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Abstract – The present work describes the development of an in silico model to predict the retention 

time (tR) of a large Compound DataBase (CDB) of pesticides detected in fruits and vegetables. The 

model utilizes ultrahigh-performance liquid chromatography electrospray ionization quadrupole-

Orbitrap (UHPLC/ESI Q-Orbitrap) mass spectrometry (MS). The available CDB was properly 

curated, and the pesticides were represented by conformation-independent molecular descriptors. In 

an attempt to improve the model predictions, the best four MLR models obtained were subjected to 

a consensus analysis. The optimal model was evaluated by means of the coefficient of determination 

and the residual standard deviation in calibration, validation, and prediction, along other internal and 

external validation criteria to accomplish the guidelines defined by the Organization for Economic 

Co-operation and Development. Finally, the in silico model was applied to predict the tR of an external 

set of 57 pesticides.
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1. Introduction

A pesticide is any substance or mixture of substances that aims to prevent, destroy, repel or control a 

pest. Pesticides are used as plant growth regulators, defoliants or desiccants, as well as nitrogen 

stabilizers. Thus, these compounds are used to control various pests and transmitters of diseases, such 



as mosquitoes, ticks, rats and mice. Pesticides are also used in agriculture to control weeds, insect 

infestation and diseases (FAO, 2019). In some cases, pesticides generate residues, which are the 

substances that may remain in food after the use of the pesticides on crops; and therefore, these 

residues may be incorporated into the food chain. Many international bodies and countries are 

extremely concerned about pesticide residues. The tool used to guarantee the safety of consumers is 

the mandatory establishment of a Maximum Residue Limit (MRL). A MRL is the maximum amount 

of pesticide residue that is legally allowed in food (both inside and on the surface) resulting from the 

application of a pesticide in accordance with good agricultural practices. Adherence to the MRL is a 

guarantee of safety taking into account the best scientific information of the adverse health effects for 

the population, including vulnerable groups (FAO, 2019).

The gas and liquid chromatography (GC and LC) mass spectrometry (MS) techniques are widely 

applied for the determination of pesticide residues in food products (Poma et al., 2019), particularly 

by applying the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method (Anastassiades 

et al., 2003; Lehotay et al., 2010). On the other hand, in recent years several authors have 

demonstrated the importance of the ultrahigh-performance liquid chromatography and electrospray 

ionization quadrupole Orbitrap high-resolution (UHPLC/ESI Q-Orbitrap) mass spectrometry (MS) 

for the determination of pesticide residues in diverse samples of raw food products (Vu-Duc et al., 

2019; Wang et al., 2019) and processed foods (Jia et al., 2014). All of these methods generate 

analytical responses called retention times (tR) or retention indices (I). The tR is the primary parameter 

obtained in a chromatography system for peak identification, which measures the time required from 

the injection of the sample in the stationary phase until compound elution. This parameter considers 

the maximum (apex) of the peak belonging to a particular pesticide. The tR for a given compound is 

not fixed, since many factors affect its determination; for instance, the mobile phase flow rate, 

temperature differences in the oven and the column, as well as column length and column degradation 

(Vu-Duc et al., 2019).

The quantitative structure-property relationships (QSPRs) theory is usually employed for 

complementing experimental results from chemicals, as well as to provide reliable predictions when 

experimental data are not available (data gap filling). Thus, QSPRs are powerful mathematical tools 

that establish a predictive quantitative relationship between a property (for instance retention time) 

for a series of molecules (pesticides) and the chemical information provided by the molecular 

descriptors (Dearden, 2016; Kaliszan, 2007). Through the years, there has been an increased interest 

among researchers to use this approach, since it is useful to predict the tR or I of un-evaluated and un-

synthetized compounds and to prepare and optimize chromatographic experiments in order to 

separate complex mixtures and identify potential drug candidates from synthesized or computer-



designed chemicals. In addition, this approach enables the elucidation of the molecular mechanisms 

of retention phenomena in diverse stationary phases along with the design of new phases with 

required properties as well as to facilitate protein identification in proteomics studies (Kaliszan, 

2007). Thus, several QSPR studies were reported in the literature to predict the tR of pesticide residues 

(Dashtbozorgi et al., 2013; Torrens & Castellano, 2014; Zdravković et al., 2018). Our research group 

has also been interested in QSPR studies for the prediction of chromatographic retention indices in 

the field of food science (foodinformatics) (Rojas et al., 2019; Rojas et al., 2018), as well as the in 

silico modeling of the water solubility of pesticides (Fioressi et al., 2019).

Consequently, in this work, an in silico model based on the QSPR approach was developed to predict 

the tR for 823 pesticide residues identified in fruits and vegetables by means of UHPLC/ESI Q-

Orbitrap in the Hypersil Gold column. In order to make the model applicable, the five principles 

established by the Organization for Economic Co-operation and Development (OECD, 2014) was 

followed. Pesticides were represented by conformation-independent molecular descriptors and 

fingerprints. For the development of the ordinary least squared (OLS) models the V-WSP 

unsupervised variable reduction and the replacement method (RM) descriptor subset selection were 

combined. In an attempt to improve the model predictions, the best four models obtained were 

subjected to a consensus analysis. The optimal model was thoroughly evaluated by several internal 

and external validation approaches, along with the applicability domain assessment. Additionally, the 

mechanistic interpretation of the molecular descriptors used to predict the tR of the pesticide residues 

was given. Finally, the model was used to predict the retention time for an external set of pesticides 

and metabolites for which the tR was not previously reported. To the best of our knowledge, no 

foodinformatic studies have been conducted for the prediction of retention times measured by the 

Hypersil Gold stationary phase for a large dataset of pesticide residues detected in fruits and 

vegetables.

2. Materials and Methods

2.1. Dataset description

In 2019, Wang et al. developed a large Compound DataBase (CDB) of 845 pesticides and their 

metabolites (Wang et al., 2019). These authors used five fruits (apple, banana, grape, orange and 

strawberry) and five vegetables (carrot, potato, tomato, broccoli, and lettuce) for samples to determine 

pesticide residues by means of ultrahigh-performance liquid chromatography electrospray ionization 

quadrupole-Orbitrap (UHPLC/ESI Q-Orbitrap) mass spectrometry (MS). The UHPLC/ESI Q-

Orbitrap system was composed of an Accela 1250 LC pump and an Accela open autosampler 

integrated with a Q Exactive mass spectrometer from Thermo-Fisher Scientific (Germany). They 



compared different LC methods to improve sensitivity, and to obtain better chromatographic 

resolution. Thus, the Hypersil Gold selectivity column (100 × 2.1 mm, 1.9 μm), and the guard column 

Accucore aQ (10 × 2.1 mm, 2.6 μm) Defender cartridge were used, (both of them from Thermo 

Scientific, USA). This silica-based column is able to analyze low concentrations of pesticides in foods 

(i.e., analysis of impurities). A 4 mM ammonium formate and 0.10% formic acid in water (mobile 

phase A), and 4 mM ammonium formate and 0.10% formic acid in methanol (mobile phase B) were 

used as mobile phases with a gradient profile. The temperature of the UHPLC column was fixed at 

45 °C, while the temperature of the autosampler was set at 5 °C. A 5 μL volume was used for the 

sample injection using a run time of 14 min. For each pesticide, the experimental retention time (tR) 

was obtained from the chromatograms of a full MS scan based on the exact masses. During the 

retention time alignment, the tR of 3-hydroxycarbofuran, a stable and well-characterized compound, 

was used as a reference standard. The experimental tR was measured with a retention time tolerance 

of ± 0.5 min.

