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A. R. Plastino,1,* F. D. Nobre,2 and R. S. Wedemann 3

1CeBio y Departamento de Ciencias Básicas, Universidad Nacional del Noroeste de la Prov. de Buenos Aires,
UNNOBA, CONICET, Roque Saenz Peña 456, Junin, Argentina

2Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems,
22290-180 Rio de Janeiro, RJ, Brazil

3Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RJ, Brazil

(Received 16 November 2019; revised 25 June 2020; accepted 20 July 2020; published 10 August 2020)

Progress has been recently made, both theoretical and experimental, regarding the thermostatistics of complex
systems of interacting particles or agents (species) obeying a nonlinear Fokker-Planck dynamics. However, major
advances along these lines have been restricted to systems consisting of only one type of species. The aim of
the present contribution is to overcome that limitation, going beyond single-species scenarios. We investigate the
dynamics of overdamped motion in interacting and confined many-body systems having two or more species that
experience different intra- and interspecific forces in a regime where forces arising from standard thermal noise
can be neglected. Even though these forces are neglected, the behavior of the system can be analyzed in terms
of an appropriate thermostatistical formalism. By recourse to a mean-field treatment, we derive a set of coupled
nonlinear Fokker-Planck equations governing the behavior of these systems. We obtain an H theorem for this
Fokker-Planck dynamics and discuss in detail an example admitting an exact, analytical stationary solution.

DOI: 10.1103/PhysRevE.102.022107

I. INTRODUCTION

Nonlinear Fokker-Planck equations [1–3] provide effec-
tive descriptions of various phenomena in complex systems
[4–12]. In particular, they provide analytically (or semiana-
lytically) tractable models illuminating the dynamics of some
complex systems of interacting particles or agents. Among
these systems we can mention vortices in type-II supercon-
ductors [13], granular media [14], and self-gravitating systems
[15,16]. Variants or extensions of the nonlinear Fokker-Planck
dynamics have also found applications. In this respect, we
can mention the nonlinear Kramers equation [17] and the
nonlinear Kramers-Klein equation [18], the first applied to the
spreading behavior of the microorganism Hydra-Boltzonaris,
and the second discussed in connection with thermodynamical
systems described by nonadditive entropies.

The nonlinear Fokker-Planck equation governs the evo-
lution of a density P (x, t ), where x ∈ ReN denotes a point
in an N-dimensional configuration space. In many of the
aforementioned applications, P (x, t ) is a real physical density
(as opposed to a statistical ensemble probability density).
In these cases P (x, t ) represents the time-dependent spatial
distribution of a set of interacting particles [4,19–22]. There
are two terms in the nonlinear Fokker-Planck equation: A
nonlinear diffusion term [23,24] and a linear drift term. The
nonlinear diffusion term provides an effective description
of the interaction between the particles, and the drift term
accounts for the effects due to external forces. The nonlinear
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Fokker-Planck equation thus determines the behavior of the
spatial density of a many-particle system, consisting of par-
ticles that perform overdamped motion under the effects of
forces arising from the interactions between the particles and
from an external potential. Evolution equations with nonlinear
diffusion terms constitute also a useful phenomenological way
of describing the interaction of particles or agents in other
contexts, such as in the study of the dispersal of biological
populations [25–27]. This kind of equations also govern the
spread of energy in some many-body systems [28].

Virtually all previous efforts done to model complex sys-
tems of interacting particles with nonlinear Fokker-Planck
equations have considered systems constituted only by one
type of particle. This single-species assumption imposes a se-
rious restriction on the types of systems or processes that can
be described by the nonlinear Fokker-Planck dynamics. The
aim of the present contribution is to overcome this limitation.
We shall consider the nonlinear Fokker-Planck approach to
the thermostatistics of overdamped motion in many-particle
systems consisting of different types (species) of particles.

In the next section we review briefly the nonlinear Fokker-
Planck equation (NLFPE) associated with the nonextensive
power-law entropy Sq, its stationary-state solution, and some
of its applications. In Sec. III we derive NLFPEs describing
a system constituted by two types of interacting particles in
the overdamped motion regime, which result in a pair of
coupled nonlinear equations. By introducing a free-energy-
like functional, we prove an H theorem for this system.
Moreover, we show that an optimization procedure on this
functional yields equilibrium solutions that coincide with the
stationary-state solutions of the pair of NLFPEs. In Sec. IV
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we analyze in detail a one-dimensional example of the pair
of equations derived in Sec. III and obtain its stationary-state
solutions in a semianalytical way. In Sec. V we investigate the
more general case of multispecies systems with L different
types of particles, described by a set of L coupled NLFPEs.
We prove that these systems satisfy an H theorem in terms of
a free-energy-like functional, that is, a linear combination of
the confining external potential and of an appropriate, nonlin-
ear functional of the L time-dependent densities respectively
associated with each of the species constituting the system.
We analyze the stationary states of these general systems.
These results are also extended to systems involving nonlocal
interactions between particles. Finally, in Sec. VI we present
our main conclusions.

