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New High-Performance Computing architectures have been recently developed for
commercial central processing unit (CPU). Yet, that has not improved the execution
time of widely used bioinformatics applications, like BLAST+. This is due to a lack
of optimization between the bases of the existing algorithms and the internals of the
hardware that allows taking full advantage of the available CPU cores. To optimize the
new architectures, algorithms must be revised and redesigned; usually rewritten from
scratch. BLVector adapts the high-level concepts of BLAST+ to the x86 architectures
with AVX-512, to harness their capabilities. A deep comprehensive study has been
carried out to optimize the approach, with a significant reduction in time execution.
BLVector reduces the execution time of BLAST+ when aligning up to mid-size protein
sequences (∼750 amino acids). The gain in real scenario cases is 3.2-fold. When
applied to longer proteins, BLVector consumes more time than BLAST+, but retrieves
a much larger set of results. BLVector and BLAST+ are fine-tuned heuristics. Therefore,
the relevant results returned by both are the same, although they behave differently
specially when performing alignments with low scores. Hence, they can be considered
complementary bioinformatics tools.

Keywords: proteins, parallel algorithm, benchmarking, pairwise alignment, database search

INTRODUCTION

Currently, the Basic Local-Alignment Search Tool, BLAST (Altschul et al., 1990), is one of the most
widely used algorithms to search for sequence similarities in Bioinformatics. BLAST+ has been
designed to be quickly executed by standard multicore microprocessors in a hardware environment,
where cores are very powerful, memory accesses are extremely fast, and there is no contention
among the different cores. Unfortunately, this is not the hardware scenario for the recent manycore
central processing unit (CPU) coprocessors, like the Intel Xeon Phi (Jeffers et al., 2016), TILE-
Gx (Schooler, 2010) or massively parallel processor array (MPPA)-256 (De Dinechin and Graillat,
2017), where cores are less powerful, coordination between a huge amounts of threads is slow, cache
sizes are small, and cache faults are heavily penalized. As an example, Intel recognizes that executing
BLAST+ directly on Xeon Phi in native mode is up to 3-fold slower than using a standard Xeon
E5 processor (Albert, 2015). Other implementations of BLAST specifically designed for multi- and
many-core architectures, like HPC BLAST (Sawyer et al., 2019), which strictly follows the BLAST
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heuristic algorithm, do not improve these outcomes too much,
at least when the results in Xeon Phi are compared to traditional
microprocessors, like Intel Xeon E5-2670 (Brook et al., 2014).

To optimize the performance of a manycore CPU executing
BLAST+ or any BLAST-like application, the internal algorithm
must be adapted to use the strengths of the underlying
architecture: vectorization and multithreading (Langenkämper
et al., 2016). We present BLVector, a BLAST-like algorithm that
works with peptide (protein) sequences. BLVector is designed
specifically to use the Single-Instruction Multiple Data (SIMD)
vector instructions of the Advanced Vector eXtensions (AVX)-
512 instruction set, as well as its multithread capabilities. We
have previously demonstrated the usefulness of optimizing
bioinformatics algorithms to significantly enhance performance
(Gálvez et al., 2010, 2016; Díaz et al., 2011, 2014; Esteban et al.,
2013, 2018).

The main contributions of BLVector are: (i) Implementation
of the Smith-Waterman (S/W) pairwise local alignment
algorithm, following the Farrar’s approach with vectors of 512
bits (AVX-512); (ii) A filtering stage ensures that only promising
local pairwise alignments are performed; (iii) Such filtering stage
uses AVX-512 vectors for a faster execution. Applying the filter
to two sequences is up to 1,000% faster than the corresponding
pairwise alignment without such filtering step; (iv) Thread-
level parallelism maximizes the usage of computational power
available in manycore CPU systems; (v) The hits retrieved with
this approach are pretty similar to those obtained with BLAST+,
but the execution is faster in most situations; and (vi) Different
parameters of BLVector allow dealing with a trade-off between
accuracy and performance.

In this work, the design of this new heuristic is presented.
A deep benchmark is carried out, based on its execution on
a single Xeon Phi coprocessor and other architectures. It is
important to note that, although there are newer processors, this
is a proof of concept. Additionally, the Intel Xeon Phi is currently
in many HPC solutions. In fact, six of the Top 25 supercomputers
listed in https://www.top500.org (November, 2020) incorporate
the Intel Xeon Phi technology; and this number increases when
other architectures that include the AVX-512 instruction set are
considered, like Intel Skylake-X, Cascade Lake and others.

