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Abstract: This paper deals with the problem of the optimal selection and location of batteries in DC
distribution grids by proposing a new mixed-integer convex model. The exact mixed-integer nonlin-
ear model is transformed into a mixed-integer quadratic convex model (MIQC) by approximating
the product among voltages in the power balance equations as a hyperplane. The most important
characteristic of our proposal is that the MIQC formulations ensure the global optimum reaching via
branch & bound methods and quadratic programming since each combination of the binary variables
generates a node with a convex optimization subproblem. The formulation of the objective function
is associated with the minimization of the energy losses for a daily operation scenario considering
high renewable energy penetration. Numerical simulations show the effectiveness of the proposed
MIQC model to reach the global optimum of the optimization model when compared with the
exact optimization model in a 21-node test feeder. All the validations are carried out in the GAMS
optimization software.

Keywords: battery energy storage systems; exact mathematical optimization; global optimum
finding; mixed-integer quadratic programming; power flow approximation

1. Introduction

Electrical distribution networks have experienced important paradigm shifts asso-
ciated with the large-scale insertion of renewable generation based on photovoltaic and
wind sources in conjunction with energy storage technologies mainly focused on chemical
storage [1–4]. All of these devices are interfaced with the distribution network through
the implementation of power electronic converters with alternating current (AC) and di-
rect current (DC) conversion stages as a function of the device interconnected and the
technology of operation of the distribution grid, i.e., AC or DC network [5,6]. From the
beginning to the electrical networks to our days, the predominant technology for building
electrical networks in transmission levels has been the AC technology due to the most
of the demands connected to the networks were simple, i.e., electrical rotate machines
(induction motors), temperature conditioners, and illumination, among others; however,
the nature of the loads have drastically changed with the appearance of computers, electric
vehicles, household appliances, and small dispersed generating and storage systems, most
of them operated with DC technologies [7–10]. Recent studies have demonstrated the
advantages of having distribution networks in medium voltage levels operated with DC
technologies due to important reductions in energy losses associated with the distribution
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activity since the reactive power is compensated directly in the point of connection of the
load [11,12].

Recognizing the recent relevance that is having distribution networks operated with
DC technologies, this research explores the impact of the integration of battery energy
storage systems (BESSs) in these grids, considering the high penetration of renewable
generation under an economic dispatch environment [13,14]. In the current literature,
the problem of the optimal integration of BESSs has been explored in multiple pieces of
research for AC and DC grids; here, we present some of these researches.

Authors of [15] have presented a mixed-integer nonlinear programming (MINLP)
model to represent the problem of the optimal location of BESSs in AC distribution grids.
To solve this model a decomposition method was proposed where the MINLP model
is divided into two optimization sub-problems named planning and operation. In the
planning stage is defined the optimal location of the BESSs, while the operation stage
is entrusted with their optimal operation. For solving the planning stage the classical
simulated annealing algorithm is implemented based on sensitivity indexes associated
with the impedance matrix of the network. Numerical validations were carried out in
two test feeders composed of 135 and 230 nodes; however, the authors did not provide
comparisons with other optimization methodologies to confirm the effectiveness of the
proposed approach. In Reference [16], the authors have implemented the problem of the
optimal location-reallocation of batteries in DC microgrids by solving the exact MINLP
model in the GAMS software. Numerical results were presented in a 21-bus system
considering that the initial location of the batteries was heuristically defined by the utility
company. The authors do not provide any comparative methodology to demonstrate the
efficiency of the proposed optimization methodology since the research is presented in a
tutorial style. Soroudi, in Reference [13] has presented different optimization models for
the optimal operation of BESSs in electrical AC networks. Three models were presented,
which correspond to (i) the economic dispatch model, (ii) the DC equivalent of the AC grid,
(iii) and the complete AC model of the grid. All these optimization models were solved
in the GAMS optimization package; nevertheless, no comparison with metaheuristic or
approximated optimization models were provided, since the intention of the author is
to provide optimization tools to introduce engineers in the power system optimization
topics from the tutorial point of view. Authors of [17] have presented a master-slave
optimization methodology to operate batteries in DC networks considering multiple loads
curves and high renewable generation availability. In the master stage was proposed a
particle swarm optimizer to define the optimal operation of the batteries during the day,
while the slave stage was entrusted with solving the multi-period power flow problem.
The objective persecuted by the authors corresponded to the minimization of the energy
purchasing cost at the substation node. The proposed methodology was tested in a test
feeder composed of 21 nodes, and the efficiency of the methodology was compared with
different metaheuristic approaches such as black-hole optimizer and the genetic algorithm.
In Reference [18] the authors have proposed the implementation of the genetic algorithm
to select and operate BESSs in AC distribution networks. The genetic algorithms were
entrusted with determining the size and the operation scheme of the batteries using an
integer codification with three possible states to operate these batteries. Numerical results
demonstrate that the total grid energy losses is reduced when batteries are installed by
using the Baran & Wu test feeder composed of 69 nodes [19]; however, the authors did not
provide comparisons with exact or metaheuristics optimizers to confirm the effectiveness
of the proposed optimization approach.

