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Asymptotic optimality of degree-greedy discovering of independent

sets in Configuration Model graphs

Matthieu Jonckheere, Manuel Sáenz

Abstract

Finding independent sets of maximum size in fixed graphs is well known to be an NP-hard task. Using

scaling limits, we characterise the asymptotics of sequential degree-greedy explorations and provide

sufficient conditions for this algorithm to find an independent set of asymptotically optimal size in large

sparse random graphs with given degree sequences. In the special case of sparse Erdös-Rényi graphs,

our results allow to give a simple proof of the so-called e-phenomenon identified by Karp and Sipser for

matchings and to give an alternative characterisation of the asymptotic independence number.

1 Introduction

Given a graph G = (V,E), an independent set is a subset of vertices A ⊆ V where no pair of vertices are
connected to each other (i.e., for every pair x, y ∈ A we have that {x, y} /∈ E). In the sequel, the number
of vertices will be denoted by n.

Independent sets are relevant in the study of diverse physical and communication models. For example
in physics, where dynamics that generate independent sets are used to study the deposition of particles
in surfaces [11, 14] as well as to model the number of excitations in ultracold gases [36]. In the context
of communications, similar stochastic processes where used [4, 12] for theoretically modelling the possible
number of simultaneous transmissions of information within a WiFi network.

An independent set is said to be maximal if it is not strictly contained in another independent set; and
is said to be maximum if there is no other independent set of greater size. Given a (finite undirected) graph
G, the size of the maximum independent set(s) is called the independence number and is usually represented
with α(G). Finding a maximum independent set (or its size) in a general graph is known to be NP-hard[15].
For sparse random graphs, characterising the size of maximum independent sets and defining algorithms
that find independent sets of (asymptotically, i.e., as n diverges) maximum size are two questions that have
received a lot of attention in the last decades but remain largely open. Before explaining our main results,
we review the extended body of literature on this problem.

Mainly two types of approaches have been followed to obtain maximum size independent sets in random
graphs: on the one hand, using reversible stochastic dynamics (usually Glauber dynamics); and on the
other hand, using sequential algorithms. The Glauber dynamics consists of a reversible Markov dynamics
on graphs where vertices become occupied (at a fixed rate called the activation rate) when none of its
neighbours are; and, if occupied, become unoccupied at rate 1. When the rate of activation tends to infinity,
this dynamics are easily shown to concentrate on configurations being independent sets of maximum size.
Though this is a very useful property, and not unlike for many other discrete optimisation problems, these
dynamics might not be helpful in practice as the convergence towards a maximum size configuration can
be extremely slow when the activation rate is large. In some special cases, the mixing time has been
theoretically characterised. For example [38], when the degree distribution is bounded by ∆ ≥ 0 and the
activation rate is small (β < 2

∆−2) the mixing time is O(n log(n)). In the case of a bipartite regular graph,
it was shown [18] that for β large enough the mixing time is actually exponential in n. Finally, this method
does not allow to theoretically characterise the (asymptotical) independence number.
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A completely different approach consists in defining algorithms that explore the graph sequentially (and
hence terminate the exploration in less than n steps). For this, at each step k ≥ 0 the vertex set is
partitioned in three: the unexplored vertices Uk, the active vertices Ak and the blocked vertices Bk. A
typical sequential algorithm works as follows. Initially, it sets U0 = V , A0 = ∅ and B0 = ∅. To explore the
graph, at the k + 1-th step it selects a vertex vk+1 ∈ Uk (possibly taking into account its current or past
degree towards other unexplored vertices), and changes its state into active. After this, it takes all of its
unexplored neighbours, i.e. the set Nvk+1

:= {w ∈ Uk|(vk+1, w) ∈ E}, and changes their states into blocked.
This means that, if in the k + 1-th step vertex vk+1 is selected, the resulting set of vertices will be given by
Uk+1 = Uk\{vk+1 ∪ Nvk+1

}, Ak+1 = Ak ∪ {vk+1} and Bk+1 = Bk ∪ Nvk+1
. Note that at each step, the set

of active vertices defines an independent set. The algorithm keeps repeating this procedure until the step
k∗n in which all vertices are either active or blocked (or equivalently Uk∗

n
= ∅). The set of active vertices at

step k∗n then defines a maximal independent set.
In the greedy algorithm, during the k-th step the activated vertex vk is selected uniformly from the

subgraph of remaining vertices Gk (i.e., the subgraph formed by the unexplored vertices). If G is a graph,
we will call σGr(G) the size of the independent set obtained by the greedy algorithm ran on G. This
algorithm has been extensively studied, specially in the context of Erdös-Rényi graphs. There are many
ways of approaching the problem of determining the asymptotic value of the independent set obtained by the
greedy algorithm in a sparse Erdös-Rényi graph. For example, there have been [20, 28] combinatorial analysis
of the problem. More akin to the rest of the paper, in [6] an hydrodynamic limit for a one-dimensional
Markov process associated to the algorithm was proved. The description of this exploration process in a
Configuration Model cannot be described as a one-dimensional Markov process, as the unexplored vertices
have degrees (towards other unexplored) that are not interchangeable and that depend in a complicated
way on the evolution of the process. This makes the analysis much more involved that in the case of an
Erdös-Rényi graph. There have been two works in the literature that describe an hydrodynamic limit for
this process. In [5], an hydrodynamic limit for the degree distribution of the remaining graph was obtained.
While in [10], a similar hydrodynamic limit was proved but for a modified dynamics that allows for a
simplification of the limiting differential equations. Through these limits, the size of the independent set is
determined.

The degree-greedy algorithm is a variation of the greedy algorithm that takes into account the degree of
the vertices in the remaining graph. During the k-th step an unexplored vertex vk is selected uniformly from
the vertices of minimum degree (towards other unexplored vertices) within the remaining subgraph Gk. If
G is a graph, we will denote by σDG(G) the (possibly random) proportion of vertices in the independent
set obtained by the degree-greedy algorithm ran on G. Although having been studied in the computer
science community (for example, in [21]), there are few exact mathematical results that characterise or
bound the independent set found by this algorithm. A remarkable exception can be found in [29, 1] which,
although considering a completely different problem (namely, maximum matchings), imply that the degree-
greedy algorithm is asymptotically optimal for Erdös-Rényi graphs when the mean degree is λ < e, a result
coined as the e-phenomenon. Results by Wormald [39] also describe an hydrodynamic limit for the process
generated by the degree-greedy algorithm when run on a d-regular graph but without discussing asymptotic
optimality.

Characterisation of maximum independent sets. In the case of Erdös-Rényi graphs, their indepen-
dence numbers are better understood in the case of large connection probabilities. In this case, a second
moment argument [8] yields its convergence in probability towards − 2 log np

log q . In this same context, the
relationship between the independence number and the asymptotic size of the independent set obtained by
the greedy algorithm is also known to be 1/2. In the case of sparse Erdös-Rényi graphs, as a consequence
of the results proved in [9, 16], similar (but weaker) results can be shown. This shows that the greedy
algorithm has, for G a sparse Erdös-Rényi graph of mean degree λ, a performance ratio σGr(G)/α(G) that
is 1/2 asymptotically in n for large λ. As mentioned before, it follows from [29, 1] that the degree-greedy al-
gorithm finds asymptotically a.s. maximum independent sets in Erdös-Rényi graphs of mean degree smaller
than e. In the same works, they also characterise the asymptotic independence number of these graphs as
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the combination of the roots of certain functions.
The proof of the existence of a limiting independence ratio for random d-regular graphs was given in [3].

In [31], Wormald proved a lower bound for the independence number of a d-regular graph. While in the same
work, Wormald (and Gamarnik and Goldberg independently in [19]) showed that the proportion of vertices
in the independent set found by a greedy algorithm in a d-regular graph is (for d ≥ 3), asymptotically (in
probability) when n → ∞ and the girth1 g → ∞, given by a certain function of d. Moreover, bounds were
also proved in [7, 33] and an alternative lower bounds in [17]. Finally, in a recent work [13], the exact
large number law for the independence ratio of regular graphs of sufficiently large d was established as the
solution of a polynomial equation.

Contribution. Both characterisation of independence numbers and algorithms to discover independent
sets in (deterministic) polynomial times for large sparse random graphs, e.g. in Configuration Models,
are still open problems for most cases (the only exceptions being the characterisations of the independence
numbers of regular graphs of large enough degree and the optimality of degree-greedy for sparse Erdös-Rényi
graphs with λ < e).

Using scaling limits on sequential explorations that select only degree 1 vertices, we decompose the
exploration in different steps and we show that these steps can be described as a combination of two maps
acting on the degree-distribution of the graph. Using these results, we show that for a large class of sparse
random graphs, a degree-greedy exploration is actually asymptotically optimal. We first give a sufficient
condition, which can be easily verified in practice, for this exploration to be optimal in one step. We
then show how to generalise this sufficient condition by characterising the remaining graph after several
steps. Finally, we study the case of Poisson distribution (which is asymptotically equivalent to Erdös-Rényi
graphs) and show, in an alternative way, that when the mean degree is smaller than e the exploration is
asymptotically optimal. We use this fact to give a new characterisation of the independence number under
these circumstances.

We now state rigorously our results and give various examples.

2 Main results

We first state lemmas for deterministic graphs. Afterwards, we enunciate optimality results for random
graphs when the hydrodynamic limit of the degree-greedy sequential exploration selects only degree 1
vertices. We then show that this property is actually satisfied by a large class of random graphs (including
all strictly subcritical graphs, in the connectivity sense). We finally proceed to characterise this class of
graphs.

2.1 First characterisation of degree-greedy asymptotic optimality

Criterion for deterministic graphs In Lemma 2.1 below, we show that any algorithm that selects at
each step of its implementation a vertex of degree 1 (or 0) is optimal in the sense that it finds a maximum
independent set. An analogous version of this lemma for matchings is stated in [29].

We introduce now some definitions to state this more precisely.

Definition 2.1. Given a graph G = (V,E), we call a finite sequence W = {w1, w2, . . . , wm} (m ≤ n) of
distinct vertices of V a selection sequence (of G) if no vertex in W is neighbour to another vertex in W
and every vertex in V is either in W or neighbour of a vertex in W .

Note that the conditions in this definition ensure that the vertices in W define a maximal independent
set. By definition, sequential algorithms define random selection sequences.

