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Abstract Nonalcoholic fatty liver disease (NAFLD)
has become the most prevalent chronic liver disease.
Recent technological advances, combinedwith OMICs
experiments and explorations involving different
biological samples, have uncovered vital aspects of
NAFLD biology. In this review, we summarize recent
work by our group and others that expands what is
known about the role of lipidome in NAFLD patho-
genesis. We discuss how pathway and enrichment an-
alyses were performed by integrating a list of query
metabolites derived from text-mining existing
NAFLD-lipidomics studies, resulting in the identifi-
cation of nine Kyoto Encyclopedia of Genes and Ge-
nomes dysregulated pathways, including biosynthesis
of unsaturated fatty acids, butanoate metabolism,
synthesis and degradation of ketone bodies, sphingo-
lipid, arachidonic acid and pyruvate metabolism, and
numerous nonsteroidal antiinflammatory drug path-
ways predicted from The Small Molecule Pathway
Database. We also summarize an integrated pathway-
level analysis of genes and lipid-related metabolites
associated with NAFLD, which shows over-
representation of signal transduction, selenium
micronutrient network, Class A/1Rhodopsin-like re-
ceptors and G protein-coupled receptor ligand bind-
ing, and G protein-coupled receptor downstream
signaling. Generated gene-metabolite-disease interac-
tion networks indicate that NAFLD and arterial hy-
pertension are interlinked by molecular signatures.
Finally, we discuss how mining pathways and associa-
tions among metabolites, lipids, genes, and proteins
can be exploited to infer networks and potential
pharmacological targets and how lipidomic studies
may provide insight into the interrelationships among
metabolite clusters that modify NAFLD biology, ge-
netic susceptibility, diet, and the gut microbiome.
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Nonalcoholic fatty liver disease (NAFLD) has become

the most common chronic liver disease with global
prevalence in the 20–50% range (1, 2). This is in part
explained by the co-occurrence of NAFLD with other
metabolic diseases and the co-existence of shared risk
factors and disease mechanisms between NAFLD and
phenotypes of the metabolic syndrome, including
obesity, type 2 diabetes, dyslipidemias, and cardiovas-
cular disease (3, 4). NAFLD pathogenesis involves mul-
tiple factors, including genetic susceptibility, epigenetic
modifications, and diverse interactions with the envi-
ronment, dietary habits, and sedentary lifestyle (5–7).

Technological advances that have occurred in the last
decade, combined with OMICs experiments and high-
throughput explorations across different biological
samples, have revealed key aspects of NAFLD biology
as well as mechanisms that explain the disease severity.

However, while this field is continuously evolving,
how this knowledge can be integrated and applied to
biomarker and drug discovery to treat nonalcoholic
steatohepatitis (NASH)—the severe histological form of
the disease—is less clear. In this review, we explored the
potential use of biological data mining and system
biology approaches to expand the existing knowledge
on the lipidome's role in NAFLD and NASH patho-
genesis. Ultimately, mining pathways and associations
between metabolites, lipids, genes, and proteins can be
exploited to infer networks, interactions, and potential
pharmacological targets.
LIPIDOMICS IN NAFLD: CURRENT KNOWLEDGE
AND CLINICAL IMPLICATIONS

Lipidomics approaches have been used in several
human studies to explore the mechanisms that may
explain the progression of NAFLD into severe histo-
logic disease stages. A summary of the main studies,
including their key findings, is shown in Table 1.
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TABLE 1. Summary of human studies on lipid profiling of plasma or liver tissue samples of patients with NAFLD across the spectrum of the
disease severity

Author and
Reference # Population Features Sample Size; Liver Histology Key Finding/s

Analytical
Approach

Explorations in plasma or serum
Puri (8) Case-control study. Plasma samples of adult

biopsy-confirmed NAFLD patients.
NAFL (n = 25) and NASH (n = 50); lean
normal controls (n = 50)

A stepwise ↑in lipoxygenase (LOX)
metabolites 5(S)-
hydroxyeicosatetraenoic acid (5-
HETE), 8-HETE, and 15-HETE
characterized the progression from
normal to NAFL to NASH.

HPLC QTRAP.
GC-FID

Feldstein (9) Case-control study. Plasma samples of adult
biopsy-confirmed NAFLD patients.
NAFL (n = 23) and NASH (n = 37); normal
controls (n = 13)

↑ 9-HODE, 13-HODE, 9-oxoODE, and 13-
oxoODE, products of free radical-
mediated oxidation of linoleic acid in
patients with NASH compared with
patients with hepatic steatosis and
normal liver biopsy.

HPLC-QQQ

Oresic (10) Individuals in whom liver fat content was
measured using proton magnetic
resonance spectroscopy or liver biopsy.
Discovery (n = 287), validation (n = 392).
No information on NAFLD histology

LysoPCs and PUFA-containing
phospholipids were negatively
associated with liver fat content

UHLC-ToFMS

Zhou (11) Cases only study of adult subjects who
underwent a liver biopsy because of
suspected NASH.
318 subjects who underwent a liver biopsy
because of suspected NASH. Discovery
(n = 223): non-NASH (n = 176); NASH (12).
Validation (n = 95): non-NASH n = 71,
NASH n = 24.

↑ Saturated and monounsaturated TGs:
21 TG (46:0), TG (48:0), TG (50:0), TG
(46:1) and TG (51:1) in NASH.

UPLC-QToFMS
GC-ToFMS

Caussy (13) Cases only study of adult biopsy-confirmed
NAFLD patients.
427 patients with biopsy-confirmed
NAFLD: NASH with F0–F2 fibrosis n =
229; NASH with advanced fibrosis (F3 and
F4) n = 197.