Other authors have proposed multiple operative models to coordinate the daily opera-
tion of the batteries; some of these approaches are: mixed-integer linear programming [20–22];
second order cone optimization [23–25], semidefinite programming [26]; genetic
algorithms [27–29], particle swarm optimization [30,31]; nonlinear programming [32–36],
and reinforcement learning for energy system optimization [37,38]. The main characteristic
of those researches is that the batteries are modeled through a linear relation between the
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state-of-charge and the amount of power injected/absorbed into the grid [11]; this linear
representation allows solving efficiently the problem of the optimal dispatch of these batteries
in AC and/or DC grids where these are previously located to the network.

To contribute to the research area associated with the optimal integration and operation
of BESSs in electrical networks, here, we propose an efficient mixed-integer quadratic
convex (MIQC) model to select and size batteries in DC networks. This corresponds to
an improvement of the mixed-integer nonlinear programming (MINLP) model proposed
in [16], with the main advantage that the optimal location and coordination of the batteries
correspond to the global optimal solution of the problem since the MIQC model ensures the
finding through the application of the Branch & Bound and interior-point methods [39]. To
verify the efficiency of the proposed MIQC model is evaluated in a DC network composed
of 21 nodes and its results are compared with the exact MINLP model implemented in the
GAMS software.

To demonstrate the novelty of the proposed convex reformulation to select and locate
batteries in DC grids, in Table 1 are summarized the main literature reports, by highlighting
the type of mathematical models, solution techniques, and objective functions considered.

Table 1. Main approaches reported in the specialized literature.

Math. Model Objective Function Solution Method Ref.

MINLP Minimization of the grid generation costs General algebraic modeling system [34]

MINLP Minimization of energy losses costs and
investment costs

Sensitivity index combined with simulated
annealing [15]

MINLP Minimization of energy losses costs General algebraic modeling system [16]
MINLP Minimization of energy losses costs Genetic algorithms and multiperiod power flow [18]

NLP Simultaneous minimization of energy losses costs
and greenhouse gas emissions General algebraic modeling system [40]

NLP Minimization of grid generation costs General algebraic modeling system [13]

NLP Minimization of energy losses costs Particle swarm optimization and multiperiod
power flow [17]

LP Minimization of grid operation costs and
greenhouse gas emissions Stochastic linear programming [20]

MILP Minimization of the operating costs reduction by
promoting self-consumption General algebraic modeling system [22]

MILP Minimization of operative costs in microgrids Simulation scenarios in the CPLEX solver [21]
MICP Minimization of the grid expansion planning costs CPLEX solver in the AMPL software [23]

SDP Minimization of the grid generation costs Convex solvers in the CVX environment for
MATLAB [26]

SOCP Minimization of the grid generation costs Convex solvers in the CVX environment for
MATLAB [25]

Note that the literature reports in Table 1 show that the most common objective
functions are associated with the minimization of the grid operating costs and energy
losses costs, which supports the selection of the objective function considered in this
research to select and integrate BESSs in DC grids. In addition, the proposed MIQC
reformulation for the exact MINLP model has not been previously proposed for AC and
DC grids, which was identified in this research as a gap in the scientific literature that this
investigation tries to fill.

