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Abstract

Several mathematical models in SARS-CoV-2 have shown how target-cell model can

help to understand the spread of the virus in the host and how potential candidates of

antiviral treatments can help to control the virus. Concepts as equilibrium and stability

show to be crucial to qualitative determine the best alternatives to schedule drugs, ac-

cording to effectivity in inhibiting the virus infection and replication rates. Important

biological events such as rebounds of the infections (when antivirals are incorrectly in-

terrupted) can also be explained by means of a dynamic study of the target-cell model.

In this work a full characterization of the dynamical behavior of the target-cell models

under control actions is made and, based on this characterization, the optimal fixed-

dose antiviral schedule that produces the smallest amount of dead cells (without viral

load rebounds) is computed. Several simulation results - performed by considering real

patient data - show the potential benefits of both, the model characterization and the

control strategy.

Keywords: In-host acute infection model, Equilibrium sets characterization, Stability

analysis, Model predictive control.

1. Introduction

Mathematical models of with-in infections can be used to characterize pathogen dy-

namics, optimize drug delivery, uncover biological parameters (including pathogen and

infected cell half-lives), design clinical trials, among others. They have been employed

to study chronic (i.e.: HIV[1, 2, 3], hepatitis B[4, 5], hepatitis C[6, 7]) and acute (i.e.:

influenza [8, 9, 10], dengue[11, 12], Ebola[13]) infections. Currently, they are based on

ordinary differential equations (ODE), which allows to analyze these systems employ-

ing mathematical and computational tools. This way, in-host basic reproduction num-

bers (R), stability analysis of equilibrium states, analytical/numerical solutions, can be

computed [14, 15, 16, 17]. Most of them are based on the target-cell limited model to

represent chronic/acute infections according to the infection resolution respect to the

target cell production and natural death rates [18]. This way, the equilibrium states

differ from isolated equilibrium points (i.e.: disease free and infected equilibria) for

the former to a continuous of equilibrium points (i.e.: disease free equilibrium set) for
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the latter ones. Note that for acute infections, the only feasible equilibria is the disease

free, since the pathogen particles at the end of infection will be cleared independently

of the in-host reproduction number [18, 8, 19]. The existence of healthy equilibrium set

implies that stability analysis can be performed considering equilibrium sets as a gen-

eralization of equilibrium points, which gives an environment to employ set-theoretic

methods [20, 21], widely used in the design of set-based controllers, although not fully

employed for modeling characterization and control of acute infections. Some prelim-

inary results, which will be discuss later in this chapter, can be found in [22].

The control of infection can be modelled considering immune response mecha-

nisms, where the infection is self-controlled by a combination of a non-specific and

specific reactions [23, 24, 25], or by drug therapies. The inclusion of pharmacokinetic

(PK) and pharamacodynamic (PD) models of drug therapies allows the inclusion of

therapeutic effects on the pathogen evolution [7, 18]. Therefore, the models parame-

ters can be changed exogenously by dose frequency and quantity, naturally limited by

the inhibitory potential of the drug (expressed in terms of EC50, or drug concentra-

tion for inhibiting 50% of antigen particles) and its cytotoxic effect (expressed in terms

of IC50, or drug concentration which causes death to 50% of susceptible cells) [26].

Moreover, since drugs are normally administrated by pills or intravenous injections, in-

stantaneous jumps are observed in the concentration of the drug in some tissues. This

is mathematically conceptualized as a discontinuity of the first kind and gives rise to

the so-called impulsive control systems [27]. This model representation has been used

for optimal control and state-feedback control with constraints for infectious diseases,

such as: influenza [10, 28] and HIV [29, 27]. Even though optimal dosage can be

computed for chronic and acute models, the unstable healthy equilibrium of the former

(under certain circumstances; for details, see [18, 15]) and the availability of target

cells above a critical level for the latter (as it is discuss later), involve the duration of

drug therapy, with the presence of viral rebounds when therapy is disrupted. This effect

has been noticed for chronic [30] and acute [31] infections. Taking into account this

scenario, in this work, we formalize the existence of an optimal single interval drug

delivery such that viral rebounds are avoided. Even though, the presented analysis is

valid for the target-cell limited model for acute infections, taking into account the cur-

rent worldwide contextual situation (COVID-19 pandemic), we prove our results using

an identified model of infected patients with SARS-CoV-2 virus [32, 22, 33].

After the introduction given in Section 1 the article is organized as follows. Sec-

tion 2 presents the general ”in the host” models used to represent infectious diseases.

Section 4 studies the way the antivirals affect the dynamic of the model, emphasizing

the fact that the stability analysis made in Section 3 remains unmodified and, so, any

control strategy must be designed accounting for these details. In Section 5 control

design able to exploit the stability model characterization is introduced, and its benefits

are shown by simulating several cases, in Section 6. Finally, conclusions are given in

Section 7.

1.1. Notation

First let us introduce some basic notation. We consider Rn as n-dimensional Eu-

clidean space equipped with the euclidean distance between two points defined by

d(x, y) := ‖x − y‖ = [(x − y)′(x − y)]1/2. The euclidean distance from a point

x to a set Y is given by d(x,Y) := ‖x‖Y = inf{y ∈ Y : ‖x− y‖}.

With X we will denote the constraint set of R3, given by

X := R
3
≥0 = {(x1, x2, x3) ∈ R

3 : x1 ≥ 0, x2 ≥ 0 and x3 ≥ 0}
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We will consider X endowed with the inherit topology of R3, i.e. the open sets are

intersections of open set of R3 with X . Thus, a open ball in X with center in x and

radius ε > 0 is given by Bε(x) := {y ∈ X : ‖x − y‖ < ε} and an ε-neighborhood of

set Y ⊂ X is given by Bε(Y) := {x ∈ X : ‖x‖Y < ε}. Let x ∈ Y , we say that x is

an interior point of Y if the there exist ε > 0 such that Bε(x) ⊆ Y . The interior of Y is

the set of all interior points of Y and it is denoted by int(Y).

2. Review of the UIV target-cell-limited model

Mathematical models of in-host virus dynamic have shown to be useful to under-

stand of the interactions that govern infections and, more important, to allows external

intervention to moderate their effects [24]. According to recent research in the area

[18, 22], the following ordinary differential equations (ODEs) are used in this work to

describe the interaction between uninfected target or susceptible cells U [cell/mm3],

infected cells I [cell/mm3], and virus V [copies/mL]:

U̇(t) = −βU(t)V (t), U(0) = U0, (2.1a)

İ(t) = βU(t)V (t)− δI(t), I(0) = I0, (2.1b)

V̇ (t) = pI(t)− cV (t), V (0) = V0, (2.1c)

where β [mL.day−1/copies] is the infection rate of healthy U cells by external virus

V , δ [day−1] is the death rates of I , p [(copies.mm3/cell.mL).day−1] is the production

rate of free virus from infected cells I , and c [day−1] is degradation (or clearance) rate

of virus V by the immune system.

System (2.1) is positive, which means that U(t) ≥ 0, I(t) ≥ 0 and V (t) ≥ 0, for

all t ≥ 0. We denote x(t) := (U(t), I(t), V (t)) the state vector, and X = R
3
≥0 the

state constraints set.

The initial conditions of (2.1), which represent a healthy steady state before the

infection, are assumed to be V (t) = 0, I(t) = 0, and U(t) = U0 > 0, for t < 0. Then,

at time t = 0, a small quantity of virions enters the host body and, so, a discontinuity

occurs in V (t). Indeed, V (t) jumps from 0 to a small positive value V0 at t = 0
(formally, V (t) has a discontinuity of the first kind at t0, i.e., limt→0− V (t) = 0 while

limt→0+ V (t) = V0 > 0).

