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MEAN-FIELD LIMIT FOR PARTICLE SYSTEMS WITH
TOPOLOGICAL INTERACTIONS

DARIO BENEDETTO, EMANUELE CAGLIOTI AND STEFANO ROSSI

The mean-field limit for systems of self-propelled agents with “topological in-
teraction” cannot be obtained by means of the usual Dobrushin approach. We
get results by adapting to the multidimensional case the techniques developed by
Trocheris in 1986 to treat the Vlasov–Poisson equation in one dimension.

1. Introduction

Many interesting physical systems can be described at the microscopic level using
particle dynamics and at the mesoscopic level using kinetic equations. In the broad
field of two-body interactions, the link between these two regimes is mathemati-
cally well-understood in the case of the mean-field limit, i.e., when the density of
the particles grows roughly in proportion to their number N , the mean free path
vanishes as 1/N and the interaction intensity scales with 1/N . In this limit, each
particle feels the interaction with the others as a mean.

A rigorous mathematical proof of this result can be completed in the case of
two-body interactions with sufficiently regular potentials. This classical achieve-
ment was obtained independently by several authors in the 1970s (see [7; 17; 30])
and its explanation is particularly clear in Dobrushin’s argument [17], where the
result follows from noticing that the empirical measure associated with the particle
system is a weak solution of the mean-field equation; the proof follows by showing
the weak continuity, with respect to the initial datum, of the weak solutions.

Though the theory for regular pairwise interactions is sufficiently well-understood,
going beyond it and considering singular potentials is a harder task. This is the case
with the three-dimensional Vlasov–Poisson equation, which is the most important
equation of plasma physics, based on the choice of the Coulomb potential, and of
galactic dynamics, based on the choice of the Newton potential. In this equation,
the potential 1/r is singular at the origin and does not belong to any L p space.
Although the mean-field limit for the Vlasov–Poisson equation remains an open
problem, there has been important progress in recent years; see [24; 25], where
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the mean-field limit is proven for potentials with singularities “weaker than 1/r”,
and also [28; 29]. In the case of the one-dimensional Vlasov–Poisson equation, the
problem has been solved in [31; 32], and with a simpler proof in [23], the force
being discontinuous, but not divergent.

The mean-field limit is a case of propagation of chaos, i.e., the j-particle dis-
tributions become factorized in the limit. This property is the key for obtaining a
kinetic description of the particle dynamics (see, for instance, [8] and [13; 19; 26]
for some reviews on this point of view).

In recent years, the conceptual and mathematical apparatus of kinetic equations
has been used in the study of self-propelled particle systems of a biological nature;
in particular, it’s been used in the study of the motion of swarms and other animals.
Starting with the pioneering paper [33], several models have been proposed to
explain the evolution of these systems. In the simplest models [15; 14; 33], a
bird is modeled as a self-propelling particle that interacts with its neighbors. The
interaction is such that neighboring birds tend to align their velocities. For many
of these models, the mean-field limit has been used to obtain a kinetic description
of the dynamics (see, for instance, [3; 9; 10; 11; 20; 21]).

A few years ago, supported by observational data [1; 2; 12], “topological” mod-
els for interaction were introduced: an agent reacts to the presence of another not
according to the distance between them, but according to the proximity ranking
(see (1-1), (1-2), and (1-3) for a rigorous formulation). These models come out
of the case of two-body interactions, and present various problems in their kinetic
treatment. In particular, the solutions of the kinetic equation are not weakly con-
tinuous with respect to the initial datum, and there are also some difficulties in
defining the particle motion.

We prove a result on the mean-field limit for topological models. We focus our
attention on the topological Cucker–Smale model, but with the same ideas it is
possible to consider more general cases. A first result in this direction has been
proved in [22], for a smoothed version of the model in which the weak continuity in
the initial datum is recovered. We also mention that a kinetic Boltzmann equation
for a stochastic particle model with rank-based interaction has been obtained in
[16] by using the BBGKY hierarchy.

We formulate the problem and summarize our results. A Cucker–Smale type
model for the motion of N agents, in the mean-field scaling, is the system

Ẋ i (t)= Vi (t),

V̇i (t)=
1
N

N∑
j=1

pi j (V j (t)− Vi (t)),
(1-1)

where the “communication weights” {pi j }
N
i, j=1 are positive functions that take into
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account the interactions between agents. In classical models, pi j depends only on
the distance |X i − X j | between the agents. In topological models, the weights
depend on the positions of the agents by their rank:

pi j := K (M(X i , |X i − X j |)), (1-2)

where K : [0, 1] → R+ and, for r > 0, the function

M(X i , r) :=
1
N

N∑
k=1

X {|Xk − X i | ≤ r} (1-3)

counts the number of agents at distance less than or equal to r from X i , normalized
with N . Note that in this case, pi j is a stepwise function of the positions of all of
the agents. In the sequel, we assume that K is a positive decreasing function that
is Lipschitz continuous, and such that

∫ 1
0 K (z) dz = γ .

