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Abstract: Compartmentalization of the membrane is essential for cells to perform highly specific tasks
and spatially constrained biochemical functions in topographically defined areas. These membrane
lateral heterogeneities range from nanoscopic dimensions, often involving only a few molecular
constituents, to micron-sized mesoscopic domains resulting from the coalescence of nanodomains.
Short-lived domains lasting for a few milliseconds coexist with more stable platforms lasting from
minutes to days. This panoply of lateral domains subserves the great variety of demands of cell phys-
iology, particularly high for those implicated in signaling. The dendritic spine, a subcellular structure
of neurons at the receiving (postsynaptic) end of central nervous system excitatory synapses, exploits
this compartmentalization principle. In its most frequent adult morphology, the mushroom-shaped
spine harbors neurotransmitter receptors, enzymes, and scaffolding proteins tightly packed in a
volume of a few femtoliters. In addition to constituting a mesoscopic lateral heterogeneity of the
dendritic arborization, the dendritic spine postsynaptic membrane is further compartmentalized
into spatially delimited nanodomains that execute separate functions in the synapse. This review
discusses the functional relevance of compartmentalization and nanodomain organization in synaptic
transmission and plasticity and exemplifies the importance of this parcelization in various neuro-
transmitter signaling systems operating at dendritic spines, using two fast ligand-gated ionotropic
receptors, the nicotinic acetylcholine receptor and the glutamatergic receptor, and a second-messenger
G-protein coupled receptor, the cannabinoid receptor, as paradigmatic examples.

Keywords: dendritic spine; plasma membrane; membrane domains; nanodomains; neurotrans-
mitter receptors; cannabinoids; acetylcholine receptor; glutamatergic receptor; NMDAR; AMPAR;
cannabinoid receptor; GPCR

1. Introduction

The plasma membrane is currently envisaged as a highly heterogeneous and com-
partmentalized two-dimensional lattice. Convergent biochemical and biophysical tools
have provided experimental support to this notion (see reviews in [1–3]). The finding of
coexisting lipid domains with distinct physicochemical properties (liquid-ordered and
liquid-disordered phases, respectively) observed in biomimetic synthetic lipid membranes
inspired the “lipid raft” hypothesis, which purported that similar co-occurrence of phases
also occurred in natural cell membranes, whereby rafts corresponded to cholesterol- and
sphingolipid-rich liquid-ordered domains [4,5]. The functional implications of the hypoth-
esis were vast: the early proposal that these lipid domains served as signaling platforms
was an appealing idea [6] that soon extended to various branches of cell biology. Intra-
cellular signaling pathways require adequate membrane organization, and the concept of
membrane compartments provided the substrate to explain how dynamic processes could
occur separately and simultaneously in spatio-temporally separateddiscrete domains.
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In the central nervous system (CNS), most of the excitatory synapses occur on a
specialized subcellular formation in neuronal arborizations, so-called dendritic spines.
These spines constitute highly differentiated subcellular compartments of the receiving
(postsynaptic) neuron, concentrating in a very small volume an abundant collection of neu-
rotransmitter receptors, enzymes, scaffolding proteins, and cytoskeletal elements. Various
neurotransmitter receptor systems harbored in the spine postsynaptic membrane have been
shown to be associated with liquid-ordered, raft-type lipid domains [7–10]. These lipid
domains not only harbor the receptor proteins but also recruit them from extra-synaptic
regions; once receptors reach the active zone of the spine, the more rigid liquid-ordered
domains contribute to reducing their lateral mobility [11,12]. These neurotransmitter
receptor-containing lipid assemblies have dimensions in the order of nanometers, hence
the designated term “nanodomains”. The surface of the mature spine, a morphological
entity of ≤1 µm diameter, is thus sub-compartmentalized into much smaller parcels that
contribute to the lateral heterogeneity of the postsynaptic membrane. This description of
the dendritic spine is, however, fragmentary inasmuch it does not contemplate its highly
dynamic nature, especially of some of its patchy nanodomains. Thus both stable and
dynamic platforms coexist in the spine postsynaptic complex, and the dynamic range
of the two combined is quite ample, from a few milliseconds to days [13], providing
spatio-temporal stability to some of its components while allowing fast turnover and agile
redistribution in others.

Pre- and postsynaptic membranes share the property of organizing their constituents
in the form of nanodomains characterized by high molecular densities and transient
duration. A characteristic feature of this organizational principle is that it is asymmetric
(see review in [14]), in accordance with the vectorial nature of the synapse.

In this review, we focus on the structural and functional roles played by lipids and
proteins in such nanodomains, discussing the significance of compartmentalization for
efficient synaptic signaling. Examples are provided on how the glutamatergic and the
cholinergic neurotransmitter receptors, two well characterized fast operating ligand-gated
ion channels, and the endocannabinoid system, a typical metabotropic second-messenger
G-protein coupled receptor (GPCR), tend to localize in clustered structures, the cholinergic
and the cannabinoid receptors often overlapping anatomically, and share common roles
in several physiological and pathological processes that exploit and rely on membrane
nanodomains.