Although the solution of (2.1) for t ≥ t0, being t0 an arbitrary time, is unknown,

we know that it depends on the basic reproduction number1 R = βp
cδ and the initial

conditions (U(t0), I(t0), V (t0)) ∈ X . Since U(t) ≥ 0, V (t) ≥ 0, for all t ≥ t0,

U(t) is a non increasing function of t (by 2.1.a). From [22] and [17], if c >> δ (as

it is always the case2) it is known that for U(t0)R ≤ 1, then V (t) is a non increasing

function of t, for all t ≥ t0, and goes asymptotically to zero for t → ∞. On the other

hands, if U(t0)R > 1, V (t) reaches a maximum V̂ and then goes asymptotically to

zero, for t → ∞. In this latter case it is said that the virus spreads in the host, since

1The reproduction number is usually defined as R = U(t0)
βp
cδ

> 0, for UIV-type models. However, for

the sake of convenience, we remove the initial value of U in our definition.
2If c >> δ. system (2.1) can be approximated by U̇(t) ≈ −βU(t)V (t), V̇ (t) ≈ (βp

c
U(t) − δ)V (t),

I(t) = c
p
V (t). Then, since U(t0) > 0, conditions for V to increase or decrease at t0, are given by

U(t0)R > 1 and U(t0)R < 1, respectively.
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there is at least one time instant for which V̇ > 0 [22]. The so called critical value of

U , U∗, is defined as

U∗ := 1/R, (2.2)

where R is assumed to remain constant for all t ≥ t0. The critical value U∗ can

be seen as the counterpart of the ”herd immunity” in the epidemiological SIR-type

models: i.e., U(t) reaches U∗ approximately at the same time as V (t) and I(t) reach

their peaks or, in other words, V (t) and I(t) cannot increase anymore once U(t) is

below U∗. This way, conditions U(t0)R > 1 and U(t0)R ≤ 1 that determines if V (t)
increases or decreases for t ≥ t0 can be rewritten as U(t0) > U∗ and U(t0) ≤ U∗,

respectively. In what follows, we assume that U(0) > U∗ (or U(0)R > 1), which

corresponds to the case of the outbreak of the infection (i.e., the virus does spread in

the host), at time t = 0.

Let us now define U∞ := limt→∞ U(t), V∞ := limt→∞ V (t) and I∞ :=
limt→∞ I(t), which are values that depend on R and the initial conditions

U(t0), V (t0), I(t0). According to [22], V∞ = I∞ = 0, while U∞ is a value in

(0, U(t0)), which will be characterized in the next section.

3. Equilibria characterization and stability

To find the equilibrium set of model (2.1), with initial conditions

(U(t0), V (t0), I(t0)) ∈ X at an arbitrary time t0 ≥ 0, U̇(t), İ(t) and V̇ (t)
need to be equaled to zero, in (2.1). According to [22, 17] there is only one equilibrium

set in X , which is a healthy one, and it is defined by

Xs := {(U, I, V ) ∈ X : I = 0, V = 0}, (3.1)

To examine the stability of the equilibrium points in Xs, a first attempt consists in

linearizing system (2.1) at some state xs := (Us, Is, Vs) ∈ Xs, and analyzing the eigen-

values of the Jacobian matrix. As it is shown in [22], this matrix has one eigenvalue at

zero (λ1 = 0), one always negative (λ2 < 0) and a third one, λ3, that is negative, zero

or positive depending on if Us is smaller, equal of greater than U∗, respectively.

Since the maximum eigenvalueλ3 is the one determining the stability of the system,

it is possible to separate set Xs into two subsets, according to its behaviour. Then, a

first intuition is that the equilibrium subset

X st
s := {(U, I, V ) ∈ X : U ∈ [0, U∗], I = 0, V = 0} (3.2)

is stable, and that the equilibrium subset

X un
s := {(U, I, V ) ∈ X : U ∈ (U∗,+∞), I = 0, V = 0}, (3.3)

is unstable. However, this is not a conclusive analysis, given that one of the eigen-

values of the linearized system is null and so the linear approximation cannot be used

to fully determine the stability of a nonlinear system (Theorem of Hartman-Grobman

[34]). Formal asymptotic stability of set X st
s , together with its corresponding domain

of attraction, is analyzed in the next subsection.
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3.1. Asymptotic stability of the equilibrium sets

A key point to properly analyze the asymptotic stability (AS) of system (2.1) is to

consider the stability of the equilibrium sets X st
s and X un

s , instead of the single points

inside them (as defined in Definitions 7.2, 7.3 and 7.5, in Appendix 1). Indeed, even

when every equilibrium point in X st
s is ǫ−δ stable, there is no single equilibrium point

in such set that is locally attractive.

As stated in Definition 7.5, in Appendix 1, the AS of X st
s requires both, attractivity

and ǫ − δ stability, which are stated in the next two subsections, respectively. Finally,

in Subsection 3.4 the AS theorem is formally stated.

3.2. Attractivity of set X st
s

According to Definition 7.2, any set containing an attractive set is also attractive.

So, we are in fact interested in finding the smallest closed attractive set in X\X un
s .

Theorem 3.1 (Attractivity of X st
s ). Consider system (2.1) constrained by X . Then, the

set X st
s defined in (3.2) is the smallest attractive set in X\X un

s . Furthermore, X un
s ,

defined in (3.3), is not attractive.

Proof. The proof is divided into two parts. First it is proved that X st
s is an attractive

set, and then, that it is the smallest one.

Attractivity of X st
s : To prove the attractivity of X st

s in X (and to show that X un
s

is not attractive) we needs to prove that U∞ ∈ [0, U∗] for any initial conditions and

values of R. U∞ can be expressed as a function of R and initial conditions, as follows

U∞(R, U(t0), I(t0), V (t0)) = −
W (−RU(t0)e

−R(U(t0)+I(t0)+
δ
p
V (t0)))

R
(3.4)

where W (·) is (the principal branch of) the Lambert function and (U(t0), I(t0), V (t0))
are arbitrary initial conditions at a given time t0 ≥ 0. The minimum of U∞ is given

by U∞ = 0, and it is reached when U(t0) = 0 (for any value of R, I(t0) and V (t0)).
The maximum of U∞, on the other hand, is given by U∞ = U∗, and it is reached

only when U(t0) = U∗ and I(t0) = V (t0) = 0 (for any value of R), as it is shown

in Lemma 7.7, in Appendix 2. Then, for any (U(t0), I(t0), V (t0)) ∈ X and R > 0,

U∞(R, U(t0), I(t0), V (t0)) ∈ [0, U∗], which means that X st
s is attractive, and the

proof of attractivity is complete.

Figure 1 shows how U∞ behaves as function of U(t0) and V (t0), when I(t0) = 0
and I(t0) = 5e5. The first one is the scenario corresponding to t = 0, when a certain

amount of virus enters the healthy host.

X st
s is the smallest attractive set: It is clear from the previous analysis, that any

initial state x(t0) = (U(t0), I(t0), V (t0)) ∈ X converges to a state x∞ = (U∞, 0, 0)
with U∞ ∈ [0, U∗]. This means that X un

s is not attractive for any point in X\Xs.

However, to show that X st
s is the smallest attractive set, we need to prove that every

point xs ∈ X st
s is necessary for the attractiveness.

Let us consider a initial state of the form (U∗, I(t0), 0) with I(t0) ≥ 0. Since W is

a bijective function from (−1/e, 0) to (−1, 0), then U∞(R, U∗, ·, 0) is bijective from

(0,+∞) to (0, U∗). Hence for every point xs ∈ int(X st
s ) there exists I(t0) ≥ 0 such

that the initial state (U∗, I(t0), 0) converges to xs. Since every interior point of X st
s is

necessary for the attractiveness, then the smallest closed attractive set is X st
s , and the

proof is concluded.
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(a) U∞ as function of U(t0) and V (t0), when I(t0) =
0. The orange plane represents U∗ = 1/R = 1.5e8 .

The maximum of U∞ is reached when U(t0) = U∗ and

V (t0) = 0, and is given by U∗ . Patient ’A’.

(b) U∞ as function of U(t0) and V (t0), when I(t0) =
5e5 . The orange plane represents U∗ = 1/R = 1.5e8 .

The maximum of U∞ is reached when U(t0) = U∗ and

V (t0) = 0, and is smaller than U∗ . Patient ’A’.