In the mean-field limit N → +∞, the one-agent distribution function ft =

f (t, x, v) is expected to satisfy the equation

∂t ft + v · ∇x ft +∇v · (W [S ft , ft ](x, v) ft)= 0, (1-4)

where S ft(x) :=
∫

ft(x, v) dv is the spatial distribution and where, given a proba-
bility density f in Rd

×Rd and a probability density ρ in Rd ,

W [ρ, f ](x, v) :=
∫

K (M[ρ](x, |x − y|)) (w− v) f (y, w) dy dw, (1-5)

with

M[ρ](x, r) :=
∫
|x ′−x |≤r

ρ(x ′) dx ′. (1-6)

A weak formulation of this equation is given, requiring that the solution ft fulfills∫
α(x, v) d ft(x, v)=

∫
α(X t(x, v), Vt(x, v)) d f0(x, v)

for any α ∈ Cb(R
d
×Rd), where f0 is the initial probability measure and where

(X t(x, v), Vt(x, v)) is the flow defined by
Ẋ t(x, v)= Vt(x, v),
V̇t(t, x, v)=W [S ft , ft ](X t(x, v), Vt(x, v)),
X0(x, v)= x, V0(x, v)= v.

(1-7)

In other words, ft is the push-forward of f0 along the flow generated by the velocity
field, determined by ft itself.
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It is easy to verify that the empirical measure

µN
t :=

1
N

N∑
i=1

δX N
i (t)

δV N
i (t)

associated with the solution of (1-1), (1-2) and (1-3) is a weak solution of (1-4).
Namely, M[SµN

t ](X, r) is exactly M(X, r) defined in (1-3). (From now on we
use the more complete notation M[SµN

t ](X, r).) Thus, we can rewrite the agent
evolution in (1-1) as{

Ẋ N
i (t)= V N

i (t),
V̇ N

i (t)=W [SµN
t , µ

N
t ](X

N
i (t), V N

i (t)).
(1-8)

In the Dobrushin approach to the mean-field limit, the result is achieved from
this fact and from the weak continuity, with respect to the initial datum, of the
weak solutions of (1-4). We cannot use this approach in presence of topological
interaction, since in general the solutions of (1-7) are not weakly continuous with
respect to the initial datum (see Section 3). We can overcome this difficulty if the
solution of (1-4) has a bounded density. To obtain our result, we adapt the ideas
used in [32] for the derivation of the one-dimensional Vlasov equation in presence
of discontinuity of the force. In particular, we prove that:

(Theorem 3.4) The N -particle dynamics is well-defined, except for a set of measure
zero.

(Theorem 4.3) If f0 is bounded, there exists a unique weak solution ft of the
topological Cucker–Smale equation, and it is bounded.

(Theorem 5.2) If µN
t solves (1-8) and µN

0 ⇀µ0, then µN
t ⇀ ft .

We divide the work as follows. In Section 2 we discuss some properties of the
“discrepancy distance”, the main tool for dealing with topological interactions. In
Section 3 we discuss existence, uniqueness and regularity of the agent dynamics
(1-8), proving Theorem 3.4. In Section 4 we discuss the existence, uniqueness
and regularity of the weak solutions of the mean-field equation (1-4) with bounded
initial datum, proving Theorem 4.3. In Section 5 we prove Theorem 5.2.

2. Distances and weak convergence

We recall that the 1-Wasserstein distance W of two probability measures on Rd can
be defined by duality using Lipschitz functions. Denoting by Lip(φ) the Lipschitz
constant of φ, we can write

W (ρ1, ρ2)= sup
φ∈Cb(R

d )
Lip(φ)≤1

∫
φ(dρ1− dρ2)= sup

φ∈C1
b (R

d )

‖∇φ‖∞≤1

∫
φ(dρ1− dρ2).
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The counter of the number of particles in (1-6) is not continuous with respect to
W, so we work with the weaker topology induced by another distance, the discrep-
ancy, defined as

D(ρ1, ρ2) := sup
x,r>0

∣∣∣∣∫
Br (x)

dρ1−

∫
Br (x)

dρ2

∣∣∣∣.
Here and after, we denote by Br (x) the closed ball of center x and radius r in Rd ;
we will also write BR for BR(0). The discrepancy distance is mostly used in one
dimension to quantify the uniformity of sequence of points (see [18; 27]), but its
multidimensional version is cited in [30], in the contest of kinetic limits.