2. Dendritic Spines, Discrete Subcellular Compartment of the Neuronal Membrane

Dendritic spines constitute fundamental units of information endowed with pro-
cessing synaptic (mostly excitatory) chemical neurotransmission in the mammalian brain.
Spines compartmentalize biochemical and electrical signals, thus modulating the functional
properties of synapses. Based on the relative length of their neck and the diameter of their
head, dendritic spines have been arbitrarily classified into five categories: mushroom, thin,
stubby, filopodia, and bifurcation- or cup-shaped spines [15]. However, this represents
a fragmentary, anatomically static view of the dendritic spine: in fact, they also have a
dynamic dimension, allowing them to modify their size and shape within seconds to
minutes and undergo more lasting changes in the time scale of hours to days. In mature
neurons spine motility declines [13]. Spine head volumes range from 0.01 to 1 µm3, and
spine necks vary between 50 and 500 nm in diameter and up to 3 µm in length [16–18]. The
size of the spine head has been shown to correlate with the size of the postsynaptic density
(PSD) a characteristic morphological differentiation of the postsynapse [16–18], and with
the amplitude of the excitatory postsynaptic current (EPSC) [19,20].

One of the most important functions of the brain is enabling the neural activity
generated by an experience to modify neural circuit functionality in a process referred to
as synaptic plasticity. This property of individual synapses affects higher brain functions
like thought, feeling, and behavior [21]. Morphological correlates of synaptic plasticity
at the dendritic spine level have been described, involving the remodeling of the PSD
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to regulate the number of intervening receptors and scaffolding proteins. The so-called
long-term potentiation (LTP) and long-term depression (LTD), two mechanisms that have
been thoroughly studied in the mammalian hippocampus, are induced by recent patterns
of activity that strengthen or depress synapse activity, respectively [22] (Figure 1).

Figure 1. Schematic diagram highlighting the role of nanoscale sub-compartmentalization of the dendritic spine in synaptic
plasticity. The “basal” state can be depicted as a homeostatic equilibrium between synthesis, lateral diffusion, internalization,
degradation, and recycling of neurotransmitter receptors at the dendritic spine. Activation of α7 nicotinic acetylcholine
receptor (α7 nAChR) in the hippocampus by agonist on postsynaptic sites promotes LTP (left) by depolarizing the spine
which induces glutamatergic GluA1 receptors to cluster at the PSD. This incorporation of GluA1 receptor molecules further
contributes to calcium entry, thus strengthening synaptic transmission. The opposite phenomenon (LTD, right) is induced by
activation of presynaptic cannabinoid receptors (CBRs): neurotransmitter release is inhibited, thereby weakening synaptic
transmission, and GluA1 receptors are depopulated from the PSD. ABP: actin binding proteins; AN: anandamine.

These functional readouts have straightforward morphological correlates: spine head
enlargement in LTP [23,24] and conversely, shrinkage of the spine head and increased spine
loss, as observed in hippocampal synapses after electrical induction of LTD [25,26]. The
width of the spine neck has been associated with the degree of compartmentalization of
synaptic signals [27], and its length with the modulation of synaptic membrane tension [28].
Upon induction of LTP, spine necks become shorter and wider [27] (Figure 2).
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Figure 2. Schematic depiction of the enlargement and acquisition of mature mushroom-like shape of dendritic spines
following induction of long-term potentiation (LTP) during synaptic plasticity.

Compartmentalization of dendritic spines spatially constrains the diffusion of second
messenger molecules to small volumes [29], thus circumscribing biochemical cascades and
regulating information processing in individual synapses to smaller regions thereof. For
example, presynaptic stimulation can elicit Ca+2 transient currents that are confined to hot
spots of activity in spines [30,31]. The biochemical compartmentalization of the membrane
requires membrane-bound enzymes, lipids and proteins to be organized into delimited
regions of varying size and composition [32]. In addition to the delimitation in space,
membrane domains vary in duration, thereby intervening in the timing of biochemical
events at the synapse. This spatio-temporal organization extends to the coordination
between pre- and postsynaptic components of the synaptic micro-cosmos (Figure 3).

Figure 3. Schematic diagram of a vomposite synapse summarizing the pre- and postsynaptic components participating
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in synaptic signaling dissected in this review. Glutamatergic (Glu) and cholinergic (α7 nAChR) activation promotes Ca2+

entry into the dendritic spine, inducing endocannabinoid (eCB) synthesis through hydrolysis of lipid precursors from
the cell membrane. Cannabinoid receptor (CBR) activation in dendritic spines inhibits Rac1/WAVE/Arp 2/3 and limits
the conversion of G actin to F-actin, whereas α7 nAChR promotes formation and maturation of dendritic spines through
F-actin stability by activating the Rac1/WAVE/Arp2/3 signaling pathway. Phospholipase C (PLC) converts PIP2 into
diacylglycerol (DAG) and in turn DAG lipase (DAGL) generates the eCB 2-AG. In parallel, phospholipase D (PLD) converts
N-arachidonoyl phosphatidylethanolamine into the eCB AN. 2-AG and AN are liberated into the synaptic cleft and activate
CBRs in the presynaptic compartment. Upon activation, CBRs stimulate Gi-protein and inhibit AC activity, membrane
hyperpolarization ensues after the modulation of K+ and Ca2+ channels that inhibit neurotransmitter release from the
presynaptic compartment. Finally, the mitogen-activated protein kinase (MAPK) pathway is stimulated. AC: adenyl cyclase;
cAMP: cyclic AMP; ACh; acetylcholine; 2-AG, 2-arachidonyl glycerol.

