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ABSTRACT

This work examined the diet of the porbeagle shark Lamna nasus in the south-west

Atlantic Ocean (SWAO, Argentina, 52� S–56� S) by analysing the stomach content

information obtained by scientific observers who sampled specimens captured as by-

catch on-board commercial fishing vessels from 2010 to 2020. A total of 148 fishing

sites were analysed, in which the estimated catch was composed mainly of hoki

Macruronus magellanicus (56.00%) and southern blue whiting Micromesistius australis

(33.13%). From 413 porbeagle sharks sampled (292 females and 121 males) ranging

from 71 to 241 cm total length (LT) (mean: 179.76 ± 26.74 cm), 310 (75.06%) con-

tained food in the stomachs. The forage fish were mainly hoki M. magellanicus

(23.53%) and southern blue whiting M. australis (19.05%), followed by the Patagonian

sprat Sprattus fuegensis (4.48%) and nototheniids (1.4%). Cephalopods and crusta-

ceans accounted for 10% of the diet. The estimated trophic level was 4.35. General-

ized linear models revealed that the consumption of hoki M. magellanicus and

southern blue whiting M. australis increased with the LT of the porbeagle shark.

Moreover, smaller porbeagle sharks preyed upon both small and large teleost fish,

whereas larger porbeagle sharks predated exclusively upon large fish. The diet of por-

beagle shark involved interactions with fisheries as it fed upon the fish species that

constituted the main catch in the analysed fishing sites, as well as the main catches

of the austral trawl fisheries. The ecological role of porbeagle shark observed in the

SWAO exposed implications for fisheries management from a multispecies

perspective.
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1 | INTRODUCTION

The family Lamnidae contains three genera and five species of mack-

erel sharks: Carcharodon carcharias (L. 1758), Isurus oxyrinchus

Rafinesque 1810, Isurus paucus Guitart Manday 1966, Lamna ditropis

Hubbs & Follett 1947 and Lamna nasus (Bonnaterre 1788)

(Compagno, 2008; Nelson et al., 2016; Weigmann, 2016). These spe-

cies are considered endothermic or heterothermic sharks that main-

tain elevated body core temperatures (and specifically stomach

temperatures) compared to the surrounding sea water (Bernal
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et al., 2005; Leigh et al., 2017; Lowe & Goldman, 2001). Both species

of Lamna are epi and mesopelagic/neritic top predators distributed in

cold temperate and polar seas (Ebert & Winton, 2010). The porbeagle

shark L. nasus is one of the few known shark species that occurs in both

the Arctic and Antarctic circumpolar regions, except the North Pacific

inhabited by L. ditropis (Ebert & Winton, 2010; Figueroa, 1997). The por-

beagle shark L. nasus showed horizontal (up to 10,000 km) and vertical

(up to 1,300 m depth) movements in open oceans (Francis et al., 2015;

Pade et al., 2009; Skomal et al., 2021) and have also sporadically been

reported in rivers (Matheson, 1928) and coastal waters (Lucifora &

Menni, 1998; Mabragaña et al., 2015).

The genus Lamna is known for feeding on economically important

species such as Pacific salmon, mackerels, Ray's bream and cephalo-

pods (Ebert & Winton, 2010; Horn et al., 2013; Nagasawa, 1998;

Yatsu, 1995). The porbeagle L. nasus with their pointed, grasping teeth

feed predominantly on teleost fishes and cephalopod (Stevens, 2010),

probably with minimal handling and rapid swallowing (Lucifora

et al., 2009). The interaction of porbeagle shark with commercial fish-

eries would be associated with their prey (ICCAT, 2020). For instance,

the porbeagle L. nasus is a common by-catch in the Chilean longline

swordfish fishery in the south-eastern Pacific Ocean (Hoyle

et al., 2017a; Torres-Florez & Reyes, 2007), as well as in the Uru-

guayan tuna longline fishery from the south-west Atlantic Ocean

(SWAO, Domingo et al., 2008; Cortés et al., 2010; Forselledo, 2012;

Mas, 2012). In New Zealand it is a common by-catch in tuna longline,

mid-water trawl and coastal set net fisheries (Duffy, 2015). In Argen-

tina they are subjected to incidental by-catch but mainly in trawling

vessels operating south of 50� S (austral trawl fisheries), targeting hoki

Macruronus magellanicus Lönnberg 1907, southern blue whiting Micro-

mesistius australis Norman 1937, Patagonian toothfish Dissostichus

eleginoides Smitt 1898 and austral hake Merluccius australis (Hutton

1872) (Cortés & Waessle, 2017; Waessle & Cortés, 2011). In Argen-

tina, up to 90% of the reported porbeagle shark by-catch corresponds

to the austral trawl fisheries (Cortés et al., 2017; Waessle &

Cortés, 2011).