Figure 1: Function U∞(U(t0), V (t0)), for different values of I(t0).

3.3. Local ǫ− δ stability of X st
s

The next theorem shows the formal Lyapunov (or ǫ− δ) stability of the equilibrium

set X st
s .

Theorem 3.2 (Local ǫ − δ stability of X st
s ). Consider system (2.1) constrained by X .

Then, the equilibrium set X st
s defined in (3.2) is the largest locally ǫ− δ stable.

Proof. We proceed by analysing the stability of single equilibrium points x̄ :=
(Ū , 0, 0), with Ū ∈ (0, U0] (i.e., x̄ ∈ Xs\{(0, 0, 0)}). For each x̄ let us consider

the following Lyapunov function candidate

J(x) := U − Ū − Ū ln

(

U

Ū

)

+ I +
δ

p
V. (3.5)

This function is continuous in X , is positive for all nonegative x 6= x̄ and J(x̄) = 0.

Furthermore, for x(t) ∈ X and t ≥ 0 we have

J̇(x(t)) =
∂J

∂x
ẋ(t) =

[

dJ

dU

dJ

dI

dJ

dV

]





−βU(t)V (t)
βU(t)V (t)− δI(t)

pI(t)− cV (t)





=

[

(1 −
Ū

U(t)
) 1

δ

p

]





−βU(t)V (t)
βU(t)V (t)− δI(t)

pI(t)− cV (t)





= (−βU(t)V (t) + ŪβV (t)) + (βU(t)V (t)− δI(t)) +

(

δI(t)−
δc

p
V (t)

)

= ŪβV (t)−
δc

p
V (t) = V (t)

(

Ūβ −
δc

p

)

,

where ẋ(t) represents system (2.1). Function J̇(x(t)) depends on x(t) only through

V (t). So, independently of the value of the parameter Ū , J̇(x(t)) = 0 for V (t) ≡ 0.

This means that for any single x(0) ∈ Xs, V (0) = I(0) = 0 and so, V (t) = 0, for all

t ≥ 0. So J̇(x(t)) is null for any x(0) ∈ Xs (i.e, it is not only null for x(0) = x̄ but for

any x(0) ∈ Xs).
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On the other hand, for x(0) /∈ Xs, function J̇(x(t)) is negative, zero or positive,

depending on if the parameter Ū is smaller, equal or greater than U∗ = δc
βp , respec-

tively, and this holds for all x(0) ∈ X and t ≥ 0. So, for any x̄ ∈ X st
s , J̇(x(t)) ≤ 0

(particularly, for x̄ = (Ū , 0, 0) = (U∗, 0, 0), J̇(x(t)) = 0, for all x(0) ∈ X and t ≥ 0)

which means that each x̄ ∈ X st
s is locally ǫ−δ stable (see Theorem 7.6 in Appendix 1).

Finally, when Ū = 0, i.e. x̄ = (0, 0, 0), we define the Lyapunov functional as

J(x) = U − I + δ/pV and we proceed analogously as before to prove the local ǫ− δ
stability of the origin.

Therefore, since every state in X st
s is locally ǫ − δ stable and X st

s is compact, by

Lemma 7.4, the whole set X st
s is locally ǫ− δ stable.

Finally, since X st
s is attractive in X\X un

s then it is impossible for any x ∈ X un
s to

be ǫ− δ stable, which implies that X st
s is also the largest locally ǫ− δ stable set in Xs,

which completes the proof.

Remark 3.3. In the latter proof, if we pick a particular x̄ ∈ X st
s , then J̇(x(t)) is not

only null for x(0) = x̄ but for all x(0) ∈ X st
s , since in this case, V (t) = 0, for t ≥ 0.

This means that it is not true that J̇(x(t)) < 0 for every x 6= x̄, and this is the reason

why we cannot use the last part of Theorem 7.6 to ensure the asymptotic stability of

particular equilibrium points (or subsets of X st
s ). In fact, they are ǫ− δ stable, but not

attractive.

3.4. Asymptotic stability of X st
s

In the next Theorem, based on the previous results concerning the attractivity and

ǫ− δ stability of X st
s , the asymptotic stability is formally stated.

Theorem 3.4. Consider system (2.1) constrained by the positive set X . Then, the set

X st
s defined in (3.2) is the unique asymptotically stable (AS) equilibrium set, with a

domain of attraction (DOA) given by X\X un
s . Furthermore, X un

s is unstable.

Proof. The proof follows from Theorems 3.1, which states that X st
s is the smallest

attractive in X , and 3.2, which states that X st
s is the largest locally ǫ − δ stable set

in X .

Figures 2 shows phase portrait plots of system (2.1), corresponding to different

initial conditions.

3.5. U∞ as function of initial conditions

In this section some characteristics of system (2.1) concerning the value of U∞

as a function of the reproduction number R and the initial conditions are analyzed.

Consider the next Property.

Property 3.5. Consider system (2.1) with arbitrary initial conditions

(U(t0), I(t0), V (t0)) ∈ X , for some t0 ≥ 0. Then:

i. For any value of U(t0) > 0, I(t0) > 0, V (t0) > 0,

U∞(R, U(t0), I(t0), V (t0)) → 0, when R → ∞; while

U∞(R, U(t0), I(t0), V (t0)) remains close to U(t0) when R → 0.

ii. For U(t0) > U∗ and fixed I(t0) > 0, V (t0) > 0 and

R > 0, U∞(R, U(t0), I(t0), V (t0)) decreases when U(t0) increase, and

U∞(R, U(t0), I(t0), V (t0)) < U∗. This means that the closer U(t0) is to U∗

from above, the closer will be U∞ to U∗ from below.
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Figure 2: Phase portrait for virtual patient ’A’, described in Section 3.6. (a) Case U(t0) > U∗. States

arbitrarily close to Xun
s (in red), converges to X st

s (in green), so the virus spreads in the host. (b) Case

U(t0) < U∗. States arbitrarily close to X st
s , converges to X st

s , so the virus does not spread in the host.

Empty circles represent the initial state, while solid circles represent final states.

iii. For U(t0) < U∗ and fixed I(t0) > 0, V (t0) > 0 and

R > 0, U∞(R, U(t0), I(t0), V (t0)) increases with U(t0), and

U∞(R, U(t0), I(t0), V (t0)) < U∗. This means that smaller values of

U(t0) produce smaller values of U∞, both below U∗.

iv. For any fixedU(t0) andR > 0, U∞(R, U(t0), I(t0), V (t0)) decrease with I(t0)
and V (t0), and U∞(R, U(t0), I(t0), V (t0)) ≤ U∗.

v. For fixed R > 0, U(t0) = U∗ and I(t0) = V (t0) = 0,

U∞(R, U(t0), I(t0), V (t0)) reaches its maximum over X , and the maximum

value is given by U∗ (see Lemma 7.7 in Appendix 2).

The proof of the properties are omitted for brevity. However, Figures 1 and 11

show how U∞ behaves for different values of initial conditions.

3.6. Simulation example

All along this work we use a virtual patient, denoted as patient ’A’, to demonstrate

the results of each section. The parameters of patient ’A’ were estimated by using

viral load data of a RT-PCR COVID-19 positive patient —reported in [32] and used in

[22, 33]— and are given by

Table 1: Target cell-limited model parameters for COVID-19, patient A [33]

β δ p c
1.35× 10−7 0.61 0.2 2.4

The initial conditions are given by: U0 = 4 × 108, I0 = 0 and V0 = 0.31. Fur-

thermore, the reproduction number is R = 1.84 × 10−8, while the critical value for

the susceptible cells is U∗ = 5.44 × 107. The final value of U (if no antiviral treat-

ment is applied) is given by U∞ = 2.57 × 105, which means that the area under the

curve (AUC) of V is given by AUCV = 5.45 × 107. The peak of V is given by

V̂ = 1.98 × 107. Figure 3 shows the time response corresponding to patient ’A’. As

8
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Figure 3: Time evolution of virtual patient ’A’. As c >> δ (as it is always the case for real patient

data), I(t) ≈ c
p
V (t) for all t ≥ 0.

predicted, U∞ is (significantly) smaller than U∗, which means that antivirals reducing

(even for a finite period of time) either p or β will increase U∞ and, so, will reduce the

AUC and, probably, the peak of V .