II. THE NONLINEAR FOKKER-PLANCK EQUATION

One of the most intensively studied NLFPEs in recent years
has the form

∂P
∂t

= D∇2

[
P
( P
P0

)
1−q

]
− ∇ · [PK], (1)

where P (x, t ) is a time-dependent density with dimensions of
inverse volume, P0 is a constant with the same dimensions
as P (x, t ), D is a diffusion constant, K(x) is a drift force,
and q is a real parameter characterizing the (power-law)
nonlinearity in the Laplacian term. As already mentioned
in the Introduction, the densities P (x) that we are going to
consider in this work are real physical densities, not ensemble
probability densities. More precisely, the densities considered
here are densities of particles. This means that P (x)dN x is the
number of particles within the volume element dN x centered
at the point x. In most applications of the evolution Eq. (1),
the drift field K is assumed to arise from a potential function
U (x),

K = −∇U . (2)

The stationary solutions of the NLFPE then satisfy

∇ ·
{
D∇
[
P
( P
P0

)1−q
]

+ P (∇U )

}
= 0. (3)

Let us consider the q-statistical ansatz [2,3,29]

Pq = A expq[−βU (x)] = A[1 − (1 − q)βU (x)]
1

1−q

+ , (4)

where A and β are constants to be determined, and the

function expq(z) = [1 + (1 − q)z]
1

1−q

+ , usually referred to as

the q-exponential function, is equal to [1 + (1 − q)z]
1

1−q when
1 + (1 − q)z > 0 and vanishes when 1 + (1 − q)z � 0. One
finds that the ansatz given by Eq. (4) complies with the
relation

D∇
[
P
( P
P0

)1−q
]

+ P (∇U ) = 0, (5)

if

(2 − q)βD =
(

A

P0

)q−1

. (6)

It therefore satisfies also Eq. (3) and constitutes a stationary
solution of the NLFPE. In summary, the q-exponential ansatz
(4) is a stationary solution of the NLFPE, if the drift force K
is derived from a potential and A and β satisfy the relation
(6). We shall assume that the stationary distribution Pq has a
finite norm, that is,

∫
Pq dN x = I < ∞. The detailed condi-

tions, such as the allowed range of values of the parameter
q, required to have a stationary solution with finite norm
depend on the particular shape of the potential function U (x)
and, consequently, have to be established on a case-by-case
fashion. Since in many applications the solution of the NLFPE
represents a physical, spatial density of particles (instead of
representing a probability density), we assume that the norm
I is finite but not necessarily equal to 1.

The stationary density Pq can be regarded as a q-maxent
distribution, because it maximizes, for an appropriate value
q∗ of the entropic q parameter, the nonadditive q-entropic
functional [29–33]

Sq[P] = k

q − 1

∫
P
[

1 −
( P
P0

)q−1
]

dN x, (7)

under the constraints corresponding to the norm and the mean
value of the potential U [2,3]. More precisely, the density that
maximizes Sq∗ , with q∗ = 2 − q, under the constraints of the
mean value of U and normalization, has the form (4). In this
work we use units such that k = 1.

In the limit q → 1, the standard linear Fokker-Planck
equation,

∂P
∂t

= D∇2P − ∇ · [PK], (8)

is recovered. In this limit, the q-maxent stationary density (4)
reduces to the exponential, Boltzmann-Gibbs-like density,

PBG = 1

Z
exp
[
− 1

DU (x)
]
, (9)

with the condition (6) becoming βD = 1, independent of
the normalization constant A. The density PBG is normal-
ized to one provided that Z = ∫ exp[− 1

DU (x)]dN x. The
density PBG optimizes the Boltzmann-Gibbs entropy SBG =
−k
∫
P ln(P/P0)dN x, under the constraints of normalization

and the mean value 〈U 〉 of the potential U (consistently with
the fact that in the limit q → 1 the entropic functional Sq

reduces to the standard Boltzmann-Gibbs entropy).
In some important applications the nonlinear Fokker-

Planck equations have exact analytical, time-dependent so-
lutions of the q-Gaussian form. The q-Gaussian densities
optimize the nonadditive, power-law entropies Sq under con-
straints that are quadratic on the relevant phase-space vari-
ables [29]. These densities are observed in the study of various
phenomena in complex systems [34–37]. The connection
between the power-law, nonlinear Fokker-Planck equations
and the Sq-based thermostatistics, first pointed out in Ref. [2],
has been the focus of increasing attention in recent years,
stimulating diverse developments concerning the application
of those equations to the study of complex systems. A notable
experimental achievement along these lines is given by the
results concerning experiments on granular media reported
in Ref. [14], verifying within a 2% error a scale relation
theoretically obtained by Tsallis and Bukman [3] from the
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exact q-Gaussian time-dependent solutions of the nonlinear
Fokker-Planck equation with a quadratic potential.

III. THERMOSTATISTICS OF OVERDAMPED MOTION IN
TWO-SPECIES SYSTEMS OF INTERACTING PARTICLES

In this section we are going to derive a set of coupled non-
linear Fokker-Planck equations describing the thermostatistics
of a confined many-body system comprising different types
of particles interacting via short-range forces and performing
overdamped motion. First we are going to consider a system
constituted by two types of particles, referred to as type-1
and type-2 particles, with masses respectively equal to m1 and
m2, that move in an N-dimensional space and interact through
short-range, repulsive forces. The spatial distribution of these
particles are described by the densities P1,2(x), so that the
number of particles of type i within the volume element dN x
centered at the point x is Pi(x)dN x. These particles are also
under the effects of external confining potentials W1 and W2