Fibrosis was associated with 11,12-
DIHETE, tetranor 12-HETE, adrenic
acid, and 14, 15-DIHETE

HPLC-QQQ/
QTRAP-MS

Draijer (14) Case-control study. Plasma sample of obese
children with and without fatty liver
21 children with obesity in whom steatosis
was detected using proton magnetic
resonance spectroscopy (H-MRS).

↑ alkyldiacylglycerol and
phosphatidylethanolamine species and
↓ alkyl/alkenyl-
phosphatidylethanolamine, alkyl/
alkenyl-lysophosphatidylethanolamine
and alkyl/alkenyl-phosphatidylcholine

H-MRS

Explorations in liver tissue
Araya (15) Case-control study; adult patients. Analysis

of liver and abdominal adipose tissue fatty
acids
19 patients with NAFLD were studied and
11 control samples. No information on
NAFLD histology.

NAFLD tissue has a depletion in
LCPUFA (long-chain PUFA) of the n -6
and n -3 series in liver triacylglycerols, ↓
20:4, n -6/18:2, n -6 and (20:5, n -3+22:6,
n -3)/18:3, n -3 ratios, whereas liver
phospholipids contained higher n -6
and lower n -3 LCPUFA

GC

Puri (16) Case-control study. Liver tissue samples of
adult biopsy-confirmed NAFLD patients.
NAFL (n = 9) and NASH (n = 9); controls
(n = 9).

A trend for a progressive ↓ from controls
to NAFL to NASH for eicosapentanoic
acid (20:5n-3) and docosahexanoic acid
(22:6n-3).

TLC
GC-FID

Allard (17) Adult patients referred for elevated liver
enzymes and suspected NAFLD. Hepatic
FA composition was compared between
simple steatosis, NASH and minimal
findings on liver biopsy
NAFL (n = 18) and NASH (n = 38); controls
(n = 17).

↓ hepatic n-3 and n-6 PUFA, ↓in the ratio
of metabolites to essential FA
precursors for both n-6 and n-3 FA
(eicosapentaenoic +docosahexaenoic/
linolenic and arachidonic/linoleic acid
ratios) and ↑liver lipid peroxides

GC-FID

Garcia-
Canaveras (18)

Liver tissue samples obtained from the Liver
Bank at the Hospital La Fe (UHE-LAFE/
CIBERehd, Valencia, Spain)
Nonsteatotic liver n = 23, steatotic liver n =
23. No information on NAFLD histology.

↑phospholipid degradation products UPLC-QToFMS

Chiappini (19) Case-control Lipidomic analysis on human
liver biopsies including normal liver,
nonalcoholic fatty liver and NASH; adult
patients.
NAFL (n = 39) and NASH (n = 22);
controls (n = 7).

↑6 fatty acids in NASH (C14:0, C16:0,
C16:1n-7, C18:1n-7, C18:1n-9 and C18:2n-
6). Eicosanoid precursors [arachidonic
acid (C20:4n-6), eicosapentaenoic acid
(C20:5n-3) and docosahexaenoic acid
(C22:6n-3)] ↓in livers of NASH
compared to controls.

UPLC-QQQ
GC-MS
TOF-SIMS

(continued)
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TABLE 1. Continued

Author and
Reference # Population Features Sample Size; Liver Histology Key Finding/s

Analytical
Approach

Scupakova (20) Fresh frozen liver biopsies from adult obese
subjects undergoing bariatric surgery with
various degrees of NAFLD
Fresh frozen liver biopsies from obese
subjects undergoing bariatric surgery (n =
23), non-steatosis n = 7; steatosis n = 16.

Phosphatidylinositols and arachidonic
acid metabolism was associated with
nonsteatotic regions, whereas low
density lipoprotein and very low
density lipoprotein metabolism was
associated with steatotic tissue.

MALDI-MSI

Combined explorations in plasma and liver tissue
Gorden (21) Profiling of lipids from plasma, liver

biopsies,and urine samples in adult
patients classified on the basis of liver
histology as normal, steatotic, NASH, or
cirrhotic
NAFL (n = 17) and NASH (n = 20);
Cirrhosis (n = 20), controls (n = 31).

The sphingolipid species that differed in
both the liver and plasma across
histological categories were longer
chain ceramides, dihydroceramides, or
1-deoxy-dihydroceramides. Liver:
differences between NASH and
steatosis in TAG acyl chain
composition followed a pattern of
↑amounts of short and saturated fatty
acyl chain-containing species in NASH
and ↓ amounts of PUFA-containing
TAGs

Multiple MS platforms

GC-FID, gas-chromatography flame-ionization detector; HETE, hydroxyeicosatetraenoic acid; HPLC, high-performance liquid chro-
matography; H-MRS, proton magnetic resonance spectroscopy; lysoPC, lysophosphatidylcholine; MALDI-MSI, matrix-assisted laser desorp-
tion ionization-mass spectrometry imaging; NAFL, nonalcoholic fatty liver (simple steatosis); NASH, nonalcoholic steatohepatitis; QQQ, triple
quadrupole mass spectrometer; TLC, thin layer chromatography; ToF, time of flight mass spectrometry; TOF-SIMS, Time-of-Flight Sec-
ondary Ion Mass Spectrometry Imaging; UPLC, Ultra-performance liquid chromatography.
Seminal studies in this field have uncovered differ-
ences in the plasma lipidomic profile of patients with
NAFLD across the entire disease spectrum. For
example, Puri et al. (8) showed that the progression
from normal to fatty liver [simple steatosis (NAFL)] to
NASH involves a stepwise increase in lipoxygenase
metabolites 5(S)-hydroxyeicosatetraenoic acid (5-
HETE), 8-HETE, and 15-HETE. Feldstein et al. (9)
demonstrated that lipid peroxidation products,
including hydroxy-octadecadienoic acids, 9-hydroxy-
octadecadienoic acid and 13-hydroxy-octadecadienoic
acid, oxo-octadecadienoic acids (9-oxoODE and 13-
oxoODE), and products of free radical-mediated
oxidation of linoleic acid, are elevated in plasma sam-
ples of patients with NASH compared with patients
with hepatic steatosis and normal liver biopsy.