In a first step of the data curation, we verified the correct match between the pesticide name and the 

reported chemical formula. It was found that the formula for the Fumesate pesticide (C11H14O5S) 

corresponds to ethofumesate-2-hydroxy (PubChem CID 536079), a ethofumesate metabolite; while 

the formula for the Pyrethrin pesticide (C22H28O5) corresponds to Pyrethrin II (PubChem CID 

5281555, CAS 121-29-9) (MacBean, 2012). Consequently, the Pyrethrin II and the ethofumesate-2-

hydroxy metabolite were used. Moreover, ambiguous pesticides were excluded; that is, compounds 

having discrepancies between the name and the reported molecular formula. These included: 1) 

Dinotefuran metabolite DN phosphate (C7H15N3O); 2) Dodine (C13H29N3), 3) Fentin (C18H16OSn), 

and 4) N-1-Naphthylacetamide (C10H7CH2CONH2). On the other hand, eight pesticides were 

analyzed as fragments or metabolites (Wang et al., 2019): Aldicarb (C5H9NS), Chlorpropham 

(C7H6ClNO2), Demeton-S-sulfone (C6H15O5PS2), Dialifos (C10H6NO2Cl), Fentrazamide 

(C10H16O2N2), Isoprocarb (C9H12O), Methoxyfenozide (C18H20N2O3), and Bifenazate metabolite 

D23-15. Since the exact nature of the kind of fragments that were used was unknown, and in order to 

avoid the use of wrong structures, these compounds were excluded in the initial analysis. However, 

these pesticides along with all the available fragments of these compounds were included in an 

external dataset for analysis.

2.2. Molecular structure visualization and dataset curation

The HyperChem version 8.0 (Hypercube) was used to draw and display the chemical structure of the 

833 pesticides or their metabolites selected for this study. Since molecular structures available in 

chemistry publications and/or public and commercial databases are not exempt from errors, a 



molecular structure curation was performed in order to verify the correctness of the inputs. Chemical 

curation constitutes a fundamental role during the development of a QSPR model because the 

presence of errors in the compound structures (i.e., lacking an atom, misplacing of atoms or swapping 

functional groups) influence the molecular descriptor calculation, which results in a detrimental effect 

on model performance; that is, differences between the predicted property and the expected value 

(Fourches et al., 2010).

The new generation alvaMolecule software (Alvascience, 2020b) was used for pesticide curation. 

Thus, 60 pesticides were identified with unusual valence, one molecule with total charge, 35 

structures exhibiting charged atoms, 4 with non-standard atom sets (H, C, N, O, P, S, F, Cl, Br and 

I), and 62 pesticides with no aromatic ring standardization. These pesticides were pretreated applying 

the following criteria implemented in alvaMolecule: standardize benzene rings into aromatic form, 

convert unusual covalent bonds to ionic forms, add charge to quaternary nitrogen atom, remove/add 

exceeding/missing hydrogens, and standardize nitro, azide and diazo groups. Since conformational 

analysis or energy minimization were not preformed, the clear chirality and clear bond direction 

options were applied in order to obtain the canonical SMILES (simplified molecular input line entry 

system) notation of each pesticide. In addition, the correctness of the chemical structures was verified 

in the PubChem library (Kim et al., 2019) via an option implemented in alvaMolecule, as well as the 

PubChem CID, and the CAS registry number for each pesticide.

Then, the pesticide name, PubChem CID, CAS registry number, chemical formula, canonical 

SMILES, and the experimental retention times were merged into KNIME (Berthold et al., 2008) to 

filter and curate the dataset. Initially, the CAS number was used as a filter criterion to identify three 

pairs of duplicated molecules; for instance, 1) 3,4,5-Trimethylphenyl methyl carbamate and 

Trimethacarb (CAS 2686-99-9), 2) Allethrin and Bioallethrin (CAS 584-79-2), and 3) Secbumeton 

and Sumitol (CAS 26259-45-0). Subsequently, the criterion was set up to the canonical SMILES so 

as to identify seven pairs of pesticides exhibiting the same SMILES notation: 1) 3-Hydroxycycloate, 

cis- and 3-Hydroxycycloate, trans-; 2) 4-Hydroxycycloate, cis- and 4-Hydroxycycloate, trans-; 3) 

Azoxystrobin (CAS 131860-33-8) and Azoxystrobin Z metabolite (CAS 215934-32-0); 4) 

Bioresmethrin (CAS 28434-01-7) and Resmethrin (CAS 10453-86-8); 5) Bromuconazole, cis- and 

Bromuconazole, trans-; 6) Esfenvalerate (CAS 66230-04-4) and Fenvalerate (CAS 51630-58-1); and 

7) Fenbuconazole metabolite RH-9129 and Fenbuconazole metabolite RH-9130. For these duplicated 

pesticides (or metabolites), identified either by CAS number or canonical SMILES, the average tR 

was used for the in silico modelling. Consequently, 823 structures were submitted in order to develop 

the QSPR model. Refer to Table S1 for details of the cured dataset.



2.3. Molecular descriptors calculation

Molecular descriptors (MDs) are numerical quantities (or results of some standardized experiments) 

obtained from logical and mathematical algorithms applied to a symbolic representation of chemicals 

(Todeschini & Consonni, 2009). MDs are the independent variables used to developed an in silico 

model. In order to develop a conformational independent QSPR model, 3,843 conformation-

independent molecular descriptors were calculated along with 166 MACCS fingerprints in the new 

generation alvaDesc software (Alvascience, 2020a). In addition, 37 descriptors were calculated in 

DataWarrior (Sander et al., 2015), 1,444 conformation-independent descriptors and 12,854 molecular 

fingerprints were calculated in the PaDEL-Descriptor freeware (Yap, 2011). A total of 271 descriptors 

were available in the cheminformatics functionality of the Chemistry Development Kit (CDK) library 

implemented in R, which is called RCDK (Guha, 2007).

Along with the computation of independent molecular descriptors, flexible molecular descriptors 

were computed in the CORAL freeware (http://www.insilico.eu/coral/). This program permits three 

structural representation (SR) approaches: chemical graphs, SMILES notation, and a hybrid between 

chemical graphs and SMILES. When using chemical graphs, it is possible to use the hydrogen-

suppressed graph (HSG), hydrogen-filled graph (HFG) or a graph of atomic orbitals (GAO). Within 

the CORAL freeware, a QSPR model was quarried that correlated the experimental tR and an adequate 

flexible descriptor (DCW) by means of a single-variable linear regression. The DCW is based on the 

summation of special coefficients called correlation weights (CW), calculated for each structural 

attribute (SA) type in the training set, which are obtained by means of the Monte Carlo (MC) 

simulation. The DCW descriptor depends on the threshold value (T) and the number of epochs (or 

iterations) used to optimize the algorithm. The T value defines uncommon SMILES attributes that do 

not contribute in predicting the property. Only SMILES attributes located above the T SMILES 

notations of the training set were classified as active. In this work the T value was set in the range 

from 1 to 2, and 20 as the maximum number of epochs (N).

