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Abstract: We study the motion-induced radiation due to the non-relativistic motion of an atom,
coupled to the vacuum electromagnetic field by an electric dipole term, in the presence of a static
graphene plate. After computing the probability of emission for an accelerated atom in empty space,
we evaluate the corrections due to the presence of the plate. We show that the effect of the plate is to
increase the probability of emission when the atom is near the plate and oscillates along a direction
perpendicular to it. On the contrary, for parallel oscillations, there is a suppression. We also evaluate
the quantum friction on an atom moving at constant velocity parallel to the plate. We show that there
is a threshold for quantum friction: friction occurs only when the velocity of the atom is larger than
the Fermi velocity of the electrons in graphene.

Keywords: dynamical Casimir effect; quantum friction; graphene

1. Introduction

Casimir and Casimir–Polder forces are physical manifestations of the vacuum fluctua-
tions of the electromagnetic field which involve, respectively, the interaction between static
bodies and between an atom and a body. The dependence of those effects on the geometry
of the system, as well as on the electromagnetic properties of the material media and
the atom, has been intensively investigated in the last decades, at both zero and nonzero
temperatures [1–3].

Graphene, a single layer of carbon atoms, can be effectively described as a two-
dimensional material. It owes its remarkable physical properties to its planar hexagonal
crystal structure and to the fact that the electronic degrees of freedom can be described, at
low energies, as Dirac fermions: indeed, they satisfy a linear dispersion relation, i.e., they
behave as massless fermions that propagate with the Fermi velocity vF ' 0.003c [4]. This
yields an unusual behavior for the conductivity, as well as peculiar transport and optical
properties [5,6]. These features have understandably raised the interest in the analysis of
the interaction of graphene with the vacuum electromagnetic field fluctuations [7].

In natural units, the response function of graphene is determined by two dimensionless
quantities, vF, and the fine structure constant. Therefore, in the simplest configuration
of two planar graphene sheets separated by a distance d at zero temperature, simple
dimensional analysis implies that the static Casimir force has the same distance dependence
as for perfect conductors; namely, it is proportional to 1/d4 (the force is weaker than
for ideal conductors). However, new interesting effects appear at finite temperature [8].
Besides, the phenomenology becomes richer when considering more realistic descriptions
for graphene, for example by including a gap in the dispersion relation or a non-vanishing
chemical potential [9,10].

From a theoretical standpoint, the system is often amenable to a full ab-initio de-
scription in the context of a continuum quantum field theory, treating the microscopic
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degrees of freedom as Dirac fields in two dimensions [11]. For the alluded Casimir and
Casimir–Polder forces, the results of this approach have been shown to be equivalent to
the ones derived from Lifshitz theory [10].

When atoms or macroscopic bodies are set in motion, new phenomena may appear.
Motion induced radiation, or dynamical Casimir effect (DCE), consists in the production of
photons from the vacuum due to acceleration [12–15]. A related but somewhat different
effect is quantum friction (QF), which manifests itself on objects with a constant relative
sliding velocity. Its origin is in the excitation of microscopic degrees of freedom of the
bodies, mediated by the electromagnetic field. This results in a contactless dissipative
force [16–19]. The interplay between atomic motion and quantum vacuum fluctuations has
been analyzed in different contexts [20–23].

The DCE has been investigated in different models and physical setups, starting from
the simplest case of a one-dimensional field theory in a cavity with a moving boundary [24],
then a single accelerated mirror [25], and more recent calculations which focus on resonant
effects [12–15]. The microscopic origin of the DCE [26,27] can be traced back to photon
emission processes in accelerated atoms: indeed, even when the oscillation frequency is
not sufficient to excite the atom, the coupling to the quantum electromagnetic field allows
for the emission of photon pairs. Production of photons out of the vacuum can also occur
in situations where the electromagnetic properties of a media change with time [28,29]. A
practical implementation of this, involving superconducting circuits, has led to the first
experimental observation of the DCE [30].

QF has also been discussed in a variety of situations, most of them involving planar
sheets or semi-spaces electromagnetically described in terms of their dielectric properties.
Due to its short range and very small magnitude, QF has eluded detection so far. Despite
this, there could be observable traces of this effect in the velocity dependence of corrections
to the accumulated geometric phase of a neutral particle which moves with constant
velocity in front of an imperfect mirror [31]. It has also been shown that QF could influence
the coherences of a two-level atom [32]. Furthermore, an innovative experiment was
designed to track traces of QF by measuring this corrections to the geometric phase [33].
This experimentally viable scheme can spark, we believe, hope for the detection of non-
contact friction.

Within the previous context of quantum dissipative effects, in this paper, we study a par-
ticular system which consists of an (externally driven) atom which moves non-relativistically
(with or without acceleration) in the presence of a planar, static graphene sheet. Both sys-
tems are coupled to the vacuum electromagnetic (EM) field, which mediates the correlation
between the quantum fluctuations of the charged degrees of freedom, located in the atom
and on the graphene sheet. The atom is coupled to the EM field through its electric dipole
moment. Because of the special features of graphene, for example, the dependence of its
response function on just two dimensionless parameters, we expect an interesting manifes-
tation of microscopic (i.e., one of the bodies involved is an atom) DCE and QF.

In a previous work [34], we studied QF between two sliding graphene sheets and
found that there was a velocity threshold for the occurrence of friction, given by the Fermi
velocity vF. This fact could be eventually relevant, in future technological applications,
in order to avoid dissipative effects. Note, however, that by the same token it makes QF
almost impossible to detect in that kind of system. As we show below, a similar threshold
appears for the case of an atom moving with constant velocity over a graphene sheet; we
note in passing that the threshold may be less difficult to overcome for the motion of a
single atom than for the collective motion of a whole plate.

We also previously studied the microscopic DCE due to an atom, with an internal
structure modelled by a quantum harmonic oscillator, coupled to a scalar field, in the
presence of an imperfect mirror [27]. The internal degrees of freedom of the mirror were
described in terms of a set of harmonic oscillators. We found an interesting effect when the
mechanical frequency equals to the sum of the internal frequency of the atom and that of
the microscopic oscillators, with regions of enhancement and suppression of the vacuum
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persistence amplitude. This behavior is similar to that of spontaneous emission for an atom
immersed into a dielectric [35,36]. We expect a rather different behavior in the presence of
the graphene plate, due to the already mentioned absence of a parameter with dimensions
in the response function.