The removal of sharks by fishing has direct and indirect implica-

tions on the structure and function of marine ecosystems (Stevens

et al., 2000). The direct effects of fishing through the capture of indi-

vidual species include changes in abundance, size structure, life-

history parameters and, at the extreme, could lead to extinction

(Stevens et al., 2000). The indirect effects involve trophic interactions

at the community level through a selective removal of key species

(predator, prey or competitors), species replacement and enhance-

ment of food supply through discards (Stevens et al., 2000) or depre-

dation (Mitchell et al., 2018). The porbeagle shark L. nasus is classified

as vulnerable globally in the IUCN Red List, but the categories differ

regionally (Dulvy et al., 2014). In the SWAO, porbeagle shark was cat-

egorized as data deficient (Cuevas et al., 2020); therefore, biological

and ecological studies focused on this species are a priority. The

impact of fishing exploitation on the North Atlantic stock and the lack

of data on the stocks of L. nasus in the Southern Hemisphere were

the main reasons for its inclusion in Appendix II of the Convention on

International Trade in Endangered Species of Wild Fauna and Flora

(CITES, 2013). Nonetheless, recent analyses on the status of the

L. nasus stock in the Southern Hemisphere have concluded that there

is a very low risk that the stock is subjected to overfishing (Hoyle

et al., 2017b).

In SWAO, the seasonality and length frequency distributions of

porbeagle shark registered in commercial fleet indicated that the nurs-

ery areas are located in northern and temperate regions

(Forselledo, 2012; Soto & Montealegre-Quijano, 2012), whereas the

adult feeding grounds are in southern and colder areas (Cortés

et al., 2017; Waessle & Cortés, 2011). Similar migratory behaviour

was observed in North Pacific for L. ditropis, from optimal thermal

habitat (warmer temperatures at lower latitudes) to an optimal forag-

ing habitat (Pacific salmon and Pacific herring aggregation in the Gulf

of Alaska) (Hulbert et al., 2005). Nonetheless, the diet of porbeagle

shark in the supposed feeding ground area in the austral region of the

SWAO (52� S–56� S) has not been investigated to date. In this con-

text, the general objective of the present work was to examine the

diet of the porbeagle shark by analysing the stomach content informa-

tion obtained by scientific observers who sampled specimens cap-

tured as by-catch in austral trawl fisheries from 2010 to 2020. The

specific objectives were as follows: (a) to quantify the diet composi-

tion of the porbeagle shark in the SWAO (52� S–56� S), (b) to deter-

mine the trophic level, (c) to evaluate the effect of total length (LT),

sex, main species caught (MSC) in the fishing site, latitude, depth and

hour on the diet and (d) to investigate the relationships between the

LT of predator and LT of prey.

2 | MATERIALS AND METHODS

2.1 | Study area

The study area was located at the south-east of the southern tip of

South America and at the west of Burdwood Bank/Namuncurá

(52.19–56.33� S, 60.03–67.11� W, 94–816 m depth; Figure 1). The

top of Burdwood/Namuncurá Bank is a large plateau of 80–150 m

depth, situated at the east of Argentinean continental shelf break and

Beagle Chanel, separated from them by deep water of 500–2,000 m

depth (Van Mieghem & Van Oye, 1965). The study area was situated

between three marine protected areas (MPA): the Burdwood/

Namuncurá Bank has two MPA (Namuncurá MPA I and II,

c. 60,000 km2) created in 2013 and 2018, considered an oceanic

hotspot of benthic and nekton biodiversity (Figure 1) (Delpiani

et al., 2020; Schejter et al., 2016; Schejter & Bremec, 2019). The

Yaganes MPA encompass 68,834 km2, which was created in 2018

with Namuncurá MPA II for biodiversity conservation and protection

of structure and functioning of ecosystems (Figure 1).

Based on the assemblage of marine species, the study area is

located in an ecoregion within the Magellanic and Patagonian slope

biogeographic provinces (Menni et al., 2010; Perillo et al., 2006; Sab-

adin et al., 2020). The assemblage of species of this ecoregion extends

its distribution towards northern, outer and deeper areas of the

Argentinean continental shelf and slope, following the cold waters of
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the Malvinas Current which ranges from 3.5 to 5� C at its origin

(Guerrero et al., 1999; Perillo et al., 2006; Piola & Gordon, 1989).