2.4. Dataset splitting

The reliability of a in silico model is related to its predictive accuracy; that is, the ability to be used 

to predict the property of an external set of pesticides which were not considered during the calibration 

of the model. Moreover, a similar structure-property relationship during the splitting of the dataset 

has been stated to be an appropriate strategy in order to guarantee that the chemical space defined by 

the molecules in the training set should be representative of the validation and test set compounds. 

One of the strategies proved to achieve this goal is the Balanced Subsets Method (BSM) (Rojas et al., 

2015), which was applied elsewhere in foodinformatic studies when dealing with retention indices of 



volatile organic compounds (VOCs) detected by SPME-GC-MS (Rojas et al., 2019; Rojas et al., 

2018). In brief, the BSM approach creates clusters of molecules based on the k-means cluster analysis 

(k-MCA) by using conformation-independent molecular descriptors and the experimental retention 

time. The use of this kind of descriptors avoids the effect of the conformational analysis and the 

geometry optimization method used for calculating 3D descriptors and fingerprints. In order to 

guarantee the interpolation of the validation and test sets into the structure-property space of the 

training set, pesticides exhibiting the minimum and maximum tR are automatically included in the 

training set. Subsequently, the algorithm creates a reduced matrix by removing the linearly dependent 

descriptors and the remaining ones are autoscaled. Then, a defined number of clusters (called ) 0
trainn

are created by means of the k-MCA using the Euclidean distance as a distance metrics. The training 

set ( ) includes the nearest object to the centroid in each  cluster and the pesticides with trainn 0
trainn

minimum and maximum values of the tR. The validation set is defined following the same workflow 

as described for the training set, and the remaining molecules constitute the test set. The algorithm is 

repeated several times (number of iterations) in such a way as to minimize the distance among objects 

in the multidimensional space. Thus, the BSM method provides a balanced structure-property 

representation in the training, validation and test sets.

2.5. Development of the in silico model

2.5.1 Molecular descriptors pretreatment

In a first attempt to develop the QSPR model, constant descriptors, near constant descriptors, 

descriptors with both at least one missing value and all missing values were excluded from the initial 

pool of variables calculated in alvaDesc, DataWarrior, PaDEL-Descriptor and RCDK.

2.5.2. Molecular descriptors reduction

To reduce the size of the pool of MDs, the unsupervised variable reduction method based in the 

algorithm proposed by Wootton, Sergent, and Phan-Tan-Luu (V-WSP) was considered (Ballabio et 

al., 2014). The idea behind the V-WSP approach is to reduce the presence of redundancy, 

multicollinearity, and noise in the initial pool of MDs by selecting an optimal pool of descriptors in 

such a way that they show a minimal correlation (defined by the user) from each other in the 

multidimensional space.

2.5.3. Molecular descriptors selection



The supervised selection of MDs was carried out by means of the replacement method (RM) variable 

subset selection (Duchowicz et al., 2006), in order to find an optimal pool of descriptors. This optimal 

subset defines a parsimonious and predictive multiple linear regression (MLR) based on the ordinary 

least squares (OLS) by minimizing (optimizing) the residual standard deviation (s) estimator 

(Todeschini & Consonni, 2009). To this end, the RM randomly starts with a user-defined pool of 

descriptors d (seed) from the initial dataset of D variables, then each descriptor is replaced by the 

remaining ones (except the descriptors previously replaced) one at time, in such a way as to replace 

variables with the greatest relative error in their coefficients. Thus, the best model of each replaced 

descriptor is retained and becomes a new seed (path) for the subsequent replacements (except 

descriptors replaced in previous steps). In this way, the RM approach explores all the d paths, and is 

able to converge to the results achieved by the all subset method (ASM), although RM requires much 

less computational cost.

2.6. Consensus analysis and model validation

Consensus modeling is a strategy used to improve the predictive ability of a collection of QSPR 

models obtained during the supervised selection. In brief, an individual QSPR model might 

underestimate some predictions while overestimating other ones; on the other hand, consensus 

modeling considers a collection of models that could provide better predictions than single models. 

In this work, four different approaches available in the Intelligent Consensus Predictor (ICP) MLR 

tool (Roy et al., 2018) have been applied: simple average of predictions (CM0), average of predictions 

from the qualified individual models (CM1), weighted average predictions (WAPs) from qualified 

individual models (CM2), and the best selection of predictions (compound-wise) from qualified 

individual models (CM3).

To evaluate the predictive performance of the best model, several statistical parameters were checked 

for both internal and external validation. In the cross-validation step, the leave-one-out (loo) and 

leave-many-out (lmo) procedures were applied. The absence of chance correlation in the model was 

evaluated by means of the Y-randomization technique (Rücker et al., 2007), by permuting (randomly 

scrambling) the experimental tR 10,000 times. The robustness of the in silico model was also 

controlled using the criteria proposed by Golbraikh and Tropsha (Golbraikh & Tropsha, 2002). Since 

the merit of a QSPR model is related to its ability to be used to correctly predict the property of the 

test set molecules (which were never considered during the calibration) the statistical parameters from 

the test set (  and ) were used to measure the predictive capability of the model. In addition, 2
testR tests

the ,  and  external validation criteria was calculated to assess the predictive ability of 2
1FQ 2

2FQ 2
3FQ



the QSPR model (Todeschini et al., 2016). All these parameters were used to avoid the selection of 

an overoptimistic and perhaps a wrong QSPR model.

2.7. Applicability Domain (AD) assessment

The applicability domain is a theoretical region in the chemical space defined by the descriptors (Hat 

matrix) in the calibrated QSPR model. Then, reliable predictions of the test set molecules are 

restricted to only pesticides falling inside this theoretical region (also called the interpolation chemical 

space); that is, those compounds that fall within this space are structurally similar to compounds of 

the training set. Among the diverse approaches reported in the literature for defining the AD of QSPR 

models, the leverage measure was used to verify whether any pesticide in the test set lies within or 

outside the theoretical region of the chemical space (Sahigara et al., 2012). This approach is 

proportional to the Hotellings T2 statistic and the Mahalanobis distance, and measures the distance of 

each test query to the centroid of the training molecules defined by the Hat matrix (X matrix of 

descriptors only). A warning leverage (threshold value) is set as h* = 3p/n, where p is the number of 

parameters in the model and n is the number of training set compounds. Then, the leverage value of 

each test set pesticide (hi), which is an indicator of the contribution on the predicted value (expected 

value), is compared to this threshold following this simple rule: if the hi ≤ h*, the prediction of the 

query compound could be considered reliable (i.e., it is a model interpolation).  Otherwise its 

predicted tR is unreliable due to a model extrapolation (hi > h*); that is, the query compound is 

structurally distant from the centroid of the model. The AD of the external set of pesticides designed 

for the application of the in silico model was also checked.