Findings yielded by subsequent studies have impli-
cated the lysophosphatidylcholine species in the disease
severity and have demonstrated the importance of
distinctive lipid species for differentiating the histo-
logical stages (Table 1). In fact, several biomarkers (22,
23) and commercial panels (24, 25) have emerged from
the combination of plasma metabolomic and lipidomic
profiling.

Likewise, authors of numerous studies have profiled
the lipidomic signature of NAFLD-liver tissue, which
has been of remarkable value to the understanding of
disease mechanisms (Table 1). This is particularly rele-
vant as tissue lipidomics studies have been carried out
despite the tremendous difficulties in obtaining liver
samples from affected patients and the significant
challenges that have to be overcome in sample pro-
cessing and analysis.

In their pioneering study, Puri and coworkers (16)
used a lipidomic approach to quantify the major lipid
classes and the distribution of fatty acids in the liver of
NAFLD patients to explain the potential impact of liver
lipid species on the development and progression of
NASH. The authors showed that the n-6 poly-
unsaturated fatty acid content in the total lipids was
correlated with the disease extent, whereby it was the
lowest in the controls followed by those diagnosed with
fatty liver and finally NASH. Increased lysophosphati-
dylcholine levels were also detected in the liver of
NASH patients (16). In addition, the authors observed a
decrease in the downstream n-6 (arachidonic acid:
20:4n-6) and n-3 (eicosapentanoic acid: 20:5n-3, docosa-
hexanoic acid: 22:6n-3) polyunsaturated fatty acids in
both NAFL and NASH samples (16).

Scupakova et al. (20) similarly observed that phos-
phatidylinositols and arachidonic acid-related meta-
bolism were associated with nonsteatotic regions. In
contrast, low density lipoprotein and very low density
lipoprotein metabolism was associated with steatotic
tissue. The key characteristics and findings of all studies
involving the characterization of lipid species in the
liver tissue are shown in Table 1.

INTEGRATION OF NAFLD LIPIDOMICS TO
OUTLINE MOLECULAR PHENOTYPES

Dysregulated disease pathways inferred from
lipidomics studies

Human metabolome, including the lipidome, is
influenced by several factors such as genetic predis-
position and the interaction with the environment. The
latter involves not only diet and lifestyle but also the
interaction with the whole body microbiome.

In this work, we adopted a strategy based on systems
biology and network analysis derived in part from
NAFLD lipidome 3



multi-OMICs experiments to understand the functional
consequences of the mutual interactions between not
only intrinsic factors, including genetics, but also
external ones such as the microbiota, diet, and lifestyle.
Integration of biological and OMICs data into pathway
analysis may facilitate understanding of novel molec-
ular signatures that would ultimately serve in
biomarker and drug discovery, thus fueling future
research progress. Thus, integrating several biochem-
ical reactions composed of genes, metabolites, and
proteins with clinical information can help in deci-
phering dysregulated disease pathways as well as iden-
tifying molecular phenotypes associated with a disease
trait.

For this purpose, we text-mined lipidomics studies in
NAFLD and NASH by using the PubTator Central
search engine available at https://www.ncbi.nlm.nih.
gov/research/pubtator, which is a web-based system
providing automatic annotations of biomedical con-
cepts in PubMed abstracts and PubMed Central full-
text articles. We also employed the LipidPedia search
engine available at https://lipidpedia.cmdm.tw/, which
is a lipids encyclopedia of biomedical information.
When searching PubTator Central, we used “lipidomics
OR (metabolomics AND lipids) AND (NAFLD OR
NASH) AND human*” search string, while adopting the
disease term “fatty liverMeSH ID D005234” for
searching the LipidPedia.
Fig. 1. Pathway analysis derived from NAFLD-lipidomics. Pathway
the list of query metabolites (mostly lipids) obtained through data m
following parameters were used for topology analysis (relative-betw
The complete list of metabolites used for pathway prediction is sho
values are provided after adjusting for multiple testing. FDR, false
Kyoto Encyclopedia of Genes and Genomes.
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To ensure proper name entity recognition of the
retrieved metabolites, including abbreviation and syn-
onym recognition, we manually curated the list of
terms. A final list of 70 metabolites, mostly lipids, and a
list of 61 genes were used to perform further pathway
and enrichment analyses provided at the Metab-
oAnalyst—a web-based platform freely available at
https://www.metaboanalyst.ca. The complete list of
metabolites, including the HMDB (Human Metabolome
Database) ID and PubChem number is shown in
Supplemental Table 1. The list of genes associated with
lipidomic studies that was used to perform metabolite-
gene-disease interaction networks is shown in
Supplemental Table 2.

Pathway (Fig. 1A) and enrichment analysis (Fig. 1B)
were performed by integrating the list of query me-
tabolites into Homo sapiens Kyoto Encyclopedia of
Genes and Genomes database. Nine Kyoto Encyclo-
pedia of Genes and Genomes significantly dysregu-
lated pathways (P < 0.05) were found, including
biosynthesis of unsaturated fatty acids, butanoate
metabolism, and synthesis and degradation of ketone
bodies that had the highest P values, along with sphin-
golipid metabolism, arachidonic acid metabolism, and
pyruvate metabolism (Fig. 1A). The pathway level P-
values were further integrated into a final ranked list
of perturbed pathways based on the enrichment ratio
(Fig. 1B). Because of multiple sources of evidence (7),
(A) and enrichment (B) analyses were performed by integrating
ining and retrieved from the Homo sapiens (KEGG) dataset. The
een's-centrality) and Enrichment method (hypergeometric test).
wn in Supplemental Table 1. Enrichment analysis: one-tailed P-
discovery rate; NAFLD, nonalcoholic fatty liver disease; KEGG,

https://www.ncbi.nlm.nih.gov/research/pubtator
https://www.ncbi.nlm.nih.gov/research/pubtator
https://lipidpedia.cmdm.tw/
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the pathway analysis results are not only biologically
plausible but are also certainly expected. Nevertheless,
a dysregulated pathway was identified that not only
reached high significance but also might explain novel
disease mechanisms linking NAFLD susceptibility, diet,
and the gut microbiome. This pathway is butanoate
metabolism, and it will be discussed in detail in the
subsequent section of this review.