Remark 3.6. Note that the area under the curve of V , between times td1 and td2 is

given by AUCV :=
∫ td2
td1

V (t)dt = 1
c [

p
δ (U(td1)−U(td2)+I(td1)−I(td2))+V (td1)−

V (td2)]. Therefore, assuming U(td1) = U(t0), I(td1) = I(t0), V (td1) = V (t0), with

U(t0) ≫ I(t0), U(t0) ≫ V (t0), and U(td2) = U∞, I(td2) = 0 and V (td2) = 0,

which gives: AUCV ≈ 1
c [

p
δ (U(t0)− U∞)]. This way, if U∞ is increased with respect

to the value corresponding to the untreated case, the AUC of viral load decreases.

Moreover, as it was shown in [17], the viral load at time to peak is monotonically

decreasing with antiviral therapy reducing β or p.

4. Inclusion of PK and PD of antiviral treatment

The idea now is to formally incorporate the pharmacodynamic (PD) and pharma-

cokinetics (PK) of antivirals into system 2.1, to obtain a controlled system, i.e. a system

with certain control actions - given by the antivirals - that allows us to (even partially)

modify the whole system dynamic according to some control objectives. In contrast

to vaccines that kill the virus, antiviral just inhibits the virus infection and replication

rates, so reducing the advance of the infections in the respiratory tract. The PD is

introduced in system (2.1) as follows:

U̇(t) = −β(1− η(t))U(t)V (t), (4.1a)

İ(t) = β(1 − η(t))U(t)V (t)− δI(t) (4.1b)

V̇ (t) = pI(t)− cV (t), (4.1c)

where η(t) ∈ [0, 1) represents the inhibition antiviral effects affecting the infection rate

β (note that, according to [17], the effect of antivirals on the replication rate p, is anal-

9



ogous to the one on β, since both parameters affect in the same way the reproduction

number R).

On the other hand, the PK is modeled as a one compartment with an impulsive

input action (to properly account for pills intakes or injections):

Ḋ(t) = −δDD(t), t 6= tk, (4.2a)

D(tk) = D(t−k ) + uk−1, k ∈ I, (4.2b)

where D is the amount of drug available (with D(0) = D0 = 0), δD is the drug

elimination rate and the antiviral dose uk enters the system impulsively at times tk :=
kT , with T > 0 being a fix time interval and k ∈ I. Time t−k denotes the time just

before tk, i.e., D(t−k ) = limδ→0+ D(tk − δ). Note that (4.2) is a continuous-time

system impulsively controlled, which shows discontinuities of the first kind (jumps) at

times tk and free responses in t ∈ [tk, tk+1) (see [27] for details).

Finally, the way the drug D enters system (4.1) is by means of η as follows:

η(t) =
D(t)

D(t) + EC50
(4.3)

where EC50 represents the drug concentration in the blood where the drug is half-

maximal. η(t) is assumed to be in [0, ηmax), with ηmax < 1 (not full antiviral effect is

considered, since this is an unrealistic scenario).

4.1. Impulsive scheme

Based on the PK and PD previous analysis, the complete Covid-19 infection model,

taking into account an antiviral treatment (the controlled system) reads as follows:

U̇(t) = −β(1− η(t))U(t)V (t), t 6= tk, (4.4a)

İ(t) = β(1− η(t))U(t)V (t)− δI(t), t 6= tk, (4.4b)

V̇ (t) = pI(t)− cV (t), t 6= tk, (4.4c)

Ḋ(t) = −δDD(t), t 6= tk, (4.4d)

D(tk) = D(t−k ) + uk−1, k ∈ I (4.4e)

with initial conditions given by x0 = (U0, I0, V0, D0). Given that D(t) ≥ 0 for all

t ≥ 0, the constraint set X is enlarged to be X̃ := R
4
≥0. Also, a constraint for the input,

u, is defined as Ũ := {u ∈ R : 0 ≤ u ≤ umax}, where umax represent the maximal

antiviral dosage (umax is usually determined by the drug side effects and maximal

effectivity, 0 ≤ ηmax < 1), while sets X is enlarged by considering X̃ := X ×R≥0. A

detailed study of the stability of impulsive systems can be seen in [35].

4.2. Simulation example

We resume here the simulation of the virtual patient ’A’, to demonstrate the im-

pulsive control actions describing the effects of antiviral administration. It is assumed

that antivirals affect the infection rate β, while the initial condition for D is D0 = 0,

δD = 2 (days−1) and ECp
50 = 75 (mg). A scenario of 30 days was simulated, and

a permanent dose of uk = 20 (mg) of antivirals is administered each T days, starting

at ti = 4 days, with T = 1, T = 2 and T = 0.5. As shown in Figures 4a - 4b, the

system response is quite different for different sampling times. For T = 1 days, the

antiviral treatment is able to decreases V from the beginning. On the other hand, for
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Figure 4: (a) Time evolution of virtual patient ’A’, with u = 20 mg of antivirals and T = 1 days. (b) Time

evolution of virtual patient ’A’, with u = 20 mg of antivirals and T = 2 days.

T = 2, the treatment is unable to stop the spread of virus (V continue increasing after

the treatment is initiated), as it is shown in Figure 4b. Clearly, the effect of larger values

of T is equivalent to smaller values of the dose uk. In what follows, for the sake of

clarity, T will be fixed in 1 day and only the (constant) value of the doses uk - together

with the initial and final time of the treatment - will be modified to analyze the different

outcomes.

5. Control

Control objectives in ’in host’ infections can be defined in several ways. The peak

of the virus load uses to be a critical index to minimize, since it is directly related to

the severity of the infection and the ineffective capacity of the host. However, other

indexes - usually put in a second place - are also important. This is the case of the time

the infection lasts in the host over significant levels [17] - including virus rebounds

after reaching a pseudo steady state, and the total viral load or infected cells at the

end of the infection (i.e., the AUC of V and I). These latter indexes also informs (in

a different manner) about the severity of the infection and the time during which the

host is able to infect other individuals, and are directly determined by the amount of

susceptible cells at the end of the infection. So the twofold control objective is defined

as follows:

Definition 5.1 (Control objectives). The control objective for the closed-loop (4.4)

consists in both, maximize the final value of susceptible/uninfected cells at the end

of the infection, U∞ and minimize the virus peak, V̂ . We denote these objectives a

Objective 1 and 2, respectively.

As it was said in the previous Section, antivirals affect the infection rate β, by the

time-variant factor (1 − η(t)). Accordingly, the reproduction number R will be also

time varying, following the formula:

R(t) :=
β(1 − η(t))p

cδ
, (5.1)

and the original reproduction number - i.e., the one corresponding to no treatment -

will be denoted as R(0) for clarity (R(0) is the reproduction number at the outbreak

of the infection, when u0 = 0 and η = 0).
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We will assume in the following a single interval antiviral treatment, consisting in a

single fixed dose of antiviral, applied during a finite period of time. At the outbreak of

the infection (t = 0), it is (U(0), I(0), V (0)) := (U0, 0, ǫ), with ǫ > 0 arbitrary small.

Then, the single interval treatment is defined by the following input function:

uk = u(tk) =







0 for tk ∈ [0, ti),
ui for tk ∈ [ti, tf ],
0 for tk ∈ (tf ,∞).

(5.2)

where ti < t̂(R(0)), being t̂(R(0)) the time of the peak of V (τ) when no treatment

is implemented, ui ∈ [0, umax], and tf > ti, but finite. Note that after tf , u(tk) = 0,

which means that η(t) → 0 and R → R(0).

5.1. First control objective: maximizing the final value of the uninfected cells

The control problem we want to solve first reads as follows: for a given initial

time, ti < t̂, find ui (which has an associated Ri, and ηi) and tf (finite) to maximize

U∞ = U∞(R(0), U(tf ), I(tf ), V (tf )). This control problem accounts for the first

control objective; next, somme comments will be made concerning the second one.

