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1 INTRODUCTION

ABSTRACT

All estimators of the two-point correlation function are based on a random catalogue,
a set of points with no intrinsic clustering following the selection function of a survey.
High-accuracy estimates require the use of large random catalogues, which imply a high
computational cost. We propose to replace the standard random catalogues by glass-
like point distributions or glass catalogues whose power spectrum P(k) oc k* exhibits
significantly less power on scales larger than the mean inter-particle separation than a
Poisson distribution with the same number of points. We show that these distributions
can be obtained by iteratively applying the technique of Zeldovich reconstruction
commonly used in studies of baryon acoustic oscillations (BAO). We provide a modified
version of the widely used Landy-Szalay estimator of the correlation function adapted
to the use of glass catalogues and compare its performance with the results obtained
using random samples. Our results show that glass-like samples do not add any bias
with respect to the results obtained using Poisson distributions. On scales larger than
the mean inter-particle separation of the glass catalogues, the modified estimator leads
to a significant reduction of the variance of the Legendre multipoles &(s) with respect
to the standard Landy-Szalay results with the same number of points. The size of
the glass catalogue required to achieve a given accuracy in the correlation function
is significantly smaller than when using random samples. Their use could help to
drastically reduce the computational cost of configuration-space clustering analysis of
future surveys while maintaining high-accuracy requirements.

Key words: methods: statistical — large—scale structure of Universe — methods: ana-
lytical — galaxies: statistics

of the survey being considered, i.e., the position-dependent
probability that an object is included in the sample, but

The analysis of the large—scale spatial distribution of galax-
ies has been instrumental in shaping our current understand-
ing of the evolution of the Universe (e.g. Davis & Peebles
1983; Feldman et al. 1994; Efstathiou et al. 2002; Tegmark
et al. 2004; Cole et al. 2005; Eisenstein et al. 2005; Alam
et al. 2017; eBOSS Collaboration et al. 2021). Given the
stochastic nature of this distribution, such analyses require
robust statistical tools to efficiently extract the cosmologi-
cal information encoded in galaxy surveys. The most com-
monly used tools to characterize the large-scale structure
of the Universe are two-point statistics such as the power
spectrum, P(k), and its Fourier transform, the two-point
correlation function £(s). All estimators of these statistics
require a set of points that follow the same selection function
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have no intrinsic clustering. In configuration space, the es-
timators of £(s) quantify the excess probability of finding
a pair of galaxies at a given separation vector s with re-
spect to such reference distribution, often referred to as the
“random catalogue” (Peebles & Hauser 1974; Davis & Pee-
bles 1983; Hamilton 1993; Landy & Szalay 1993; Baxter &
Rozo 2013; Vargas-Magana et al. 2013). The covariance and
bias of these estimators depend on the size of the random
catalogue, with a higher density sample resulting in more ac-
curate determinations (Kerscher et al. 2000). On the other
hand, processing a large random sample can be computa-
tionally expensive. Thus, the estimation of £(s) is usually
subject to a compromise between the need for low bias and
variance, and maintaining a reasonable computing cost.

Finding the right balance between accuracy and cost is
particularly important in the upcoming age of large-volume
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galaxy surveys, such as the dark energy spectroscopic instru-
ment (DESI, DESI Collaboration et al. 2016), and the ESA
space mission Fuclid (Laureijs et al. 2011). This problem is
exacerbated by the fact that the analysis of galaxy surveys
is often accompanied by the measurement of the same clus-
tering statistics in thousands of mock catalogues that repro-
duce the properties of the real sample, each of which should
ideally have its own specific random points (de Mattia &
Ruhlmann-Kleider 2019). The application of the Zeldovich
reconstruction technique (Eisenstein et al. 2007; Padmanab-
han et al. 2012) commonly used in BAO studies represents
an additional complication, as in this case the estimates of
£(s) require to compute pair counts on two different random
catalogues.

The most commonly used estimator of £(s) is that of
Landy & Szalay (1993), hereafter the LS estimator, which
involves counting the number of data—data pairs in the
observed galaxy catalogue with some specified separation
vector s, as well as the corresponding number of data—
random and random-random pairs. As typically the random
catalogue is significantly larger than the real sample, the
random-random component of the estimator dominates the
total computing time. Several strategies have been proposed
to reduce the computational cost of measuring £(s), such as
splitting the random catalogue into smaller sub-samples and
averaging the pair counts inferred within each of them Kei-
hinen et al. (2019). However, even following this approach
the computational cost of estimating £(s) complicates the
analysis of large galaxy samples.

Recently, Breton & de la Torre (2020) proposed a
method to estimate pair count terms based on analytical
expressions that does not rely on the use of a random cata-
logue. This scheme assumes that the selection function of the
survey can be expressed as the product of an angular foot-
print, which is described using pixelated maps, and a radial
distribution, which is estimated from galaxy number counts.
For surveys whose selection function can be described in this
way, the results obtained using this approach are in good
agreement with those inferred from pair counts based on a
random catalogue. However, the extension of this method to
post-reconstruction measurements, where the displacement
field inferred from the data must also be applied to the ran-
dom catalogue, might be non-trivial.