To identify biologically meaningful disease patterns
in the list of NAFLD-lipidomic terms, we performed
enrichment analysis based on the disease signatures
retrieved from the MetaboAnalyst platform that are
derived from metabolite sets reported in human blood
or feces (26, 27). We found a significant overlap be-
tween the list of NAFLD-lipidomic–related metabolites
and diverse disease signatures. For example, among the
blood-related disease signatures, we found the highest
significant scores for molecular signatures associated
with anoxia and hypertension (Fig. 2A). Conversely,
among the fecal-related disease signatures, we found
significant scores for bowel inflammatory diseases, in-
testinal infections, and cirrhosis (Fig. 2B).

Butanoate metabolism in NAFLD biology: a novel
lipidome-related phenotype?

Our pathway analysis identified butanoate meta-
bolism as one of the most dysregulated lipidome-
related signatures in NAFLD and NASH. Butyrate is
Fig. 2. Enrichment on disease signatures based on NAFLD lipido
integrating the list of query metabolites (Supplemental Table 1) and
based on metabolite sets reported in human blood (A) and human fe
evaluate whether a particular metabolite set is represented more t
tailed P-values are provided after adjusting for multiple testing. NA
produced as an end-product of a fermentation process
performed by obligate anaerobic bacteria. Butyrate
metabolism—also known as butanoate metabo-
lism—describes the metabolic fate of several short-
chain fatty acids or short-chain alcohols that are typi-
cally produced by intestinal fermentation (28). Many of
these molecules are eventually used in the production
of ketone bodies, in the creation of short-chain lipids or
as precursors to the citrate cycle, glycolysis, or gluta-
mate synthesis (29). Butanoate metabolism is also asso-
ciated with microbial-derived metabolites that might
act locally in the liver tissue (30) or systemically (31).

The role of butyrate derived from intestinal bacterial
has gained substantial attention in the last decade
because of its putative biological properties in main-
taining gut health. Specifically, available empirical evi-
dence indicates that butyric acid influences
colonocytes' gene expression by inhibiting histone
deacetylases (32), interferes with proinflammatory sig-
nals in epithelial cells such as NF-κB (33), and down-
regulates proinflammatory effectors in macrophages
of the lamina propria in the intestinal mucosa (34).
Thus, through these mechanisms, butyric acid might
prevent and inhibit colon carcinogenesis.

Nevertheless, the potential beneficial effects of
butyrate on human health are still under debate.

For example, it is known that butyrate modulates
intestinal permeability, allowing translocation of
mic studies. Overenrichment (ORA) analysis was performed by
disease signatures retrieved from the MetaboAnalyst platform
ces (B). ORA was implemented using the hypergeometric test to
han expected by chance within the given compound list. One-
FLD, nonalcoholic fatty liver disease.
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several bacterial taxa, including Salmonella (35), which is
an undesirable effect. In addition, paradoxical effects
of butyrate on obesity may potentially indicate its
detrimental role in systemic metabolism (36). Most
importantly, the role of butyric acid in NAFLD patho-
genesis has not yet been established. For instance,
Huang et al. (37) recently reported that maternal buty-
rate supplementation leads to insulin resistance and
ectopic lipid accumulation in the skeletal muscle of the
offspring. Zhou et al. (11) similarly demonstrated that
taking maternal sodium butyrate supplement during
pregnancy and in the lactation period promotes
maternal fat mobilization, which may result in fatty
acid uptake and lipid accumulation in the liver of the
offspring. Other lines of evidence suggest that butyrate
is able to increase lipid synthesis from acetyl-CoA or
ketone bodies via the β-hydroxy-β-methylglutaryl-CoA
pathway, which might directly promote obesity (38).
Findings reported by Macfarlane et al. (39) also suggest
that butyrate transported via the portal vein could be
involved in liver lipid biosynthesis.

On the contrary, as indicated by the data from a
mouse study, butyrate supplementation is shown to
alleviate the severity of diet-induced NASH phenotype
(40). This might suggest that, at least in a rodent model
of NAFLD, butyrate reveals antisteatotic and antiin-
flammatory effects.

Collectively, this evidence prompts the question of
whether activation of butanoate pathway in the context
of human NAFLD is beneficial or detrimental.

To understand the potential clinical associations of
butanoate metabolism and NAFLD, we analyzed the
epidemiological data retrieved from the National
Health and Nutrition Examination Surveys
(NHANES) 2017–2018 database. This data set is freely
available online at https://www.cdc.gov/nchs/nhanes/
index.htm. The NHANES is a collection of
population-based surveys conducted by the National
Center for Health Statistics of the Centers for Disease
Control and Prevention of the United States. The
National Center for Health Statistics Research Ethics
Review Board approved the NHANES protocol, and
informed consent was obtained from all participants.
Our analysis focused on liver steatosis, defined by the
controlled attenuation parameter >268 dB/m, ob-
tained via transient elastography (FibroScan®). In
addition, for inferring butyric acid levels, daily total
energy and nutrient intake from food and beverages
was obtained for each participant through dietary
recall surveys. Butyric acid (variable ID: DR1TS040)
was obtained by extrapolating dietary intake data
pertaining to 7,484 individuals.