3. Cannabinoids and Cannabinoid Receptors

The endocannabinoid system (ECS) is involved in almost all aspects of mammalian
physiology and pathology. The ECS consists of genes encoding cannabinoid receptors
(CBRs), endogenous cannabinoid ligands (endocannabinoids, eCBs), and the enzymes
involved in their synthesis and degradation. Cannabinoids can be grouped into three
major subclasses: phytocannabinoids, which are extracted from plants; eCBs, produced
by live organisms, and synthetic cannabinoids that share some or all of the physiological
properties of either phytocannabinoids and/or eCBs.

eCBs are lipidic, arachidonic acid-containing neurotransmitters (or messengers) that
are synthesized de novo by phospholipase action after hydrolyzing the lipid precursors
from the cellular membrane [33]. They are produced on demand when needed and are not
usually stored in vesicles like classical neurotransmitters [34]. The synthesis of eCBs takes
place upon postsynaptic depolarization through Ca2+ influx and activation of Gq-protein.
The heterotrimeric G protein Gq stimulates eCB production through phospholipase C and
D activation. After being synthesized in postsynaptic neurons, eCBs are released to act on
CBRs expressed in presynaptic and/or nearby neurons.

Arachidonoyl ethanolamine (anandamine, AN), the first eCB discovered [35], is an en-
dogenous lipid neurotransmitter derived from the polyunsaturated fatty acid arachidonic
acid. AN is more soluble in aqueous media than arachidonic acid. AN acts as a partial
agonist of CBR1 and CBR2 and as a full agonist of the vanilloid receptor 1 (VR1). The other
eCB that acts as a full agonist of CBR1 and CBR2 is 2-arachidonyl glycerol (2-AG). Addi-
tionally, eCBs can activate other “non-CB” receptors, such as G protein-coupled receptor
55 (GPR55), peroxisome proliferator-activated receptors (PPARs) [36]. Although CBRs are
mostly found on plasma membranes, their localization at intracellular compartments such
as the endoplasmic reticulum (ER), endosomes, lysosomes, mitochondria and nuclei has
also been demonstrated [37].

The two cannabinoid receptors identified to date have been termed CBR1 and CBR2.
They share 44% amino acid sequence homology [38,39]. CBR1 constitutes the most abun-
dant G-protein coupled receptor (GPCR) in the CNS [40], whereas CBR2 is localized
preferentially in immune cells and peripheral tissues [39] and to a lesser extent in the brain-
stem, cortex, hippocampus and cerebellar neurons and microglia [41,42]. Some authors
have suggested that VR1, also identified as the transient receptor potential cation channel
subfamily V member 1 (TRPV1), should be classified as a cannabinoid 3-type receptor.

In the hippocampus CBR1s are mostly found in synapses that use γ-aminobutyric
acid (GABA) as a neurotransmitter and mainly localized presynaptically, whereas CBR2s
have a postsynaptic localization although their presence in presynaptic terminals cannot
be excluded in some brain regions [43].

One of the physiological roles of CBR1s in the CNS is the regulation of synaptic
transmission. eCBs attenuate presynaptic depolarization and subsequent neurotransmitter
release [44]., thus mediating a retrograde regulation of this process. Upon activation,
CBR1s repolarize the plasma membrane through the modulation of voltage-dependent ion
channels that promote inward-rectifying K+ (Kir) and A-type K+ channels [45,46]. This is
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accomplished via the reduction in cAMP levels and PKA activation [47,48]. In addition,
CBR1 activation can inhibit N-, P/Q- and L-type voltage-gated Ca2+ channels [49], thereby
reducing Ca2+ influx and favoring repolarization of the presynaptic plasma membrane (see
Figure 3).

Both CBR1 and CBR2 activation have been shown to favor phosphorylation and ac-
tivation of the mitogen-activated protein (MAP) kinase cascade [50–52]. This metabolic
cascade has an important role in the regulation of neuronal gene expression and synaptic
plasticity. eCBs signaling is terminated by reuptake into both neurons and glial cells. Intra-
cellular hydrolysis of AN and 2-AG is then catalyzed by the fatty acid amide hydrolase
(FAAH) and monoacylglycerol lipase (MAGL) enzymes, respectively [53]. These lipid-
derived molecules control the integration of signals generated by different neurotransmit-
ters and synaptic neuromodulators that ultimately lead to diverse forms of homo-synaptic
and hetero-synaptic meta-plasticity [54,55]. Thus, eCBs influence the flow of informa-
tion that is key for the performance of many important high-order brain functions e.g.,
behavior [55–57].

Cannabinoids have been shown to alter the organization of the actin cytoskeleton
in various cell types [58]. Njoo and collaborators highlighted the functional signifi-
cance of CBR1 interactions with the Wiskott-Aldrich syndrome protein-family verprolin-
homologous protein 1 (WAVE1)/SCAR1 complex [59]. These authors stated that the
complex plays a key role in dynamically regulating the actin cytoskeleton in developing
and adult neurons, thus contributing to the most salient functions of eCBs in the brain
and spinal cord. Furthermore, they showed that cannabinoids structurally remodel den-
dritic spines by regulating the activity levels of WAVE1, and reported a novel function for
WAVE1 in mediating inflammatory pain via structural and functional plasticity of spinal
neurons [59].

Although CBR1s are mainly expressed presynaptically, several studies have indicated
that CBR1 can be additionally localized in neuronal dendrites [60,61] colocalizing with
the PSD protein PSD-95 in spines [59]. Rac1 activity decreases within minutes of CBR1
activation, limiting the conversion of G-actin to F-actin in dendritic spines of mature cortical
neurons. This in turn produces a depletion of mature spines with the characteristic adult-
type, elaborate mushroom morphology, which are believed to mediate increased synaptic
efficacy such as observed in LTP [62]. In agreement with these findings, chronic treatment
with the synthetic cannabinoid agonist WIN 55212-2 (WIN) reduced spine density in the
nucleus accumbens (Nac) 24 h after the last injection [63]. Spiga and collaborators [64,65]
also reported a decrease in spine density in the Nac (core) after a 1 h withdrawal period.