While the variance of the correlation function is domi-
nated by cosmic variance, in this work we are interested in
reducing the error introduced by the random component of
correlation estimators. The impact of the random catalogue
on the variance of the correlation function is due to its in-
trinsic density fluctuations, which are characterized by the
power spectrum P(k) = 1/7, where 7i represents the number
density of points. Here, we assess whether points following
alternative distributions to Poisson, whose power spectra ex-
hibit a lower amplitude for the same sample size, can play
the role of the random catalogue and lead to a lower variance
in the resulting clustering measurements. Uniform distribu-
tions commonly used to generate pre-initial conditions in
N-body simulations cover the volume more homogeneously
than a Poisson distribution, which makes them a natural
candidate to replace the standard random catalogues. Ex-
amples of such distributions include a gravitational glass
(White 1996) and capacity constrained Voronoi tessellations
(CCVT, Balzer et al. 2009; Liao 2018). As a drawback, the

generation of those samples can imply a high computational
cost.

Here we propose to use the glass-like distributions ob-
tained by iteratively applying the same reconstruction tech-
nique used in the context of BAO measurements to a set
of initially random points. The small additional computing
cost related to the construction of such sample is outweighed
by the significant improvement in the variance of the esti-
mates of the correlation function with respect to the re-
sults obtained using Poisson samples of the same size. This
also implies that the same level of accuracy in the clustering
measurements can be achieved with significantly smaller ref-
erence samples, therefore reducing the total computational
time.

The outline of this paper is as follows. In Section 2 we
review the properties of uniform point distributions that can
be used as alternatives to the standard random catalogue.
We also show how a sample with the desired properties can
be constructed by applying Zeldovich reconstruction to a set
of points initially following a Poisson distribution. In Sec-
tion 3 we review the standard Landy-Szalay estimator and
adapt it to the use of other uniform distributions. In Sec-
tion 4 we study the differences in the bias and variance of
the estimates of the Legendre multipoles of the correlation
function obtained using random and glass-like point distri-
butions as a reference. Finally, Section 5 presents our main
conclusions.

2 ALTERNATIVES TO THE STANDARD RANDOM
CATALOGUE

2.1 Homogeneous and isotropic point distributions

In this section we review a few relevant properties of Pois-
son and other uniform point distributions and discuss the
algorithms that can be used to generate them.

A Poisson distribution is a statistically homogeneous
and isotropic distribution characterized by a constant power
spectrum across all wave numbers, P(k) = 1/7, where 7 is
the number density of points. The power spectrum deter-
mines the normalized variance in the number of points con-
tained in spheres of radius R as (see, e.g., Gabrielli et al.
2002)

() = 5y / PUYW (kR dE, (1)

where W (kR) is the Fourier transform of the top-hat window
function

W(y) = 3sin (y) ;?:y cos (y) . @)
For a Poisson distribution o?(R) oc R™>.

It is possible to construct sets of points for which o?(R)
decreases faster with R than in the Poisson case. The fastest
possible decay of any distribution is o%(R) oc R~* (Gabrielli
et al. 2002). Samples approaching this limiting behaviour
are sometimes referred to as blue noise distributions and
are described by a power-law power spectrum P(k) o k*,
which is the minimal large—scale power expected for a dis-
crete stochastic system (Peebles 1980). These samples ex-
hibit significantly less power than a Poisson distribution for
the same number density of points.

MNRAS 000, 1-10 (2020)
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Figure 1. Slices covering 10 per-cent of a cubic box with 162 points following a Poisson distribution (panel a), a gravitational glass
obtained using GADGET-2 (Springel 2005) (panel b), a CCVT built using the code of Liao (2018) (panel c), and a glass-like distribution
obtained by iteratively applying Zeldovich reconstruction on an initially random set of points.

Figure 2. Power spectra of the Poisson (solid), glass (dot-dashed),
and CCVT (long-dashed) distributions shown in Figure 1. All
power spectra have been rescaled by the mean density of the
sample, 7, and wavenumbers by the Fourier-space equivalent of
the mean inter-particle separation, 2w/ 7~1/3. The Poisson sam-
ple exhibits a roughly constant power over all scales P(k) = 1/n
(dotted). Glass and CCVT distributions follow the P(k) o k*
relation expected for blue noise distributions (short-dashed).

An example of sets of points with these properties
are the glass-like distributions commonly used to set up
pre-initial conditions of N-body simulations (Baugh & Ef-
stathiou 1993; White 1994; Hansen et al. 2007; Joyce et al.
2009). These distributions are obtained by evolving a set of
particles that are initially randomly distributed under the
action of a “negative” or repulsive gravitational force until a
quasi-equilibrium configuration is reached. In practice, gen-
erating a high-quality gravitational glass with a large num-
ber of particles is a complex task and the associated com-
putational requirements are similar to those of an N-body
simulation.