The Magellanic Province covers the slope (200–1,000 m) along the

continental margin from 36� S to 43� S, and southward of 43� S from

the coastline to 500 m depth, including the Malvinas Islands and

the Burdwood/Namuncurá Bank (Menni et al., 2010; Sabadin

et al., 2020). The Patagonian slope province ranged from 41� S to

57� S, between 500 and 2,500 m depth (Sabadin et al., 2020). The

mean surface temperature of this ecoregion ranges from 4 to 13� C

(Balech & Ehrlich, 2008; Guerrero et al., 1999).

2.2 | Data source

The comprehensive data set herein analysed was obtained from com-

mercial fishing vessels by 15 scientific observers of the National Insti-

tute of Fisheries Research and Development (INIDEP, Argentina). The

information was collected from 2010 to 2020 (Figure 1), and con-

sisted of date, geographic coordinates and depth of the fishing sites.

In each fishing site, the scientific observer made a reliable estimate of

total catch composition in tons, following FAO observer programme

operations manual (van Helvoort, 1986). A total of 148 fishing sites

carried out during January (5), February (22), March (24), April (32),

May (45), June (15) and July (5) were included in the analysis

(Figure 1). The species that constituted more than 50% of the catch

was established as the MSC at each fishing site. The MSC was hoki

M. magellanicus in 91 fishing sites, southern blue whiting M. australis

in 48 fishing sites and other species in 9 fishing sites. The specimens

of porbeagle shark L. nasus captured that could not be released alive

were analysed (Figure 2a). These sharks were measured in LT, sexed,

their stomachs excised and opened, and prey items identified to the

lowest possible taxonomic level. The LT of fish consumed by porbea-

gle shark was recorded when gut contents were not highly digested

(Figure 2b).

2.3 | Data analyses

The vacuity index of the porbeagle shark L. nasus was estimated to

evaluate the rate of feeding activity as the percentage of empty sto-

machs (Moura et al., 2008). The importance of each prey in the diet of

the porbeagle shark L. nasus was assessed by calculating the percent-

age frequency of occurrence (%F, the total number of stomachs in

which a given prey was found expressed as a percentage of the total

number of stomachs with food). The presence–absence data were

used to account the %F that provides an adequate and interpretable

measure of diet composition (Baker et al., 2014). Moreover, the %F

approach provided a rapid, unambiguous and reliable account of diet

composition, not affected by the condition of prey (Buckland

et al., 2017). Nonetheless, %F values are not additive because differ-

ent prey usually occur together within a single stomach, meaning that

they usually sum more than 100% for all different prey items of the

F IGURE 1 Map of the study area showing
the fishing sites (solid circles) where specimens
of porbeagle shark Lamna nasus were collected
from 2010 to 2020, aboard the commercial
fishing vessels to study the diet in the south-
west Atlantic Ocean. MPA I: marine protected
area at Burdwood/Namuncurá Bank delimited
by the 200 m isobath (28,000 km2). MPA II:
marine protected area at southern Burdwood/

Namuncurá Bank (32,000 km2). Yaganes MPA
(68,834 km2) partially shown
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predator. To resolve this disadvantage, the %F was expressed on a

per cent basis, as the percentage of the percentage of the frequency

of occurrence (%%F) of each prey, as follows: %%F = 100 � %F/Σ %F.

The %%F sum 100% and could be used as an alternative index to

facilitate comparisons among diet studies. This index representa-

tive of the diet accurately describes the trophic spectrum and

allows the estimation of other parameters such as the trophic

level of the porbeagle shark, following the formula proposed by

Cortés (1999) as follows:

TROPH¼1þ
Xn

i¼1

PiTrophi

where TROPH is the trophic level of L. nasus, Trophi is the trophic

level of each prey item “i,” Pi is the %%FF of each prey item “i” in the

diet and “n” is the total number of prey items. The Trophi was

obtained from the literature (Cortés, 1999; Froese & Pauly, 2019;

Troccoli et al., 2020).