2.8. Mechanistic interpretation

The mechanistic interpretation of the in silico model is an important requirement for the use of a 

QSPR model for regulatory purposes. It is related to the possibility of establishing a causality between 

a chemical (pesticide) described by the molecular descriptors and the corresponding experimental 

property (retention time) (Thoreau, 2016). For this purpose, in a QSPR model based on a multiple 

linear regression model, the absolute value of the standardized coefficient of each jth molecular 

descriptors ( ) provides the importance (degree of contribution) of such descriptor in predicting the s
jb

experimental property. Thus, it is possible to sort these standardized coefficients in a decreasing way, 

which correspond to the rank of the degree of contribution. Then, an explanation of each molecular 

descriptor and how it is related to the retention time is performed in terms of the definition of the 

descriptors (if possible). Since the MDs are defined by different theories, in some cases in an abstract 



way, the term “if possible” refers to the difficulty of explaining the meaning of a particular descriptor. 

Consequently, the mechanistic interpretation contributes significantly to the knowledge of how the 

molecular descriptors describe the retention time phenomenon.

2.9. Application of the in silico model

Since the QSPR model was development keeping in mind the five principles stated by the 

Organisation for Economic Co-operation and Development (OECD, 2014), an external set of 

pesticides was designed by including the ambiguous pesticides excluded during the data verification 

and data curation, as well as some of their metabolites or fragments. Table 1 presents detailed 

information of these molecules. Thus, the in silico model was used in a real predictive setting to assess 

these external molecules, which will be utilized to identify other kinds of pesticides of particular 

interest. This external set of pesticides was also curated in the alvaMolecule program following the 

same workflow previously described for the pesticides in the dataset.

3. Software and code

HyperChem version 8 was used for drawing and displaying chemical structure of the pesticides. 

Molecular structure of pesticides was verified and curated in the alvaMolecule software. A KNIME 

workflow implemented by the authors was used for data filtering. Molecular descriptors were 

computed using alvaDesc, DataWarrior, PaDEL-descriptor, RCDK package implemented in R and 

CORAL-QSAR/QSPR. The V-WSP variable reduction routine was used in MATLAB language. 

Partition of the dataset by means of the BSM, supervised descriptor selection through the RM 

technique, as well as model fitting along with validation were also carried out in MATLAB by means 

of functions and codes implemented by the authors. Consensus analysis was carried out in the 

Intelligent Consensus Predictor (ICP) tool.

Table 1 should be inserted around here

3. Results and Discussion

3.1. Development of the in silico model

Initially, constant and near constant descriptors were excluded, as well as those with at least one 

missing value for each block of descriptors provided by each program. Thus, 2,515 alvaDesc 

descriptors, 37 DataWarrior descriptors, 5,702 PaDEL descriptors, and 125 RCDK descriptors were 

retained. Subsequently, the V-WSP unsupervised variable reduction was applied at a threshold value 

of 0.95 over each block of descriptors in order to reduce the ones with greatest correlation 



(redundancy) in the initial datasets. Using these criteria, 1,579 alvaDesc descriptors, 30 DataWarrior 

descriptors, 3,314 PaDEL descriptors, and 95 RCDK descriptors were retained. Subsequently, the 

BSM was utilized in order to split the dataset of 823 pesticides represented by the conformation-

independent MDs described above into a training set, a validation set and a test set. The training and 

validation sets were formed by 275 molecules, and the remaining 273 compounds constituted the test 

set (refer to Table S1 for splitting assignments). The CORAL-QSAR/QSPR software was used to 

optimize the DCW flexible descriptor by maximizing both the  and  in order to choose the 2
trainR 2

valR

most effective attributes for each structural representation (SR). The statistical parameters for the 

training set (  and ) and the validation set (  and ) 2 0.83trainR  0.91trains  2 0.70valR  1.02vals 

suggested an appropriate descriptor for predicting the tR. The DCW descriptor included HFG 

representations, which considered two variable types and 144 active attributes derived from the SR.

Table 2 should be inserted around here

Afterwards, the selection of MDs was carried out by means of the RM variable subset selection on 

the descriptors provided after V-WSP reduction. The RM was initially applied separately on each 

block of molecular descriptors; then, the best descriptors of each block were merged into a new set 

containing 80 MDs, included the optimal DCW flexible descriptor. Then, the RM was applied again 

to find the most suitable pool of descriptors that constituted the in silico model. During the descriptor 

selection, the training set was used to calibrate the models, while the validation set helped to avoid 

overfitting the models. The RM optimized the residual standard deviation (s) in the training and 

validation sets. For the selection of the best four models, a multicriteria approach was applied by 

considering the balanced ratio between the training set (  and ) and the validation set (  2
trainR trains 2

valR

and ), as well as the number of d descriptors according to the Ockham’s razor principle of vals

parsimony (Hoffmann et al., 1996). Table 2 summarizes the best MLR models containing from 2 to 

5 conformational-independent descriptors selected by the RM approach.

Table 3 should be inserted around here

In an attempt to improve the predictive capability of the individual QSPR models, a consensus 

modeling was applied considering the CM0, CM1, CM2 and CM3 approaches. Table 3 summarizes 

the test set results found for both individual and consensus models, which clearly indicated that their 

prediction quality was acceptable. The best model based on the minimum MAE95 % was the IM4 (the 



subscript 95 % indicates that the , , and MAE parameters were recalculated after removing 2
1FQ 2

2FQ

the 5 % of high residual pesticides). This fact could be related to the consensus-like modeling during 

the RM supervised selection, i.e., the fusion of the best descriptors from each program. Thus, a 

foodinformatic model based on five ( ) conformation-independent descriptors was retained for 5d 

further analysis.

4.02 13.98 _ _ 0.37 1.84 0.26 .22 0.14 R Eta D epsiD cLogP Alkyl Amines MDEN DCWt      

(Eq. 1)

, , 275trainn  2 0.87trainR  0.81trains 

, , 275valn  2 0.79valR  0.82vals 

, , 273testn  2 0.74testR  0.85tests 

Negligible differences for the training, validation and test sets indicated the absence of overfitting 

and the presence of a predictive in silico model. Consequently, the model derived by Eq. 1 was 

subjected to a more rigorous validation process. The cross-validation approach of leave-one-out 

(  and ) and leave-many-out (  and ) indicated good 2 0.86looR  0.83loos  2 0.82lmoR  0.85lmos 

stability to internal perturbations. In addition, the  and the  parameters, 2 0.01randR  1.99rands 

obtained as the mean of 10,000 models (iterations) for the Y-randomization procedure confirmed the 

absence of change correlation in the in silico model (  and ). The model also 2 2
rand trainR R rand trains s

met the criteria of Golbraikh and Tropsha:  (0.86);  (0.74);  2 0.5looR  2 0.6testR  2 2
01 0.1testR R 

(0.000) and  (0.097);  and ; and ' 2 2
01 0.1testR R  0.85 (1.00) 1.15k  0.85 '(0.99) 1.15k 

 (0.73). Finally, the ,  and  validation criteria also 2 0.5mR  2
1 0.75FQ  2

2 0.74FQ  2
3 0.82FQ 

confirmed the predictive power of the in silico model.

