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Abstract  

In the present work, natural convective heat transfer of water/Al2O3 nano-fluid in an inclined 

square enclosure is investigated. The side walls of the cavity are cold and the upper and lower 

ones are insulated. A wall with a thermal-conductivity of 100 and a thickness of 0.5 is located 

on the cold walls. Moreover, there is a constant temperature heat source in the center of the 

enclosure. The enclosure is located under the influence of an inclined magnetic field (MF). 

The governing equations were solved using the finite volume method (FVM) and solved 

using the SIMPLE algorithm. The results show that the heat transfer rate intensifies up to 

3.11 times with intensifying the Rayleigh number (Ra). The maximum heat transfer occurred 

at weak magnetic fields. By augmenting the angle of the enclosure, the heat transfer rate on 

the right and left walls intensifies by 33% and declines by 55%, respectively. The heat 

transfer rate on the right wall intensifies by 14% by augmenting the angle of the MF. The 

addition of nano-additives also results in intensification in the heat transfer rate.  

 

Keywords: Finite volume Method; Natural-convective heat transfer; Nano-fluid; Conductive 

walls; Inclined enclosure; 
 

 

Nomenclature 

  Conductive wall width  b 
 )1-ms( Velocity components in x and y directions u ,v Magnetic field strength 0B 

Brownian motion velocity Brv   

 ( / , / )f fU ul V vlα α= = Velocity component U,V Specific heat j/(kg.k)  pC 

Cartesian coordinates (m)  x,y Nanoadditive diameter (nm) d 

Coordinates  (X=x/l, Y=y/l) X,Y )2Gravitational acceleration (m/s g 

Greek symbols  .k)2w/(m Convection heat transfer coefficient h 

)  1-s2Thermal diffusivity (m α Nanoadditive diameter (nm)  d 

Solid volume fraction ϕ Hartmann number Ha 

Magnetic field angle (ᵒ) ω Enclosure non-dimension length (l/l) H 

Dynamic viscosity w/(m.K)  μ Thermal-conductivity w/(m.k) k 

Kinematic viscosity (m2s-1) υ )f/ksHeat fin conductivity ratio (k K* 

Density (kgm-3)   ρ Boltzmann constant [m2kg/ s−2K−1] bk 

Electrical conductivity ( .mΩ  ) σ Enclosure length (m)  l 

angel of cavity (ᵒ) γ Heat source length (m) ll 

Stream function (m2s−1) 𝜓𝜓 Heat source non-dimension length (ll/l) L 

Dimensionless stream function Ψ ) fhl/kNusselt number ( Nu 

  Local Nusselt number  sNu 

Subscripts Average Nusselt number  aveNu 
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Pure fluid f Pressure (Pa) p 

Maximum max    2 2( / )nf fP l ρ α
−Pressure  P 

Average ave Prandtl number ( / )f fϑ α     Pr  

Nano-fluid nf Rayleigh number 3( ( / ))f h c f fg l T Tβ α ϑ−     Ra 

  Temperature (K) T 

 

 

1. Introduction 

     Enclosed enclosures are widely used in various industries such as aerospace, food 

industry, petrochemicals, solar collectors, electronic components cooling and many other 

engineering industries. Hence, many researchers have studied the heat transfer in closed 

enclosures [1-6]. Since the purpose of these enclosures is to intensify the heat transfer rate, 

high-conductivity fluids should be used. According to the previous studies, nano-fluids have 

a higher thermal-conductivity than simple fluids [7-23]. Hence, the researchers have decided 

to use nano-fluids in the cavities instead of using simple fluids such as water and air. They 

investigated the heat transfer rate by adding nanoadditives in different types of enclosures. 

There are many papers studied heat transfer of nano-fluids in enclosures. For example, the 

investigation of Selimefendigil and Oztop [24], Revnic et al. [25], Rahimi et al. [26], Izadi et 

al. [27], Safaei et al. [28], Cho et al. [29], and Ma et al. [30] can be reported. In all of these 

papers, the same results are achieved. Their results indicate that augmenting the Ra and the 

volume fraction of nanoadditives result in an intensification of the heat transfer rate in the 

enclosures. 

     The researchers studied the heat transfer rate in the enclosures by considering a MF due to 

the application of the MF in some industries such as defense industries, heat exchangers etc. 

[31-39]. They used a parameter called Hartmann number to investigate the effect of MF 

strength. Higher Ha means stronger MF. Pordanjani et al. [40] considered natural-convection 

heat transfer in an enclosure under a MF numerically. They understood that the heat transfer 

rate intensifies with boosting of Ra and decreasing of Ha. Benos and Sarris [41] analyzed the 

performance of a nano-fluid in a cavity with a heat source under MF.  