Many tools can be used to study the existence and magnitude of dissipative phenom-
ena in this context; among them is the imaginary part of the in-out effective action, related
with the vacuum persistence amplitude, and obtained by integrating out the quantum
degrees of freedom. This results in an imaginary part which is a functional of the trajectory
of the atom, the object that we evaluate here.

This paper is organized as follows. In Section 2, we define the model at a microscopic
level. Then, in Section 3, we integrate out the charged degrees of freedom, to obtain the
effective action for the gauge field, which also depends functionally on the trajectory of the
atom. Results for the remaining functional integral (i.e., over the gauge field) are presented
in Section 4, in a perturbative approach. To first order, the imaginary part of the effective
action gives the probability of emission of the atom oscillating in vacuum that, up to this
order, and to the quadratic order in the oscillation amplitude, is non-vanishing only when
the frequency of oscillation is larger than the frequency of the harmonic oscillator that
describes the atom. At higher orders in the amplitude, the threshold is reduced.

The second-order contribution contains information about the influence of the pres-
ence of the graphene sheet on the empty space vacuum persistence amplitude. In Section 5,
we present results about the imaginary part of the in-out effective action for different kinds
of motion. We first consider the QF on an atom moving with constant velocity, parallel
to the plane, and show that there is a threshold for QF. Then, we analyze the case of an
oscillatory motion, perpendicular or parallel to the plane. We find that the effect of the
plane on the emission probability depends crucially on the direction of motion. In Section 6,
we comment on the changes in the expression for the effective action when the exact prop-
agator for the gauge field in the presence of the graphene plane is used, and the way to
implement the perfect conductor limit. Section 7 contains the conclusions of our work.

2. The Microscopic Model

We begin by defining the model in terms of its action S , depending on the intervening
degrees of freedom: Aµ, a 4-potential corresponding to the EM field, a Dirac field ψ, ψ̄ in
2 + 1 dimensions, for the electronic degrees of freedom on the graphene sheet, r(t), the
center of mass of the atom, and x(t), the position of the electron (relative to that center of
mass).

S has the structure:

S = S(A; r, x; ψ̄, ψ) = S0(A) + Sg(ψ̄, ψ; A) + Sa(r, x; A) , (1)

where S0(A) denotes the free EM action, while Sg and Sa are the graphene and atom
actions, respectively, each including its coupling to the gauge field.

The free EM field action S0(A), including a gauge fixing term, is given by

S0(A) =
∫

d4x
[
−1

4
FµνFµν − λ

2
(∂ · A)2

]
, (2)

with Fµν = ∂µ Aν − ∂ν Aµ. Indices from the middle of the Greek alphabet (µ, ν, . . .) run from
0 to 3, with x0 ≡ ct. In our conventions, c ≡ 1, and we use the metric signature (+−−−).

The graphene action, Sg, on the other hand, is localized on the region occupied by the
sheet which, in our choice of coordinates, corresponds to x3 = 0. Fields restricted to such
region will therefore depend on the reduced, 2 + 1-dimensional space-time coordinates
(x0, x1, x2), which we denote collectively as xq. For an unstrained plate, the form of the
action for a single fermionic flavor becomes:

Sg(ψ̄, ψ; A) =
∫

d3x ψ̄(xq)(iρα
βγβDα −m)ψ(xq) , (3)
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where Dα = ∂α + ieAα(xq, 0). Indices of the beginning of the Greek alphabet (α, β, . . .) run
over the values 0, 1, and 2, and (ρα

β) = diag(1, vF, vF), with vF the Fermi velocity. A single
flavor corresponds to two 2-component spinors, and the representation chosen for the
Dirac’s γ-matrices is such that parity is preserved even when the mass m 6= 0.

The atom, on the other hand, is described by a simplified model in which a single
electron of charge e and mass m moves in the presence of a central potential V with origin
at the nucleus, where most of the mass M of the atom, and a charge −e, are located.

The trajectory of the center of mass of the atom is practically identical to the one of the
nucleus, and we describe it by the vector function t → r(t). Denoting by x(t) the position
of the electron with respect to the nucleus, the interaction action between the atom and the
EM field is:

S (int)
a =

∫
dt
[
e
(
ṙ(t) + ẋ(t)

)
·A(t, r(t) + x(t)) − e A0(t, r(t) + x(t))

− eṙ(t) ·A(t, r(t)) + e A0(t, r(t))
]

. (4)

In the dipole approximation, i.e., assuming the fields vary smoothly on the spatial re-
gion where the electron’s wavefunction is spatially concentrated, we expand the interaction
action as

S (int)
a ≈ e

∫
dt [ṙ · (A(t, r + x)−A(t, r)) + ẋ ·A(t, r + x)− x · ∇φ(t, r)].

After making an integration by parts and also using that |ṙ| << |ẋ|, the last expression
can be written as

S (int)
a ≈

∫
dt [d(t) · E(t, r(t)) + m(t) · B(t, r(t))],

with d the electric dipole moment d(t) = ex(t) and m the magnetic dipole m = e/2 (x(t)×
ẋ(t)). Neglecting the magnetic dipole term, one gets S (int)

a ' S (dip)
a , where:

S (dip)
a =

∫
dt d(t) · E(t, r(t)) . (5)

The total action for the atom, Sa, consistent with the approximations above, is then:

Sa =
∫

dt
[m

2
ẋ2(t) − V(x(t)) + d(t) · E(t, r(t))

]
, (6)

where we ignore kinetic and potential terms for r, since its dynamics is externally determined.

3. Effective Action

The effective action Γ[r(t)] is obtained by functional integration of all the degrees of
freedom, with Feynman’s iε prescription implicitly assumed for all the integrals, since we
are interested in the in-out effective action, namely [37],

eiΓ(r) =

∫
DADψ̄DψDx eiS(A;r,x;ψ̄,ψ)∫
DADψ̄DψDx eiS(A;r0,x;ψ̄,ψ)

, (7)

where r0 is some ‘reference’ trajectory. In most applications, we use a time-independent r0.
This is useful when considering a bounded motion, where it is natural to identify it with
the time average of r(t).

We find it useful to decompose the integral into two successive steps,

eiΓ(r) =

∫
DA eiSeff(A;r)∫
DA eiSeff(A;r0)

, eiSeff(A;r) =
∫
Dψ̄DψDx eiS(A;r,x;ψ̄,ψ) (8)
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where Seff(A; r) is assumed to be defined modulo an irrelevant constant, which cancels
out in Γ. It is convenient to set: Seff(A; r) = S0(A) + SI(A; r) where we separate from
Seff(A; r) the free EM field contribution from the one due to the charged sources.