1Length of the shortest cycle.
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Definition 2.2. Let W = {w1, ..., wm} be a selection sequence. Then, for every 1 ≤ i ≤ m, we denote
by i-th remaining subgraph, the subgraph formed by the vertices that are neither in {w1, ..., wi} nor
neighbours of any of them. We denote it by Gi and we define G0 := G.

When there is no ambiguity to which value of i the remaining graph corresponds to, we just call it
the remaining graph. When analysing the degree-greedy algorithm, the remaining graphs will refer to the
remaining graphs with respect to the selection sequence defined by the algorithm. Of course, as a selection
sequence W = {w1, ..., wm} always determines a maximal independent set, Gm = ∅.

The degree-greedy algorithm run on a finite graph G can be thought of as a random selection sequence
WDG, built inductively in the following manner: given {w1, ..., wk} the first k ≥ 1 vertices of WDG, wk+1 is
a vertex chosen uniformly from the lowest degree vertices of Gk.

Definition 2.3. Let W be a selection sequence. We say that W has the property T1 if for every 1 ≤ i ≤ m
the degree of wi in Gi−1 is equal or less than 1.

Then, a selection sequence has the property T1 if at each step it selects a vertex that has degree either
0 or 1 in the corresponding remaining graph.

We are now in a position to state our first lemma.

Lemma 2.1. Let G be a finite graph and W be a selection sequence of G. Then, if W has the property T1,
|W | = α(G).

T1 property and asymptotic optimality of the degree-greedy exploration. From now on, we use
the usual big O(·) and little o(·) notation to describe the asymptotic behaviour of functions of the graph
size n. We also use the probabilistic big OP(·) and little oP(·) notation in the following sense:

• A sequence of random variables Xn is OP(fn) (for some function fn : N → R>0) if for every ǫ > 0
there exists M > 0 and N ∈ N s.t. P(|Xn/fn| > M) < ǫ for every n ≥ N .

• Conversely, a sequence of random variables Xn is oP(fn) if Xn/fn
P−→ 0 as n → ∞.

We will also say that an event holds with high probability (w.h.p.) whenever its probability is some
function 1 + o(1) of the graph size.

Throughout the paper we will consider random graphs with given degrees, (a.k.a., Configuration Models
[37]). In this construction, given a degree sequence d̄(n) ∈ N

n
0 (which could either be a fixed sequence or

a collection of i.i.d. variables), we form an n-sized multigraph2 with degrees d̄(n) in the following manner:
first assign to each vertex v ∈ {1, ..., n} a number dv of half-edges, then sequentially match uniformly each
half-edge with another unmatched one, and finally for every pair of vertices in the multigraph establish
an edge between them for every pair of matched half-edges they share. The distribution of the random
multigraphs generated according to this matching procedure will be denoted by CMn(d̄(n)). Because all
the matchings are made uniformly, the resulting multigraph is equally distributed no matter in which order
the half-edges are chosen to be paired [37]. This fact allows, when analysing a process in the graph, for the
matching to be incorporated into the dynamics in question.

In the remaining of the paper we will consider Configuration Model graphs that obey the following
assumption:

Convergence assumption (CA): when dealing with sequences of graphs (Gn)n≥1 with Gn ∼ CMn(d̄(n)),

we will always assume that D(n) P−→ D and E(D(n)2)
n→∞−−−−→ E(D2). Where D(n) is the r.v. that gives the

degree of a uniformly chosen vertex in Gn and D is a random variable with finite second moment. We

will also use (p
(n)
k )k≥0 to refer to the distribution of D(n) and (pk)k≥0 to the one of the asymptotic degree

random variable D.
2That is, a graph where there are possibly edges between a vertex and itself (selfedges) and multiple edges between a pair

of vertices (multiedges).
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When there is no ambiguity, we will omit the subindex in Gn.
Although this construction results in a multigraph rather than a simple graph3, as showed in [24], because

under the (CA) there is asymptotically a probability bounded away from 0 of obtaining a simple graph.
This means that any event that has been shown to hold w.h.p. for G ∼ CMn(d̄(n)), can be automatically
showed to hold w.h.p. for the construction conditioned to result in a simple graph.

Another important feature of the model is that its largest connected component asymptotically contains
a positive proportion of the vertices of the graph iff ν := E(D(D− 1))/E(D) > 1 [34, 27] (this quantity will
be referred as the criticality parameter of the graph). When this condition holds, we will say that the graph
is supercritical ; and when it does not, that it is subcritical.

We can now state a sufficient condition for the degree-greedy algorithm to find w.h.p. an independent
set that asymptotically contains the same proportion of vertices as a maximum one:

Proposition 2.1 (Sufficient condition for the near optimality of the degree-greedy in CM). Let G ∼
CMn(d̄(n)) be a sequence of graphs distributed according to the CM, and assume that the limiting (pk)k∈N.
If the degree-greedy algorithm defines w.h.p. a selection sequence that selects only vertices of degree 1 or 0
until the remaining graph is subcritical and has a degree distribution that is O(e−γk) (for some γ > 0), then
(for every α > 0) σDG(G) = α(G) + OP(nα).

This is so because a subcritical graph looks like (up to sufficiently small differences) a collection of trees.
We can then couple the algorithm running in the subcritical graph with one running in the collection of
spanning trees of its components. This coupling will only differ in the components that are not trees which,
as shown in Proposition 3.1, contain (for every α > 0) OP(nα) vertices if the limiting degree distribution
has an exponentially thin tail. Therefore, both algorithms find an independent set of roughly the same size.

2.2 Further characterisations of asymptotic optimality

We now give explicit criteria to show that a given limiting distribution meets the hypothesis in Proposition
2.1. We first state a criterion that can be easy to handle in practice. We then refine this criterion and give
a general way of characterising the degree distributions in question.

One application of the map M1. To characterise when the degree-greedy algorithm does only select
vertices of degree 1 or 0 until the remaining subgraph is subcritical, it will be useful to break the evolution
of the process into discrete intervals of time for which we know for sure that the only vertices selected have
these degrees.

The key observation is that if the graph initially has np1 + o(n) vertices of degree 14, then the degree-
greedy will select vertices of degree 1 at least until an equivalent number of degree 1 vertices have been

explored. Then we define the map M
(n)
1 : R

N

≥0 −→ R
N

≥0 as the map that when evaluated in a degree

distribution of an n sized graph (p
(n)
k )k≥0 gives the resulting normalised (by n) degree measure of unexplored

vertices after np
(n)
1 vertices of degree 1 have been activated or blocked (and their neighbours blocked). This is

in principle a stochastic map but, as we will prove, the degree-greedy exploration converges to a deterministic

limit which implies that M
(n)
1 (·) also behaves as a deterministic limit map M1(·).

In this section, we determine when the degree distribution obtained after one application of the map

M
(n)
1 is w.h.p. subcritical, and therefore the hypothesis of Proposition 2.1 are met. Our main result here is

the following theorem:

3One with no self nor multiedges.
4For simplicity, vertices of degree 0 will be omitted from the analysis because, when selected, they block no vertices and then

do not modify the number of unexplored vertices of other degrees. We can think that the algorithm selects them immediately
after they are produced.
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Theorem 2.1. Given G ∼ CMn(d̄(n)) where the (CA) holds towards a limiting degree distribution (pk)k≥0

of mean λ > 0 and finite second moment. If

ν̃ := G′′
D(Q)/λ < 1 (1)

where Q := (1 − p1/λ) and GD(z) is the generating function of the asymptotic degree r.v. D; then, (for
every α > 0) σDG(G) = α(G) + OP(nα).

Further applications of M1. Theorem 2.1 establishes an asymptotic condition for the remaining graph

obtained after one application of the map M
(n)
1 (·) to be subcritical, and thus for the degree-greedy to

be asymptotically optimal (in the sense that it finds, asymptotically, an independent set with the same
proportion of vertices as a maximum one). Here we compute the asymptotic degree distribution of the

remaining graph after one application of M
(n)
1 (·) and in doing so we allow for the study of further applications

of M
(n)
1 (·). This can be used to establish more general conditions that determine the asymptotic optimality

of the degree-greedy algorithm. For doing so, we determine an hydrodynamic limit for the second phase of

M
(n)
1 (·) and solve the obtained equations.

Theorem 2.2. Define (for every i, j ≥ 1) ηj(i) := (−1)j−i
(
j
i

)
1i≤j. Then, under the same assumptions of

Theorem 2.1 and if we call (aj)j∈N the components of (Qkpk1{k≥2})k∈N in the base {ηj(·)}j∈N, we have
that the remaining graph after one application of the map is a Configuration Model graph with normalised
degree measure given by

M
(n)
1

(

p
(n)
k

)

(i)
P−→ M1

(

p
(n)
k

)

(i) :=
∑

j≥i

aj(−1)j−iQ̃j

(
j

i

)

, for i ≥ 1

where Q̃ :=
∑

i≥2 iQ
ipi/Q

2λ.

As mentioned above, this result gives a way of generalising the condition for asymptotic optimality of
Theorem 2.1:

General criterion for asymptotic optimality (GC): given a limiting degree distribution, if after a finite
number of applications of the map M1(·) the degree distribution obtained is subcritical, then the degree-greedy
is asymptotically optimal for a Configuration Model graph with that limiting distribution.

The proof of this criterion is a direct consequence of Proposition 2.1. Then, Theorem 2.2 can be used
to verify it. In the next section we give numerical computations of distributions that meet the criterion.

2.3 Erdös-Rényi graphs

Here we analyse the special case of graphs with asymptotic Poisson degree distributions. They are of
particular importance because, by [30], asymptotic results for them can be directly extended to Erdös-Rényi
random graphs. We give here an alternative and simpler proof of the so-called “e-phenomenon”, identified
for matchings in [29, 1]. We also give a more explicit characterisation of the asymptotic independence
number than the one present in these works: we prove that both constants in the expression obtained in [1]
are in fact the same and characterise them in terms of the Lambert function.

Corollary 2.1. Let G ∼ ERn(λ). If λ < e, then σDG(G) = σ(G) + oP(n); otherwise, the selection
sequence does not have the property T1. Furthermore, in this case, α(G) = n(z(λ) + λ

2 z(λ)2) + oP(n), where

z(λ) := e−W (λ) with W (x) the Lambert function.

