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CHARACTERIZATION AND COMPUTATION OF CONTROL INVARIANT SETS WITHIN TARGET
REGIONS FOR LINEAR IMPULSIVE CONTROL SYSTEMS

IGNACIO SANCHEZT, CHRISTOPHE LOUEMBET?¥, MARCELO ACTIS* AND ALEJANDRO H. GONZALEZ'f

ABSTRACT. Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from
disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for
certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful,
and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also,
an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse
times remain within a predefined set, is required. An approach to such tasks — based on the Markov-Lukasz theorem —
is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has
application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the
maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution,
an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the
so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with
application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily
stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that
the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic
orbits completely contained within the target zone.

1. INTRODUCTION

Impulsive systems are a subclass of dynamical systems (indeed, a hybrid dynamical system) in which resetting
or impulsive events produce a discontinuity of the first kind in the state trajectories. This kind of systems has been
extensively studied in the literature, and results concerning the existence, uniqueness and stability of solutions have
been achieved (|8} 144} 23]).

Particularly, when the impulsive nature of the control actions (inputs) is the one that produces the discontinuity,
we have an impulsively controlled system. Many control problems fall in the scope of impulsively controlled
systems, as it is the case of drug scheduling in several disease treatments (by taking pills [40l 141} 37134, [277] or by
applying injections [, [20]]), or that of aircraft guidance [4} |5} [32]]. The objective in this kind of control problem is
to maintain the closed-loop system in a target region (defined by the problem itself) where the operation is safe.
According to the meaning of the state variables, these regions does not include the origin as an interior point, since
the origin uses to be a state of emptiness or rest, which is not safe. So, there is no formal equilibrium in the target
region, and the control objectives are redefined to steer the closed-loop system as close as possible to the target
region.

To accomplish the control objective properly —i.e., to ensure that the state will reach and remain inside the
target region — it is necessary to formally define both, an extended equilibrium and extended controlled invariant
set. Following the ideas in [42] and [38] a two-set definition can be used, in which an equilibrium or controlled
invariant set is such, only with respect to a larger set that contains the state free responses between the impulses.
Although potentially conservative (since the outer set can be as large as desired) these definitions show to be useful
to define equilibrium and controlled invariant sets with respect to target regions, and provides formal tools to set
the control problem, mainly when the controller is a model-based one [42, |38]. In addition, based on this two-set
generalization, formal notions of impulsive closed-loop convergence and stability |36 [13]] can be applied.

In this work, we discuss the way to formally compute exact admissible sets for impulsively controlled lin-
ear systems, with respect to a given target set. In the seminal work [18], the study of admissible sets for linear
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continuous-time system is approached, where the initial state of an unforced linear system is called output admis-
sible with respect to a constraint set Y if the resulting output function satisfies the pointwise-in-time condition
y(t) € Y,t > 0. In this work, we will refer to admissible sets for constrained state trajectories during the inter-
val between impulses. For sake of shortness, we will omit to denote with admissible certain sets as equilibrium,
feasible and invariant sets, where their admissibility will be evident from context. This notion, already introduced
into the analysis of linear impulsive systems in [42]] and mentioned in [38]], was not exactly characterized yet: only
approximating techniques are proposed. In such context, a first contribution of this paper is to solve - by means of
a tractable methodology - the particular problem of characterizing the set of states for which the corresponding free
trajectories remain in a given target set (this set denoted as admissible set). The free propagation of the states is
expressed as univariate polynomial thanks to a relevant change of variable, and then the set of trajectories included
in the target set is characterized through the Linear Matrix Inequalities (LMI) conditions on the initial states. These
conditions are based on the Markov-Lukasz theorem (see [35]) and they have been inspired by the work [24].

A procedure is then proposed to compute the maximal invariant set with respect to the admissible set. The
resulting set - defined as impulsive invariant set - satisfies the constraints at all times, meaning property that the
system state remains within the set at the impulsive times (the times at which the impulsive inputs enter the system)
and does not leave the target set at any time.

A novel set-based MPC algorithm is proposed, that exploits the tractability and utility of this description, and
follows the procedure exposed in [3l 19} [15] extended through the explicit use of the new characterizations of
invariant sets. This way, a closed-loop stable controller able to steer the system to the target region, and to maintain
it in such a set indefinitely was obtained, with guaranteed feasibility at all times.

The main theoretical contribution of this work is the development of a proof of necessary conditions for the
validity of a target zone for a zone tracking control with impulsive control inputs.

The effectiveness of the proposed controller formulation is assessed through simulation.

1.1. Notation. Let X C R™ and Y C R™. A correspondence ¢ : X = Y defines for each z € X a set ¢(z) C Y.
A correspondence (also denoted as set-valued function) is a generalization of the concept of function, f, which
for each 2 € X defines a unique f(z) € Y. The euclidean distance between two points z,y € R" is denoted by
|z —y|| :== [(x — y)'(z — y)]*/?. The distance from z € R" to X C R™ is given by Distx(z) := inf,ex||z — y].
The Minkowski sum X @ Y is defined by X ® Y := {z +y : € X,y € Y}. The open ball with center in
x € X and radius € > 0 is given by B.(x) := {y € X : ||l — y|| < e}. The e-neighborhood of set X is given
by B.(X) := {X @ B.(0)}. Given = € X, we say that x is an interior point of X if it there exists € > 0 such that
the open ball B, (x) C X. The interior of X is the set of all interior points and it is denoted by int X. The infinite
sequence of elements, {x }7° ,, will be simply denoted as {z}.

2. PRELIMINARIES

First, consider the following impulsively controlled linear system (ICSys)
2.1 z(t) = Ax(t), t # 1,
(k) = (7, )+ Bu(mp—1), k €N,
where x € X C R” represents the state, A € R™*" is the transition matrix, v € U C R™ is the input, 7, = kT,
for a time period 7' > 0 is the jump or impulse time, and 7, denotes the time just before 7, (i.e., (7, ) =
lims_,o+ 2(7% — §)). The state set X is assumed to be a closed polyhedron, the input set U is assumed to be a
compact polyhedron, and both are assumed to contain the origin in their nonempty interior.
For any ¢ € [1, Tk+1), k& € N, the solution ofis given by z(t) = e*'a(r), and z(p11) = 2(7, ) +
Bu(ty). Given that z(7, ;) = eATx (1), then, we can write
(2.2) z(t) = eMa(m), t € [Th Tha),
(the1) = e Ta(m) + Bu(m),
which describe the free response and the jump produced by the input, respectively.