Therefore, we now need to integrate the fermionic field and the electron trajectories. In
general, neither of them can be performed exactly; thus, consistently with the assumptions
mentioned above, we retain the terms up to order e2. Namely, both produce terms which
are quadratic in A.

Let us find the explicit form of those terms. In an obvious notation:

SI(A; r) = S (a)
I (A; r) + S (g)

I (A) . (9)

In order to find S (a)
I , one needs to perform the functional integral

eiS (a)
I (A;r) = N

∫
Dx ei

∫
dt
(

m
2 ẋ2(t)−V(x(t)) + ex(t)·E(t,r(t))

)
, (10)

which, as usual, is assumed to vanish in the noninteracting case, i.e. S (a)
I

∣∣∣
e=0

= 0. This can

be achieved by a proper choice of the constant N .
We recognize the structure of S (a)

I (A; r) in (10) as the generating functional of x(t)
connected correlation functions, regarding eE as the external source. A contribution of
nth order in a series expansion of S (a)

I in powers of e, is therefore determined by the
corresponding n-leg connected correlation function of x(t), in the absence of any external
source. In particular, to the second order in the source,

S (a)
I (A; r) =

ie2

2

∫
dt
∫

dt′ Ei(t, r(t)) 〈xi(t)xj(t′)〉 Ej(t′, r(t′)) , (11)

where

〈xi(t)xj(t′)〉 =

∫
Dx xi(t)xj(t′) ei

∫
dt
(

m
2 ẋ2(t)−V(x(t))

)
∫
Dx ei

∫
dt
(

m
2 ẋ2(t)−V(x(t))

) . (12)

This correlation function, due to time-translation and rotational invariances, regardless
of the specific form of V, may be written as follows:

〈xi(t)xj(t′)〉 = δij

∫ dν

2π
e−iν(t−t′) ∆̃(ν) , (13)

with the precise form of ∆̃a(ν) to be determined by the potential. For example, for a
harmonic potential of frequency Ω, V = m

2 Ω2x2, one has the exact result:

∆̃(ν) ≡ ∆̃Ω(ν) =
1
m

i
ν2 −Ω2 + iε

. (14)

For a general potential it is interesting to note that, since 〈xi(t)xj(t′)〉 is the (exact)
Feynman propagator of the coordinate operator, we can always invoke the spectral decom-
position theorem to write:

∆̃(ν) =
1
m

∫ ∞

0
dω2 ρ(ω2)

i
ν2 −ω2 + iε

≡
∫ ∞

0
dω2 ρ(ω2) ∆̃ω(ν) . (15)

Therefore, for a general potential V,

S (a)
I (A; r) =

ie2

2

∫ ∞

0
dω2 ρ(ω2)

∫
dt
∫

dt′ Ei(t, r(t))∆ω(t− t′) Ei(t′, r(t′)) , (16)

where ∆ω(t) is the inverse Fourier transform of ∆̃ω(ν).
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It is noteworthy that we obtain qualitatively similar results, to the quadratic order
in the charge, if we assume that atom is described by a two-level system. Indeed, to that
order, we only need to know the correlation function:

〈xi(t)xj(t′)〉 = 〈0|T[x̂i(t)x̂j(t′)]|0〉 , (17)

where T denotes the time-ordered product and |0〉 is the ground state of the atom. If now
we assume that we have a two-level system, we may produce a more explicit expression for
the correlation function. Indeed, we may insert an identity operator I in the time-ordered
product, written in terms of the two eigenstates of the atom’s Hamiltonian. One of those
eigenstates is of course |0〉 with energy E0, and there is just one an excited level, |1〉. For a
rotationally symmetric potential, the excited state must have a degeneracy consistent with
the conservation of angular momentum. The simplest non-trivial one is 3. Therefore, we
assume that the excited level has an energy E1, with the three degenerate eigenstates |1(α)〉,
with α = 1, 2, 3.

We then insert the identity written as: I = |0〉〈0| + ∑3
α=1 |1(α)〉〈1(α)| into the time-

ordered product of Heisenberg operators: x̂i(t) = eitĤ x̂ie−itĤ ; it is important to note that
Wigner–Eckart’s theorem implies that x̂i can only have non-vanishing matrix elements
between the ground state and the excited ones. Thus,

〈0|T[x̂i(t)x̂j(t′)]|0〉 = θ(t− t′) e−i(t−t′)Ω ξij + θ(t′ − t) e−i(t′−t)Ω ξ ji (18)

where Ω = E1 − E0 and
ξij = ∑

α

〈0|x̂i|1(α)〉〈1(α)|x̂j|0〉 . (19)

We see that ξij behaves as a second-order tensor under rotations and, because of the
rotational symmetry of the system, can only be proportional to δij: ξij = χ2 δij, for some
constant χ. Thus,

〈xi(t)xj(t)〉 = (2Ω χ2m) δij
1

2mΩ
[θ(t− t′) e−i(t−t′)Ω + θ(t′ − t) e−i(t′−t)Ω]

= (2Ω χ2m) δij ∆Ω(t− t′) . (20)

We conclude that, for this quadratic approximation to the effective action due to the
atom, a two-level system produces essentially the same effect as a harmonic potential of
frequency Ω, if E1 − E0 ∝ (2χ2m)−1.

Regarding the graphene contribution, we see that:

S (g)
I (A) =

1
2

∫
d3x‖

∫
d3y‖ Aα(x‖, 0)Παβ(x‖, y‖) Aβ(y‖, 0) , (21)

with the tensor kernel Παβ denoting the vacuum polarization tensor for the Dirac field on
the plane.

Using a tilde to denote Fourier transformation, Π̃αβ may be decomposed into two
irreducible tensors (projectors) adapted to the symmetries of the system. Introducing first
the ingredients: k̆α ≡ kα − k0nα, ğαβ ≡ gαβ − nαnβ and nα = (1, 0, 0), a convenient pair of
projectors is P l

αβ and P t
αβ, where

P t
αβ ≡ ğαβ −

k̆α k̆β

k̆2
, P l

αβ ≡ P⊥αβ − P t
αβ , P⊥αβ ≡ gαβ −

kαkβ

k2 . (22)
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The result, for the most relevant case of m = 0, is as follows:

Π̃αβ = αN

√
v2

Fkq
2 − k2

0

[
P t

αβ +
kq

2 − k2
0

v2
Fkq

2 − k2
0

P l
αβ

]

= αN

√
kq

2 − k2
0

[√√√√v2
Fkq

2 − k2
0

kq
2 − k2

0

P t
αβ +

√√√√ kq
2 − k2

0

v2
Fkq

2 − k2
0

P l
αβ

]
, (23)

where we introduced αN ≡ e2 N
16 , with N the number of 2-component Dirac fermion fields.