Activation of CBR1 in hippocampal neurons elicits a decrease in presynaptic F-actin
and other cytoskeletal proteins, including ARPC2 and WASF1/WAVE1 that correlate with
morphological changes (e.g., reduction in bouton size) [66], as seen at the postsynapse.

4. Cannabinoid Regulation of Synaptic Function and Compartmentalization

Neuronal circuits in hippocampus are fundamental in memory processes. Hippocam-
pal pyramidal neurons perform important functions related to brain rhythms. Pyramidal
cells are controlled by GABAergic interneurons, key for spatial memory formation. Potas-
sium channels of the Kv7 type (KCNQ-Kv7) are characteristically located at the axon
initial segment, where they modulate the membrane potential of the neuron and its cell
firing. Oriens lacunosum moleculare interneurons, which are selectively active during theta
oscillations, generate feedback inhibition of pyramidal neurons. In these somatostatin-
positive interneurons, KCNQ-Kv7s are found predominantly in dendrites. Kv7 channel
activity is upregulated following induction of presynaptic LTD. This depression of neu-
ronal excitability involves eCB biosynthesis and depends on CBR1s, whereas eCBs acting
directly on Kv7.2/3 channels, without participation of CBR1s, depress intrinsic neuronal
excitability [67].
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5. Cholinergic Signaling Contribution to Glutamatergic Receptor
Compartmentalization

The paradigm excitatory neurotransmission in brain is mediated by glutamatergic
synapses. These, in turn, are modulated by activation of presynaptic and postsynaptic
neuronal nAChRs [68,69]. In the human brain, heteromeric α4β2 and homomeric α7
nAChRs constitute the most abundant subtypes of nAChRs, whereas other combinations
are present in smaller numbers, and usually exhibit a more limited anatomical distribu-
tion, restricted to specific brain regions [70,71]. nAChRs are located on neurons where
they regulate neurotransmitter release, cell excitability, and neuronal integration [72–74].
Activation of nAChRs can promote the release of glutamate (Glu), the main excitatory
transmitter in mammalian brain, in a Ca2+-dependent manner. Presynaptic α4β2 or α7
nAChRs activation depolarizes hippocampal interneurons and indirectly affects the release
of neurotransmitters like Glu and γ-aminobutyric acid (GABA) by activating voltage-gated
Ca2+ channels [75]. Additionally, α7 nAChRs localized on brain glutamatergic terminals
increases glutamate release upon activation [76] (Figure 1).

There is also evidence that the α4β2 and α7 subtypes of neuronal nAChRs contribute
to changes in synaptic architecture, promoting glutamatergic synaptogenesis [77,78]. Post-
synaptically located α7 nAChRs cause fast inward cationic currents in the neocortex and
hippocampus. At this location α7 nAChRs have also been proposed to modulate synap-
tic potentiation independently of fast excitatory transmission [79] by recruiting GluA1
receptors from the surface pool of mobile extrasynaptic receptors and contributing to
their stabilization in the spine via formation of receptor nanoclusters.. This stabilization
requires functional PSD-95 scaffold protein family members that compartmentalize GluA1
macromolecules and help reduce their local mobility in conjunction with the actin sub-
membrane meshwork. As a result, synapses enhance their signaling capacity, as reflected
in the appearance of larger miniature excitatory postsynaptic currents (mEPSCs). This
mechanism of GluA1 activation via α7 nAChRs is independent of fast excitatory trans-
mission mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or
N-Methyl-D-aspartic acid (NMDA) receptors (NMDARs, see Figure 1).

Nicotine can bind to nAChRs on dopaminergic neurons [80] or on nerve terminals of
GABAergic and glutamatergic neurons that project on the dopaminergic neurons in the
ventral tegmental area (VTA). Neurons from the VTA project to neurons in the nucleus
accumbens (NAc) and are involved in the processing of reward signals that motivate
behavior. Thus, activation of nAChRs induces the release of dopamine in the mesolimbic
dopaminergic pathway, involving the cholinergic pathways in different brain reward
mechanisms [81,82]. Dopaminergic signaling in the hippocampus, the amygdala and the
prefrontal cortex help to create emotional associations with rewards. Hence, activation of
nAChRs in these areas contributes to the regulation of dopaminergic homeostasis and the
rewarding and psychostimulant effects of addictive drugs, including nicotine [83,84]. α4β2
nAChRs have been linked to nicotine reward since studies performed in rats showed that
their blockage with antagonists significantly inhibited nicotine self-administration [85,86]
while genetic deletion of α4 or β2 subunits prevented nicotine-induced increase in NAc
dopamine levels [86–88]. Other nAChR subunits, including α3, α6, α7 and β3, have been
reported to mediate dopamine release after nicotine induction [89].

Crosstalk between the dopaminergic and glutamatergic systems enables them to
initiate and organize normal behavior [90]. NMDARs can act as a scaffold to recruit laterally
diffusing dopamine D1 receptors (D1Rs) to spines. The activation of these NMDARs alters
the topography and movement of D1Rs by trapping them in dendritic spines [91]. D1Rs
selectively interact with the NR1 subunit of the NMDAR through its C-terminal tail to form
dimeric hetero-complexes. Induction of LTP in the striatum requires activation of D1Rs
since antagonizing these receptors blocks NMDAR–dependent LTP; while in the cortex,
working memory is altered by this antagonism [92–94]. Activation of D1Rs via DA release,
caused e.g., by cholinergic signaling activation, can then recruit D1R-NMDAR complexes
in a regulated manner [95].
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Cholinergic signaling pathways thus contribute to sub-compartmentalize glutamater-
gic neurotransmission, spatially restricting its sphere of action. More generally, the ubiqui-
tous distribution of nicotinic receptors in brain enables them to regulate many important
high-level cognitive functions such as attention, working memory, learning processes [96],
cognitive flexibility [97] and social interactions [98]. They are also involved in addiction
and dependence [81,82].