METHODS

BLVector is a heuristic algorithm that follows two stages to
search for peptide sequences: (i) filtering; and (ii) local pairwise
alignment. Many efforts have been made to execute brute-force
pairwise alignments, so BLVector focuses in the filtering stage to
speed up its execution. To do this, we have created an approach
that takes the most from the new SIMD AVX-512 instruction set,
by applying them to both stages.

In contrast to BLAST+ (blastp), which uses a hash table to
search for 3-mer substrings, BLVector uses a brute-force method
to search for common 4-mer substrings between the query and
the subject sequence. Using one byte per amino acid (aa) residue,
BLVector packs four bytes in a simple 32-bit integer. Besides,
by using SIMD vector instructions, it compares a single query

integer (four aa residues from the query sequence) against 16
subject integers (16 blocks of four aa residues in the subject
sequence), in parallel in a single clock cycle per instruction: 16
integers× 32 bits = 512 bits. Section “BLVector Search for 4-mer”
provides further information about it.

BLVector considers that a subject sequence might be a
promising hit when, at least, there are four 4-mer matches in
a query window of 16 consecutive aa residues, though this can
be parameterized. In such a case, BLVector executes a local
alignment (Smith and Waterman, 1981) against the query, in
order to determine if the subject is actually a relevant hit. To
do this, a new Farrar’s implementation (Farrar, 2007) of the
S/W algorithm has been developed from scratch using the AVX-
512 architecture, although other approaches may also be used
for such a purpose. This behavior is different to blastp, which
executes a search around each 3-mer match to expand it; only
when its size and score is beyond a threshold, the subject sequence
is considered as a relevant hit. In addition to vectorization,
BLVector uses a multiprocessing approach, taking the most from
the manycore CPU architecture, by executing four threads per
core (see section “BLVector Execution Architecture”).

The Farrar algorithm is an elegant method to apply
vectorization to a single Smith-Waterman pairwise alignment.
Based on a complex rearrangement of indices, it assumes that
most cells in the dynamic programming matrix will be zero.
This allow an intensive application of SIMD vector instructions,
and only in a few cases is needed to execute a correction
stage that penalizes the algorithm. The Farrar approach is the
fastest known to perform single local alignments. It suits to the
BLVector operating mode, where an alignment is performed as
soon as a new promising subject sequence passes its filtering
stage. This way, a single thread of BLVector interleaves the
execution of the filtering and alignment stages. Other methods,
like Rognes (2011), are adapted to work faster with sets of
subject sequences. Regarding performance, BLVector provides
three main parameters:

Nearby: Number of 4-mer matches to be found in a 16
aa-residue window of a subject sequence, to be considered
as a potential hit. As this value increases, the sensitivity of
BLVector decreases.

Cluster: To increase sensitivity, aa-residue letters can be
grouped based on their distribution statistics1.

Faster: This Boolean parameter makes BLVector execute a
non-exhaustive search, looking for 4-mer only in even positions.

BLVector Search for 4-mer
The key point of the filtering implementation is the utilization of
specific memory data structures. That allows to align amino acid
sequence residues (letters) of peptides or proteins in memory,
as required by SIMD instructions. To do this, BLVector creates
four replicas of the subject sequence stored in memory; each
one of them being shorter than the previous one in 1 byte
(a single residue is stored into one byte; that is, 8 bits). This
speeds up the comparison of a 4-mer query against every 4-
mer subject, exclusively using vectors in which the computation

1https://www.uniprot.org/statistics/Swiss-Prot 2019_05
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unit is 32 bits; i.e., 4 consecutive residues or 4-mer. Although
such approach requires more main memory than BLAST+, this
quadruplication is executed on-the-fly, each time that BLVector
is executed. Therefore, there is no need for a previous indexation
stage, as is required by the former algorithm. As in many other
approaches (Liu et al., 2011, 2013; Rognes, 2011; Yongchao
and Schmidt, 2014). BLVector focuses on amino acid sequences
because this implies the usage of relatively large score matrices,
like point-accepted mutation (PAM) (Dayhoff et al., 1978) or
blocks substitution matrix (BLOSUM) (Henikoff and Henikoff,
1992). Therefore, these algorithms should be used for nucleic acid
(DNA or RNA) alignments, in addition to proteins, only when
this type of matrices is used, as is the case of substitution matrices
for aligning nucleic acid sequences using the International Union
of Pure and Applied Chemistry (IUPAC) NUCleotide (NUC)
ambiguity codes, like NUC.4.4.