     There are many ways to enhance the heat transfer rate include the application of expanded 

surfaces in the enclosures. The surface of heat exchanger is enlarged by using the baffles 

leads to an intensification of the performance of heat exchanger. Aminossadati and Ghasemi 

[42] employed SIMPLE algorithm to examine the performance of a square cavity filled with 

several nano-fluids. The cavity was equipped with a heat source on its bottom wall. The 
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nano-fluid is assumed to be Newtonian. They assessed the effects of Ra, the location and 

geometry of the heat source, the nano-fluid type and the volume fraction of nanoadditives. 

Khorasanizadeh et al. [43] investigated heat transfer of Cu/water nano-fluid in a square cavity 

using the SIMPLER algorithm numerically. They understood that convective heat transfer is 

very low at Ra=104, but the average Nusselt number intensifies at high Ra. Pordanjani et al. 

[44] analyzed the cooling performance of a nano-fluid in a square enclosure with two blades. 

They investigated the effect of the volume fraction of nanoadditives, Ra, and Ha on the flow 

field, temperature, and heat transfer rate. They reported that the heat transfer rate intensifies 

by augmenting the Ra and volume fraction of nanoadditives and reducing the Ha.   

     By considering the ever-augmenting use of energy and the reduction of fossil fuel 

resources, researchers have interested in evaluating the performance of different types of 

devices. One of the ways of exploring the efficiency of different types of energy sources is to 

investigate their entropy generation. This parameter is based on the second law of 

thermodynamics and can be a suitable measure for the measurement of the amount of losses. 

According to the above mentioned, the researchers have studied the heat transfer rate and the 

entropy generation in the enclosures simultaneously [45-54]. Alnaqi et al. [55] studied heat 

transfer and entropy generation of alumina/water nano-fluid in a square cavity equipped with 

a blade on a hot-wall numerically. They found that the variations in the heat transfer rate and 

entropy generation are similar. The heat transfer rate and entropy generation intensify by 

augmenting the Ra and reducing the Ha. Ghasemi and Siavashi [56] performed the first-law 

and second-law evaluations of an enclosure with a porous blade. The cavity was saturated 

with a nano-fluid and it was located under the MF. They examined the impact of blade 

dimensions on the heat transfer rate. 

     There are various ways to intensify the heat transfer rate that addition of nanoadditives 

and application of blades are the most practical ones. The blades can intensification the heat 

transfer rate by enhancing the heat exchange surface and the nano-fluid can also intensify the 

heat transfer by augmenting the thermal-conductivity of the working fluid. Since the 

enclosures are under the MF in many industries, it is important to consider the MF.      The 

present work aims to investigate the heat transfer of alumina/water nano-fluid in a square 

enclosure under an inclined MF. A heat source at temperature Th is placed in the middle of 

the cavity to heat the nano-fluid. The main objective of the present work is to use a 

conductive wall in the enclosure. In this way, there is a conductive wall on the cold walls of 

the enclosure. In the present work, the influences of Ra, Hartman number, MF angle, 
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enclosure angle, volume fraction of nanoadditives, and aspect ratio on the heat transfer rate 

are investigated. 
 

2. Problem setup and governing equations 

2.1. Problem setup 

     The considered geometry is an inclined two-dimensional square enclosure filled with a 

water-Al2O3 nano-fluid (Fig. 1). The side walls of the enclosure are maintained at a constant 

temperature of Tc. The side walls have thermal-conductivity of K* and constant thickness. 

The top and bottom walls of the enclosure are insulated. A heat source at constant 

temperature of Th is placed in the center of the cavity. The uniform MF B0 affects the cavity 

with an angle γ. No-slip boundary condition is imposed on all walls. In this study, the effects 

of Ra, Hartman number, MF angle, enclosure angle, volume fraction of nanoadditives, and 

aspect ratio on the heat transfer rate are investigated. 
 

 
Fig. 1: Schematic of the physical model. 
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2.2. Governing equations  

     The non-dimensional governing equations in the two-dimensional laminar incompressible 

and steady flow, with the assumption of a nano-fluid as a continuous environment with a 

thermal equilibrium between the base-fluid and solid particles, are expressed as follows [55]. 

Also, the effects of viscosity dissipations are neglected. 

     Non-dimensional mass conservation equation: 
 

)1(    0U V
X Y
∂ ∂

+ =
∂ ∂

 

 

     Non-dimensional momentum equations: 
 

)2(   

2 2

2 2

2 2

( )

Pr ( sin cos sin ) Pr sin

nf

nf f

f nf nf

nf f f

U V P U UU V
X Y X X Y

Ha V U Ra T

µ
ρ α

ρ σ β
θ θ θ γ

ρ σ β

∂ ∂ ∂ ∂ ∂
+ = − + + +

∂ ∂ ∂ ∂ ∂

− +

 

)3( 

2 2

2 2

2 2Pr ( sin cos cos ) Pr cos

nf

nf f

f nf nf

nf f f

U V P V VU V
X Y X X Y

Ha U V Ra T

µ
ρ α

ρ σ β
θ θ θ γ

ρ σ β

 ∂ ∂ ∂ ∂ ∂
+ = − + + + ∂ ∂ ∂ ∂ ∂ 

− +

 