(the Wi potential is the one acting on the i-type particles) and
of drag forces due to a resisting medium. Therefore, there are
several contributions to the total force acting on each of these
particles. The contributions to the force acting on particles of
a given type i include the forces arising from the interaction
with particles of the same type and of different types, the force
derived from the potential Wi, and the drag force

F (i)
drag = −αi ẋ, (10)

characterized by the constants αi > 0. At a given time, each
particle of the system interacts only with particles located
within its immediate neighborhood, because the interaction
between the particles is of a short-range nature [4]. Let
Fi j (|x − x′|) � 0 be the strength of the force F i j felt by
a particle of type i located at x due to a particle of type
j at x′. The vector representation of this (repulsive) force
is F i j (x, x′) = Fi j (|x − x′|)(x − x′)/|x − x′|. The force on a
particle of type i, located at x, due to its interaction with the
other particles of the system is

F (i)
int (x) =

∑
j

∫
F i j (x, x′)P j (x′) dN x′, (11)

where the sum on the index j appearing in the right-hand side
of the above equation runs over all the types of particles in
the system. It is here assumed that Fi j is a smooth function
of r = |x − x′|, decaying fast enough so that the integral∫∞

0 rNFi j (r)dr converges. In addition, due to the the short-
range nature of the interaction, one can assume that the typical
length scales of the system are large compared with the range
of r values within which Fi j (r) is appreciably different from
zero. In particular, over this range of r values, the spatial
densities P j (x) of j-type particles can be approximated as
P j (x′) = P j (x) + (x′ − x) · (∇P j ). Under these conditions,
this expansion for the densities P j (x′) can be substituted into
the expression (11) for the forces F (i)

int (x) acting on an i-type
particle located at x, yielding

F (i)
int = −

∑
j

Gi j∇P j, (12)

where

Gi j = 1

N

∫
rFi j (r)dN x = σN−1

N

∫ ∞

0
rNFi j (r)dr, (13)

and σN−1 denotes the hypersolid angle associated with an
(N − 1)-dimensional sphere (in other words, the hypersurface
of an N-dimensional ball of radius 1). One has, for instance,
σ0 = 2, σ1 = 2π , and σ2 = 4π . In one dimension, the forces
F (i)

int coincide with the ones arising from the interaction po-
tentials Vi j (x1, x2) = Gi jδ(x2 − x1), where δ(x) is Dirac’s δ

function and x1,2 are the positions of the two particles.
Before continuing, some remarks are in order concerning

the conditions under which the expression (12) for F (i)
int is

valid. As already explained, the validity of (12) requires the
convergence, ∫ ∞

0
rNFi j (r)dr < ∞, (14)

of the integrals appearing in the right-hand side of (13). This
requirement is our present criterium for characterizing the
force law Fi j (r) as a short-range law force. This criterium
is not fulfilled if Fi j (r) decreases with r more slowly than
r−(1+N ). Therefore, in the case of power-law forces, the
criterium used for the force to be a short-range one [and,
consequently, for the validity of (12)] is that it decreases as
r−γ with the exponent γ satisfying

γ > 1 + N. (15)

For strict power-law forces, however, even if satisfying the cri-
terium (15), the expression (12) for F (i)

int is not valid, because
the integrals

∫∞
0 rNFi j (r)dr diverge due to the singularity

of Fi j (r) at r = 0. Expression (12) holds for forces Fi j (r)
that are short-range (according to the above explained cri-
terium) and that are also well behaved at r = 0. For instance,
the expression (12) is valid for softened power-law forces
given by

Fi j (r) = F0

[
1 +
(

r

r0

)]−γ

, (16)

where γ complies with the condition (15) and F0 and r0 are
positive constants.

As we shall presently see, the overdamped dynamics of
systems of particles for which F (i)

int can be described by (12)
and (13) is associated to the Sq thermostatistics with q = 0.
Therefore, it follows from the previous considerations that, for
the kind of systems studied here, the q = 0 case is associated
with interaction forces that comply with the condition (14).
For the softened power-law forces (16), that condition reduces
to the inequality (15).

In a system with two types of particles one has

F (1)
int = −G11∇P1 − G12∇P2,

(17)
F (2)

int = −G21∇P1 − G22∇P2,

The aforementioned components of the total force acting on
a test particle of type i (due to the interaction with other
particles, to the external confining potential, and to drag) lead
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to the equations of motion

m1ẍ + G11∇P1 + G12∇P2 + ∇W1 + α1 ẋ = 0,
(18)

m2ẍ + G21∇P1 + G22∇P2 + ∇W2 + α2 ẋ = 0,

for type-1 and type-2 particles, respectively.
Following the treatments in Refs. [4,19–22] we are going

to assume that the random forces associated with standard
thermal noise are much weaker than the forces of interaction
between the particles. In terms of our mean-field description
of the system’s dynamics, this amounts to assuming that
the standard diffusion coefficients D(diff.)

i for each type of
particle are much smaller than λ−1 Di j , where the Di j’s are the
effective diffusion coefficients associated with the nonlinear
terms of the Fokker-Planck equation [see Eq. (21)] and λ

is a characteristic length of the system. That is, we are
going to work in a regime characterized by the inequality
D(diff.)

i 
 λ−1 Di j, i, j = 1, 2. By recourse to the Einstein-
Smoluchowsky relation, kBT = αiD

(diff.)
i , where kB is Boltz-

mann’s constant and T is the absolute temperature of the
resisting medium generating the drag forces, this regime can
be interpreted as a low temperature one, corresponding to the
inequality kBT 
 λ−1 Gi j . Here we use the relation Di j = Gi j

αi

explained before Eq. (21). Note also that previous work dealt
with only one species of particles, in which case the associated
diffusion constant, say D11, is to be identified with 2D/P0, λ

with 1/P0, and the nonlinear evolution equation reduces to (1)
with q = 0.