In order to properly characterize the equilibrium and invariant sets in the next sections, the following definitions
concerning the uncontrolled or free responses is made.

Definition 1 (Admissible set). Consider the ICSys system @2.) and a polytopic non-empty set Y C X. The
admissible set of Y is given by

Ya:={zeY: etreY,te0,T]}

Set Y 4 is the set of initial states for which the free responses - that are independent of u - remain in Y for at
least an interval of length 7. As in [42], this set can be described by the intersection of an uncountable set of
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constraints as follows:

(2.3) Y4 = ﬂ e ATY.
T€[0,T)

Note that for each 7 € [0,7) the set e"47Y is polytopic, since e~47 is a linear map, so Y 4 is given by the

intersection of (an uncountable number of) polytopes. As a result, set Y 4 is closed and convex and can be char-
acterized and computed by following the ideas presented in [35] 25 |6] concerning spectrahedron representation.
The spectrahedron representation of admissible sets is one of the main contribution of this work, that allows us to
compute equilibrium and invariant sets for system (2.1)), as detailed next in Subsection[3.1]

2.1. Sampling the ICS. By sampling the ICSys (2.1) at times 7, k € N, the Discretized ICSsys (DICSys) —i.e.,
a discrete-time system associated to the I[CSys— is obtainedE]

2.4) 2(Tpa1) = Adx(rk) + Bdu(Tk),

with A? = e4T and B¢ = B. The idea is to use this simplified system to infer properties of the ICSys. Particularly,
easy computations of controlled invariant sets for the ICSys will be obtained based on controlled invariant sets for
DICSys. To this end, and for the sake of clarity, the following definitions —concerning classical equilibria and
controlled invariant sets for discrete-time systems— are recalled.

Assumption 1. The pair (A%, B%) is controllable and the state is measured at each sampling time.

Definition 2 (Controlled equilibrium set (CES)). Consider the DICSys system 2.4). A nonempty convex set X¢ C
X is a controlled equilibrium set if for every x, € X exists us € U such that x4 = A%z, + Bus,.

Definition 3 (Controlled invariant set (CIS) [10]). Consider the DICSys system 2.4). A nonempty convex set
X% X s a controlled invariant set if for every x € X2 exists u € U such that A%x + B%u € X2 . A CIS with

mv mv mv*

nonempty interior is denoted a proper CIS.

Clearly, every CES is a CIS (although exceptionally are a proper CIS, since they use to have an empty inte-
rior). However, the fact that any CIS contains a CES is not trivial. In [17] (Theorem 3.3) a proof is given for
the continuous-time case, based on the theorem of Kakutani [28] (a generalization of the Brouwer’s fixed-point
theorem). The next theorem provides a similar result for linear discrete-time systems with polytopic constraints,
directly based on the Brouwer’s fixed-point theorem (Theorem f]in Appendix [7).

Theorem 1. Consider the DICSys (2.4). Then, every compact and convex CIS X¢  C X contains a CES X¢ (this
set may be a singleton X? = {x,}).

Proof. We present here a new proof of Theorem [I] (different from the one given in [17]) that is directly based on
the Brower fixed point. Consider a compact and convex CIS X¢  and the autonomous (or closed-loop) system
vt = f.(z), where f,(z) :== A%z + Bek(z), for each z € Xj,,, and x(x) is defined by

(2.5) k(z) = argmin V(z,u),
uweU (x)

being U (z) := {u € U: A%z + Bl e X

a real convex function on U, for each = € X¢  (for instance, V (z, u) := u?).

mnv

In the optimization problem ([2.3)), w is the optimization/decision variable, z: the optimization parameter and
U(z) is a correspondence (U : X = U). By the definition of CIS, the correspondence /() is non-empty for

mv
each x € X¢ | and U(z) is convex because X¢  is convex and DICSys (2.4) is linear. Furthermore, U(z) is

mv
compact because both, X¢ and U are compact and the DICSys (24) is linear.

To show that U(x) is continuous on X¢, | it is necessary to show that it is both upper and lower semicontinuous
(according to Definitions [7]and 8] in Appendix [8), which is proved in Lemmas ] and [6} respectively, in the same
Appendix [§]

Summarizing, we have that V' (z,u) is convex (and so, strictly cuasi-convex) and continuous on U D U(z),
while 2/(z) is non-empty, convex, compact for each z € X¢ . and continuous on X{ . Then, by Theorem@ in

mnv? nv'*

Appendix [8} it follows that () is a continuous function on X¢ , which implies that f, () is also a continuous

mv?>

function. Finally, it is easy to see that f,, maps the compact and convex CIS X¢ into itself and so, by the Brouwer’s
fixed point theorem (TheoremE], in Appendix , there is a state z, € X _ such that frx(xs) = xs. This means that

r, = Az, + Be(z,), i.e., for the fixed point z; there exists an us € U, u, := (), such that z is a controlled
equilibrium point for DICSys (2.4), which conclude the proof. O

} the set of all u’s that keep a particular x € X¢  in X

mv mv?

and V(z, u)

d

mv

Remark 1. Note that the compactness and convexity of X¢, —are crucial in Theorem |l It is quite easy to find

counterexamples otherwise (see [10l, chapter 4, exercise 3).

INote that this is the sampling for an impulsively controlled system, which is different from sampled-data formulations, where usually a
zero order hold (ZOH) is assumed for the inputs.
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2.2. Controlled equilibrium and invariant sets for ICSys. In the context of ICSys, the equilibrium and its gen-
eralizations needs to be defined in a quite general form in contrast to typical continuous or discrete-time systems.
Indeed, given that there are periods of uncontrolled state evolution, the following definitions are necessary:

Definition 4 (Impulsively controlled equilibrium set (ICES) [38]]). Consider the ICSys system (2.1) and a convex
set Y C X. A nonempty convex set Yy C Y is an impulsive controlled equilibrium set if for every x5 € Y, it
follows that: (i) {eAtx, : t € [0,T]} C Y and (ii) it there exists us € U such that e*"x, + Bus = x5 Every
single state x5 in Y5 is denoted as impulsive equilibrium state w.r.t Y.