 

     Non-dimensional energy equation for nano-fluid: 
 

)4(   
2 2

2 2
nf

f

T V T TU V
X Y X Y

α
α

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

 

 

     Non-dimensional energy equation for conductive walls: 
 

* * 0T Tk k
X X Y Y
∂ ∂ ∂ ∂   + =   ∂ ∂ ∂ ∂   

 
(5) 

 

      

     The following parameters are used to non-dimension the governing equations and 

boundary conditions. In the presented relationships, the Rayleigh and Hartman numbers are 

also introduced: 
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xX
H

= , 
yY
H

= , 
f

uHU
α

= , 
f

vHV
α

= , 
2

2
nf f

P lP
ρ α

−

= , c

h c

t tT
t t
−

=
−

, * s

f

kK
k

= , Pr f

f

ϑ
α

= , 

3 ( )f h c

f f

g H t t
Ra

β
α ϑ

−
= , 0

f

f f

Ha B H
σ
ρ ϑ

=   

 

(6) 

2.3. Boundary conditions 

     Table 1 gives the dimensionless boundary conditions. Eq. (6) has also been used to non-

dimension the boundary conditions. 
 

Table 1. Dimensionless boundary conditions. 

0T =  0U V= =  0 1
0, 1

Y
X X
≤ ≤

 = =
 

Side walls 

0T
y

∂
=

∂
 0U V= =  0 1

0, 1
X

Y Y
≤ ≤

 = =
 

Up and Bottom walls 

T=1 0U V= =  

2 2

2 2

H L H LX

H L H LY

− + ≤ ≤
 − + ≤ ≤


 

Heat source 

*

fin nf

T TK K
n n

∂ ∂
=

∂ ∂
 

0U V= =  0 1
0.5, 0.95

Y
X X
≤ ≤

 = =
 

Conductive walls 

 

2.4. The relationships for nano-fluid properties 

     To solve the governing equations, the thermo-physical properties of the nano-fluid are 

required, which are computed using the following relationships [57]: 

)7 (   (1 )nf f pρ ϕ ρ ϕρ= − +  

)8 ( ( ) (1 )( ) ( )p nf p f p pc c cρ ϕ ρ ϕ ρ= − +  

(9) ( ) (1 )( ) ( )nf f pρβ ϕ ρβ ϕ ρβ= − +  

(10)  

3 1
1

2 1

p

fnf

f p p

f f

σ
ϕ

σσ
σ σ σ

ϕ
σ σ

 
− +  
 = −

   
+ − − +      

   

 Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(11) ( )
nf

nf
p nf

k
c

α
ρ

=  

 

     in which, subscripts f and p respectively refer to the water and Al2O3. These properties are 

given in Table 2. Also, knf  is the effective thermal-conductivity of the nano-fluid, which can 

be obtained from references of [58] and [59] as follows: 
 

(12) 

 
42 2 ( )

5 10 ( , )
2 ( ) f

p f f p b
nf Static Brownian f f p

p f f p f p

k k k k k Tk k k k c f T
k k k k d

ϕ
ϕρ ϕ

ϕ ρ

  + − −
= + = + × Γ  

+ + −      
 

 

Where kp and kf are thermal-conductivity of the nanoadditives and the pure fluid, 

respectively. The Boltzmann constant is 𝑘𝑘𝑏𝑏 = 1.3807 × 10−23 [m2kg/s−2K−1], T is the 

nano-fluid temperature in Kelvin and the functions Γ and f (T , φ) for water- Al2O3 as Eq. 

(14) and (15). 

     The Vajjha [58] and Brinkman [60] relations are used for the modeling of the dynamic 

viscosity of the water- Al2O3 nano-fluid: 
 

(13) 

 

4
2.5 5 10 ( , )

(1 ) Prf

f f b
nf Static Brownian f p

f f p

k Tc f T
k d

µ µ
µ µ µ ϕρ ϕ

ϕ ρ
= + = + × Γ

−
 

 

     In the relation 14, the expressions Γ and f (T,φ) are written as Eqs. (15) and (16), as in the 

Eq. (12), for water- Al2O3 nano-fluid:  

(14) 
2 3 2 3

0

( , ) (2.8217 10 3.917 10 ) ( 3.0669 10 3.91123 10 )Tf T
T

ϕ ϕ ϕ− − − − 
= × + × + − × − ×× 

 
 

 

(15) 1.073048.4407(100 )ϕ −Γ =  

 

 

 

3O2Al-waterphysical properties of -Table 2. Thermo 

Water 
𝐀𝐀𝐀𝐀𝟐𝟐𝑶𝑶𝟑𝟑 

nanoadditives 
Properties 

4179 765 𝑪𝑪𝑷𝑷 (𝐉𝐉 𝐤𝐤𝐤𝐤.𝐊𝐊⁄ ) 
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997.1 3970 𝛒𝛒 (𝐤𝐤𝐤𝐤 𝐦𝐦𝟑𝟑⁄ ) 
0.613 25 𝒌𝒌 (𝐖𝐖 𝐦𝐦.𝐊𝐊⁄ ) 