In linear regression analysis, NAFLD was associated
with high butyric acid intake (mean ± SD: 0.77 ±
0.50 g; low intake: 0.15 ± 11 g) independently of
gender, waist circumference, and type 2 diabetes or
glycohemoglobin (OR: 1.21, 95% CI: 1.02–0.43, P =
0.035). We thus modeled the relationship between
6 J. Lipid Res. (2021) 62 100073
NAFLD and butyric acid by linear logistic regression
with an interaction term for butyric acid intake and
waist circumference while adjusting for subjects' de-
mographic and clinical characteristics. We used waist
circumference as main covariate because we previ-
ously found that excess of abdominal adipose tissue is
a common risk factor for NAFLD not only in obese
but also in lean subjects (41).

Figure 3 shows the interaction between butyric acid
intake and waist circumference after adjusting for
confounding factors such as age, total energy, and
cholesterol consumption, and categorical variables such
as gender, diabetes, and ethnicity. Although NAFLD
risk increased steadily with waist circumference, it was
significantly higher in subjects ingesting butyric acid
above the median level, except in those with waist
circumference below ∼100 cm.

There is scarce clinical evidence on the putative
association between butyric acid and human NAFLD.
Nevertheless, recent epidemiological studies demon-
strated potential detrimental effects of butyric acid
on human metabolic health. For instance, explora-
tions of the relationship between fatty acids (FAs)
and frailty and mortality risk conducted as a part of
the NHANES population study showed that after
adjusting for potential covariates and the higher total
FAs, saturated FAs and butanoic acid intake were
associated with a higher degree of frailty not only
among older but also among middle-aged individuals
(42). This finding is relevant as frailty, which is
characterized by a decline in functioning across
multiple organ systems, accompanied by increased
vulnerability to stressors, is an emerging global health
burden with significant implications for clinical
practice and public health (43).

Together, these data suggest that a metabolite
imbalance in the butanoate metabolism pathway may
play a significant role in NAFLD pathogenesis and
might have adverse systemic consequences that differ
from the local protective effects against intestinal
injury.

Tributyrin—also known as 1,2,3-tributyrylglycerol,
glycerol tributyrate, or glyceryl tributyrate—is a tri-
glyceride obtained by formal acylation of the three
hydroxy groups of glycerol by butyric acid. Tributyrin
is naturally present in butter and is used as an ingre-
dient in making margarine. Most importantly, tribu-
tyrin must undergo chemical conversion by metabolic
processes before becoming the pharmacologically
active substance for which it is a prodrug.

Interestingly, interactive exploration of the meta-
bolic network around tributyrin using the Human-
Cyc—an encyclopedic reference on human metabolic
pathways—showed that some key NAFLD-related en-
zymes, including PNPLA2, PNPLA3, and PNPLA4
participate in the conversion pathway of tributyrin
(BioCyc Id CPD-13014) to butanoate (Supplemental
Fig. 1). Still, it remains to be explored whether genetic

https://www.cdc.gov/nchs/nhanes/index.htm
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Fig. 3. The relationship between NAFLD and butyric acid: Analysis of data yielded by the National Health and Nutrition Ex-
amination Surveys 2017–2018. We used the data pertaining to fatty acid intake, such as saturated fatty acids (SFAs) 4:0 (butanoic),
reported as a part of the 24-h diet recall (https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DR1TOT_J.htm#DR1TS040). Cut-off
threshold for butyric acid was based on the median level (butyric acid intake </> 0.33 g/day) based on the reports of 7,484 par-
ticipants. As described in the main text, 1,876 of these subjects were classified as having non-NAFLD and 1,483 as having NAFLD. The
relationship between NAFLD and butyric acid was modeled using the STATA v16 package by linear logistic regression with an
interaction term for butyric acid intake and waist circumference while adjusting for subjects' demographic and clinical charac-
teristics. The Margins routine was used for estimating the probability of having NAFLD in each stratum, as well as for determining
statistical significance and visualization of key findings. Plots show the interaction between butyric acid intake and waist circum-
ference after adjusting for confounding factors such as age, total energy, and cholesterol consumption and categorical variables
such as gender, diabetes, and ethnicity. NAFLD risk increased steadily with waist circumference but was significantly higher in
subjects ingesting butyric acid above the median level for the population, except in those with waist circumference below ∼100 cm.
Pr (NAFLD): probability of having NAFLD. NAFLD, nonalcoholic fatty liver disease.
variation in PNPLA3, particularly rs738409 that is the
major genetic modifier of NAFLD (44) and the disease
severity (45, 46), has a differential role in the conversion
of tributyrin into butanoate. Likewise, it is unknown
whether any impairment associated with PNPLA3
protein function because of the amino acid change
(p.Ile148Met) of the missense rs738409 variant might
eventually mediate the putative detrimental effects of
butanoate on NAFLD pathogenesis.

FROM PERTURBED LIPID HOMEOSTASIS TO
BIOMARKER AND DRUG TARGET PREDICTION

The text-mined metabolite list linked to the NAFLD
lipidome was used to perform enrichment analyses
based on chemical structures and drug pathways. These
analyses were based on several libraries assembled in
the MetaboAnalyst platform containing ∼9,000 biolog-
ically meaningful metabolites primarily identified
through human studies and including >1,500 chemical
classes (26, 27).
The enrichment analysis based on chemical struc-
tures revealed high representation of fatty acids and
conjugates, eicosanoids, and short-chain acids and
derivatives (Fig. 4A), whereas enrichment based on
subchemical class metabolite sets or lipid sets (Fig. 4B)
showed high representation of unsaturated and satu-
rated fatty acids, HETE,OXO-fatty acids, and C24 bile
acids that constitute a major part of the bile and
which may also be deconjugated by bile salt hydro-
lases of some bacterial genera of the gut microbiota
(47).