A critical point concerning antiviral treatments - that is usually disregarded - is

that they are always transitory control actions, not permanent ones. It is not possible

to maintain a given treatment for a long time, and its interruption must be explicitly

considered in any antiviral schedule.

So, according to the stability results from the previous sections, the following Prop-

erty holds:

Property 5.2 (Upper bound for U∞). Consider system (4.4) with U(0) > U∗ (or

U(0)R(0) > 1). No matter which kind of antiviral treatment is implemented at time

ti, if it is interrupted at some finite time tf > ti (as it is always the case), the system

converges to an equilibrium state (U∞, 0, 0) with U∞ ≤ U∗, being U∗ the critical

value for U corresponding to no antiviral treatment, i.e., U∗ = 1/R(0).

Proof. We proceed by contradiction. Assume that U∞ > U∗. Consider system (4.1)

for t ≥ tf . Since the antiviral treatment is interrupted at time tf , then η(t) ց 0, for

t ≥ tf
3. By eq. (5.1) we have that R(t) ր R(0), for t ≥ tf . If we denote Uc(t) =

1/R(t) we have Uc ց U∗ for t ≥ tf . Since U∞ > U∗ then U∞ > Uc(t) for t > T ,

with T large enough. Hence (U(t), I(t), V (t)) is converging to an equilibrium point

in the unstable part, which is a contradiction. Therefore U∞ ≤ U∗, which concludes

the proof.

Remark 5.3. From a clinical perspective, what Property 5.2 establishes is more than a

simple upper bound for U∞. It says that the best an antiviral treatment can do in terms

of the total amount of virus (or infected cells) at the end of the infection, Vtot :=
∫∞

t=0 V (t)dt ≈
∫∞

t=0
p
c I(t)dt, is to reach a minimal value intrinsically determined by

the system parameters (R(0)). Furthermore, the instantaneous peak of V (t), for t > 0,

which is the other critical index for the severity of the infection (whose minimization is

the second control objective), is independent of the latter lower limit (as shown later

on), and can be minimized while maintaining Vtot at its minimal value. This represents

a new paradigm concerning what (and what not) antiviral treatments can do in acute

infections.

3We use the symbols ց and ր to indicate that the convergence is monotonic, decreasing and increasing,

respectively.
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In the search of such a value, the next definition is stated.

Definition 5.4 (Goldilocks antiviral dose). The goldilocks antiviral dose (GAD),

ug = ug(ti), is the one that, if applied at ti < t̂(R(0)), produces

U∞(Rg, U(ti), I(ti), V (ti)) = U∗, where Rg is determined by ug , at steady state4.

Remark 5.5 (ug computation). Given ti and R(0), ug = ug(U(ti), I(ti), V (ti)) =
ug(ti) can be obtained, numerically, by means of Algorithm 1.

Algorithm 1: Computation of ug(ti)

uk = 0, U∗ = 1/R(0);
Compute Ui, Ii and Vi by integrating system (2.1) from 0 to ti, starting at

(U0, I0, V0);
Compute U(tf ) by integrating system (4.4) form ti to tf , starting at

(Ui, Ii, Vi), with uk;

while U(tf ) <= U∗ do

uk = uk + 0.001;

Compute U(tf ) by integrating system (4.4) form ti to tf , starting at

(Ui, Ii, Vi), with uk;

end

ug = uk;

Clearly, Goldilocks antiviral treatment cannot be applied indefinitely, since tf
is finite. However, it can be applied up to a time tf large enough such that

(U(tf ), I(tf ), V (tf )) is arbitrarily close to (U∗, 0, 0) from above. This latter sce-

nario is denoted as quasi steady state (QSS), and it allows us to introduce the following

definition.

Definition 5.6 (Quasi optimal single interval antiviral treatment). Consider a given

starting time, ti ∈ (0, t̂(R(0))). Then, the quasi optimal single interval antiviral treat-

ment consists in applying ug, up to a time tf large enough for the the system to reach

a QSS condition (i.e., U(tf ) ≈ U∗ I(tf ) ≈ 0, V (tf ) ≈ 0).

Remark 5.7. Clearly, the latter definition refers to a quasi optimal single interval

control action, because larger values of tf will produce values of U(tf ), I(tf ) and

V (tf ) closer to U∗, 0 and 0, respectively, so U∞(R(0), U(tf ), I(tf ), V (tf )) will be

closer to U∗.

The next Theorem, which is one of the main contribution of the work, summarizes

the latter results by means of a classification that consider every possible single interval

treatment case.

Theorem 5.8 (Single interval antiviral treatment scenarios). Consider system (2.1)

with initial conditions (U(0), I(0), V (0)) = (U0, 0, ǫ), with ǫ > 0 arbitrary small,

and R(0) such that U(0) > U∗. Consider also single interval antiviral treatment (as

the one defined in (5.2)), with a given starting time ti ∈ (0, t̂(R(0))), and a finite final

time tf . Define soft and strong treatments depending on if ui < ug or ui > ug, respec-

tively. Define also long and short term treatments depending on if the system reaches

or does not reach a QSS at tf . Then, the following scenarios can take place:

4Rg :=
β(1−ηg(t))p

cδ
, is assumed to be fixed, for simplicity, even when we know that ηg(t) is periodic.
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i. Quasi optimal single interval antiviral treatment: if ui = ug, and tf is such that

(U(tf ), I(tf ), V (tf )) reaches a QSS, then U∞(R(0), U(tf ), I(tf ), V (tf )) ≈
U∗. Furthermore, the closer is U(tf ) to U∗ (or I(tf ) and V (tf ) to zero), the

closer will be U∞(R(0), U(tf ), I(tf ), V (tf )) to U∗.

ii. Soft long-term antiviral treatment: if (U(tf ), I(tf ), V (tf )) reaches a QSS,

and U(tf ) < U∗, then U∞(R(0), U(tf ), I(tf ), V (tf )) ≈ U(tf ) < U∗;

i.e., U(t) will remain approximately constant for t ≥ tf . Further-

more, the softer a soft long term antiviral treatment is, the smaller will be

U∞(R(0), U(tf ), I(tf ), V (tf )).

iii. Strong long-term antiviral treatment: if (U(tf ), I(tf ), V (tf )) reaches a

QSS, and U(tf ) > U∗, a second outbreak wave will necessarily take

place at some time ˆ̂t > tf and, finally, the system will converge to an

U∞(R(0), U(tf ), I(tf ), V (tf )) < U∗. Furthermore, the stronger a strong long

term antiviral treatment is, the larger will be the second wave and the smaller

will be U∞(R(0), U(tf ), I(tf ), V (tf )).

iv. Short-term antiviral treatment: if (U(tf ), I(tf ), V (tf )) does not reach a QSS

(i.e, if V (tf ) 6≈ 0), then soft, strong and Goldilocks dose will necessarily pro-

duce values of U∞(R(0), U(tf ), I(tf ), V (tf )) significantly smaller than the one

obtained by quasi optimal single interval treatment. In general, larger values of

V (tf ) will produce smaller values of U∞(R(0), U(tf ), I(tf ), V (tf )). This case

includes the particular case where the treatment is interrupted at the very mo-

ment at which U(tf ) = U∗, but with V (tf ) 6≈ 0. This means that the critical

value of U needs to be reached as a steady state, not as a transitory one.