Figure 1A shows how a subject sequence of length N is
quadruplicated into memory, using 64[(4N-12)/64] bytes. The
resulting memory structure must be aligned to 64 bytes (512
bits) at both ends, because vectors of 512 bits are being used (a
vector is interpreted as 16 consecutive units of 32 bits); and each
replica is aligned to four bytes (the length of 4-mer; i.e., a string
sequence of four residues). Quadruplication may be seen as a way
to prebuild into memory all the vector values that will be needed
in further processing.

The goal of the filtering stage is to check common substrings
of length four, between a query sequence of length M and

a previously quadruplicated subject. To do this, the BLVector
algorithm focuses on each substring of four bytes (4-mer) length
in the query sequence. Then, each 4-mer is replicated 16 times
into a vector of 512 bit (4 bytes × 16 × 8 bits per byte = 512
bits of length; see Figure 1B. This approach allows each query’s
4-mer to be checked against the subject sequence, using only
vn = [(4N-12)/64] comparisons between vectors of 512 bits
length. This is shown in Figure 1C which, in addition, shows an
example of a match of the 4-mer query at position M-4. The total
number of comparisons in the worst case is (M-3) vn. The vector
instructions used in BLVector are compatible with those of newer
x86 architectures (AVX-512F) by means of intrinsic functions2.

Additionally, the rationale is to check those cases where
there is a local concentration of common 4-mers between the
subject and the query. To track locality, BLVector uses a 16-bit
integer (named nearby) that shifts to the left for each of the M-
3 iterations. When one of these iterations results in a match,
then the least significant bit (LSB) of nearby is set; otherwise,
it is reset. Only when the number of bits set in nearby exceeds
the value of the -n parameter (nearby-threshold), it is assumed
that the subject has enough local similarity to the query. In such
a case, it is worth to execute a local alignment between them.
If the nearby variable has never contained nearby-threshold
bits set after the M-3 steps, then, the subject is discarded as
a potential hit.

2https://software.intel.com/sites/landingpage/IntrinsicsGuide

FIGURE 1 | Scheme of 4-mer (32 bits) searching by using vectors of 512 bits. (A) Required quadruplication of a subject sequence before searching for 4-mer.
(B) How each query 4-mer is replicated 16 times into 512-bit vectors is shown. (C) Each 512-bit vector is checked against each quadruplicated subject and, hence,
a single query 4-mer is searched in vn steps (16-fold faster than using non-vectorized instructions).
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Clearly, it can be argued that contiguous 4-mers of the query
sequence may appear at very distant positions in the subject
sequence. However, even in the case of random sequences, this is
unlikely to happen in a section of only 16 residues, i.e., the length
of the nearby integer. In the worst-case scenario, this produces
a false potential hit that will be discarded after the pairwise
alignment stage.

BLVector Matrix Clustering
Usage of a 4-mer is a must in BLVector, due to the essentials of
vectorization with 32-bit replicas. Other alternatives, like 2-mer
(16-bit) or 8-mer (64-bit) are too loose or restrictive, respectively,
for filtering purposes. Considering that blastp uses a 3-mer for
residues, we have created a method for BLVector to resemble
blastp: matrix clustering.

Matrix clustering consists in reducing the number of letters
used in the whole algorithm; i.e., from the 21 letters used in
a standard score matrix of aa residues (corresponding to the
20 natural amino acids encoded by the genetic code, plus X
for unknown ones) to a minor amount. To do this, two or
more letters were collapsed into a single one, following different
approaches: (i) chemical families; (ii) k-means; or (iii) statistical
representations. The suitability of each approach depends on the
ratio between new hits and new promising hits. In other words,
the average number of new pairwise alignments to be done in
order to find out a new hit subject sequence. After testing these
approaches, the statistical distribution of each residue available
in UniProt (Bateman, 2019) was chosen as the main variable to
apply a hierarchical clustering. By far, this method introduced the
lesser noise and produced the best results.