A distribution with similar characteristics can be ob-
tained by constructing CCVT samples (Balzer et al. 2009),
defined by the condition that all points are located at the
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geometric centre of their respective Voronoi cells, and that
all cells have approximately the same volume. These highly
uniform and isotropic distributions have been recently pro-
posed as an alternative to the standard gravitational glass
as pre-initial conditions of N-body simulations (Liao 2018).
They are generated by iteratively relaxing an initially ran-
dom set of points into a configuration satisfying the CCVT
conditions (Balzer et al. 2009), but the computing cost of
this algorithm becomes prohibitive for a large number of
points.

Figure 1 shows a slice covering 10 per-cent of the width
of a cubic box with 16% points following a Poisson distribu-
tion (panel a), compared against a gravitational glass con-
structed using GADGET-2 (Springel 2005) and a CCVT dis-
tribution obtained using the code of Liao (2018) with the
same number of points (panels b and ¢, respectively). The
glass and CCVT distributions cover the volume more ho-
mogeneously than the Poisson case, which exhibits larger
density fluctuations. A more quantitative description of the
differences between these distributions can be seen in Fig-
ure 2, which shows the power spectra of the same samples.
While the random sample exhibits a constant power on all
scales, P(k) = 1/n, the Glass and the CCVT distributions
approach the minimal power spectrum, P(k) o k*, and turn
to the Poissonian behaviour only for scales smaller than
the mean inter-particle separation, k =~ 2rnt/3. Figure 3
shows the variance ¢2(R) derived from these power spec-
tra using equation (1). While for the Poisson distribution
0%(R) o« R™3, the variance of the blue noise distributions
decays as 0?(R) o« R™* for scales larger than the mean
inter-particle separation and approaches the behaviour of
the random sample for smaller scales.

Due to their lower variance, a gravitational glass or a
CCVT would be good candidates to replace the standard
random samples used in the estimation of clustering statis-
tics. However, generating these distributions with the num-
ber of points required for this task would be costly in both
computing time and resources. Although pre-initial condi-
tions of N-body simulations are often built by tiling small
periodic glass-like distributions to reduce their computing
cost, the resulting periodicity of the distribution could have
undesired effects on the estimation of pair counts. As we
will see in Section 2.2, it is possible to construct large sets
of points with similar properties following a much simpler
procedure.
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Figure 3. Normalized variance of the number of points contained
in spheres of radius R corresponding to the distributions shown
in Figure 1, derived from their power spectra using equation (1).
While for the Poisson sample 02(R) oc R™2 at all scales, for the
blue noise distributions the variance decays as o2(R) o R™% for
scales larger than the mean inter-particle separation and turns to
the behaviour of the random sample for smaller scales.

2.2 Zeldovich Reconstruction

Lagrangian perturbation theory offers an accurate descrip-
tion of gravitational dynamics for small density fluctuations.
In this section, we show that it can also be used as an al-
ternative to a full N-body force calculation to evolve an ini-
tially random sample of points into a glass-like state under
repulsive gravitational forces at a significantly smaller com-
putational cost.

The key quantity in Lagrangian perturbation theory is
the displacement field ®¥(q,t), which maps the initial (La-
grangian) position of a fluid element, g, to its Eulerian coun-
terpart at any given time, x(q,t), as

x(q,t) = q+ ¥(q,t). (3)

A solution for the displacement field can be found by im-
posing conservation of mass between the Lagrangian and
Eulerian coordinate systems, that is

pd>q = p(x, t)d>x, (4)

where p is the mean density and p(x,t) = p (1 + d (x,t)) rep-
resents the Eulerian density at position & and time ¢. Thus,
keeping only terms at the linear level, the displacement field
is related to the density fluctuations in Eulerian space by

Va ¥uy(g,t) = =0 (z,1). (5)

The subscript (1) indicates that these are first-order terms.
Assuming that W is an irrotational vector field, the solution
to this equation can be written in Fourier space as

Wy (k) = —%6(1)(14,15). (6)

This is the solution for the displacement field in first-order
Lagrangian perturbation theory and corresponds to the
standard Zeldovich approximation (Zel’Dovich 1970).

Equation (6) can be generalized to account for linear
redshift-space distortions and galaxy bias and it is the basis
of the Zeldovich reconstruction technique commonly applied
to the analysis of galaxy surveys to enhance the signature of
the BAO (Eisenstein et al. 2007; Padmanabhan et al. 2012;
Burden et al. 2015). The application of the displacement
field of equation (6) with the opposite sign can partially un-
do the effects of non-linear gravitational evolution. The same
basic principle can be applied to a set of random points to
smooth out its large-scale density fluctuations.