Proof. Because of the following equality for Bernstein polynomials [32],
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(
n

i

)

xi(1 − x)n−i =

n∑

j=i

(
n

j

)

xjηj(i),

the expansion in the base {ηk(·)}k∈N can be explicitly computed for binomial distributions, which in turn
gives the transformation for Poisson distributions taking the usual limit. Using this, it can be easily seen
that after i applications of the map M1(·) to a Poisson distribution, the resulting distribution is a linear
combination of a Poisson distribution of mean µi and a term δ1(·) (we here ignore degree 0 vertices as they
do not play a role in the dynamics), with respective coefficients Ai and Bi.

This transformation can be used to derive the following recursion relation for λi, Ai and Bi:







µi+1 = Q̃iQiµi,

Ai+1 = e−(1−Qi)µiAi,

Bi+1 = −AiQ̃iQiµie
−µi ,

where Qi and Q̃i are the corresponding coefficients defined in Theorems 2.1 and 2.2 for the distribution
after the i-th application. Writing explicitly the coefficients Qi and Q̃i, one arrives at the 3-dimensional
iterative map 





µi+1 =
(

e
−

aiµi
λi − e−µi

)
Aiµ

2
i

λi
,

Ai+1 = e
−

aiµi
λi Ai,

Bi+1 = −e−µiAiµi+1,

(2)

where ai := Aiµie
−µi + Bi is the number of remaining degree 1 vertices and λi := Aiµi + Bi is the number

of remaining edges. Furthermore, the coordinate Bi can be eliminated arriving at the closed 2-dimensional
iterative map 





µi+1 =



e
−

Aie
−µi−Ai−1e

−µi−1

Ai−Ai−1e
−µi−1

µi − e−µi



 Aiµi

Ai−Ai−1e
−µi−1

,

Ai+1 = e
−

Aie
−µi−Ai−1e

−µi−1

Ai−Ai−1e
−µi−1

µi

Ai.

Making the coordinate change vi := e−µi and wi := v
Ai/(Ai−vi−1Ai−1)
i the map can be rewritten as







wi+1 = w

(

viw
vi−1

i

)

i ,

vi+1 = wi+1w
−vi
i ,

(3)

where the initial conditions for this discrete system are v0 = w0 = e−λ. We now show that for initial
conditions in the identity line (v0, v0) this recursion can be explicitly solved. We first show by induction
that in this case

wi = h2i+1(v0),

vi =
h2i+1(v0)

h2i(v0)
,

where we defined hm(a) := aa
··
a

︸︷︷︸

m

; that is, hm(a) is the m-th tetration of a. First note that by applying

the map (3) one obtains that w1 = v
(v

v0
0 )

0 = h3(v0) and v1 = w1v
−v0
0 = h3(v0)h2(v0)−1, thus starting the

induction. To advance the induction, suppose wi = h2i+1(v0) and vi = h2i+1(v0) h2i(v0)−1. Then, applying
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the map one obtains that

wi+1 = h2i+1(v0)

(

h2i+1(v0)h2i(v0)
−1h2i+1(v0)

(h2i+1(v0)h2i(v0)−1−1)
)

,

= h2i+1(v0)

(

h2i(v0)
−1h2i+1(v0)

h2i+1(v0)h2i(v0)−1
)

,

=
(

h2i+1(v0)h2i(v0)
−1
)
(

h2i+1(v0)
h2i(v0)−1

)h2i+1(v0)

,

= v

(

v
h2i+1(v0)

0

)

0 = h2(i+1)+1(v0),

where we used that h2i+1(v0)h2i(v0)
−1

= v0. In an analogous way, we can show that vi+1 =
h2(i+1)+1(v0)

h2(i+1)(v0)
,

advancing the induction.
By Theorem 5 in [2], hi(v0) converges if and only if v0 ∈ (e−e, e1/e). And in these cases, because of (3),

vi will converge to 1 as i → ∞. Undoing the coordinate change, this implies that if λ < e, we will have that

µi
i→∞−−−→ 0. This in turn proves that the number of remaining vertices in the graph (1−e−µi)Ai+Bi

i→∞−−−→ 0
which means that the graph vanishes asymptotically, showing that under these conditions the degree-greedy
algorithm is asymptotically optimal. Furthermore, also by Theorem 5 in [2], if λ > e, h2i(v0) and h2i+1(v0)

will converge to different limits yielding vi
i→∞−−−→ t < 1. That is, in these cases, the selection sequence

defined by the degree-greedy algorithm will not (w.h.p.) have the property T1.
Moreover, making use of Proposition 2.2 from next section, we can compute the independence number.

Because in this case the number of degree 2 or greater vertices is given by a Poisson density of mean µi

multiplied by Ai,

∑

j≥2

(1 −Qj
i )Ai

µj
i

j!
e−µi = Ai(1 − e−µi(1−Qi)) −Aiµie

−µi(1 −Qi)

Also, using the explicit solution obtained for the map (2), it can be shown that

• Ai = h2i(e
−λ)

• Qi = (h2i(e
−λ)−h2i+1(e

−λ))
(h2i(e−λ)−h2i−1(e−λ))

• µi = λ(h2i(e
−λ) − h2i−1(e−λ))

• ai = λ(h2i+1(e−λ) − h2i−1(e−λ))(h2i(e
−λ) − h2i−1(e−λ))

Where ai is the normalized remaining number of degree 1 vertices. Using this, Proposition 2.2 gives

α(G) = n



1 −
∑

i≥0

h2i(e
−λ) − h2i+2(e−λ) +

∑

i≥0

λ

2
h2
2i−1(e−λ) − λ

2
h2
2i+1(e−λ)



+ oP(n)

= n(z(λ) + λ/2z(λ)2) + oP(n)

Where we used that (for m ∈ N and a > 0) h−m(a) = 0, h0(a) = 1 and that limi→∞ hi(a) = e−W (− log(a)).

2.4 Other applications

We now apply our results to power-law distributions, which give rise to scale-free networks. Furthermore,
we explain how to compute the independence ratios for this distributions and we prove upper bounds for
the independence ratios of distributions for which these theorems cannot be used.
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Power-law distributions. Here we look at the case where the degree distribution obeys a power law of
parameter α > 3. Because the generating function of a power law distribution pk = Cαk

−α is given by
CαLiα(z) (where Liα(z) is the polylogarithm function of order α):

ν̃(α) =
(CαLiα(z))′′|Q(α)
∑

i≥1 iCαi−α
=

Liα−2(1 − ζ(α− 1)−1) − Liα−1(1 − ζ(α− 1)−1)

ζ(α− 1)

Where ζ(z) is the Riemann zeta function and in the last line we used that Q(α) = 1−ζ(α−1)−1 and that
Liα(z)′ = Liα−1(z)/z. This last expression can be seen to be smaller than 1 for every α > 3; which means
that for every power law distribution of finite second moment, the degree-greedy algorithm is asymptotically
optimal. In particular, whenever it has finite second moment and ζ(α− 2) > 2ζ(α− 1) (or 3 < α . 3, 478),
this distribution will be supercritial but nevertheless the degree-greedy will be asymptotically optimal.

Computing independence ratios. As a consequence of Theorem 2.2, whenever a sequence of graphs is
under its hypothesis and after a finite number of applications of the map M1(·) a subcritical distribution
is obtained, the asymptotic independence number can be obtained by computing the number of vertices in
the independent set constructed by the degree-greedy algorithm.

Proposition 2.2. Given G ∼ CMn(d̄(n)) where the (CA) holds towards a limiting degree distribution
(pk)k≥0. Then, if the criterion (GC) holds, we will have that

α(G) = n



1 −
∞∑

i=1

µ(i)(1)(1 −Qi)

2
+

∞∑

j=2

(1 −Qj
i )µ

(i)(j)



 + oP(n). (4)

Where µ(i)(j) is the remaining number of degree j vertices over n and Qi is the corresponding parameter
defined in Theorem 2.1, after i applications of the map M1(·) over the limiting degree distribution of the
graph sequence.

Proof. During the i-th application of the map M1(·), the number of vertices of degree j (where j ≥ 2) that
gets blocked5 is (1 −Qj

i )µ
(i)(j). Moreover, for each pair of degree 1 vertices that get connected to another

degree 1 vertex, one gets blocked. The number of degree 1 vertices that get blocked is then (1−Qi)µ
(i)(1)/2.

So, the size of the independent set obtained will be 1 minus the total number of blocked vertices. Also,
because we are assuming we are in the condition of asymptotic optimality of the algorithm, the size of the
independent set obtained will be the independence number of the graph.

Upper bounds for independence ratios. For sequences of graphs where the asymptotic optimality
condition does not hold, one can nevertheless use Theorem 2.1 to construct upper bounds on the limiting
independence number.

Proposition 2.3. Given G ∼ CMn(d̄(n)) where the (CA) holds towards a limiting degree distribution
(pk)k≥0; if we define c1 := inf{a > 0 : G′′

D(1 − (a + p1)/(a + λ)) < 1} and (for k ≥ 0) p∗k := (c1δ1k +
pk)/(c1 + 1), we will have that

α(G) ≤ n



1 −
∞∑

i=1

µ∗(i)(1)(1 −Q∗
i )

2
+

∞∑

j=2

(1 −Q∗j
i )µ∗(i)(j)



 + oP(n).

Where µ∗(i)(j) is the remaining number of degree j vertices over n and Q∗
i is the corresponding parameter

defined in Theorem 2.1, after i applications of the map M1(·) over the degree distribution (p∗k)k≥0.

5Because, as we will see in Section 3.5, Qi is the probability of a single half-edge to be connected to an activated vertex.
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Proof. Define a new graph sequence G∗ ∼ CMn(d̄∗(n)) where the (CA) holds towards the limiting degree
distribution (p∗k)k≥0. This sequence can be thought as the graphs formed by changing the degrees of a
certain proportion of vertices in the original graphs G to 1 so that the inequality in Theorem 2.1 holds.
The resulting graphs will be distributed as the original ones with some of its edges removed. Then, because
the independence number is monotonic on edge removal, we will have that α(G) ≤ α(G∗). Finally, using
equation (4), α(G∗) can be computed and thus the desired upper bound is obtained.

3 Proofs

In this Section, we provide proofs for all our results.

3.1 Proof of Lemma 2.1 on deterministic graphs

We will prove Lemma 2.1 by induction on the graph size |G|. For |G| = 1 and |G| = 2 the statement is
trivially true.

Now assume that it holds for |G| = n, we will show that it is thus also true for |G| = n + 1. Suppose
that it is not the case that |W | = α(G), then there is an independent set A such that |W | < |A| = α(G).