The cluster parameter allows specifying the number of letters
to be used in BLVector, which ranges from 21 to 15 [that,
including the wildcard symbol or asterisk (∗), fits into a nibble].
For example, using a cluster value of 20, simply assumes that the
tryptophan and cysteine amino acids refer to the same residue.
The rationale is that their respective statistical distributions
are 1.0 and 1.3%, being the lowest reported by UniProt. This
approach has proved to be more suitable than, for example,
collapsing cysteine and methionine (which belong to the same
sulfur-containing family of aa) to create the cluster of 20.
Using lower values of the cluster introduces a blur effect in
the sequences, whose final effect is that more sequences pass
the filter and need to be pairwise aligned. Hence, the accuracy
is increased but at the cost of reducing the speedup. At some
extent, reducing the value of this parameter has a similar effect
than reducing the value of the nearby parameter, albeit at the
expense of introducing some noise. In general, the best results
were obtained by fine-tuning the value of nearby, and using a
cluster of value 21 or 20. This can be observed in the interactive
figure “BLVector_nX_cXX_X.html” (Gálvez et al., 2020) and
Supplementary Material “FullMetrics.xlsx” (see section “Results
and Discussion”).

Non-exhaustive Heuristic Algorithm
Looking for the best hit is a widely used operation. Even
more, this operation is usually employed to discover the main
functionality of just discovered proteins, after the assembly of

a new genome. In cases like this, the user searches for very
similar subjects that share long substrings with the query. In
other words, a very high value for the nearby parameter in valid
hits is expected. Because of this, the same most relevant results
may be obtained in a faster way, by comparing just the even
locations of the subject sequence (instead of both, the even and
odd). Only the most promising sequences will pass the filter.
So, the number of pairwise alignments to perform will decrease
(including invalid hits), and the execution time of BLVector will
be dramatically reduced.

For this purpose, we propose to shorten the replication
of the subject sequence: a duplication is used instead of a
quadruplication. This is achieved by using the fast parameter -
f. Thus, only the original sequence and its copy shifted 2 bytes are
used in the filtering stage. Therefore, the time taken by 4-mers
searches is divided by two. The drawback of this approach is that
searches for 4-mer are not exhaustive, because they are looked for
at even positions only. Clearly, this is a risky heuristic algorithm
that should be used only when the user is looking for very similar
proteins, and where the probability of skipping common 4-mer
is not a problem to find the required hits. Using this method, the
average gain in giga cell updates per second (GCUPS) is∼58.7%,
whereas the loss of hits is ∼49.7% (see Supplementary Material
“FullMetrics.xlsx”).

BLVector Execution Architecture
A typical execution of BLVector begins loading the fast-alignment
sequence tools (FAST)-All (FASTA) (Lipman and Pearson, 1985)
database into memory, further replicating the sequences, as stated
in Figure 1A. In this stage, the random-access memory (RAM)
memory may be a bottleneck; loading a RAM disk file into the
RAM application memory takes 2 s per GiB. Hence, retrieving the
Swiss-Prot UniProt file (∼250 MiB) into memory takes ∼0.5 s.
Once the file has been loaded into memory, several threads
are in charge of quadruplicating the sequences. However, from
10 threads on, no additional speed gain is obtained, due to
contention to main memory accesses. Thus, the final result is
that this operation is twice slower than file loading: takes ∼1 s
to quadruplicate the Swiss-Prot UniProt. When only a few query
sequences will be searched against the database, it is much more
efficient to quadruplicate queries, instead of the whole database of
subjects. Nonetheless, in this work we provide the particular (and
more general) approach. Thus, it is assumed that users will search
for many thousands of sequences and, thus, taking the most of the
performance of BLVector in big-batch jobs.

The left part of Figure 2 shows the general architecture of the
Xeon Phi Coprocessor 31S1P used in this work. As the memory
bus is shared among all the cores, memory-intensive tasks
produced a bottleneck when they could not be fully executed
inside the cache. Fortunately, this whole stage is executed only
once, independently of the number q of query sequences to search
for in a single execution. Yet, the time taken by this operation
tends to be insignificant as q increases. Thus, it makes no sense
to include it in the calculus of performance (see section “Results
and Discussion”).