Figure 4 shows how the iterative application of Zel-
dovich reconstruction modifies the power spectrum of the
same set of random points shown in panel a) of Fig. 1.
We adapted the publicly available reconstruction code of
Bautista et al. (2018)', which is based on the Fourier-space
algorithm of Burden et al. (2015). We used a fast Fourier
transform with a mesh resolution such that the cell size
is given by a fourth of the mean inter-particle separation.
We then estimated densities using a Gaussian kernel with a
smoothing scale twice the cell size. Starting from a constant
value across all scales, the amplitude of P(k) decreases to-
wards the desired blue noise behaviour, converging onto the
minimal-power P(k) oc k* for scales larger than the mean
inter-particle separation. The the dot — long-dashed line in
Figure 3 shows the normalized variance o (R) corresponding
to the point distribution obtained after 50 iterations, which
decays with the steepest slope possible, 0?(R) o« R™*, for
scales larger than the mean inter-particle separation. Panel
d) of Fig. 1 shows a slice through this final point distribu-
tion. The points cover the volume of the box much more
uniformly than the Poisson case. The procedure of applying
equation (6) to a Poisson point distribution is significantly
simpler and less computationally costly, than generating a
glass with a full N-body code or building a CCVT distribu-
tion. This procedure can also be applied to large samples of
points.

3 THE ESTIMATION OF THE TWO-POINT
CORRELATION FUNCTION

3.1 Revising the Landy-Szalay estimator

The most commonly used estimator of the two-point corre-
lation function is that of Landy & Szalay (1993), which can
be computed as

€rs(s) = DD(s) 215%1%(5) + RR(S)’ )

(s)

where DD(s), RR(s), and DR(s) represent the data—data,
random-random and data—random pair counts, respectively,
for a given separation vector s, normalized to the total num-
ber of pairs in each case.

The LS estimator of equation (7) provides the minimum
variance when |£| < 1 and is unbiased in the limit of an in-
finite number of random points, N, — oo. The standard
practice for achieving a high accuracy in the measurements
of £(s) is to use a number of random points, Ny, much larger
than the size of the actual data catalogue, Nq, often charac-
terized in terms of the ratio « = N;/Ng. Note however that

1 github.com/julianbautista/eboss_clustering
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Figure 4. Power spectra of the samples obtained by iteratively
applying Zeldovich reconstruction to a set of random points (dot-
dashed lines), shown in the same units as in Fig. 2. The results
shown correspond to the initial configuration (solid lines) and
iterations 1, 2, 4, 10, 20, 30 and 50. The power spectrum evolves
from pure shot-noise P(k) = 1/7n (dotted lines) to the minimal
form P(k) o< k* (dashed lines) for scales larger than the mean
inter-particle separation.

the most relevant quantity to control the bias and variance
of the LS estimator is the number density of the random
catalogue and not the value of a.

A larger N, implies an increase in the number of pair
counts and therefore of the total computational cost. As dis-
cussed in Keihénen et al. (2019), while the estimation of the
RR(s) pairs dominates the total computing time, the error
budget of the estimator is dominated by the term DR(s). As
a way to speed up the estimation of £(s) without decreas-
ing its accuracy, Keihdnen et al. (2019) proposed to split
the total set of random points into Ms sub-samples and to
approximate the total RR(s) by the average of the normal-
ized random-random counts inferred within each of these
sub-sets, that is

1 My

RR(s) ~ A ZRRi(s), (8)

where RR;(s) represents the results inferred from the i-th
random sub-sample. This approach, dubbed “split-random”,
can reduce the total computational time, without affecting
the variance or bias of the estimator. However, if the analy-
sis must also be performed on a large number of mock cat-
alogues, a large NV, would still imply a high computational
cost.

We propose to follow an alternative approach to lower-
ing the bias and variance of the estimates of £(s) by aban-
doning the use of random points in favour of more uniform
distributions such as the ones described in Sec. 2.1. Using
glass-like point distributions would lower the power spec-
trum P(k) of the reference sample on larger scales, resulting
in a lower variance of the pair counts for the same number of
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points without increasing the computational time. In partic-
ular, we propose to use the glass-like point samples obtained
after the iterative application of Zeldovich reconstruction to
an initially random distribution as discussed in Sec. 4.

Simply replacing the random sample by a glass in the
LS estimator would lead to biased clustering measurements.
As the sample deviates from a Poisson distribution, the po-
sition of the points become correlated and would yield a
biased estimate of RR(s). This problem can be avoided by
using two independent glass-like point distributions or glass
catalogues, G1 and G2, and modifying the Landy-Szalay es-
timator as

DD(S) — DGy (S) — DGQ(S) =+ GlGQ(S) 9
G1G2(s) ' ©)

§us,a(s) =

Apart from DD(s), all other terms appearing in this expres-
sion represent counts of cross pairs between different sam-
ples. In fact, equation (9) resembles the generalization of
the Landy-Szalay estimator commonly used to compute the
cross-correlation function between two different data sam-
ples (e.g. Blake et al. 2006). Appendix A shows generaliza-
tions of other commonly used estimators of the two- and
three-point correlation functions to the use of glass cata-
logues.

Although the notation of equation (9) is intended to
specify the use of glass-like distributions, it can also be im-
plemented with two distinct random catalogues, R; and Rz,
that is

§2r(s) =

DD(s) — DRi(s) — DRx(s) + R1R2(s).

Rl Rz (S) (10)

The comparison of the bias and variance of the results ob-
tained using this estimator and equation (9) can be used to
assess the impact of replacing the standard random samples
by glass catalogues of the same size. Equation (10) is simi-
lar to the split-random method of equation (8) with My = 2
but using the cross pairs between the two sub-samples to
infer RR(s). As a reference metric of these different cases,
we use the results of the standard LS estimator with a single
random catalogue containing twice as many points.