To test the hypothesis that the consumption of the main identifi-

able prey of porbeagle shark (hoki and southern blue whiting) was

influenced by LT, sex, MSC in the fishing site and depth, the authors

fitted generalized linear models (GLMs) and used the information the-

ory selection criteria (Burnham & Anderson, 2002). The presence/

absence data of the most important prey of the porbeagle shark were

used as dependent variables. This kind of binary response variable has

a binomial error distribution and allows to fit GLMs with a logit link

(Crawley, 2005). The explanatory variable MSC (levels: hoki, southern

blue whiting and others) was treated as dichotomous due to the low

number of fishing sites with MSC others (9 of 148 fishing sites). The

levels of the variable MSC were hoki, and southern blue whiting com-

bined with others to fit the consumption of hoki, whereas to fit the

consumption of southern blue whiting the levels of the MSC were

southern blue whiting, and hoki combined with others. The GLMs

with all possible combination of two independent variables were also

fitted. A null model was included in the model selection approach to

test the hypothesis that none of the independent selected variables

influenced the consumption of modelled prey. The AIC and Akaike's

weight (w) were estimated for each model and used as an indicator of

the probability that a model is that best explained the variability in the

data (Burnham et al., 2011; Burnham & Anderson, 2002). The models

with the highest w (and the lowest AIC) were considered the best in

explaining the variations in the consumption of porbeagle shark prey

and were plotted with the function invlogit. When two or more

models had similar AIC values and did not provide strong support to

select any particular GLM, the authors applied model averaging func-

tion to the top models that added w > 0.6, using MuMIn package

(Johnson & Omland, 2004; Symonds & Moussalli, 2011). All analyses

were performed using R version 4.0.3 (http://www.R-project.org).

The relationships between predator LT and fish prey LT were eval-

uated by fitting quantile regression models (Cade & Noon, 2003). This

tool allows the interpretation of more than a single slope of the

response variable, by fitting regressions of 20%, 50% and 80% qua-

ntiles to test the minimum, medium and maximum increase in size of

fish prey consumed with the increase in the porbeagle shark body

size, respectively (Cade & Noon, 2003). These analyses were per-

formed with quantreg R-package Version 5.73 (Koenker, 2020).

2.4 | Ethical statement

The porbeagle shark specimens were sampled when they could not be

returned alive to the sea, respecting the welfare of animals, following

international, national and institutional guidelines for the care and use

of animals, in accordance with the ethical standards of the institution

where the study was conducted. This study was carried out with the

consent of INIDEP (National Institute for Fisheries Research and

Development, Argentina) and the fishing companies, following the

Argentinean regulations regarding shark management and conserva-

tion (CFP, 2021).

3 | RESULTS

The most abundant species on the estimated catch from the 148 fish-

ing sites analysed were bony fish, mainly hoki M. magellanicus

(56.00%) and southern blue whiting M. australis (33.13%) (Figure 3).

Other species represented 9.81% of the catch composition and con-

sisted mainly of the morid cods Notophycis marginata and Salilota aus-

tralis, rattails Macrourus holotrachys and Coelorinchus fasciatus,

Patagonian toothfish D. eleginoides, notothenids Patagonotothen

ramsayi, austral hake M. australis, pink cusk-eel Genypterus blacodes,

F IGURE 2 (a) Porbeagle shark Lamna nasus specimen caught as
by-catch during May 2020 in the south-west Atlantic Ocean (53.54� S
to 62.40� W, 488 m depth), sampled by observer to study the diet,
juvenile female 147 cm total length (LT). (b) The stomach content not
highly digested allowed the measurement of their prey hoki
Macruronus magellanicus (49 cm LT)
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medusafishes (Seriolella spp.) and Rajidae skates (mainly Bathyraja

spp., Dipturus spp.) (Figure 3). The porbeagle shark represented 1.06%

of the catch composition (Figure 3).

A total of 413 porbeagle sharks (292 females and 121 males) ranging

from 71 to 241 cm LT were sampled (Figure 4). The LT distributions were

significantly different between sexes (Kolmogorov–Smirnov test:

D = 0.28, P < 0.001) (Figure 3). The mean LT of females (range 71–

241 cm, mean 183.74 cm, S.D. 27.02) were larger (t-test, t = �5.11,

P < 0.001) than males (ranged 87–218 cm, mean 170.16 cm, S.D. 23.49)

(Figure 4). A total of 103 stomachs were empty, resulting in a vacuity

index of 24.94%. The vacuity indices of females and males were 27.24%

and 18.18%, respectively. The porbeagle shark fed mainly on fish

(88.34%), followed by cephalopods (5.85%) and crustaceans (4.29%). The

most important identifiable fish prey were hoki M. magellanicus and

southern blue whiting M. australis, followed by the Patagonian sprat

Sprattus fuegensis, notothenids and the southern hake M. australis

(Table 1). Cephalopods were represented by the families Octopodidae,

Ommastrephidae and Onychoteuthidae (Table 1). Crustaceans occurred

in the stomachs in less frequency than cephalopods and included

lithodids, shrimps, lobster crabs and euphausids. The estimated trophic

level of porbeagle shark in this region was 4.35 (Table 1).