Once each subject sequence is quadruplicated into a memory
pool, the query file is also loaded and split into single FASTA
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FIGURE 2 | Architecture of BLVector execution in a Xeon Phi Coprocessor 31S1P with 57 cores. Each thread executes a 4-mer nearby filtering stage, as indicated in
Figure 1.

sequences. Then, for each query sequence, and one after the
other, the BLVector heuristic algorithm starts 228 threads (this
can be changed through the -p parameter), like the one illustrated
at the right of Figure 2. This is a requirement of the Xeon
Phi Coprocessor 31S1P, that contains 57 cores and requires to
use 4 threads per core to obtain the maximum performance.
When a thread becomes idle, it blocks the pool where the
subject sequences are stored, it takes the next ten ones to
process and unblocks the pool. All the threads work with the
same query sequence, but against different subjects stored in
the main memory: filtering them and aligning only those ones
that passes the filter (see right-bottom part of Figure 2). Taking
ten sequences at each step (instead of only one) reduces threads
contention and, at the same time, maintains a balanced workload
amongst them. BLVector leverages this approach to noticeably
increase performance. Actually, the optimal size of this local
cache of proteins largely depends on the length of the query
sequence (contention increases with shorter sequences), and the
final value of 10 is empirical. In any case, each thread processes a
subject sequence at a time (whose average length is 359 residues
in Swiss-Prot UniProt release 2019_05). Therefore, the memory
footprint is small, and memory-intensive operations are executed
inside its own cache.

The success of BLVector is mainly due to the high performance
obtained through the AVX-512 SIMD instructions used in the 4-
mer nearby filtering stage, although vectorization has also been
used in the pairwise alignment stage. In addition, unrolling
four times the main loop of this 4-mer search (by means of
a #pragma), also slightly increases the performance. In short,
looking for 4-mer using AVX-512 instructions is much faster
(see section “Results and Discussion”) than using a hash table

in standard microprocessors, as BLAST+ does. Finally, a correct
alignment of data into memory is extremely important to achieve
a good performance in the execution of the Smith-Waterman
algorithm with affine gaps (Gotoh, 1982), using the stripped
approach of Farrar (Farrar, 2007). Other approaches could be
used to align many subject sequences with extreme performance.
However, they do not include a filtering stage and/or they require
specific servers and/or high-end graphics cards, whose cost
greatly exceeds the affordable Xeon Phi Coprocessor 31S1P that
BLVector may use (Lan et al., 2017; Rucci et al., 2019). Anyway,
the BLVector source code could be rewritten to get the most out
of any brand new hardware vectorization.

RESULTS AND DISCUSSION

The main contributions of this implementation are the utilization
of a filtering stage to reduce the amount of pairwise alignments to
perform, and the efficient use of the 512-bit vectors provided by
the AVX-512 instruction set, both in the filtering and alignment
stages. Avoiding contention to shared memory accesses also
contributes to increased efficiency.

The BLVector has been tested in native mode, on a Xeon Phi
Coprocessor 31S1P with 8 GiB DDR5 and 57 cores at 1.1 GHz,
running 228 threads, with a thermal design power (TDP) of
270 W. It is quite affordable, with a current cost of around 200
USD. This card supports a 512-bit instruction set, named initial
many core instructions (IMCI); i.e., a precursor of some AVX-512
extensions (including AVX-512F), being compatible with them
by means of intrinsic functions. The behavior study of BLVector
is divided into three parts: (i) performance and accuracy against
blastp, including a real case of study; (ii) improvement introduced
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by the filtering stage; and (iii) speedup of executing the filtering
stage in different architectures.