Analyses focusing specifically on drug pathways
from The Small Molecule Pathway Database showed
enrichment on rofecoxib, acetaminophen, acetylsali-
cylic, antipyrine, and antrafenine action pathways,
among many other related nonsteroidal antiin-
flammatory drug pathways (Fig. 5). These findings are
not only biologically plausible but are also highly
anticipated because of the redundancy of arachidonic
acid, leukotrienes, and prostaglandins in the enrich-
ment analysis.
NAFLD lipidome 7

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DR1TOT_J.htm#DR1TS040


Fig. 4. Enrichment analysis based on chemical structures. Enrichment analysis (ORA) was performed by integrating the list of
query metabolites (shown in Supplemental Table 1) and a set of main chemical (A) and subchemical (B) class metabolites gathered in
the MetaboAnalyst platform. ORA was implemented using the hypergeometric test to evaluate whether a particular metabolite set is
represented more than expected by chance within the given compound list. FDR, false discovery rate; NAFLD, nonalcoholic fatty
liver disease.
INTEGRATED PATHWAY-LEVEL ANALYSIS OF
GENES AND LIPIDOMIC SIGNATURES

ASSOCIATED WITH NAFLD

Joint analysis of genomic and lipidomic data
derived from NAFLD studies

Genome-wide association studies with high-
throughput metabolic profiling showed high heritabil-
ity among components of the human metabolome (48).

To exploit the application of biomedical text mining
on NAFLD biology and to integrate existing knowledge
into biological networks, we performed joint pathway
analysis of NAFLD genetic and lipidomic data. For this
integrated analysis, we used the IMPaLA (Integrated
Molecular Pathway Level Analysis) resource freely
available at http://impala.molgen.mpg.de/, which al-
lows combining data sets and analyzing both types of
data simultaneously (49). Pathway overrepresentation
with joint genetic and lipid data were based on a
comprehensive list of 1,160 loci associated with
NAFLD/NASH obtained by biomedical text mining
and the list of 70 metabolites/lipid species obtained
through text mining, as explained in the preceding
sections. Briefly, genes/proteins associated with
NAFLD/NASH were searched using the Génie algo-
rithm (50) and web server, a data mining tool available
at http://cbdm-01.zdv.uni-mainz.de/∼jfontain/cms/?
page_id=6. The Génie algorithm prioritizes all genes
from a species according to their relation to a
biomedical topic using all available scientific abstracts
and orthology information (50).When searching litera-
ture, focus was given to articles and abstracts published
before January 28, 2021 available in the MEDLINE,
NCBI Gene, and HomoloGene databases. The training
set consisted of 924 abstracts from PubMed retrieved
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using the query “non-alcoholic fatty liver disease NASH
NAFLD non-alcoholic steatohepatitis.” Only the test set
of genes related to Homo sapiens was used for our
analysis (taxonomic identifier = 9606), and false dis-
covery rate < 0.01 was used for genes.

The list of dysregulated pathways derived from the
integrated gene and lipid analysis is provided in
Table 2, including adjusted P-value (Q-value) for genes
and metabolites. The analysis was narrowed to
including at least 10 genes and 10 shared metabolites
from the input lists in the enrichment sets and was
restricted to pathways showing both Q-values ≤0.05.
The top five pathways are based on the over-
representation of genes and lipids/metabolites
involved in signal transduction, selenium micronutrient
network, metabolism of lipids, Class A/1 (Rhodopsin-
like receptors), GPCR (G protein-coupled receptors)
ligand binding, and GPCR downstream signaling,
among other relevant pathways. GPCRs involve ∼103
druggable targets for the treatment of many common
diseases (https://www.proteinatlas.org) and represent
∼34% of the marketed drugs (51). Notably, butyric acid
is consistently involved in a large proportion of the top-
ranked dysregulated pathways.

As an example, MetScape analysis based on the
selenium-centered micronutrient biological network is
shown in Fig. 6; the interaction network displays the
most relevant biochemical processes related to oxida-
tion and lipid-derived proinflammatory mediators.
Overlapping metabolites (NADP, arachidonic acid,
cholesterol, NADPH, thromboxane B2, alpha-Linolenic
acid, leukotriene B4, (R)-lipoic acid, linoleic acid, 8-
isoprostane, glutathione, eicosapentaenoicacid, and
prostaglandin E2) with NAFLD genes (MPO, IFNG, CBS,
SELENOP, SAA1, SAA2, ABCA1, SELENOS, MTHFR, INS,

http://impala.molgen.mpg.de/
http://cbdm-01.zdv.uni-mainz.de/%7Ejfontain/cms/?page_id=6
http://cbdm-01.zdv.uni-mainz.de/%7Ejfontain/cms/?page_id=6
http://cbdm-01.zdv.uni-mainz.de/%7Ejfontain/cms/?page_id=6
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https://www.proteinatlas.org


Fig. 5. Enrichment analysis based on drug pathways from SMPDB. Enrichment analysis (ORA) was performed by integrating the
list of query metabolites (shown in Supplemental Table 1) and drug pathways from The Small Molecule Pathway Database (SMPDB).
ORA was implemented using the hypergeometric test to evaluate whether a particular metabolite set is represented more than
expected by chance within the given compound list. One-tailed P-values are provided after adjusting for multiple testing.
SCARB1, NFKB1, ICAM1, INSR, GPX1, SERPINE1, GPX4,
XDH, CCL2, APOA1, APOB, TNF, ALB, TXNRD2, RELA,
HBA1, IL1B, F2, F7, LDLR, PTGS2, ALOX5, IL6, SAA4, GPX3,
GGT1, SOD1, SOD2, CRP, ALOX15 B) that joined at the
main node of the network are shown in Fig. 6A.
Another relevant subnetwork is shown in Fig. 6B, which
TABLE 2. Integrated pathway level analysis of genes and lipid-
related metabolites associated with NAFLD from mining biological