Remark 2. Note that in general, the only formal controlled equilibrium pair (xs,us) of ICSys @.I) — i.e., those
that requires that both the jumps and the free response remains in a fixed state — is the origin, i.e.,(zs,us) = (0,0)
[44]], since this is the unique no-jump scenario. This fact critically shortens the application scope of impulsive
control systems representations, since the origin (meaning rest or emptiness) is not included into the target sets
(zones) of interest [42},138]].

Definition 5 (Impulsive controlled invariant set (ICIS) [42]). Consider the ICSys system @2.1) and a convex set
Y C X. A nonempty convex set Yin, C Y is an impulsive controlled invariant set if for every x € Yin, exists
u € U such that (i) {ex : t € [0,T)} C Y and (ii) e*Tz + Bu € Yi,. An ICIS with nonempty interior is
denoted a proper ICIS.

Note that neither Y, nor Yj,, are unique for a given Y. Clearly, for a given Y, an ICES is an ICIS (although
usually it is not a proper ICIS, i.e, it has an empty interior). Furthermore, ICES and ICIS for ICISys (2.1)) are also
CES and CIS for the DICSys (Z3) (i.e., eAT (z + Bu) = A% + B%u), and CES and CIS for the DICSys (2.4) are
ICES and ICIS for ICISys if Y = R". Finally, note also that an ICIS, Yj,, can be seen as a CIS contained in
Y 4 (this subtle fact will be used next to characterize and compute ICIS).

A question that naturally arises at this point is if Theorem [I]can be extended to the case of ICISys (2.1).

Theorem 2. Consider the ICSys @]) and a convex set Y C X. Then, every compact and convex ICIS, Yy,
contains an ICES, Y.

Proof. Note first that conditions (ii) in Definitions [4 and [5| mean that the ICES and ICIS w.r.t. Y, for the ICSys
(2.1), are also CES and CIS, respectively, for the corresponding DICSys . Then, Y;,, is also a CIS for the
DICSys and contains a CES, by Theorem Denote this CES as Yf. Given that any state x in Yf is also in Yy,
and Yi,, is an ICIS w.r.t. Y, then {e4tx,, t € [0, T]} € Y, which means that Y is a ICES w.r.t. Y. O

2.3. Control Problem. A control problem that frequently arises in applications of ICSys, known as Zone Track-
ing, can be stated as follows:

Control Problem. Given a compact convex set T C X, denoted as the target set, coming from the application
itself, the control objective is to feasibly steer the system state to T, and maintain it there indefinitely.

To feasibly steer the system to somewhere means fulfill the input and state constraints at all time instants, so
the control problem is closed related to the admissible set of T and X, T 4 and X 4, respectively. Furthermore, to
remain indefinitely in a given set, by means of feasible control actions, means invariance.

Therefore, according to this latter concept, the set T coming directly from the applications needs to be refined
as

Definition 6 (Valid target set). Consider the ICSys system 2.1). A target set T € X (coming from the control
problem definition) is a valid target set if it contains an impulsive controlled invariant set (ICIS)(i.e., it there exists
a non-empty Tiny ).

The latter definition makes sense for most of the applications. Indeed, if the conditions of Definition [6] are not
fulfilled, then the problem is not well formulated, since it is not possible to remain in T indefinitely. Note that, in
some cases, to ensure that a given T is a valid objective region it is necessary to reduce the time period 7" since
shorter time periods produce smaller drifts (see [38] for details).

A direct consequence of Definition [6]and Theorem [2] is stated next.

Corollary 1. Consider the ICSys 2.1) and a valid target set T as the one defined in Definition[6] Then, T contains
a nonempty ICES, say T .

Figure [I|shows an schematic plot of the control problem for ICSys, while Figure [2describes all the equilibrium
and invariant sets sets involved in it.
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2(r) o
\
X
(A) Control objective for impulsively controlled systems. (B) Inadmissible trajectory for impulsively controlled
The solid points represent the states at times 7%, k € N, systems. Although the states sampled at times 7%, k € N,
just after the jump, while the empty points represents the just after the jump, and at times 7, just before the jumps
states at times 7, just before the jumps. The solid black are feasible and converge to the target zone, the state tra-
lines represent the free response of the system, at each jectories (solid black lines) leave the target and the feasi-
interval ¢ € [1, Th+1), k € N. ble sets.

FIGURE 1. Illustration of the sets and trajectories for the zone tracking problem on impulsively
controlled systems.

FIGURE 2. Illustrative plot of the sets of interest in the problem description: X feasible set
(blue), X 4 the admissible set of X (yellow), T the valid target set (red), X and T the ICES in X
and T, respectively (the dash and solid orange lines), T 4 the admissible set of target set (cyan)
and the impulsive invariant set T;,,, (green).

3. CHARACTERIZATION OF THE CONTROLLED INVARIANT SETS FOR ICSYS

In this section it is shown how to characterize impulsive control invariant sets of ICSys (2.I), by means of
control invariant sets of its sampled version, DICSys (2.4). Next, a key theorem of the article is introduced:

Theorem 3. Consider the ICSys 2.1) and a valid target set T C X. If a CIS T{  of the DICSys (2.4) is a subset

mnv

of T 4, then it is also an ICIS of the ICSys @ We denote this set as Ty, for clarity.

Proof. Given that T, C T4 C T, then {eAz : t € [0,T]} € T for every = € Tiy,. Particularly, ez is in T.
Furthermore, since Tj,, is a CIS for the DICSys @, then it there exists some u € U such that z+ := eAT 2+ Bu,
is in Tj,y, which concludes the proof. O

Remark 3. Note that if a typical impulsive system representation - as the ones presented in (44, - is used to
describe the ICSys 2.1), almost all the previous definitions are still valid, but Theorem[3)is no longer true. Indeed,
if the free response is considered after the input jump, a CIS in T 4 is not necessarily an ICIS. This is so because in
that case it is not possible to characterize a single set {e** Ty, t € [0,T]} which is in T, i.e., CIS condition only
says that for each x € Ty, exists an v € U such that eAT (z + Bu) € Ty, but the inputs are in general different
for different states. On the other side, with representation (2.1)), the input effect occurs after the free response, and
the existence of an u € U that take the state back to T, is enough.

Remark 4. Note also that if a given set Yiny is a CIS but is not contained in T 4, then the set Yin, N T 4 is not
necessarily a CIS and, so, the hypothesis of Theorem 3| are no longer fulfilled (and Yy is not an ICIS). In other
words, for a set Yiyy, to be an ICIS, it should be computed from the beginning as a subset of T 4, which is a point
to be discussed in the next section.