Performance and Accuracy of BLVector
BLVector has been used to search for the 32 proteins reported
elsewhere (Rognes, 2011) using the Swiss-Prot UniProt release
2019_05 (560,292 sequences with an average length of 359
residues). Using default parameters, execution times ranged
from <1 s for sequences shorter than 730 aa residues to 9.2 s
for proteins like P33450 (5,147 aa residues). BLVector can be
considered as a Smith-Waterman alignment algorithm, with a
former filtering stage that passes promising subject sequences
only. Hence, we have chosen the concept of GCUPS to measure
its performance against blastp (BLAST+ v2.7.1), that has been
executed in two different personal computers (PC): (i) a desktop
PC with an Intel Core i7-4820K CPU running at 3.70 GHz,
12 GiB of DDR3 and a Kingston HyperX 3K Solid-State Drive
(SSD; 120 GB); and (ii) a workstation with an Intel Xeon W-
2123 (Skylake microarchitecture) CPU with 4 cores running at
3.60 GHz, 32 GiB of DDR4 and a Corsair Force MP510 NVMe
SSD (500 GB). For comparison purposes, BLVector has been
executed inside the Xeon Phi card with no support of the main
CPU, whereas blastp has been fully executed in the main CPU,
with no support of the Xeon Phi card. The performance of the
Intel i7-4820K and Xeon W-2123 used in this experiment are
very close to that of the Intel Xeon E5-2670 used in other studies

(Orozco-Arias et al., 2017; Sawyer et al., 2019). Therefore, the
scenarios where BLVector and blastp have been executed are
completely standard, and thus comparison fairness is guaranteed.
In this sense, each program is executed in its native homogeneous
hardware architecture. The performance of blastp is slightly
better in the workstation, so it is used in the benchmarks of this
discussion (see the Supplementary Material “FullMetrics.xlsx”
for more information).

BLVector and BLAST+ are heuristics, and they may return
different sets of hits, in comparison to an optimal Smith-
Waterman whole search. Hence, their performances should be
compared for both hits retrieved (accuracy and precision), as
well as execution times (speed). Different parameter values
were used to benchmark BLVector time performance in
comparison to blastp (see Figure 3 and Supplementary Material,
for benchmarks with different matrices from the BLOcks
SUbstitution Matrix 62 – BLOSUM62). The best ones were
selected as default ones.

Figure 4A shows the amount of hits found by BLAST+
(blastp), but not by BLVector (see the interactive figure
“BLVector_Nx_Cxx_X.html” (Gálvez et al., 2020) for hits
retrieved by BLVector in contrast to BLAST+, when using
different sets of parameters). In general, BLVector misses tens of
hits whose bit-score is lower than 200; i.e., those less relevant,
and this happens mainly for the shortest proteins. In contrast,
when dealing with long proteins, larger than one kilobase

FIGURE 3 | Speed performance of BLVector with 228 threads vs. BLAST+ using BLOSUM62. BLAST+ times are the same in every chart. The top charts show
executions of BLVector with parameter -n from 1 to 8 and -c 21 (left) and -c 20 (right). The bottom ones represent the same executions, but including the
non-exhaustive parameter -f. Execution speeds are represented in GCUPS. As an example, in the top-left diagram, BLVector uses cluster c21 and nearby values
from n1 to n8; the speed of BLVector exceeds BLAST+ from n3 on.
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FIGURE 4 | Hits performance of BLVector vs. BLAST+ using BLOSUM62. X axis shows the names of the proteins used for benchmarking. (A) How many hits given
by BLAST+ are not given by BLVector, using -n 3 and -c 21 parameters. These hits are divided into six sets, depending on the bitscore given by BLAST+, ranging
from <100 to ≥300. (B) BLAST+ (blastp) misses thousands of hits correctly returned by BLVector, with proteins larger than 1 kb (see vertical axis labels). These hits
are divided into four sets, depending on the score given by BLVector.

FIGURE 5 | Number of hits retrieved by BLAST+, but not by a Smith-Waterman execution. BLOSUM62 and default parameters have been used in both cases;
Smith-Waterman was set with a threshold score of 80.

(kb), BLAST+ misses thousands of hits, which are correctly
returned by BLVector; see Figure 4B and interactive figure
“BLAST_all_hits_vs_BLVector.html” (Gálvez et al., 2020).