Since the model accomplished all the cross-validation and external validation criteria, a robust (stable) 

and predictive conformation-independent in silico relationship was obtained to predict the retention 

time of pesticide residues (their metabolites or fragments) identified in fruits and vegetables samples. 

Details of the numerical tR predicted by Eq. 1 are presented in Table S1, while descriptor values for 

the dataset of 823 pesticides are available in Table S2. Figure 1a shows the relationship between the 

experimental and predicted retention times obtained with Eq. 1, which clearly suggested a linear 



relationship around the perfect fit line; while Figure 1b shows the dispersion plot of the residuals vs. 

the experimental tR, which reflected a random distribution of the residuals around the zero line. Since 

the assumptions behind the OLS estimators in the MLR models were confirmed, a robust and 

predictive in silico model was achieved.

Figure 1 should be inserted around here

The QSPR model was also evaluated to identify possible outliers (i.e., molecules having poorly fitted 

tR) by standardizing the residuals of the training set and defining a threshold value of ± 3s. Thus, 

pesticides having a standardized residual greater than this threshold were considered as outliers. There 

exist four pesticides labeled as outliers: Carbofuran phenol (PubChem CID 15278, CAS 1563-38-8), 

Chinomethionate (PubChem CID 17109, CAS 2439-01-2), Pyribenzoxim (PubChem CID 178117, 

CAS 168088-61-7) and TDCPP (PubChem CID 26177, CAS 13674-87-8). The correctness of the 

chemical formula and the experimental retention times were verified in several open libraries and 

sources, respectively. Since they were found to be correct, this particular behavior could be associated 

with the diverse factors involved during the analytical measurement. In fact, the UHPLC/ESI Q-

Orbitrap analytical technique often requires extensive compound-dependent instrument parameter 

optimization, as well as a complete set of standards for preparing standard calibration curves for the 

identification and quantitation of pesticides present in the samples (Wang et al., 2019).

The mechanism of action of the tR phenomenon presented in Eq. 1 was constituted by four rigid 

molecular descriptors (Eta_D_epsiD, cLogP, Alkyl-Amines and MDEN.22) along with the DCW 

flexible descriptor. The maximum coefficient of determination ( ) indicated a low to 2
max 0.68ijR 

moderate correlation between the cLogP and the DCW descriptor pair, suggesting that descriptors in 

the model were not collinear. Consequently, each descriptor characterized particular aspects of the 

retention time phenomenon in the Hypersil Gold stationary phase that succeed when combined with 

the remaining MDs of the in silico model (Eq. 1). Additionally, the degree of contribution of each 

descriptor in predicting the tR was analyzed by the standardization of the regression coefficients: DCW 

(0.53) > cLogP (0.30) > Eta_D_epsiD (0.21) > Alkyl-Amines (0.15) > MDEN.22 (0.12). The sign of 

each coefficient for the descriptors in Eq. 1 indicated that the cLogP, MDEN.22 and DCW descriptors 

had synergistic effects (positive coefficients) on the prediction of the retention time property, while 

the Eta_D_epsiD and Alkyl-Amines exhibited antagonistic effects (negative coefficients). 

Consequently, pesticides exhibited high retention when increasing the cLogP, MDEN.22 and DCW 

descriptors. In contrast, the tR of compounds decreased with increasing values of the Eta_D_epsiD 



and Alkyl-Amines descriptors. Table S3 details the references for each molecular descriptor included 

in the QSPR model.

The DCW flexible descriptor was computed from a hydrogen-filled graph considering as attributes 

the sum of vertex degrees at topological distance 2 (S2) relatively to the kth vertex, and the nearest 

neighbors code (NNC) relatively to this kth vertex (i.e. the contribution of the total number of atoms, 

as well as carbon and non-carbon atoms). This flexible descriptor considers these two variable types 

and 144 active attributes derived from the SR. Thus, the synergistic effect of the DCW descriptor in 

predicting the tR could be related to the degree of branching and complexity of the pesticide molecules, 

that is, the DCW descriptor may describe compounds exhibiting the highest interaction with the silica-

based stationary phase.

The calculated octanol-water partition coefficient (clogP) was obtained following the fragmental 

method proposed by Leo and Hansch, where molecular structures were decomposed into fragments 

(i.e., atoms or polyatomic functional groups) by means of a unique and simple set of rules in order to 

obtain a unique solution. Then, diverse correction factors were derived from compounds by 

considering more than one substituent to better estimate the experimental logP values. This descriptor 

considers proximity effects provided by multiple halogenation and groups with hydrogen donors, 

intramolecular hydrogen-bonds involving O and N atoms, electronic effects in aromatic systems, 

unsaturation, branching, chains, and rings. Its positive coefficient could be related, on the one hand, 

to the solvent strength; that is, the ability of water and methanol to elute polar pesticides from the 

stationary phase. The solvent strength property is characterized, under normal phase conditions, by 

the Hildebrand’s elution strength scale (E0), as well as to the solvent polarity (Dong, 2019). In fact, 

the polarity index (P’) of the water and methanol, 10.2 and 5.1, respectively, permit pesticides with 

low clogP to have more affinity to interact with the mobile phases, decreasing the retention time 

(synergistic effect). On the other hand, formate buffers (max. pH range of 2.8 and 4.8) (Agilent 

Technologies, 2016), which have been commonly used in LC/MS analysis, increase the affinity of 

the mobile phases to interact with polar groups that are present in the pesticide scaffold (Dong, 2019). 

Thus, hydrophilic pesticides (low clogP) have strong affinity to the mobile phases (aqueous regions), 

while hydrophobic pesticides (high clogP) exhibit better affinity to the stationary phase (hydrophobic 

region). The usefulness of clogP descriptor in QSPR studies regarding the HPLC retention time was 

summarized elsewhere (Kaliszan, 2007).

The Extended Topochemical Atom (ETA) indices are topological indices calculated from a H-

depleted molecular graph, where a vertex is considered to be comprised of a core and a valence 

electronic environment. In particular, the electronegativity ETA measure (Eta_epsi) combines the 

core count of an atom with its valence electron number (Zv). Thus, the ETA measure of the hydrogen 



bond donor atoms (Eta_D_epsiD) characterizes the capacity of a pesticide to interact with the mobile 

phases. Thus, water acts as a proton acceptor (i.e. interactions through 𝜋-𝜋 bonds), while methanol 

acts as both a proton acceptor and donor with pesticides; consequently, the retention time is decreased 

(Dong, 2019).

The Alkyl-Amines is a functional group count descriptor that quantifies the number of amino groups 

(R-NH2) in a molecule, except those attached to an aromatic hydrocarbon (Aryl Amines). Amines 

had been widely used during pesticide manufacturing, and it had been stated that these compounds 

were difficult to analyze by gas chromatography due to the basicity and the large dipole induced by 

the amino group in the molecule. The N atom exhibits a lone electron pair that form the ammonium 

ion . At low pH, more ammonia fragments are converted into  (positively charged) and 4NH 
4NH 

the tR of basic pesticides might have been reduced due to the limited interaction with the silanol 

groups (Si-OH) of the stationary phase (i.e. low adsorption) (Agilent Technologies, 2016). This 

phenomenon possibly explained the antagonistic effect of this descriptor in predicting the retention 

time.