Calling W ′ = (wi)
|W |
i=2 , by the induction hypothesis (because W ′ has the T1 property in G1) we know that

|W ′| = α(G1).
Calling n1 the vertex adjacent to w1,6 because the independent set A is of maximum size, it has to

contain either w1 or n1 (if not, one could construct an even larger independent set by adding w1 to the
vertices in A, which would be a contradiction). This implies that

|A| = |A\{w1, n1}| + 1 > |W | = |W ′| + 1,

which means that |A\{w1, n1}| > |W ′| which is a contradiction because A\{w1, n1} defines an independent
set of G1 and by hypothesis we have that the independent set defined by W ′ is an independent set of G1 of
maximum size. We then have that W defines an independent set of maximum size of G, advancing in this
way the induction.

Corollary 3.1. If H is a collection of trees, then the degree-greedy algorithm run on H finds a.s. a
maximum independent set.

Proof. Because H is a collection of trees, for every leaf removed by the degree-greedy algorithm, further
leafs (or isolated vertices) will be created. The algorithm will have the property T1 as it will only select
leafs (or isolated vertices). The conclusion is then reached by Lemma 2.1.

3.2 Proof of Proposition 2.1

We first deal with the case where G is a subcritical graph.
To show the condition for optimality of Proposition 2.1, we will study the number of times a breadth-

first exploration process of the components joins two already explored vertices (for more details on the
breadth-first exploration of components see [37]) forming a loop. Here we will call Nu the number of times
this happens during the exploration of the connected component associated to the vertex u ∈ V and N
the total number of times it happens in the exploration of all the components in the graph. For every
component C(u) we will have that if Nu = 0, then the component is exactly a tree (as no loops are formed
during the exploration process). The idea will be to prove that in a subcritical graph with a degree distribu-
tion with an exponentially thin tail, almost every vertex is in a component that is a tree. Note that this is
not a consequence of the results in [26], as it is not enough to show that the 2-core7 is oP(n) to conclude this.

6Here we will assume that dw1 = 1. The proof is very similar in the case where w1 is an isolated vertex.
7The 2-core of a graph is the maximum subgraph with minimum degree 2.
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By calling v(i) the vertex visited during the i-th step of the exploration process of the connected com-
ponent of vertex 1 and T the stopping time in which the process finishes, we can write

N1 =

T∑

i=1

T∑

j>i

1{v(i)=v(j)} (5)

We can now state the following bound on the conditional expectation of N1 that we will use to prove
our lemma.

Lemma 3.1. Let G ∼ CMn(d) where the (CA) holds towards a limiting degree distribution (pk)k≥0 of
mean λ > 0 and criticality parameter 0 < ν < ∞. If C(1) is the connected component of vertex 1, then
conditioning on the number T of edges in the component, we have that

E (N1|T ) ≤ (ν(n) + 1)nλ(n)T (T − 1)

2(nλ(n) − T )2

where λ(n) :=
∑

u∈V (n) d
(n)
u /n

n→∞−−−−→ λ and ν(n) :=
∑

u∈V (n) d
(n)
u (d

(n)
u − 1)/nλ(n) n→∞−−−−→ ν.

Proof. The bound is derived making use of the corresponding bound for the probability that (conditional
on T ) a particular vertex is visited by the exploration process at time i. So, firstly we want to show that
for u ∈ V (n) and i ≤ T

P(v(i) = u|T ) ≤ d
(n)
u

nλ(n) − T
(6)

This can be shown using that the random variable T is a.s. positive and bounded by n2. Then for any
set A σ(T )-measurable we have that

E(1A1{v(i)=u}) = P(A, v(i) = u)

=
∑

t≤n2

P(A|v(i) = u, T = t)P(v(i) = u|T = t)P(T = t)

≤
∑

t≤n2

1A(t)
d
(n)
u

nλ(n) − t
P(T = t) = E

(

1A
d
(n)
u

nλ(n) − T

)

In the forth line we have used that P(A|v(i) = u, T = t) = 1A(t) because A is σ(T )-measurable and
that because the matching is done uniformly between all the unmatched half-edges at time i we have that

P(v(i) = u|T = t) = du(i)
(n)

nλ(n)−(i−1)
≤ d(n)

u

nλ(n)−t
(with du(i)(n) as the number of unmatched half-edges of u by

the step i of the exploration).
Now using that

N1 =

T∑

i=1

T∑

j>i

1{v(i)=v(j)} =

T∑

i=1

T∑

j>i

∑

u∈V

1{v(i)=u}1{v(j)=u},

taking conditional expectation on T over both sides and using this inequality, we get that

E (N1|T ) =

T∑

i=1

T∑

j>i

∑

u∈V (n)

P(v(i) = u, v(j) = u|T ) ≤
T∑

i=1

T∑

j>i

∑

u∈V (n)

(

d
(n)
u

nλ(n) − T

)2

≤ nλ(n)

(nλ(n) − T )2





T∑

i=1

T∑

j>i

1








∑

u∈V (n)

d(n)u

d
(n)
u

nλ(n)



 =
(ν(n) + 1)nλ(n)T (T − 1)

2(nλ(n) − T )2

11



Where for the first inequality we used that for all i < j

P(v(i) = u, v(j) = u|T ) = P(v(j) = u|v(i) = u, T )P(v(i) = u|T )

≤ P(v(j) = k|T )P(v(i) = k|T )

By means of this lemma, if we denote by B the number of bad vertices that are in components that are
not trees, we can prove that (under certain assumptions) it grows slower than any positive power of the
graph size n.

Proposition 3.1. Let G ∼ CMn(d) where the (CA) holds towards a limiting degree distribution (pk)k≥0 of
mean 0 < λ < ∞, criticality parameter 0 < ν < 1 and such that there exists γ > 0 where pk = O(e−γk).
Then, for every 0 < α < 1 we have that B = OP(nα).

Proof. The proof will apply Lemma 3.1 and a coupling, presented by S. Janson et al. in [23], which we
describe now.

Suppose we are in the step i ≤ √
n (the exact power of n is in fact irrelevant, it only needs to be o(n)

and of an order smaller than the components sizes) of the exploration process. Then the probability of
finding a vertex of degree k (excluding the vertices already explored) will be

nkp
(n)
k

nλ(n) −O(
√
n)

=
kp

(n)
k

λ(n)
(1 + O(

√
n))

Defining a random variable X distributed according to

P(X ≥ x) = min



1,
ν′

ν

∑

k≥x

(k + 1)pk+1

λ



 (7)

For ν′ = ν+ǫ′ fixed and with 0 < ǫ′ < 1−ν, then for every n large enough X stochastically dominates the
step size of the random walk associated to the exploration process. As a consequence, we will have that if T̃
is the hitting time of 0 of a random walk starting from 1 and with step size X , T ≤ T̃ a.s. whenever T̃ ≤ √

n.
The variable T̃ can also be thought of as the total progeny of a Galton-Watson process with progeny law
given by i.i.d. copies of X . By summing over the expression in (7) we get that E(X) ≤ ν′

ν ν < 1, which
means that the associated Galton-Watson process is subcritical.

Making use of this coupling, we can now prove the proposition. Taking expectation to N1 and separating
according to different values of T we obtain that

E(N1) = E
(
N11{T≤nβ}

)
+ E

(
N11{T>nβ}

)

Where 0 < β < 1/2 (its exact value will be fixed later on). By the upper bound on the conditional
expectation in Lemma 3.1 we get that the first term is

E
(
N11{T≤nβ}

)
≤ (ν(n) + 1)nλ(n)nβ(nβ − 1)

2(nλ(n) − nβ)2
P(T ≤ nβ) ≤ (ν(n) + 1)nλ(n)nβ(nβ − 1)

2(nλ(n) − nβ)2

Because by hypothesis λ(n) → λ and ν(n) → ν, the right hand is then O(n2β−1).
For the second term, we will again use that N1 ≤ T a.s. to obtain that

E
(
N11{T>nβ}

)
≤ E

(
T1{T>nβ}

)
≤ nP(T > nβ)

Because of the coupling described above, we will also have that P(T > nβ) ≤ P(T̃ > nβ) (because
nβ <

√
n), where T̃ is the total progeny of a subcritical Galton-Watson process with progeny X , where X
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is distributed according to (7). By hypothesis, for some γ′ > 0, P(X = k) = O(e−γ′k). Then, X will have
finite exponential moment and by Theorem 2.1 in [35], so will T̃ . Therefore, by Markov’s inequality, we will
have that for every θ > 0

P(T̃ > nβ) ≤ E(T̃ θ)

nβθ
= O(n−βθ)

Putting the three bounds together we obtain that (for θ large enough)

E(N1) = O(n2β−1) + O(n1−βθ) = O(n2β−1)

Now, fix 0 < α < 1. Using this and Markov’s inequality, we obtain that

P

(

N > nα/2
)

≤ E(N)

nα/2
≤ E(

∑

u∈V Nu)

nα/2
=

nE(N1)

nα/2
= O(n−δ1)

Where δ1 := α/2 − 2β. By taking β < α/4 we have that δ1 > 0.
On the other hand, if we call Cmax the largest component of the graph, by Theorem 1.1 in [23]8 we also

have that
P(|Cmax| > nα/2) = O(n−δ2)

for some δ2 > 0. Then, taking δ := min(δ1, δ2) > 0, we have that

P(B > nα) ≤ P(N |Cmax| > nα) ≤ P(N > nα/2) + P(|Cmax| > nα/2) = O(n−δ)

This last proposition shows that the number of vertices in components that are not trees is (for every
α > 0) OP(nα). Now, define TG as a graph formed by spanning trees of each of the components of G (it
is not important which specific ones are chosen). We call WDG(G) and WDG(TG) the selection sequences
defined by the degree-greedy algorithm run in G and TG respectively. Observe that the components that
are trees look exactly the same in G and TG.

We can then couple the realisations of the degree-greedy algorithm in G and TG to make them coincide
in these components in the following way:

• Call the connected components of G as C1, C2,..., Cl and the ones of TG as C′
1, C′

2,..., C′
l .

• Run a degree-greedy algorithm in each of the components. This generates the selection sequences
W1, W2,..., Wl for the components of G and W ′

1, W ′
2,..., W ′

l for the ones of TG. If for some j ≤ l
the component Cj is a tree, then Cj = C′

j and the respective runs of the degree-greedy algorithm can
be trivially coupled to give Wj = W ′

j . Couple in this manner all the selection sequences of all the
components that are trees.