Figure 5 shows how many hits reported by BLAST+ are
skipped by a pure Smith-Waterman algorithm (i.e., removing
the nearby filtering stage of BLVector; see the interactive figure
“Farrar.html” (Gálvez et al., 2020) for more details). It reveals
that BLAST+ provides hits even below the default threshold used
by BLVector (score of 80 using BLOSUM62). The interactive
figure “BLVector_nX_cXX_X.html” (Gálvez et al., 2020) must
be studied taking these results into account. Thus, it displays
the hits skipped by BLVector with different parameters: -n from
1 to 8, -c from 15 to 21 and activating/deactivating -f. The
corresponding and most interesting execution times, expressed

in GCUPS, are illustrated in Figure 3, and the complete set
can be found in the Supplementary Material “FullMetrics.xlsx.”
All times and GCUPS values are the average results of three
independent executions, under the same conditions, including
default parameters. BLVector may achieve higher performance
with short proteins, by reducing the number of threads to
avoid contention. In other words, BLVector is heavily penalized
when using a large number of threads, like the default value of
228, for short sequences. For large sequences, this default value
obtains the best results and, in addition, uses the resources of the
coprocessor at full load.

In a real world scenario, an all vs. all search was executed
between the primary proteins of the cereal genomics model grass
Brachypodium distachyon 314 reference genome (v3.1 containing
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FIGURE 6 | BLVector execution times in relation to sequence length. Both vertical axes are logarithmic and X axis shows the lengths of the proteins used for
benchmarking. (A) Benchmarks of the 4-mer nearby filtering stage versus the corresponding Smith-Waterman execution in the Xeon-Phi. (B) A comparison of the
filtering stage execution times among different architectures: Xeon-Phi (31S1P), CUDA (GTX 1080Ti) and Skylake (Xeon W-2123).

34,310 protein sequences and 12,944,043 aa residues, with an
average length of∼377 aa residues per protein3; and the∼32,000
primary proteins of the drought-stress tolerant variety ABR8
(containing 32,609 protein sequences, with an average length of
366 residues) (Fisher et al., 2016). These proteins are relatively
short, so the time taken by BLVector to start 228 threads was
even more that the time used to process a single protein. Hence, a
best performance was achieved with a lower number of threads
per protein. Using five simultaneous executions of BLVector,
each one with 44 threads (parameters as -p 44 -n 3 -c 21 -
f), consumed just 628 s to execute the whole task, instead of
2,022 s taken by blastp (parameters as -num_threads 8 -outfmt 6
-max_target_seqs 1 -max_hsps 1). That represents a performance
gain of 3.22-fold with the same relevant output results. The
performance achieved by each BLVector instance execution was
relatively uniform, ranging between 49.2 and 49.5 GCUPS with a
wattage consumption of ∼160 W (∼92 W when idle), a constant
user CPU usage of∼93% and a memory utilization of 1.32 GiB.

The Filtering Stage and Its Speedup
It is important to estimate how much time saves BLVector, when
compared to a whole S/W execution. When a sequence is rejected
in the filtering stage, no local pairwise alignment should be
executed. So, the total time to process such a sequence has been
the filtering time. On the other hand, when the filtering stage
foregoes a sequence, the local alignment must be executed, so
the total time to manage the sequence is the filtering plus the
alignment times.

Figure 6A benchmarks the times of two theoretically extreme
executions of BLVector: i) pure Smith-Waterman (Farrar, 2007),
without filtering stage; and (ii) pure 4-mer nearby filtering
stage, without Smith-Waterman execution (nearby of ∞). The
filtering stage using 512-bit vectors is approximately one order
of magnitude faster than the execution of the Farrar algorithm.
The gain achieved by applying the filtering stage (represented
by bars) can be split in three main blocks: (i) up to the average

3https://phytozome.jgi.doe.gov

length of proteins in Swiss-Prot UniProt 2019_05 (359 aa) with
a gain of ∼5×; (ii) from 361 aa up to 567 aa with a gain of
∼7×; and (iii) from 657 aa on with a gain of ∼10× (a maximum
of 11.8× is achieved on P42357, with a length of 657 aa). This
implies that the overload of applying the filtering stage to a hit
protein is around 10% whereas the time saved when applied to a
non-hit protein is between 500 and 1,000%. Logically, there is a
direct relationship between the speedup gain and the percentage
of filtered sequences that, in turn, depends on the parameters
of BLVector (see the Supplementary Material “FullMetrics.xlsx”
and “Charts SW”).