6. Cannabinoids and Nicotinic Receptors

In addition to the well characterized activation of CBRs, cannabinoids also exert
receptor-independent and lipid bilayer-mediated actions on many membrane proteins, en-
zymes, and transporters [99,100]. There is evidence of overlapping distribution of CBRs and
nAChRs in many brain structures [101]. At the level of brain reward pathways, for instance,
the endocannabinoid and nicotinic cholinergic systems interact bidirectionally, having an
important role in the modulation of drug dependence [101]. In animal studies, the primary
psychoactive ingredients in cannabis and tobacco, delta-9-tetrahydrocannabinol (∆9-THC)
and nicotine, respectively, show overlapping pharmacological effects, including induction
of antinociception, hypothermia, rewarding effects, dependence, and impairment of loco-
motion [102–107]. Additionally, ∆9-THC and nicotine potentiate their anxiolytic effects in a
synergistic manner when administered together at sub-threshold doses [108–111]. Chronic
administration of nicotine in rats increases AN levels in the limbic forebrain and of both
AN and 2-AG in the brainstem [89]. Reciprocally, ∆9-THC and synthetic cannabinoids
modulate cholinergic neurotransmission in the hippocampus [112–114], supporting the
notion that nicotinic and endocannabinoid systems interact in the brain reward pathway.
This information opens a window for therapeutic intervention in nicotine and cannabinoid
dependence [115,116].

Other experimental demonstrations of how cannabinoids and nicotinic receptors in-
teract can be found in the direct actions of endocannabinoids on α7 nAChR in Xenopus
oocytes [117,118]. In this experimental model system, AN reversibly inhibited nicotine-
induced currents in a concentration-dependent manner without significantly affecting its
half maximal effective concentration (EC50) value, indicating that AN acts as a noncompet-
itive antagonist on α7 nAChRs. In agreement with these observations, Frey and coworkers
reported that AN does not inhibit specific [3H]nicotine binding in human frontal cortex
membranes [119], providing supporting evidence for the noncompetitive action of AN on
nicotinic receptors. A direct inhibitory action of AN on nAChRs is suggested by the lack of
effect on CBR1, CBR2, or enzymes involved in AN metabolism. It must be noted however
that the synthetic cannabinoids WIN55,212-2 and THC do not alter α7 nAChR function.
Instead, AN markedly inhibits the peak amplitudes of α4β2 nAChR-mediated currents
to about 30% of control levels in SH-EP1 cells [120]. In addition, studies performed on
myenteric neurons have shown that AN can reduce the amplitudes of nicotine-induced
inward currents [99,121].

The lipophilic nature of eCBs facilitates their incorporation into biological membranes,
and their accumulation has been shown to modulate the action of alcohol and volatile
anesthetics on α7 nAChRs [122,123]. These pharmacological effects suggest that CBs may
alter the bulk physicochemical properties of the plasma membrane. Thus, the two types of
endogenous neurotransmitters, eCB and acetylcholine can directly or indirectly (following
binding to hydrophobic sites on the receptor surfaces) modulate the function of these
receptors in brain and exert modulatory crossover effects on each other.

In the activated spine, Ca2+ entry through postsynaptic α7 nAChRs [70] or NMDA
receptors and/or voltage-gated Ca2+ channels [124] can promote the activation of multiple
signaling pathways with specific spatio-temporal patterns that orchestrate and regulate
different aspects of cytoskeletal dynamics in the stimulated spines. Within the spine,
Ca2+ binds to calmodulin (CaM), a Ca2+-binding protein which subsequently activates
Ca2+/CaM-dependent kinases and phosphatases such as CaMKII and calcineurin [125,126].
CaMKII activates small GTPases and these in turn further modulate several downstream
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kinases [127] that have the ability to activate many ABPs, including Cofilin and Arp2/3,
two proteins that play essential roles in actin remodeling [128,129]. Thus cannabinoids,
through rac1/WAVE 1 modulation and α7 nAChR activation, contribute to actin structural
remodeling of dendritic spines. Whereas activation of Rac1/WAVE1 induces a depletion of
mushroom type spines, α7 nAChR activation contributes to the formation and maturation
of dendritic spines (Figure 1).

7. Importance of Lipids in Dendritic Spine Compartmentalization

Lipids play a central role in the formation and shaping of membranes [130,131]. More
than 40 different lipids modulate signaling and dynamically influence membrane geometry
of synapses [132–135]. As in other biological membranes, the major classes of lipids found
at synaptic plasma membranes are cholesterol, sphingolipids and glycerol backbone-based
phospholipids [136]. Of these, cholesterol and saturated sphingolipids and phospholipids
are particularly enriched in membrane domains [137], and the cholesterol concentration in
brain accounts for ~25% of the human body’s total content.

The neutral lipid cholesterol plays a key role in receptor clustering and compart-
mentalization [77,79]. The amount of cholesterol and its topographical distribution at
the plasma membrane have a profound influence on the physicochemical properties of
the plasmalemma, and these, in turn, modulate the functional activity of the synapse.
The most general effect of cholesterol is exerted on the physical properties of the bulk
membrane. Membrane cholesterol concentrations above a certain threshold level promote
the formation of liquid-ordered (Lo) domains [138] that are thicker than the rest of the
membrane and exhibit unique biophysical properties. These ordered lipid nanodomains
(“lipid rafts”) mediate trafficking, signal transduction, and membrane protein activity in
essentially all eukaryotic plasma membranes [139].