Ahead, this document has the following organization: Section 2 presents the exact
MINLP formulation of the problem of the optimal selection and operation of BESSs in DC
grids considering as the objective function minimization of the energy losses costs during
the period of operation; Section 3 presents the proposed MIQC reformulation by using a
Taylor linearization of the product among voltages in the power balance equation; Section 4
presents the main characteristics of the 21-bus system used to validate the proposed
optimization methodology. Section 5 presents the main numerical results when comparing
the exact MINLP and the proposed MIQC models, including their analysis and discussion.
Finally, Section 6 lists the main conclusions obtained from this research.
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2. General Formulation

The study of the optimal siting and selection of BESS in DC microgrids considering
high penetration of renewable sources corresponds to a mixed-integer nonlinear program-
ming formulation that can be represented as a multi-period economic dispatch [15,41]. The
nonlinear part of the optimization model is defined by the product among voltages in the
power balance constraint [42]; while binary nature is associated with the variables that
define the location or not of a BESS in an arbitrary node of the network [16].

2.1. Objective Function

Here, we present the exact MINLP for optimal locating-reallocating BESS in DC
networks considering as the objective function the minimization of the costs of the daily
energy losses.

min f1 = CoE ∑
t∈H

∑
i∈B

vi,t

(
∑
j∈B

Gijvj,t∆t

)
, (1)

where f1 is the value of the objective function related with the total costs of the daily energy
losses, CoEt is the average cost of the energy in the spot market; vi,t and vj,t are the voltage
variables at nodes i and j during the period of time t, respectively. Gij corresponds to
the conductance parameter that relates nodes i and j; ∆t represents the length of the time
period where the demand and generation are assumed constant; this parameter can be 1 h,
30 min, or 15 min, depending on the data resolution. It should be noted thatH and B are
the sets that contain all the periods of time and all the buses of the network, respectively.

Remark 1. The main characteristic of the objective function f1 is that it corresponds to an alge-
braic sum of quadratic terms with the main advantage that its combination is convex, since the
conductance matrix, i.e., G, is a positive definite [43]; which implies that this objective function can
be rewritten as follows

f1 = CoE ∑
t∈H

(
vT

t Gvt

)
∆t, (2)

where vt is the vector that contains all the nodal voltages at each period of time.

It is worth mentioning that the minimization of the objective function (2) involves
the improvement of the voltage profiles in all the nodes of the networks since the total
grid energy losses are a nonlinear function of the voltage profiles. In addition, due to the
presence of the conductance matrix in this objective function, the usage of the renewable
energies are in general maximized, since these helps with local power injection that reduces
the current magnitudes provided by the slack source. For this reason, as confirmed by
Table 1, in this research the minimization of the total costs of the energy losses is selected
as the performance index for our proposed MIQC model.

2.2. Set of Constraints

The problem of the optimal selection and operation BESSs in DC grids includes
multiple constraints: power balance, state-of-charge (SoC) in batteries, devices’ capabilities,
voltage regulation bounds, and the maximum number of BESSs that can be installed along
the grid [17], among others. In this paper, the complete list of constraints considered is
presented below.

pi,t + pdg
i,t + ∑

b∈E
pb

i,t − pd
i,t = vi,t ∑

j∈B
Gijvj,t, {∀i ∈ B & ∀t ∈ H} (3)

SoCb
i,t = SoCb

i,t−1 − ϕb
i pb

i,t∆t, {∀b ∈ E , ∀i ∈ B& ∀t ∈ H} (4)

SoCb
i,t0

= xb
i SoCb,ini

i , {∀b ∈ E &∀i ∈ B} (5)
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SoCb
i,t f

= xb
i SoCb, f in

i , {∀b ∈ E &∀i ∈ B} (6)

pmin
i,t ≤ pi,t ≤ pmax

i,t , {∀i ∈ B& ∀t ∈ H} (7)

pdg,min
i,t ≤ pdg

i,t ≤ pdg,max
i,t , {∀i ∈ B& ∀t ∈ H} (8)

xb
i pb,min

i ≤ pb
i,t ≤ xb

i pb,max
i , {∀b ∈ E , ∀i ∈ B& ∀t ∈ H} (9)

vmin
i ≤ vi,t ≤ vmax

i , {∀i ∈ B& ∀t ∈ H} (10)

xb
i SoCb,min

i ≤ SoCb
i,t ≤ xb

i SoCb,max
i , {∀b ∈ E , ∀i ∈ B& ∀t ∈ H} (11)