Proof. The proof follows from the stability results shown in Sections 3, and (3.5):

i. Given that ui = ug is implemented for t ∈ [ti, tf ], tf is finite but

large enough and U∞(Rg, U(ti), I(ti), V (ti)) = U∗, then U(tf ) approaches

U∗ and V (tf ) approaches zero, from above, as tf increases. This means

that at tf , when the treatment is interrupted, (U(tf ), I(tf ), V (tf )) is close

to the unstable equilibrium set X un
s . Then, by Property 3.5.(ii), function

U∞(R(0), U(tf ), I(tf ), V (tf )) is such that the closer (U(tf ), I(tf ), V (tf ))
is to the equilibrium point (U∗, 0, 0), with U(tf ) > U∗, the closer will be

U∞(R(0), U(tf ), I(tf ), V (tf )) to U∗, with U∞ < U∗ (see the ’pine’ shape

of U∞ around U∗, for I ≈ 0, in Figure 11)5.

ii. Given that (U(tf ), I(tf ), V (tf )) approaches a steady state with U(tf ) < U∗,

then (U(tf ), I(tf ), V (tf )) is close to the stable equilibrium set X st
s , when the

treatment is interrupted. Then, the system will converge to an equilibrium with

U∞(R(0), U(tf ), I(tf ), V (tf )) close to U(tf ). Softer antiviral treatment pro-

duces smaller values of U(tf ) and, by Property 3.5.(iii), smaller values of U(tf )
produce smaller values of U∞(R(0), U(tf ), I(tf ), V (tf )).

5Indeed, by the ǫ − δ stability of the equilibrium state (U∗, 0, 0), for each (arbitrary small) ǫ > 0, it

there exists δ > 0, such that, if the system starts in a ball of radius δ centered at (U∗, 0, 0), it will keeps

indeterminately in the ball of radius ǫ centered at (U∗, 0, 0). Furthermore, it is possible to define invariant

sets around (U∗, 0, 0) by considering the level sets of the Lyapunov function (3.5), with Ū = U∗, or even

the level sets of function J(U, I, V ) := U∗ − U∞(R, U, I, V ), with a fixed R > 0. This way, once

the system enters any arbitrary small level set of the latter functions, it cannot leaves the set anymore. See,

Figure 5
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iii. Given that (U(tf ), I(tf ), V (tf )) approaches a steady state with U(tf ) > U∗,

then (U(tf ), I(tf ), V (tf )) is close to the unstable equilibrium set, X un
s , when

the treatment is interrupted. Then, the system will converges to an equilib-

rium in the stable equilibrium set, X st
s , with U∞(R(0), U(tf ), I(tf ), V (tf )) <

U∗. Stronger antiviral treatment produces greater values of U(tf ) and, by

Property 3.5.(ii), values of U(tf ) farther from U∗, from above, produce val-

ues of U∞(R(0), U(tf ), I(tf ), V (tf )) farther from U∗, from below. When

U(tf ) is significantly greater than U∗, no matter how large is tf and how

small is V (tf )
6, the system will evolve to an equilibrium in X st

s , with

U∞(R(0), U(tf ), I(tf ), V (tf )) significantly smaller than U∗. Furthermore, to

go from U(tf ) to U∞(R(0), U(tf ), I(tf ), V (tf )), for t > tf , the system signif-

icantly increase V (t), and this effect is known as a second outbreak wave.

iv. Given that (U(tf ), I(tf ), V (tf )) is a transitory state, then it does

not approach any equilibrium. This means that V (tf ) is signifi-

cantly greater than 0, and according to Lemma 7.7, in Appendix 2,

the maximum of U∞(R(0), U(tf ), I(tf ), V (tf )) over Ω(ε) =
{

(U, I, V ) ∈ R
3
≥0 : I ≥ ε, V ≥ ε

}

is given by −W (−RU∗e−R(U∗+ε+ δ
p
ε))/R,

which is a decreasing function of ε, and reaches U∗ only when

ε = 0 (see Figure 11). Then, independently of the value of U(tf ),
U∞(R(0), U(tf ), I(tf ), V (tf )) will be (maybe significantly) smaller than

the one obtained with quasi optimal single interval treatment, in which ε ≈ 0.

5.2. Second control objective: minimizing the virus peak

The quasi optimal single interval treatment clearly accounts for a steady state con-

dition, given that any realistic treatment needs to be interrupted at a finite time. Fur-

thermore, given that only one antiviral dose, ui, is considered for the treatment, once

the quasi optimal single interval treatment is determined (ui = ug), also is the peak

(maximum over t) of the virus, V̂ : i.e., there is a unique V̂ for each single interval

control action, ui.

However, if a more general control action is considered, in such a way that uk

assume several values in the interval from ti to tf , V̂ can be arbitrarily reduced. Indeed,

given that U∞ depends only on the fact that U ≈ U∗ and V ≈ 0 at tf , then stronger

antiviral doses can be used at the beginning of the treatment to lower the peak of V .

If for instance two consecutive single interval control actions are implemented —the

first one with a high dose, applied from ti to t1, and the second one with the quasi

optimal antiviral, ug(t1), applied from t1 to a large enough tf— a lower peak of V
will necessarily be obtained in contrast to one corresponding to the quasi optimal single

interval control.

Although this chapter is not devoted to analyze control strategies different from the

single interval one, it is worth to remark this latter point since it states that: (1) both

control objectives are independent, in the the sense that if a given upper bound for V
is stated from the the beginning (to avoid complication and/or to reduce the infectivity

6Note that as long as tf is finite, (U(tf ), I(tf ), V (tf )) cannot reach Xun
s , and so V (tf ), even when

arbitrary small, is greater than zero. So, once the social distancing is interrupted, the system evolves to an

equilibrium in Xun
s .
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Figure 5: Phase Portrait for system (2.1) (β = 1/2, δ = 1/5, p = 2, c = 5) in the U, V plane

(I = (c/p)V ), for different starting points (red lines), and level curves of function J(U, I, V ) :=
U∗ − U∞(R, U, I, V ), I = (c/p)V . Function J is positive for all (U, V ) 6= (U∗, 0), is null

at (U∗, 0) and J̇(U, V ) = 0 along the solution of system (2.1) (since U∞(R, U, I, V ) is). So

its level sets are arbitrary small invariant sets around (U∗, 0). Note that starting states close to

(U∗, 0) produce time evolution close to U∗, as determines the ǫ− δ stability.

of the host) it is in general possible to design control strategies that both, make V (t)
not to overpasses the upper bound, and make U∞ ≈ U∗, and (2) the entire concept of a

maximum or peak for V , for a given treatment, has sense only when U∞ ≤ U∗; since

otherwise, a rebounds of the virus will occurs once the treatment is interrupted, and a

new peak for V may be reached.

Figures 10a and 10b, in the Simulation section, show an example of a two-steps

interval treatment that produces a peak of V smaller than the one corresponding to the

quasi optimal single interval one.

6. Simulation results

In this section each of the cases of Theorem 5.8, together with the case of two-steps

interval control action of Subsection 5.2 are simulated for data coming from patient ’A’,

introduced in section 3.6 and 4.2. As it was already said, δD = 2 (days−1), ECp
50 = 75

(mg) and the sampling time is selected to be T = 1 day. Initial conditions are given by

(U0, I0, V0) = (4 × 108, 0, 0.31). Also, recall that U∗ = 5.44× 107 and the untreated

peak of V is given by V̂ = 1.98× 107.

6.1. Strong long-term treatment. Virus rebound

Figure 6a shows the time evolution of U (logarithmic scale), V , and uk for patient

’A’, when strong long-term antiviral treatment is implemented. The treatment starts at

ti = 4 days and finished at tf = 30 days, while several strong doses are administered:

ui = [21, 25, 35] mg.

As it can be seen, at tf the value of U is greater than U∗ while V ≈ 0, so the

viral load V rebounds after some time, producing a second (and larger) peak. More
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Figure 6: (a) Time evolution of virtual patient ’A’, with different doses of antiviral: ui = 21 mg,

solid line, ui = 25 mg, dashed line, ui = 35 mg, dotted line. (b) Phase portrait in the U,V
space, and level curves of the Lyapunov function J(U, I, V ) := U∗ − U∞(R(0), U, I, V ),
around (U∗, 0).

important, U∞ ends up at a value significantly smaller than U∗. The values of U∞ and

V̂ corresponding to the three doses are given by U∞ = [7.98× 106, 3.79× 106, 1.07×
105], and V̂ = [4.84× 106, 7.86× 106, 1.34× 107], respectively.