We thus find the explicit form of the two terms into which SI may be decomposed.
It is worth noting that, assuming gauge, translation, and rotation invariances, one can

generalize the previous expression to other planar media as follows:

Π̃αβ(kq) = gt(kq)P t
αβ + gl(kq)P l

αβ , (24)

where gt and gl are functions of k0 and |kq|.

4. Perturbative Expansion

We now consider the evaluation of the effective action, by proceeding to integrate the
vacuum field, in a perturbative expansion approach.

Γ[r(t)] is given by:
eiΓ[r(t)] =

〈
eiSI(A;r)

〉
(25)

with

〈. . .〉 ≡
∫
DA . . . eiS0(A)∫
DA eiS0(A)

. (26)

Γ may be expanded in powers of Sint, producing a series of terms, namely,
Γ = Γ1 + Γ2 + . . .. Let us consider the first two of them:

4.1. First-Order Contribution

We see that the first-order contribution, Γ1, contains two terms,

Γ1 = Γ(a)
1 + Γ(g)

1 , (27)

with
Γ(a,g)

1 = 〈S (a,g)
I (A; r)〉 . (28)

It is clear that Γ(g)
1 corresponds to a vacuum energy contribution, which is a well-known

result for graphene.
We now consider Γ(a)

1 . We see that:

Γ(a)
1 =

i
2

e2
∫

dt
∫

dt′ ∆Ω(t− t′) 〈E(t, r(t)) · E(t′, r(t′))〉 , (29)

which involves the free electric field correlation function. This may be expressed as follows:

〈Ei(t, x)Ej(t′, x′)〉 = i δij δ(t− t′) δ(x− x′)

+ i
∫ d4k

(2π)4 e−ik·(x−x′) k2δij − kik j

k2
0 − k2 + iε

. (30)

The first line in the electric-field correlation, when introduced in the effective action,
induces a divergent energy shift. If l is a length characterizing the size of the atom, the
energy shift reads Ediv = 3e2

4mΩl3 .
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Aside from this contribution, the second, finite one, may be conveniently studied
in Fourier space, where it can be related to our previous results on the scalar model [27].
Introducing

f (p, ν) =
∫ +∞

−∞
dt e−ip·r(t) eiνt , (31)

the result for the finite part is,

Γ(a)
1 =

1
2

∫ dν

2π

∫ d3 p
(2π)3 f (−p,−ν) f (p, ν) Π(ν, p) , (32)

where

Π(ν, p) ≡ −2ie2

m
p2
∫ dp0

2π

1
(p0 − ν)2 −Ω2 + iε

1
(p0)2 − p2 + iε

. (33)

Therefore,

Im[Γ(a)
1 ] =

1
2

∫ dν

2π

∫ d3 p
(2π)3

∣∣ f (p, ν)
∣∣2 Im

[
Π(ν, |p|)

]
, (34)

where

Im
[
Π(ν, |p|)

]
=

πe2|p|
mΩ

[
δ(ν− |p| −Ω) + δ(ν + |p|+ Ω)

]
. (35)

From (35), we note that there is a threshold in the frequency ν, below which there is
no photon emission. That is a threshold for a Fourier component of frequency ν in f (p, ν),
which is not necessarily the same as the frequency of motion, unless one expands the expressions
in powers of the oscillation amplitudes. Indeed, recalling the definition of f , we see that
for a small, bounded motion r(t) = r0 + y(t), where r0 is the average position and y(t) the
departure, a series expansion yields, up to the lowest non trivial order:

f (p, ν) = e−ip·r0 [2π δ(ν) − ip · ỹ(ν)] , (36)

where ỹ(ν) is the Fourier transform of y(t). Since the time average of y(t) vanishes,
ỹ(0) = 0. Upon insertion of this expansion for f into the imaginary part, we can integrate
the spatial components of the momentum, to get, at the second order in the departure, the
spectral form:

Im[Γ(a)
1 ] =

1
2

∫ dν

2π
mij(ν) ỹi(−ν)ỹj(ν) , (37)

where

mij(ν) =
e2

6πmΩ
δij θ(|ν| −Ω) (|ν| −Ω)5 . (38)

Due to dimensional reasons, the spectrum has a different power law than that of the
scalar counterpart of this model [27], as well as different coefficient and factor of 2 (due to
the polarizations of the EM field).

In particular, for a small linear oscillatory motion with frequency ν0 and amplitude s,
y(t) = s cos(ν0t), we obtain a constant Im[Γ(a)

1 ] per unit time (vacuum decay rate):

Im[Γ(a)
1 ]

T
= s2 e2

24πmΩ
θ(|ν0| −Ω) (|ν0| −Ω)5 , (39)

where T is the total time.
Thus far, this corresponds to the second order in the oscillation amplitude, always

within the Γ(a)
1 contribution. When considering the same oscillatory motion without

expanding in powers of the amplitude, we note that f contains not just the oscillation
frequency ν0 but also its harmonics. Indeed, using the Jacobi–Anger expansion,
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e−ip·r(t) = e−ip·s cos(ν0t) =
+∞

∑
n=−∞

(−i)n Jn(p · s) e−inν0t (40)

(where Jn denotes a Bessel function of the first kind), we see that all the multiples of ν0 are
going to be present in f , what means that the threshold Ω may be surpassed with a lower
oscillation amplitude (if its amplitude is increased):

f (p, ν) = 2π
+∞

∑
n=−∞

(−i)n Jn(p · s) δ(ν− nν0) . (41)

It is interesting to note that, if one considers oscillations involving more than one
direction, for example when performing a circular motion, then the phenomenon above
involves sums of the respective frequencies, since the expansion above produces a series
for each factor.