∑
b∈E

∑
i∈B

xb
i = Nmax

b , (12)

where pi,t, pdg
i,t , pb

i,t, and pd
i,t are the power produced by the slack and disperse sources, the

power absorbed/provided by the BESSs, and the constant power consumption at node i
in the time period t, respectively; SoCb

i,t is the BESS’ state-of-charge which is connected at
node i in the period of time t; xb

i represents a binary variable associated with the locating

possibility of the BESS b at node i; SoCb,ini
i and SoCb, f in

i are the initial and final projected
states of charge of the batteries, respectively, while SoCb,min

i and SoCb,max
i represent the min-

imum and maximum limits of the state-of-charge variables; pmin
i,t , pmax

i,t , pdg,min
i,t , and pdg,max

i,t
correspond to the minimum and maximum limits of admissible generation for conven-
tional and disperse generation sources located connected at node i in time period of time t,
respectively, while pb,min

i and pb,max
i define the minimum and maximum charge/discharge

capacities for the battery located at node i; vmin
i and vmax

i define the voltage regulation
limits of the DC network. Finally, ϕb

i is the charge coefficient associated with the BESS
connected at node i. Note that Nmax

b is the maximum number of BESS available for being
introduced in the DC grid, and E is the set that includes all the BESS technologies available.

2.3. Model Interpretation

The exact MINLP formulation (1) to (12) can be understood as follows: Equation (1)
and its matricial form defined in (2) correspond to the objective function of the optimization
problem that defines the daily cost of the energy losses of the network associated with
the energy dissipation in all the distribution lines of the distribution system. Equality
constraint (3) defines the power balance at each node of the network which results from
the application of the nodal voltage method to the grid with constant power consumption;
Equation (4) defines the linear relation between the state-of-charge of the battery and its
power delivered/consumed [13]; Equations (5) and (6) define the operative characteristics
for operating BEESs, which are the desired initial and final SoCs typically defined by the
distribution company. Equations (7)–(9) define the upper and lower power limits for the
slack and disperse generation sources as well as for BESSs, respectively. In Equation (10),
the voltage regulation constraints are set. Inequality constraint (11) presents the upper and
lower bounds for the SoCs in BESSs; Equation (12) defines the maximum number of BESSs
available for installation in the DC distribution grid.

Remark 2. The main complication of the MINLP model (1)–(12) corresponds to the power equilib-
rium constraints (see Equation (3)) since this is non-convex owing the products among continuous
variables, i.e., voltages in all the nodes [42].

This set of equality constraints (power balance equations) will be treated with a
Taylor-based linearization to become the MINLP model into a MIQC model as the main
contribution of this work as will be presented in the next section.
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3. Mixed-Integer Quadratic Reformulation

To deal with the MINLP model that represents the problem of the optimal selection and
location of batteries in DC distribution grids, we present the proposed MIQC reformulation
based on the linearization of the product among two continuous variables present in the
power balance constraint (3). This linearization is based on the convex representation of
the load flow problem for DC distribution grids proposed in [44]. The linearization of the
product of two continuous variables is detailed as follows.

Let us suppose that a function to represent the product between two continuous
positive variables defined as:

f (ω1, ω2) = ω1ω2, (13)

In addition, consider that the initial value assignable to these variables are ω10 and
ω20, which implies that after applied the Taylor’ series expansion to (13), the following
representation for this product between two continuous variables is obtained,

f (ω1, ω2) = ω20ω1 + ω10ω2 −ω10ω20 + fH.O.T(ω1, ω2, ω10, ω20), (14)

where fH.O.T(·) models the high-order-terms in the Taylor’s series expansion. To obtain a
linear approximation of the product between two variables, the high-order-terms in fH.OT(·)
can be neglected due to their small contribution around the operating point (ω10, ω20).

When the linear approximation defined in (14) is applied to electrical networks to
transform the power balance set of constraints in (3), the following linear equivalent set of
constraints is obtained [44].

pi,t + pdg
i,t + ∑

b∈E
pb

i,t − pd
i,t = ∑

j∈B
Gij
(
vi,tvj0,t + vi0,tvj,t − vi0,tvj0,t

)
, {∀i ∈ B & ∀t ∈ H} (15)

where vi0,t and vj0,t represent the linearization points for the voltage profiles at each
period of time; where if the per-unit representation is used, then these values are equal to
1.00 pu [44].