By definition, the following proposition holds.

Proposition 2.1 (Lipschitzianity of M with respect to D). Let ρ1 and ρ2 be two
probability measures on Rd . Then for any x ∈ Rd and r > 0,

|M[ρ1](x, r)−M[ρ2](x, r)| ≤ D(ρ1, ρ2).

We can define D in terms of regular functions. Let X be the set C1
b([0,+∞);R),

and define
‖φ‖X :=

∫
+∞

0
|φ′(r)| dr.

Then

D(ρ1, ρ2)= sup
φ∈X
‖φ‖X≤1

sup
x

∫
φ(|x − y|)(dρ1(y)− dρ2(y)).

This assertion is an easy consequence of the following lemma.

Lemma 2.2. Let g1 and g2 be two probability measures on [0,+∞). Then

sup
r≥0

∣∣∣∣∫
[0,r ]

dg1−

∫
[0,r ]

dg2

∣∣∣∣= sup
φ∈X
‖φ‖X≤1

∫
+∞

0
φ(dg1− dg2). (2-1)

Proof. Fix r > 0. There exists φr,ε ∈ X with ‖φr,ε‖X = 1 such that φr,ε(s) = 1 if
0≤ s ≤ r and φr,ε(s)= 0 if s ≥ r + ε. For any measure g,

lim
ε→0

∫
+∞

0
(φr,ε(s)−X {s ∈ [0, r ]}) dg(s)= 0;

hence∫
[0,r ]

(dg1− dg2)= lim
ε→0

∫
+∞

0
φr,ε(dg1− dg2)≤ sup

φ∈X
‖φ‖X≤1

∫
+∞

0
φ(dg1− dg2).

To prove the opposite inequality, we denote by G1 and G2 the distribution functions
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of g1 and g2:

Gi (r) :=
∫
[0,r ]

dgi .

Integrating by parts,∫
+∞

0
φ(dg1− dg2)=−

∫
+∞

0
φ′(r)(G1(r)−G2(r)) dr ≤ ‖φ‖X‖G1−G2‖∞.

We conclude the proof by noticing that ‖G1−G2‖∞ is exactly the left-hand-side
of (2-1). �

For our purposes, we need the equivalence of D and W in the case in which
one of the two measures has bounded density. We note that in the general case the
equivalence is false, as can be easily checked by considering two Dirac measures
δx1 and δx2 ; W vanishes when |x1− x2| → 0, while D equals one whenever x1 6=

x2. Nevertheless, using the covering principles as in [4; 5; 6], for measures on a
compact set, it can be proved the continuity of the Wasserstein distance W with
respect to the discrepancy distance D . For the sake of completeness, we give a
proof in the appendix, although this property is not really necessary for our results.

In the definition of D , we will choose functions φ ∈ Cb([0,+∞),R), with first
derivative continuous up to a finite number of jumps. With abuse of notation, we
keep calling this set of functions X . Let us expose some technical properties.

Given φ ∈ X , we define some useful regularizations, φ±, φε and ψε, with ε > 0,
as follows. Denoting by φ̃ the function

φ̃(r) :=
∫ r

0
|φ′(s)| ds,

we define

φ±(r) :=

{
1
2(φ̃(r)±φ(r)) if r ≥ 0,

±
1
2φ(0) if r < 0,

and

φε(r) := φ+(r + ε)−φ−(r − ε). (2-2)

Finally, fixing a regular mollifier η supported in (0, 1), we define

ψε(r) :=
∫ ε

0
ηε(s)φ+(r + s) ds−

∫ ε

0
ηε(s)φ−(r − s) ds. (2-3)

where ηε(s) := ε−1η(s/ε).
We summarize the properties of these regularizations in the following lemma,

where we indicate with c any constant which does not depends on φ and ε.
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Lemma 2.3. (i) φ± are not decreasing. Moreover,∫
+∞

0
(φ±)′(r) dr ≤ ‖φ‖X (2-4)

and φ(r)= φ+(r)−φ−(r) for r ≥ 0.