- 40 dp(nm) 

0.05 1× 10−10 𝝈𝝈 (𝛀𝛀.𝐦𝐦)−𝟏𝟏 

21× 10−5 0.85× 10−5 𝜷𝜷(𝟏𝟏/𝐊𝐊) 
 

 

2.5. Equation of heat transfer 

     Calculating the rate of heat transfer is one of the most vital parameters. The total heat 

transfer rate is stated in the form of the Nu. The local Nu on the cold wall and the heat source 

is defined according to Eq. (16): 
 

Y
f

hLNu
k

=  (16) 

 

     The coefficient of heat transfer is known by Eq. (17): 
 

h c

qh
T T

ω=
−

 (17) 

 

     The heat flux and Nusselt number are also calculated by Eqs. (18) and (19): 
 

nf
Tq k
Xω
∂ =  ∂ 

 (18) 

nf

f

k TNu
k X

∂ = −  ∂ 
 (19) 

 

( 0,1)0 0
( 0,1)

1 1L Lnf
M x

xf

k TNu Nu dY dY
L L k X=

=

∂ = = −  ∂ ∫ ∫  (20) 

 

 

2.6. Numerical method 

     The average Nusselt number is also obtained by integrating the Eq. (19) on the cold wall 

of the cavity: 
 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



     The equations 1-6 and boundary conditions have been derived by means of a finite 

volume-based method. The computational field has been discretized by a staggered grid. In a 

staggered grid, in addition of the suitability of computing flows on the control volume, the 

pressure values have been calculated in the central points of the grid because of the velocity 

of the surfaces is identified. The SIMPLE technique has been employed for solving 

simultaneous algebraic equations [61]. The convergence criterion is also as follows: 

 

(21)   
1

8
1 10

n n

I nJ

ϕ ϕφ
ϕ

+
−

+

−
= ≤∑ ∑  

 

 

2.7. Validation and grid independency 

The verification of code is conducted by comparing the present numerical findings with those 

obtained by Nag et al. [62] and Ghasemi et al. [63]. The outcomes of validation is presented 

in Table 3. The average Nusselt number of the right cold wall for the natural-convection flow 

of nano-fluid through a square cavity with a thick blade on the left side wall is utilized for the 

sake of validation. As shown in Table 3, the Nusselt number calculated from the present 

simulations are in good agreement with the data of Nag et al. [62].  

 
Table 3. The outcomes of validation for ks/ka=7750, lb=0.4, Ra=106. 

φ Nag et al. [62] Present work 
0.02 8.861 8.731 
0.04 8.888 8.811 
0.6 9.033 8.951 

 

 

     Finally, the naturally cooled cavity containing a nano-fluid under the influence of the MF 

that was investigated by Ghasemi et al. [63] is considered for further validation. In their 

study, the square enclosure had cold and hot side walls and isolated top and bottom ones. The 

average Nusselt number is compared for different Ha, volume fraction of 0.03 and Ra = 105.  

Fig. 2, shows that there is no difference between the results gained from the present model 

and the ones of Ghasemi et al. [63]. 
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 numerical simulationand  modelnumerical  presentbetween the  aveNuThe comparison of Fig. 2. 

performed by Ghasemi et al. [63] for solid volume fraction of 0.03 
 

     Now, it is necessary that the independence of the results is checked from the number of 

grid points and an appropriate computational grid is selected. To this end, impact of the 

number of grid points on the average Nusselt number of the cold walls and the maximum 

stream function is evaluated for various Ra and Ha, different volume fractions of 

nanoadditives, different cold wall thickness, different thermal-conductivity and different MF 

angles. The sample of these simulations is presented in Table 5 for Ha=20, φ=0.03, b=0.1, 

γ=45ᵒ, K*=10, AR=0.4, Rd=1, 45θ =  , and Ra = 105. According to this table, it is clear that 

further intensifies in the number of grid points than 120×120 do not change the results. Thus, 

120×120 grid resolution is selected for further simulations. 

 

max.ψ and aveNu. Grid independency study for 5Table  

160×160 140×140 120×120 100×100 80×80 60×60 Grid 

5.926 5.927 5.927 5.934 5.849 5.803 aveNu 

6.717 6.716 6.715 6.698 6.634 6.587 max.ψ 

171.954 171.678 171.341 170.972 168.758 162.654 TotalS 
 

3. Results and discussion 

Ra=105

Ra=105

Ra=105

Ha

0 10 20 30 40 50 60

N
u m

0

2

4

6

8

10 Ghasemi et al  

Present Work

Ra=105

Ra=105

Ra=105
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3.1. Variation of Rayleigh and Hartmann numbers  

In Fig. 3, streamlines and isothermal lines are plotted for Ha= 30, AR=0.35, 0θ = , γ= 45, 

φ= 0.03 and different Ra. The streamlines show that two separate vortices are formed for all 

Ra. These two vortices have the opposite direction. The cause for the formation of these 

vortices is the buoyancy force. The density of the fluid in the locality of the heat source 

declines due to the heating. By decreasing the density and lightening the fluid, the fluid mass 

moves upward in opposite direction of the gravity. The fluid flow reach the cold wall and its 

temperature declines leads to an intensifies in the density. Therefore, the fluid moves down. 