For the single linear oscillation, we find:

Im[Γ(a)
1 ]

T
=

e2

πmΩ

∞

∑
n=1

{
θ(nν0 −Ω) (nν0 −Ω)3

∫ 1

0
du Jn[(nν0 −Ω)|s| u]

}
. (42)

A few comments are in order. On the one hand, the term quadratic in the oscillation
amplitude is recovered if one assumes that ν0 is above the threshold, and one expands
in powers of the amplitude each Bessel function. The n = 1 terms produces the term
quadratic in the departure. On the other hand, if the oscillation frequency is lower than
the threshold, one gets a contribution starting from n > 1. The relevance of the harmonics
of the fundamental frequency in the DCE was previously pointed out for the case of
semitransparent mirrors in [38].

4.2. Second Order

The second-order term is found to be given by:

Γ2 =
i
2
〈
(
SI − 〈SI〉

)2〉 = Γ(aa)
2 + Γ(gg)

2 + Γ(ag)
2 , (43)

of which, in a self-explanatory notation, only the last one involves correlations between
the atom and the graphene plate (the first one deals with the atom in free space, and the
second one produces a contribution to the graphene self-energy):

Γ(ag)
2 = i 〈

(
S (a)

I − 〈S
(a)
I 〉
)(
S (g)

I − 〈S (g)
I 〉

)
〉 . (44)

Introducing the explicit form of S (a)
I and S (g)

I and keeping the latter in terms of a yet
unspecified vacuum polarization tensor, after some algebra, we get:

Γ(ag)
2 =

1
2

∫ d2k‖
(2π)2

∫ dk3

2π

∫ dp3

2π

∫ dν

2π
f (−k‖, k3,−ν) f (k‖, p3, ν) B(ν, k‖, k3, p3) (45)

where

B(ν, k‖, k3, p3) = e2
∫ dk0

2π

∆̃Ω(k0+ν)
[

Π̃ii(kq)k2
0+Π̃00(kq)(kq

2−k3 p3)−2k0kiΠ̃0i(kq)
](

k2
0−kq

2−k2
3

)(
k2

0−k‖
2−p2

3

) . (46)

In terms of the functions gt and gl ,

B(ν, kq, k3, p3) = −e2
∫ dk0

2π

∆̃Ω(k0 + ν)
[
k2

0gt(kq) + k2
qgl(kq)− kq

2

k2
q

k3 p3gl(kq)
]

(
k2

0 − kq
2 − k2

3
)(

k2
0 − k‖

2 − p2
3
) . (47)
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For the particular case of graphene, those functions may be conveniently represented
by means of an integral representation:

gt(kq) = 2αN (k2
0 − v2

Fkq
2)
∫ dq3

2π

1
k2

0 − v2
Fkq

2 − q2
3

gl(kq) = 2αN (k2
0 − kq

2)
∫ dq3

2π

1
k2

0 − v2
Fkq

2 − q2
3

, (48)

which, when used in (47), leads to:

B(ν, kq, k3, p3) = −2 i e2

m αN
∫ dq3

2π

∫ dk0
2π

[
k2

0(k
2
0 − v2

Fkq
2) + (k2

q )
2 − kq

2k3 p3
]

× 1(
(k0+ν)2−Ω2+iε

)(
k2

0−kq
2−k2

3+iε
)(

k2
0−kq

2−p2
3+iε

)(
k2

0−v2
Fkq

2−q2
3+iε

) , (49)

where we wrote explicitly the iε terms in the denominators. The next step is to integrate
k0, which appears in a similar fashion as the momentum to integrate in a loop integral
in a quantum field theory system, although in this case in 0 + 1 dimensions. This can be
done in several ways, for example by the method of residues. After that integration, the
imaginary part of B may be written as follows:

Im
[

B(ν, kq, k3, p3)
]

= πe2αN
mΩ

∫ dq3
2π

{
(1−v2

F)|kq|4+[(2−v2
F)p2

3−p3k3]|kq|2+2p4
3

(p2
3−k2

3)
[
(1−v2

F)|kq|2+p2
3−q2

3

]
p

×
[
δ(ν−Ω− p) + δ(ν + Ω + p)

]
+

(1−v2
F)|kq|4+[(2−v2

F)k
2
3−k3 p3]|kq|2+2k4

3

(k2
3−p2

3)
[
(1−v2

F)|kq|2+k2
3−q2

3

]
k

×
[
δ(ν−Ω− k) + δ(ν + Ω + k)

]
+

(1−v2
F)

2|kq|4+[(−2+3v2
F)q

2
3−k3 p3]|kq|2+2q4

3[
(1−v2

F)|kq|2+k2
3−q2

3

][
(1−v2

F)|kq|2+p2
3−q2

3

]
q

×
[
δ(ν−Ω− q) + δ(ν + Ω + q)

] }
(50)

where we introduced the shorthand notation: p ≡
√

kq
2 + p2

3, k ≡
√

kq
2 + k2

3,

and q ≡
√

v2
Fkq

2 + q2
3.

Note that the third term inside the integral can be integrated, by taking advantage of
the δ-function involving q3.

Regarding the first and second terms, we see that they differ just in the interchange
k3 ↔ p3, so we discuss just the first one: the sum of the two δ-functions may be replaced
by the product: θ(|ν| −Ω) δ(|ν| −Ω− p). Therefore, using the previous condition into the
integral for the (only) factor involving q3,∫ dq3

2π

1
(1− v2

F)|kq|2 + p2
3 − q2

3
=
∫ dq3

2π

1
−v2

F|kq|2 + (|ν| −Ω)2 − q2
3

= − θ
(
vF|kq| − (|ν| −Ω)

) 1

2
√

v2
F|kq|2 − (|ν| −Ω)2

, (51)

where the last equality follows from the use of a principal value prescription for the
integral. Note however that the condition p = |ν| −Ω forced by the δ-function implies
that vF|kq| < |ν| −Ω for vF < 1. Therefore, the first and second terms in Equation (50)
do vanish.

Using this result, we see that the full imaginary part may be written as follows:

Im
[

B(ν, kq, k3, p3)
]
=

πe2αN
mΩ

θ(|ν| −Ω) θ(|ν| −Ω− vF|kq|)

×
[|kq|4 − [(2 + v2

F)(|ν| −Ω)2 + k3 p3]|kq|2 + 2(|ν| −Ω)4][
|kq|2 + k2

3 − (|ν| −Ω)2
][
|kq|2 + p2

3 − (|ν| −Ω)2
]
(|ν| −Ω)

. (52)

In what follows, we apply this result to the analysis of the dissipative effects on the
motion of the atom induced by the presence of a graphene sheet.
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5. Results
5.1. Quantum Friction

The first example that we consider corresponds to an atom moving with constant
velocity u, parallel the plane. A non-vanishing imaginary part of the effective action would
indicate the presence of quantum friction produced by the graphene.