(ii) φε ∈ X , φ(r)≤ φε(r) and∫
+∞

0
(φε(r)−φ(r)) dr ≤ 2ε‖φ‖X . (2-5)

(iii) ψε(r)≥ φ(r). Moreover, ψε is a C1 function in X ,

‖(ψε)
′
‖∞ ≤

2
ε
‖η‖∞‖φ‖X (2-6)

and ∫
+∞

0
|ψε(r)−φ(r)| dr ≤ cε‖φ‖X . (2-7)

Proof. The proof is elementary; we only describe how to get the bounds in (ii) and
(iii). Since φ = φ+−φ−, we rewrite the left-hand side of (2-5) as∫
+∞

0
(φ+(r + ε)−φ+(r))+ (φ−(r)−φ−(r − ε)) dr

=

∫
+∞

0

(∫ ε

0
((φ+)′(r + ξ)+ (φ−)′(r − ξ)) dξ

)
dr ≤ 2ε‖φ‖X .

The estimate in (2-6) is immediate. For (2-7), we rewrite ψε(r)−φ(r) as∫ 1

0
η(s)(φ+(r + εs)−φ+(r)+φ−(r)−φ−(r − εs)) ds

= ε

∫ 1

0
sη(s)

(∫ 1

0
(φ+)′(r + εsξ) dξ +

∫ 1

0
(φ−)′(r − εsξ) dξ

)
ds.

We conclude by integrating in r , switching the order of integration and using (2-4).
�

Now we can prove the following proposition.

Proposition 2.4. Let ρ and ν be two probability measures on Rd with support in a
ball BR and such that ρ ∈ L∞(Rd). Then

D(ν, ρ)≤ C(‖ρ‖∞, R)
√

W (ν, ρ),

where C is a constant that depends on the dimension d , as well as on ‖ρ‖∞ and
on R.
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Proof. Let φ be in X and consider ψε as in (2-3). Fixing x ∈ Rd , let 8 and 9ε be
the functions

8(y) := φ(|x − y|) and 9ε(y) := ψε(|x − y|).

Then, from (iii) of Lemma 2.3,∫
8 dν−

∫
8 dρ ≤

∫
9ε dν−

∫
8 dρ =

∫
9ε d(ν− ρ)+

∫
(9ε −8) dρ.

From (2-6) of Lemma 2.3, the first term is bounded by (c/ε)‖φ‖XW (ν, ρ). Re-
garding the second term, denoting by σr the uniform measure on ∂Br (x), we have∫

(9ε −8) dρ ≤ ‖ρ‖∞

∫
+∞

0
dr(ψε(r)−φ(r))

∫
∂Br (x)

X {z ∈ BR}σ(dz)

≤ cεRd−1
‖φ‖X‖ρ‖∞, (2-8)

where in the last inequality we have used (2-7). Optimizing on ε and passing to
the supremum in φ, we get the proof. �

Note that if µN is an empirical measure and ν a probability measure that does
not give mass to the atoms of µN , D(µN , ρ) ≥ 1/N . With this constraint, the
discrepancy between two empirical measures is “small” if the measures are close
in the sense specified in the following proposition.

Proposition 2.5. Let

µN
=

1
N

N∑
i=1

δxi and νN
=

1
N

N∑
i=1

δyi

be two empirical measures on Rd , and take δ > 0 such that |xi − yi | ≤ δ for all
i = 1, . . . , N. Then for any probability measure ρ ∈ L∞(Rd) supported on a ball
BR ,

D(µN , νN )≤ cRd−1δ‖ρ‖∞+ cD(µN , ρ).

Proof. Given φ ∈ X with ‖φ‖X ≤ 1, we construct φδ as in (2-2) and, fixing x ∈ Rd ,
we consider 8(y) := φ(|x − y|) and 8δ(y) := φδ(|x − y|).

Since |x − xi | − δ ≤ |x − yi | ≤ |x − xi | + δ, we have that

8(yi )= φ
+(|x − yi |)−φ

−(|x − yi |)≤8δ(xi ).

Then∫
8 d(νN

−µN )≤

∫
(8δ−8) dµN

=

∫
(8δ−8) d(µN

−ρ)+

∫
(8δ−8) dρ.

Since (φδ − φ) ∈ X , the first term is bounded by cD(µN , ρ). Using (2-5) and
reasoning as in (2-8) we estimate the second term with cδRd−1

‖ρ‖∞. �
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3. Agent dynamics

One of the difficulties in handling (1-8) is that the dynamic is not continuous with
respect to the initial datum. For instance, consider three agents {X i }

3
i=1 on a line,

such that
X1(0)=−1, X2(0)= ε, X3(0)= 1,
V1(0)=−1, V2(0)= 0, V3(0)= 1,

(3-1)

with ε ∈ (−1, 1) \ {0}. Then pi, j = M(X i , |X i − X j |) takes the values 1/3, 2/3, 1.
Suppose for simplicity that K (2/3)= 3 and K (1)= 0. Then the equations for V1

and V3 become {
V̇1(t)= V2(t)− V1(t),
V̇3(t)= V2(t)− V3(t),

while

V̇2(t)=
{

V3(t)− V2(t) if ε ∈ (0, 1),
V1(t)− V2(t) if ε ∈ (−1, 0).