data

Pathway Sourcea Q Genesb Q Metabolitesb

Signal transduction 3.52E-13 2.78E-27
Metabolism of lipids 1.18E-15 2.57E-19
Selenium micronutrient network 7.34E-21 8.86E-13
Class A/1 (Rhodopsin-like receptors) 2.58E-10 1.77E-20
Metabolism 2.99E-11 6.56E-16
GPCR ligand binding 4.04E-09 2.86E-16
GPCR downstream signaling 0.00898 8.48E-23
Signaling by GPCR 0.0102 1.35E-22
Fatty acid metabolism 2.18E-10 1.93E-12
G alpha (q) signaling events 0.00216 2.37E-17
Transport of small molecules 8.02E-07 8.25E-13
G alpha (i) signaling events 1.71E-07 2.42E-10
Metabolism of vitamins and cofactors 6.43E-06 1.39E-08
Phase I—Functionalization of compounds 0.000352 2.77E-06
Biological oxidations 0.000708 7.40E-06

aPathways are from REACTOME pathways except for Sele-
nium Micronutrient Network that is from WikiPathways.

bQ value: the hypergeometric distribution is used to assess the
significance of each pathway in terms of its overlap with those lists;
Q-values are calculated with the false discovery rate method.
includes MPO (myeloperoxidase), reactions associated
with peroxidases, and genes involved in these pathways,
including PNPLA3 (Fig. 6B, inset).

Substantial selenium participation in the modulation
of metabolism was also noted. The role of selenium in
the dietary management of chronic metabolic diseases
has been recently summarized (53). Nevertheless, the
effects of selenium supplementation on NASH pro-
gression have been poorly explored. Pathway over-
representation with joint genetic and lipid data could
lead to novel potential therapies for treating NASH.
Likewise, joint genetic and lipid data analysis may aid in
personalizing nutrition according to the patients' ge-
netic makeup and needs.

Metabolite-gene-phenotype interaction network
suggests targets and disease signatures

Previous work based on Covariates for Multi-
phenotype Studies approach has demonstrated that
genetics of lipid metabolites is strongly interconnected,
harboring core regulator genes with strong pleiotropic
effects (54).

Hence, we created a metabolite-gene-phenotype
interaction network by integrating the list of 70 me-
tabolites and 61 genes generated by mining lipidomic
studies on NAFLD from the PubTator Central, as out-
lined in previous sections. This analysis allows the
NAFLD lipidome 9



Fig. 6. Interactome analysis based on the Selenium Micronutrient Network. Figures show the interactome of compounds, chemical
reactions, enzymes, and genes associated with the derived NAFLD-lipidomics list. Compounds are denoted by pink hexagons, genes by
blue circles, enzymes by green squares, and reactions by gray squares with purple or orange label text to represent reversible and
nonreversible reactions, respectively. Selected nodes are highlighted in yellow. The interactome was built using MetsSape (52), a
plugin for the widely used network analysis software Cytoscape that supports calculation, analysis, and visualization of gene-to-
metabolite networks in the context of metabolism. The presentation tier consists of the plugin for Cytoscape. A: Inset with focus
on prostaglandins, arachidonate, linoleic acid, and HETEs. B: Node associated with peroxidases and transference of groups from
amino-acyl-groups, focusing on the participation of PNPLA3. HETE, hydroxyeicosatetraenoic acid.
identification of connections that cross pathway
boundaries (e.g., metabolite-disease interactions) and
provides a global view of the potential functional re-
lationships among metabolites, connected genes, and
target diseases. The network is indeed an integration of
gene-metabolite, metabolite-disease, and gene-disease
interaction networks. The analyses revealed 120
enriched pathways (Gene Ontology—GO biological
processes), whereby Fig. 7 shows the plot of the created
interaction network. However, we specifically focused
on two of the top overrepresented nodes—response to
nutrient levels and response to bacterium. These two
significantly dysregulated pathways—response to
nutrient levels (P = 1.16E-12; FDR: 1.05E-10) and response
to bacterium (P = 5.36E-10; FDR: 2.09E-08)—emphasize
the relevance of environmental factors in the biology
of NAFLD and its interrelationship with the lipidome,
both of which are plausible intervention targets.

Furthermore, the most dysregulated pathways were
also associated with regulation of lipid metabolic
process, lipid biosynthetic process, and fatty acid
metabolic processes. In addition, the network analysis
revealed three distinctive disease signatures, namely
diabetes mellitus, schizophrenia, and arterial hyper-
tension. Diabetes (noninsulin dependent) was highly
connected with the (R)-3-hydroxybutyric acid node, as
well as oxoglutaric and pyruvic acid; schizophrenia
with oleic and palmitic acid nodes, as well as with
acetoacetic acid; and arterial hypertension with
arachidonic, docosahexaenoic, eicosapentanoic, and
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linoleic acid pathways. Figure 7 also highlights the
importance of butanoate metabolism and its interre-
lationship with inflammatory signals, including cyto-
kine response (IL6 and IL-8), APOB (apolipoprotein B),
and PRKAA2 (Protein Kinase AMP-Activated Catalytic
Subunit Alpha 2)—an important energy-sensing
enzyme that monitors cellular energy status, which
is activated in response to cellular metabolic stresses
and is a metformin's target (55). Peroxisome
proliferator-activated receptor γ and α show
numerous associations with several genes and me-
tabolites of the network (Fig. 7), which reinforces the
importance of focusing on targets in this subfamily
of nuclear receptors for treating NASH (2).