To demonstrate the effectiveness of the linearization of the product between volt-
ages around the operative point (v10, v20) = (1, 1) a graphic comparison between the
nonlinearised and the linearised representation is considered for two small load systems.
Considering a grid with two demand nodes with lower and upper voltage regulation
bounds of 0.90 pu and 1.10 pu, the error between the nonlinear function in (13) and the
linear representation (14) is presented in Figure 1.

Note that the percentage error depicted in Figure 1 shows that the linearization of
the product between voltages has an estimation error of about 1% in the extreme voltage
points, which confirms that the linear representation in (14) is suitable to represent the
product of the voltage variables as was redefined in Equation (15).

Remark 3. Once the power balance equations are linearized as defined in (15), the complete
structure of the proposed MIQC is composed by the objective function (1) or (2) and the restrictions
(4)–(12) and (15).
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Figure 1. Percentage of error when compared the convex approximation and the exact product of
two positive variables around the operative point (x0, y0) = (1, 1).

To summarize the solution methodology for the proposed MIQC model and the exact
MINLP formulation in Figure 2 is presented the flow diagram of both mathematical models
in the GAMS software [13].

Start: GAMS
execution

DC grid data Renewable energy

Set maps and sets

Include scalars, tables
and parameters

Define the vari-
ables’ type and

their bounds

Chose the refer-
ence names of
the Equations

Write the opti-
mization model

Solve the MIQC
model using an
adequate solver

Evaluation
ends?

End: Analy-
sis of results

Solution reportChange the
model (MINLP)

no

yes

Figure 2. Procedure to solve an optimization model in GAMS.
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4. Analysis of a DC Network

To validate the MIQC model for the optimal selection and location of BESSs in DC
networks using the GAMS software we use the 21-node test feeder reported in [16]. The
complete information of this test feeder is presented below.

The 21-bus system corresponds to a radial DC network with 21 nodes and 20 branches
with a radial configuration. A controlled voltage source is sited at node 1, which defines
the voltage profile of the network in 1 kV. The connection among nodes in this test feeder
is presented in Figure 3.

ac
dc slack (v)

12

34

5

6 8

9

11

12

13
14

16

17

18

19

20

21

7

10

15

Initial location of the BESSs

Figure 3. Electrical topology for the 21-bus system.

The information regarding constant power consumption, energy purchasing cost,
variation of the demand along the day, and the location of the BESSs in this test feeder is
reported in Tables 2–4.

Table 2. Data for the 21-bus system.

From i To j Rij (pu) Pj (pu) From i To j Rij (pu) Pj (pu) From i To j Rij (pu) Pj (pu)

1 (slack) 2 0.0053 0.70 7 9 0.0072 0.80 15 16 0.0064 0.23
1 3 0.0054 0.00 3 10 0.0053 0.00 16 17 0.0074 0.43
3 4 0.0054 0.36 10 11 0.0038 0.45 16 18 0.0081 0.34
4 5 0.0063 0.04 11 12 0.0079 0.68 14 19 0.0078 0.09
4 6 0.0051 0.36 11 13 0.0078 0.10 19 20 0.0084 0.21
3 7 0.0037 0.00 10 14 0.0083 0.00 19 21 0.0081 0.21
7 8 0.0079 0.32 14 15 0.0065 0.22 – – – –

Parameters in per-unit representation using the following bases Pbase = 100 kW and Vbase = 1 kV.
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Table 3. Hourly demand behavior and energy buying costs.

