developing.
A durability assessment depends on environmental conditions, concrete mixing and
transport interactions; in fact CO2 transport is driven by a time-varying carbon dioxide
diffusivity coupled with water diffusivity, due to the carbonation process affecting
concrete’s micro pore structure (i.e. porosity/permeability). A carbon dioxide diffusion
history was taken in accordance with available experimental tests for comparison
purposes and the full 3D structure was further modelled to asses the durability of the
bridge under an accelerated environment.
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Bažant, Z.P. (1979b), “Physical model for steel corrosion in concrete sea structures –
Application”, Journal of the Structural Division, Vol. 105, No. ST6, pp. 1155-66.
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