• Now, construct WDG(G) inductively as follows: in each step i ≥ 1, count the number of minimum

degree vertices in each component j ≤ l of Gi−1 and call this number d
(i)
j . Select component j ≤ l

with probability d
(i)
j /

∑m
k=1 d

(i)
k . Set wi (the i-th vertex of WDG(G)) as the first vertex of Wj not

already in {w1, ..., wi−1}.

• Finally, construct WDG(TG) in an analogous way but using selection sequences W ′
1, W ′

2,..., W ′
l .

It is straightforward that this construction corresponds to the degree-greedy sequential exploration in
each of both graphs.

The construction was made in such a way that for every component that is a tree, the same vertices end
up in WDG(G) as in WDG(TG). This means by Proposition 3.1 that, at most, |WDG(G)| and |WDG(TG)|

8Here we use that the tails of the degree distribution are exponentially thin and therefore O(k−γ′′
) for every γ′′ > 0.
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will differ in size by OP(nα) (the number of vertices in components that are not trees). Besides, TG is a
collection of trees and therefore, by Corollary 3.1, the degree-greedy ran on it will define a selection sequence
with the property T1, and then by Lemma 2.1 |WDG(TG)| = α(TG). But all the edges in TG are also present
in G and so TG will have a bigger maximum independent set than G9. This implies that

|WDG(TG)| = |WDG(G)| + OP(nα) = α(TG) ≥ α(G)

which in term implies that (because |WDG(G)| = σDG(G))

|α(G) − |WDG(G)|| ≤ OP(nα)

proving the proposition.
We now give a proof for the case in which G is a supercritical graph. Call WDG the selection sequence

defined by the degree-greedy algorithm ran on G. We want to show that |WDG| = α(G) + OP(nα). W.h.p.
we have that this sequence selects vertices of degree 1 or 0 at least until the remaining graph is subcritical.
Suppose this is so, then there exists some value k0 ≥ 1 s.t. for every k ≥ k0 the remaining graph Gk (see
definition 2.2) is subcritical and for every l ≤ k0 the vertex WDG(l) has degree either 1 or 0 in Gl.

The idea is to define a selection sequence W̃ that is similar to WDG, has roughly the same size and for
which |W̃ | ≥ α(G). Calling TGk0

the graph formed by the spanning trees of Gk0 , we define the graph G̃ as
a copy of G in which the subgraph Gk0 has been replaced by TGk0

. We can then define a selection sequence

W̃ for G̃ that coincides with WDG until step k0. For k ≥ k0, because Gk0 is subcritical and the remaining
graph of G̃ is a collection of spanning trees of Gk0 (that is, TGk0

), we can make W̃ to have the property
T1 and to differ in at most OP(nα) vertices from WDG in exactly the same way as in the subcritical case.
Because W̃ has the property T1, using Lemma 2.1, |W̃ | = α(G̃). Furthermore, because all the edges present
in G̃ are present in G we have that α(G̃) ≥ α(G). Then,

|W̃ | = |WDG| + OP(nα) = α(G̃) ≥ α(G)

which means that

|α(G) − σDG(G)| ≤ OP(nα)

as we wanted to show.

3.3 Hydrodynamic limit results

In this section we present the results we will use in the remaining of the paper to show the convergence of
processes and stopping times towards deterministic limits. These results are not necessarily presented in
full generality but rather in the most convenient form for the applications we intend.

Definition 3.1. Given a continuous time Markov jump process At ∈ D[0,∞) we will define its associated
Dynkin’s martingales10 by

Mt := At −A0 −
∫ t

0

δ[As]ds

where δ(·) is the drift of At.

The following lemma will be our main tool to prove convergence of stochastic processes towards solutions
of differential equations. It is an abstraction of the reasoning behind the proof of the limits in the main
theorem of [10].

9This is because the independence number is monotonically decreasing when adding edges to a graph.
10Which are martingales because of Dynkin’s formula.
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Lemma 3.2. Let (A
(n)
t (1), A

(n)
t (2), ...) ∈ D[0,∞)N be a sequence of countable continuous time Markov jump

processes where (for each k ∈ N) A
(n)
t (k) has drift δk(A

(n)
t (1), A

(n)
t (2), ...). If (for every k ∈ N):

(i) δk(A
(n)
t (1), A

(n)
t (2), ...)/n =

∑ik
i≥1 αiA

(n)
t (i)/n, where ik ∈ N

(ii) δk(A
(n)
t (1), A

(n)
t (2), ...)/n are uniformly bounded

(iii) A
(n)
0 (k)/n

n→∞−−−−→ a0(k) (for some constant a0(k))

(iv) the associated Dynkin’s martingales M
(n)
t (k) have quadratic variation of order oP(n2)

then, if the system of integral equations defined by

at(1) = a0(1) +

∫ t

0

δ1(as(1), as(2), ...)ds

at(2) = a0(2) +

∫ t

0

δ2(as(1), as(2), ...)ds

. . .

has a unique solution, the processes A
(n)
t (1), A

(n)
t (2),... converge in probability towards the continuous

functions at(1), at(2) that are solution to the system.

Proof. Dividing by n Dynkin’s formula we have that

A
(n)
t (1)

n
=

A
(n)
0 (1)

n
+

∫ t

0

δ
(n)
1 [A

(n)
s (1), A

(n)
s (2), ...]

n
ds +

M
(n)
t (1)

n

A
(n)
t (2)

n
=

A
(n)
0 (2)

n
+

∫ t

0

δ
(n)
2 [A

(n)
s (1), A

(n)
s (2), ...]

n
ds +

M
(n)
t (2)

n

. . .

Because the associated Dynkin’s martingales have quadratic variation of order oP(n2) by Doob’s in-

equality we have that, for each k ∈ N, sups≤t |M (n)
t |/n converges uniformly in distribution in C[0,∞)

towards 0. Since the δ
(n)
k (·) are uniformly bounded, for every k ∈ N and T > 0, the sequences of processes

(A
(n)
t (k)−M

(n)
t )/n are uniformly Lipschitz and uniformly bounded in [0, T ]. Then, by Arzela-Ascoli’s The-

orem, for every T > 0 these families of processes are tight in C[0, T ]. This implies that for every subsequence
there exists subsubsequences such that

A
(n)
t (1) −M

(n)
t (1)

n
→ at(1)

A
(n)
t (2) −M

(n)
t (2)

n
→ at(2)

. . .

uniformly in distribution in compact sets, for some continuous functions at(1), at(2), etc. Since the
processes are countable, we may take a common subsubsequence where all this convergences hold. Fur-
thermore, by Skorohod’s Representation Theorem, there exists an (abstract) probability space s.t. all these
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limits and the convergence (for every k ∈ N) of supt |M (n)
t (k)|/n towards 0 hold uniformly and almost surely

in compact sets. Then, for this subsubsequence

A
(n)
t (1)

n

a.s.−−→ at(1)

A
(n)
t (2)

n

a.s.−−→ at(2)

. . .

By hypothesis δ
(n)
k [A

(n)
s (1), A

(n)
s (2), ...]/n =

∑ik
≥i α

(k)
i A

(n)
t (k)/n, then limn δk(A

(n)
t (1), A

(n)
t (2), ...)/n =

δk(at(1), at(2), ...). And because all the drifts are uniformly bounded, taking limit over this subsubsequence

and using that A
(n)
t (k)/n → a0(k) and dominated convergence yields

at(1) = a0(1) +

∫ t

0

δ1(as(1), as(2), ...)ds

at(2) = a0(2) +

∫ t

0

δ2(as(1), as(2), ...)ds

. . .

The convergence towards the solution of this system of integral equations is well defined as, by hypothesis,
it has a unique solution. We now need to prove that this convergence is not only in this subsubsequence but
rather in the whole original sequence. For this, note that since the limits are continuous and deterministic,
this convergence is equivalent to convergence in distribution in the Skorohod topology on D[0,∞). But
because every subsequence has a subsubsequence that converges to the same limit (because by hypothesis
it is unique), the original sequence converges in distribution to it. Moreover, as the limit is deterministic,
the convergence can equivalently be taken to be in probability.

In the following lemma, we will establish convergence criteria for the stopping times of sequences of
decreasing processes that converge towards an hydrodynamic limit.

Lemma 3.3. Let (A
(n)
t (1), A

(n)
t (2), ...) ∈ D[0,∞)N be a sequence of countable continuous time Markov

jump processes with A
(n)
t (1) a decreasing process of transition matrix Q

(n)
ij and define the stopping times

T (n) := inf{t ≥ 0 : A
(n)
t (1) = 0} and the deterministic time T := inf{s ≥ 0 : as(1) = 0}. Under the same

hypothesis of previous lemma and further assuming that:

(i) For every t ≤ T (n) and (if A
(n)
t (1) = i ≥ 0),

∑

j≤i Q
(n)
ij (A

(n)
t (2), ...) ≥ C(n)n with C(n) n→∞−−−−→ C > 0

(ii) The function at(1) is continuously differentiable with ȧt(1) ≤ −C′ (for some C′ > 0 and t ≤ T )

then, T (n) P−→ T .

Proof. Given δ > 0, we want to show that the probability of {|T − T (n)| ≥ δ} goes to 0. For this, suppose

that T > T (n). Now, suppose that the event {supt≤T |A(n)
t (1)/n − at(1)| ≤ δC′} holds. Then, aT (n)(1) is

at most δ/C′. By hypothesis we have that for every t ≤ T the derivative of at(1) is less than −C′, then

aT (n)+δ(1) ≤ aT (n)(1) − C′δ ≤ 0. Therefore, {T − T (n) ≥ δ} ⊆ {supt≤T |A(n)
t (1)/n − at(1)| ≥ δC′}. And

because A
(n)
t (1)/n

P−→ at(1), the probability of this last event tends to 0.