When the above-explained inequalities hold, the effects
of the random forces coming from thermal noise can be
neglected, leading to the nonlinear evolution equation (21). It
was shown in Refs. [4,20] that this approximation provides
a good description, for instance, of systems of interaction
vortices in type-II superconductors. Indeed, in those systems
kBT is several orders of magnitude smaller than λ−1 G11

[20]. Moreover, even though the systems investigated in
Refs. [4,19–22] (and in the present contribution) are studied
in a regime where thermal noise is negligible, these systems
still exhibit a dynamics that can be interpreted in terms of a
thermostatistical formalism associated with the Sq nonadditive
entropies.

When the terms m1,2ẍ, associated with inertial effects, are
much smaller than the other terms appearing in (18), one
deals with the overdamped motion regime, described by the
equations of motion,

ẋ = − 1

α1
[G11∇P1 + G12∇P2 + ∇W1],

ẋ = − 1

α2
[G21∇P1 + G22∇P2 + ∇W2]. (19)

The particle densities P1,2(x, t ), associated with a system
consisting of two types of interacting particles, whose motion
are governed by Eqs. (19), satisfy the continuity equations
∂P1,2

∂t + ∇ · J1,2 = 0, where the density currents J1,2 are

J1 = −P1

α1
[G11∇P1 + G12∇P2 + ∇W1],

J2 = −P2

α2
[G21∇P1 + G22∇P2 + ∇W2]. (20)

Making the identifications Di j → Gi j

αi
and Ui → Wi

αi
, the above-

mentioned continuity equations can be recast as

∂P1

∂t
= ∇ · [P1∇(D11P1 + D12P2)] + ∇ · [P1∇U1],

(21)
∂P2

∂t
= ∇ · [P2∇(D21P1 + D22P2)] + ∇ · [P2∇U2],

which constitutes a pair of coupled nonlinear Fokker-Planck
equations. In summary, Eqs. (21) are the evolution equations
governing the time-dependent densities of two types of inter-
acting particles, constituting a confined many-body system
in the overdamped motion regime. Note that when D12 =
D21 = 0 the equations reduce to a pair of uncoupled nonlinear
Fokker-Planck equations of the form (1), with q = 0, in which
either D11 or D22 have to be identified with 2D/P0. Even
when D12 and D21 do not vanish, Eqs. (21) admit special limit
solutions, for which one of the two densities P1,2 vanish (for
all x and all t), while the other (nonvanishing) density evolves
according to the power-law nonlinear Fokker-Planck Eq. (1),
with q = 0. In these special limit situations, only one of the
two types of particles is present.

If D12 = D21 (consistently with Newton’s principle of ac-
tion and reaction), then the coupled nonlinear Fokker-Planck
equations (21) admit an H theorem. Let us define


(P1,P2) = P0

2
(D11P1 + D22P2)

− 1

2

[
D11P2

1 + 2D12P1P2 + D22P2
2

]
, (22)

where P0 is a constant with the same dimensions as P1,2. We
define the functional

F = 〈U1〉 + 〈U2〉 −
[∫


 dN x
]
, (23)

where 〈U1〉 = ∫ P1 U1dN x and 〈U2〉 = ∫ P2 U2dN x. We then
have

dF

dt
=
∫ [(

U1 − ∂


∂P1

)
∂P1

∂t
+
(

U2 − ∂


∂P2

)
∂P2

∂t

]
dN x

=
∫ {(

∂


∂P1
− U1

)
∇ ·
[
P1∇
(

∂


∂P1
− U1

)]

+
(

∂


∂P2
− U2

)
∇ ·
[
P2∇
(

∂


∂P2
− U2

)]}
dN x

= −
∫ {

P1

[
∇
(

∂


∂P1
− U1

)]2

+P2

[
∇
(

∂


∂P2
− U2

)]2
}

dN x � 0. (24)

In the last step in (24) we performed an integration by
parts and made the standard assumption that P1,2 → 0 fast
enough when |x| → ∞, for the concomitant surface terms to
vanish. Thus, we see that the functional F is a nonincreasing
function of time. The densities that minimize the functional
F , under the constraints imposed by the normalization of P1

and P2, are stationary solutions of the evolution equations
(21). Indeed, introducing the Lagrange multipliers L1 and
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L2, the above-mentioned optimization scheme leads to the
variational problem δ[F + L1

∫
P1dN x + L2

∫
P2dN x] = 0,

in turn yielding the relations

D11P1 + D12P2 + U1 = 1
2P0D11 + L1 = const,

(25)
D22P2 + D12P1 + U2 = 1

2P0D22 + L2 = const.

It is plain that the densities P1 and P2, satisfying relations
(25), are also stationary solutions of (21).