FigureE] shows an schematic plot of a CIS T;,, C T 4, which is also an ICIS.
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FIGURE 3. Illustrative plot of . A CIS T¢  contained in T 4 is also an ICIS, T, (green).

mv

3.1. Admissible Set of T in spectrahedron representation. The idea now is to characterize the admissible set
of T, T 4, as the intersection of an uncountable number of polytopic sets (in the form of hyperplane constraints),
which is known as spectrahedron representation. Let T be a polytopic set described by

3.1 T={xeX: Hz<v},

with H € R®*™ and v € R**!, where / is a minimal number of hyperplanes that describe T. Next, the set T 4 will
be described in terms of linear matrix inequalities (LMI) as in [25]. For the sake of completeness, the analysis is
included in this work.

Assumption 2. (i) The eigenvalues of matrix A are rational numbers \,. € Q, with no imaginary part, so that
Ar = %“" where 1, € Z,p € N is the least common denominator of the eigenvalues and r = 1,--- ;n. The
eigenvalues are ranked in increasing order, such that 1, is the smallest (possibly negative) integer and n,, is the
largest (possibly positive) integer. (ii) The eigenvalues of A are all distinct.

For T described as in (3.1)), the admissible set is given by

3.2) Ta={zxeX:HO(t)z <v,Vte€[0,T]},

where ®(t) = e“? is the transition matrix. Addressing inequality (3.2) row by row, it comes
(3.3) hi » @ity <wi i=1,---,1
j=1

where h; is the i-th row of H, v; is the i-th component of v and ®; the j-th column of the transition matrix.
Summation of the columns of the transition matrices scaled by the corresponding state component is just the
column-wise expression of the matrix-by-vector multiplication. This can be interpreted as the contribution of each
state component to the dynamic evolution through the transition ®. The transition matrix can be expressed in its
modal form (see Appendix[9.3) as

(I)(t) _ qurez\rt’
r=1

where ), is the r-th eigenvalue of the dynamic matrix A, and ¢" is the r-th matrix obtained from the modal
decomposition of ®. This can be used to rewrite (3.3) as

(34) ZﬂixeArt S Vi, te [OvT]v i= ]-a T 7l,

r=1
with 3. = h;¢", since h; can be moved inside the sum in (3:3).
: . _1 _1 :
Proposing the change of variables w = e~ ", follows e’? = (e pt)_"T = w~ """, the interval on the new
. _T . .
variable is w € [W, 1] with W = e~ » and the inequalities (3.4) can be expressed as

S i@ = <0, we W], i =1, 1,
r=1

where v (z) = Bix are linear functions of the initial state z and 7). € Z, forr € 1,--- ,n.
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At this point, we are interested in expressing the constraint as a polynomial with positive powers of the variable
w. If i, —which is the largest exponent— is positive, we can multiply the previous expression by w~" and its
reciprocal such that all the resulting terms in the sum correspond to non-negative integer powers of w. We denote
this degree-shift as 7 := max{0, 7, }, and it comes that

1 LR ~ ~
Wi Zﬂ(m)w_m-&-n—ww" <0, we [W,1],i=1,---,1L
r=1

Noting that the factor u}, is non-negative in the interval w € [W, 1], the previous condition can be written as a

polynomial positivity condition as follows

Ul
(3.5) Pi(w) = Zﬂ'i’d(ax)wd >0, we W, 1],i=1,---,1,
d=0
where 7; 4(z) = f’yé(x) + ba,7v;, ford € {0,--- ,n, + 77}, J; ; denotes the Kronecker’s delta function (the case

of null eigenvalues is considered in a single formulation). The v; coefficient is then considered for d = 7.

The Lukasz-Markov theorem states that a polynomial P;(w) is non-negative if and only if it can be written as a
weighted sum of squares (see Appendix [9.2). Also, from [24] Lemma 2] it can be stated that inequality will
be satisfied (i.e. the polynomial P; is non-negative) if its vector of coefficients 7, 4(z) is the image of two positive

semi-definite matrices Y; ; and Y; o through linear operators A} ; and A} ,, as follows

(3.6) Pi(x) = A7 1(Yi1) + Ajo(Yiz), Yi,Yie = 0.

The operators A; ; and A, are defined in [35]. Then, the set T 4 is described by a semi-algebraic set where each
element  fulfills the condition (3.6):

(3.7 Ta={zeX: P(z)=A1(Y1)+A5(Y2), Y1,Y2 = O}

3.2. ICES computation. The ICES can be computed as the intersection of T 4 and the CES of the DICSys system
(2-4). The resulting ICES can be interpreted as a slice of the spectrahedric set T 4 defined by the LMI (3.7)) and the
CES defined by equality constraints.

3.3. CIS computation - Polytopic Inner Approximation. Tools for invariant set computation for generic convex
sets (e.g. spectrahedra) are not widely available. Nevertheless, there are efficient algorithms for computing invari-
ant sets with respect to polytopes. Note that a polytope with all its extreme points contained in a spectrahedron
can be considered as an inner approximation. Then, inner polytopic approximation of the semidefinite constraints
enable the use of classical algorithms for computation of invariant sets |

Let us denote T A a polytopic inner approximation of T 4. By means of classical algorithms (26} 29]), the
computation the maximal CIS for the DICSys contained in T A 1s an invariant set for the DICSys. Also, note
that this set is also an inner approximation to the maximal ICIS for the ICSys w.r.t. T, and the continuous
time trajectories lie within T at all times.

The set is typically computed recursively, where the successive controllable sets are obtained by the following
recursion

Sk = {x|A% + B € Sy, u € U},

and terminating once Sj1 = Sk.

In order to obtain the invariant set within the target zone T, the algorithm is initialized with Sy = T 4. For

the computation of the feasible set with respect to X, the algorithm is initialized with Sy = X:t, instead. The
resulting ICISs (which are also CISs, as previously explained) contained in X and T are denoted by @mv and

T 4™ respectively.
The next section takes advantage of it to design a model predictive controller.

4. ZONE MPC CONTROL

This section is devoted to introduce zone model predictive control (zMPC) formulations that make an explicit
use of the ICIS characterized in the previous sections. The control objective — as stated in the Control Problem
definition of Subsection — is to feasibly steer the impulsively controlled system to the target zone T
(which does not necessarily contains the origin) and keep it there indefinitely.