The consumption of hoki M. magellanicus increased with the LT of

the porbeagle shark and was higher when hoki was the main capture

of the fishing site [Figure 5a; intercept = �8.56 (±1.26), parame-

ters = 0.034 (±0.006) LT + 1.88 (±0.39) Hoki MSC, AIC = 316.6,

w = 0.99, deviance explained = 14.25%]. The consumption of south-

ern blue whiting M. australis also increased with the LT of the porbea-

gle shark and was the more important prey when it was the main

species captured in the fishing site [Figure 5b; intercept = �3.41

(±1.31), parameters = 0.010 (±0.007) LT + 3.00 (±0.36) southern blue

whiting MSC, AIC = 230.4, w = 0.66 (model averaged), deviance

explained = 30.87%].

A total of 61 fish prey could be measured in LT. The medium and

maximum values of the LT of the fish consumed by the porbeagle

shark were independent of the LT of the predator (slope of the qua-

ntile 50% = 0.01; P = 0.80; slope of the quantile 80% = �0.02;

P = 0.51; Figure 6). On the contrary, minimum values of the LT of the

fish consumed by the porbeagle shark were positively correlated with

the LT of the predator (slope of the quantile 20% = 0.13; P = 0.03;

Figure 6).

4 | DISCUSSION

The stomach content information obtained by scientific observers on-

board commercial fishing vessels during 2010 and 2020 revealed that

the porbeagle shark L. nasus in the SWAO foraged predominantly on

teleost fish. The diet also included cephalopods and crustaceans, but

in less proportion than what was reported in previous studies from

the north-west Atlantic (Joyce et al., 2002), New Zealand (Horn

et al., 2013), Kerguelen Islands (Cherel & Duhamel, 2004), south

Pacific (Yatsu, 1995) or Antarctic Peninsula (Rodhouse, 2013). The

other species of the genus, L. ditropis, also feeds mainly on teleost fish

(Hulbert et al., 2005; Nagasawa, 1998), and the diet of the majority of

the pelagic shark species that have been investigated consisted of tel-

eost fish, followed by cephalopods (Crooks, 2020). The porbeagle

shark fed mainly on hoki M. magellanicus and the southern blue whit-

ing M. australis, two large planktivorous fishes from the SWAO

(Brickle et al., 2009). As was also noted by Joyce et al. (2002), uni-

dentified teleosts formed an important part of the stomach contents
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(39.22%). Assuming that these heavily digested and therefore unre-

cognizable fish have the same distribution as the identifiable prey

items, hoki and southern blue whiting would be even more important

on the diet of the porbeagle shark. The stomach temperature c. 16�C

above ambient reported for L. ditropis (Bernal et al., 2005; Goldman

et al., 2004) might account for the high degree of digestion and the

high proportion of unidentified fish observed in this study, as well as

in those works focused on other lamnoids species.

The percentage of empty stomachs (24.94%) was lower than in

other diet studies on porbeagle sharks, which ranged from 51.31%

in north-west Atlantic (Joyce et al., 2002) to 38.78% in New Zealand

(Horn et al., 2013). Although the aforementioned works were carried

out on commercial longline vessels and it could lead on an over-

estimation of the number of empty stomachs, the results of this study

suggested a relatively high feeding activity for the species in this

region, like in Kerguelen waters where from 26 porbeagles dissected,

25 contained prey items (Cherel & Duhamel, 2004). Similarly, in South

Pacific Ocean from 63 porbeagles analysed, 57 had prey

(Yatsu, 1995). In addition, sharks may regurgitate because of capture

stress, which increases the number of animals with empty stomachs

(Shiffman et al., 2014). These results also suggested that the hotspot

of this species at the east of the southern tip of South America and

between three MPA (Burdwood/Namuncurá Bank MPA I, MPA II

and Yaganes) (Cortés & Waessle, 2017) would be associated with a

critical feeding ground area. Seasonal foraging migrations into these

prey-rich waters might be a key feature of the life history of the por-

beagle shark in the SWAO. With the thermoregulatory ability (Bernal

et al., 2012), Lamnids sharks can feed in cold waters where prey are

more abundant (Campana & Joyce, 2004).