4 PERFORMANCE OF THE ESTIMATOR
4.1 Methodology

Periodic boundary conditions allow us to estimate the two-
point correlation function of samples drawn from N-body
simulations without the use of a random catalogue as

\%

&(s) = DD(s) V() 1, (11)
where V represents the volume of the simulation and 6V (s)
is the volume of the bin centred on the pair separation s
used for the pair counts (e.g. the volume of the spherical
shell between the radii s and s + Js for the angle-averaged
correlation function). The comparison of this exact measure-
ment with the results of the estimators described in Sec. 3.1
with random and glass catalogues of different sizes can be
used to quantify their variance and potential bias.

To this end we used one realization of the Minerva
N-body simulation suite (Grieb et al. 2016; Lippich et al.
2019). These simulations follow the evolution of the dark
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Figure 5. Relative bias A&y/&,(s) of the estimates of the monopole
(upper panel), quadrupole (middle panel) and hexadecapole
(lower panel). Line colours indicate the results of the different es-
timators described in Section 3.1, while the line styles represent
the total number of points in the random and glass catalogues,
characterized by values of @« = 1,2,4 and 8. The estimator of
equation (9) based on glass catalogues show a similar performance
than the results obtained using random samples of the same size
without introducing any additional bias.

matter density field over a cubic box of side length Lpox =
1.5 h~*Gpc with 1000 particles. Each simulation represents
a realization of a flat ACDM model with physical dark mat-
ter and baryon densities w. = 0.1154 and w, = 0.02224, a
dimensionless Hubble parameter h = 0.695, a scalar spec-
tral index ns = 0.968, and an amplitude of density fluctua-
tions characterized by a linear-theory rms mass fluctuation
in spheres of radius 12Mpc, o12 = 0.805 (Sénchez 2020).
The haloes and subhaloes of these simulations at redshift
z = 0.57 were populated according to a halo occupation
distribution (HOD) designed to generate synthetic galaxies
with clustering properties comparable to the CMASS sam-

ple of the Baryon Oscillation Spectroscopic Survey (Dawson
et al. 2013; Reid et al. 2016). These HOD catalogues have
a mean density of fiq ~ 4 x 10™* h3 Mpc™3. The impact of
redshift-space distortions on galaxy positions was added by
taking into account the component of their peculiar veloci-
ties along one Cartesian axis of the box.

The full anisotropic correlation function can be de-
scribed in terms of the modulus of the pair separation s = |s|
and the cosine of the angle between the separation vector s
and the line of sight, u. The information of £(s, u) can be
decomposed into Legendre multipoles, &(s), given by

1
&) = 25 [ Lalee o) (12)
where L¢(u) denotes the Legendre polynomial of order /.
We first used the estimators described in Sec. 3.1 to measure
&(s, p) and then used the results to compute Legendre multi-
poles with £ = 0,2, 4. We considered two configurations: one
focused on large and intermediate pair separations with 26
linear bins in the range 20 A~ 'Mpc < s < 150 A~ *Mpc, and
a second one focussed on small scales with 14 logarithmic
bins for pair separations 0.5 h~'Mpc < s < 40 h™'Mpc.

We considered random catalogues with mean number
densities 7 corresponding to 1, 2, 4 and 8 times that of the
HOD sample from Minerva. For each case, we generated 500
sets of random points and used the standard LS estimator to
obtain the same number of independent estimates of the Leg-
endre multipoles £, ,2,4(s) of the Minerva HOD sample. We
then split each of these random catalogues into two sub-sets
with equal number of points and used them to measure the
same multipoles by applying the estimator of equation (10)
and the split-random method of equation (8) with M, = 2.
These sub-catalogues were then taken as initial points for
the iterative application of Zeldovich reconstruction as de-
scribed in Sec. 4 to generate independent glass catalogues
that were used in the estimator of equation (9). The esti-
mates of the multipoles obtained in each case were used to
evaluate the performance of the different estimators. The
dispersion of the results recovered using different random
catalogues, o¢,(s), quantifies the variance of these estima-
tors, and the mean value of their differences with the exact
result of equation (11), A&(s), is a measurement of their
bias.

4.2 Bias and variance of the multipoles &(s)

We first focus on the bias of the estimators discussed in
Sec. 3.1 by studying the mean differences between the Leg-
endre multipoles obtained using different random and glass
catalogues and the exact result of equation (11). Fig. 5 shows
the mean relative bias A&;/&¢(s) of the estimators, repre-
sented by different colours. The line styles indicate the to-
tal number of points in the random and glass catalogues.
The panels show separately the results for the multipoles
¢ =0,2,4. We show only results on small pair separations as
none of the estimators introduce a significant bias on larger
scales. On scales significantly smaller than the mean inter-
particle separation of the random and glass catalogues, the
estimator of equation (9) based on glass catalogues shows a
similar performance than the results obtained using random
samples of the same size.