The continuity of this fluid movement causes to form a vortex in the cavity. Conversely, two 

vortices are formed around the heat source because of the presence of a barrier in the center 

of the cavity and the angle of the cavity with respect the horizontal axis. The right vortex is 

stronger due to its better condition for vortex generation. The streamlines show that the 

maximum stream function intensifies with augmenting the Ra. The density of the streamlines 

in the enclosure intensifies by augmenting the Ra. The intensification in the density of the 

streamlines means that the velocity gradient intensifies and, as a result, the fluid flow inside 

the compartment becomes faster. The reason is that an intensification of the Ra results in an 

intensification of the buoyancy force and intensification in the fluid flow. Hence, the strength 

of the vortex intensifies. Isotherms show that two phenomena occur by augmenting the Ra. 

First, the density of the isothermal lines intensifies in the lower part of the heat source and the 

upper right side wall. This shows an increase in temperature gradient inside these areas. 

Therefore, the rate of heat transfer also intensifies. This is also because of an intensification 

of the velocity of fluid mass displacement by augmenting the Ra, which ultimately leads to an 

intensification of the gradient of temperature. Second, the isothermal lines are more irregular 

and their curvature intensifies for high Ra compared to low ones. For the case of low 

curvature of the isotherms, the chief mechanism of heat transfer is conduction and for the 

case of high curvature, this mechanism is natural-convection. Thus, the conduction heat 

transfer mechanism declines and natural-convection heat transfer mechanism intensifies with 

augmenting the Ra. This is due to more fluid movement with augmenting the Ra. Higher heat 

transfer rate in the natural-convection than the conduction one results in an intensification of 

the heat transfer rate in the enclosure.   
 

6Ra=10 Ra= 31622 3Ra=10  
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ψ 

   

T 

Fig. 3. Flow and thermal fields for  Ha= 30, AR=0.35, 0θ = 
, γ= 45, φ= 0.03 and dissimilar Ra. 

      

In Fig. 4, the flow and thermal fields are presented for Ra=31622, AR=0.35, 0θ = , γ= 45, 

φ= 0.03 and dissimilar Ha. The Hartman numeral represents the MF strength. By augmenting 

the strength of the MF, the Lorentz force in the cavity intensifies. This force causes the 

velocity of fluid to reduce in the compartment. As the Lorentz force acting against the 

buoyancy force and prevents the vortex motion. Hence, the velocity of the vortices declines 

by reducing the fluid velocity. This decrease in the fluid velocity can change the heat transfer 

mechanism from convection to conduction at high Ra. But at low Ra, which the fluid velocity 

is low, it produces small variations. Isotherms also show that a slight change occurs in the 

density of the streamlines by augmenting the Ha. As the Hartman number intensifies, the 

density of isotherms declines steadily close to the heat source. This results in a reduction in 

the temperature gradient which can ultimately leads to a reduction in the heat transfer rate in 

the enclosure.   
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Fig. 4. Flow and thermal fields for Ra=31622, AR=0.35, 0θ = , γ= 45, φ= 0.03 and dissimilar Ha. 

      

In Fig. 5, Nuave calculated on the cold wall is plotted for, AR=0.35, 0θ = , γ= 45, φ= 0.03 

and dissimilar Ha and Ra. The Nusselt number behavior is quite different by augmenting the 

Hartman number for different Ra. At low Ra, Nuave intensifies and then declines by 

augmenting the Ha. But at high Ra, Nuave intensifies and then declines by augmenting the Ha. 

Different behavior of the Nu is due to the angle of the enclosure and the presence of a heat 

source in it. At low Ra, while the chief mechanism of heat transfer is conduction, the Lorentz 

force drives the fluid away from the walls with the intensification of the Ha.  However, more 

intensification in the Ha leads to higher temperature gradient and an intensification of the 

Nusselt number. In general, at low Ra, the variation of the Nusselt number is not considerable 

with the Ha, and the variations are very small. At high Ra, the fluid in the lower part of the 

enclosure goes into the vortex and more fluid is rotating as the Hartman number intensifies. 