The Molecular Distance Edge (MDE) vector considers the geometrical means of the topological 

distances between carbon atoms, classified as primary (-CH3), secondary (>CH2), tertiary (>CH-) and 

quaternary (>C<), to compute a 10-dimensional vector descriptor by considering all the possible pair 

combinations among these carbon types. A particular variation of the MDE vector is obtained when 

the nitrogen atom is considered instead of the carbon atom. Thus, the MDEN.22 descriptor measures 

the distance edge between all secondary nitrogen atoms. The synergistic effect of this descriptor could 

have been related to the silanophile effect; that is, a high affinity of the strong basic amine (in this 

case described by the secondary nitrogen atoms) for active or acidic silanol groups on the silica 

surface (Agilent Technologies, 2016), generating slow elution of polar pesticides through the column 

(Dong, 2019).

Figure 2 should be inserted around here

The applicability domain of the in silico model was defined to provide the theoretical space within 

the predictions of the tR of new pesticides to show reliability (i.e., interpolations). The leverage 

approach defined a threshold or warning leverage h* = 0.033, which indicated that predictions were 

restricted to only pesticides exhibiting a leverage value below this threshold (hi < h*); otherwise 

predictions were the result of a substantial extrapolation of the model (i.e., unreliable). In this work, 

three pesticides felt outside the AD of the model (Figure 2 a-c): Ethametsulfuron-methyl (hi = 0.048, 



PubChem CID 91756, CAS 97780-06-8), Aziprotryne (hi = 0.068, PubChem CID 3032472, CAS 

4658-28-0) and Spinetoram (hi = 0.070, CAS 935545-74-7). The Ethametsulfuron-methyl (HRAC & 

WSSA CODE number 2) is a selective herbicide from the Sulfonylureas family which inhibits the 

acetolactate synthase (ALS) enzyme; while the Aziprotryne (HRAC & WSSA CODE number 5), 

another herbicide, belongs to the Triazines families and acts by inhibiting photosynthesis at PSIL - 

Serine 264 Binders. On the other hand, Spinetoram (IRAC MoA classification number 5) is an 

insecticide of the Spinosyns group, which primarily acts by disrupting the nicotinic/gamma amino 

butyric acid (GABA)-gated chloride channels (MacBean, 2012). Therefore, we suspected that the 

predictive limitations of the model were related to herbicidal or insecticidal compounds having the 

1,3,5 triazine fragment in their scaffold, as well as complex structures such as the insecticide 

Spinetoram, a mixture of two naturally-occurring spinosyns with activity against a wide range of 

common insect pests.

Due to the fact that the majority of the pesticides (270 molecules) fell inside this theoretical chemical 

space, and the CDB considered diverse heterogenous compounds (complex datasets), the model could 

be generalized to other kinds of pesticides not considered in this study. This ability of a QSPR model 

to be generalized was not feasible when dealing with databases of only homogeneous families (Rojas 

et al., 2019; Rojas et al., 2015).

3.2. Application of the in silico model

Since we excluded some ambiguous pesticides during the dataset curation, we used these compounds, 

as well as some of their metabolites or fragments, to develop an external set of 57 compounds to 

predict their tR as a test of the QSPR model of Eq. 1. Table 1 summarizes the information and results 

for the predicted tR of these pesticides in the Hypersil Gold stationary phase in UHPLC/ESI Q-

Orbitrap technique. According to the results presented in Table 1, 54 pesticides belonged to the AD 

of the model; i.e., they had leverage values below the warning leverage (hi < h*) that defined the AD 

of the model, and consequently their tR were interpolations of the model (reliable). In contrast, the 

Dinotefuran metabolite DN phosphate (hi = 0.059 and tR = 1.56), Tritosulfuron Metabolite 635M03 

(hi = 0.037 and tR = 4.22) and Tritosulfuron Metabolite BH635-4 (hi = 0.036 and tR = 4.10) pesticides 

(refer to Figure 2 d-f) had leverage values higher than the leverage threshold (hi > h*), and 

consequently their predicted tR could be considered as a substantial extrapolation of the model 

(unreliable).

The absolute difference between the predicted and the experimental retention time (tR) reported by 

Wang et al. (Wang et al., 2019) was used to verify the reliability of the QSPR model. The lower 

difference was for the Aldicarb pesticide (tR = 0.09 min), while the N-1-Naphthylacetamide, 



Fentrazamide, Isoprocarb, Methoxyfenozide, Dialifos, and Demeton-S-sulfone exhibited a tR below 

one minute. On the contrary, the largest difference corresponded to the Chlorpropham (tR = 1.36 

min), followed by the Dodine (tR = 1.26 min) and Fentin (tR = 1.10 min) pesticides. In addition, 

the same authors published (between 2014 and 2017) experimental tR for some of the pesticide 

residues presented in Table 1, which were obtained under similar UHPLC/ESI Q-Orbitrap conditions. 

The analysis of these results showed that the predicted tR for the Aldicarb (5.41 min) was closely 

related to the average experimental tR = 5.42 min (standard deviation s = 0.09 min); while 

Chlorpropham (average tR = 7.80 min), Dialifos (average tR = 8.80 min), and Fentrazamide (average 

tR = 8.47 min) had a standard deviation s = 0.07 min. On the other hand, Methoxyfenozide (average tR 

= 7.79 min) exhibited the lowest standard deviation (s = 0.06); while Isoprocarb (average tR = 6.99 

min) exhibited the largest one (s = 0.13 min). Thus, the negligible difference between the predicted 

and the experimental tR confirmed the accuracy of the in silico model.

Consequently, the foodinformatic model (Eq. 1) developed in this work provides a useful tool for 

predicting the tR of pesticides commonly used in raw foods by means of the UHPLC/ESI Q-Orbitrap 

in the Hypersil Gold stationary phase. In addition, this model could be useful for food chemistry 

researchers for the rapid screening of retention times of pesticides not considered in this extensive 

dataset, for which the experimental tR property is not yet available. Thus, it is possible to predict the 

tR for new potential pesticides obtained by de novo design, and for which there is no available standard 

to be used by chromatographers in UHPLC/ESI Q-Orbitrap. Finally, the use of conformation-

independent foodinformatic models emerges as a promising approach when dealing with the retention 

time or retention index of compounds of interest in the field of food chemistry, as well as an approach 

for the quality control of both raw food materials and by-products (Rojas et al., 2019; Rojas et al., 

2018).

4. Conclusions

In this work we developed a foodinformatic model based on the QSPR approach for the retention 

times of 823 pesticides present in the Compound DataBase (CDB), which were identified in five 

fruits and vegetables products. The canonical SMILES was used to calculate conformation-

independent molecular descriptors and fingerprints in several available software programs. To deal 

with the huge number of descriptors, the use of the unsupervised variable reduction V-WSP technique 

permitted the exclusion of either non-informative descriptors. Subsequently, the supervised 

Replacement Method variable subset selection method was applied to find four suitable models, 

which were used to perform an intelligent MLR consensus to improve the quality of the predictions. 