The functional F given in (23) is reminiscent of a free
energy. The quantity

∫

dN x is not, however, itself an en-

tropic functional in the sense discussed, for instance, in
Refs. [31–33]. This quantity is, nevertheless, closely related
to the power-law, nonadditive entropic measure S2. The min-
imization of the functional F , with respect to each one of the
two densities P1,2 (say, Pi) keeping the other density (say,
P j) fixed, is tantamount to the optimization of the entropy
Sq∗ (with q∗ = 2) under the constraints of normalization and
the mean value of an effective potential Ũi = Di jP j + Ui.
The effective potential Ũi takes into account both the external
potential Ui as well as the potential Di jP j that particles of
type i feel due to their interaction with particles of type j.
Consequently, the stationary solutions of (21) can be formally
cast as maximum Sq-entropy densities

P1 = A1 expq[−β1Ũ1] = A1 expq[−β1(U1 + D12P2)],
(26)

P2 = A2 expq[−β2Ũ2] = A2 expq[−β2(U2 + D12P1)],

with A1β1D11 = A2β2D22 = 1 and q = 2 − q∗ = 0.
The structure of the intertwined densities (26) has a curious

resemblance with the structure of the probability distributions
discussed by Harré et al. in Ref. [38] that result from a maxi-
mum entropy approach to economic games. As happens with
(26), the probability distributions discussed in Ref. [38] are in-
terlinked maximum entropy distributions, each one maximiz-
ing an entropy under a constraint that is a linear function of the
other distribution. Possible connections between the dynamics
leading to the densities (26) and the dynamics generating
the maximum entropy distributions studied in Ref. [38] is a
subject worth exploring.

It is worthwhile now to compare our present multispecies
evolution equations with the Fokker-Planck equation for sys-
tems of two particles discussed, for instance, by Risken
in Ref. [39]. The two-particle Fokker-Planck equation con-
sidered in Ref. [39] governs the time evolution of a joint
probability density P(x1, x2, t ), where x1 and x2 denote the
locations of the first and the second particles, respectively,
and P(x1, x2, t )dN x1dN x2 is the joint probability of having
the first particle within the volume element dN x1 (centered
at x1), and the second particle within the volume element
dN x2 (centered at x2). In contrast with that scenario, the
system (21) of coupled, nonlinear Fokker-Planck equations
governs the coevolution of two densities P1(x, t ) and P2(x, t ),
respectively, describing the evolving spatial distribution of
particles of type 1 and type 2.

IV. A ONE-DIMENSIONAL EXAMPLE

We shall now consider a one-dimensional example admit-
ting an exact analytical stationary solution. We are going to

consider a pair of evolution equations of the form

∂P1

∂t
= ∂

∂x

[
P1

∂

∂x
(D11P1 + D12P2)

]
+ ∂

∂x

[
P1

∂U1

∂x

]
,

(27)
∂P2

∂t
= ∂

∂x

[
P2

∂

∂x
(D12P1 + D22P2)

]
+ ∂

∂x

[
P2

∂U2

∂x

]
,

which constitute a one-dimensional instance of (21). We
assume harmonic external confining potentials, U1 = 1

2C1x2

and U2 = 1
2C2x2, with C1,2 > 0. The evolution equations (27)

are continuity equations for the two densities P1(x, t ) and
P2(x, t ). They preserve the norms N1 = ∫ P1(x, t )dx and
N2 = ∫ P2(x, t )dx [remember that P1,2(x, t ) represent the
physical spatial densities of the particles of type 1 and 2 and,
consequently, are not necessarily equal to 1].

The coupled, nonlinear Fokker-Planck equations (27) ad-
mit stationary solutions P1 and P2, both of which exhibit,
within a restricted range of x values, a q-Gaussian form.
We have

P1 = A1 expq[−b1x2], (|x| � xc),
(28)

P2 = A2 expq[−b2x2], (|x| � xc),

where A1,2 and b1,2 are positive constants and q = 0. The
stationary solutions have the q-Gaussian shape within the
range of x values corresponding to |x| � xc, where xc =
min(x1, x2), with x1,2 = √1/b1,2. Without loss of generality
we shall assume that xc = x1 (that is, we assume that x1 � x2

and b1 � b2). For |x| > xc the solutions have the form

P1 = A1 expq[−b1x2], (|x| > xc),
(29)

P2 = A′
2 expq[−b′

2x2], (|x| > xc),

with A′
2 and b′

2 positive constants and q = 0. That is, the
stationary density P1(x) is a q Gaussian for all values of x,
while P2(x) is a piecewise continuous function defined in
terms of two different q Gaussians. Note that both stationary
densities have a compact support. Indeed, P1 = 0, for |x| >

1/
√

b1, and P2 = 0, for |x| > 1/
√

b′
2.

The ansatz (28) and (29) is characterized by the six pa-
rameters A1,2, A′

2, b1,2, and b′
2. To determine completely the

stationary solution of the Fokker-Planck equations (27) one
has to find the values of these parameters. Inserting (28) and
(29) into (27) one sees that the appropriate values of the
parameters satisfy the equations

2(D11A1b1 + D12A2b2) = C1,

2(D12A1b1 + D22A2b2) = C2,
(30)

A′
2

[
1 − b′

2x2
c

] = A2
[
1 − b2x2

c

]
,

2D22A′
2b′

2 = C2.