The variance of the multipoles obtained in the different
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Figure 6. The large-scale standard deviation of the Legendre mul-
tipoles &¢(s) with £ = 0,2,4 recovered using the estimators of
equations (9) (red) and (10) (blue), relative to that of the LS
case based on the same total number of random points. The dif-
ferent line styles indicate the number of points in the random and
glass catalogues, corresponding to o = 1,2, 4 and 8. While the es-
timator 1,5 2r(8) has a similar performance to the standard LS,
the variance obtained using glass catalogues is significantly lower.

cases on large and intermediate scales are shown in Fig. 6
while those on small scales in Fig. 7. To better judge the per-
formance of the new estimators of equations (9) and (10),
we show the results rescaled by the variance of the standard
LS case using a random sample with the same total number
of points. As in Fig.5, the different line styles indicate the
number of points in the random and glass catalogues. On
large scales, the estimator of equation (10) (blue lines) has
essentially the same performance as the standard LS case.
‘We have checked that the split-random method with Mg = 2
gives a similar performance. Both methods are then viable
alternatives to the standard LS estimator on large scales to
reduce the total computing time of the RR term without
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Figure 7. The same as Fig. 6 but focussing on scales smaller or of
the order of the mean inter-particle separation of the random and
glass samples. In this regime, the estimators of of equations (9)
(red) and (10) (blue) show a similar performance and result in a
o¢,(s) that is ~ 30 per-cent higher than that of the standard LS
result based on the same total number of points.

sacrificing the accuracy of the measurements. However, on
scales smaller than the mean inter-particle separation the
variances of these estimators increase up to a level approxi-
mately 30 per-cent higher than that of the full LS result.
Replacing the random catalogues by glass-like samples
leads to a markedly different scale dependence of o¢, than
the standard LS case. For scales smaller than the mean
inter-particle separation, the variance of the estimator of
equation (9) matches that obtained using two random cat-
alogues. This is expected since, as discussed in Section 2.1,
on small scales the power spectra of the glass-like samples
resembles that of a Poisson distribution of the same size.
However, on large scales the variance of £is c(s) is signifi-
cantly smaller than that of the LS estimator using a random
sample with the same total number of points. The improve-
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Figure 8. Standard deviations o¢, recovered from the LS estimator
(green lines) and the modified version of equation (9) (blue lines)
at s = 112.5 h~'Mpc as a function of the total number of points
in the random and glass catalogues. In both cases, the standard
deviation has a power-law dependency on the size of the reference
catalogues Ny, with o¢, oc N7 053 for &Ls(s) and as o¢, N;0-86
for £ns,a(s).

ment with respect to LS becomes more significant with in-
creasing . This can be more clearly seen in Fig. 8, which
shows the variance of the Legendre multipoles £o,2,4(s) at a
scale of s = 112,5 h™'Mpc, roughly matching the position of
the BAO peak, recovered from the LS estimator and equa-
tion (9) as a function of the total number of points in the
random and glass catalogues. While for v = 1 the variance
of & (s) is ~ 50 per-cent smaller using glass catalogues, it
is only ~ 25 per-cent that of the LS for a = 8. The stan-
dard deviation of both estimators have a power-law depen-
dency on N, but with different slopes. While the variance
decreases as o¢, oc Ny %23 for &r5(s), it goes as ¢, oc Ny 086
for €1s,c(s). This means that a given target accuracy of the
estimated multipoles can be achieved using glass catalogues
that are significantly smaller than the random samples that
would be required with the standard LS approach.

5 CONCLUSIONS

We have studied the impact of replacing the random cata-
logue used in the estimation of two-point correlation func-
tions by glass-like point distributions. While the power spec-
trum of these samples resembles that of a Poisson distribu-
tion on scales smaller than the mean inter-particle separa-
tion, on larger scales it follows the minimal form P(k) o< k*
and exhibits significantly less power than a random cata-
logue with the same number of points. In turn, the variance
of the counts in spheres of radius R decays as 0*(R) oc R™*
as opposed to o?(R) o« R™® for the Poisson case, which
drastically reduces the noise in the pair counts required to
estimate &(s).

We have shown that particle distributions with the de-
sired properties can be generated by iteratively applying Zel-

dovich reconstruction to an initially random set of points.
This task can take advantage of the fast algorithms that
have been developed in recent years in the context of BAO
reconstruction (Burden et al. 2015). Although we have not
performed a detailed analysis of the number of iterations
required to obtain the optimal glass catalogue for correla-
tion function measurements, we have seen that, on the scales
considered here, the variance of these estimates converges af-
ter as few as 5 iterations. The small additional computing
cost associated with the construction of such sample is out-
weighed by the significant improvement in the accuracy of
the estimates of the correlation function.

We have provided a modified version of the LS estima-
tor, adapted to the use of glass-like particle distributions
(equation 9). This estimator makes use of two independent
glass catalogues to avoid problems due to the correlation
of the points within a single sample for scales approach-
ing the mean inter-particle separation. The same estimator
can be implemented using two different random catalogues
(equation 10), offering an ideal benchmark to test the ad-
vantages of using glass-like particle distributions over Pois-
son samples. As a test case, we used the measurements of
the Legendre multipoles & (s) with £ = 0,2,4 of HOD sam-
ples matching the clustering properties of the BOSS CMASS
sample obtained with different realizations of random and
glass catalogues.