Time (h) CoE (pu) Dem. Var. (%) Time (h) CoE (pu) Dem. Var. (%) Time (h) CoE (pu) Dem. Var. (%)

0.5 0.8105 34 8.5 0.9263 62 16.5 0.9737 90
1.0 0.7789 28 9.0 0.9421 68 17.0 1 90
1.5 0.7474 22 9.5 0.9579 72 17.5 0.9947 90
2.0 0.7368 22 10.0 0.9579 78 18.0 0.9895 90
2.5 0.7263 22 10.5 0.9579 84 18.5 0.9737 86
3.0 0.7316 20 11.0 0.9579 86 19.0 0.9579 84
3.5 0.7368 18 11.5 0.9579 90 19.5 0.9526 92
4.0 0.7474 18 12.0 0.9526 92 20.0 0.9474 100
4.5 0.7579 18 12.5 0.9474 94 20.5 0.9211 98
5.0 0.8000 20 13.0 0.9474 94 21.0 0.8947 94
5.5 0.8421 22 13.5 0.9421 90 21.5 0.8684 90
6.0 0.8789 26 14.0 0.9368 84 22.0 0.8421 84
6.5 0.9158 28 14.5 0.9421 86 22.5 0.7947 76
7.0 0.9368 34 15.0 0.9474 90 23.0 0.7474 68
7.5 0.9579 40 15.5 0.9474 90 23.5 0.7211 58
8.0 0.9421 50 16.0 0.9474 90 24.0 0.6947 50

The cost of the energy is assumed as COP$/kWh 479.3389 (CODENSA utility in Colombia [16].

Table 4. BESSs information.

Node Type ϕb pb,max pb,min

7 A 0.0625 4 −3.2
10 B 0.0813 3.2 −2.4616
15 B 0.0813 3.2 −2.4616

Two distributed generators (DGs) are considered in the the 21-bus system, one wind
power generator and one photovoltaic system. The wind power generator is located at
node 12 with a maximum power rate of 221.52 kW. The photovoltaic source is located at
node 21 with a maximum power rate of 281.58 kW. It is worth mentioning that the rated
power of the DGs will multiply the normalized generation curves presented in Table 5.

Table 5. Normalized Curve of generation: Wind power generator and PV system.

Time (h) PWT (pu) PPV (pu) Time (h) PWT (pu) PPV (pu) Time (h) PWT (pu) PPV (pu)

0.5 0.6303 0 8.5 0.8271 0.0403 16.5 0.9892 0.4193
1.0 0.6194 0 9.0 0.8523 0.1344 17.0 0.9652 0.2784
1.5 0.6098 0 9.5 0.8788 0.2710 17.5 0.9244 0.1373
2.0 0.6050 0 10.0 0.9064 0.3673 18.0 0.8607 0.0374
2.5 0.6122 0 10.5 0.9328 0.4584 18.5 0.7743 0.0007
3.0 0.6411 0 11.0 0.9520 0.6125 19.0 0.7251 0
3.5 0.6927 0 11.5 0.9640 0.8134 19.5 0.7167 0
4.0 0.7395 0 12.0 0.9700 0.9122 20.0 0.7167 0
4.5 0.7779 0 12.5 0.9748 0.9633 20.5 0.7251 0
5.0 0.7887 0 13.0 0.9784 1.0000 21.0 0.7263 0
5.5 0.7671 0 13.5 0.9832 0.9582 21.5 0.7179 0
6.0 0.7479 0 14.0 0.9880 0.8791 22.0 0.7095 0
6.5 0.7287 0 14.5 0.9940 0.7308 22.5 0.6987 0
7.0 0.7371 0 15.0 0.9988 0.7645 23.0 0.6915 0
7.5 0.7731 0 15.5 1.0000 0.6866 23.5 0.6867 0
8.0 0.8031 0.0016 16.0 0.9964 0.5893 24.0 0.6831 0

5. Implementation and Results

The implementation of the proposed MIQC model and the exact MINLP model was
made on a desktop computer running on INTEL(R) Core(TM) i7-7700, 3.60 GHz, 8 GB
RAM with 64-bit Windows 10 Pro (Intel, Santa Clara, CA, USA). The optimization package
corresponds to the GAMS software version 25.1.3 using the BONMIN solver.
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To evaluate the performance of the BESSs in the DC network in all the simulations is
considered that the initial and the final state-of-charge are assigned as 50%, and along the
day this variable can vary from 10% to 90% [36]. In addition, three simulation cases are
studied as follows:

• Case 1: The initial location of the BESSs is tested in the exact MINLP model and the
MIQC model to determine the error introduced by the Taylor approximation in the
daily cost of the energy losses. Note that this simulation case solves the power flow
problem with multiple periods since the binary variables related with BESSs are fixed,
i.e., the MINLP model becomes into a nonlinear programming model and the MIQC
model becomes a quadratic convex model.