It follows that 
V1(t)=−(1+ e−2t)/2,
V2(t)=−(1− e−2t)/2,
V3(t)= (−1+ 4e−t

− e−2t)/2,

if ε ∈ (−1, 0), while 
V1(t)=−(−1+ 4e−t

− e−2t)/2,
V2(t)= (1− e−2t)/2,
V3(t)= (1+ e−2t)/2,

if ε ∈ (0, 1), so that {X i (t), Vi (t)}3i=1 is discontinuous at ε = 0. Note that the
discontinuity of the trajectories in the phase space is easily translated in the weak
discontinuity of the empirical measure at time t , with respect to the initial measure.

This discontinuity reflects the fact that, for data as in (3-1) with ε = 0, there
is not a unique way to define the dynamics. Nevertheless, we can prove that the
system (1-8) is well-posed for almost all initial data. To do so, let us define some
subsets of the phase space

{(X, V ) := (x1, . . . , xN , v1, . . . , vN ) ∈ RNd
×RNd

},

where d ≥ 1 is the dimension of the configuration space of the agents.

Definitions. • R is the set of “the regular points”, i.e., the set of points (X, V )
such that for each triad of different indices it holds that |xi − xk | 6= |x j − xk |.
• S is the “isorank” manifold, i.e., the set of points (X, V ) such that there exists

a triad of different indices i, j, k for which |xi − xk | = |x j − xk |, i.e., the agents i
and j have the same rank with respect to the agent k.
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• Sr is the set of the “regular points” of the isorank manifold, i.e., the subset of
points (X, V ) ∈ S such that if |xi − xk | = |x j − xk | then xi , x j , xk are different and
(vi − vk) · n̂ik 6= (v j − vk) · n̂ jk , where n̂ab := (xa − xb)/|xa − xb|.

We can define the dynamics locally in time, not only for initial data in R, but
also in Sr . Namely, if initially the agents i and j have the same rank with respect
to the agent k, we can redefine the force exerted on the agent k accordingly to the
velocities: if (vi − vk) · n̂ik > (v j − vk) · n̂ jk we evaluate the rank as if |xi − xk |>

|x j − xk | for t > 0 and as if |xi − xk | < |x j − xk | for t < 0. In other words, the
different speeds of change of the distances among the agents allow the dynamics
to leave S instantaneously.

We discuss the existence of the dynamics, so redefined.

Lemma 3.1. If (X, V ) ∈R∪Sr , there exists τ > 0 such that the system (1-8) has a
unique solution for t ∈ (−τ, τ ), with initial datum (X, V ). Moreover the solution
is locally Lipschitz in t and in (X, V ).

We omit the proof.
In R the solution is regular, so we can compute the determinant of the Jacobian

of the flow J (t) := J (X, V, t). It satisfies the equation

d
dt

J (t)=−
(

d
N

∑
i, j :i 6= j

pi j

)
J (t)=−d N γN J (t), (3-2)

where

γN :=
1
N

N∑
n=2

K (n/N ).

Thus, volumes of the phase space are shrunk in time at a constant rate, therefore
their measure cannot vanish in finite time. This implies the following fact, of which
we omit the proof.

Lemma 3.2. The subset of initial data (X, V ) ∈ R such that the trajectory, at a
first time in the future or in the past, intersects S \Sr has Lebesgue measure zero.
Namely, S \Sr has dimension 2Nd − 2.

This lemma guarantees that, except for a subset of Lebesgue measure zero, we
can prolong the dynamics with initial data in R also after a crossing in S. To define
the dynamics for all times, we need to control the number of crossings.

Lemma 3.3. The subset of initial data (X, V )∈R such that the trajectory intersects
Sr infinitely many times in finite time has Lebesgue measure zero.