It is worthwhile, for the sake of clarity, to make a few
comments on the above equations and their relationship with
the form of the ansatz (28) and (29). The first two equations
guarantee that the densities P1 and P2 comply with the
Fokker-Planck equations (27) within the spatial region |x| �
xc, where both densities are different from zero. The third
equation is the matching condition arising from the continuity
of the density P2 at xc. One has this condition because the
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density P2 is defined in a piecewise form, with different
analytical expressions in the region |x| � xc and in the region
|x| > xc. Finally, the fourth equation in (30) guarantees that
P2 satisfies (28) and (29) in the region |x| > xc, where P1 is
equal to zero.

The solutions of Eqs. (30) are

A1b1 = D22C1 − D12C2

2
(
D11D22 − D2

12

) ,
A2b2 = D11C2 − D12C1

2
(
D11D22 − D2

12

) ,
(31)

A′
2b′

2 = C2

2D22
,

A′
2 = A2

(
1 − b2

b1

)
+ C2

2b1D22
,

provided that D11D22 − D2
12 �= 0. This corresponds to a phys-

ical solution (that can be realized with positive values of
the parameters A1,2, A′

2, b1.2, and b′
2, corresponding to posi-

tive densities P1,2), if the quantities D11D22 − D2
12, D22C1 −

D12C2, and D11C2 − D12C1 are all different from zero and
have the same sign. The norms corresponding to the two types
of particles are

N1 = 4A1

3
√

b1
,

N2 = 2A2√
b1

[
1 − b2

3b1

]
+ 2A′

2

{
2

3
√

b′
2

− 1√
b1

[
1 − b′

2

3b1

]}
.

(32)

The number of particles of type 2 within the overlap region
where both particles coexist is

N∗
2 = 2A2

[
1√
b1

− A2b2

3b3/2
1

]
. (33)

The four relations (31) determine a biparametric family of
stationary solutions of (28), since we have only four equations
for the six parameters A1, A2, A′

2, b1, b2, and b′
2. The

members of this family of solutions correspond to different
normalizations for the densities P1 and P2.

The stationary densities (28) and (29), and some of their
main properties, are illustrated in Figs. 1–4. In the examples
represented in these figures we choose C1 = C2 = C, D12 =
D21 = 1

2 D11, and D22 = δD11, where D11 > 0 and δ > 1
2 is a

dimensionless parameter. The normalization N1 was set equal
to 1 and we consider b1 � b2. The quantity (D11/C)1/3 has
dimensions of length. It provides a natural length scale for
the stationary solutions of (27). Therefore, in Figs. 1–4 we
used (D11/C)1/3 as our unit of length. Expressed using this
length unit, and under the above explained conditions, the
values of the physical parameters determining the stationary

solutions satisfy A1 = [ 9
16 ( 2δ−1

4δ−1 )]
1/3

, b1 = [ 16
9 ( 2δ−1

4δ−1 )
2
]
1/3

, and
A2 = 1

b2(4δ−1) . The values of the remaining parameters, A′
2

and b′
2, can then be expressed in terms of the values of

the previously found ones, using the last two relations in
(31). This completely determines a subfamily of stationary
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FIG. 1. Particle densities for particles of type 1 (P1) and 2 (P2),
for different values of b2. Length is measured in units of (D11/C)1/3

and the particle densities in units of A1. We set N1 = 1 and δ = 5.
Other model parameters are obtained from these, as explained in the
main text of Sec. IV. For these parameter values and units, xc =
1/

√
b1 = 1.17 marks the cutoff of the density of type-1 particles. It

is also the point where P2 ceases to be defined by Eq. (28) and starts
to be described by Eq. (29).

solutions of (28), parameterized by b2, whose properties are
shown in Figs. 1–4.

In Fig. 1, the densities P1 and P2 are plotted for different
values of the parameter b2. Note that the density P1 is a q
Gaussian, but the density P2 is not. Figure 2 depicts the ratio
of the number of type-2 particles within the overlap region
in which both particles coexist, N∗

2 [see Eq. (33)], to the total
number of type-2 particles, as a function of the quotient N2/N1

between the total number of particles of type 2 and the total
number of particles of type 1. We see that the fraction of
particles of type 2 in the coexistence region decreases mono-
tonically with the ratio N2/N1. Figure 3 exhibits the behavior
of the quotient of the total number of type-2 particles, N2 [see

 0.1

 1

 0.1  1  10  100  1000  10000

N
2*  / 

N
2

N2 / N1

δ = 5

FIG. 2. Ratio of the number of type-2 particles within the overlap
region in which both particles coexist, N∗

2 [see Eq. (33)], to the total
number of type-2 particles, as a function of N2/N1. All depicted
quantities are dimensionless. Values of model parameters are the
same as specified for Fig. 1.
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FIG. 3. Ratio of the number of type-2 particles, N2 [Eq. (32)], to
the number of type-1 particles, as a function of b2/b1, for different
values of δ. All depicted quantities are dimensionless. The other
model parameters are obtained as explained in Sec. IV. We note in
the inset of this figure that this relation is described by power laws.

Eqs. (32)], to the total number of type-1 particles N1, as a
function of b2/b1. In Fig. 4, we plot the ratio of the number of
type-2 particles in the overlap region, N2, to the total number
of type-2 particles, as a function of b2/b1.