• Case 2: The selection and location of the BESSs is determined by solving the exact
MINLP model.

• Case 3: The selection and location of the BESSs is defined by the solution of the MIQC
model.

The main idea of the proposed simulation scenarios is to verify the effect of the pro-
posed approximated MIQC model to select, locate and operate batteries in DC networks
when compared with the exact MINLP model. For this reason, both models are imple-
mented in the same optimization environment (i.e., GAMS interface). Regarding processing
times, both optimization models take less than 5 min to be solved, which implies that
for the 21-node test system the proposed optimization model allows evaluating multiple
operative conditions (generation and demand combinations) to define the best operative
scheme of the batteries, once these batteries have been installed, by ensuring that each
solution will be optimal.

5.1. Comparative Results in the Case 1

In this simulation case, the initial BESS location is presented in Table 4 and Figure 3
are fixed into the exact MINLP and the MIQC model.

Once the exact MINLP model is solved in the GAMS package with the DICOPT solver,
it is found a total daily cost of the energy losses of COP $52957.92; while the solution
of the MIQC model with the same solver provides an optimal solution with a cost of
COP $50, 890.12. The difference between both solutions is about 3.90%, which corresponds
to the approximation error between the exact and approximated power balance equations
(see Equations (3) and (15)). In Figure 4 are reported the profiles of the state-of-charge of
the batteries obtained with the exact and the convex approximation models.

The behavior of the state of the charge in the exact and convex model follows the
same tendency with negligible errors, which confirms the effectiveness of the quadratic
convex approximated model to operate batteries in DC networks. The main advantage of
the quadratic approximation is that the existence of the global optimal solution is ensured
via convexity theory, which is indeed more attractive for the grid operation since the
solution with the same inputs will always be the same, which is not possible to ensure with
nonlinear programming models or solution techniques based on metaheuristics. It is worth
motioning that if the solution provided by the proposed quadratic model is evaluated in
the exact nonlinear model, then, the error in the estimation of the daily energy losses costs
is less than 0.5%, which demonstrate the effectiveness of our proposal to determine the
operative plan of BESSs under an economic dispatch environment for DC networks.

With respect to the behavior of the state of charge for all the BESSs depicted in Figure 4,
we can observe that: (i) all the batteries begin and finish the day with the operative consign
assigned, i.e., 50 % of the state of charge; (ii) the maximum value of the state of charge
is about 77.20% for the battery located at node 7, and the minimum value occurs for the
same battery with a value of 48.90%; these values imply that the batteries maintain during
all the day values between their minimum and maximum bounds, i.e., from 10% to 90%;
and (iii) the behavior of the state of charge at each battery is different since this depends
on its location and the possibility of absorbing energy from the renewable energy source
to return this energy to the grid when the load increases. Note for example that the BESS
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located at node system provides energy to the grid after period 21, while the remainder
BESSs returns energy to the grid only after period 33, these behaviors confirm the complex
relation among demand, power generation, and batteries to reach the minimization of the
daily energy losses costs in the DC grid.

1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
40

50

60

70

80

90

100

(a
)S

oC
(n

od
e

7)
(%

) Exact model
Quadratic convex

1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
40

50

60

70

80

90

100

(b
)S

oC
(n

od
e

10
)(

%
)

1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
40

50

60

70

80

90

100

Time (30 min period)

(c
)S

oC
(n

od
e

15
)[

%
]

Figure 4. Profile of the state of charge in all the batteries with the exact and convex quadratic models: (a) SoC profile at
node 7, (b) SoC profile at node 10, and (c) SoC profile at node 15.

5.2. Comparative Results between Case 2 and Case 3

To determine the effectiveness and robustness of the proposed MIQC model to select
and locate BESSs in DC networks, here, we compared the solution provided with the exact
MINLP formulation and our proposed convex approximation. The solution of the exact
MINLP and the MIQC models are obtained with the GAMS optimization package using
the BONMIN solver. The objective function value for both models as well as the battery
locations are reported in Table 6.

Table 6. Optimal selection and location of the BESSs with the exact MINLP and the proposed
MIQC models.