2The subject of polytopic approximation of convex bodies is well studied and is beyond the scope of this work, but the reader is referred to
[214 221 [12]) for a thorough review on the subject.
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Two different controllers are presented next: the first one is an MPC based on the use of artificial equilibrium
variables [14]], which ensures asymptotic stability. The second one is a set-based MPC [3, 30], which guarantees,
in addition, finite-time convergence.

4.1. Zone MPC based on Artificial Variables. The DICSys (2.4) is used for predictions and an invariant set T¢
contained in T 4 (prferably the largest) acts as target set. The cost functlon to be minimized on-line by the MPC is
given by

N—1
. In(z, 0, 5, us) l(r5) = 1T + fulry) = usl|5 + ydistr, ()
7=0
where 2 = x(7g) represents the current state, u = {u(79),u(71),...,u(rn_1)} is the predicted sequence of

inputs, and () and R are positive definite and semi-definite matrices, respectively.

Remark 5. The term distr , () is approximated by using an additional optimization variable x*, which is forced
to be in T 4, and by including the cost term ||x — x*||2. It is computed as the optimization problem given by
distr , (xs) = ming=ecr, ||xs — x*|. The problem in included into the MPC and is solved simultaneously by
modifying the cost function, which now reads

N-1
JN(1'7u7x57uS7 Z Hl’ T] .’L'5||§2+||U(TJ)—’U,SH§
“4.2) —0

+ ||5Us —2*|§°,
and constraint x* € T 4 is included in the optimization @3), introduced next.

The optimization problem to be solved at each time 7, is as follows:

(4.3a) uzrnlanz In(z,u, s, us, %)

et
(4.3b) () =z
(4.3¢) x(7j41) = Aa(r)) + Bhu(ry), jEO0,--- ,N—1
(4.3d) x(Tj41) € Xy, jeo,--- ,N-1
(4.3e) u(rj) € U, jeo,--- ,N—-1
(4.3f) Az + Blug = x4, 15 € X,
(4.3g) z(Tn) = xs,
(4.3h) z* € Ta,

In the latter optimization problem, x is the optimization parameter while u, xs, us, x* are the optimization
variables. Constraint forces the pair of additional variables (x4, us) to be contained in (an inner polytopic
approximation of) the lifted admissible invariant set of the sampled system. The terminal constraint [4.3g] forces
the last state on the control horizon to reach the equilibrium set, as this will be used to ensure stability. Constraint
[.3h]is included to approximate the distance function in the cost by a quadratic term (Remark [3)).

Once the MPC problem is solved at time 7, the optimal solution is given by the optimal input sequence

4.4) uo(x) = {uo(.%'ﬂ'o), uo(x,ﬁ), . ,uo(m,TN,l)},

and the optimal additional variables (20(x),u%(x)), while the optimal cost is denoted as J%(z) :=

Jn(z,u’ 29 u?). The control law, derived from the application of a receding horizon control policy (RHC),

is given by u(71,) = rmpc(2(1x)) = u®(x, 79), where u®(z, 79) is the first control action in u®(z).
The stabilizing properties of the controller are summarized in the following Property.

Property 1. The IES T is asymptotically stable for the closed-loop system ICS,
“5) {a‘c(t) = Ax(t), t # 7,

z(r;") = x(m,) + Brmpc(z(mk)), k €N,
with £(0) = xo , and a domain of attraction given by Cy(X) .

Sketch of Proof: The proof follows the steps of the so called MPC for tracking zone regions, [16,[39]]. The time
of the closed-loop is denoted by 7%, as in (7)), while the time for predictions, inside each optimization problem,
is denoted by ;.

The recursive feasibility of the sequence of optimization problems follows from the fact that, for every z €
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Cn(X), the terminal constraint forces the system z(7;41) = ¢(T)x(7;) + Bu(r;) to reach an invariant set
(for instance the equilibrium set, X,°), at the end of the control horizon. So, if the solution of the optimiza-
tion problem for x, at time 7, is given by u®(z), 2%(x) and u2(z), then a feasible solution for the state ™,
at time 741, can be computed as u(z") = {u’(x;7),u’(12),...,ul(Tn_2), Gs(2 ")}, Ts(2T) = z4(x) and
@s(xT) = ug(z). This feasible solution produces a feasible sequence of states, given by x(z+) = {2%(z, 1),
D(a,72), .. Ea(at), Fala)).
The attractivity of X, follows from the fact that, Jy (1) < J(z) — allz — x4l — Bllu — usl|2, where
Jn(zt) = Jy(a(zt), Zs(zt), @s(2T)) and u is the input injected to the system at time 7. Then, by optimality,
itis JY (1) < Jy(x), which means that J% (-) is a strictly decreasing positive function - i.e., J (z) < J (z)
- that only stops to decrease if © = x(7;) = =5 and u(7;) = us. Furthermore, the fact that z(7) — z, and
u(Tr) = us, as k — oo, implies that z(7y) tends also to T z (by the effect of the cost term distr_ (x5), as stated in
Lemmas 1, 2 and 3, in [39]]). This way, (7% ) tends to the intersections of X;° and T z, which represents the IES
X,.

Remark 6. Note that it is not necessary to express explicitly the intersection to formulate the MPC. In fact, such
intersection is implicit in the controller formulation, by means of the additional variables (xs, us) - that are forced
to be in X° -, and the cost term disty_ (xs) which steers the states after the discontinuities, x°(y,), to T z.

Remark 7. In [39]] a target set T, already accounting for the properties of X; w.rt. Z (i.e., accounting for
{®(t)xs, t € [0,T]} € Z), needs to be outer-approximated by a polyhedron, and then explicitly used in the
controller formulation. In contrast, the proposed MPC steers the system to the exact set X, without the need of
explicitly compute it.

Remark 8. Another benefits of the proposed MPC to be emphasized is that it steers the system to an equilib-
rium region that fulfill continuous-time constraints by only considering a sampled discrete-time system, as it is
2°(7j41) = ¢(T)a° (7)) + Bu(T;).

4.2. Set-based Zone MPC For Impulsive Systems. This formulation is based on the ones reported in [3} 30],
which provide better transient performance of the zone tracking scheme, as they tracks an invariant set within the
target zone rather than steady-state setpoints and, furthermore, thy may guarantee finite time convergence. The
objective is to minimize the distance between the predicted state and inputs trajectory with respect to the lifted set
Z of the states and their corresponding inputs, such that Z = (z,u)|z € Tiny, u € U(x). The cost function to be
minimized on-line by the set-based MPC is given by:

Ly =Y distz((x(r), u(ry)),
g*1
where the distance function is implemented as

distz(z,u) = min |z —a*| + ||lu—u"|.
(x*ur)ez

The proposed formulation is

(4.6a) ur)gulll*LN(x u,x*,u")
s.t.