The migration and aggregation of porbeagle sharks during sum-

mer and fall into austral region of SWAO seem to coincide with non-

reproductive aggregation of hoki M. magellanicus (Giussi et al., 2016)

and southern blue whiting M. australis (Wöhler et al., 2004), the forage

fish of L. nasus in this area (this study). A comparable pattern was

observed for L. ditropis, as their aggregations in north-east Pacific

were associated with reproductive migrations of their main prey, the

Pacific salmon (Oncorhynchus spp.) (Hulbert et al., 2005; Williams

et al., 2010). In general, female shark species in pregnant condition

move to warmer waters during the cooler months of the year, increas-

ing the rate of embryonic development (Economakis & Lobel, 1998).

The 2,000 km pupping migration of porbeagle females to an

unproductive region of the ocean, followed by a return migration

TABLE 1 Diet composition of the
porbeagle shark Lamna nasus off south-
western Atlantic Ocean expressed in
frequency of occurrence (F), in
percentage of the frequency of
occurrence (%F) and the new percentage
of the percentage of the frequency of
occurrence (%%F)

Prey F %F %%F Troph

Fish 288 92.90 88.34

Macruronidae – Macruronus magellanicus 84 27.10 23.53 3.9 (a)

Gadidae – Micromesistius australis 68 21.94 19.05 3.3 (a)

Clupeidae – Sprattus fuegensis 16 5.16 4.48 2.6 (a)

Nototheniidae – Patagonotothen spp. 5 1.61 1.40 3.5 (a)

Merlucciidae – Merluccius australis 3 0.97 0.84 4.5 (a)

Rajidae 1 0.32 0.28 3.65 (b)

Nototheniidae – Dissostichus eleginoides 1 0.32 0.28 4.57 (c)

Fish not identified 140 45.16 39.22 3.24 (b)

Cephalopods 19 6.13 5.83

Ommastrephidae – Illex argentinus 6 1.94 1.68 3.2 (b)

Octopodidae – Octopus spp. 7 2.26 1.96 3.2 (b)

Onychoteuthidae – Moroteuthopsis ingens 5 1.61 1.40 3.2 (b)

Cephalopods not identified 1 0.32 0.28 3.2 (b)

Crustaceans 14 4.52 4.29

Natantia 2 0.65 0.56 2.52 (b)

Lithodidae – Lithodes santolla 1 0.32 0.28 2.52 (b)

Euphausiidae Euphausia spp. 1 0.32 0.28 2.2 (b)

Munididae – Munida gregaria 1 0.32 0.28 2.52 (b)

Crustaceans not identified 10 3.23 2.80 2.52 (b)

Others prey 5 1.61 1.53

Gasteropoda 1 0.32 0.28 2.5 (b)

Polychaeta 1 0.32 0.28 2.5 (b)

Not identified remains 3 0.97 0.84 2.5 (b)

Trophic level L. nasus 4.35

Note. The trophic level of each prey item (Troph) was obtained from: (a) Froese & Pauly, 2019;

(b) Cortés, 1999; (c) Troccoli et al., 2020.
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within several months by both females and pups, remains the subject

of discussion in the north Atlantic (Biais et al., 2017; Campana

et al., 2010). This migratory pattern appears to be similar in the SWAO

(Cortés et al., 2010; Domingo et al., 2008; Forselledo, 2012;

Mas, 2012). The ability to maintain body temperature above sea tem-

perature (Bernal et al., 2012) allows adult females to access feeding

areas with high abundance of prey, unavailable to other ectothermic

predators. Seasonal migration of porbeagle sharks, particularly adult

females, from northern area with optimal conditions for gestation, to

foraging area in austral region of SWAO, may be related with avoiding

competition for resources and their thermoregulatory adaptation. The

presence of prey in large schools and shoals (Giussi et al., 2016;

Wöhler et al., 2004) with a high energetic value (Ciancio et al., 2007;

Eder & Lewis, 2005) would compensate the cost of the extensive

southward migration in SWAO.