Model Type Location and Type of the BESS Losses Cost (COP$) Error MINLP (%)

MINLP {13(A), 20(B), 21(B)} 47209.95 0.00
MIQC {5(A), 16(B), 21(B)} 41627.34 3.49

Results in Table 6 show that: (i) the BESSs’ location found by the exact MINLP model
are the nodes 13, 20 and 21, with an objective function of COP $47,209.95, i.e., a reduction
with respect to the base case of 10.85%. The solution of the exact MINLP model reallocates
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all the batteries with respect to the benchmark case, which implies that the solution of the
optimization model to select and locate the BESSs in the DC network is better than the
heuristic approach reported in [36]; (ii) the proposed MIQC model finds a better optimal
solution with an objective value of COP $41,627.34, which has an estimation error with
respect to the evaluation of the BESSs’ location in the exact model about 3.49%, which
implies that the location of the batteries in nodes 5, 16, and 21 provides a daily energy losses
cost of COP $43,134.59 (note that this objective function value corresponds to the evaluation
of the batteries’ location provided by our proposed MIQC model into the exact MINLP
approach to eliminate the estimation error introduced with the model linearization). This
objective function shows that with respect to the benchmark case the effective reduction of
the daily energy losses cost is about 18.55% when the MIQC model is used to select and
locate the BESSs in the DC grid; and (iii) the effective improvement of the proposed MIQC
model with respect to the exact MINLP formulation is about 8.63%.

Figure 5 presents the final location of the BESSs system obtained for the exact MINLP
and the proposed MIQC model, where we can observe that only node 21 appears in both
solutions, this is due to the presence of a distributed generator in this node that allows
storing energy in the periods of high generation and low demand. To illustrate the behavior
of the BESSs in both models, we also present the state-of-charge profile in this node for
both solutions compared with the generation curve in this node.
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Figure 5. BESSs’ locations obtained with the exact MINLP and the proposed MIQC model.

Figure 6 shows that: (i) both optimization models present a similar state-of-charge
behavior at node 21; however, the proposed MIQC model provides additional energy to
the grid which helps with the total energy losses cost minimization (see periods of time
between 3 to 33) and (ii) both batteries provide energy in the initial period of time (from 1
to 18) since this energy will recover in the period of times where the PV source increases
its power injection (see periods of time between 15 to 33) to help with additional power
injections in the periods of time that the PV source decreases (periods 33 to 48) and the
demand increase, i.e., periods of time from 33 and beyond.
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Figure 6. Behavior of the state-of-charge at node 21 for the exact MINLP and the proposed MIQC model compared with the
PV generation in the same node.

6. Conclusions

This paper studied the problem of the optimal selection and location of the BESSs
in DC grids by transforming the exact MINLP formulation into a MIQC equivalent. This
transformation was applied to the power balance constraint using Taylor’s series expansion
applied to the product among voltages at each node. The proposed obtained MIQC model
has as the main advantage that it ensures the global optimal reaching via Branch & Bound
and interior-point methods. Numerical results demonstrated that the error introduced by
the Taylors’ approximation is less than 4.0 % for in the economic dispatch analysis when
batteries are considered fixed.

When the exact MINLP and the proposed MIQC models are solved in the GAMS
software with the BONMIM solver the numerical results demonstrated that the MINLP
model obtains a reduction of 10.85% in the daily energy losses cost when compared to the
benchmark case by reallocating the BESSs in nodes {13(A), 20(B), 21(B)}; however, the
proposed MIQC model allowed a reduction of 18.55% in the daily grid operation costs
by reassigning batteries at nodes {5(A), 16(B), 21(B)}. The net difference between both
models was about 7.70% in favor of the proposed MIQC model when compared with
the exact MINLP formulation, which confirmed the robustness and effectiveness of the
proposed convex formulation to select and locate BESSs in DC networks.

It will be possible to develop the following future researches: (i) to include in the
proposed MIQC model the possibility of doing the location of renewable energy sources
and batteries for DC networks simultaneously; (ii) reformulate the exact MINLP model
as a mixed-integer conic model to size and locate batteries in DC grids by minimizing
the total cost estimation error; and (ii) improve the battery models with temperature and
degradation factors using reinforcement learning techniques for being integrated into AC
and DC networks considering different objective functions such as voltage maximization
or renewables usage maximization.
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