Proof. Fix T > 0 and suppose (X, V ) ∈R such that the solution (X N (t), V N (t))=
(X1(t), . . . , X N (t), V1(t), . . . , VN (t)) with initial data (X, V ) intersects Sr a finite
number of times in [0, T − ε) and infinitely many times in [0, T ). The number
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of particles is finite, so we can assume that there exists a triad of indices such
that |X i − Xk | = |X j − Xk | infinitely many times. Since the velocities Vi are
bounded by a constant (as seen from simple considerations; see also Theorem 3.4),
it follows from this equation that |X i − Xk | and |X j − Xk | are C1 functions, with
time derivatives uniformly Lipschitz, if |X i − Xk | and |X j − Xk | remain far from 0.
Then as t→ T , either |X i − Xk |→ 0 or (Vi −Vk) · n̂ik and (V j −Vk) · n̂ jk converge
to the same limit. In both the cases, the trajectory reaches S at a point that is not
in Sr . We conclude the proof observing that the initial point with these properties
lives in a subset of dimension 2Nd − 1. �

From these lemmas and other few considerations, we obtain the next result.

Theorem 3.4. Except for a set of measure zero, given (X, V ) ∈ RNd
×RNd , there

exists a unique global solution

(X N (t, X, V ), V N (t, X, V )) ∈ C1(R+,R2d N )×C(R+,R2d N )

with initial datum (X, V ).
Moreover, given Rx > 0 and Rv > 0, we have that

|X i (t)| ≤ Rx + t Rv, |Vi (t)| ≤ Rv

for any i , if |xi | ≤ Rx and |vi | ≤ Rv. Therefore, Vi (t, X, V ) has Lipschitz constant
bounded by 2RvK (0).

Proof. The proof follows easily from Lemma 3.1, Lemma 3.2 and Lemma 3.3.
The a priori bound on the support follows from (3-2) and by noticing that

d
dt
|Vi (t)|2 =−2

∑
j 6=i

pi j (|Vi (t)|2− Vi (t) · V j (t))

is null or negative if |Vi |
2 is maximum in i . �

4. The mean-field equation in L∞

In this section, we show how to get an existence and uniqueness result for bounded
weak solutions of (1-4). We start by stating some elementary facts.

Lemma 4.1. Let ρ ∈ L∞(Rd) be a probability density. Then:

(i) Given r1, r2 > 0,

|M[ρ](x, r1)−M[ρ](x, r2)| ≤ c‖ρ‖∞|rd
1 − rd

2 |.

(ii) Given x1, x2 ∈ Rd and r > 0,

|M[ρ](x1, r)−M[ρ](x2, r)| ≤ c‖ρ‖∞rd−1
|x1− x2|.



434 DARIO BENEDETTO, EMANUELE CAGLIOTI AND STEFANO ROSSI

Proof. The proof of the first assertion is immediate. For the second, we use the
following splitting

X {|x1− y|< r}−X {|x2− y|< r}

= X {|x1− y|< r}X {|x2− y| ≥ r}−X {|x2− y|< r}X {|x1− y| ≥ r}

and we note that, if |x1− x2| ≥ r ,∫
|x1−y|<r

X {|x2− y| ≥ r} dy ≤ crd
≤ crd−1

|x1− x2|,

while, if |x1− x2|< r ,∫
|x1−y|<r

X {|x2− y| ≥ r} dy ≤
∫

X {r − |x1− x2|< |x1− y|< r} dy

= crd(1− (1− |x1− x2|/r)d)≤ cdrd−1
|x1− x2|. �

In the following, we denote by Br the closed ball of center 0 and radius r in
L∞(Rd

×Rd) and by Cw([0,+∞); L∞(Rd
×Rd)) the set of families of bounded

probability densities { ft }t≥0 which are weakly continuous in time in the sense of
measures.

Lemma 4.2. Let { ft }t≥0 be a family of probability densities for which there is
a continuous nondecreasing function r(t) such that { ft } ∈ Cw([0,+∞);Br(t)).
Suppose that

supp( ft)⊂ BRx (t)× BRv(t), (4-1)

where Rv(t) and Rx(t) are two continuous nondecreasing functions. Then, for any
initial datum (x, v) ∈ Rd

×Rd , there exists a unique global solution of (1-7).

Proof. From classical Cauchy–Lipschitz theory, we need only check that W [S ft , ft ]

is bounded on compact sets, locally Lipschitz and continuous in t .
Recalling (1-5), the boundedness on compact sets follows from

|W [S ft , ft ](x, v)| ≤ ‖K‖∞(Rv(t)+ |v|).