The Filtering Stage in Other
Architectures
By far, the most relevant part of BLVector is the filtering stage
and its performance. For this reason, it is important to compare
its throughput when executed in other widespread hardware
architectures. Figure 6B includes a comparison of the filtering
stage (nearby of∞, i.e., maximum accuracy and execution time
of this stage) executions times among different architectures,
including CUDA (Ryoo et al., 2008). The graphics card used
for this test has been a GTX 1080Ti with 11 GiB of GDDR5X
running 3584 cores at 1.48 GHz and a TDP of 250 W. It must be
noted that the implementation in CUDA of the BLVector filtering
stage does not require the quadruplication of the data because the
vectorization used in Xeon-Phi is translated into simpler memory
accesses. The proteins used in this benchmark are allocated into
CUDA shared memory, and this significantly improves the speed
up. In addition, the memory unalignment problem is resolved
in CUDA by using 32-bit integers shifted 8 bits in each new
comparison, achieving, this way, a minimum number of memory
accesses in the inner loop of the algorithm. With the outstanding
resources of the card used (62.8× more cores, 1.38× more
memory and 1.35× faster), the CUDA approach achieves only a
gain of∼25% in the best cases.

The BLVector filtering stage behaves extremely fast when
executed on manycore CPU systems with small cache sizes,
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many threads per core and heavily penalized accesses to main
memory. For comparison purposes, it is advisable to test how
the filtering stage behaves when executed on a workstation CPU.
Thus, the BLVector filtering stage has been recompiled in an
Intel Xeon W-2123 (Skylake microarchitecture) CPU with 4 cores
running at 3.60 GHz and 32 GiB of DDR4 RAM memory, as well
as a Corsair Force MP510 NVMe SSD (500 GB). This is one of
the simplest AVX-512 capable Intel processors, with only 4 cores
and a TDP of 120 W. Figure 6B shows also the behavior of the
filtering stage in this CPU. This implementation scales exactly the
same than in Xeon-Phi, though it is ∼1.6× slower with a 44.4%
of its TDP. Finally, a complete execution in the real case scenario
explained in section 0 consumed just 909 s (average of three
executions), only a 45% slower than the Xeon Phi and 2.22-fold
faster than blastp executed in the same CPU. This result shows
that the AVX-512 set of instructions has a really promising future
when correctly used, and its usage in current supercomputers
with these SIMD instructions should enhance its performance.

CONCLUSION

As said, the BLVector is a heuristic algorithm like BLAST+
(blastp), searching for local similarities as a filtering step prior to
perform S/W executions. Because it relies on local alignments,
BLVector is halfway between a pure heuristic and a pure
brute-force method. This work shows that modern algorithms
must be designed focusing on current CPU architectures to
obtain optimum performances, instead of older, traditional
architectures. That can be accomplished by using the simplest
portion of the recent x86 vector instructions set: AVX-512F.
In addition, the design is simplified using two stages, a front-
end filter and a back-end pairwise aligner, both based on
vectorization. Deep benchmarking analyses reveal that BLVector
is a fast algorithm that provides accurate results. And, in
real world scenarios, it produces the same results than blastp,
but faster. Filtering a sequence through the 4-mer method is
up to 11.8-fold quicker than calculating its S/W score, so it
can be applied not only to Farrar algorithm, but also to any
brute-force approach (Rognes, 2011; Rucci et al., 2019), as a
way to speed it up.

In a future work, several coprocessors may be used to
benchmark BLVector on larger databases; e.g., the Viridiplantae
portion of the Translation of the European Molecular Biology
Laboratory (TrEMBL) amino acid sequence database (∼5 GB),
splitting it into parts and compounding results as in Gálvez et al.
(2016). To avoid many splits of the database, quadruplication of

query subjects may be an option in order to save memory. In
addition, a new version of S/W –using AVX-512BW– providing
also sequence alignments would be useful. BLVector can be
easily used in blastx mode; i.e., translating a nucleotide sequence
from double-stranded DNA (dsDNA) or double-stranded RNA
(dsRNA) into their six representations of amino acids (reading
frames), to address scenarios where only nucleic-acid sequences
are available. Finally, it will be very interesting to know the
behavior of BLVector when implemented through the recent Intel
oneAPI in order to use not only CPU but also GPU with minor
efforts. To do this, the alignment stage implementation based on
Farrar algorithm can be substituted by that of Rognes (2011).
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