On the other hand, now suppose that T (n) > T . If the event {supt≤T |A(n)
t (1)/n − at(1)| ≤ Cδ/4}

holds, the value of A
(n)
T /n will be at most Cδ/4. Because by hypothesis A

(n)
t (1) is decreasing and if
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A
(n)
t (1) = i ≥ 0 the process has transitions to lower states with rate at least nC(n) = nC + o(n). If we

define (Zt)t≥T to be a pure death process with initial value ZT = Cδ/4 and death rate nC/2, we can then

couple (for n larger than certain n0 ≥ 0) the process A
(n)
t to be larger than Zt for t ≥ T . Then, for n ≥ n0,

{T (n) − T ≥ δ} ⊆ {ZT+δ ≥ 0}. But, defining X ∼ Pois(nCδ/2), the probability of this last event is equal
to P(X ≤ nCδ/4) and by Chebychev’s inequality we have that

P(X ≤ nCδ/4) = P(nCδ/2 −X ≥ nCδ/4) ≤ P(|X − nCδ/2| ≥ nCδ/4) ≤ nCδ/2

n2C2δ2/16
=

8

nCδ

Summarising,

P(|T (n) − T | ≥ δ) = P(T − T (n) > δ)

+P(supt≤T |A(n)
t (1)/n− at(1)| ≤ Cδ/4, T (n) − T > δ)

+P(supt≤T |A(n)
t (1)/n− at(1)| ≥ Cδ/4, T (n) − T > δ)

≤ P(supt≤T |A(n)
t (1)/n− at(1)| ≥ δC′)

+P(supt≤T |A(n)
t (1)/n− at(1)| ≤ Cδ/4, T (n) − T > δ)

+P(supt≤T |A(n)
t (1)/n− at(1)| ≥ Cδ/4)

≤ P(supt≤T |A(n)
t (1)/n− at(1)| ≥ δC′) + P(X ≤ nCδ/4)

+P(supt≤T |A(n)
t (1)/n− at(1)| ≥ Cδ/4)

n→∞−−−−→ 0

where the last term P(supt≤T |A(n)
t (1)/n−at(1)| ≥ Cδ/4) goes to 0 because we are under the hypothesis

of the previous lemma.

We now need to establish the convergence of the coordinates of countable Markov jump processes at
specific stopping times towards corresponding values of its hydrodynamic limit. For this, we will use the
following corollary.

Corollary 3.2. Let (A
(n)
t (1), A

(n)
t (2), ...) ∈ D[0,∞)N be as in the previous lemma. Then, for every k ∈ N

we will have that A
(n)

T (n)(k)/n
P−→ aT (k).

Proof. We have that

|AT (n)(k)/n− aT (k)| ≤ |AT (n)(k)/n− aT (n) | + |aT (n) − aT (k)|

where the first term in the r.h.s. goes w.h.p. to 0 because by Lemma 3.2 A
(n)
t (k)/n

P−→ at(k) uniformly

on compact sets (and since T (n) P−→ T , the T (n) are w.h.p. uniformly bounded); and the second one because

T (n) P−→ T by Lemma 3.3 and at(k) is continuous.

3.4 Proof of Theorem 2.1

For the analysis of the effect of M
(n)
1 (·) we will break the degree-greedy dynamics in two. In the first phase,

we will only connect the vertices of degree 1 and we will accumulate the number of free half-edges stemming

from the blocked vertices in a variable B
(n)
t . We will do this until we have explored np

(n)
1 vertices of degree

1. While in the second phase, we will take the final value of B
(n)
t from phase 1 and we will sequentially

match each of this half-edges and remove the edges formed from the graph.
Because the Configuration Model is not sensitive to the order in which the matching of half-edges is

done, this will not affect the final degree distribution obtained (which will be the same as the one obtained

applying the map M
(n)
1 (·)) but will nevertheless make the analysis of the resulting limit easier. As we will

see, for the proof of Theorem 2.1 it will only be enough to analyse the first of these two phases.
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The proof will consist of three parts. First, we give a stochastic description of a Markov process that
gives the evolution of the first phase. Then, we establish the concentration of the asymptotic values of the
number of unmatched half-edges, the number of unmatched half-edges stemming from blocked vertices and
the normalised degree measure of the vertices not connected to any degree 1. Using this convergences we
prove that the resulting graph after phase 1 can be regarded as a Configuration Model with known limiting
distribution. Finally, these limits combined with an observation from percolation for Configuration Models,
allow us to establish the criteria given by Theorem 2.1.
(i) Stochastic description of the first phase: the stochastic process used to model the first phase of the
matching of the degree 1 vertices will be similar in spirit to the one used in [10] to study the greedy
algorithm. Here, we also keep track of the number of unpaired blocked half-edges in the random variable

B
(n)
t . The other variables used to describe the process will be: the number U

(n)
t of unpaired half-edges, the

number A
(n)
t of remaining degree 1 vertices to match and (for k ∈ N) the number µ

(n)
t (k) of unexplored

degree k vertices.
Then, at each time t ≥ 0 the state of the process will be described by the infinite dimensional vector

(U
(n)
t , A

(n)
t , B

(n)
t , µ

(n)
t (2), µ

(n)
t (3), ...). The process in question evolves as follows: at each time t ≥ 0 every

degree 1 vertex in A
(n)
t will have an exponential clock with rate 1. When one of the clocks of some of these

vertices rings, the vertex is removed from A
(n)
t and its edge is uniformly paired to another unpaired edge.

The state of the vertex with the half-edge selected for the pairing is declared blocked and its unmatched

half-edges are added to B
(n)
t . The process goes on until there are no more degree 1 vertices to be paired.

Because it is defined by well-behaved transition rates, it is straightforward that the resulting process is

Markovian. The stopping time in which the process finishes will be given by T
(n)
1 := inf{t ≥ 0 : A

(n)
t = 0}

and will be a.s. finite.

(ii) Convergence of the final values of the coordinates:
To analyse the convergence of the final value of the number of unmatched half-edges, we will represent

with {ei 6↔ (1)} the event that the half-edge ei is not matched nor stemming from a degree 1 vertex. We

will then define the r.v. Y (n) :=
∑nλ(n)

i=1 1{ei 6↔(1)} = U
(n)

T
(n)
1

that gives the number of unmatched half-edges

at the end of the first phase. The convergence will be proved by showing that this variable concentrates
around its mean. For this, we will then first compute its corresponding value:

E

(

Y (n)
)

= E





nλ(n)
∑

i=1

1{ei 6↔(1)}





Because half-edges are interchangeable, this is equal to nλ(n)
P(e1 6↔ (1)). The probability that the

event {e1 6↔ (1)} holds may be seen to be given by
nλ(n)−np

(n)
1 −1

nλ(n)−1

nλ(n)−np
(n)
1 −2

nλ(n)−2
= (1 − p1/λ)2 + o(1).

We then have that

E

(

Y (n)
)

= nλ(n)(1 − p1/λ)2 + o(n) (8)

To show the concentration, we will now bound the variance of this variable:

Var
(

Y (n)
)

= E

[(

Y (n)
)2
]

− E

(

Y (n)
)2

(9)

Where the first term in (9) will be given by

E





nλ(n)
∑

i6=j

1{ej 6↔(1)}1{ej 6↔(1)}



+ E

(

Y (n)
)
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Then, defining A := E

(
∑nλ(n)

i6=j 1{ej 6↔(1)}1{ej 6↔(1)}

)

, B := E
(
Y (n)

)
and C := E

(
Y (n)

)2
, we have that

Var
(
Y (n)

)
= A + B − C.

The term A can be bounded above by

nλ(n)(nλ(n) − 1)P(e1 6↔ e2, e1 6↔ (1), e2 6↔ (1))

With {e1 6↔ e2} representing the event that e1 is not matched to e2. This probability is given by

P(e1 6↔ (1), e2 6↔ (1)|e1 6↔ e2)P(e1 6↔ e2).

It can be easily seen that P(e1 6↔ (1), e2 6↔ (1)|e1 6↔ e2) =
∏4

k=1

(

1 − np
(n)
1

nλ(n)−k

)

, and that P(e1 6↔ e2) =

1 + o(1).
We then get that A ≤ nλ(nλ − 1)(1 − p1/λ)4 + o(n2). Also, by (8), B = nλ(1 − p1/λ)2 + o(n) and

C = n2λ2(1 − p1/λ)4 + o(n2). This shows that the variance of Y (n) is o(n2).
Using Chebychev’s inequality we then get that (for every ǫ > 0)

P

(

|Y (n) − E(Y (n))| > ǫn
)

≤ Var
(
Y (n)

)

ǫ2n2
→ 0 (10)

Which proves that U
(n)

T
(n)
1

/n converges in probability towards u1 := (1 − p1/λ)2λ = Q2λ.

The computation for the convergence of the final value of the degree measure will be completely anal-
ogous. We will represent with {vj 6↔ (1)} the event that the vertex vj is not connected to any degree 1

vertex at time T
(n)
1 . Then, (for i ≥ 2) the random variable Z

(n)
i :=

∑n
j=1 1{vj 6↔(1)}1{dvj

=i} = µ
(n)

T
(n)
1

(i) gives

the number of degree i vertices not connected to any degree 1 vertex at the end of the first phase. In other

words, Z
(n)
i gives the number of vertices of degree i that remain after the first phase. We will first prove

that these variables converge in probability.
For this, we compute their corresponding mean values:

E

(

Z
(n)
i

)

= E





n∑

j=1

1{vj 6↔(1)}1{dvj
=i}





Which, because vertices are interchangeable, is equal to nP(v1 6↔ (1), dv1 = i). This last probability is

easy to compute and gives p
(n)
i

∏i
l=1

(

1 − np
(n)
1

n
∑

i≥1 ip
(n)
i −(2l−1)

)

, which converges as n → ∞ to (1− p1/λ)ipi.

We then have that

E

(

Z
(n)
i

)

= n(1 − p1/λ)ipi + o(n) (11)

We will now bound the variance of these variables:

Var
(

Z
(n)
i

)

= E

[(

Z
(n)
i

)2
]

− E

(

Z
(n)
i

)2

(12)

Where the first term in (12) will be given by

E





n∑

j 6=k

1{vj 6↔(1)}1{vk 6↔(1)}1{dvj
=dvk

=i}



+ E

(

Z
(n)
i

)

Then, defining A′ := E

(
∑n

j 6=k 1{vj 6↔(1)}1{vk 6↔(1)}1{dvj
=dvk

=i}

)

, B′ := E

(

Z
(n)
i

)

and C′ := E

(

Z
(n)
i

)2

,

we have that Var
(

Z
(n)
i

)

= A′ + B′ − C′.
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Now, the term A′ can be bounded above by

n(n− 1)P(v1 6↔ v2, v1 6↔ (1), v2 6↔ (1), dv1 = dv2 = i)

Where {v1 6↔ v2} represents the event that v1 is not connected to v2 (where v1 and v2 are two distinct
uniform vertices). This probability is equal to

P(v1 6↔ (1), v2 6↔ (1)|v1 6↔ v2, dv1 = dv2 = i)P(v1 6↔ v2|dv1 = dv2 = i)P(dv1 = dv2 = i)

Furthermore, simple computations show that

P(v1 6↔ (1), v2 6↔ (1)|v1 6↔ v2, dv1 = dv2 = i) =
∏i

l=1

(

1 − np
(n)
1

n
∑

i≥1 ip
(n)
i −(i+2l−1)

)

×
(

1 − np
(n)
1

n
∑

i≥1 ip
(n)
i −(2i+2l−1)

)

,

that P(v1 6↔ v2|dv1 = dv2 = i) = 1 + o(1) and that P(dv1 = dv2 = i) = p
(n)2
i + o(1).