Since from (i) and (ii) of Lemma 4.1,

|M[S ft ](x1, |x1− y|)−M[S ft ](x2, |x2− y|)| ≤

c‖S ft‖∞(|x1| + |x2| + |y|)d−1
|x1− x2|,

we have that, if (x1, v1) and (x2, v2) belong to a compact subset of Rd
×Rd ,

|W [S ft , ft ](x1, v1)−W [S ft , ft ](x2, v2)| ≤ C(|x1− x2| + |v1− v2|),

where C depends on Rx , Rv and the diameter of the compact set.
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In order to prove that W [S ft , ft ](x, v) is continuous in t , we first observe that
W (S ft , S fs)≤W ( ft , fs) and that, from the Lipschitzianity of K and Propositions
2.1 and 2.4, K (M[S ft ](x, |x− y|)) is continuous in t . Since K (M[S ft ](x, |x− y|))
is Lipschitz in y, also∫

K (M[S ft ](x, |x − y|))(v−w)( ft(y, w)− fs(y, w)) dy dw

vanishes when W ( ft , fs)→ 0. �

Now we can prove the main theorem of this section.

Theorem 4.3. Let f0(x, v) ∈ L∞(Rd
× Rd) be a probability density such that

supp( f0) ⊂ BRx × BRv . Given T > 0, there exists a unique weak solution f ∈
Cw([0, T ]; L∞(Rd

×Rd)) of the topological Cucker–Smale equation. Moreover

supp( ft)⊂ BRx+t Rv × BRv . (4-2)

Proof. We first note that, if the solution exists, (4-2) follows from an argument
similar to the one used in the discrete case (see Theorem 3.4).

We now prove the existence. As in Lemma 4.2, consider a family of probability
densities {gt }t≥0 ∈ Cw([0, T ];BM), with M := ‖ f0‖∞edγ T and such that (4-1)
holds with Rx(t) = Rx + t Rv and Rv(t) = Rv. The push-forward of f0 along
the flow generated by gt , denoted by g̃t , is weakly continuous in t and uniformly
continuous in gt , with t ∈ [0, T ]. Moreover, the determinant of the Jacobian of the
flow J (t) := J (t, x, v) satisfies

d
dt

J (t)=−J (t)dγ.

So the push-forward g̃t is bounded by ‖ f0‖∞edγ t .
With a standard construction we can prove that, for T sufficiently small, the

map {gt } 7→ {g̃t } is a contraction in Cw([0, T ];BM), with the distance defined by
the supremum on time of the Wasserstein distance; in this way we prove local
existence and uniqueness. Using the a priori estimate on the supremum and on the
support, we get the global result. �

5. The mean-field limit

In this section we prove the main result regarding the mean-field limit for the
topological Cucker–Smale equation. In the sequel, ft is the fixed global solution
of (1-7) as in Theorem 4.3, with initial datum f0, and µN

t is the global solution of
(1-8) in the sense of Theorem 3.4, with initial datum

µN
0 =

1
N

N∑
i=0

δxi δvi .
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We assume that f0 and µN
0 are supported in BRx × BRv . Fixing T , we indicate by

C(T ) any constant that depends only on T , Rx , Rv and ‖ f0‖∞.
In order to get the result, we compare the N -agent dynamics with the “interme-

diate” dynamics given by{
Ẋ f

i (t)= V f
i (t),

V̇ f
i (t)=W [S ft , ν

N
t ](X

f
i , V f

i ),
(5-1)

where

νN
t :=

1
N

N∑
k=1

δX f
k (t)

δV f
k (t)

is the empirical measure. The initial datum is νN
0 = µ

N
0 , i.e.,

{(X f
i (0), V f

i (0))}
N
i=1 = {(xi , vi )}

N
i=1.

Proposition 5.1. Given T > 0, it holds that

(i) For t ∈ [0, T ],
W ( ft , ν

N
t )≤ C(T )W ( f0, µ

N
0 ). (5-2)

(ii) For t ∈ [0, T ], the distance

δ(t) := max
i=1,...,N

(|X f
i (t)− X N

i (t)| + |V
f

i (t)− V N
i (t)|)

satisfies

δ(t)≤ C(T )
√

W ( f0, µ
N
0 ). (5-3)

Proof. Since ft is bounded, K (M[S ft ](x, |x − y|)) is locally Lipschitz in x and y
(see (i) and (ii) of Lemma 4.1), and then W [S ft , ν](x, v) is weakly continuous in
ν, in the sense that

sup
x,v
|W [S f , ν1](x, v)−W [S f , ν2](x, v)| ≤ C(T )W (ν1, ν2).