This leads to an intensification of the Nusselt number, but as the MF becomes stronger and 

Lorentz force intensifies, the velocity of the vortex declines. In this case, the Lorentz force 

prevents the vortex motion results in a reduction in the heat transfer. For all Ha, the heat 

transfer rate intensifies by augmenting the Ra, which is more considerable for weak MFs. As 

the Ra intensifies, the buoyancy force and vortex velocity intensification leads to an 

intensification of the heat transfer rate.   
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Fig. 5. The average Nusselt number calculated on the cold wall for AR=0.35, 0θ = , γ= 45, φ= 0.03 and 

different Ha and Ra 

     
 

3.2. Variation of the inclination angle of the enclosure 

     In Fig. 6, the flow and thermal fields are presented for Ra= 31622, Ha= 30, AR=0.2, 

0θ =  , φ= 0.03 and dissimilar inclination angles of the cavity. Streamlines show that two 

vortices are formed for all angles of the enclosure. These two vortices are symmetry for the 

angles of 0° and 90° and are asymmetry for the inclined enclosure. In the enclosure with a 

zero angle, two vortices of the same size and the opposite direction are formed that are 

moving in all space of the enclosure. The fluid moves upwards as its temperature intensifies 

in the vicinity of the heat source and then goes up and after interaction with the upper wall 

moves towards the side walls of the enclosure. The fluid flow collides to the cold wall, loses 

 
 

   
   

 
   

  3.00

  3.75

  4.50

  5.25

  6.00

0.00  

15.00  

30.00  

45.00  

60.00  

5.6  

7.3  

9  

10.7  

12.4  

  N
u 

 

  Ra  
  Ha  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



its temperature and moves down due to the buoyancy force. The fluid is cooled and then, 

after colliding with the bottom wall, goes up. As a result, two symmetric vortices are formed 

on both sides of the heat source. As the inclination angle intensifies, the velocity of the fluid 

declines dramatically at the bottom of the enclosure. Because the fluid is moving faster 

between the heat source and cold top wall and the fluid in the lower part does not move due 

to its high density. Hence, the upper vortex is stronger than the lower one. For the inclination 

angle of 90°, there is no fluid flow in the bottom of the chamber because of the heat exchange 

between the heat source and the top cold. So, the fluid does not move from the bottom wall to 

the top one. Isothermal lines also show that for inclination angles of 0° and 90°, these lines 

are symmetry relative to the heat source and the highest density is observed below the heat 

source. At this point, because the cold fluid collides with the heat source for the first time, a 

large temperature gradient is formed and the density of the isothermal lines is high. As the 

inclination angle intensifies, the density of isotherms intensifies at the right side of the 

enclosure. The reason is that the vortex is stronger in this area results in an intensification of 

the temperature gradient. For the angle of 90°, the density of isothermal lines is low in the 

bottom of the enclosure, which indicates that the heat transfer rate is very low in this area. 
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Fig. 6. The flow and thermal fields for Ra= 31622, Ha= 30, AR=0.2, 0θ = 
, φ= 0.03  and dissimilar 

inclination angles of the enclosure. 

  

     In Fig. 7, dimensionless velocity and dimensionless temperature are plotted at the line X = 

0.5 for Ra = 31622, Ha = 30, AR = 0.2, 0θ = 
, φ = 0.03, and dissimilar inclination angles. 

As the inclination angle of the enclosure intensifies, the velocity declines sharply. In addition, 

the symmetry of the curves relative to the heat source is reduced, which is due to that an 

enclosure with inclination angle of 0 has better conditions for the formation of vortex. These 

conditions are weakened with augmenting the angle, so that very weak vortex is formed at the 

angle of 90 in the lower part of the enclosure because the cool fluid remains on the bottom of 

the cold wall. Isothermal line also exhibit symmetrical trend relative to the heat source. The 

symmetry is vanishes with augmenting the angle of the enclosure. The conditions for vortex 

formation on the top of the heat source are improved and the convection in the lower part is 

significantly weakened with the intensification in the angle of the enclosure. It can be seen 

that the temperature declines in the region below the heat source at the angle of 90 and 

intensifies above the heat source.  
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(b)

 

(a) 

 
Fig. 7. (a) Dimensionless velocity and (b) dimensionless temperature at the line X = 0.5 for Ra = 31622, Ha = 

30, AR = 0.2, 0θ = 
, φ = 0.03, and different inclination angles. 

 

 

3.3. Variation of MF angle  

     In Fig. 8, the flow and thermal fields are plotted for Ra = 31622, Ha = 30, AR = 0.2, γ=45, 

φ= 0.03 and dissimilar MF angles. It can be seen that the vortex shaped in the upper area of 

the cavity is strengthened by augmenting the angle of the MF. But the bottom vortex does not 

change. The Lorentz force due to the MF causes more fluid to move upward by augmenting 

the angle of the MF. As a result, the cold fluid that remains in the lower part of the cavity 

moves and the vortex also penetrates in these areas. Hence, the strength of the resulting 

vortex is intensified. The variation of isotherms is not considerable by changing the angle of 

the MF. By dragging the fluid flow to the top of the enclosure, the isothermal lines are pulled 

to that area. This also makes the isotherms to have more distant from the bottom of the 

enclosure results in small temperature gradient in this area. 
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Fig. 8. The flow and thermal fields for Ra = 31622, Ha = 30, AR = 0.2, γ=45, φ= 0.03 and dissimilar MF angles. 