Cholesterol increases membrane rigidity, thickness and tension that influences cell
signaling and domain formation [140,141]. The concept of lipid domains entails not only
the existence of lateral heterogeneities in the plane of the membrane, but also the dynamic
exchange of molecular components within and between compartments. For instance
cholesterol flip-flops between the outer and inner leaflets of the membrane bilayer, and also
diffuses within a given liquid-ordered lipid domain and between different lipid domains
in inter-domain exchange processes which are quite heterogeneous, differing considerably
in their kinetic parameters [142].

At the synapse, cholesterol interacts with several neurotransmitter receptors through
consensus linear binding sequences like the so-called cholesterol recognition/interaction
amino acid consensus motifs (CRAC and its mirror image CARC [143]. These consensus
domains have been proposed to facilitate membrane protein incorporation into cholesterol-
rich domains in a great variety of membrane proteins, including the superfamily of pen-
tameric ligand-gated ion channels (pLGICs) and the superfamily of G-protein coupled
receptors (GPCRs). The prototypic LGIC, the nAChR, exhibits a CRAC motif adjacent to the
transmembrane helix M1, and a CARC sequence on the M4-facing surface of M1 adjacent
to one of the proposed cholesterol-binding cavities [143,144]. Likewise, the transmembrane
helix 7 of human cannabinoid receptor 1 (CBR1) displays a CRAC sequence [145]. A
cholesterol molecule was recently identified in a crystal structure [146] and a cryo-electron
microscopy (EM) structure [147] of the CBR1.

Sphingolipids participate as plasma membrane lipids and signaling molecules such as
ceramide, sphingosine, and sphingosine-1-phosphate that are produced after the metabolism
of plasma membrane sphingolipids [148]. Among sphingolipids, sphingomyelins are en-
riched in brain membranes. The elimination of dendritic spines upon reduction of choles-
terol and sphingomyelin levels was described almost 20 years ago [149], highlighting the
importance of these lipids for neuronal communication. Ceramide promotes spine matura-
tion by contributing to the transformation of dendritic filopodia to mature spines [150].

Phosphoinositides (PIPs) are important players in postsynaptic excitability since they
have an exceptional high rate of metabolic turnover and compartmentalization [151].
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There are multiple enzymes at dendritic spines that interconvert different PIPs contribut-
ing to the dynamic role of lipids in the plasma membrane. Phosphatidylinositol (4,5)
diphosphate (PIP2) is converted to phosphatidylinositol (3,4,5) triphosphate (PIP3) by
phosphatidylinositol-4,5-bisphosphate 3-kinase. PIP3 content at the spines is higher than
that in dendritic shafts under basal conditions. Furthermore, upon glutamate stimu-
lation PIP3 redistributes contributing to the formation of fine spinules projecting from
spines [152,153]. Additionally, PIP3, because of its capacity regulate the activity of multiple
Rho GTPase effectors [154], has also been implicated in the interaction of membrane-
cytoskeleton crosstalk at spines, and is able to regulate the Akt-mTOR pathway to partici-
pate in dendritic spine morphogenesis [155,156]. The PIP2-clustering molecule myristoy-
lated alanine-rich C kinase substrate (MARCKS) reversibly sequesters PIP2 on the plasma
membrane, upon local increases in intracellular calcium [157]. MARCKs contributes to
spine morphogenesis by promoting the transition from immature dendritic spines to larger
and more stable mushroom-shaped spines by controlling actin cytoskeleton [158]. More-
over, association of MARCKS to cholesterol at the membrane is necessary for its ability to
crosslink F-actin [158]. In addition, PIP3 contributes to the accumulation of PSD-95 at spines
whereas conversion of PIP2 by phospholipase C favors synaptic actin depolymerization
and PSD-95 degradation, thus contributing to spine remodeling [159].

Among other factors, actin dynamics is modulated by membrane lipids. A reduction
in membrane cholesterol levels produces a rapid collapse of spine morphological integrity
associated with redistribution of F-actin from the spine proper to the dendritic shaft [149].
Sphingolipids also play a relevant role in the spine plasma membrane-actin cytoskeleton
crosstalk. Sphingomyelins modulate membrane binding and activity of the Rho GTPases,
key regulators of the actin cytoskeleton in the synapse. Accumulation of sphingomyelins
at postsynaptic membranes, as observed in a Niemann-Pick disease type A mouse model
defective in acid sphingomyelinase, induces a reduction of metabotropic glutamate re-
ceptors that impairs the membrane attachment of RhoA and its effectors ROCK (RhoA
kinase) and profilin IIa. This impairment results in the diminution of F-actin content,
ultimately reducing spine number and size [160]. The conversion of sphingomyelin to
ceramide at the plasma membrane is catalyzed by neutral sphingomyelinase-2 [161]. This
enzyme can, in turn, modulate spine actin cytoskeleton. Activation of the neutral sphin-
gomyelinase restores F-actin content of dendritic spines by enhancing the RhoA pathway in
mice defective of the acid sphingomyelinase, which present high sphingomyelin synaptic
levels [160]. Conversely, inhibition of the sphingomyelinase decreases the abnormally high
levels of F-actin in spines of neurons in mice lacking Wiskott–Aldrich syndrome protein
interacting protein (WIP) [162]. Thus, through various protein and lipid interactions, actin
promotes compartmentalization of the plasma membrane and has an important role in the
modulation of neuronal strength.