The trajectory of the atom is given bay r(t) = (0, ut, a). From Equation (31), we obtain

f (k, ν) = 2π e−ik3a δ(ν− k1u) . (53)

Therefore, denoting by T the total extent of the time interval, we see that the imaginary
part of the effective action per unit time becomes:

Im
[Γ(ag)

2
T

]
=

1
2

∫ dk1

2π

dk2

2π

dk3

2π

dp3

2π
e−i(p3+k3)a Im

[
B(k1u, kq, k3, p3)

]
. (54)

We see that, due to the presence of the threshold in the imaginary part of B, there will
not be friction for u < vF.

Note, however, that u > vF, there will be a non-vanishing imaginary part. The physical
reason is that, for that velocity, the frequency involved (k1u) can excite physical Dirac
fermions on the graphene sheet. Note also that, as the velocity of the atom is u < 1, the
integrals over p3 and k3 are well-defined, since the denominator in Equation (52) never
vanishes.

After integrating those variables, we get:

Im
[Γ(ag)

2
T

]
=

πe2αN
8mΩ

∫ dk1

2π

dk2

2π
θ[|k1u| −Ω− vF|kq|] e−2a

√
|kq|2−(|k1u|−Ω)2

×
2|kq|4 − (3 + v2

F)(|k1u| −Ω)2|kq|2 + 2(|k1u| −Ω)4[
|kq|2 − (|k1u| −Ω)2

]
(|k1u| −Ω)

. (55)

It is easy to verify that, under the assumptions mentioned above (|kq| > |k1u| −Ω >
vF|kq|), the integrand is positive.

In Figure 1, we plot the imaginary part of the effective action as a function of the
velocity of the atom. We see that, after the threshold and an initial plateau, quantum
friction increases with the velocity. The results are qualitatively similar to those obtained
for the quantum friction between graphene sheets in [34]. In that reference, the authors also
showed how to obtain the frictional force from the imaginary part of the in-out effective
action (54). Besides, the argument for the existence of a threshold presented in [34], for the
case of two sliding graphene sheets, can be translated here in a rather direct way: consider
the momentum and energy balance during a small time interval δt, assuming that both the
frictional force and the dissipated energy are driven by pair creation. The only relevant
component of the total momentum P of the pair for the (momentum) balance is the one
along the direction of the velocity v. Relating that component of P to the frictional force,
we see that:

Ffr δt = Px . (56)

On the other hand, the energy balance reads

Ffr v δt = E (57)

where E is the energy of the pair. However, since the fermions are both on-shell, we have

E ≥ vF|Px| (58)
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(the equal sign corresponds to a pair with momentum along the direction of v). Dividing
Equations (57) and (56), and taking into account Equation (58), we see that a necessary
condition for friction to happen is v ≥ vF .

The situation considered here is more interesting for an eventual experimental obser-
vation of the effect, because frictional effects only exist if the speed of the sliding motion is
larger than the Fermi velocity of the charge carriers in graphene, a condition that is more
easily achieved for an atom than for a whole sheet (for example, for the implementation of
the experimental proposal in [33]).

0.00 0.02 0.04 0.06 0.08 0.10
0

10

20

30

40

u

Λ
Im

Γ T

Figure 1. Imaginary part of the effective action as a function of the atom velocity u (dimensionless in
natural units). There is no dissipative effect until u > vF = 0.003, and QF increases as the parallel

speed of the atom grows. We set Λ = 8a3mΩ/(πe2αN) and Γ(a,g)
2 = Γ.

5.2. Small Departures Normal to the Graphene Plane

In Section 4.1, we computed the vacuum persistence amplitude for an atom oscillating
in vacuum. The result to lowest order in the amplitude is given in Equation (39), and
without expanding in the amplitude in Equation (42).

Here, we consider the corrections to the vacuum persistence amplitude induced by
the presence of a graphene sheet. To this end, we evaluate the imaginary part of Γ(ag)

2 in
a situation where the atom undergoes a bounded motion, always in a direction normal
to the graphene. Although the expression for the imaginary part is not perturbative
in the amplitude of the atom’s motion, we find here the result to the lowest order in
that amplitude.

We assume r(t) = r0 + y(t), where the mean position of the atom is r0 = (0, 0, a), with
a > 0. The departure, on the other hand, is y(t) = (0, 0, y⊥(t)). We just need to insert the
corresponding f for this situation in the general expression; to the order we want to work,
it is sufficient to use:

f (k, ν) = e−ik3a [2πδ(ν) − ik3y⊥(t) + . . .] . (59)

The resulting imaginary part may be arranged, in a similar fashion as in (37), as
follows:

Im[Γ(ag)
2 ] =

1
2

∫ dν

2π
m⊥(ν) |ỹ⊥(ν)|2 , (60)

where

m⊥(ν) = −
∫ d2k‖

(2π)2

∫ dk3

2π

∫ dp3

2π
k3 p3 e−i(k3+p3)a Im

[
B(ν, k‖, k3, p3)

]
. (61)
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Unlike the case of quantum friction described in the previous section, in the calculation
of m(A)

⊥ (ν), the evaluation of the k3 and p3 integrals should be handled with care, using a
principal value prescription. We include some details of the calculation in Appendix A.
The result of performing the integrals allows us to write

m⊥(ν) =
e2αN
8mΩ

θ(|ν| −Ω)
(
|ν| −Ω

)5
ϕ
(
|ν|a−Ωa

)
, (62)

where ϕ(x) is a dimensionless function (of a dimensionless variable), given by:

ϕ(x) =
∫ v−2

f

0
dρ
(
1−

3 + v2
F

2
ρ + ρ2)[ cos(2x

√
1− ρ)θ(1− ρ)

+ e−2x
√

ρ−1θ(ρ− 1)
]

. (63)

This integral can be computed analytically in terms of elementary functions. To do this,
it is useful to perform the change of variables y =

√
|ρ− 1|. The explicit expression reads

ϕ(x) = ϕ1(x) + ϕ2(x) , (64)

where

ϕ1(x) =
1

8x6

[
− 30 +

(
v2

F − 1
)(

2x2 + 3
)

x2 + 2x
(
−
(

3v2
F + 17

)
x2 + 4x4 + 30

)
sin(2x)