We have found that the large-scale variance of the es-
timator of equation (10) using two separate random cata-
logues is similar to that of the standard LS estimator based
on a single set with the same total number of points. This
estimator can then be considered as a simple way to reduce
the computing cost of measuring &,(s) without affecting the
accuracy of the results, similar to the split-random method
of Keihénen et al. (2019).

Our results show that using glass-like distributions does
not add any bias with respect to the results obtained using
Poisson samples of the same size. On scales smaller than the
mean inter-particle separation of the reference samples, us-
ing glass catalogues results in a similar o¢, as that obtained
using Poisson distributions. However, on larger scales they
lead to a significant reduction of the variance of &(s) with
respect to the results of the standard LS estimator with the
same number of points. Furthermore, this reduction becomes
larger with increasing «. The size of the glass catalogue re-
quired to achieve a given accuracy in the correlation function
is significantly smaller than when using random samples. As
the computational cost of these estimators is proportional
to the total number of pairs, the smaller size of the glass
catalogue can represent a significant reduction of the total
computational time. For example, extrapolating the power-
law behaviour of o¢, shown in Figure 8 we find that the
same variance achieved by the LS estimator using random
samples of & = 50 as was done in the final BOSS analyses
(Alam et al. 2017; Sdnchez et al. 2017) can be obtained using
glass catalogues with o = 5.4. A more demanding estimate
based on random catalogues with a@ = 100 can be matched
using a glass sample with o = 8.3. The total computing
time, ¢, of the estimators of equations (7) and (9) is domi-
nated by the RR and GG terms, and hence ¢ < o. Then, in
the previous two examples, the reduction in the computing
time obtained by using glass catalogues instead of random
catalogues amounts to tr/tc ~ 86 and tr/tc ~ 145, re-
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spectively, representing a drastic reduction of the computing
resources required for the analysis. This improvement can
be particularly beneficial for post-reconstruction BAO mea-
surements, which require pair counts on separate random
catalogues with and without the application of the displace-
ment field.

Although we have focused on the LS estimator, Ap-
pendix A contains versions of other commonly used estima-
tors of £(s) and N-point correlation functions, adapted to
the use of glass catalogues. Estimators based on glass-like
samples could prove increasingly useful in the calculation of
high-order statistics, where the computational cost of count-
ing N-tuples of points could be drastically reduced without
compromising variance. Even though the size of the random
catalogue is not the main factor to determine the computa-
tional cost of power spectrum measurements, Fourier-space
statistics could also benefit from the lower variance of glass
catalogues both in the estimation of P(k) itself and the sur-
vey window function. In the coming years, surveys like DESI
and Euclid will deliver samples of tens of millions of objects
over large volumes. The analysis of these catalogues will rep-
resent a challenge for standard analysis techniques. The use
of glass catalogues could help to drastically reduce the com-
putational requirements of clustering analysis in these sur-
veys and their associated mock catalogues while maintaining
the high accuracy that they demand.
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APPENDIX A: ADDITIONAL ESTIMATORS OF THE
TWO- AND THREE-POINT CORRELATION
FUNCTIONS

In this section we give alternative versions of the most com-
mon estimators of two- and N-point correlation functions,
adapted to the use of glass catalogues instead of the stan-
dard random distributions.

The simplest estimator of the two-point function is the
so-called natural estimator (Peebles & Hauser 1974), which
can be modified to use two glass catalogues as

DD(s)
érn,c(s) = G1Ga(s) 1. (Al)
The estimator of Davis & Peebles (1983) can be implemented
with a single glass catalogue as

_ DD(s)
" DG(s)

épp,a(s) -1 (A2)