DRUGGABLE TARGETS ASSOCIATED WITH
NAFLD

The druggable-NAFLD genome/proteome is
overrepresented by genes and proteins linked to
lipid metabolism. Figure 8 depicts the identified
NAFLD-related targets classified by biological im-
portance and novelty. Ranking and prioritization of
targets, including known modifiers of NAFLD initially
discovered by genome-wide association studies and
primarily replicated in NAFLD patient cohorts
confirmed by liver biopsy, such as PNPLA3 (44, 45),
TM6SF2 (12, 57, 58), and HSD17B13 (59–61), among
many other targets, were performed by the TIN-X
(Target Importance and Novelty eXplorer) available



Fig. 7. Network representation of metabolite-gene-disease interaction. The metabolite-gene-disease interaction network was
generated using the Network Explorer function available through the MetaboAnalyst platform. The network was created by
integrating the list of query metabolites (shown in Supplemental Table 1) and the list of genes (shown in Supplemental Table 2)
obtained by data mining into PubTator Central under the term “lipidomics of NAFLD.” To generate knowledge-based networks, the
input metabolites and genes (seeds) were mapped to the selected interaction network to create subnetworks containing these seeds
and their direct neighbors (i.e., first-order subnetworks). This procedure yielded one large subnetwork (“continent”) with several
smaller ones (“islands”). The main network integrates gene-metabolite, metabolite-disease, and gene-disease interaction networks.
Each node represents either a gene (circles), a metabolite (light blue diamonds), or a disease (light blue squares). Blue circles in the figure
highlight genes and their related metabolites involved in response to nutrient levels and bacterium GO biological pathways. Each
edge indicates an association between one gene and one metabolite or one disease. Circle, diamond, or square size is directly propor-
tional to the number of other nodes associated with it. A filter on “response to nutrient levels” and “response to bacterium” was used
to create the network depicted in the figure.
at https://newdrugtargets.org/. TIN-X is a web-based
tool that explores the relationships between proteins
and diseases extracted from scientific literature (56). By
harmonizing and integrating various sources of infor-
mation, the plot presented in Fig. 8 illustrates not only
targets that are currently under investigation for the
treatment of NASH (2), e.g., nuclear receptors (PPARγ
and α, and NR1H4), FGF21, MTOR, CASP3, DPP4, IL6,
or STAT3—that is characterized by a high druggability
index (5)—but also potentially novel drug targets the
function and/or use of which either in NASH or in
other human diseases has never been explored. These
novel predicted targets based on big data analysis and
systems-level models for diseases and drug action are
classified according to protein and domain family,
including GPCRs, ion channels, and kinases. For
instance, G protein-coupled bile acid receptor 1 (also
known as TGR5) emerged as a novel potential target
that may also act as an epigenetic modifier. This gene
encodes a member of the GPCR superfamily. The G
protein-coupled bile acid receptor 1 enzyme functions
as a cell surface receptor for bile acids and is implicated
in the suppression of macrophage functions and
regulation of energy homeostasis by bile acids.

Interestingly, proteins predicted by the Tdark
resource (Fig. 8), including Zinc finger proteins
(ZNF780 B or ZNF445), FAM166 B, VSG10 L, and
TMEM235, are targets about which virtually nothing is
known. In fact, Tdark-predicted proteins do not have
known drug or small molecule binding activities/do-
mains. Leveraging this data to investigate molecular
targets for the treatment of NASH may expand the
NAFLD lipidome 11
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Fig. 8. Targets associated with fatty liver disease: importance & novelty explorer. The plot depicts targets associated with NAFLD
with the emphasis on proteins linked to lipid metabolism. Targets are plotted with log-log importance–novelty axes according to the
algorithm implemented by the TIN-X resource (56). Briefly, the approach is guided by the following assumptions: the target that is
mentioned in many abstracts that also note a specific disease is likely to be of importance to that disease; a target or disease that is
mentioned in fewer abstracts is more novel and less well understood; abstracts which mention only a few targets and diseases are
more specific and should be given greater weight than those in which many targets and diseases are featured (56). Targets with
stronger associations and likely a greater number of publications are located in the upper-left part of the plot. Targets are classified
according to the Target Development Level (https://newdrugtargets.org/): Tclin, T, Tchem, Tbio, and Tdark as explained in the
figure.NR, nuclear receptor; IDG, Illuminating the Druggable Genome (IDG) Program.
spectrum of drug candidates and/or may be used as a
framework for drug repurposing (62).

CONCLUDING REMARKS

Integration of new knowledge through systems
biology approach, including large-scale OMICs data,
is a robust and useful strategy to explore the mo-
lecular signatures associated with NAFLD disease
severity. Pathway analysis highlighted butanoate
metabolism as one of the most dysregulated
lipidome-related signatures in NAFLD and NASH.
Hence, while further research on this topic is
certainly needed, it appears that butyric acid may be
regarded as a novel lipidome-related NAFLD
phenotype that might explain disease mechanisms
linking NAFLD susceptibility, diet, and the gut
microbiome. Nevertheless, butyric acid might exhibit
12 J. Lipid Res. (2021) 62 100073
differential local effects in the intestine and the
liver that could be either beneficial or detrimental.
Additional evidence is therefore required to disen-
tangle the putative positive and negative impact of
butanoate metabolism, including its participation in
translocation of intestinal bacteria to the liver, the
putative involvement in liver fat accumulation, and
NAFLD-fetal programming. Drug pathways predic-
tion and integrated pathway-level analysis of genes
and lipid-related metabolites highlighted nonste-
roidal antiinflammatory drug pathways and sele-
nium micronutrient network, respectively.
Integration of gene-metabolite, metabolite-disease,
and gene-disease interaction networks with a specific
focus on nutrition and the microbiome suggests that
NAFLD, type 2 diabetes, schizophrenia, and arterial
hypertension are highly interconnected by molecu-
lar signatures.

https://newdrugtargets.org/


However, potential bias in the data extracted through
data mining suggests that further research is needed to
confirm and validate the molecular signatures and
pathway predictions yielded by the present work.
Despite these limitations, the findings presented here
strongly suggest that novel and unanticipated associa-
tions derived from system biology have the potential to
open new research opportunities, including biomarker
and drug discovery.
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