(4.6b) x(1) =

(4.6¢) z(Tj41 ) Az(1;) + Blu(y), j€0,--- ,N—-1
(4.6d) x(7j+)€XA, je0,---,N—-1
(4.6e) u(ry) € jeo,--- ,N—-1
(4.6f) *(Tj)e’ﬂ‘mv, j€o0,--- ,N—-1
(4.62) u*(;) € 7€0,--- ,N—-1
(4.6h) Az (1 ) Bd u* (1) € Tiny, je0,--- N—-1
(4.61) x(tn) = 2% (7).

Denoting the resulting receding horizon feedback law by r3;pc, the following property is obtained.
Property 2. The IES T, is asymptotically stable for the closed-loop system ICS,
@ {a‘c(t) = Aa(t), t £,

a(ry) = x(m) + Brjpc(x(mh)), k €N,

with (0) = zq , and a domain of attraction given by Cn (Ti,y) .
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5. EXAMPLE

Consider the linear system 2.1 with dynamic and input matrices given by

-1 1.2 3
a=[a o3 o= )

The state is constrained to a box defined by 0.5 < z; < 4.5 and 0 < z9 < 4 and the input is bounded u €
[—0.2,0.2]. The input impulses occur at intervals of T = 1[s]. The target window is a box with 2.5 < z; < 4 and
1.5 < x9 < 3.5. The admissible polytopic approximation to the admissible spectrahedron and invariant set with
respect to the feasible state and target window are shown in figures faland ] respectively. The equilibrium set and
target window are shown in[dc| and makes evident that the target window is a valid target set. The eigenvalues are
—1 and .2. The autonomous system is unstable, diverging naturally from the target set. The controller is defined
with a horizon N = 5[s|, and the weighting matrices are chosen as @ = 1,R = 10,Q; = 1,Qo = 10. The
simulations are conducted using YALMIP [31]], MPT3 [26] and Mosek [2].

For illustrative purposes, the resulting optimal trajectories and values for auxiliary ingredients of the proposed
controller with the system starting at (0.55,0.55) are shown in Figure The state trajectory is shown to evolve
on a hybrid trajectory, continuously in the interval (¢, t1) and discrete jumps occur at 5. Also the state reaches
an equilibrium point of the discrete-time associated system given by (zs, us) shown in blue, which is a periodic
solution in continuous time. The distance function is implemented as indicated in (3)) and the resulting value of z*
is shown in green, which is a state contained in the admissible invariant set contained in the target window.

The resulting trajectories for the system starting at two different initial states (3.0,0.15) and (4.45,1.75) are
shown in Figure[5b] They correspond to 10 iterations of the optimal controller implementation. Both trajectories
converge to the target zone, more particularly to the admissible invariant set within the target. In fact, both reach
their respective admissible equilibrium solution, as expected. An important remark is that the the steady-state
solution for the discrete time systems -and the corresponding continuous time orbits- are not necessarily coincident,
although they fulfill the control problem objectives. It is also worth noting that the initial points are contained in,
and the sampled trajectory evolves within the invariant admissible set.

6. CONCLUSIONS

In this work, a exact characterization of admissible states for linear impulsively controlled systems is discussed,
with application to systems with different rational real eigenvalues. Using a description of the impulsive system
where the impulsive input is applied at the end of each sampling period, the admissible states can be determined
using a strategy based on the Lukasz-Markov theorem, exploiting and semidefinite descriptions and sum-of-squares
expressions of the system dynamics and constraints. This problem can be tractably solved using SDP and sparse
computational techniques. Conditions on the validity of a target zone are discussed, as well as a proof based on
the Brouwer fixed-points theorem is provided. This demonstrates the existence of equilibrium points within an
invariant set for linear systems, conforming a new approach to the proof using simple techniques. The strategies
already available in the literature relied on the more general Kakutani fixed-point theorem for correspondences.

It is shown that the inclusion of an equilibrium set in the target zone implies the validity of the target set and
follows that the system is able to be steered in such a way that its state remains inside the target zone. Classic
algorithms for the computation of an invariant set within a polytopic set is used, through inner approximation of
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(A) Optimal trajectory for initial state (0.55,0.55). The
red curves indicate the predicted continuous system evo-
lution, the dotted lines the jumps on the state due to the
impulsive inputs. The blue trajectory indicates the impul-
sive periodic trajectory and the green asterisk indicates
the optimal x* for this solution.

2.5

(B) Simulation of 10 iterations of the closed-loop sys-
tem, starting at two different initial states (3.0,0.15) and
(4.45,1.75). The system converges in both cases to the
zone, at different equilibrium states that correspond to
each initial point.

FIGURE 5. Single iteration and solution trajectories for the closed loop system. The target
window is shown in light gray and the admissible invariant set within the set is shown in darker
gray. Note that the continuous time trajectories fulfill the constraints at all times.

the constrained admissible set, which is defined as spectrahedron, a type of convex set described by semidefinite
inequalities. The resulting invariant set is used in a MPC formulation for zone tracking, and simulations are
included to illustrate the effectiveness of the proposal.

7. APPENDIX A. FIXED POINT THEOREM AND BERGE’S PRINCIPLE
First, the well known Brouwer fixed-point is established.

Theorem 4 (Fixed-point theorem, [11]). Given a compact and convex set Y C R"™ and a continuous function
f:Y =Y, then there is a point xo € Y such that f(x¢) = xo, that is, g is a fixed point of f.

This theorem states that for any continuous function f mapping a compact convex set to itself, there is at least
one fixed point. For instance, every compact and convex invariant set for the autonomous system z+ = A%z, say
Xiny C X, includes an equilibrium point, z, = A%z, (as stated in [10], page 113, for both, the continuous and
discrete-time cases.).