Impact of the Lipid Microenvironment on nAChRs and CBRs

The best documented example of the influence that the lipid microenvironment and
cholesterol exert on the topography and function of a neurotransmitter receptor is provided
by the paradigm rapid LGIC, the nAChR (see reviews in [163,164]). Changes in cholesterol
levels alter the translational mobility of the receptor in the plane of the plasma membrane,
as measured by fluorescence recovery after photobleaching and fluorescence correlation
spectroscopy [165] and single-molecule localization microscopy [166,167]. Cell-surface
trafficking of nAChRs is dependent on cholesterol metabolism [168,169]. Pharmacological
long-term inhibition of cholesterol biosynthesis by the statin lovastatin differentially aug-
ments cell-surface levels of α4β2 and α7 nAChRs in neurites and soma of rat hippocampal
neurons [169]. Misbalances in brain cholesterol homeostasis affect cholinergic signaling
involving α4β2 and α7 nAChRs and indirectly impact on the number and distribution of
other neuroreceptors at dendritic spines, with important consequences for brain function.
Sphingolipids are also necessary for nAChR export in the early secretory pathways [170].
Thus, any modification in sphingolipid levels will impact on nAChR expression.
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CBRs are also influenced by the lipid composition of the cell membrane [171]. In
particular, cholesterol has been reported to negatively modulate the activity of CBR1 in
nerve cells [172] and a specific cholesterol binding site has been described in the CBR1
molecule [145]. Likewise, cholesterol has recently been reported to increase the basal activa-
tion levels of the CBR2 receptor by exerting an allosteric effect on the intracellular regions
of the receptor [171]. Considering the retrograde regulatory effects of CBRs on neurotrans-
mitter release [44] lipid compartmentalization by membrane cholesterol is of considerable
importance as it provides additional regulatory check points of neurotransmitter receptor
function.

Furthermore, the lipophilic endogenous neurotransmitter AN exhibits selectivity
for cholesterol and ceramide amongst membrane lipids. Through the establishment of
a hydrogen bond, AN forms a molecular complex with cholesterol inside the plasma
membrane, and has been proposed to interact with CBR1 via the cholesterol-recognition
motifs CRAC or CARC [173]. AN binding to ceramide blocks the degradation pathway of
both lipids [173].

8. Contribution of Actin Dynamics to the Compartmentalization of the Dendritic Spine

The eukaryotic plasma membrane is connected to the intracellular milieu via many
adapter proteins [174]. The plasma membrane domains are associated with intracellular
structures, and the submembrane cytoskeletal meshwork is one of the important elements
that regulate cell mechanics and morphology, contributing to delimiting the extension
of membrane domains. The actin cytoskeleton modulates plasma membrane dynamics
and introduces barriers to the diffusion of membrane proteins, with the formation of
micrometer-sized corrals and smaller domains where membrane proteins can experience
anomalous diffusion [175–178]. These actin meshwork-driven compartments play an
important role in the dendritic spine. For instance, disruption of PDZ-containing scaffolds
(PDZ domains are protein–protein interaction modules that recognize specific C-terminal
sequences) or of actin filaments in chick ciliary ganglion neurons has been shown to increase
the mobility of α7 nAChRs [179]. In contrast, making the sub-membrane cortical actin
network more stable by cholesterol depletion [180] reduces receptor mobility. Cholesterol
depletion diminishes nAChR mobility at the cell surface; mobility can be partially restored
upon treatment with Latrunculin A [165].

Actin polymerization and depolymerization dynamics are active modifiers of presy-
naptic morphology, with important functional implications [181,182]. Thus, the actin cy-
toskeleton provides the adequate scaffold for synaptic vesicles and the active zone [183,184].
Changes in the size of presynaptic terminals have been correlated with the postsynap-
tic response [185–187] and thus with synapse strength [187–190]. At the postsynapse,
actin filament dynamics provide a framework for the formation of transient protrusions
and modifications of dendritic spine morphology by interacting with a variety of actin-
binding proteins (ABPs) [191]. These ABPs are important in actin dynamics, including
actin polymerization-depolymerization, nucleation, branching, capping, cross-linking and
trafficking [192].

9. Nanodomain Cluster Organization Emerges as a Common Organizing Principle at
CNS Synapses

Neuronal activity regulates receptor fluxes at the PSD through the interaction of
receptors with scaffolding molecules and lipids [193]. The PSD scaffolding proteins are dis-
tributed heterogeneously and form nanodomains within the synapses, termed sub-synaptic
domains (SSD) [194]. The characteristic output of LTP induction, spine enlargement, is
paralleled by the increase in the number of PSD-95 (an SSD-resident protein) copies [195].
This augmentation in PSD-95 biosynthesis occurs within hours of LTP induction [196].

During development, proteins organized in nanoclusters at the pre- and postsynapse
control the differentiation of the dendritic spine. The cholesterol-binding protein TSPAN5,
which belongs to the tetraspanin superfamily, is localized postsynaptically in pyramidal
excitatory neurons, and is the master controller of spine maturation. Control is exerted
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by promoting the clustering of the postsynaptic molecule neuroligin-1 at the spine sur-
face [197], which in turn recognizes and binds to presynaptic neurexins. TSPAN5 knockout
mice have an extremely low number of spines, reinforcing the view that this tetraspanin
plays a key role in excitatory synapse maturation.

Neurotransmitter receptors are also organized into SSDs at the postsynaptic plasma
membrane [198]. Neurotransmitter receptor domains localized in SSD domains exhibit
diffusion-limited lateral mobility relative to receptors localized in non-synaptic areas, and
the two pools are in active exchange [199]. Receptors in either pool are removed from
the plasma membrane via metabolic turnover [200]. The maintenance of a homeostatic
balance between these two mechanisms determines the number of active receptors at the
postsynaptic membrane.