 

In Fig. 9, dimensionless velocity and dimensionless temperature are plotted at the line X = 

0.5 for Ra = 31622, Ha = 30, AR = 0.2, γ=45, φ= 0.03 and dissimilar MF angles. The 

maximum and minimum velocity reduces by augmenting the angle of the MF. This indicates 

a decrease in the velocity of the fluid in the cavity. By augmenting the angle of the MF, the 

Lorentz force causes the fluid to move towards the top region of the enclosure. Hence, the 

velocity of the vortex inside the enclosure declines and the maximum velocity is reduced. It 

can be seen from the temperature diagram that as the MF angle intensifies, the temperature in 

the enclosure is reduced slightly because of a decrease in vortex velocity for the reasons 

explained. In general, variation of the angle of the MF does not affect the temperature and 

velocity considerably. 
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Fig. 9. (a) Dimensionless velocity and (b) dimensionless temperature at the line X = 0.5 for Ra = 31622, Ha = 

30, AR = 0.2, γ=45, φ= 0.03, and dissimilar MF angles. 
 

In Fig. 10, the average Nu calculated on the cold wall is presented for Ra = 31622, Ha = 30, 

AR = 0.2, φ= 0.03 and different MF angles and various inclination angles. It can be observed 

that the variation of the Nu has not a constant trend with the variations of the inclination 

angle of the enclosure and the angle of the MF. For the case of zero inclination angle, the 

Nusselt number intensifies by augmenting the angle of the MF. The maximum Nusselt 

number occurs for zero inclination angle and horizontal MF. In this case, the Lorentz force 

due to the MF results in an intensification of the fluid motion in the enclosure and amplifies 

the vortex, which ultimately results in an intensification of the heat transfer rate. However, it 

is seen that the Nusselt number variations with the changes in the angles of the enclosure and 

the MF angle are low as the maximum change is less than 25%. 
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Fig. 10. The average Nusselt number calculated on the cold wall for Ra = 31622, Ha = 30, AR = 0.2, φ= 0.03 

and different MF angles and various inclination angles. 
 

3.4. Variation of the aspect ratio of the enclosure 

In Fig. 11, the flow and thermal fields are plotted for Ra = 31622, Ha = 30, 0θ = 
, γ=45, φ= 

0.03  and various aspect ratios. Streamlines show that the vortex strength declines by 

augmenting the aspect ratio. This is due to the narrowing of the space to rotate the vortex. As 

the heat source size intensifies, the space inside the enclosure becomes narrower and the fluid 

velocity in the enclosure declines. Isotherms show that the curvature of the isothermal lines 

declines and they become more regular by augmenting the aspect ratio. The density of 

isotherms intensifies with the aspect ratio leads to an intensification of the temperature 

gradient results in an intensification of the heat transfer rate. As the size of the heat source 

intensifies, the flow velocity in the enclosure declines leads to a reduction in the heat transfer. 

As the heat source enlarges, the heat transfer mechanism changes to conduction. This can 
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also be concluded from the curvature of the isotherms. In the large aspect ratios, the 

conduction heat transfer is dominant. On the other hand, conduction heat transfer intensifies 

with a decrease in the distance between the hot and cold walls according to the Fourier law, 

which is also concluded from the intensification in the density of the isothermal lines. 
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Fig. 11. The flow and thermal fields for Ra = 31622, Ha = 30, 0θ = 
, γ=45, φ= 0.03  and various aspect 

ratios. 
 

In Fig. 12, dimensionless velocity and dimensionless temperature are plotted at the line X = 

0.5 for Ra = 31622, Ha = 30, 0θ = 
, γ=45, φ= 0.03. The fig. 12a shows that the velocity 

declines rapidly as the size of the heat source intensifies. This is due to that the space for fluid 

motion declines leads to a decrease in the vortex velocity. In all cases, the direction of 

streamlines is upward in the vicinity of the heat source and is downward close to the cold 

wall. This shows the direction of two vortices around the heat source. It can be seen from the 

isothermal lines that the temperature gradient declines sharply by augmenting the size of the 

heat source. This is due to the reduction of the fluid velocity, which causes the fluid to move 

slowly results in a reduction in the temperature gradient. The temperature in the lower area of 
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the cavity is lower than that in its upper part because of the accumulation of heavy and cold 

fluid at the bottom of the enclosure.   
(b)

 

(a)

 
Fig. 12. (a) Dimensionless velocity and (b) dimensionless temperature at the line X = 0.5 for Ra = 31622, Ha = 

30, 0θ = 
, γ=45, φ= 0.03and different aspect ratios. 