Next, the Berge’s principle is established:

Theorem 5 (Berge’s principle [9]). Consider a variable y € Y C R", a parameter p € P C R™ (with Y and P
compact and convex), and the correspondence I' : P =2 Y, defined by

(7.1) I(p) := argmin J(y,p), Vp € P,
y€2(p)
where ®(p) C Y, forall p € P (P is a correspondence assigning a set to each p, i.e., ® : P = Y) and
(i) J(y, p) is a continuous function on Y, for all p € P,
(ii) ®(p) is a compact-valued correspondence (i.e., compact for each p € P), and
(iii) ®(p) is continuous (i.e., both, upper and lower semicontinuous), on P.
Then T'(p) is nonempty-valued, compact-valued and upper semicontinuous in p € P.

Note that, if I'(p) is not only a correspondence, but also a function, the latter Theorem directly states that I'(p)
is a continuous function on P (i.e., a function that is upper semicontinuous is continuous). From the mathematical
programming theory, conditions under which I'(p) is a single-valued correspondence (i.e., a function) are the
conditions under which, for each p € P, there is a unique solution I'(p), i.e.:

(1) J(y, p) is a strictly quasi-convex function on Y, for all p € P, and

(ii) ®(p) is a nonempty-valued, convex-valued and compact-valued correspondence (i.e., nonempty, convex and
compact, respectively, for each p € P).

So, by adding the latter conditions to the ones in Theorem[5] we have the following variant of the Berge’s principle:
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Theorem 6 (Variant of Berge’s principle). Consider the correspondence I'(p), as the one defined in (T.1), with
(i) J(y, p) being a strictly quasi-convex, continuous function on' Y, for all p € P,

(ii) ®(p) being a nonempty-valued, convex-valued and compact-valued correspondence on P, and

(iii) ®(p) being continuous (i.e., both, upper and lower semicontinuous) on P.

Then T'(p) is a continuous function on P.

8. APPENDIX B. TECHNICAL LEMMAS
First, consider the definitions of upper and lower semicontinuity ([7]]):

Definition 7 (Upper semicontinuity). A correspondence ¢ : X =3 Y is upper semicontinuous at x if (and only if)
Sfor every e > 0 it there exists § > 0 such that: © € Bs(xo) = c(z) C Be(c(zo)).

Definition 8 (Lower semicontinuity). A correspondence c : X = Y is lower semicontinuous at x if (and only if)
Jor every € > 0 fulfilling Bc(c(x)) N c(xg) # O it there exists § > 0 such that for every x € Bs(xo) it follows that
c(x) N Be(e(x)) # 0.

A useful property relating upper continuity and the graph of a correspondence is stated next.

Lemma 1. Let ¢ : X = Y be a correspondence and let the image set (cx := Ugexc(x)) compact. Then, c is upper
semicontinuous on X if and only if its graph (Gr(c)) is closed.

Next Lemmas provide useful properties of the correspondence U(x) := {u € U : A%z + B € Xj,, } defined
in (2.3) (i.e., the set of all u’s that keep a particular = € X,y in Xjpy).

Lemma 2. Consider DICSys (2.4) and a convex, compact, proper CIS, Xi,, C X. Let Ux
the image set of U. Then, Uy, . is compact.

= Ugex,,, U(x) be

inv

nv

Proof. Compactness means closeness and boundness. Let us recall that a set is closed if every convergent sequence
in it converges to a point that is also in it.

Let {ux} be a convergent input sequence in Uy,  , and let  its limits (i.e., {ux} — w). Since uy € Uyx,,,, for
all k € I, it there exist states x, such that ux € U(zy). This means that {x}} C Xj,, and, given that Xj,, is
compact (by hypothesis), then it there exists a subsequence {x, } which converges to z, and z € Xj,,,. The fact
that ug, € U(xy,), for all ¢ € I, means that wy, := Axy, + Buy, is in Xi,y, for all ¢ € I,. Then, by continuity
of the linear system, { Az, + Buy,} — Az + Bu; that is, {wy, } converges to w := Az + Bu. But {wy,} is a
convergent sequence in the closed set X, then its limits w is also in X;,,. Then, since z € Xj,, and w € Xjy,
we have that u € U(z), which means that v € U, and so Uy, , is closed. Given that Ux, . C U, and U is
bounded (compact), then Uy, is bounded. Finally, Uy, . is both, closed and bounded, i.e., it is compact. O

Lemma 3. Consider DICSys 2.4) and a convex, compact, proper CIS, X C X. Let Gr(U) := {(z,u) : u €
U(x)} be the graph of U. Then, Gr(U) is closed and convex.

inv ?

inv

Proof. Let {(zk,ur)} be a convergent sequence in Gr(U), and let (z,w) its limit (i.e., {(zr,ur)} — (x,u)).
This implies that both, {z;} — « and {u;} — u. Furthermore, by the definition of the graph, u; € U(zy) for
all k € I, which implies that wy := Az + Buy is in X. As {wy} converges to w := Az + Bu, and every
convergent sequence in the closed set X converges to a point in X, then w € X. Since z € X and w € X, then
u € U(x), and (z,u) € Gr(U).

In order to prove that Gr(U) is convex, take two different points (x1,u1) and (22, us) both in Gr(U). Then
both Az; + Bu; and Axs + Bus belongs to Xj,,. Since Xy, is convex \(Ax; + Buy) + (1 — A)(Axzs + Bug)
also belongs to Xj,y, for any A € [0, 1], which means that A(Az1 + (1 — A)z2) + B(Aug + (1 — Nuz) € Xipy.
Again since X,y is convex Azy + (1 — Mg € Xjpy and so Aug + (1 — Nug € U(Az; + (1 — A)z2). Therefore
A1, u1) + (1 = N)(x2,u2) € Gr(U), for any A € [0, 1], and so Gr(U) is convex. O

Lemma 4 (Upper hemicontinuity of U(z)). Consider DICSys (2.4) and a compact and convex CIS X;,,, C X.
Then correspondence U(z) = {u € U : Az + B%u € Xy} is upper hemicontinuous.

Proof. The proof follows directly from Lemmas [T} 2] and O
In order to prove the lower hemicontinuity, let us first introduce some preliminary definition and result.

Definition 9 (Radially convex set). A set X is radially convex at a point x € X if there exists € > O such that for
every z € XN B(x, €), with z # x, there exists w € XN 0B(x, €) and X € (0,1) for which z = Az + (1 — X)w.

In words, a set X is radially convex at a point € X if there exists a ball such that every point of X that is inside
the ball, can be represented as a strict convex combination of the center of the ball and some point of X that lies on
the boundary of the ball. For example, in Figure [6| we present two examples, one that is radially convex at a point
2 and one that it is not.
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FIGURE 6. A radially convex set in = (left) and one that it is not (right)

Note that the radially convex set that was chosen in the figure as an example is a polytope. This is not casual, it
is in indeed the general case in the context of compact convex sets. We state this result in the following lemma.