It is worth mentioning that the analysis carried out in this
section can be extended to an N-dimensional scenario. The
N-dimensional counterpart of the system investigated in this
section is described by the equations of motion,

∂P1

∂t
= ∇ · [P1∇(D11P1 + D12P2)] + ∇ · [P1∇U1],

∂P2

∂t
= ∇ · [P2∇(D12P1 + D22P2)] + ∇ · [P2∇U2]. (34)

It admits an exact stationary solution having essentially the
same shape as the one described by Eqs. (28) and (29). The

δ = 0.75
δ = 1.30
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FIG. 4. Ratio of the number of type-2 particles in the overlap
region, N∗

2 [see Eq. (33)], to the total number of type-2 particles as a
function of b2/b1. All depicted quantities are dimensionless. Values
of model parameters are the same as specified for Fig. 3.

stationary solution of (34) is given by

P1 = A1 expq[−b1x2], (|x| � xc),
(35)

P2 = A2 expq[−b2x2], (|x| � xc),

and

P1 = A1 expq[−b1x2], (|x| > xc),
(36)

P2 = A′
2 expq[−b′

2x2], (|x| > xc),

with xc = 1/
√

b1 and the parameters A′
2 and b′

2 determined by
(30). Thus, we see that the basic structure of the solution (28)
and (29) is not restricted to one-dimensional scenarios. We
focused on the one-dimensional instance only for illustrative
purposes.

V. MULTISPECIES NONLINEAR FOKKER-
PLANCK EQUATIONS

We shall now investigate a more general Fokker-Planck
dynamics for a system consisting of L types of particles,
interacting through short-range forces. The spatial distribution
of the particles of type i is given by the density Pi(x, t ),
(i = 1, . . . , N ). These densities evolve according to the set of
coupled nonlinear Fokker-Planck equations

∂Pi

∂t
= ∇ ·

⎡
⎣Pi∇

⎛
⎝ L∑

j=1

Di jP j

⎞
⎠
⎤
⎦

+∇ · [Pi∇Ui], i = 1, . . . , L, (37)

where the coefficients Di j are related to the interaction forces
between particles of type i and particles of type j. We assume
that Di j = Dji. The potential Ui(x) is the external confining
potential acting on particles of type i. For L = 2 the system
(37) reduces to the one discussed in Sec. III.

The system of coupled Fokker-Planck equations (37) could
be analyzed in a similar way as that used in Sec. III. It is
more useful, however, to cast the evolution equations (37) in a
more abstract way that clarifies some of its most fundamental
properties. We first introduce the functions


(P1, . . . ,PL ) = P0

2

(
L∑

i=1

DiiPi

)
− 1

2

⎛
⎝ L∑

i, j=1

Di jPiP j

⎞
⎠,

(38)
and

�i(P1,P2, . . . ,PL ) = − ∂


∂Pi
, i = 1, . . . L. (39)

Note that 
 = 0 and �1 = · · · = �L = 0 when P1 = P2 =
· · · = PL = 0. For L = 2 the function and 
 defined in (38)
coincides with the one discussed in Sec. III, given by (22).

With the definitions (38) and (39), the set of coupled
evolution equations (37) can be cast as

∂Pi

∂t
= ∇ · [Pi(∇�i )] + ∇ · [Pi(∇Ui )], i = 1, . . . L.

(40)
The quantity �i(x) can be interpreted as the effective potential
acting on the particles of type i due to their interaction with
other particles, both of the same and of different types.
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There are compelling reasons for rewriting the system
of coupled nonlinear Fokker-Planck equations (37) in the
more abstract form (40). First, some of the most fundamental
features of the evolution equation (40), such as it admitting
an H theorem, do not depend on the detailed, particular form
(38) of the function 
. Those essential features follow directly
from the general structure encapsulated in Eqs. (39) and (40).
Consequently, the results obtained exploiting this general
structure are not restricted to the evolution equations (37).
They hold for a wide family of coupled nonlinear Fokker-
Planck equations and are therefore applicable to a variety of
scenarios, both within and without Sq thermostatistics. For
example, within the general setting described by Eqs. (39) and
(40), it may be possible to consider multispecies extensions
of the systems considered in Ref. [12], consisting of particles
interacting through a force obeying the power law

F (r) = Fc

[
r

r0

]−γ

, (41)

where γ is a positive dimensionless number and r0 and Fc

are positive constants with dimensions of length and force,
respectively. It was shown in Ref. [12] that, under appropriate
conditions, the overdamped motion of particles interacting
through the force law (41) can be described by nonlinear
Fokker-Planck equations involving nonlinear diffusion terms
of the form D∇[P∇[( P

P0
)
1−q

]], with the parameter q related
to the exponent γ and to the spatial dimension N , through

q = 1 − γ − 1

N
(42)

(for an intuitive derivation of this relation see Ref. [40]).
Therefore, the results reported in Ref. [12] suggest that the
overdamped dynamics of systems comprising two or more
species of particles interacting through the power-law forces
(41) may be described by coupled evolution equations of the
form (40), with the potentials � derived from a function akin
to (38), but involving a combination of powers of the densities
with exponents 1 − q. The investigation of this possibility is
worth pursuing, although it is beyond the scope of the present

work. The general form (40) of coupled nonlinear Fokker-
Planck equations provides also a framework for studying in
multispecies scenarios the thermostatistical aspects of general
nonlinear Fokker-Planck equations, extending the analysis
performed in Ref. [8], where it was shown that a large family
of nonlinear Fokker-Planck equations admit H theorems in
terms of free-energy functionals related to generalized en-
tropic measures.