Putting all this together shows that A′ ≤ n(n − 1)(1 − p1/λ)2ip2i + o(n2). Finally, by (11), B′ =

n(1 − p1/λ)ipi + o(n) and C′ = n2(1 − p1/λ)2ip2i + o(n2). Which proves that the variance of Z
(n)
i is o(n2).

By Chebychev’s inequality this implies that

P

(

|Z(n)
i − E(Z

(n)
i )| > ǫn

)

≤
Var

(

Z
(n)
i

)

ǫ2n2
→ 0 (13)

Which in turn means that for any initial asymptotic degree distribution that is bounded, all the Z
(n)
i /n

will converge jointly in probability to (1 − p1/λ)ipi. But because
(

Z
(n)
i

)

n≥0
is bounded by (p

(n)
i )n≥0 and

this last sequence is eventually uniformly summable, then

(

Z
(n)
2 /n, ..., Z

(n)
i /n, ...

)
P−→ (µ1(2), ..., µ1(i), ...) :=

(
Q2p2, ..., Q

ipi, ...
)

(14)

Furtheremore, because we have that (for all t ≥ 0) U
(n)
t = A

(n)
t +B

(n)
t +

∑∞
i=2 iµ

(n)
t (i) a.s., the normalised

number B
T

(n)
1

/n of unmatched half-edges stemming from blocked vertices at the end of the first phase

converges in probability towards b1 := u1 −
∑∞

i=2 iµ1(i).

Finally, as
∑

k≥1 k
2p

(n)
k converges towards

∑

k≥1 k
2pk, then these sums are uniformly summable. And

because, for every k ≥ 2, we have that µ
(n)

T
(n)
1

(k)/n ≤ p
(n)
k , the sums

∑

k≥2 k
2µ

(n)

T
(n)
1

/n will also be uniformly

summable. This implies that

∑

k≥2

k2p
(n)
k µ

(n)

T
(n)
1

/n
P−→
∑

k≥2

k2µ1(k)

We then recover the (CA) for the degree distribution of the remaining graph after the first phase.
This means that, if we regard the unexplored blocked half-edges as degree 1 vertices, the graph obtained
when the first phase is finished can be treated as a Configuration Model11 with limiting degree distribution
p̃1 = b1/K = (u1−

∑

i≥2 µ1(i))/K, and (for k ≥ 2) p̃k = µ1(k)/K (where K is just a normalisation constant).

(iii) Criteria for subcriticality: here we will establish under which circumstances the graph obtained af-

ter applying the map M
(n)
1 (·) is w.h.p. subcritical. Note that, to do so, one in principle has to analyse

what happens to the degree distribution during the second phase of the dynamics and then determine if the
distribution obtained is subcritical or not. But the second phase of the dynamics is equivalent to matching

11For this we also need the number of remaining vertices to tend to infinity when n → ∞, but this can be easily checked to
be the case if p1 < 1.
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B
(n)

T
(n)
1

degree 1 vertices and then removing these vertices and the edges so formed. In the same way as

was discussed in [25], matching degree 1 vertices and then removing them and their edges from the graph
does not modify the criticality of a Configuration Model graph with finite second moment12. We can then

establish the subcriticality of the graph after applying M
(n)
1 (·) just by computing the criticality parameter

ν̃ of a graph of limiting degree distribution (p̃k)k≥1.
By explicitly computing the criticality parameter we obtain that

ν̃ =

∑

i≥2 i(i− 1)p̃i
∑

i≥1 ip̃i
=

1

λ

∑

i≥2

i(i− 1)Qi−2pi = G′′
D(Q)/λ (15)

By Theorem 2.3 [27], the obtained graph is subcritical when this parameter is strictly less than 1. The
conclusion then follows by Proposition 2.113.

3.5 Proof of Theorem 2.2

The structure of the remaining of the proof the following. We will first give the description of the stochastic
process associated to the second phase of the dynamics. After this, we use the results in 3.3 to establish
hydrodynamic limits for this process. Finally, we use this limits to prove the statement of the theorem.

(i) Stochastic description of the second phase: this phase of the dynamics consists of sequentially matching
the half-edges of blocked vertices and removing the edges so formed. This is done until no more unmatched
blocked half-edges remain. In this phase, the states of vertices are not changed, only their degrees; and so,
no vertex is added to the independent set.

Initially, we have that graph has B
(n)

T
(n)
1

unmatched blocked half-edges and (for k ≥ 2) µ
(n)

T
(n)
1

(k) unexplored

vertices of degree k. Because of the results of step (ii) of the proof of Theorem 2.1 we have that B
(n)

T
(n)
1

/n
P−→

Q2λ−∑i≥2 iQ
ipi and (for every k ≥ 2) µ

(n)

T
(n)
1

(k)/n
P−→ Qkpk.

Then, at each time t ≥ 0 the state of the process will be described by the infinite dimensional vector

(U
(n)
t , B

(n)
t , µ

(n)
t (0), µ

(n)
t (1), ...). The process in question will evolve as follows: at each time t ≥ 0 every

unmatched blocked half-edge will have an exponential clock with rate U
(n)
t /B

(n)
t (and, when B

(n)
t = 0, we

define the transition rate as 0). When one of the clocks of some of this half-edges rings, it is uniformly
matched to another free half-edge and the edge formed is removed from the graph. The process will go on
until there are no more free blocked half-edges to be paired. Because it is defined by well-behaved transition
rates, it is straightforward that the resulting process is Markovian.

(ii) Hydrodynamic limit of the second phase: here we establish the convergence of the process associated to
the second phase of the dynamics towards the solutions of a set of differential equations. As before, we first
find the drifts associated to each one of the coordinates of the state vector:

• With rate U
(n)
t , the clock of one of the free blocked half-edges rings, at which point it is paired to

another free half-edge. So, U
(n)
t has a drift given by δ(U

(n)
t ) := −2U

(n)
t .

• With rate U
(n)
t , the clock of one of the free blocked half-edges rings, at which point two things can

happen: with probability
B

(n)
t

U
(n)
t

the half-edge is matched to another free blocked half-edge and therefore

12This is so because, for each degree 1 vertex removed, the largest connected component’s size is reduced at most by 1. This
is not true for larger degree vertices.

13At first sight, one could only apply this proposition for distributions with asymptotically exponentially thin tails. But, as
shown in Lemma 3.4, this will be true for every degree distribution after applying the map M1(·) one time.
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B
(n)
t is reduced by 2; or with probability

U
(n)
t −B

(n)
t

U
(n)
t

is matched to a half-edge belonging to an unexplored

vertex and B
(n)
t is only reduced by 1. So, B

(n)
t has a drift given by δ′(U

(n)
t , B

(n)
t ) := −(B

(n)
t + U

(n)
t ).

• Finally, with rate U
(n)
t , the clock of one of the free blocked half-edges rings and if matched to an

unexplored half-edge, an unexplored vertex is selected according to the size-biased distribution and

has one of its half-edges removed. This means that (for each k ≥ 0) with probability
kµ

(n)
t (k)

U
(n)
t

a degree

k vertex is selected to be matched and therefore µ
(n)
t (k) is reduced by 1 and µ

(n)
t (k − 1) is increased

by 1. So, µ
(n)
t (k) has a drift given by δk(µ

(n)
t (k)) := −kµ

(n)
t (k) + (k + 1)µ

(n)
t (k + 1).

Fix some δ > 0, then the sequence of processes
U

(n)
t

n ,
B

(n)
t

n and (for every k ≥ 0)
µ
(n)
t (k)
n , are (for n large

enough) uniformly bounded by λ + δ. They are then uniformly bounded. This, in turn, means that all the

drifts associated to the coordinates of (U
(n)
t , B

(n)
t , µ

(n)
t (0), µ

(n)
t (1), ...) are uniformly bounded.

By the results shown in the proof of Theorem 2.1, U
(n)
0 /n → λQ2, B

(n)
0 /n → λQ2−∑i≥2 iQ

ipi and (for

every k ≥ 0) µ
(n)
0 (k)/n → Qkpk1k≥2.

Here we will denote the Dynkin’s martingales associated to U
(n)
t , B

(n)
t and (for each k ≥ 0) µ

(n)
t (k) by

M
(n)
t , M

′(n)
t and N

(n)
t (k), respectively. These are all martingales of locally finite variation. Therefore, their

quadratic variation will be given by

[M
(n)
t ]t =

∑

0≤s≤t

(∆M (n)
s )2 =

∑

0≤s≤t

(∆U (n)
s )2 ≤

∑

s≥0

(∆U (n)
s )2 ≤ 4B

(n)
0 n = O(n) (16)

[M
′(n)
t ]t =

∑

0≤s≤t

(∆M ′(n)
s )2 =

∑

0≤s≤t

(∆B(n)
s )2 ≤

∑

s≥0

(∆B(n)
s )2 ≤ 2B

(n)
0 n = O(n) (17)

[N
(n)
t (k)]t =

∑

0≤s≤t

(∆N (n)
s (k))2 =

∑

0≤s≤t

(∆µ(n)
s (k))2 ≤

∑

s≥0

(∆µ(n)
s (k))2 ≤ Qkp

(n)
k n = O(n) (18)

Now, the corresponding system of integral equations (as presented in Lemma 3.2) will be given by:

ut = λ−
∫ t

0

2usds (19)

bt = b0 −
∫ t

0

(bs + us)ds (20)

µt(k) = Qkpk1{k≥2} +

∫ t

0

(k + 1)µs(k + 1) − kµs(k)ds (21)

The first two equations can be directly integrated to give

ut = λQ2e−2t (22)

bt = Q2λe−2t − e−t
∑

i≥2

iQipi (23)

While for equations (21) with k ≥ 1, they can be seen to have normal modes given by

ηk(i) = (−1)k−i

(
k

i

)

1{i≤k} (24)

where i ≥ 1 and with associated eigenvalues ωk = −k.
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Furthermore, the uniqueness of these solutions can be proved by decoupling the system, and writing it in
the base of the normal modes. This results in a countable number of independent equations with Lipschitz
derivatives and the uniqueness then follows by standard ODE theory.