The horizontal (up to 10,000 km) and vertical (up to 1,300 m

depth) movements indicated that porbeagle sharks exhibited a consid-

erable plasticity across coastal, shelf and shelf-edge habitats (Francis

et al., 2015; Pade et al., 2009; Skomal et al., 2021) and has the ability

to occupy different trophic niches across habitats and seasons, as was

noted in north Atlantic (Joyce et al., 2002). In western north Atlantic,

the porbeagle shark was associated with the continental shelf moving

between the surface and the bottom remaining less than 200 m depth

during summer, whereas they moved into mesopelagic depths (200–

1,000 m) during winter, possibly allowing the exploitation of prey not

available to other predators (Skomal et al., 2021). In the present study,

prey items of porbeagle shark were associated mainly with demersal

and mesopelagic habitat, because prey items from benthic and deep

habits (e.g., D. eleginoides, Patagonotothen spp. and benthic inverte-

brates) were scarce. Nonetheless, these sharks are known to feed

both on the surface and at the bottom (Stevens, 1973). Information

about feeding habits of porbeagle shark is unknown in temperate lati-

tudes of SWAO, but if mesopelagic resources are limited, the porbea-

gle shark with their capacity to remain at colder depths for longer

periods (Bernal et al., 2012; Pade et al., 2009), and their characteristics

lunate caudal fin and hunting capabilities (Stevens, 1973), could

exhibit a vertical trophic niche expansion in northern areas of the

SWAO, exploiting more frequently benthic prey in cold-deep waters.

The consumption of hoki M. magellanicus and southern blue whit-

ing M. australis increased with the body size of the porbeagle shark.

Moreover, small porbeagle sharks preyed upon both small and large

teleost fish, whereas bigger porbeagle sharks appear to be more selec-

tive, predated mainly only on large fish, maximizing energy intake per

prey eaten and avoiding lower trophic levels. Similar behaviour was

observed in north Atlantic, as juveniles tended to consume a less

diverse range of prey species, comprising mostly of small pelagic fish

and cephalopods, whereas larger sharks appear to become more

piscivorous capable of capturing large teleosts (Joyce et al., 2002).

Ontogenetic change in feeding habits is a general pattern observed in

marine fishes (Dalponti et al., 2018) and specially in elasmobranchs,

because increase in length, swimming speed, size of jaws, teeth,

energy requirements and experience with prey result in improving the

ability to capture different species (Wetherbee & Cortés, 2004).
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F IGURE 5 Generalized linear models (GLMs), selected using
Akaike's weights, fitted for the presence/absence data of the main
prey of the porbeagle shark Lamna nasus off south-west Atlantic
Ocean, that explain changes in the consumption of: (a) hoki
Macruronus magellanicus and (b) southern blue whiting Micromesistius
australis. The GLMs have binomial error distribution and a logit link,
and were plotted using inverse logit function. The diet was influenced
by total length and MSC (main species caught) in the fishing site ( )
Hoki, ( ) Southern blue whiting and others, ( ) Hoki and others,
( ) Southern blue whiting
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F IGURE 6 Quantile regressions of the total length (LT) of fish
consumed and the LT of the porbeagle shark Lamna nasus predator off
south-west Atlantic Ocean. The dotted, solid and dashed lines
represent 20%, 50% and 80% quantile regressions, respectively
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Although the diet of elasmobranchs usually varied predictably with

predator size (Heithaus, 2004), ontogenetic changes in diet have not

been previously reported for the porbeagle shark L. nasus in SWAO.

The present paper applied the percentage of the percentage of

the frequency of occurrence (%%F) that sums 100% among all prey

items, instead of the traditional percentage of the frequency of occur-

rence (%F), which sums more than 100% when two different prey are

found in a single stomach. The %F is a robust and interpretable index

in diet studies, especially with large sample sizes, and it is known by

quantifying the diet with a minor loss of information in comparison to

more intensive and meticulous methods, with far less effort and low

cost than more detailed methods (Baker et al., 2014). Moreover, the

simple presence/absence or frequency of occurrence approach (%F)

provided a rapid, unambiguous and reliable account of diet composi-

tion, not affected by the condition of prey (Buckland et al., 2017).

Nonetheless, as the total sum of the %F gives more than 100%, it

does not allow the estimation of other parameters such as the trophic

level. The new %%F provided a solution to these weaknesses avoiding

bias in the estimation of the trophic level of the porbeagle shark,

which resulted higher than four indicating that it was a tertiary con-

sumer in the SWAO. As in general fish have trophic levels ranging

between 2 and 4.7 (Stergiou & Karpouzi, 2005), the porbeagle shark

occupied the upper trophic positions. These results are in accordance

with the trophic level estimated by Cortés (1999) for the porbeagle

shark and other 148 shark species belonging to 23 families.