The system of evolution equations (40) constitutes a set of
coupled continuity equations,

∂Pi

∂t
+ ∇ · Ji = 0, i = 1, . . . L, (43)

where the flow Ji corresponding to particles of type i is given
by

Ji = −Pi∇(�i + Ui ), i = 1, . . . L. (44)

The evolution equations (40) admit stationary solutions
P (st)

i (x) satisfying

P (st)
i (x)∇(�i + Ui ) = 0, i = 1, . . . L, (45)

with all the fluxes Ji vanishing. For these solutions, within
any connected spatial region where the density of the i-type
particles does not vanish, one has

�i
[
P (st)

1 , . . . ,P (st)
L

] = Li − Ui(x), (46)

where Li is an integration constant.

A. H theorem

We are now going to explore the possibility of formulating
an H theorem for the more general form of the multispecies,
nonlinear Fokker-Planck equations given by (40). To that
effect, we introduce the free-energy-like functional

F =
∫ [( L∑

i=1

UiPi

)
− 
(P1,P2, . . . ,PL )

]
dN x. (47)

The time derivative of F is

dF

dt
=
∫ [ L∑

i=1

(
Ui − ∂


∂Pi

)
∂Pi

∂t

]
dN x =

∫ [ L∑
i=1

(
− ∂


∂Pi
+ Ui

)
{∇ · [Pi(∇�i )] + ∇ · [Pi(∇Ui )]}

]
dN x

=
∫ [ L∑

i=1

(�i + Ui ){∇ · [Pi(∇�i )] + ∇ · [Pi(∇Ui )]}
]

dN x = −
∫ [ L∑

i=1

Pi (∇�i + ∇Ui )
2

]
dN x � 0, (48)

where, to obtain the last equality in the above equation, we
performed an integration by parts, under the standard assump-
tion that the densities Pi decrease fast enough when |x| → ∞,
so that the surface terms arising from the integration by parts
vanish.

A set of densities {P1(x), . . . ,PL(x)} that makes the func-
tional (47) stationary, under the constraints imposed by the
normalization of each of the densities Pi, constitutes a sta-
tionary solution of the evolution equations (40). Indeed, in-
troducing appropriate Lagrange multipliers Li (i = 1, . . . , L),

associated with the above-mentioned constraints, one sees that
a set of densities for which the first variation of the functional
(
∑L

i=1〈Ui〉) − (
∫


dN x) − (
∑N

1=1 Li
∫
PidN x) vanishes,

δ

∫
dN x

{(
L∑

i=1

UiPi

)
− 
(P1, . . . ,PL )−

(
L∑

i=1

LiPi

)}
= 0,

(49)
comply with the relations

− ∂


∂Pi
+ Ui − Li = 0, i = 1, . . . , L, (50)
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which are equivalent to the Eqs. (46) for the stationary solu-
tions of (40).

VI. CONCLUSIONS

We investigated the dynamics of confined, overdamped
many-body systems consisting of more than one type of
interacting particles or agents. We showed that a mean-field
approach to this kind of systems leads to a set of coupled,
multispecies nonlinear Fokker-Planck equations, governing
the densities Pi(x, t ) associated with each of the different
types of particles involved. These evolution equations, in
turn, allowed us to establish some features of the equilib-
rium and out of equilibrium thermostatistical behavior of the
aforementioned physical systems. In particular, we proved
that the set of coupled, nonlinear Fokker-Planck equations
satisfy an H theorem. That is, we obtained a free-energy-
like functional F of the time-dependent densities associated
with the different types of particles that always exhibits a
nonpositive time derivative and, consequently, provide a quan-
titative manifestation of the “arrow of time” for the types of
systems under consideration in the present work. The particle
densities that make the functional F stationary, under the
constraints of normalization, constitute stationary solutions of
the aforementioned set of coupled evolution equations. We
investigated in detail a particular system comprising two types
of particles interacting via short-range forces that admits exact
semianalytical stationary solutions.

The results reported here could be applied to the study
of multispecies effects in the thermostatistical properties of
various systems recently addressed in the research literature,
such as interacting vortices in type-II superconductors [13]

and overdamped many body systems with power-law inter-
actions [12]. Another possible subject to which our results
can be applied is to the recently reported connection between
scaling laws in granular materials and the q-Gaussian solu-
tions of power-law, nonlinear Fokker-Planck equations [14].
In the present work we emphasized applications to mechanical
systems. However, other applications of the coupled, non-
linear Fokker-Planck equations discussed here immediately
come to mind. Indeed, these equations provide a natural
tool for extending to multispecies scenarios nonlinear models
for the dispersal of biological populations [25–27]. Finally,
an intriguing similarity between the form of the stationary
solutions of the coupled, nonlinear Fokker-Planck equations
addressed here, on the one hand, and the maximum entropy
solutions of game-theoretical models advanced in Ref. [38],
on the other hand, may also deserve to be further explored.

The present developments overcome a serious limitation
of previous works that use the nonlinear Fokker-Planck equa-
tions to study interacting many-body complex systems. Vir-
tually all those works were restricted to systems consisting
of only one type of particles or agents. It is plain that this
constitutes a severe restriction for the application of the non-
linear Fokker-Planck approach to the study of complex sys-
tems, most of which do contain particles or agents of diverse
types, having different physical properties and, consequently,
experiencing different intra- and interspecific forces.
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