To have a better idea of how the system behaves around state (U∗, 0), Figure 6b

shows the phase portrait in the space U, V , together with the level curves of the Lya-

punov function J(U, I, V ) := U∗ − U∞(R(0), U, I, V ). At time tf , when the treat-

ment is interrupted, V (tf ) ≈ 0 and U(tf ) > U∗, so the system is close to an unstable

equilibrium point. So, for t > tf the state is attracted to an equilibrium in the AS

equilibrium set X st
s , following outer level curves of J . Outer level curves of J means

both, a small U∞ and a large V̂ .

6.2. Soft long-term treatment

Figure 7a shows the time evolution of U (logarithmic scale), V , and uk, when soft

long term antiviral treatment is implemented. The treatment starts at ti = 4 days and

finished at tf = 30 days, while several soft doses are administered: ui = [4, 6, 8] mg.

As it can be seen, at tf the value of U is smaller than U∗, while V ≈ 0, so the

viral load V decreases after the treatment is interrupted. The values of U∞ and V̂
corresponding to the three doses are given byU∞ = [8.98×106, 1.90×107, 3.25×107],
and V̂ = [1.36× 107, 1.16× 107, 9.70e× 106].

Figure 7b shows the phase portrait in the space U, V , together with the level curves

of the Lyapunov function J(U, I, V ). At time tf , when the treatment is interrupted,

V (tf ) ≈ 0 and U(tf ) < U∗, so the system is close to a stable equilibrium point. So,

for t > tf the state remains almost unmodified.

6.3. Quasi optimal single interval treatment

Figure 8a shows the time evolution of U (logarithmic scale), V , and uk, when the

quasi optimal single interval antiviral treatment is administered. The treatment starts

at ti = 4 days and finished at tf = 30 days, while the Goldilocks dose is given by

ui = ug(ti) = 10.5 mg. The values of U∞ and V̂ are given by U∞ = 5.34× 107 and

V̂ = 7.73× 106, respectively
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Figure 7: (a) Time evolution of virtual patient ’A’, with different doses of antiviral: ui = 4 mg,

solid line, ui = 6 mg, dashed line, ui = 8 mg, dotted line. (b) Phase portrait in the U, V space,

and level curves of the Lyapunov function J(U, I, V ) := U∗ − U∞(R(0), U, I, V ), around

(U∗, 0).
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Figure 8: (a) Time evolution of virtual patient ’A’, with ui = ug = 10.5 mg of antivirals.

(b) Phase portrait in the U,V space, and level curves of the Lyapunov function J(U, I, V ) :=
U∗ − U∞(R(0), U, I, V ), around (U∗, 0).

Figure 8b shows the phase portrait in the space U, V , together with the level curves

of the Lyapunov function J(U, I, V ). As it can be seen, the system follows the only one

trajectory that goes directly from (U0, V0) to (U∗, 0): any other path goes necessarily

to an equilibrium with U∞ < U∗.

6.4. Short-term treatment

Figure 9a shows the time evolution of U (logarithmic scale), V , and uk, when a

short term treatment is implemented. The treatment starts at ti = 4 days and finished

at tf = 15 days, while several doses - smaller and greater than ug(ti) are administered:

ui = [10, 15, 20, 25] mg. The values of U∞ and V̂ corresponding to the four doses

are given by U∞ = [2.98 × 1067, 1.39 × 107, 5.06 × 107, 2.26 × 107], and V̂ =
[8.05× 106, 4.98× 106, 6.67× 106, 1.01× 101].

Figure 9b shows the phase portrait in the space U, V . Given that trajectories go

along the level curves of the Lyapunov function J(U, I, V ), any short term treatment -

i.e., producing V (tf ) 6≈ 0 - will make the system to surround the state (U∗, 0) by an
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Figure 9: (a) Time evolution of virtual patient ’A’, with different doses of antiviral: ui = 10
mg, solid line, ui = 15 mg, dashed line, ui = 20 mg, dotted line, and ui = 25 mg, dashed-

dotted line. (b) Phase portrait in the U, V space, and level curves of the Lyapunov function

J(U, I, V ) := U∗ − U∞(R(0), U, I, V ), around (U∗, 0).

outer level curve, thus finishing at some U∞ significantly smaller than U∗. As before,

outer level curves of J means both, a small U∞ and a large V̂ .

6.5. Two-steps treatment, lowering the peak of V

Finally, a scenario is simulated to show that always it is possible to lower the the

peak of V - while maintaining U∞ ≈ U∗ - if a control sequence more complex that the

single interval one is implemented. Figure 10a shows the time evolution of U (solid

blue line, logarithmic scale) and V (solid red line) corresponding to a two-steps interval

control: the first step consisting in ui = 25 mg, from ti = 4 to tm = 30 days, and the

second one consisting in ui = ug(tm) = 5.6 mg, from tm = 30 to tf = 60 (solid line).

Also, the quasi optimal single interval control of Subsection 6.3 is shown, to compare

the performance (dashed line). As it can be seen, the peak of V is significantly reduced:

from V̂ = 7.73× 106 to V̂ = 2.57× 106, while U∞ is almost the same in both cases.

Figure 10b shows the phase portraits of the two control strategies (solid line, two-steps

control; dashed line, single interval control), where it can be seen also the reduction

of the virus peak. This simple two-step strategy shows that with a more sophisticated

control strategy (i.e., by means of a proper optimal control formulation) the virus peak

can be arbitrarily reduced, maintaining the condition U∞ ≈ U∗. This is indeed, matter

of future research.

7. Conclusions and future works

In this work, the stability and general long term behavior of UIV-type models have

been fully analysed. A quasi optimal control action - consisting in the finite-time single

interval antiviral treatment producing the minimal possible final amount of death cells

- was found. The analysis shows also that more complex control strategies can account

for both control objectives simultaneously: minimize the virus peak, while keeping the

final amount of death cells at its maximum. A detailed analysis of subotimal scenarios

permits to enumerate the following main results:

i. To apply soft antiviral treatment during a long time (even no treatment at all), ex-

pecting the non-infected cells would evolve alone to the critical value U∗, is not
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Figure 10: (a) Time evolution of virtual patient ’A’, with different doses of antiviral: ui = 25 mg,

from ti = 4 to tm = 30 days, and ui = ug(tm) = 5.6 mg, from tm = 30 to tf = 60 (solid

line). In dashed line is plotted the quasi optimal single interval treatment. (b) Phase portrait in

the U, V space.

an option. Open loop U∞ is in general significantly smaller than U∗ (particularly

for the reported values of R for the COVID-19).

ii. To apply strong antiviral treatment for a long time, expecting the virus will die

out alone is not an option. Strong antiviral produces an values of U at the end

of the treatment larger than U∗, but this final values are artificially stable steady

states, since once the treatment is interrupted or reduced, a virus rebound will

necessarily occurs at some future time, and U∞ will be significantly smaller

than U∗.

iii. To apply any antiviral treatment (soft or strong) for short period of time, such

that the system is not able to reach a quasi steady state (i.e., when V at the end of

the treatment is not close to zero) is not an option. If the treatment is interrupted

at a transient state, the initial conditions for the next time period are such that

U∞ will be significantly smaller than U∗.

iv. According to the latter results, the best option is to apply an antiviral treatment

such that the system reaches a quasi steady state with U ≈ U∗ and V ≈ 0 at

the end of the treatment. This is what we call ”the quasi optimal single interval

antiviral treatment”, since it makes the system to approach the maximal final

value of uninfected cells (U∞ ≈ U∗), without infection rebounds.

v. An important point to be remarked is that the quasi optimal single interval antivi-

ral treatment does not determine the peak of the virus. Quasi optimal conditions

for U∞ are stationary, while condition for minimizing V̂ are transitory, so both

objective can be accounted for simultaneously.