At excitatory glutamatergic synapses, the lateral exchange of receptors between ex-
trasynaptic and synaptic areas is responsible for neuronal plasticity [193,201,202]. In the
CNS, endocytosis occurs predominantly, if not exclusively, in extrasynaptic areas [203–205],
and hence receptors have to diffuse out of the PSD to be internalized [206]. In turn, mobi-
lization of receptors from the spine shaft to the PSD partly depends on the morphology of
the spine. As the spine neck diameter diminishes, it is energetically and mechanically more
costly to transport endosomal vesicles from the ER outposts in the dendrite to the PSD
through the spine actin meshwork [207]. Dendritic ER and Golgi outposts are well docu-
mented in rodent hippocampal neurons, particularly at dendritic branching points [208]
and high-pressure freezing fixation (without chemical fixation) combined with transmis-
sion electron microscopy has revealed smooth ER and Golgi outposts inside dendritic
spines [209] (Figure 4).

Figure 4. Diagrammatic depiction of dendritic spine remodeling during synaptic plasticity and associated neurotransmitter
receptor clustering in nanodomains. (A) remodeling of the submembrane actin meshwork and incorporation of newly
synthesized/laterally diffusing receptors from non-active areas of the spine head and neck into the PSD area, thereby
increasing neurotransmitter receptor number at the site of contact with presynaptic boutons. At the crest of the spine
receptors become entrapped by actin corrals, which might also present a lipid composition distinct from the bulk lipid
bilayer. Golgi outpost in the dendrite and satellite Golgi outposts are found in the spine head, as well as smooth ER outposts.
(B) Top view of the PSD. NMDARs (blue) are predominantly located at the center of the PSD in a single nanocluster, whereas
AMPARs (red) are segregated into several nanodomains (sub-synaptic domains, SSD) surrounding the central NMDAR
nanodomain. In contrast, mGluR5 (yellow) are aggregated into small clusters or homogeneously distributed at the PSD.
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Formation of cell-surface receptor nanoclusters is favored when stabilizing interactions
preclude lateral diffusion of individual receptor molecules [210,211]. Upon disruption of
the cytoskeleton, α7 nAChR mobility and cell surface expression are hampered, but not the
receptors’ ability to form clusters, suggesting tethering mechanisms [212].

Perisomatic GABAergic terminals from CBR1-positive basket cell interneurons pro-
duce stronger endocannabinoid-mediated synaptic plasticity than that mediated by den-
dritic synapses [213]. Consistent with these observations, studies combining stochastic opti-
cal reconstruction microscopy (STORM) superresolution optical microscopy with whole-cell
patch-clamp electrophysiological recordings found that GABAergic interneurons project-
ing axon terminals on perisomatic synapses possess larger synaptic boutons, harboring
higher numbers of CBR1s, higher receptor/effector ratio, and more complex active zones
than dendritic spine-projecting interneurons, whereas nanoclusters of the presynaptic
active zone-resident protein Bassoon were more abundant in dendritic synapses [214]. The
CBR1/Bassoon ratio was 46% higher within 100 nm of the Bassoon nanocluster edges
in perisomatic boutons than in dendritic nerve endings. These authors also found that
chronic ∆9-THC administration, which diminishes cannabinoid efficacy on GABA release,
markedly downregulated CBR1s. Complete receptor recovery occurred only weeks after
the cessation of ∆9-THC treatment. Dudok and coworkers hypothesized that the nanoscale
receptor/effector ratio and coupling distance, rather than the number of receptors, deter-
mines cannabinoid signaling and neurotransmitter release [214].

Recently, Goncalves and coworkers showed that NMDARs form a single SSD lo-
cated mainly at the center of the PSD, whereas AMPARs were segregated into several
SSDs surrounding the NMDAR central nanocluster and mGluR5 presents a more diffuse
distribution [215]. This observation is in agreement with the notion that NMDARs are
less mobile than AMPARs at mature synapses [202,216] (Figure 4B). As for CBRs, CBR1
colocalizes with PSD-95 in spines [59]. The predominantly presynaptic CBR1s have been
reported to be uniformly distributed at the nanoscale level [214]. However, as is the case
with the nAChR, changes in cholesterol/sphingolipid ratio and actin stability can alter
the distribution of CBR1s. In addition, a reduction in the number of cell-surface CBR1s
via endocytic internalization [47,217] or through the action of β-arrestins [218,219] can be
induced after long agonist exposure. Binding of β-arrestins uncouples G-proteins and
stimulates receptor internalization and β-arrestin mediated signaling [218,220].

10. Concluding Remarks

Compartmentalization provides the plasma membrane with discrete 2-D platforms
where biochemical reactions or signaling mechanisms can be simultaneously executed with
maximal efficacy, without interference from competing processes. The dendritic spine, a
highly differentiated subcellar compartment distinct from the rest of the neuronal mem-
brane, maximizes its operational capacity by incorporating nanodomain compartments at
its surface. One of the mechanisms exploited by the dendritic spine to parcel out its cell-
surface membrane is through the formation of reversible biological barriers via the actin
meshwork. This sub-membrane network dynamically interacts with the plasmalemma,
creating barriers that transiently hinder protein translational diffusion, thereby seclud-
ing molecules from the rest of the bilayer and transiently retaining them in nanodomain
compartments.

Advances in the field of dendritic spine compartmentalization should provide impor-
tant clues about the mechanisms involved in the regulation and function of neurotransmit-
ter receptors and their interplay with scaffolding proteins, lipids, and enzymes at brain
synapses in health and disease.
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