The optimal model was extensively validated by applying several internal and external protocols, 

according to the five OECD principles to make it applicable to predict the retention time of an external 

set of 57 pesticides or fragments. Thus, this conformation-independent QSPR approach could be 

implemented for food chemistry researchers, particularly chromatographers, working on the pesticide 

residue identification in raw or processed foods, based on the retention time measured in the Hypersil 

Gold stationary phase in the ultrahigh-performance liquid chromatography electrospray ionization 

quadrupole-Orbitrap (UHPLC/ESI Q-Orbitrap) mass spectrometry technique.
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Table 1. External set of pesticides, their metabolites or fragments: name, PubChem CID, CAS 

registry number, predicted retention times using Eq. 2 for the external set of pesticides in the Hypersil 

Gold column in the UHPLC/ESI Q-Orbitrap, and available experimental retention times from 

literature.

tR

ID name
PubChem 

CID

CAS registry 

number
canonical SMILES

predicted experimental

1 Aldicarb 9570071 116-06-3 CNC(=O)ON=CC(C)(C)SC 5.41
5.5d, 5.45e, 

5.32f

2 Aldicarb sulfone (aldoxicarb) 9570093 1646-88-4 CNC(=O)ON=CC(C)(C)S(C)(=O)=O 4.12 ---

3 Aldicarb sulfoxide 9568700 1646-87-3 CNC(=O)ON=CC(C)(C)S(C)=O 4.29 ---

4 Aldicarb oxime 9570092 1646-75-9 CSC(C)(C)C=NO 4.61 ---

5 Aldicarb nitrile 119417 10074-86-9 CSC(C)(C)C#N 5.25 ---

6 Aldicarb oxime sulfoxide 9589350 7635-32-7 CS(=O)C(C)(C)C=NO 3.49 ---

7 Aldicarb nitrile sulfoxide 12628029 14668-28-1 CS(=O)C(C)(C)C#N 4.54 ---

8 Aldicarb sulfone oxime 518932 ---c CC(C)(C=NO)S(C)(=O)=O 3.32 ---

9 Aldicarb sulfone nitrile 3014848 14668-29-2 CC(C)(C#N)S(C)(=O)=O 4.00 ---

10 Bifenazate-diazene D3598 69250380 149878-40-0 COc1ccc(cc1N=NC(=O)OC(C)C)-c1ccccc1 8.79 ---

D1989 ---
11

4-methoxybiphenyl
11943 613-37-6 COc1ccc(cc1)-c1ccccc1 7.29

---

A1530 ---
12

4-hydroxybiphenyl
7103 92-69-3 Oc1ccc(cc1)-c1ccccc1 6.74

---

A1530S ---
13

4-hydroxybiphenyl sulphate
177718 16063-85-7 OS(=O)(=O)Oc1ccc(cc1)-c1ccccc1 6.41

---

D9963 ---
14

3-hydroxy-4-methoxybiphenyl
14386780 37055-80-4 COc1ccc(cc1O)-c1ccccc1 6.72

---

15 Carbamate ---b ---c COc1ccc(cc1NC(=O)OC(C)C)-c1ccccc1 7.73 ---



Bifenazate-carbamate ---

16 IBMHC/DDC ---b ---c

COc1ccc(cc1N(NC(=O)OC(C)C)c1cc(ccc1OC

)-c1ccccc1)-

c1ccccc1.COc1ccc(c2c1nc1c(ccc(c21)-

c1ccccc1)OC)-c1ccccc1

14.21 ---

17 D9472 7075 92-05-7 Oc1ccc(cc1O)-c1ccccc1 6.21 ---

18 IMH/IBMHC ---b ---c
COc1ccc(cc1NN(C(=O)OC(C)C)c1cc(ccc1OC

)-c1ccccc1)-c1ccccc1
11.23 ---

19 DPHDD ---b ---c

Oc1cc(c(cc1-

c1ccccc1)C1=CC(=C(O)C(=O)C1=O)c1ccccc

1)O

8.54 ---

20 Bifenazate-diazene oxide
74336768

---c
COc1ccc(cc1[N+]([O-])=NC(=O)OC(C)C)-

c1ccccc1
7.14 ---

21 4-hydroxy-4'-methoxybiphenyl 11030839 16881-71-3 COc1ccc(cc1)-c1ccc(cc1)O 6.88 ---

22 Bifenazate glucuronide ---b ---c
COc1ccc(cc1N(NC(=O)OC(C)C)C1OC(C(O)

C(O)C1O)C(O)=O)-c1ccccc1
5.69 ---

23 4-hydroxybiphenyl glucuronide
3084305

19132-91-3
OC1C(O)C(OC(C1O)C(O)=O)Oc1ccc(cc1)-

c1ccccc1
5.15 ---

24 4,4'-dihydroxybiphenyl 7112 92-88-6 Oc1ccc(cc1)-c1ccc(cc1)O 6.33 ---

25 4-hydroxy bifenazate ---b ---c COc1ccc(cc1NNC(=O)OC(C)C)-c1ccc(cc1)O 7.20 ---

26 4-hydroxy bifenazate-diazene
---b

---c
COc1ccc(cc1N=NC(=O)OC(C)C)-

c1ccc(cc1)O
8.48 ---

27 Chlorpropham 2728 101-21-3 CC(C)OC(=O)Nc1cccc(c1)Cl 6.52
7.88d, 7.77e, 

7.75f

28 4-hydroxychloropropham sulfate 125398281 28705-88-6 CC(C)OC(=O)Nc1ccc(c(c1)Cl)OS(O)(=O)=O 5.76 ---