Lemma 5 (Polytope characterization). Let X be a compact convex set of R", then the following assertion are
equivalent:

e X is polytope.

o X is radially convex at every x € X.

The proof of this result can be found in [33L Lemma 1]. This result is the key stone to prove the lower hemicon-
tinuity of U(z) and brings out the necessity of working with polytopes.

Lemma 6 (Lower hemicontinuity of U(x)). Consider DICSys 2.4) and a compact convex polytope CIS X, C X
Then correspondence U(z) := {u € U : Ax + B € Xy, } is lower hemicontinuous.

This result can also be found in [33, Theorem 2] in a more general context. For the sake of completeness and
clarity we decided to include it here.

Proof. Let x € X,y and {xx} C X,y a sequence such that {xy} — x, when k — oco. Let u € U(x). To show
that the correspondence U(z) is lower hemicontinuous we need to construct a sequence of controls uy € U(xy)
such that u;, — u, when k& — oo.

Since Xj,, is a compact convex polytope by Lemmathere exists € > 0 such that B(x, €) N X, is radially
convex at . Since {x} — x, there exists K > 0 such that 2, € B(x, €) N Xy, for every k > K. Then for every
k > K there exist wy, € Xiny NOB(z,€) and A\, € (0,1) for which z, = Az + (1 — Ag)wg. Since {wy} is
bounded (w;, € Xj,,) and xp — x, we have that A\, — 0, when k — oo.

For every k > K, fix a sequence of controls v, € U(wy). By Lemma[3| Gr(U) is convex, so Ay (z,u) + (1 —
)\k)(wkmk) S GT(U), i.e. (!L‘k, )\ku—l—(l—)\k)vk) S GT(U) Hence ui := )\ku—i—(l—)\k)vk S U(.’tk) Since {’Uk}
is bounded (v, € Uy, ) and A\, — 0, we have that v, — « when k — oo. Therefore U is lower hemicontinuous
at x. (]

9. APPENDIX C. POSITIVE POLYNOMIALS ON A FINITE INTERVAL

For sake of self containment, we recall here some concepts introduced in sections 3.3, of [35]. The following
sections discuss how the cone of cofficients of univariate polynomials can be represented as linear images of
the cone of positive semi-definite matrices. This enables solving the corresponding optimization problems using
semidefinite programming schemes. Let S = {u")(z),--- ,u("™ (x)},x € A, be an arbitrary system of linearly
independent functions. Definine the finite-dimensional functional subspace

F(S) ={q(x) = Zq(k)u(k)(:c),q = (q(l)7 ... ,q(m)) €R}.
k=1
The convex cone
N
K={p) =) ¢) q) cF(S),i=1- N}
i=1

can be described by the squared functional system
8% = {v;(z) = D (x)u(x),i,j = 1,--- ,m}.
Define v(z) the vector of components of a basis of S?. Define the vector coefficients \;; € R" as:

u® (z) -u(j)(x) = )\;f';-v(x)Nx eA
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A matrix valued operator can be defined as:
(A())7u® () - uD(2) = /\g;v(x),Vx €A
Note that
u(z)u(z)’ = A(v(z)), = € A
The adjoint linear operator A*(Y"), Y € R™*"™ is defined as
<Y, A(v) >=< A" (Y),v >

9.1. LMI representation of a cone.

Theorem 7. (i) The function p(x) = pTv(x),p € R", belongs to K if and only if there exists a positive
semidefinite (m x m)-matrix Y such that p = A*(Y):
9.1 K={peR":p=A"Y),Y = 0}.

(ii) Any p € K can be represented as a sum of at most m squares,
k
i=1

9.2. Representation of a non-negative polynomial as LMI. Consider a fixed interval [a,b] C R, the vector
function v(w) = (1, w,w?, - ,w") € R" w € [w, b]. Define the following convex cone:

K., =peR": pTy(w) > 0,Yw € [a,b)].

This cone describes the set of coefficient vectors such that the polynomial p v (w) is non-negative for all w € [a, b].
Now, let n = 2m and denote

up(w) = (1Lw,--- ,w™) € R™,

ug(w) = (1w, ,w™) € R™™L,
From Markov-Lukasz theorem, non negative polynomials can be represented as
9:2) p(w) = (g1 w1 (w)* + (w — a) (b — w)(g3 uz(w))?

with some ¢; € R™*1, g5 € R™. This configures a sum of weigthed squares.

9.3. Matrix exponential. Given a square n x n diagonalizable transition matrix A = VAV ~! with eigensolutions

Az, = Mg, (k= 1,2,--- ,n). The solution to the system & = Az can be written as
n
z(t) = Z cietity;
i=1

where ¢ = V~12(0).

9.4. Modal Coordinates. Considering a dynamic system wint n distinct eigenvalues, its free response can be
decomposed in modal form

(9.3) z(t) = eAz(0) = VAV 2(0),

where the i-th column of V' = [vy - - - v,,] is the i-th eigenvector and A is a diagonal matrix with the eigenvalues as
its entries. Noticing that for any matrix B and nonsingular matrix P

©.4) e e

or, equivalently,

eMt 0 0
Aot
9.5) A R e
0 0 et
Moreover, this can be expressed as
9.6) M= "Vepv et
i=1
or in a short form as
n
9.7 eM =" gie!
i=1

using ¢; = V6PV =1 and 6 is a n x n matrix filled with zeros except at the i, i-th element where it is 1.



CHARACTERIZATION AND COMPUTATION OF CONTROL INVARIANT SETS WITHIN TARGET REGIONS FOR LINEAR ICS 15

9.5. Spectral Representation of the Positive Definite Matrix. Suppose positive semidefinite (symmetric) matrix
A € R™*™, all eigenvalues \; are distinct, for linear independent eigenvectors a;, with normalized agaj = 0.
Decomposing A = Y " | a;a;); and applying the well-known Taylor expansion for el

9.8) et = Zaiagef‘
=1
9.9) O(t) = e =" a;afet
i=1

denoting " = a,a,. the matrix corresponding to the r-th eigenvector and a;; the 7j-th singleton, each singleton in
the transition matrix can be expressed as

n
(9.10) Oi(t) =Y ape!
r=1
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