Cortés (1999) concluded that sharks as a group are tertiary consumers

(trophic level >4) that occupy trophic positions similar to those of

marine mammals and higher than those of seabirds (Wetherbee &

Cortés, 2004). On the contrary, small sharks (i.e., scyliorhinids,

squatinids and triakids) exhibited lower trophic levels similar to many

skates (Ebert & Bizzarro, 2007). In the study region, the porbeagle

shark has a higher trophic position than coastal dolphins, porpoises,

seabirds (cormorans, penguins) and oceanic whales, but a lower tro-

phic position than offshore cetaceans such as long-finned pilot whales

(Riccialdelli et al., 2020). The effects of predation of L. nasus over the

main prey (hoki M. magellanicus and the southern blue whiting

M. australis), still unknown, could be low because of their high abun-

dances (Giussi et al., 2016; Wöhler et al., 2004). The abundance of

hoki was estimated to be more than 1 million tons, being the most

abundant finfish in the SWAO, 45� S (Giussi et al., 2016). On the con-

trary, the abundance of southern blue whiting M. australis is 500,000

tons, but exhibited decreasing trends (Wöhler et al., 2004). Similarly,

mako sharks consume 4%–14% of bluefish populations in the north-

western Atlantic, but the impact on population size appears not to be

significant (Stillwell & Kohler, 1982).

The results of this study provided evidence that porbeagle shark feed

on the fish species that constituted the main catches of the austral trawl

fisheries in the region, like hoki M. magellanicus and the southern blue

whiting M. australis. As the analysis of the stomach contents provided

information on the last meal and not on the assimilated prey, other reli-

able and more informative methods such as stable isotope and fatty acid

analysis are warranted to validate trophic relationships herein elucidated

through stomach content analyses and to offer new information on

trophic flows and sources of primary productivity (Buckland et al., 2017).

Even if any of these prey had been consumed during capture, the porbea-

gle shark interacted with fisheries by depredating the catch, and it would

have to be considered for the management and assessment of both pred-

ator and prey species. The spatial distribution of L. nasus is characterized

by large aggregations during summer and autumn in the study area

(Cortés & Waessle, 2017), in accordance with the by-catch that also

showed a strong seasonality, and it was higher in austral trawl fisheries

during this period (Cortés et al., 2017; Cortés & Waessle, 2017). The

interaction of fisheries with large marine fauna is also well documented

worldwide (Afonso et al., 2012; Gilman et al., 2007; Montevecchi, 2001;

Szteren & Páez, 2002). In New Zealand tuna longline fishery, the limita-

tion of fishing operations to daylight hours when porbeagles are too deep

to be caught seems to be a simple way of porbeagle by-catch mitigation

(Francis et al., 2015). Nonetheless, these management decisions are com-

plex and subject to different trade-offs that could include the impact on

other vulnerable species such as seabirds (Francis et al., 2015). In SWAO,

the close relationship of porbeagle shark with target species of the austral

trawl fisheries determines that their interaction is inevitable. The design

of selective devices to prevent retention porbeagle shark, without impli-

cating the target species catch, as well as to avoid areas or seasons with

high abundance of sharks (MPA) may contribute considerably to mitigate

the fishery interaction and the incidental catch of porbeagle shark. As

these alternatives appear to be difficult to be implemented, it is necessary

at least to develop devices that avoid the entrance of shark into the fish

bin with the entire capture (i.e., bars), as well as to apply the best handling

practices for the safe release of sharks.

The porbeagle shark is classified as vulnerable globally, critically

endangered in the north-east Atlantic and Mediterranean Sea, and

endangered in the north-west Atlantic (Dulvy et al., 2014), but it was

categorized as data deficient in the SWAO (Cuevas et al., 2020). The

available data and the stock assessment in the Southern Hemisphere

indicated that there is a very low risk that the stock is subject to over-

fishing (Hoyle et al., 2017b). Nonetheless, by nature of their extreme K

life-history strategies, and high position in trophic food webs, these large

shark species are more vulnerable to intense fishing activity than other

species (Stevens et al., 2000). In Argentina, by-catch is mainly related

to trawl fleet that operates at 50�S (Cortés & Waessle, 2017), but

their commercialization is banned. Moreover, Argentina has adopted

management measures to discourage the catch and trade of large

sharks, and finning was banned (CFP, 2021). This work contributed

to a better understanding of the trophic role of this data-deficient

species and has important implications for the porbeagle shark con-

servation in SWAO.
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