 

In Fig. 13, the average Nusselt number for different Ra (Fig. 13a) and various Ha (Fig. 13b) 

is plotted for different aspect ratios Ra = 31622, Ha = 30, 0θ = 
, γ=45, φ= 0.03. Fig. 13a 

reveals that the heat transfer rate intensifies with the intensification of the aspect ratio and the 

Ra. This is more obvious for low aspect ratios. At low aspect ratios, the main mechanism of 

heat transfer is convection that intensifies with augmenting the Ra. At high aspect ratios, the 

main mechanism of heat transfer is conduction and the buoyancy force does not affect the 

heat transfer rate. An intensification of the buoyancy force affects the convection mechanism 

that is weak in this case. Hence, the heat transfer rate intensifies with the intensification of the 

aspect ratio and the Ra. Fig. 13b demonstrates that the variations of the Ha leads to a constant 

trend for the Nusselt number for different aspect ratios. As a result, maximum heat transfer 

rate occurs for a weak MF and a large aspect ratio, as is the case in the previous sections. It 

has been explained before. 
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Fig. 13. The average Nusselt number for (a) different Ra and (b) various Ha for different aspect ratios Ra = 

31622, Ha = 30, 0θ = 
, γ=45, φ= 0.03. 

 

3.5. Variation of volume fraction of nanoadditives 

In Fig. 14, local Nusselt number of cold wall is plotted for Ra = 31622, Ha = 30, 0θ = 
, 

γ=45, Ar=0.2 and different volume fractions of nanoadditives. An intensification of the 

volume fraction of nano-additives leads to an intensification of the thermal-conductivity of 

the base-fluid. A greater heat transfer happens in the fluid by augmenting the thermal-

conductivity of the nano-fluid, which causes the fluid to receive higher heat transfer in the 

locality of the walls. So, the heat transfer rate intensifies close to the side cold wall by 

augmenting the volume fraction of nanoadditives. It can be seen that maximum heat transfer 

rate takes place in the upper part of the wall. This is also due to collision of heated fluid for 

the first time in this section. The heated fluid moves upwards and after colliding with the 

upper wall goes to the side wall and then collide with the cold wall. Hence, the heat transfer 

rate in this region is greater than that in other areas because of higher temperature gradient. 
 

 
 

   
   

 
   

  0.00

  15.00

  30.00

  45.00

  60.00

0.10  

0.22  

0.35  

0.47  

0.60  

1  

4  

7  

10  

13  

  N
u 

 

  Ha  
  AR  

 
 

   
   

 
   

  3.00

  3.75

  4.50

  5.25

  6.00

0.10  

0.22  

0.35  

0.47  

0.60  

1  

5.25  

9.5  

13.75  

18  

  N
u 

 

  Ra  
  AR  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
Fig. 14. Local Nusselt number of cold wall for Ra = 31622, Ha = 30, 𝜃𝜃 = 0°, γ=45, Ar=0.2 and different volume 

fractions of nanoadditives. 
 

Fig. 15 shows the average Nusselt number for different angles of the enclosure and various 

volume fractions of nanoadditives (Fig. 15a) and for different MF angles changes and various 

volume fractions of nanoadditives (Fig. 15b) for Ra = 31622, Ha = 30, 𝜃𝜃 = 0°, γ=45, Ar=0.2. 

As shown in Fig. 15a, the Nusselt number intensifies by augmenting the volume fraction of 

nanoadditives and reducing the angle of enclosure. The intensification in the average Nusselt 

number is noticeable by augmenting the volume fraction of nanoadditives at greater 

inclination angles. Fig. 15b shows the variation of Nusselt number with augmenting the 

volume fraction has a constant trend for different angles of the MF. 
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Fig. 15. The average Nusselt number for different angles of the enclosure and various volume fractions of 

nanoadditives (a) and for different MF angles changes and various volume fractions of nanoadditives (b) for Ra 

= 31622, Ha = 30, 0θ = 
, γ=45, Ar=0.2  . 

 

 

4. Conclusions 

 In the present paper, heat transfer of alumina/water nano-fluid in a square enclosure with 

conductive walls were investigated. There was a constant heat source in the center of the 

cavity that affected by an inclined MF. The results showed that: 

• The heat transfer is higher for higher Ra than those for lower ones. The heat transfer 

rate on right wall of the enclosure intensifies by 3.11 times by augmenting the Ra.  

• The heat transfer coefficient intensifies by augmenting the volume fraction of 

nanoadditives. 

• The heat transfer coefficient declines by augmenting the angle of the enclosure. The 

heat transfer rate intensifies by 33% on the right wall and declines by 55% on the left 

wall by augmenting the angle of the enclosure.  

• The heat transfer rate intensifies by 14% on the right wall and declines by 3% on the 

left wall by augmenting the angle of the MF. 

• As the aspect ratio intensifies, the heat transfer rate intensifies.  
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Highlights 

• Using finite volume method for natural convection of a nanofluid in an inclined square 

enclosure 

• Effect of Rayleigh, magnetic field, enclosure geometry and nanoparticles on heat transfer  

• Heat transfer rate intensifies up to 3.11 times with intensifying the Rayleigh number. 

• The maximum heat transfer occurred at weak magnetic fields. 
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