29 Demeton-S-sulfone 17239 2496-91-5 CCOP(=O)(OCC)SCCS(=O)(=O)CC 5.77 5.01d

30 Demeton-O 9273 298-03-3 CCOP(=S)(OCC)OCCSCC 7.76 ---



31 Demeton-O-methyl 13346 867-27-6 CCSCCOP(=S)(OC)OC 6.64 ---

32 Dialifos 25146 10311-84-9
CCOP(=S)(OCC)SC(CCl)N1C(=O)c2ccccc2C

1=O
9.47

8.88d, 8.77e, 

8.75f

33
Dinotefuran metabolite DN 

phosphatea
---b ---c CNC(=N)NCC1CCOC1.OP(O)(O)=O 1.56 ---

34 Dodine 17110 2439-10-3 CCCCCCCCCCCCN=C(N)N.CC(O)=O 7.69 8.95d

35 Fentin 91481 668-34-8 c1ccc(cc1)[Sn+](c1ccccc1)c1ccccc1 8.58 7.48d

36 Fentin hydroxide 6327657 76-87-9 O[Sn](c1ccccc1)(c1ccccc1)c1ccccc1 7.78 ---

37 Fentin acetate 16682804 900-95-8 CC(=O)O[Sn](c1ccccc1)(c1ccccc1)c1ccccc1 8.87 ---

38 Fentin chloride 12540 639-58-7 Cl[Sn](c1ccccc1)(c1ccccc1)c1ccccc1 9.20 ---

39 Fentin Flouride 9786 379-52-2 F[Sn](c1ccccc1)(c1ccccc1)c1ccccc1 8.52 ---

40 Fentrazamide 3081363 158237-07-1
CCN(C1CCCCC1)C(=O)N1N=NN(C1=O)c1c

cccc1Cl
8.91

8.58d, 8.41e, 

8.47e, 8.46e, 

8.42f

41 Isoprocarb
17517

2631-40-5 CNC(=O)Oc1ccccc1C(C)C 6.56
7.14d, 6.88e, 

6.96f

42 Methoxyfenozide 105010 161050-58-4
COc1cccc(c1C)C(=O)NN(C(=O)c1cc(cc(c1)C

)C)C(C)(C)C
8.46

7.88d, 7.78e, 

7.78e, 7.79e, 

7.72f

43 N-1-Naphthylacetamide 68461 575-36-0 CC(=O)Nc1cccc2ccccc12 5.76 5.64d

44 1-Naphthaleneacetamide 6861 86-86-2 NC(=O)Cc1cccc2ccccc12 5.18 ---

45 2-isopropylphenol 6943 88-69-7 CC(C)c1ccccc1O 6.28 ---

46 Chloridazon Metabolite B1 594330 17254-80-7 CN1N=CC(=C(Cl)C1=O)N 2.68 ---

47 Chlorothalonil Metabolite R611965 19028628 142733-37-7 NC(=O)c1c(c(cc(c1Cl)C(O)=O)Cl)Cl 4.22 ---

48 Metalaxyl Metabolite CGA 108906
117065479

104390-56-9
COCC(=O)N(C(C)C(O)=O)c1c(cccc1C(O)=O

)C
5.05 ---

49 Metalaxyl Metabolite CGA 62826 13073467 87764-37-2 COCC(=O)N(C(C)C(O)=O)c1c(cccc1C)C 6.42 ---



50 Metazachlor Metabolite BH479-4 86290103 1231244-60-2 Cc1cccc(c1N(Cn1cccn1)C(=O)C(O)=O)C 5.90 ---

51 Metazachlor Metabolite BH479-9
139291839

---c
Cc1cccc(c1N(Cn1cccn1)C(=O)CS(=O)CC(O)

=O)C
5.41 ---

52 Metazachlor Metabolite BH479-11 51071993 1242182-77-9 Cc1cccc(c1N(Cn1cccn1)C(=O)CS(C)=O)C 5.81 ---

53 Metazachlor Metabolite 479M12
139291822

---c
Cc1cccc(c1N(Cn1cccn1)C(=O)C(O)=O)C(O)=

O
4.54 ---

54
Terbuthylazine Metabolite 

CGA324007
---b ---c CC(C)(C)Nc1nc(nc(n1)O)O 4.99 ---

55
Terbuthylazine Metabolite 

SYN545666
---b ---c CN1C(=NC(=NC1=O)NC(C)(C)C)O 4.96 ---

56 Tritosulfuron Metabolite 635M03a
---b

---c
NC(=N)NC(=O)NS(=O)(=O)c1ccccc1C(F)(F)

F
4.22 ---

57 Tritosulfuron Metabolite BH635-4a 139597579 ---c
NC(=O)NC(=N)NC(=O)NS(=O)(=O)c1ccccc1

C(F)(F)F
4.10 ---

a Pesticides falling outside the applicability domain of the QSPR model (hi > 0.033).

b PubChem CID not available.

c CAS number not available.

d Wang, J., Chow, W., Wong, J. W., Leung, D., Chang, J., & Li, M. (2019). Analytical and Bioanalytical 

Chemistry, 411, 1421-1431.

e Wang, J., Chow, W., Chang, J., & Wong, J. W. (2017). Journal of Agricultural and Food Chemistry, 65(2), 

473-493.

f Wang, J., Chow, W., Chang, J., & Wong, J. W. (2014). Journal of Agricultural and Food Chemistry, 62(42), 

10375-10391.



Table 2. The best foodinformatic models obtained by the replacement method supervised variable 

selection for predicting the tR of pesticides in the Hypersil Gold column by means of the UHPLC/ESI 

Q-Orbitrap

Model descriptors 2
trainR trains 2

valR vals 2
looR loos

IM1 cLogP, DCW 0.82 0.94 0.73 0.96 0.81 0.95

IM2 Eta_D_epsiD, cLogP, DCW 0.83 0.91 0.76 0.91 0.82 0.92

IM3 Eta_D_epsiD, cLogP, SubFP26, DCW 0.85 0.85 0.78 0.86 0.84 0.87

IM4 Eta_D_epsiD, cLogP, Alkyl-Amines, MDEN.22, DCW 0.87 0.81 0.79 0.82 0.86 0.83
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Table 3. Summary of the test set statistical quality for both the individual and consensus models for 

predicting the retention time of pesticides in the Hypersil Gold column in the UHPLC/ESI Q-Orbitrap. 

The best model is highlighted in bold.

Model 2
1FQ 2

1_ 95%FQ 2
2FQ 2

2_95%FQ 2
3FQ 2

mR 2
mR MAE MAE95 

%

Prediction 

quality

IM1 0.71 0.78 0.69 0.77 0.83 0.61 0.01 0.70 0.62 good

IM2 0.72 0.78 0.70 0.77 0.83 0.61 0.04 0.68 0.59 good

IM3 0.73 0.79 0.71 0.78 0.84 0.62 0.06 0.66 0.57 good

IM4 0.75 0.81 0.74 0.80 0.85 0.63 0.15 0.62 0.53 good

CM0 0.73 0.80 0.72 0.79 0.84 0.63 0.07 0.65 0.57 good

CM1 0.74 0.80 0.72 0.79 0.84 0.63 0.07 0.65 0.57 good

CM2 0.74 0.80 0.73 0.79 0.85 0.63 0.08 0.65 0.56 good

CM3 0.75 0.81 0.74 0.80 0.85 0.63 0.13 0.63 0.54 good
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Figure 1. a) Experimental versus predicted retention times for pesticide residues detected in fruits 

and vegetables using UHPLC/ESI Q-Orbitrap in the Hypersil Gold selectivity column. b) Scatter plot 

of the standardized residuals versus the predicted retention times for pesticide residues detected in 

fruits and vegetables using UHPLC/ESI Q-Orbitrap in the Hypersil Gold selectivity column.

Figure 2. Pesticides falling outside the AD of the foodinformatic model (leverage value above > 

0.033) for the test set (a-c) and the external set (d-f).
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Research highlights

1. Retention times of a large set of pesticide residues detected in fruits and vegetables using 

UHPLC/ESI Q-Orbitrap in the Hypersil Gold selectivity column.

2. Filtering and curation of the Compound DataBase (CDB) of pesticides.

3. Establishment of a foodinformatic model for the prediction of retention times by means of 

unsupervised and supervised machine learning approaches, as well as consensus analysis.

4. Implementation of the in silico model as a real task for the prediction of the retention times of an 

external set of 57 pesticides and their metabolites or fragments.