Future works include the study of more complex control strategies (mainly model

based control strategies as MPC and similar) and the explicit consideration of time-

varying immune system.
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Appendix 1: Stability theory

In this section some basic definitions and results are given concerning the asymp-

totic stability of sets and Lyapunov theory, in the context of non-linear continuous-time

systems ([20], Appendix B). All the following definitions are referred to system

ẋ(t) = f(x(t)), x(0) = x0, (7.1)

where x is the system state constrained to be in X ⊆ R
n, f is a Lipschitz continuous

nonlinear function, and φ(t;x) is the solution for time t and initial condition x.

Definition 7.1 (Equilibrium set). Consider system 7.1 constrained by X . The set Xs ⊂
X is an equilibrium set if each point x ∈ Xs is such that f(x) = 0 (this implying that

φ(t;x) = x for all t ≥ 0).

Definition 7.2 (Attractivity of an equilibrium set). Consider system 7.1 constrained

by X and a set Y ⊆ X . A closed equilibrium set Xs ⊂ X is attractive in Y if

limt→∞ ‖φ(t;x)‖Xs
= 0 for all x ∈ Y . If Y is a ε-neighborhood of Xs for some

η > 0, we say that Xs is locally attractive.

We define the domain of attraction (DOA) of an attractive set Xs for the system 7.1

to be the set of all initial states x such that ‖φ(t;x)‖Xs
→ 0 as t → ∞. We use the

term region of attraction to denote any set of initial states contained in the domain of

attraction.

A closed subset of an attractive set (for instance, a single equilibrium point) is

not necessarily attractive. On the other hand, any set containing an attractive set is

attractive, so the significant attractivity concept in a constrained system is given by the

smallest one7.

Definition 7.3 (Local ǫ − δ stability of an equilibrium set). Consider system 7.1 con-

strained by X . A closed equilibrium set Xs ⊂ X is ǫ− δ locally stable if for all ǫ > 0
there exists δ > 0 such that if ‖x‖Xs

< δ then ‖φ(t;x)‖Xs
< ǫ, for all t ≥ 0.

Unlike attractive sets, a set containing a locally ǫ − δ stable equilibrium set is not

necessarily locally ǫ − δ stable. Even more, a closed subset of a locally ǫ − δ stable

equilibrium set (for instance, a single equilibrium point) is not necessarily locally ǫ− δ
stable. However, any (finite) union of equilibrium sets locally ǫ−δ stable is also locally

ǫ− δ stable. So the significant stability concept in a constrained system is given by the

largest one.

Although a finite union of equilibrium set locally ǫ − δ stable is also locally ǫ − δ
stable, in general we cannot extend this result to the case of arbitrary unions of points.

Thus, even when every equilibrium point of an equilibrium set is locally ǫ − δ stable,

we cannot assure that the whole set would be locally ǫ−δ stable. This is due to the fact

that given a fixed ǫ the δ chosen for each point depend on the point and so the infimum

of them could be zero. However, if in addition we also assume that the set is compact,

then the stability of the set can be inherited from the stability of its points.

7Given two different attractive sets in X with the same DOA, one must be contained in the other. So the

family of all attractive sets in X with the same DOA is a totally ordered set under the set inclusion (nested

family). An arbitrary (finite, countable, or uncountable) intersection of nested nonempty closed subsets of a

compact space is a nonempty compact set [? ]. Then if one element of the family is bounded, and therefore

compact, the intersection of all the family is a nonempty compact set. This set is the smallest atractive set.
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Lemma 7.4. Let Xs be a compact equilibrium set. If every xs ∈ Xs is ǫ − δ locally

stable, then Xs is ǫ− δ locally stable.

Proof. Given ǫ > 0, there exists δ = δ(xs) > 0 for each xs ∈ Xs such that if x ∈
Bδ(xs)(xs) then φ(t;x) ∈ Bǫ(xs) for t ≥ 0. The family of δ-balls form a open cover of

Xs. Let us denote the union of this coverV , i.e. V :=
⋃

{Bδ(xs)(xs) : xs ∈ Xs}. Since

Xs is compact and the complement of V is closed, then the distance between them is

strictly positive, i.e. δ∗ := d(Xs, V
c) > 0. Therefore, the δ∗ neighborhood of the

equilibrium set Xs is contained in V . Thus if x ∈ Bδ∗(Xs) ⊂ V then φ(t;x) ∈ Bǫ(Xs)
for t ≥ 0 .Therefore Xs is ǫ− δ locally stable.

Definition 7.5 (Asymptotic stability (AS) of an equilibrium set). Consider system 7.1

constrained by X and a set Y ⊆ X . A closed equilibrium set Xs ⊂ X is asymptotically

stable (AS) in Y if it is ǫ− δ locally stable and attractive in Y .

Next, the theorem of Lyapunov, which refers to single equilibrium points and pro-

vides sufficient conditions for both, local ǫ − δ stability and assymptotic stability, is

introduced.

Theorem 7.6. (Lyapunov’s stablity theorem [36, Theorem 4.1]) Consider system 7.1

constrained by X and an equilibrium state xs ∈ Xs. Let Y ⊂ X be a neighborhood of

xs and consider a function V (x) : Y → R such that V (x) > 0 for x 6= xs, V (xs) = 0
and V̇ (x(t)) ≤ 0, denoted as Lyapunov function. Then, the existence of such a function

in a neighborhood of xs implies that xs ∈ Xs is locally ǫ− δ stable in Y . If in addition

V̇ (x(t)) < 0 for all x 6= xs, then xs is asymptotically stable in Y .

Appendix 2: Maximum of U∞

As mentioned previously, U∞ can be expressed as a function of U , I and V as

follows

U∞(U, I, V ) = −
W (−RUe−R(U+I+ δ

p
V ))

R
(7.2)

with R, δ and p fixed. For each ε ≥ 0 let us define a domain of X given by

Ω(ε) = {(U, I, V ) ∈ X : I ≥ ε, V ≥ ε} . (7.3)

The following Lemma describe the behavior of the maximum of U∞ on each Ω(ε).

Lemma 7.7 (Maximum of the function U∞). Consider the function U∞ given by (7.2)

and for each ε ≥ 0 the domains Ω(ε) given by (7.3). Then the maximum of

U∞(U, I, V ) in Ω(ε) is reached in (U∗, ε, ε). In particular, the maximum value of

U∞ over Ω(0) is reached in (U∗, 0, 0) and is given by U∞(U∗, 0, 0) = U∗, where

U∗ = 1/R.

Proof. According to (7.2), U∞ can be written as

U∞(U, I, V ) = −
W (−f(U, I, V ))

R
,

with f(U, I, V ) = RUe−R(U+I+δ/pV ). Since −W (−·) is an increasing (injective)

function then U∞(U, I, V ) achieves its maximum over Ω(ε) at the same values as
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Figure 11: Function U∞(U, V ), for different values of ǫ, when U ∈ [0, Umax], V = ǫ and I = 0.

As it can be seen, the supremum of U∞ (given by U∗) is achieved when U = U∗ and I → 0.

f(U, I, V ). Then, we focus our attention in finding the maximum (and the maximizing

variables) of f(U, I, V ).
Through the change of variables x = RU and y = R(I + δ/pV ), f can be studied

as a function of the form g(x, y) = xe−(x+y). Note that (U, I, V ) ∈ Ω(ε) if and only

if x ≥ 0 and y ≥ η where η := R(1 + δ
p )ε ≥ 0. Therefore to find extremes of f in

Ω(ε) it is enough to study the extreme points of g over Ω′ = {(x, y) ∈ R
2
≥0 : y ≥ η}.

Since ∇g = [(1 − x)e−(x+y),−xe−(x+y)] does not vanish and g → 0 when

‖(x, y)‖ → ∞, then the maximum is reached at the boundaries of Ω′. A simple analy-

sis shows that g restricted to the boundary of Ω′ achieves its maximum in (1, η). This

means that f(U, I, V ) achieves its maximum in U = 1/R = U∗ and I = V = ε.

In particular, when ε = 0, f(U, I, V ) reaches its maximum in (U∗, 0, 0). Further-

more,

U∞(U∗, 0, 0) = −
W (−f(U∗, 0, 0))

R
= −

W (−1/e)

R
=

1

R
= U∗,

which concludes the proof.
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