We are thus under the conditions of Lemma 3.2 and we will therefore have that, uniformly in compact

sets, U
(n)
t /n

P−→ ut, B
(n)
t /n

P−→ bt and (for every k ≥ 0) µ
(n)
t (k)/n

P−→ µt(k).

Moreover, if we define the stopping time T
(n)
2 := inf{t ≥ 0 : B

(n)
t = 0} and the deterministic time

T2 := inf{t ≥ 0 : bt = 0}, it can be proved that the conditions of Lemma 3.3 hold. For this, first note that

B
(n)
t is in fact decreasing (it only transitions to states of lower value) and that for every i ∈ N if B

(n)
t = i

then the transition rate to lower states is given by

∑

j≤i

Qij = E
(n)
t + B

(n)
t = U

(n)
t

Because for every t ≤ T
(n)
2 we have that U

(n)
t ≥ U

(n)
0 −2B

(n)
0 , if the initial proportion of blocked vertices

if smaller than 1/2 then U
(n)
t will be uniformly lower bounded by a positive number. But because of Lemma

A.1 of Appendix A, the proportion of blocked vertices will drop w.h.p. (for any initial value) below 1/2 at a

time where U
(n)
t is still a positive proportion of n. And so, the strict positivity of U

(n)
t /n will still be true.

Furthermore, if we define λ̃ :=
∑

i≥2 iQ
ipi, T2 can be explicitly found to be given by log(Q2λ/λ̃) =

− log Q̃. Since (for every t ≤ T2)

ḃt = −2Q2λe−2t + e−tλ̃ ≤ −2Q2λe−T2 + λ̃ = λ̃

[

1 − 2λ̃

Q2λ

]

where the r.h.s. is strictly negative, then we can apply Lemma 3.3 to show that T
(n)
2

P−→ T2. And by
Corollary 3.2, we will have that

U
T

(n)
2

/n
P−→ uT2

B
T

(n)
2

/n
P−→ bT2

µ
T

(n)
2

(1)/n
P−→ µT2(1)

µ
T

(n)
2

(2)/n
P−→ µT2(2)

. . .

Finally, because
∑

k≥1 k
2p

(n)
k converges towards

∑

k≥1 k
2pk, then these sums are uniformly summable.

And because by Lemma 3.4, we have that µ
(n)

T
(n)
2

(k)/n is OP(e−γk) (for some γ > 0), the sums
∑

k≥2 k
2µ

(n)

T
(n)
2

/n

will be w.h.p. eventually uniformly summable. This implies that

∑

k≥1

k2p
(n)
k µ

(n)

T
(n)
2

/n
P−→
∑

k≥2

k2µT2(k)

We then recover the (CA) for the degree distribution of the remaining graph after the second phase. This
means that the graph obtained when the second phase is finished can be treated as a Configuration Model
with limiting degree distribution (for k ≥ 1) p̃k = µT2(k)/Z, where Z is just a normalisation constant.

Finally, we show that the condition of exponentially thin tails in Proposition 2.1 is not really restrictive,
as every initial distribution results in a distribution with this property after one application of the map

M
(n)
1 (·).

Lemma 3.4. Under the same hypothesis of Theorem 2.1 and further assuming that p1 > 0, then M1(pi)(k)
is O(e−γk) with γ := −log(Q) > 0.

23



Proof. Recall that M1(pi)(k) is given by the k-th coordinate of the solution of the system (21) at time T2.
It can then be seen to be smaller or equal to the k-th coordinate of the solution of the modified system:







µ̃t(i) = Qipi +
∫ t

0
(i + 1)µ̃s(i + 1) − iµ̃s(i)ds, if i > k

µ̃t(i) = Qipi +
∫ t

0
(i + 1)µ̃s(i + 1)ds, if i = k

µ̃t(i) = Qipi, if 1 ≤ i < k

at time T2.
Furthermore, the k-th coordinate of this system can be easily shown to converge monotonically µ̃t(k) ր

∑∞
i=k µ̃0(i) as t → ∞. Then,

µT2(k) ≤ µ̃T2(k) ≤
∞∑

i=k

µ̃0(i) =

∞∑

i=k

µ0(i) ≤ C

∞∑

i=k

Qk = O(Qk)

where C > 0 is some constant.

4 Possible extensions

In this work we showed that, for a random graph with given degrees, if the degree-greedy algorithm selects
only degree 1 or 0 vertices until the remaining graph is subcritical, then the independent set obtained by it
is of the same size as a maximum one up to an error term smaller than any positive power of the graph size.
We then characterised for which asymptotic degree distributions this happens and gave a way of computing
their independence ratio.

It is still an open issue to show if the independent set found is always maximum asymptotically a.s. as
in the Erdös-Rényi case; and if not, under which conditions it is.

In Section 2.4 we explained how, changing higher degree vertices by degree 1 vertices, upper bounds
can be obtained for the independence number of general graphs. It would be possible, in principle, to
obtain tighter bounds by finding an optimal way of dominating the studied graphs by a graph in which the
degree-greedy algorithm is asymptotically optimal.

Furthermore, Lemma 3.4 seems to suggest that the pairing of degree 1 vertices quickly generates an
exponential tail in the resulting degree distribution. We then conjecture that the condition of finite second
moment in Theorems 2.1 and 2.2 could in fact be avoided, extending the result to heavy-tailed distributions.

Finally, the Glauber dynamics’ invariant measure is known (under certain limits) to concentrate around
maximum independent sets. Nevertheless, when characterised in this limit, the mixing times are exponential
in the graph size. The results of this work might help in showing that the mixing time could be reduced by
starting the dynamics from an independent set found by a degree-greedy algorithm.
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A Appendix: Pairing urn model

Suppose we have the following urn problem, which we will refer to as the Pairing urn model. Initially we
have an urn with k red balls and n− k white balls. At each step of the process, a red ball is removed and
after that a second ball is chosen uniformly from the urn and is also removed. The process is continued until
there are no more red balls left. What we will prove here is that, if k(n) = X0n+o(n) (for some 0 < X0 < 1),
then the proportion of red balls drops w.h.p. below 1/2 in a time where there are still a positive proportion
of the balls still in the urn. We will denote by (Ri)i∈N the process that gives at each step i ≥ 1 the number
of red balls removed so far. We will also define the stopping time T := inf{i ≥ 0 : (k−Ri)/(n− 2i) < 1/2}
when the proportion of red vertices drops below 1/2.
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Lemma A.1. Let 0 < X0 < 1 be the asymptotic initial proportion of red balls in a pairing urn process of
urn size n ∈ N, then w.h.p. T < n/2.

Proof. We will compare (Ri)i∈N to a second process (R̃i(l))i∈N, where l(n) is some function of n to be fixed
later. At each step i ≥ 1, R̃i(l) will give the total number of red balls removed so far from an urn without
replacement with initially k− l red and n−k white balls. We will denote by Xi and X̃i(l) the corresponding
proportion of red balls in the urns for both processes.

At each time j ≥ 1 the probability of drawing a red ball for the pairing urn is given by a Bernoulli r.v. of
parameter Xj = (k −Rj)/(n− 2j) and the corresponding probability for the urn without replacement will

also be a Bernoulli r.v. of parameter X̃j(l) = (k− l− R̃j(l))/(n− l− j). We can then couple both selection

probabilities by the usual coupling for two Bernoulli variables. Defining Tl := inf{i ≥ 1 : Xi ≤ X̃i(l)}, we
will then have that, for every i ≤ Tl, Ri − i ≥ R̃i(l). Now, suppose that Tl > l, then at step l we will have
that Rl − l ≥ R̃l(l) which implies that the proportion of vertices obeys

Xl =
k −Rl

n− 2l
≤ k − l − R̃l(l)

n− 2l
= X̃l(l) (25)

Which contradicts the hypothesis that Tl > l. We will then have that Tl ≤ l a.s. At each step i ≥ 1, the
corresponding value of X̃i(l) will be distributed according to

P(R̃i(l) = n− l −m) =

(
k−i

(k−i)−m

)(
n−k

m−(k−2i)

)

(
n−i
i

) (26)

By [22] we will have that for i ≤ l, the probability that the proportion of vertices deviating δ > 0 from
its mean (which is its initial value X̃0(l) = (k − l)/(n− l)) will be upper bounded by

P(X̃i(l) − X̃0(l) > δ) ≤





(

X̃0(l)

X̃0(l) + q(n, δ)

)X̃0(l)+q(n,δ)(

1 − X̃0(l)

1 − X̃0(l) − q(n, δ)

)1−X̃0(l)−q(n,δ)




n

(27)

Where q(n, δ) := (1 − 2l/n)δ. In particular, if asymptotically 2l(n) < n, we will then have that

P

(

sup
i≤l

X̃i − X̃0 ≥ δ

)

n→∞−−−−→ 0 (28)

And because Tl ≤ l, fixing l = 2k + δ′ − n (where δ′ > 0), gives X̃0(l) < 1/2; which implies that the
proportion of red balls for the first process will drop in a finite time below 1/2. Further more, if there exists
a δ′ s.t. 2l < n, the number of remaining balls in the urn at time l will be a positive proportion of n (i.e.,
T < n/2) as in each step exactly two balls are removed. It is easy to check that there will exist such δ′

whenever X0 < 3/4.
Lets see that when the initial proportion of red vertices is higher than 3/4 our claim is still true. To

prove this, we will work inductively. Call a1 := 1/2 and (for every i ≥ 2) ai := 1 − (2/3)i. We will suppose
that initially X0 ∈ [aj , aj+1). The process then arrives at the interval [aj−1, aj) in a finite time and with a
positive proportion of n of balls left in the urn. This will follow from the same argument as above by fixing
l(n) = ((X0 − aj)/(1 − aj) + δ′′)n, for some δ′′ > 0 small enough. This value of l(n) will then give that

X̃0(l) < aj and l(n) < (1/3 + δ′′)n, assuring that the same reasoning as before can be used. Because these
intervals are a partition of (1/2, 1), if the pairing urn starts with any initial proportion of red balls higher
than 1/2, it will eventually (after going through a finite number of intervals) drop below 1/2 at a time where
there are still a positive proportion of balls in the urn. Which is equivalent to say that T < n/2.
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