It is straightforward to prove that the solution νt of the system
Ẋ t = Vt ,

V̇t =W [S ft , νt ](X t , Vt),

νt = push-forward of ν0 along the flow (X t , Vt),

is continuous in W with respect to the initial datum ν0. Taking ν0= f0 and ν0=µ
N
0 ,

we get the proof of (i).
In order to estimate δ(t), we need to evaluate, for 0≤ s ≤ t and for i = 1, . . . , N ,

the difference |V̇ f
i (s)− V̇ N

i (s)| given by

|W [S fs, ν
N
s ](X

f
i , V f

i )−W [SµN
s , µ

N
s ](X

N
i , V N

i )|.
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We estimate this quantity with the sum of three terms:

(a)|W [S fs, ν
N
s ](X

f
i , V f

i )−W [S fs, ν
N
s ](X

N
i , V N

i )|,

(b)|W [S fs, ν
N
s ](X

N
i , V N

i )−W [S fs, µ
N
s ](X

N
i , V N

i )|,

(c)|W [S fs, µ
N
s ](X

N
i , V N

i )−W [SµN
s , µ

N
s ](X

N
i , V N

i )|.

Since K (M[S fs](x, |x − y|)) is Lipschitz in x , from the definition of W it is easy
to prove that (a) is bounded by

(c Lip(K )‖S fs‖∞Rd−1
x (s)Rv + c‖K‖∞)δ(s),

and that (b) is estimated by

c Lip(K )‖S fs‖∞Rd−1
x (s)Rvδ(s).

Note that ‖S fs‖∞ ≤ cRd
v ‖ fs‖∞. From Proposition 2.1, we have that (c) is bounded

by
c Lip(K )RvD(S fs, SµN

s ).

Since
D(S fs, SµN

s )≤ D(S fs, SνN
s )+D(SνN

s , SµN
s ),

by Proposition 2.5 with ρ = S fs , µN
= SνN

s and νN
= SµN

s , we get

D(SνN
s , SµN

s )≤ cδ(s)+ cD(S fs, SνN
s ).

Writing δ(t) in terms of the time integral of δ(s) and the difference of the interaction
terms, and using the Gronwall lemma, we readily get the estimate

δ(t)≤ C(T )
∫ t

0
D(S fs, SνN

s ) ds,

valid for 0≤ t ≤ T . We conclude the proof by using Proposition 2.4, (5-2) and the
fact that W (S fs, SνN

s )≤W ( fs, ν
N
s ). �

Theorem 5.2. Fix.T > 0. Let ft be a solution of (1-7) as in Theorem 4.3 with
initial datum f0 and let µN

t be a solution of (1-8) in the sense of Theorem 3.4 with
initial datum µN

0 . Then for 0≤ t ≤ T ,

W ( ft , µ
N
t )≤ C(T )max

{
W ( f0, µ

N
0 ),

√
W ( f0, µ

N
0 )
}
.

Proof. By the triangle inequality,

W ( ft , µ
N
t )≤W ( ft , ν

N
t )+W (νN

t , µ
N
t ).

From (5-2), using (5-3) and the fact that W (νN
t , µ

N
t ) ≤ δ(t), we have proved the

theorem. �
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Appendix: Continuity of W with respect to D

We now prove the continuity of the Wasserstein distance W with respect to the
discrepancy distance D for compactly supported measures.

Consider two probability measures µ and ν, both with support in the ball BR of
Rd . Fix ε > 0 and consider a Lipschitz test function φ; it is sufficient to consider
φ with support of diameter less than cR, so that ‖φ‖∞ ≤ cR. Given such φ, take
δ1 > 0 such that Lip(φ)δ1 < ε.

By the Besicovitch covering principle (see [4; 5; 6]), there exist Nε disjoint
closed balls {Bi }

Nε
i=1 of radius at most δ1 such that

µ
( Nε⋃

i=1
Bi

)
≥ 1− ε.

We estimate∫
φ d(µ− ν)=

∫
Rd\

⋃Bi

φ d(µ− ν)+
∫
⋃Bi

φ d(µ− ν)=: A+ B.

We have

A ≤ ‖φ‖∞
(
µ
(

Rd
\

Nε⋃
i=1

Bi

)
+ ν

(
Rd
\

Nε⋃
i=1

Bi

))
≤ ‖φ‖∞(2ε+ NεD(µ, ν)),

while

B ≤
Nε∑

i=1

∫
Bi

(supφ− infφ) dν+
Nε∑

i=1

∫
Bi

supφ d(µ− ν)

≤ 2 Lip(φ)δ1+ Nε‖φ‖∞D(µ, ν).

Hence we obtain ∫
φ d(µ− ν)≤ cRε+ cRNεD(µ, ν).

Taking D(µ, ν) < δ2 such that Nεδ2 < ε, we have proved the result.
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