+
(

4
(

v2
F + 4

)
x4 − 3

(
v2

F + 19
)

x2 + 30
)

cos(2x)
]

, (65)

and

ϕ2(x) =
e−

2
√

1−v2
F x

vF

8 v5
F x6

[
v7

Fx2
(

3− 4x2
)
+ v5

F

(
−10x4 + 57x2 − 30

)
+ v3

F

(
34x4 − 60x2

)
− 8
√

1− v2
F x5 + 4

√
1− v2

F v2
Fx3
(

3x2 − 10
)
+ 6
√

1− v2
F v6

F x3

− 2
√

1− v2
F v4

F x
(

x2 − 6
)(

2x2 − 5
)
− 20 vF x4

]
+

1
8x6

(
30−

(
v2

F − 1
)

x2
(

2x2 + 3
))

. (66)

Some properties of the function ϕ(x) can be derived from its analytic expression. For
instance, in the limit x → 0, it tends to the large finite value ϕ(0) ' 1/(3 v6

F), while, in the
large x limit, ϕ(x) ' x−1 sin(2x).

In Figure 2, we plot the function ϕ as a function of x = a
(
|ν| −Ω

)
. As anticipated, it

reaches large amplitudes at very small values of x, but then approaches zero, oscillating
with a small amplitude, for large x. The behavior of m⊥(ν) at extremely small distances a
between the atom and the graphene sheet is determined by that of x5 ϕ(x), as can be seen
in Figure 3.

5.3. Small Departures Parallel to the Graphene Plane

We now consider oscillations of the atom that are parallel to the graphene sheet. The
trajectory of the particle is now given by r(t) = r0 + y(t), where, as above, r0 = (0, 0, a),
with a > 0. The departure from the mean position is y(t) = (yq(t), 0) and the correspond-
ing f function reads:

f (k, ν) = e−ik3a [2πδ(ν) − ikq · ỹq(ν) + . . .] . (67)
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Figure 2. Dimensionless function ϕ as a function of x = a
(
|ν| −Ω

)
(also dimensionless).

0.00 0.05 0.10 0.15 0.20
0

50

100

150

200

250

x

x5
φ
(x
)

Figure 3. Small x behavior of the product x5 ϕ(x).

The imaginary part of the effective action reads

Im[Γ(ag)
2 ] =

1
2

∫ dν

2π
m‖(ν) |ỹq(ν)|2 , (68)

where

m‖(ν) =
1
2

∫ d2k‖
(2π)2

∫ dk3

2π

∫ dp3

2π
|kq|2e−i(k3+p3)a Im

[
B(ν, k‖, k3, p3)

]
. (69)

The formal expression for m‖(ν) is rather similar to that of m⊥(ν), Equation (61), with
the replacement k3 p3 → −1/2|kq|2. Its evaluation proceeds along rather similar steps, and
we therefore omit the details. The final result reads:

m‖(ν) = − e2αN
16mΩ

θ(|ν| −Ω)
(
|ν| −Ω

)5
φ
(
|ν|a−Ωa

)
, (70)

where

φ(x) = PV
∫ v−2

F
0 dρ

ρ
1−ρ

(
ρ2 − 3+v2

F
2 ρ + 1

)
×

[
cos(2x

√
1− ρ)θ(1− ρ) + e−2x

√
ρ−1θ(ρ− 1)

]
.

(71)

The integral that defines the function φ(x) has a singularity at ρ = 1. However, it is
well defined with the principal value prescription.
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We highlight the relation between this result and the function ϕ(x) in Equation (63).
Note that the difference is the extra factor ρ/(1− ρ) in the integrand of Equation (71).
Therefore, we write

φ(x) = −ϕ(x) + PV
∫ v−2

F
0 dρ

(
ρ2 − 3+v2

F
2 ρ + 1

)
× 1

1−ρ

×
[

cos(2x
√

1− ρ)θ(1− ρ) + e−2x
√

ρ−1θ(ρ− 1)
]

≡ −ϕ(x) + χ(x) .

(72)

The function χ(x) can be computed analytically and can be written in terms of cosine
integral and exponential integral functions. We omit this long expression here, but quote its
main properties. For small values of x, we have χ(0) ' −1/(2 v4

F). This can be explicitly
checked by setting x = 0 in the integral of Equation (72). On the other hand, for large
values of x, it oscillates with an amplitude O(x−1).

In Figures 4 and 5, we plot φ and x5φ as functions of x = a
(
|ν| −Ω

)
. There is an

important difference between the results for parallel and perpendicular motions. At short
distances from the plane, in the case of parallel motion, the effect of the graphene is to
decrease the probability of emission, while for perpendicular motion the probability is
enhanced. Note that, at short distances, |χ(x)| � ϕ(x), and therefore φ(x) ' −ϕ(x), as
clearly shown in Figures 3 and 5. On the other hand, at large distances, there is a partial
cancellation between the O(x−1) oscillations of ϕ(x) and χ(x), and therefore φ(x) oscillates
with a smaller amplitude, which is found to be of order O(x−2).
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-15
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Figure 4. Dimensionless function φ as a function of x = a
(
|ν| −Ω

)
(also dimensionless).
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Figure 5. Small x behavior of the product x5φ(x).

The fact that m‖(ν) and m⊥(ν) have different signs also occurs for a moving atom in
front of a perfect conductor. In that case, the different signs come from the evaluation of
the two-point functions using the image method.
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6. The Exact Propagator for the Gauge Field in the Presence of the Sheet

In Section 4.2, we calculated the imaginary part of the effective action up to the first
order in both S (a)

I and S (g)
I . It is possible to derive an expression for the effective action

which is of the first order in S (a)
I and exact in S (g)

I . Indeed, one can for example sum over
all the terms which appear when expanding the coupling to the sheet. Equivalently, one
can calculate the exact gauge field propagator in the presence of the sheet and subtract the
free propagator (which has already been considered).