Another commonly used estimator is that of Hamilton


http://dx.doi.org/10.1093/mnras/stx721
http://dx.doi.org/10.1145/1576246.1531392
https://doi.org/10.1145/1576246.1531392
http://dx.doi.org/10.1093/mnras/265.1.145
https://ui.adsabs.harvard.edu/abs/1993MNRAS.265..145B
http://dx.doi.org/10.3847/1538-4357/aacea5
https://ui.adsabs.harvard.edu/abs/2018ApJ...863..110B
http://dx.doi.org/10.1088/0004-637X/779/1/62
http://dx.doi.org/10.1111/j.1365-2966.2006.10158.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.368..732B
https://ui.adsabs.harvard.edu/abs/2006MNRAS.368..732B
https://ui.adsabs.harvard.edu/abs/2020arXiv201002793B
https://ui.adsabs.harvard.edu/abs/2020arXiv201002793B
http://dx.doi.org/10.1093/mnras/stv1581
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453..456B
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
https://ui.adsabs.harvard.edu/abs/2016arXiv161100036D
https://ui.adsabs.harvard.edu/abs/2016arXiv161100036D
http://dx.doi.org/10.1086/160884
https://ui.adsabs.harvard.edu/abs/1983ApJ...267..465D
http://dx.doi.org/10.1088/0004-6256/145/1/10
https://ui.adsabs.harvard.edu/abs/2013AJ....145...10D
http://dx.doi.org/10.1046/j.1365-8711.2002.05215.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.330L..29E
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1086/518712
https://ui.adsabs.harvard.edu/abs/2007ApJ...664..675E
http://dx.doi.org/10.1086/174036
http://dx.doi.org/10.1103/PhysRevD.65.083523
https://ui.adsabs.harvard.edu/abs/2002PhRvD..65h3523G
https://ui.adsabs.harvard.edu/abs/2002PhRvD..65h3523G
http://dx.doi.org/10.1093/mnras/stw065
http://dx.doi.org/10.1086/173288
http://dx.doi.org/10.1086/510477
https://ui.adsabs.harvard.edu/abs/2007ApJ...656..631H
http://dx.doi.org/10.1111/j.1365-2966.2008.14290.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.394..751J
http://dx.doi.org/10.1051/0004-6361/201935828
https://ui.adsabs.harvard.edu/abs/2019A&A...631A..73K
http://dx.doi.org/10.1086/312702
http://dx.doi.org/10.1086/172900
https://ui.adsabs.harvard.edu/abs/2011arXiv1110.3193L
http://dx.doi.org/10.1093/mnras/sty2523
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.3750L
http://dx.doi.org/10.1093/mnras/sty2757
http://dx.doi.org/10.1111/j.1365-2966.2012.21888.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.2132P
http://dx.doi.org/10.1086/190308
https://ui.adsabs.harvard.edu/abs/1974ApJS...28...19P
http://dx.doi.org/10.1093/mnras/stv2382
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.1553R
http://dx.doi.org/10.1103/PhysRevD.102.123511
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102l3511S
http://dx.doi.org/10.1093/mnras/stw2443
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.364.1105S
http://dx.doi.org/10.1086/311146
https://ui.adsabs.harvard.edu/abs/1998ApJ...494L..41S
http://dx.doi.org/10.1086/382125
https://ui.adsabs.harvard.edu/abs/2004ApJ...606..702T
http://dx.doi.org/10.1051/0004-6361/201220790
https://ui.adsabs.harvard.edu/abs/2013A&A...554A.131V
https://ui.adsabs.harvard.edu/abs/1994RvMA....7..255W
https://ui.adsabs.harvard.edu/abs/1970A&A.....5...84Z
http://dx.doi.org/10.1088/1475-7516/2019/08/036
http://dx.doi.org/10.1088/1475-7516/2019/08/036
https://ui.adsabs.harvard.edu/abs/2019JCAP...08..036D
http://dx.doi.org/10.1103/PhysRevD.103.083533
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103h3533A

10  Ddwvila-Kurban et al.

(1993), which can be adapted to the case of two glass cata-
logues as
DD(S)GlGQ(S)

¢ng(s) = DG (s) DGa(s) 1. (A3)

The estimation of the two-point correlation function af-
ter the application of Zeldovich reconstruction requires the
use of two different random catalogues, one following the
original selection function, and a second one, denoted by S,
that is shifted by applying the same displacement field as to
the data D. The estimator of equation (7) is then modified
as (Padmanabhan et al. 2012)

. _ DD(s) —2DS(s) + S5(s)
Erec(8) = RR(s) .

Adapting this estimator to the use of glass catalogues re-
quires four different glass-like samples, two of which follow
the original data, 12, and two in which the displacement
field has been applied, Gsi,2, leading to

(A4)

~ DD(s) — DGsi1(s) — DGs2(s) + Gs1Gs2(s)
o GlGQ(S)

érec,G(S)

(A5)

Estimators of higher-order correlation functions can
also be adapted to use glass catalogues. In the general no-
tation of Szapudi & Szalay (1998), the estimator for the
N-point correlation function can be written as

énva=(D—G1)(D—G2) - (D—Gn)/GiGa+ - G,
(A6)

which requires N independent glass catalogues G;. For the
two-point correlation function, this expression corresponds
to the modified LS estimator of equation (9). For the three-
point correlation function, this estimator can be expressed
as

DDD(s12, s23, 513)

_ ) ) A7

&3,a(s12, 523, 513) G1G2G3(s12, 823, S13) (A7)
22, DDGi(s12, 523, 513)
G1G2G3s(s12, 23, S13)

Z(i,j)E(g) DGiG;(s12, 523, 813)

G1G2G3s(s12, $23, S13)

+1,

where Z = {1, 2,3}, and (g) represents the set of all possible
combinations of two elements of 7.

Estimators based on glass catalogues could significantly
reduce the variance of measurements of high-order statis-
tics with respect to the results obtained with a single ran-
dom catalogue with the same total number of points. Using
smaller glass catalogues could then significantly reduce the
total computational cost of estimating three-point correla-
tion functions without affecting the accuracy of the mea-
surements. A detailed analysis of the performance of the
estimator of equation (A7) is left for future work.

This paper has been typeset from a TEX/IATEX file prepared by
the author.
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