Both approaches amount, at the level of the expression for B, to an identical expression
as (47), but with different functions Gt and Gl replacing gt and gl , respectively, and defined
as follows:

Gt =
gt

1 + gt

2
√

k2
q−k2

0

, Gl =
gl

1 + gl

2
√

k2
q−k2

0

. (73)

Therefore, it is possible to consider, within the same approach, some interesting
phenomena. For example, we may take the limit αN → ∞, under which both Gt and Gl
tend to the same limit:

αN → ∞ ⇒ Gt, Gl → 2
√

k2
q − k2

0 . (74)

Recalling the functions gt and gl for graphene, we see that this limit can be treated by
using the graphene expressions, but with vF = 1 and αN = 2. In particular,

Im
[

B(ν, kq, k3, p3)
]

= 2πe2

mΩ θ[|ν| −Ω− |kq|]

× |kq|4−[3(|ν|−Ω)2+k3 p3]|kq|2+2(|ν|−Ω)4[
|kq|2+k2

3−(|ν|−Ω)2
][
|kq|2+p2

3−(|ν|−Ω)2
]
(|ν|−Ω)

,
(75)

which is the kernel determining the dissipative effects in the case of an atom moving in
front of a perfectly conducting plane. Of course, the velocity threshold means that now
there will not be friction, since that would require the atom to move at superluminal speeds.

For intermediate values of αN , we have:

Gt = αN
(kq

2−k2
0)
√

v2
Fkq

2−k2
0−

αN
2 (v2

Fkq
2−k2

0)
√

kq
2−k2

0(
1−( αN

2 )2v2
F

)
kq

2−
(

1−( αN
2 )2
)

k2
0

Gl = αN
(kq

2−k2
0)
√

v2
Fkq

2−k2
0−

αN
2 (kq

2−k2
0)
√

kq
2−k2

0(
v2

F−(
αN
2 )2
)

kq
2−
(

1−( αN
2 )2
)

k2
0

.
(76)

This shows that, in the small αN limit, we recover the singularities (cuts) on k0 = vF|kq|
of the perturbative calculation. Note, however, that that contribution is overcome by the
cut k0 = |kq| for bigger values of αN .

The effects that would result from considering the exact gauge field propagator (a
resummation of the all terms involving a coupling to the medium) will, for graphene and
other systems, be explored elsewhere.

7. Conclusions

We studied a model with an atom which moves non-relativistically, at both constant
and non-constant speeds, in the presence of a planar graphene sheet. The model used for
the atom is based on a dipole coupling which, as we showed, yields essentially the same
results when one uses a harmonic coupling of the electron to the nucleus or when one
instead implements a two-level description. This result appears when one considers the
coupling of the atom to the EM field and integrates out the electron’s degrees of freedom,
to the lowest non-trivial order, which is quadratic in the electric field. Note that the order
is exact in the harmonic case but approximate for a two-level system.

The quantum dissipative effects were studied by first deriving a general expression
for a kernel which determines them (the imaginary part of the effective action) in terms
of the motion of the atom. This general expression does not rely on the approximation
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of small amplitude motion and therefore allows us to study both QF and the DCE on the
same footing.

In the next step, we considered and evaluated the effects for particular states of motion:
constant speed and bounded motion. For the former, we showed that QF exhibits the
same threshold as for two graphene sheets moving at a constant relative speed [34]. It is
interesting to remark that there is also a threshold in QF for non-dispersive dielectrics [39].
Indeed, when considering half-spaces described by a real constant dielectric function in
relative motion, a frictional force arises between them when the velocity of moving half-
spaces, in their center of mass frame, is larger than the phase speed of light in the medium
(this is a quantum analog of the well-known classical Cherenkov radiation). In this respect,
graphene behaves as a non-dispersive dielectric medium. For atoms moving near a metallic
surface, although there is no threshold, QF is exponentially small at low velocities [40].

For bounded motion, we particularized to the case of oscillatory motions with small
amplitudes along directions which are either normal or parallel to the sheet, at the second
order in those amplitudes. Note that, at this order, the effects of those two motions
superpose. We found that, in tune with the result for a moving atom near a perfect
conductor, the effect of the graphene on the imaginary part of the effective action has
different signs for normal and parallel motions.

We also pinpoint an effect mentioned above for when the atom moves in vacuum, but
which is of more general validity: when the approximation of small amplitudes is not made
for a simple harmonic motion, the system receives excitations of not only the fundamental
frequency but also from its harmonics (of course with decreasing amplitudes); remember
that the position of the atom appears in the exponent of a Fourier integral.
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Appendix A. Evaluation of Principal Values

In the evaluation of m⊥(ν) presented in Section 5.2, it is necessary to compute integrals
of the form

I±(n) = PV
∫ dk3

2π

∫ dp3

2π

e−ia(k3+p3)(k3 p3)
n

(k2
3 ± A2)(p2

3 ± A2)
, (A1)

where A2 = |kq
2 − (|ν| −Ω)2| and n = 1, 2. It is also useful to consider the case n = 0.

The computation of I+(n) is straightforward and gives

I+(0) = 1
4A2 e−2Aa

I+(1) = − 1
4 e−2Aa

I+(2) = A2

4 e−2Aa .
(A2)

The principal value prescription is of course unnecessary in this case.
There is a subtlety in the evaluation of I−(n). Although at first sight I−(n) is the

product of two independent integrals, the principal value of the product differs from the
product of the principal values [41]. We illustrate the correct procedure for the particular
case n = 0. Using Feynman parametrization and shifting the integration variable k3 →
k3 − p3, we have

I−(0) = PV
∫ 1

0
dx
∫ dk3

2π
e−iak3

∫ dp3

2π

1
p2

3 + x(1− x)k2
3 − A2

. (A3)



Universe 2021, 7, 158 18 of 19

Now, we implement the principal value prescription as

I−(0) = Re
[ ∫ 1

0
dx
∫ dk3

2π
e−iak3

∫ dp3

2π

1
p2

3 + x(1− x)k2
3 − A2 + iε

]
. (A4)

The calculation is now standard and yields:

I−(0) = −
1

4A2 cos(2Aa) . (A5)

The integrals for n = 1, 2 can be computing using the following trick:

− dIn(0)
da2 = PV

∫ dk3

2π

∫ dp3

2π

e−ia(k3+p3)
(
k2

3 + p2
3 + 2k3 p3

)
(k2

3 − A2)(p2
3 − A2)

. (A6)

Writing
k2

3 + p2
3 + 2k3 p3 = k2

3 − A2 + p2
3 − A2 + 2k3 p3 + 2A2 , (A7)

one can easily see that only the last two terms in the integral are not vanishing for a 6= 0.
Therefore,

− dIn(0)
da2 = 2A2 I−(0) + 2I−(1) =⇒ I−(1) = A2 I−(0) . (A8)

Using a similar argument that involves the fourth derivative of I−(0), one can
show that

I−(2) = A4 I−(0) . (A9)

From these results, it is rather straightforward to obtain Equation (62) for m⊥(ν).
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